diff options
Diffstat (limited to 'kernel/constr.mli')
-rw-r--r-- | kernel/constr.mli | 46 |
1 files changed, 30 insertions, 16 deletions
diff --git a/kernel/constr.mli b/kernel/constr.mli index c3118cdf7..f76b5ae4f 100644 --- a/kernel/constr.mli +++ b/kernel/constr.mli @@ -30,13 +30,23 @@ type case_printing = cstr_tags : bool list array; (** tell whether letin or lambda in the signature of each constructor *) style : case_style } -(** the integer is the number of real args, needed for reduction *) +(* INVARIANT: + * - Array.length ci_cstr_ndecls = Array.length ci_cstr_nargs + * - forall (i : 0 .. pred (Array.length ci_cstr_ndecls)), + * ci_cstr_ndecls.(i) >= ci_cstr_nargs.(i) + *) type case_info = - { ci_ind : inductive; - ci_npar : int; - ci_cstr_ndecls : int array; (* number of pattern vars of each constructor (with let's)*) - ci_cstr_nargs : int array; (* number of pattern vars of each constructor (w/o let's) *) - ci_pp_info : case_printing (** not interpreted by the kernel *) + { ci_ind : inductive; (* inductive type to which belongs the value that is being matched *) + ci_npar : int; (* number of parameters of the above inductive type *) + ci_cstr_ndecls : int array; (* For each constructor, the corresponding integer determines + the number of values that can be bound in a match-construct. + NOTE: parameters of the inductive type are therefore excluded from the count *) + ci_cstr_nargs : int array; (* for each constructor, the corresponding integers determines + the number of values that can be applied to the constructor, + in addition to the parameters of the related inductive type + NOTE: "lets" are therefore excluded from the count + NOTE: parameters of the inductive type are also excluded from the count *) + ci_pp_info : case_printing (* not interpreted by the kernel *) } (** {6 The type of constructions } *) @@ -93,8 +103,9 @@ val mkLambda : Name.t * types * constr -> constr (** Constructs the product [let x = t1 : t2 in t3] *) val mkLetIn : Name.t * constr * types * constr -> constr -(** [mkApp (f,[| t_1; ...; t_n |]] constructs the application - {% $(f~t_1~\dots~t_n)$ %}. *) +(** [mkApp (f, [|t1; ...; tN|]] constructs the application + {%html:(f t<sub>1</sub> ... t<sub>n</sub>)%} + {%latex:$(f~t_1\dots f_n)$%}. *) val mkApp : constr * constr array -> constr val map_puniverses : ('a -> 'b) -> 'a puniverses -> 'b puniverses @@ -181,10 +192,13 @@ type ('constr, 'types) kind_of_term = | Evar of 'constr pexistential | Sort of Sorts.t | Cast of 'constr * cast_kind * 'types - | Prod of Name.t * 'types * 'types - | Lambda of Name.t * 'types * 'constr - | LetIn of Name.t * 'constr * 'types * 'constr - | App of 'constr * 'constr array + | Prod of Name.t * 'types * 'types (** Concrete syntax ["forall A:B,C"] is represented as [Prod (A,B,C)]. *) + | Lambda of Name.t * 'types * 'constr (** Concrete syntax ["fun A:B => C"] is represented as [Lambda (A,B,C)]. *) + | LetIn of Name.t * 'constr * 'types * 'constr (** Concrete syntax ["let A:B := C in D"] is represented as [LetIn (A,B,C,D)]. *) + | App of 'constr * 'constr array (** Concrete syntax ["(F P1 P2 ... Pn)"] is represented as [App (F, [|P1; P2; ...; Pn|])]. + The {!mkApp} constructor also enforces the following invariant: + - [F] itself is not {!App} + - and [[|P1;..;Pn|]] is not empty. *) | Const of constant puniverses | Ind of inductive puniverses | Construct of constructor puniverses @@ -205,19 +219,19 @@ val equal : constr -> constr -> bool (** [eq_constr_univs u a b] is [true] if [a] equals [b] modulo alpha, casts, application grouping and the universe equalities in [u]. *) -val eq_constr_univs : constr Univ.check_function +val eq_constr_univs : constr UGraph.check_function (** [leq_constr_univs u a b] is [true] if [a] is convertible to [b] modulo alpha, casts, application grouping and the universe inequalities in [u]. *) -val leq_constr_univs : constr Univ.check_function +val leq_constr_univs : constr UGraph.check_function (** [eq_constr_univs u a b] is [true] if [a] equals [b] modulo alpha, casts, application grouping and the universe equalities in [u]. *) -val eq_constr_univs_infer : Univ.universes -> constr -> constr -> bool Univ.constrained +val eq_constr_univs_infer : UGraph.t -> constr -> constr -> bool Univ.constrained (** [leq_constr_univs u a b] is [true] if [a] is convertible to [b] modulo alpha, casts, application grouping and the universe inequalities in [u]. *) -val leq_constr_univs_infer : Univ.universes -> constr -> constr -> bool Univ.constrained +val leq_constr_univs_infer : UGraph.t -> constr -> constr -> bool Univ.constrained (** [eq_constr_univs a b] [true, c] if [a] equals [b] modulo alpha, casts, application grouping and ignoring universe instances. *) |