aboutsummaryrefslogtreecommitdiffhomepage
path: root/intf/decl_kinds.ml
diff options
context:
space:
mode:
Diffstat (limited to 'intf/decl_kinds.ml')
-rw-r--r--intf/decl_kinds.ml76
1 files changed, 76 insertions, 0 deletions
diff --git a/intf/decl_kinds.ml b/intf/decl_kinds.ml
new file mode 100644
index 000000000..8254b1b80
--- /dev/null
+++ b/intf/decl_kinds.ml
@@ -0,0 +1,76 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016 *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(** Informal mathematical status of declarations *)
+
+type locality = Discharge | Local | Global
+
+type binding_kind = Explicit | Implicit
+
+type polymorphic = bool
+
+type private_flag = bool
+
+type theorem_kind =
+ | Theorem
+ | Lemma
+ | Fact
+ | Remark
+ | Property
+ | Proposition
+ | Corollary
+
+type definition_object_kind =
+ | Definition
+ | Coercion
+ | SubClass
+ | CanonicalStructure
+ | Example
+ | Fixpoint
+ | CoFixpoint
+ | Scheme
+ | StructureComponent
+ | IdentityCoercion
+ | Instance
+ | Method
+
+type assumption_object_kind = Definitional | Logical | Conjectural
+
+(* [assumption_kind]
+
+ | Local | Global
+ ------------------------------------
+ Definitional | Variable | Parameter
+ Logical | Hypothesis | Axiom
+
+*)
+type assumption_kind = locality * polymorphic * assumption_object_kind
+
+type definition_kind = locality * polymorphic * definition_object_kind
+
+(** Kinds used in proofs *)
+
+type goal_object_kind =
+ | DefinitionBody of definition_object_kind
+ | Proof of theorem_kind
+
+type goal_kind = locality * polymorphic * goal_object_kind
+
+(** Kinds used in library *)
+
+type logical_kind =
+ | IsAssumption of assumption_object_kind
+ | IsDefinition of definition_object_kind
+ | IsProof of theorem_kind
+
+(** Recursive power of type declarations *)
+
+type recursivity_kind =
+ | Finite (** = inductive *)
+ | CoFinite (** = coinductive *)
+ | BiFinite (** = non-recursive, like in "Record" definitions *)