aboutsummaryrefslogtreecommitdiffhomepage
path: root/doc/sphinx/addendum
diff options
context:
space:
mode:
Diffstat (limited to 'doc/sphinx/addendum')
-rw-r--r--doc/sphinx/addendum/extraction.rst586
-rw-r--r--doc/sphinx/addendum/generalized-rewriting.rst845
-rw-r--r--doc/sphinx/addendum/implicit-coercions.rst469
-rw-r--r--doc/sphinx/addendum/nsatz.rst101
-rw-r--r--doc/sphinx/addendum/program.rst381
-rw-r--r--doc/sphinx/addendum/ring.rst770
6 files changed, 3152 insertions, 0 deletions
diff --git a/doc/sphinx/addendum/extraction.rst b/doc/sphinx/addendum/extraction.rst
new file mode 100644
index 000000000..d7f97edab
--- /dev/null
+++ b/doc/sphinx/addendum/extraction.rst
@@ -0,0 +1,586 @@
+.. _extraction:
+
+.. include:: ../replaces.rst
+
+Extraction of programs in OCaml and Haskell
+============================================
+
+:Authors: Jean-Christophe Filliâtre and Pierre Letouzey
+
+We present here the |Coq| extraction commands, used to build certified
+and relatively efficient functional programs, extracting them from
+either |Coq| functions or |Coq| proofs of specifications. The
+functional languages available as output are currently OCaml, Haskell
+and Scheme. In the following, "ML" will be used (abusively) to refer
+to any of the three.
+
+Before using any of the commands or options described in this chapter,
+the extraction framework should first be loaded explicitly
+via ``Require Extraction``, or via the more robust
+``From Coq Require Extraction``.
+Note that in earlier versions of Coq, these commands and options were
+directly available without any preliminary ``Require``.
+
+.. coqtop:: in
+
+ Require Extraction.
+
+Generating ML Code
+-------------------
+
+.. note::
+
+ In the following, a qualified identifier `qualid`
+ can be used to refer to any kind of |Coq| global "object" : constant,
+ inductive type, inductive constructor or module name.
+
+The next two commands are meant to be used for rapid preview of
+extraction. They both display extracted term(s) inside |Coq|.
+
+.. cmd:: Extraction @qualid.
+
+ Extraction of the mentioned object in the |Coq| toplevel.
+
+.. cmd:: Recursive Extraction @qualid ... @qualid.
+
+ Recursive extraction of all the mentioned objects and
+ all their dependencies in the |Coq| toplevel.
+
+All the following commands produce real ML files. User can choose to
+produce one monolithic file or one file per |Coq| library.
+
+.. cmd:: Extraction "@file" @qualid ... @qualid.
+
+ Recursive extraction of all the mentioned objects and all
+ their dependencies in one monolithic `file`.
+ Global and local identifiers are renamed according to the chosen ML
+ language to fulfill its syntactic conventions, keeping original
+ names as much as possible.
+
+.. cmd:: Extraction Library @ident.
+
+ Extraction of the whole |Coq| library ``ident.v`` to an ML module
+ ``ident.ml``. In case of name clash, identifiers are here renamed
+ using prefixes ``coq_`` or ``Coq_`` to ensure a session-independent
+ renaming.
+
+.. cmd:: Recursive Extraction Library @ident.
+
+ Extraction of the |Coq| library ``ident.v`` and all other modules
+ ``ident.v`` depends on.
+
+.. cmd:: Separate Extraction @qualid ... @qualid.
+
+ Recursive extraction of all the mentioned objects and all
+ their dependencies, just as ``Extraction "file"``,
+ but instead of producing one monolithic file, this command splits
+ the produced code in separate ML files, one per corresponding Coq
+ ``.v`` file. This command is hence quite similar to
+ ``Recursive Extraction Library``, except that only the needed
+ parts of Coq libraries are extracted instead of the whole.
+ The naming convention in case of name clash is the same one as
+ ``Extraction Library``: identifiers are here renamed using prefixes
+ ``coq_`` or ``Coq_``.
+
+The following command is meant to help automatic testing of
+the extraction, see for instance the ``test-suite`` directory
+in the |Coq| sources.
+
+.. cmd:: Extraction TestCompile @qualid ... @qualid.
+
+ All the mentioned objects and all their dependencies are extracted
+ to a temporary OCaml file, just as in ``Extraction "file"``. Then
+ this temporary file and its signature are compiled with the same
+ OCaml compiler used to built |Coq|. This command succeeds only
+ if the extraction and the OCaml compilation succeed. It fails
+ if the current target language of the extraction is not OCaml.
+
+Extraction Options
+-------------------
+
+Setting the target language
+~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+The ability to fix target language is the first and more important
+of the extraction options. Default is ``Ocaml``.
+
+.. cmd:: Extraction Language Ocaml.
+.. cmd:: Extraction Language Haskell.
+.. cmd:: Extraction Language Scheme.
+
+Inlining and optimizations
+~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Since OCaml is a strict language, the extracted code has to
+be optimized in order to be efficient (for instance, when using
+induction principles we do not want to compute all the recursive calls
+but only the needed ones). So the extraction mechanism provides an
+automatic optimization routine that will be called each time the user
+want to generate OCaml programs. The optimizations can be split in two
+groups: the type-preserving ones (essentially constant inlining and
+reductions) and the non type-preserving ones (some function
+abstractions of dummy types are removed when it is deemed safe in order
+to have more elegant types). Therefore some constants may not appear in the
+resulting monolithic OCaml program. In the case of modular extraction,
+even if some inlining is done, the inlined constant are nevertheless
+printed, to ensure session-independent programs.
+
+Concerning Haskell, type-preserving optimizations are less useful
+because of laziness. We still make some optimizations, for example in
+order to produce more readable code.
+
+The type-preserving optimizations are controlled by the following |Coq| options:
+
+.. opt:: Extraction Optimize.
+
+ Default is on. This controls all type-preserving optimizations made on
+ the ML terms (mostly reduction of dummy beta/iota redexes, but also
+ simplifications on Cases, etc). Turn this option off if you want a
+ ML term as close as possible to the Coq term.
+
+.. opt:: Extraction Conservative Types.
+
+ Default is off. This controls the non type-preserving optimizations
+ made on ML terms (which try to avoid function abstraction of dummy
+ types). Turn this option on to make sure that ``e:t``
+ implies that ``e':t'`` where ``e'`` and ``t'`` are the extracted
+ code of ``e`` and ``t`` respectively.
+
+.. opt:: Extraction KeepSingleton.
+
+ Default is off. Normally, when the extraction of an inductive type
+ produces a singleton type (i.e. a type with only one constructor, and
+ only one argument to this constructor), the inductive structure is
+ removed and this type is seen as an alias to the inner type.
+ The typical example is ``sig``. This option allows disabling this
+ optimization when one wishes to preserve the inductive structure of types.
+
+.. opt:: Extraction AutoInline.
+
+ Default is on. The extraction mechanism inlines the bodies of
+ some defined constants, according to some heuristics
+ like size of bodies, uselessness of some arguments, etc.
+ Those heuristics are not always perfect; if you want to disable
+ this feature, turn this option off.
+
+.. cmd:: Extraction Inline @qualid ... @qualid.
+
+ In addition to the automatic inline feature, the constants
+ mentionned by this command will always be inlined during extraction.
+
+.. cmd:: Extraction NoInline @qualid ... @qualid.
+
+ Conversely, the constants mentionned by this command will
+ never be inlined during extraction.
+
+.. cmd:: Print Extraction Inline.
+
+ Prints the current state of the table recording the custom inlinings
+ declared by the two previous commands.
+
+.. cmd:: Reset Extraction Inline.
+
+ Empties the table recording the custom inlinings (see the
+ previous commands).
+
+**Inlining and printing of a constant declaration:**
+
+A user can explicitly ask for a constant to be extracted by two means:
+
+ * by mentioning it on the extraction command line
+
+ * by extracting the whole |Coq| module of this constant.
+
+In both cases, the declaration of this constant will be present in the
+produced file. But this same constant may or may not be inlined in
+the following terms, depending on the automatic/custom inlining mechanism.
+
+For the constants non-explicitly required but needed for dependency
+reasons, there are two cases:
+
+ * If an inlining decision is taken, whether automatically or not,
+ all occurrences of this constant are replaced by its extracted body,
+ and this constant is not declared in the generated file.
+
+ * If no inlining decision is taken, the constant is normally
+ declared in the produced file.
+
+Extra elimination of useless arguments
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+The following command provides some extra manual control on the
+code elimination performed during extraction, in a way which
+is independent but complementary to the main elimination
+principles of extraction (logical parts and types).
+
+.. cmd:: Extraction Implicit @qualid [ @ident ... @ident ].
+
+ This experimental command allows declaring some arguments of
+ `qualid` as implicit, i.e. useless in extracted code and hence to
+ be removed by extraction. Here `qualid` can be any function or
+ inductive constructor, and the given `ident` are the names of
+ the concerned arguments. In fact, an argument can also be referred
+ by a number indicating its position, starting from 1.
+
+When an actual extraction takes place, an error is normally raised if the
+``Extraction Implicit`` declarations cannot be honored, that is
+if any of the implicited variables still occurs in the final code.
+This behavior can be relaxed via the following option:
+
+.. opt:: Extraction SafeImplicits.
+
+ Default is on. When this option is off, a warning is emitted
+ instead of an error if some implicited variables still occur in the
+ final code of an extraction. This way, the extracted code may be
+ obtained nonetheless and reviewed manually to locate the source of the issue
+ (in the code, some comments mark the location of these remaining
+ implicited variables).
+ Note that this extracted code might not compile or run properly,
+ depending of the use of these remaining implicited variables.
+
+Realizing axioms
+~~~~~~~~~~~~~~~~
+
+Extraction will fail if it encounters an informative axiom not realized.
+A warning will be issued if it encounters a logical axiom, to remind the
+user that inconsistent logical axioms may lead to incorrect or
+non-terminating extracted terms.
+
+It is possible to assume some axioms while developing a proof. Since
+these axioms can be any kind of proposition or object or type, they may
+perfectly well have some computational content. But a program must be
+a closed term, and of course the system cannot guess the program which
+realizes an axiom. Therefore, it is possible to tell the system
+what ML term corresponds to a given axiom.
+
+.. cmd:: Extract Constant @qualid => @string.
+
+ Give an ML extraction for the given constant.
+ The `string` may be an identifier or a quoted string.
+
+.. cmd:: Extract Inlined Constant @qualid => @string.
+
+ Same as the previous one, except that the given ML terms will
+ be inlined everywhere instead of being declared via a ``let``.
+
+ .. note::
+
+ This command is sugar for an ``Extract Constant`` followed
+ by a ``Extraction Inline``. Hence a ``Reset Extraction Inline``
+ will have an effect on the realized and inlined axiom.
+
+.. caution:: It is the responsibility of the user to ensure that the ML
+ terms given to realize the axioms do have the expected types. In
+ fact, the strings containing realizing code are just copied to the
+ extracted files. The extraction recognizes whether the realized axiom
+ should become a ML type constant or a ML object declaration. For example:
+
+.. coqtop:: in
+
+ Axiom X:Set.
+ Axiom x:X.
+ Extract Constant X => "int".
+ Extract Constant x => "0".
+
+Notice that in the case of type scheme axiom (i.e. whose type is an
+arity, that is a sequence of product finished by a sort), then some type
+variables have to be given (as quoted strings). The syntax is then:
+
+.. cmdv:: Extract Constant @qualid @string ... @string => @string.
+
+The number of type variables is checked by the system. For example:
+
+.. coqtop:: in
+
+ Axiom Y : Set -> Set -> Set.
+ Extract Constant Y "'a" "'b" => " 'a * 'b ".
+
+Realizing an axiom via ``Extract Constant`` is only useful in the
+case of an informative axiom (of sort ``Type`` or ``Set``). A logical axiom
+have no computational content and hence will not appears in extracted
+terms. But a warning is nonetheless issued if extraction encounters a
+logical axiom. This warning reminds user that inconsistent logical
+axioms may lead to incorrect or non-terminating extracted terms.
+
+If an informative axiom has not been realized before an extraction, a
+warning is also issued and the definition of the axiom is filled with
+an exception labeled ``AXIOM TO BE REALIZED``. The user must then
+search these exceptions inside the extracted file and replace them by
+real code.
+
+Realizing inductive types
+~~~~~~~~~~~~~~~~~~~~~~~~~
+
+The system also provides a mechanism to specify ML terms for inductive
+types and constructors. For instance, the user may want to use the ML
+native boolean type instead of |Coq| one. The syntax is the following:
+
+.. cmd:: Extract Inductive @qualid => @string [ @string ... @string ].
+
+ Give an ML extraction for the given inductive type. You must specify
+ extractions for the type itself (first `string`) and all its
+ constructors (all the `string` between square brackets). In this form,
+ the ML extraction must be an ML inductive datatype, and the native
+ pattern-matching of the language will be used.
+
+.. cmdv:: Extract Inductive @qualid => @string [ @string ... @string ] @string.
+
+ Same as before, with a final extra `string` that indicates how to
+ perform pattern-matching over this inductive type. In this form,
+ the ML extraction could be an arbitrary type.
+ For an inductive type with `k` constructors, the function used to
+ emulate the pattern-matching should expect `(k+1)` arguments, first the `k`
+ branches in functional form, and then the inductive element to
+ destruct. For instance, the match branch ``| S n => foo`` gives the
+ functional form ``(fun n -> foo)``. Note that a constructor with no
+ argument is considered to have one unit argument, in order to block
+ early evaluation of the branch: ``| O => bar`` leads to the functional
+ form ``(fun () -> bar)``. For instance, when extracting ``nat``
+ into OCaml ``int``, the code to provide has type:
+ ``(unit->'a)->(int->'a)->int->'a``.
+
+.. caution:: As for ``Extract Constant``, this command should be used with care:
+
+ * The ML code provided by the user is currently **not** checked at all by
+ extraction, even for syntax errors.
+
+ * Extracting an inductive type to a pre-existing ML inductive type
+ is quite sound. But extracting to a general type (by providing an
+ ad-hoc pattern-matching) will often **not** be fully rigorously
+ correct. For instance, when extracting ``nat`` to OCaml ``int``,
+ it is theoretically possible to build ``nat`` values that are
+ larger than OCaml ``max_int``. It is the user's responsibility to
+ be sure that no overflow or other bad events occur in practice.
+
+ * Translating an inductive type to an arbitrary ML type does **not**
+ magically improve the asymptotic complexity of functions, even if the
+ ML type is an efficient representation. For instance, when extracting
+ ``nat`` to OCaml ``int``, the function ``Nat.mul`` stays quadratic.
+ It might be interesting to associate this translation with
+ some specific ``Extract Constant`` when primitive counterparts exist.
+
+Typical examples are the following:
+
+.. coqtop:: in
+
+ Extract Inductive unit => "unit" [ "()" ].
+ Extract Inductive bool => "bool" [ "true" "false" ].
+ Extract Inductive sumbool => "bool" [ "true" "false" ].
+
+.. note::
+
+ When extracting to Ocaml, if an inductive constructor or type has arity 2 and
+ the corresponding string is enclosed by parentheses, and the string meets
+ Ocaml's lexical criteria for an infix symbol, then the rest of the string is
+ used as infix constructor or type.
+
+.. coqtop:: in
+
+ Extract Inductive list => "list" [ "[]" "(::)" ].
+ Extract Inductive prod => "(*)" [ "(,)" ].
+
+As an example of translation to a non-inductive datatype, let's turn
+``nat`` into OCaml ``int`` (see caveat above):
+
+.. coqtop:: in
+
+ Extract Inductive nat => int [ "0" "succ" ] "(fun fO fS n -> if n=0 then fO () else fS (n-1))".
+
+Avoiding conflicts with existing filenames
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+When using ``Extraction Library``, the names of the extracted files
+directly depends from the names of the |Coq| files. It may happen that
+these filenames are in conflict with already existing files,
+either in the standard library of the target language or in other
+code that is meant to be linked with the extracted code.
+For instance the module ``List`` exists both in |Coq| and in OCaml.
+It is possible to instruct the extraction not to use particular filenames.
+
+.. cmd:: Extraction Blacklist @ident ... @ident.
+
+ Instruct the extraction to avoid using these names as filenames
+ for extracted code.
+
+.. cmd:: Print Extraction Blacklist.
+
+ Show the current list of filenames the extraction should avoid.
+
+.. cmd:: Reset Extraction Blacklist.
+
+ Allow the extraction to use any filename.
+
+For OCaml, a typical use of these commands is
+``Extraction Blacklist String List``.
+
+Differences between |Coq| and ML type systems
+----------------------------------------------
+
+Due to differences between |Coq| and ML type systems,
+some extracted programs are not directly typable in ML.
+We now solve this problem (at least in OCaml) by adding
+when needed some unsafe casting ``Obj.magic``, which give
+a generic type ``'a`` to any term.
+
+First, if some part of the program is *very* polymorphic, there
+may be no ML type for it. In that case the extraction to ML works
+alright but the generated code may be refused by the ML
+type-checker. A very well known example is the ``distr-pair``
+function:
+
+.. coqtop:: in
+
+ Definition dp {A B:Type}(x:A)(y:B)(f:forall C:Type, C->C) := (f A x, f B y).
+
+In Ocaml, for instance, the direct extracted term would be::
+
+ let dp x y f = Pair((f () x),(f () y))
+
+and would have type::
+
+ dp : 'a -> 'a -> (unit -> 'a -> 'b) -> ('b,'b) prod
+
+which is not its original type, but a restriction.
+
+We now produce the following correct version::
+
+ let dp x y f = Pair ((Obj.magic f () x), (Obj.magic f () y))
+
+Secondly, some |Coq| definitions may have no counterpart in ML. This
+happens when there is a quantification over types inside the type
+of a constructor; for example:
+
+.. coqtop:: in
+
+ Inductive anything : Type := dummy : forall A:Set, A -> anything.
+
+which corresponds to the definition of an ML dynamic type.
+In OCaml, we must cast any argument of the constructor dummy
+(no GADT are produced yet by the extraction).
+
+Even with those unsafe castings, you should never get error like
+``segmentation fault``. In fact even if your program may seem
+ill-typed to the Ocaml type-checker, it can't go wrong : it comes
+from a Coq well-typed terms, so for example inductive types will always
+have the correct number of arguments, etc. Of course, when launching
+manually some extracted function, you should apply it to arguments
+of the right shape (from the |Coq| point-of-view).
+
+More details about the correctness of the extracted programs can be
+found in :cite:`Let02`.
+
+We have to say, though, that in most "realistic" programs, these problems do not
+occur. For example all the programs of Coq library are accepted by the OCaml
+type-checker without any ``Obj.magic`` (see examples below).
+
+Some examples
+-------------
+
+We present here two examples of extractions, taken from the
+|Coq| Standard Library. We choose OCaml as target language,
+but all can be done in the other dialects with slight modifications.
+We then indicate where to find other examples and tests of extraction.
+
+A detailed example: Euclidean division
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+The file ``Euclid`` contains the proof of Euclidean division.
+The natural numbers used there are unary integers of type ``nat``,
+defined by two constructors ``O`` and ``S``.
+This module contains a theorem ``eucl_dev``, whose type is::
+
+ forall b:nat, b > 0 -> forall a:nat, diveucl a b
+
+where ``diveucl`` is a type for the pair of the quotient and the
+modulo, plus some logical assertions that disappear during extraction.
+We can now extract this program to OCaml:
+
+.. coqtop:: none
+
+ Reset Initial.
+
+.. coqtop:: all
+
+ Require Extraction.
+ Require Import Euclid Wf_nat.
+ Extraction Inline gt_wf_rec lt_wf_rec induction_ltof2.
+ Recursive Extraction eucl_dev.
+
+The inlining of ``gt_wf_rec`` and others is not
+mandatory. It only enhances readability of extracted code.
+You can then copy-paste the output to a file ``euclid.ml`` or let
+|Coq| do it for you with the following command::
+
+ Extraction "euclid" eucl_dev.
+
+Let us play the resulting program (in an OCaml toplevel)::
+
+ #use "euclid.ml";;
+ type nat = O | S of nat
+ type sumbool = Left | Right
+ val sub : nat -> nat -> nat = <fun>
+ val le_lt_dec : nat -> nat -> sumbool = <fun>
+ val le_gt_dec : nat -> nat -> sumbool = <fun>
+ type diveucl = Divex of nat * nat
+ val eucl_dev : nat -> nat -> diveucl = <fun>
+
+ # eucl_dev (S (S O)) (S (S (S (S (S O)))));;
+ - : diveucl = Divex (S (S O), S O)
+
+It is easier to test on OCaml integers::
+
+ # let rec nat_of_int = function 0 -> O | n -> S (nat_of_int (n-1));;
+ val nat_of_int : int -> nat = <fun>
+
+ # let rec int_of_nat = function O -> 0 | S p -> 1+(int_of_nat p);;
+ val int_of_nat : nat -> int = <fun>
+
+ # let div a b =
+ let Divex (q,r) = eucl_dev (nat_of_int b) (nat_of_int a)
+ in (int_of_nat q, int_of_nat r);;
+ val div : int -> int -> int * int = <fun>
+
+ # div 173 15;;
+ - : int * int = (11, 8)
+
+Note that these ``nat_of_int`` and ``int_of_nat`` are now
+available via a mere ``Require Import ExtrOcamlIntConv`` and then
+adding these functions to the list of functions to extract. This file
+``ExtrOcamlIntConv.v`` and some others in ``plugins/extraction/``
+are meant to help building concrete program via extraction.
+
+Extraction's horror museum
+~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Some pathological examples of extraction are grouped in the file
+``test-suite/success/extraction.v`` of the sources of |Coq|.
+
+Users' Contributions
+~~~~~~~~~~~~~~~~~~~~
+
+Several of the |Coq| Users' Contributions use extraction to produce
+certified programs. In particular the following ones have an automatic
+extraction test:
+
+ * ``additions`` : https://github.com/coq-contribs/additions
+ * ``bdds`` : https://github.com/coq-contribs/bdds
+ * ``canon-bdds`` : https://github.com/coq-contribs/canon-bdds
+ * ``chinese`` : https://github.com/coq-contribs/chinese
+ * ``continuations`` : https://github.com/coq-contribs/continuations
+ * ``coq-in-coq`` : https://github.com/coq-contribs/coq-in-coq
+ * ``exceptions`` : https://github.com/coq-contribs/exceptions
+ * ``firing-squad`` : https://github.com/coq-contribs/firing-squad
+ * ``founify`` : https://github.com/coq-contribs/founify
+ * ``graphs`` : https://github.com/coq-contribs/graphs
+ * ``higman-cf`` : https://github.com/coq-contribs/higman-cf
+ * ``higman-nw`` : https://github.com/coq-contribs/higman-nw
+ * ``hardware`` : https://github.com/coq-contribs/hardware
+ * ``multiplier`` : https://github.com/coq-contribs/multiplier
+ * ``search-trees`` : https://github.com/coq-contribs/search-trees
+ * ``stalmarck`` : https://github.com/coq-contribs/stalmarck
+
+Note that ``continuations`` and ``multiplier`` are a bit particular. They are
+examples of developments where ``Obj.magic`` are needed. This is
+probably due to an heavy use of impredicativity. After compilation, those
+two examples run nonetheless, thanks to the correction of the
+extraction :cite:`Let02`.
diff --git a/doc/sphinx/addendum/generalized-rewriting.rst b/doc/sphinx/addendum/generalized-rewriting.rst
new file mode 100644
index 000000000..da9e97e6f
--- /dev/null
+++ b/doc/sphinx/addendum/generalized-rewriting.rst
@@ -0,0 +1,845 @@
+.. _generalizedrewriting:
+
+-----------------------
+ Generalized rewriting
+-----------------------
+
+:Author: Matthieu Sozeau
+
+Generalized rewriting
+=====================
+
+
+This chapter presents the extension of several equality related
+tactics to work over user-defined structures (called setoids) that are
+equipped with ad-hoc equivalence relations meant to behave as
+equalities. Actually, the tactics have also been generalized to
+relations weaker then equivalences (e.g. rewriting systems). The
+toolbox also extends the automatic rewriting capabilities of the
+system, allowing the specification of custom strategies for rewriting.
+
+This documentation is adapted from the previous setoid documentation
+by Claudio Sacerdoti Coen (based on previous work by Clément Renard).
+The new implementation is a drop-in replacement for the old one
+[#tabareau]_, hence most of the documentation still applies.
+
+The work is a complete rewrite of the previous implementation, based
+on the type class infrastructure. It also improves on and generalizes
+the previous implementation in several ways:
+
+
++ User-extensible algorithm. The algorithm is separated in two parts:
+ generations of the rewriting constraints (done in ML) and solving of
+ these constraints using type class resolution. As type class
+ resolution is extensible using tactics, this allows users to define
+ general ways to solve morphism constraints.
++ Sub-relations. An example extension to the base algorithm is the
+ ability to define one relation as a subrelation of another so that
+ morphism declarations on one relation can be used automatically for
+ the other. This is done purely using tactics and type class search.
++ Rewriting under binders. It is possible to rewrite under binders in
+ the new implementation, if one provides the proper morphisms. Again,
+ most of the work is handled in the tactics.
++ First-class morphisms and signatures. Signatures and morphisms are
+ ordinary Coq terms, hence they can be manipulated inside Coq, put
+ inside structures and lemmas about them can be proved inside the
+ system. Higher-order morphisms are also allowed.
++ Performance. The implementation is based on a depth-first search for
+ the first solution to a set of constraints which can be as fast as
+ linear in the size of the term, and the size of the proof term is
+ linear in the size of the original term. Besides, the extensibility
+ allows the user to customize the proof search if necessary.
+
+.. [#tabareau] Nicolas Tabareau helped with the gluing.
+
+Introduction to generalized rewriting
+-------------------------------------
+
+
+Relations and morphisms
+~~~~~~~~~~~~~~~~~~~~~~~
+
+A parametric *relation* ``R`` is any term of type
+``forall (x1 :T1 ) ... (xn :Tn ), relation A``.
+The expression ``A``, which depends on ``x1 ... xn`` , is called the *carrier*
+of the relation and ``R`` is said to be a relation over ``A``; the list
+``x1,...,xn`` is the (possibly empty) list of parameters of the relation.
+
+**Example 1 (Parametric relation):**
+
+It is possible to implement finite sets of elements of type ``A`` as
+unordered list of elements of type ``A``.
+The function ``set_eq: forall (A: Type), relation (list A)``
+satisfied by two lists with the same elements is a parametric relation
+over ``(list A)`` with one parameter ``A``. The type of ``set_eq``
+is convertible with ``forall (A: Type), list A -> list A -> Prop.``
+
+An *instance* of a parametric relation ``R`` with n parameters is any term
+``(R t1 ... tn )``.
+
+Let ``R`` be a relation over ``A`` with ``n`` parameters. A term is a parametric
+proof of reflexivity for ``R`` if it has type
+``forall (x1 :T1 ) ... (xn :Tn), reflexive (R x1 ... xn )``.
+Similar definitions are given for parametric proofs of symmetry and transitivity.
+
+**Example 2 (Parametric relation (cont.)):**
+
+The ``set_eq`` relation of the previous example can be proved to be
+reflexive, symmetric and transitive. A parametric unary function ``f`` of type
+``forall (x1 :T1 ) ... (xn :Tn ), A1 -> A2`` covariantly respects two parametric relation instances
+``R1`` and ``R2`` if, whenever ``x``, ``y`` satisfy ``R1 x y``, their images (``f x``) and (``f y``)
+satisfy ``R2 (f x) (f y)``. An ``f`` that respects its input and output
+relations will be called a unary covariant *morphism*. We can also say
+that ``f`` is a monotone function with respect to ``R1`` and ``R2`` . The
+sequence ``x1 ... xn`` represents the parameters of the morphism.
+
+Let ``R1`` and ``R2`` be two parametric relations. The *signature* of a
+parametric morphism of type ``forall (x1 :T1 ) ... (xn :Tn ), A1 -> A2``
+that covariantly respects two instances :math:`I_{R_1}` and :math:`I_{R_2}` of ``R1`` and ``R2``
+is written :math:`I_{R_1} ++> I_{R_2}`. Notice that the special arrow ++>, which
+reminds the reader of covariance, is placed between the two relation
+instances, not between the two carriers. The signature relation
+instances and morphism will be typed in a context introducing
+variables for the parameters.
+
+The previous definitions are extended straightforwardly to n-ary
+morphisms, that are required to be simultaneously monotone on every
+argument.
+
+Morphisms can also be contravariant in one or more of their arguments.
+A morphism is contravariant on an argument associated to the relation
+instance :math`R` if it is covariant on the same argument when the inverse
+relation :math:`R^{−1}` (``inverse R`` in Coq) is considered. The special arrow ``-->``
+is used in signatures for contravariant morphisms.
+
+Functions having arguments related by symmetric relations instances
+are both covariant and contravariant in those arguments. The special
+arrow ``==>`` is used in signatures for morphisms that are both
+covariant and contravariant.
+
+An instance of a parametric morphism :math:`f` with :math:`n`
+parameters is any term :math:`f \, t_1 \ldots t_n`.
+
+**Example 3 (Morphisms):**
+
+Continuing the previous example, let ``union: forall (A: Type), list A -> list A -> list A``
+perform the union of two sets by appending one list to the other. ``union` is a binary
+morphism parametric over ``A`` that respects the relation instance
+``(set_eq A)``. The latter condition is proved by showing:
+
+.. coqtop:: in
+
+ forall (A: Type) (S1 S1’ S2 S2’: list A),
+ set_eq A S1 S1’ ->
+ set_eq A S2 S2’ ->
+ set_eq A (union A S1 S2) (union A S1’ S2’).
+
+The signature of the function ``union A`` is ``set_eq A ==> set_eq A ==> set_eq A``
+for all ``A``.
+
+**Example 4 (Contravariant morphism):**
+
+The division function ``Rdiv: R -> R -> R`` is a morphism of signature
+``le ++> le --> le`` where ``le`` is the usual order relation over
+real numbers. Notice that division is covariant in its first argument
+and contravariant in its second argument.
+
+Leibniz equality is a relation and every function is a morphism that
+respects Leibniz equality. Unfortunately, Leibniz equality is not
+always the intended equality for a given structure.
+
+In the next section we will describe the commands to register terms as
+parametric relations and morphisms. Several tactics that deal with
+equality in Coq can also work with the registered relations. The exact
+list of tactic will be given :ref:`in this section <tactics-enabled-on-user-provided-relations>`.
+For instance, the tactic reflexivity can be used to close a goal ``R n n`` whenever ``R``
+is an instance of a registered reflexive relation. However, the
+tactics that replace in a context ``C[]`` one term with another one
+related by ``R`` must verify that ``C[]`` is a morphism that respects the
+intended relation. Currently the verification consists in checking
+whether ``C[]`` is a syntactic composition of morphism instances that respects some obvious
+compatibility constraints.
+
+
+**Example 5 (Rewriting):**
+
+Continuing the previous examples, suppose that the user must prove
+``set_eq int (union int (union int S1 S2) S2) (f S1 S2)`` under the
+hypothesis ``H: set_eq int S2 (@nil int)``. It
+is possible to use the ``rewrite`` tactic to replace the first two
+occurrences of ``S2`` with ``@nil int`` in the goal since the
+context ``set_eq int (union int (union int S1 nil) nil) (f S1 S2)``,
+being a composition of morphisms instances, is a morphism. However the
+tactic will fail replacing the third occurrence of ``S2`` unless ``f``
+has also been declared as a morphism.
+
+
+Adding new relations and morphisms
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+A parametric relation :g:`Aeq: forall (y1 : β1 ... ym : βm )`,
+:g:`relation (A t1 ... tn)` over :g:`(A : αi -> ... αn -> Type)` can be
+declared with the following command:
+
+.. cmd:: Add Parametric Relation (x1 : T1) ... (xn : Tk) : (A t1 ... tn) (Aeq t′1 ... t′m ) {? reflexivity proved by refl} {? symmetry proved by sym} {? transitivity proved by trans} as @ident.
+
+after having required the ``Setoid`` module with the ``Require Setoid``
+command.
+
+The :g:`@ident` gives a unique name to the morphism and it is used
+by the command to generate fresh names for automatically provided
+lemmas used internally.
+
+Notice that the carrier and relation parameters may refer to the
+context of variables introduced at the beginning of the declaration,
+but the instances need not be made only of variables. Also notice that
+``A`` is *not* required to be a term having the same parameters as ``Aeq``,
+although that is often the case in practice (this departs from the
+previous implementation).
+
+
+.. cmd:: Add Relation
+
+In case the carrier and relations are not parametric, one can use this command
+instead, whose syntax is the same except there is no local context.
+
+The proofs of reflexivity, symmetry and transitivity can be omitted if
+the relation is not an equivalence relation. The proofs must be
+instances of the corresponding relation definitions: e.g. the proof of
+reflexivity must have a type convertible to
+:g:`reflexive (A t1 ... tn) (Aeq t′ 1 …t′ n )`.
+Each proof may refer to the introduced variables as well.
+
+**Example 6 (Parametric relation):**
+
+For Leibniz equality, we may declare:
+
+.. coqtop:: in
+
+ Add Parametric Relation (A : Type) : A (@eq A)
+ [reflexivity proved by @refl_equal A]
+ ...
+
+Some tactics (``reflexivity``, ``symmetry``, ``transitivity``) work only on
+relations that respect the expected properties. The remaining tactics
+(``replace``, ``rewrite`` and derived tactics such as ``autorewrite``) do not
+require any properties over the relation. However, they are able to
+replace terms with related ones only in contexts that are syntactic
+compositions of parametric morphism instances declared with the
+following command.
+
+.. cmd:: Add Parametric Morphism (x1 : T1 ) ... (xk : Tk ) : (f t1 ... tn ) with signature sig as @ident.
+
+The command declares ``f`` as a parametric morphism of signature ``sig``. The
+identifier ``id`` gives a unique name to the morphism and it is used as
+the base name of the type class instance definition and as the name of
+the lemma that proves the well-definedness of the morphism. The
+parameters of the morphism as well as the signature may refer to the
+context of variables. The command asks the user to prove interactively
+that ``f`` respects the relations identified from the signature.
+
+**Example 7:**
+
+We start the example by assuming a small theory over
+homogeneous sets and we declare set equality as a parametric
+equivalence relation and union of two sets as a parametric morphism.
+
+.. coqtop:: in
+
+ Require Export Setoid.
+ Require Export Relation_Definitions.
+
+ Set Implicit Arguments.
+
+ Parameter set: Type -> Type.
+ Parameter empty: forall A, set A.
+ Parameter eq_set: forall A, set A -> set A -> Prop.
+ Parameter union: forall A, set A -> set A -> set A.
+
+ Axiom eq_set_refl: forall A, reflexive _ (eq_set (A:=A)).
+ Axiom eq_set_sym: forall A, symmetric _ (eq_set (A:=A)).
+ Axiom eq_set_trans: forall A, transitive _ (eq_set (A:=A)).
+ Axiom empty_neutral: forall A (S: set A), eq_set (union S (empty A)) S.
+
+ Axiom union_compat: forall (A : Type),
+ forall x x' : set A, eq_set x x' ->
+ forall y y' : set A, eq_set y y' ->
+ eq_set (union x y) (union x' y').
+
+ Add Parametric Relation A : (set A) (@eq_set A)
+ reflexivity proved by (eq_set_refl (A:=A))
+ symmetry proved by (eq_set_sym (A:=A))
+ transitivity proved by (eq_set_trans (A:=A))
+ as eq_set_rel.
+
+ Add Parametric Morphism A : (@union A) with
+ signature (@eq_set A) ==> (@eq_set A) ==> (@eq_set A) as union_mor.
+ Proof.
+ exact (@union_compat A).
+ Qed.
+
+It is possible to reduce the burden of specifying parameters using
+(maximally inserted) implicit arguments. If ``A`` is always set as
+maximally implicit in the previous example, one can write:
+
+.. coqtop:: in
+
+ Add Parametric Relation A : (set A) eq_set
+ reflexivity proved by eq_set_refl
+ symmetry proved by eq_set_sym
+ transitivity proved by eq_set_trans
+ as eq_set_rel.
+
+.. coqtop:: in
+
+ Add Parametric Morphism A : (@union A) with
+ signature eq_set ==> eq_set ==> eq_set as union_mor.
+
+.. coqtop:: in
+
+ Proof. exact (@union_compat A). Qed.
+
+We proceed now by proving a simple lemma performing a rewrite step and
+then applying reflexivity, as we would do working with Leibniz
+equality. Both tactic applications are accepted since the required
+properties over ``eq_set`` and ``union`` can be established from the two
+declarations above.
+
+.. coqtop:: in
+
+ Goal forall (S: set nat),
+ eq_set (union (union S empty) S) (union S S).
+
+.. coqtop:: in
+
+ Proof. intros. rewrite empty_neutral. reflexivity. Qed.
+
+The tables of relations and morphisms are managed by the type class
+instance mechanism. The behavior on section close is to generalize the
+instances by the variables of the section (and possibly hypotheses
+used in the proofs of instance declarations) but not to export them in
+the rest of the development for proof search. One can use the
+``Existing Instance`` command to do so outside the section, using the name of the
+declared morphism suffixed by ``_Morphism``, or use the ``Global`` modifier
+for the corresponding class instance declaration
+(see :ref:`First Class Setoids and Morphisms <first-class-setoids-and-morphisms>`) at
+definition time. When loading a compiled file or importing a module,
+all the declarations of this module will be loaded.
+
+
+Rewriting and non reflexive relations
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+To replace only one argument of an n-ary morphism it is necessary to
+prove that all the other arguments are related to themselves by the
+respective relation instances.
+
+**Example 8:**
+
+To replace ``(union S empty)`` with ``S`` in ``(union (union S empty) S) (union S S)``
+the rewrite tactic must exploit the monotony of ``union`` (axiom ``union_compat``
+in the previous example). Applying ``union_compat`` by hand we are left with the
+goal ``eq_set (union S S) (union S S)``.
+
+When the relations associated to some arguments are not reflexive, the
+tactic cannot automatically prove the reflexivity goals, that are left
+to the user.
+
+Setoids whose relation are partial equivalence relations (PER) are
+useful to deal with partial functions. Let ``R`` be a PER. We say that an
+element ``x`` is defined if ``R x x``. A partial function whose domain
+comprises all the defined elements only is declared as a morphism that
+respects ``R``. Every time a rewriting step is performed the user must
+prove that the argument of the morphism is defined.
+
+**Example 9:**
+
+Let ``eqO`` be ``fun x y => x = y /\ x <> 0`` (the
+smaller PER over non zero elements). Division can be declared as a
+morphism of signature ``eq ==> eq0 ==> eq``. Replace ``x`` with
+``y`` in ``div x n = div y n`` opens the additional goal ``eq0 n n``
+that is equivalent to ``n = n /\ n <> 0``.
+
+
+Rewriting and non symmetric relations
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+When the user works up to relations that are not symmetric, it is no
+longer the case that any covariant morphism argument is also
+contravariant. As a result it is no longer possible to replace a term
+with a related one in every context, since the obtained goal implies
+the previous one if and only if the replacement has been performed in
+a contravariant position. In a similar way, replacement in an
+hypothesis can be performed only if the replaced term occurs in a
+covariant position.
+
+**Example 10 (Covariance and contravariance):**
+
+Suppose that division over real numbers has been defined as a morphism of signature
+``Z.div: Z.lt ++> Z.lt --> Z.lt`` (i.e. ``Z.div`` is increasing in
+its first argument, but decreasing on the second one). Let ``<``
+denotes ``Z.lt``. Under the hypothesis ``H: x < y`` we have
+``k < x / y -> k < x / x``, but not ``k < y / x -> k < x / x``. Dually,
+under the same hypothesis ``k < x / y -> k < y / y`` holds, but
+``k < y / x -> k < y / y`` does not. Thus, if the current goal is
+``k < x / x``, it is possible to replace only the second occurrence of
+``x`` (in contravariant position) with ``y`` since the obtained goal
+must imply the current one. On the contrary, if ``k < x / x`` is an
+hypothesis, it is possible to replace only the first occurrence of
+``x`` (in covariant position) with ``y`` since the current
+hypothesis must imply the obtained one.
+
+Contrary to the previous implementation, no specific error message
+will be raised when trying to replace a term that occurs in the wrong
+position. It will only fail because the rewriting constraints are not
+satisfiable. However it is possible to use the at modifier to specify
+which occurrences should be rewritten.
+
+As expected, composing morphisms together propagates the variance
+annotations by switching the variance every time a contravariant
+position is traversed.
+
+**Example 11:**
+
+Let us continue the previous example and let us consider
+the goal ``x / (x / x) < k``. The first and third occurrences of
+``x`` are in a contravariant position, while the second one is in
+covariant position. More in detail, the second occurrence of ``x``
+occurs covariantly in ``(x / x)`` (since division is covariant in
+its first argument), and thus contravariantly in ``x / (x / x)``
+(since division is contravariant in its second argument), and finally
+covariantly in ``x / (x / x) < k`` (since ``<``, as every
+transitive relation, is contravariant in its first argument with
+respect to the relation itself).
+
+
+Rewriting in ambiguous setoid contexts
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+One function can respect several different relations and thus it can
+be declared as a morphism having multiple signatures.
+
+**Example 12:**
+
+
+Union over homogeneous lists can be given all the
+following signatures: ``eq ==> eq ==> eq`` (``eq`` being the
+equality over ordered lists) ``set_eq ==> set_eq ==> set_eq``
+(``set_eq`` being the equality over unordered lists up to duplicates),
+``multiset_eq ==> multiset_eq ==> multiset_eq`` (``multiset_eq``
+being the equality over unordered lists).
+
+To declare multiple signatures for a morphism, repeat the ``Add Morphism``
+command.
+
+When morphisms have multiple signatures it can be the case that a
+rewrite request is ambiguous, since it is unclear what relations
+should be used to perform the rewriting. Contrary to the previous
+implementation, the tactic will always choose the first possible
+solution to the set of constraints generated by a rewrite and will not
+try to find *all* possible solutions to warn the user about.
+
+
+Commands and tactics
+--------------------
+
+
+.. _first-class-setoids-and-morphisms:
+
+First class setoids and morphisms
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+
+
+The implementation is based on a first-class representation of
+properties of relations and morphisms as type classes. That is, the
+various combinations of properties on relations and morphisms are
+represented as records and instances of theses classes are put in a
+hint database. For example, the declaration:
+
+.. coqtop:: in
+
+ Add Parametric Relation (x1 : T1) ... (xn : Tk) : (A t1 ... tn) (Aeq t′1 ... t′m)
+ [reflexivity proved by refl]
+ [symmetry proved by sym]
+ [transitivity proved by trans]
+ as id.
+
+
+is equivalent to an instance declaration:
+
+.. coqtop:: in
+
+ Instance (x1 : T1) ... (xn : Tk) => id : @Equivalence (A t1 ... tn) (Aeq t′1 ... t′m) :=
+ [Equivalence_Reflexive := refl]
+ [Equivalence_Symmetric := sym]
+ [Equivalence_Transitive := trans].
+
+The declaration itself amounts to the definition of an object of the
+record type ``Coq.Classes.RelationClasses.Equivalence`` and a hint added
+to the ``typeclass_instances`` hint database. Morphism declarations are
+also instances of a type class defined in ``Classes.Morphisms``. See the
+documentation on type classes :ref:`TODO-chapter-20-type-classes`
+and the theories files in Classes for further explanations.
+
+One can inform the rewrite tactic about morphisms and relations just
+by using the typeclass mechanism to declare them using Instance and
+Context vernacular commands. Any object of type Proper (the type of
+morphism declarations) in the local context will also be automatically
+used by the rewriting tactic to solve constraints.
+
+Other representations of first class setoids and morphisms can also be
+handled by encoding them as records. In the following example, the
+projections of the setoid relation and of the morphism function can be
+registered as parametric relations and morphisms.
+
+**Example 13 (First class setoids):**
+
+.. coqtop:: in
+
+ Require Import Relation_Definitions Setoid.
+
+ Record Setoid: Type :=
+ { car: Type;
+ eq: car -> car -> Prop;
+ refl: reflexive _ eq;
+ sym: symmetric _ eq;
+ trans: transitive _ eq
+ }.
+
+ Add Parametric Relation (s : Setoid) : (@car s) (@eq s)
+ reflexivity proved by (refl s)
+ symmetry proved by (sym s)
+ transitivity proved by (trans s) as eq_rel.
+
+ Record Morphism (S1 S2:Setoid): Type :=
+ { f: car S1 -> car S2;
+ compat: forall (x1 x2: car S1), eq S1 x1 x2 -> eq S2 (f x1) (f x2)
+ }.
+
+ Add Parametric Morphism (S1 S2 : Setoid) (M : Morphism S1 S2) :
+ (@f S1 S2 M) with signature (@eq S1 ==> @eq S2) as apply_mor.
+ Proof. apply (compat S1 S2 M). Qed.
+
+ Lemma test: forall (S1 S2:Setoid) (m: Morphism S1 S2)
+ (x y: car S1), eq S1 x y -> eq S2 (f _ _ m x) (f _ _ m y).
+ Proof. intros. rewrite H. reflexivity. Qed.
+
+.. _tactics-enabled-on-user-provided-relations:
+
+Tactics enabled on user provided relations
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+The following tactics, all prefixed by ``setoid_``, deal with arbitrary
+registered relations and morphisms. Moreover, all the corresponding
+unprefixed tactics (i.e. ``reflexivity``, ``symmetry``, ``transitivity``,
+``replace``, ``rewrite``) have been extended to fall back to their prefixed
+counterparts when the relation involved is not Leibniz equality.
+Notice, however, that using the prefixed tactics it is possible to
+pass additional arguments such as ``using relation``.
+
+.. tacv:: setoid_reflexivity
+
+.. tacv:: setoid_symmetry [in @ident]
+
+.. tacv:: setoid_transitivity
+
+.. tacv:: setoid_rewrite [@orientation] @term [at @occs] [in @ident]
+
+.. tacv:: setoid_replace @term with @term [in @ident] [using relation @term] [by @tactic]
+
+
+The ``using relation`` arguments cannot be passed to the unprefixed form.
+The latter argument tells the tactic what parametric relation should
+be used to replace the first tactic argument with the second one. If
+omitted, it defaults to the ``DefaultRelation`` instance on the type of
+the objects. By default, it means the most recent ``Equivalence`` instance
+in the environment, but it can be customized by declaring
+new ``DefaultRelation`` instances. As Leibniz equality is a declared
+equivalence, it will fall back to it if no other relation is declared
+on a given type.
+
+Every derived tactic that is based on the unprefixed forms of the
+tactics considered above will also work up to user defined relations.
+For instance, it is possible to register hints for ``autorewrite`` that
+are not proof of Leibniz equalities. In particular it is possible to
+exploit ``autorewrite`` to simulate normalization in a term rewriting
+system up to user defined equalities.
+
+
+Printing relations and morphisms
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+The ``Print Instances`` command can be used to show the list of currently
+registered ``Reflexive`` (using ``Print Instances Reflexive``), ``Symmetric``
+or ``Transitive`` relations, Equivalences, PreOrders, PERs, and Morphisms
+(implemented as ``Proper`` instances). When the rewriting tactics refuse
+to replace a term in a context because the latter is not a composition
+of morphisms, the ``Print Instances`` commands can be useful to understand
+what additional morphisms should be registered.
+
+
+Deprecated syntax and backward incompatibilities
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Due to backward compatibility reasons, the following syntax for the
+declaration of setoids and morphisms is also accepted.
+
+.. tacv:: Add Setoid @A @Aeq @ST as @ident
+
+where ``Aeq`` is a congruence relation without parameters, ``A`` is its carrier
+and ``ST`` is an object of type (``Setoid_Theory A Aeq``) (i.e. a record
+packing together the reflexivity, symmetry and transitivity lemmas).
+Notice that the syntax is not completely backward compatible since the
+identifier was not required.
+
+.. cmd:: Add Morphism f : @ident.
+
+The latter command also is restricted to the declaration of morphisms
+without parameters. It is not fully backward compatible since the
+property the user is asked to prove is slightly different: for n-ary
+morphisms the hypotheses of the property are permuted; moreover, when
+the morphism returns a proposition, the property is now stated using a
+bi-implication in place of a simple implication. In practice, porting
+an old development to the new semantics is usually quite simple.
+
+Notice that several limitations of the old implementation have been
+lifted. In particular, it is now possible to declare several relations
+with the same carrier and several signatures for the same morphism.
+Moreover, it is now also possible to declare several morphisms having
+the same signature. Finally, the replace and rewrite tactics can be
+used to replace terms in contexts that were refused by the old
+implementation. As discussed in the next section, the semantics of the
+new ``setoid_rewrite`` command differs slightly from the old one and
+``rewrite``.
+
+
+Extensions
+----------
+
+
+Rewriting under binders
+~~~~~~~~~~~~~~~~~~~~~~~
+
+warning:: Due to compatibility issues, this feature is enabled only
+when calling the ``setoid_rewrite`` tactics directly and not ``rewrite``.
+
+To be able to rewrite under binding constructs, one must declare
+morphisms with respect to pointwise (setoid) equivalence of functions.
+Example of such morphisms are the standard ``all`` and ``ex`` combinators for
+universal and existential quantification respectively. They are
+declared as morphisms in the ``Classes.Morphisms_Prop`` module. For
+example, to declare that universal quantification is a morphism for
+logical equivalence:
+
+.. coqtop:: in
+
+ Instance all_iff_morphism (A : Type) :
+ Proper (pointwise_relation A iff ==> iff) (@all A).
+
+.. coqtop:: all
+
+ Proof. simpl_relation.
+
+One then has to show that if two predicates are equivalent at every
+point, their universal quantifications are equivalent. Once we have
+declared such a morphism, it will be used by the setoid rewriting
+tactic each time we try to rewrite under an ``all`` application (products
+in ``Prop`` are implicitly translated to such applications).
+
+Indeed, when rewriting under a lambda, binding variable ``x``, say from ``P x``
+to ``Q x`` using the relation iff, the tactic will generate a proof of
+``pointwise_relation A iff (fun x => P x) (fun x => Q x)`` from the proof
+of ``iff (P x) (Q x)`` and a constraint of the form Proper
+``(pointwise_relation A iff ==> ?) m`` will be generated for the
+surrounding morphism ``m``.
+
+Hence, one can add higher-order combinators as morphisms by providing
+signatures using pointwise extension for the relations on the
+functional arguments (or whatever subrelation of the pointwise
+extension). For example, one could declare the ``map`` combinator on lists
+as a morphism:
+
+.. coqtop:: in
+
+ Instance map_morphism `{Equivalence A eqA, Equivalence B eqB} :
+ Proper ((eqA ==> eqB) ==> list_equiv eqA ==> list_equiv eqB) (@map A B).
+
+where ``list_equiv`` implements an equivalence on lists parameterized by
+an equivalence on the elements.
+
+Note that when one does rewriting with a lemma under a binder using
+``setoid_rewrite``, the application of the lemma may capture the bound
+variable, as the semantics are different from rewrite where the lemma
+is first matched on the whole term. With the new ``setoid_rewrite``,
+matching is done on each subterm separately and in its local
+environment, and all matches are rewritten *simultaneously* by
+default. The semantics of the previous ``setoid_rewrite`` implementation
+can almost be recovered using the ``at 1`` modifier.
+
+
+Sub-relations
+~~~~~~~~~~~~~
+
+Sub-relations can be used to specify that one relation is included in
+another, so that morphisms signatures for one can be used for the
+other. If a signature mentions a relation ``R`` on the left of an
+arrow ``==>``, then the signature also applies for any relation ``S`` that is
+smaller than ``R``, and the inverse applies on the right of an arrow. One
+can then declare only a few morphisms instances that generate the
+complete set of signatures for a particular constant. By default, the
+only declared subrelation is ``iff``, which is a subrelation of ``impl`` and
+``inverse impl`` (the dual of implication). That’s why we can declare only
+two morphisms for conjunction: ``Proper (impl ==> impl ==> impl) and`` and
+``Proper (iff ==> iff ==> iff) and``. This is sufficient to satisfy any
+rewriting constraints arising from a rewrite using ``iff``, ``impl`` or
+``inverse impl`` through ``and``.
+
+Sub-relations are implemented in ``Classes.Morphisms`` and are a prime
+example of a mostly user-space extension of the algorithm.
+
+
+Constant unfolding
+~~~~~~~~~~~~~~~~~~
+
+The resolution tactic is based on type classes and hence regards user-
+defined constants as transparent by default. This may slow down the
+resolution due to a lot of unifications (all the declared ``Proper``
+instances are tried at each node of the search tree). To speed it up,
+declare your constant as rigid for proof search using the command
+``Typeclasses Opaque`` (see :ref:`TODO-20.6.7-typeclasses-transparency`).
+
+
+Strategies for rewriting
+------------------------
+
+
+Definitions
+~~~~~~~~~~~
+
+The generalized rewriting tactic is based on a set of strategies that
+can be combined to obtain custom rewriting procedures. Its set of
+strategies is based on Elan’s rewriting strategies :ref:`TODO-102-biblio`. Rewriting
+strategies are applied using the tactic ``rewrite_strat s`` where ``s`` is a
+strategy expression. Strategies are defined inductively as described
+by the following grammar:
+
+.. productionlist:: rewriting
+ s, t, u : `strategy`
+ : | `lemma`
+ : | `lemma_right_to_left`
+ : | `failure`
+ : | `identity`
+ : | `reflexivity`
+ : | `progress`
+ : | `failure_catch`
+ : | `composition`
+ : | `left_biased_choice`
+ : | `iteration_one_or_more`
+ : | `iteration_zero_or_more`
+ : | `one_subterm`
+ : | `all_subterms`
+ : | `innermost_first`
+ : | `outermost_first`
+ : | `bottom_up`
+ : | `top_down`
+ : | `apply_hint`
+ : | `any_of_the_terms`
+ : | `apply_reduction`
+ : | `fold_expression`
+
+.. productionlist:: rewriting
+ strategy : "(" `s` ")"
+ lemma : `c`
+ lemma_right_to_left : "<-" `c`
+ failure : `fail`
+ identity : `id`
+ reflexivity : `refl`
+ progress : `progress` `s`
+ failure_catch : `try` `s`
+ composition : `s` ";" `u`
+ left_biased_choice : choice `s` `t`
+ iteration_one_or_more : `repeat` `s`
+ iteration_zero_or_more : `any` `s`
+ one_subterm : subterm `s`
+ all_subterms : subterms `s`
+ innermost_first : `innermost` `s`
+ outermost_first : `outermost` `s`
+ bottom_up : `bottomup` `s`
+ top_down : `topdown` `s`
+ apply_hint : hints `hintdb`
+ any_of_the_terms : terms (`c`)+
+ apply_reduction : eval `redexpr`
+ fold_expression : fold `c`
+
+
+Actually a few of these are defined in term of the others using a
+primitive fixpoint operator:
+
+.. productionlist:: rewriting
+ try `s` : choice `s` `id`
+ any `s` : fix `u`. try (`s` ; `u`)
+ repeat `s` : `s` ; `any` `s`
+ bottomup s : fix `bu`. (choice (progress (subterms bu)) s) ; try bu
+ topdown s : fix `td`. (choice s (progress (subterms td))) ; try td
+ innermost s : fix `i`. (choice (subterm i) s)
+ outermost s : fix `o`. (choice s (subterm o))
+
+The basic control strategy semantics are straightforward: strategies
+are applied to subterms of the term to rewrite, starting from the root
+of the term. The lemma strategies unify the left-hand-side of the
+lemma with the current subterm and on success rewrite it to the right-
+hand-side. Composition can be used to continue rewriting on the
+current subterm. The fail strategy always fails while the identity
+strategy succeeds without making progress. The reflexivity strategy
+succeeds, making progress using a reflexivity proof of rewriting.
+Progress tests progress of the argument strategy and fails if no
+progress was made, while ``try`` always succeeds, catching failures.
+Choice is left-biased: it will launch the first strategy and fall back
+on the second one in case of failure. One can iterate a strategy at
+least 1 time using ``repeat`` and at least 0 times using ``any``.
+
+The ``subterm`` and ``subterms`` strategies apply their argument strategy ``s`` to
+respectively one or all subterms of the current term under
+consideration, left-to-right. ``subterm`` stops at the first subterm for
+which ``s`` made progress. The composite strategies ``innermost`` and ``outermost``
+perform a single innermost or outermost rewrite using their argument
+strategy. Their counterparts ``bottomup`` and ``topdown`` perform as many
+rewritings as possible, starting from the bottom or the top of the
+term.
+
+Hint databases created for ``autorewrite`` can also be used
+by ``rewrite_strat`` using the ``hints`` strategy that applies any of the
+lemmas at the current subterm. The ``terms`` strategy takes the lemma
+names directly as arguments. The ``eval`` strategy expects a reduction
+expression (see :ref:`TODO-8.7-performing-computations`) and succeeds
+if it reduces the subterm under consideration. The ``fold`` strategy takes
+a term ``c`` and tries to *unify* it to the current subterm, converting it to ``c``
+on success, it is stronger than the tactic ``fold``.
+
+
+Usage
+~~~~~
+
+
+.. tacv:: rewrite_strat @s [in @ident]
+
+ Rewrite using the strategy s in hypothesis ident or the conclusion.
+
+ .. exn:: Nothing to rewrite.
+
+ If the strategy failed.
+
+ .. exn:: No progress made.
+
+ If the strategy succeeded but made no progress.
+
+ .. exn:: Unable to satisfy the rewriting constraints.
+
+ If the strategy succeeded and made progress but the
+ corresponding rewriting constraints are not satisfied.
+
+
+ The ``setoid_rewrite c`` tactic is basically equivalent to
+ ``rewrite_strat (outermost c)``.
+
diff --git a/doc/sphinx/addendum/implicit-coercions.rst b/doc/sphinx/addendum/implicit-coercions.rst
new file mode 100644
index 000000000..f5ca5be44
--- /dev/null
+++ b/doc/sphinx/addendum/implicit-coercions.rst
@@ -0,0 +1,469 @@
+.. _implicitcoercions:
+
+.. include:: ../replaces.rst
+
+Implicit Coercions
+====================
+
+:Author: Amokrane Saïbi
+
+General Presentation
+---------------------
+
+This section describes the inheritance mechanism of |Coq|. In |Coq| with
+inheritance, we are not interested in adding any expressive power to
+our theory, but only convenience. Given a term, possibly not typable,
+we are interested in the problem of determining if it can be well
+typed modulo insertion of appropriate coercions. We allow to write:
+
+ * :g:`f a` where :g:`f:(forall x:A,B)` and :g:`a:A'` when ``A'`` can
+ be seen in some sense as a subtype of ``A``.
+ * :g:`x:A` when ``A`` is not a type, but can be seen in
+ a certain sense as a type: set, group, category etc.
+ * :g:`f a` when ``f`` is not a function, but can be seen in a certain sense
+ as a function: bijection, functor, any structure morphism etc.
+
+
+Classes
+-------
+
+A class with `n` parameters is any defined name with a type
+:g:`forall (x₁:A₁)..(xₙ:Aₙ),s` where ``s`` is a sort. Thus a class with
+parameters is considered as a single class and not as a family of
+classes. An object of a class ``C`` is any term of type :g:`C t₁ .. tₙ`.
+In addition to these user-classes, we have two abstract classes:
+
+
+ * ``Sortclass``, the class of sorts; its objects are the terms whose type is a
+ sort (e.g. :g:`Prop` or :g:`Type`).
+ * ``Funclass``, the class of functions; its objects are all the terms with a functional
+ type, i.e. of form :g:`forall x:A,B`.
+
+Formally, the syntax of a classes is defined as:
+
+.. productionlist::
+ class: qualid
+ : | `Sortclass`
+ : | `Funclass`
+
+
+Coercions
+---------
+
+A name ``f`` can be declared as a coercion between a source user-class
+``C`` with `n` parameters and a target class ``D`` if one of these
+conditions holds:
+
+ * ``D`` is a user-class, then the type of ``f`` must have the form
+ :g:`forall (x₁:A₁)..(xₙ:Aₙ)(y:C x₁..xₙ), D u₁..uₘ` where `m`
+ is the number of parameters of ``D``.
+ * ``D`` is ``Funclass``, then the type of ``f`` must have the form
+ :g:`forall (x₁:A₁)..(xₙ:Aₙ)(y:C x₁..xₙ)(x:A), B`.
+ * ``D`` is ``Sortclass``, then the type of ``f`` must have the form
+ :g:`forall (x₁:A₁)..(xₙ:Aₙ)(y:C x₁..xₙ), s` with ``s`` a sort.
+
+We then write :g:`f : C >-> D`. The restriction on the type
+of coercions is called *the uniform inheritance condition*.
+
+.. note:: The abstract classe ``Sortclass`` can be used as a source class, but
+ the abstract class ``Funclass`` cannot.
+
+To coerce an object :g:`t:C t₁..tₙ` of ``C`` towards ``D``, we have to
+apply the coercion ``f`` to it; the obtained term :g:`f t₁..tₙ t` is
+then an object of ``D``.
+
+
+Identity Coercions
+-------------------
+
+Identity coercions are special cases of coercions used to go around
+the uniform inheritance condition. Let ``C`` and ``D`` be two classes
+with respectively `n` and `m` parameters and
+:g:`f:forall (x₁:T₁)..(xₖ:Tₖ)(y:C u₁..uₙ), D v₁..vₘ` a function which
+does not verify the uniform inheritance condition. To declare ``f`` as
+coercion, one has first to declare a subclass ``C'`` of ``C``:
+
+ :g:`C' := fun (x₁:T₁)..(xₖ:Tₖ) => C u₁..uₙ`
+
+We then define an *identity coercion* between ``C'`` and ``C``:
+
+ :g:`Id_C'_C := fun (x₁:T₁)..(xₖ:Tₖ)(y:C' x₁..xₖ) => (y:C u₁..uₙ)`
+
+We can now declare ``f`` as coercion from ``C'`` to ``D``, since we can
+"cast" its type as
+:g:`forall (x₁:T₁)..(xₖ:Tₖ)(y:C' x₁..xₖ),D v₁..vₘ`.
+
+The identity coercions have a special status: to coerce an object
+:g:`t:C' t₁..tₖ`
+of ``C'`` towards ``C``, we does not have to insert explicitly ``Id_C'_C``
+since :g:`Id_C'_C t₁..tₖ t` is convertible with ``t``. However we
+"rewrite" the type of ``t`` to become an object of ``C``; in this case,
+it becomes :g:`C uₙ'..uₖ'` where each ``uᵢ'`` is the result of the
+substitution in ``uᵢ`` of the variables ``xⱼ`` by ``tⱼ``.
+
+Inheritance Graph
+------------------
+
+Coercions form an inheritance graph with classes as nodes. We call
+*coercion path* an ordered list of coercions between two nodes of
+the graph. A class ``C`` is said to be a subclass of ``D`` if there is a
+coercion path in the graph from ``C`` to ``D``; we also say that ``C``
+inherits from ``D``. Our mechanism supports multiple inheritance since a
+class may inherit from several classes, contrary to simple inheritance
+where a class inherits from at most one class. However there must be
+at most one path between two classes. If this is not the case, only
+the *oldest* one is valid and the others are ignored. So the order
+of declaration of coercions is important.
+
+We extend notations for coercions to coercion paths. For instance
+:g:`[f₁;..;fₖ] : C >-> D` is the coercion path composed
+by the coercions ``f₁..fₖ``. The application of a coercion path to a
+term consists of the successive application of its coercions.
+
+
+Declaration of Coercions
+-------------------------
+
+.. cmd:: Coercion @qualid : @class >-> @class.
+
+ Declares the construction denoted by `qualid` as a coercion between
+ the two given classes.
+
+ .. exn:: @qualid not declared
+ .. exn:: @qualid is already a coercion
+ .. exn:: Funclass cannot be a source class
+ .. exn:: @qualid is not a function
+ .. exn:: Cannot find the source class of @qualid
+ .. exn:: Cannot recognize @class as a source class of @qualid
+ .. exn:: @qualid does not respect the uniform inheritance condition
+ .. exn:: Found target class ... instead of ...
+
+ .. warn:: Ambigous path:
+
+ When the coercion `qualid` is added to the inheritance graph, non
+ valid coercion paths are ignored; they are signaled by a warning
+ displaying these paths of the form :g:`[f₁;..;fₙ] : C >-> D`.
+
+ .. cmdv:: Local Coercion @qualid : @class >-> @class.
+
+ Declares the construction denoted by `qualid` as a coercion local to
+ the current section.
+
+ .. cmdv:: Coercion @ident := @term.
+
+ This defines `ident` just like ``Definition`` `ident` ``:=`` `term`,
+ and then declares `ident` as a coercion between it source and its target.
+
+ .. cmdv:: Coercion @ident := @term : @type.
+
+ This defines `ident` just like ``Definition`` `ident` : `type` ``:=`` `term`,
+ and then declares `ident` as a coercion between it source and its target.
+
+ .. cmdv:: Local Coercion @ident := @term.
+
+ This defines `ident` just like ``Let`` `ident` ``:=`` `term`,
+ and then declares `ident` as a coercion between it source and its target.
+
+Assumptions can be declared as coercions at declaration time.
+This extends the grammar of assumptions from
+Figure :ref:`TODO-1.3-sentences-syntax` as follows:
+
+..
+ FIXME:
+ \comindex{Variable \mbox{\rm (and coercions)}}
+ \comindex{Axiom \mbox{\rm (and coercions)}}
+ \comindex{Parameter \mbox{\rm (and coercions)}}
+ \comindex{Hypothesis \mbox{\rm (and coercions)}}
+
+.. productionlist::
+ assumption : assumption_keyword assums .
+ assums : simple_assums
+ : | (simple_assums) ... (simple_assums)
+ simple_assums : ident ... ident :[>] term
+
+If the extra ``>`` is present before the type of some assumptions, these
+assumptions are declared as coercions.
+
+Similarly, constructors of inductive types can be declared as coercions at
+definition time of the inductive type. This extends and modifies the
+grammar of inductive types from Figure :ref:`TODO-1.3-sentences-syntax` as follows:
+
+..
+ FIXME:
+ \comindex{Inductive \mbox{\rm (and coercions)}}
+ \comindex{CoInductive \mbox{\rm (and coercions)}}
+
+.. productionlist::
+ inductive : `Inductive` ind_body `with` ... `with` ind_body
+ : | `CoInductive` ind_body `with` ... `with` ind_body
+ ind_body : ident [binders] : term := [[|] constructor | ... | constructor]
+ constructor : ident [binders] [:[>] term]
+
+Especially, if the extra ``>`` is present in a constructor
+declaration, this constructor is declared as a coercion.
+
+.. cmd:: Identity Coercion @ident : @class >-> @class.
+
+ If ``C`` is the source `class` and ``D`` the destination, we check
+ that ``C`` is a constant with a body of the form
+ :g:`fun (x₁:T₁)..(xₙ:Tₙ) => D t₁..tₘ` where `m` is the
+ number of parameters of ``D``. Then we define an identity
+ function with type :g:`forall (x₁:T₁)..(xₙ:Tₙ)(y:C x₁..xₙ),D t₁..tₘ`,
+ and we declare it as an identity coercion between ``C`` and ``D``.
+
+ .. exn:: @class must be a transparent constant
+
+ .. cmdv:: Local Identity Coercion @ident : @ident >-> @ident.
+
+ Idem but locally to the current section.
+
+ .. cmdv:: SubClass @ident := @type.
+
+ If `type` is a class `ident'` applied to some arguments then
+ `ident` is defined and an identity coercion of name
+ `Id_ident_ident'` is
+ declared. Otherwise said, this is an abbreviation for
+
+ ``Definition`` `ident` ``:=`` `type`.
+
+ ``Identity Coercion`` `Id_ident_ident'` : `ident` ``>->`` `ident'`.
+
+ .. cmdv:: Local SubClass @ident := @type.
+
+ Same as before but locally to the current section.
+
+
+Displaying Available Coercions
+-------------------------------
+
+.. cmd:: Print Classes.
+
+ Print the list of declared classes in the current context.
+
+.. cmd:: Print Coercions.
+
+ Print the list of declared coercions in the current context.
+
+.. cmd:: Print Graph.
+
+ Print the list of valid coercion paths in the current context.
+
+.. cmd:: Print Coercion Paths @class @class.
+
+ Print the list of valid coercion paths between the two given classes.
+
+Activating the Printing of Coercions
+-------------------------------------
+
+.. cmd:: Set Printing Coercions.
+
+ This command forces all the coercions to be printed.
+ Conversely, to skip the printing of coercions, use
+ ``Unset Printing Coercions``. By default, coercions are not printed.
+
+.. cmd:: Add Printing Coercion @qualid.
+
+ This command forces coercion denoted by `qualid` to be printed.
+ To skip the printing of coercion `qualid`, use
+ ``Remove Printing Coercion`` `qualid`. By default, a coercion is never printed.
+
+
+Classes as Records
+------------------
+
+We allow the definition of *Structures with Inheritance* (or
+classes as records) by extending the existing ``Record`` macro
+(see Section :ref:`TODO-2.1-Record`). Its new syntax is:
+
+.. cmd:: Record {? >} @ident {? @binders} : @sort := {? @ident} { {+; @ident :{? >} @term } }.
+
+ The first identifier `ident` is the name of the defined record and
+ `sort` is its type. The optional identifier after ``:=`` is the name
+ of the constuctor (it will be ``Build_``\ `ident` if not given).
+ The other identifiers are the names of the fields, and the `term`
+ are their respective types. If ``:>`` is used instead of ``:`` in
+ the declaration of a field, then the name of this field is automatically
+ declared as a coercion from the record name to the class of this
+ field type. Remark that the fields always verify the uniform
+ inheritance condition. If the optional ``>`` is given before the
+ record name, then the constructor name is automatically declared as
+ a coercion from the class of the last field type to the record name
+ (this may fail if the uniform inheritance condition is not
+ satisfied).
+
+.. note::
+
+ The keyword ``Structure`` is a synonym of ``Record``.
+
+..
+ FIXME: \comindex{Structure}
+
+
+Coercions and Sections
+----------------------
+
+The inheritance mechanism is compatible with the section
+mechanism. The global classes and coercions defined inside a section
+are redefined after its closing, using their new value and new
+type. The classes and coercions which are local to the section are
+simply forgotten.
+Coercions with a local source class or a local target class, and
+coercions which do not verify the uniform inheritance condition any longer
+are also forgotten.
+
+Coercions and Modules
+--------------------=
+
+From |Coq| version 8.3, the coercions present in a module are activated
+only when the module is explicitly imported. Formerly, the coercions
+were activated as soon as the module was required, whatever it was
+imported or not.
+
+To recover the behavior of the versions of |Coq| prior to 8.3, use the
+following command:
+
+.. cmd:: Set Automatic Coercions Import.
+
+To cancel the effect of the option, use instead ``Unset Automatic Coercions Import``.
+
+
+Examples
+--------
+
+There are three situations:
+
+Coercion at function application
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+:g:`f a` is ill-typed where :g:`f:forall x:A,B` and :g:`a:A'`. If there is a
+coercion path between ``A'`` and ``A``, then :g:`f a` is transformed into
+:g:`f a'` where ``a'`` is the result of the application of this
+coercion path to ``a``.
+
+We first give an example of coercion between atomic inductive types
+
+.. coqtop:: all
+
+ Definition bool_in_nat (b:bool) := if b then 0 else 1.
+ Coercion bool_in_nat : bool >-> nat.
+ Check (0 = true).
+ Set Printing Coercions.
+ Check (0 = true).
+ Unset Printing Coercions.
+
+
+.. warning::
+
+ Note that ``Check true=O`` would fail. This is "normal" behaviour of
+ coercions. To validate ``true=O``, the coercion is searched from
+ ``nat`` to ``bool``. There is none.
+
+We give an example of coercion between classes with parameters.
+
+.. coqtop:: all
+
+ Parameters (C : nat -> Set) (D : nat -> bool -> Set) (E : bool -> Set).
+ Parameter f : forall n:nat, C n -> D (S n) true.
+ Coercion f : C >-> D.
+ Parameter g : forall (n:nat) (b:bool), D n b -> E b.
+ Coercion g : D >-> E.
+ Parameter c : C 0.
+ Parameter T : E true -> nat.
+ Check (T c).
+ Set Printing Coercions.
+ Check (T c).
+ Unset Printing Coercions.
+
+We give now an example using identity coercions.
+
+.. coqtop:: all
+
+ Definition D' (b:bool) := D 1 b.
+ Identity Coercion IdD'D : D' >-> D.
+ Print IdD'D.
+ Parameter d' : D' true.
+ Check (T d').
+ Set Printing Coercions.
+ Check (T d').
+ Unset Printing Coercions.
+
+
+In the case of functional arguments, we use the monotonic rule of
+sub-typing. Approximatively, to coerce :g:`t:forall x:A,B` towards
+:g:`forall x:A',B'`, one have to coerce ``A'`` towards ``A`` and ``B``
+towards ``B'``. An example is given below:
+
+.. coqtop:: all
+
+ Parameters (A B : Set) (h : A -> B).
+ Coercion h : A >-> B.
+ Parameter U : (A -> E true) -> nat.
+ Parameter t : B -> C 0.
+ Check (U t).
+ Set Printing Coercions.
+ Check (U t).
+ Unset Printing Coercions.
+
+Remark the changes in the result following the modification of the
+previous example.
+
+.. coqtop:: all
+
+ Parameter U' : (C 0 -> B) -> nat.
+ Parameter t' : E true -> A.
+ Check (U' t').
+ Set Printing Coercions.
+ Check (U' t').
+ Unset Printing Coercions.
+
+
+Coercion to a type
+~~~~~~~~~~~~~~~~~~
+
+An assumption ``x:A`` when ``A`` is not a type, is ill-typed. It is
+replaced by ``x:A'`` where ``A'`` is the result of the application to
+``A`` of the coercion path between the class of ``A`` and
+``Sortclass`` if it exists. This case occurs in the abstraction
+:g:`fun x:A => t`, universal quantification :g:`forall x:A,B`, global
+variables and parameters of (co-)inductive definitions and
+functions. In :g:`forall x:A,B`, such a coercion path may be applied
+to ``B`` also if necessary.
+
+.. coqtop:: all
+
+ Parameter Graph : Type.
+ Parameter Node : Graph -> Type.
+ Coercion Node : Graph >-> Sortclass.
+ Parameter G : Graph.
+ Parameter Arrows : G -> G -> Type.
+ Check Arrows.
+ Parameter fg : G -> G.
+ Check fg.
+ Set Printing Coercions.
+ Check fg.
+ Unset Printing Coercions.
+
+
+Coercion to a function
+~~~~~~~~~~~~~~~~~~~~~~
+
+``f a`` is ill-typed because ``f:A`` is not a function. The term
+``f`` is replaced by the term obtained by applying to ``f`` the
+coercion path between ``A`` and ``Funclass`` if it exists.
+
+.. coqtop:: all
+
+ Parameter bij : Set -> Set -> Set.
+ Parameter ap : forall A B:Set, bij A B -> A -> B.
+ Coercion ap : bij >-> Funclass.
+ Parameter b : bij nat nat.
+ Check (b 0).
+ Set Printing Coercions.
+ Check (b 0).
+ Unset Printing Coercions.
+
+Let us see the resulting graph after all these examples.
+
+.. coqtop:: all
+
+ Print Graph.
diff --git a/doc/sphinx/addendum/nsatz.rst b/doc/sphinx/addendum/nsatz.rst
new file mode 100644
index 000000000..ef9b3505d
--- /dev/null
+++ b/doc/sphinx/addendum/nsatz.rst
@@ -0,0 +1,101 @@
+.. include:: ../preamble.rst
+
+.. _nsatz:
+
+Nsatz: tactics for proving equalities in integral domains
+===========================================================
+
+:Author: Loïc Pottier
+
+The tactic `nsatz` proves goals of the form
+
+:math:`\begin{array}{l}
+\forall X_1,\ldots,X_n \in A,\\
+P_1(X_1,\ldots,X_n) = Q_1(X_1,\ldots,X_n) , \ldots , P_s(X_1,\ldots,X_n) =Q_s(X_1,\ldots,X_n)\\
+\vdash P(X_1,\ldots,X_n) = Q(X_1,\ldots,X_n)\\
+\end{array}`
+
+where :math:`P, Q, P₁,Q₁,\ldots,Pₛ, Qₛ` are polynomials and :math:`A` is an integral
+domain, i.e. a commutative ring with no zero divisor. For example, :math:`A`
+can be :math:`\mathbb{R}`, :math:`\mathbb{Z}`, or :math:`\mathbb{Q}`.
+Note that the equality :math:`=` used in these goals can be
+any setoid equality (see :ref:`TODO-27.2.2`) , not only Leibnitz equality.
+
+It also proves formulas
+
+:math:`\begin{array}{l}
+\forall X_1,\ldots,X_n \in A,\\
+P_1(X_1,\ldots,X_n) = Q_1(X_1,\ldots,X_n) \wedge \ldots \wedge P_s(X_1,\ldots,X_n) =Q_s(X_1,\ldots,X_n)\\
+\rightarrow P(X_1,\ldots,X_n) = Q(X_1,\ldots,X_n)\\
+\end{array}`
+
+doing automatic introductions.
+
+
+Using the basic tactic `nsatz`
+------------------------------
+
+
+Load the Nsatz module:
+
+.. coqtop:: all
+
+ Require Import Nsatz.
+
+and use the tactic `nsatz`.
+
+More about `nsatz`
+---------------------
+
+Hilbert’s Nullstellensatz theorem shows how to reduce proofs of
+equalities on polynomials on a commutative ring :math:`A` with no zero divisor
+to algebraic computations: it is easy to see that if a polynomial :math:`P` in
+:math:`A[X_1,\ldots,X_n]` verifies :math:`c P^r = \sum_{i=1}^{s} S_i P_i`, with
+:math:`c \in A`, :math:`c \not = 0`,
+:math:`r` a positive integer, and the :math:`S_i` s in :math:`A[X_1,\ldots,X_n ]`,
+then :math:`P` is zero whenever polynomials :math:`P_1,\ldots,P_s` are zero
+(the converse is also true when :math:`A` is an algebraic closed field: the method is
+complete).
+
+So, proving our initial problem can reduce into finding :math:`S_1,\ldots,S_s`,
+:math:`c` and :math:`r` such that :math:`c (P-Q)^r = \sum_{i} S_i (P_i-Q_i)`,
+which will be proved by the tactic ring.
+
+This is achieved by the computation of a Gröbner basis of the ideal
+generated by :math:`P_1-Q_1,...,P_s-Q_s`, with an adapted version of the
+Buchberger algorithm.
+
+This computation is done after a step of *reification*, which is
+performed using :ref:`typeclasses`.
+
+The ``Nsatz`` module defines the tactic `nsatz`, which can be used without
+arguments, or with the syntax:
+
+| nsatz with radicalmax:=num%N strategy:=num%Z parameters:= :n:`{* var}` variables:= :n:`{* var}`
+
+where:
+
+* `radicalmax` is a bound when for searching r s.t.
+ :math:`c (P−Q) r = \sum_{i=1..s} S_i (P i − Q i)`
+
+* `strategy` gives the order on variables :math:`X_1,\ldots,X_n` and the strategy
+ used in Buchberger algorithm (see :cite:`sugar` for details):
+
+ * strategy = 0: reverse lexicographic order and newest s-polynomial.
+ * strategy = 1: reverse lexicographic order and sugar strategy.
+ * strategy = 2: pure lexicographic order and newest s-polynomial.
+ * strategy = 3: pure lexicographic order and sugar strategy.
+
+* `parameters` is the list of variables :math:`X_{i_1},\ldots,X_{i_k}` among
+ :math:`X_1,\ldots,X_n` which are considered as parameters: computation will be performed with
+ rational fractions in these variables, i.e. polynomials are considered
+ with coefficients in :math:`R(X_{i_1},\ldots,X_{i_k})`. In this case, the coefficient
+ :math:`c` can be a non constant polynomial in :math:`X_{i_1},\ldots,X_{i_k}`, and the tactic
+ produces a goal which states that :math:`c` is not zero.
+
+* `variables` is the list of the variables in the decreasing order in
+ which they will be used in Buchberger algorithm. If `variables` = `(@nil R)`,
+ then `lvar` is replaced by all the variables which are not in
+ `parameters`.
+
+See file `Nsatz.v` for many examples, especially in geometry.
diff --git a/doc/sphinx/addendum/program.rst b/doc/sphinx/addendum/program.rst
new file mode 100644
index 000000000..eb50e52dc
--- /dev/null
+++ b/doc/sphinx/addendum/program.rst
@@ -0,0 +1,381 @@
+.. include:: ../preamble.rst
+.. include:: ../replaces.rst
+
+.. this should be just "_program", but refs to it don't work
+
+.. _programs:
+
+Program
+========
+
+:Author: Matthieu Sozeau
+
+We present here the |Program| tactic commands, used to build
+certified |Coq| programs, elaborating them from their algorithmic
+skeleton and a rich specification :cite:`sozeau06`. It can be thought of as a
+dual of :ref:`Extraction <extraction>`. The goal of |Program| is to
+program as in a regular functional programming language whilst using
+as rich a specification as desired and proving that the code meets the
+specification using the whole |Coq| proof apparatus. This is done using
+a technique originating from the “Predicate subtyping” mechanism of
+PVS :cite:`Rushby98`, which generates type-checking conditions while typing a
+term constrained to a particular type. Here we insert existential
+variables in the term, which must be filled with proofs to get a
+complete |Coq| term. |Program| replaces the |Program| tactic by Catherine
+Parent :cite:`Parent95b` which had a similar goal but is no longer maintained.
+
+The languages available as input are currently restricted to |Coq|’s
+term language, but may be extended to OCaml, Haskell and
+others in the future. We use the same syntax as |Coq| and permit to use
+implicit arguments and the existing coercion mechanism. Input terms
+and types are typed in an extended system (Russell) and interpreted
+into |Coq| terms. The interpretation process may produce some proof
+obligations which need to be resolved to create the final term.
+
+
+.. _elaborating-programs:
+
+Elaborating programs
+---------------------
+
+The main difference from |Coq| is that an object in a type T : Set can
+be considered as an object of type { x : T | P} for any wellformed P :
+Prop. If we go from T to the subset of T verifying property P, we must
+prove that the object under consideration verifies it. Russell will
+generate an obligation for every such coercion. In the other
+direction, Russell will automatically insert a projection.
+
+Another distinction is the treatment of pattern-matching. Apart from
+the following differences, it is equivalent to the standard match
+operation (see :ref:`extendedpatternmatching`).
+
+
++ Generation of equalities. A match expression is always generalized
+ by the corresponding equality. As an example, the expression:
+
+ ::
+
+ match x with
+ | 0 => t
+ | S n => u
+ end.
+
+ will be first rewritten to:
+
+ ::
+
+ (match x as y return (x = y -> _) with
+ | 0 => fun H : x = 0 -> t
+ | S n => fun H : x = S n -> u
+ end) (eq_refl n).
+
+ This permits to get the proper equalities in the context of proof
+ obligations inside clauses, without which reasoning is very limited.
+
++ Generation of inequalities. If a pattern intersects with a previous
+ one, an inequality is added in the context of the second branch. See
+ for example the definition of div2 below, where the second branch is
+ typed in a context where ∀ p, _ <> S (S p).
++ Coercion. If the object being matched is coercible to an inductive
+ type, the corresponding coercion will be automatically inserted. This
+ also works with the previous mechanism.
+
+
+There are options to control the generation of equalities and
+coercions.
+
+.. opt:: Program Cases
+
+ This controls the special treatment of pattern-matching generating equalities
+ and inequalities when using |Program| (it is on by default). All
+ pattern-matchings and let-patterns are handled using the standard algorithm
+ of |Coq| (see :ref:`extendedpatternmatching`) when this option is
+ deactivated.
+
+.. opt:: Program Generalized Coercion
+
+ This controls the coercion of general inductive types when using |Program|
+ (the option is on by default). Coercion of subset types and pairs is still
+ active in this case.
+
+.. _syntactic_control:
+
+Syntactic control over equalities
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+To give more control over the generation of equalities, the
+typechecker will fall back directly to |Coq|’s usual typing of dependent
+pattern-matching if a return or in clause is specified. Likewise, the
+if construct is not treated specially by |Program| so boolean tests in
+the code are not automatically reflected in the obligations. One can
+use the dec combinator to get the correct hypotheses as in:
+
+.. coqtop:: none
+
+ Require Import Program Arith.
+
+.. coqtop:: all
+
+ Program Definition id (n : nat) : { x : nat | x = n } :=
+ if dec (leb n 0) then 0
+ else S (pred n).
+
+The let tupling construct :g:`let (x1, ..., xn) := t in b` does not
+produce an equality, contrary to the let pattern construct :g:`let ’(x1,
+..., xn) := t in b`. Also, :g:`term :>` explicitly asks the system to
+coerce term to its support type. It can be useful in notations, for
+example:
+
+.. coqtop:: all
+
+ Notation " x `= y " := (@eq _ (x :>) (y :>)) (only parsing).
+
+This notation denotes equality on subset types using equality on their
+support types, avoiding uses of proof-irrelevance that would come up
+when reasoning with equality on the subset types themselves.
+
+The next two commands are similar to their standard counterparts
+Definition (see Section `TODO-1.3.2-Definition`_) and Fixpoint (see Section `TODO-1.3.4-Fixpoint`_)
+in that they define constants. However, they may require the user to
+prove some goals to construct the final definitions.
+
+
+.. _program_definition:
+
+Program Definition
+~~~~~~~~~~~~~~~~~~
+
+.. cmd:: Program Definition @ident := @term.
+
+ This command types the value term in Russell and generates proof
+ obligations. Once solved using the commands shown below, it binds the
+ final |Coq| term to the name ``ident`` in the environment.
+
+ .. exn:: ident already exists
+
+ .. cmdv:: Program Definition @ident : @type := @term
+
+ It interprets the type ``type``, potentially generating proof
+ obligations to be resolved. Once done with them, we have a |Coq|
+ type |type_0|. It then elaborates the preterm ``term`` into a |Coq|
+ term |term_0|, checking that the type of |term_0| is coercible to
+ |type_0|, and registers ``ident`` as being of type |type_0| once the
+ set of obligations generated during the interpretation of |term_0|
+ and the aforementioned coercion derivation are solved.
+
+ .. exn:: In environment … the term: @term does not have type @type. Actually, it has type ...
+
+
+ .. cmdv:: Program Definition @ident @binders : @type := @term.
+
+ This is equivalent to:
+
+ :g:`Program Definition ident : forall binders, type := fun binders => term`.
+
+ .. TODO refer to production in alias
+
+See also: Sections `TODO-6.10.1-Opaque`_, `TODO-6.10.2-Transparent`_, `TODO-8.7.5-unfold`_
+
+.. _program_fixpoint:
+
+Program Fixpoint
+~~~~~~~~~~~~~~~~
+
+.. cmd:: Program Fixpoint @ident @params {? {@order}} : @type := @term.
+
+The optional order annotation follows the grammar:
+
+.. productionlist:: orderannot
+ order : measure `term` (`term`)? | wf `term` `term`
+
++ :g:`measure f ( R )` where :g:`f` is a value of type :g:`X` computed on
+ any subset of the arguments and the optional (parenthesised) term
+ ``(R)`` is a relation on ``X``. By default ``X`` defaults to ``nat`` and ``R``
+ to ``lt``.
+
++ :g:`wf R x` which is equivalent to :g:`measure x (R)`.
+
+The structural fixpoint operator behaves just like the one of |Coq| (see
+Section `TODO-1.3.4-Fixpoint`_), except it may also generate obligations. It works
+with mutually recursive definitions too.
+
+.. coqtop:: reset none
+
+ Require Import Program Arith.
+
+.. coqtop:: all
+
+ Program Fixpoint div2 (n : nat) : { x : nat | n = 2 * x \/ n = 2 * x + 1 } :=
+ match n with
+ | S (S p) => S (div2 p)
+ | _ => O
+ end.
+
+Here we have one obligation for each branch (branches for :g:`0` and
+``(S 0)`` are automatically generated by the pattern-matching
+compilation algorithm).
+
+.. coqtop:: all
+
+ Obligation 1.
+
+.. coqtop:: reset none
+
+ Require Import Program Arith.
+
+One can use a well-founded order or a measure as termination orders
+using the syntax:
+
+.. coqtop:: in
+
+ Program Fixpoint div2 (n : nat) {measure n} : { x : nat | n = 2 * x \/ n = 2 * x + 1 } :=
+ match n with
+ | S (S p) => S (div2 p)
+ | _ => O
+ end.
+
+
+
+.. caution:: When defining structurally recursive functions, the generated
+ obligations should have the prototype of the currently defined
+ functional in their context. In this case, the obligations should be
+ transparent (e.g. defined using :g:`Defined`) so that the guardedness
+ condition on recursive calls can be checked by the kernel’s type-
+ checker. There is an optimization in the generation of obligations
+ which gets rid of the hypothesis corresponding to the functional when
+ it is not necessary, so that the obligation can be declared opaque
+ (e.g. using :g:`Qed`). However, as soon as it appears in the context, the
+ proof of the obligation is *required* to be declared transparent.
+
+ No such problems arise when using measures or well-founded recursion.
+
+.. _program_lemma:
+
+Program Lemma
+~~~~~~~~~~~~~
+
+.. cmd:: Program Lemma @ident : @type.
+
+ The Russell language can also be used to type statements of logical
+ properties. It will generate obligations, try to solve them
+ automatically and fail if some unsolved obligations remain. In this
+ case, one can first define the lemma’s statement using :g:`Program
+ Definition` and use it as the goal afterwards. Otherwise the proof
+ will be started with the elaborated version as a goal. The
+ :g:`Program` prefix can similarly be used as a prefix for
+ :g:`Variable`, :g:`Hypothesis`, :g:`Axiom` etc...
+
+.. _solving_obligations:
+
+Solving obligations
+--------------------
+
+The following commands are available to manipulate obligations. The
+optional identifier is used when multiple functions have unsolved
+obligations (e.g. when defining mutually recursive blocks). The
+optional tactic is replaced by the default one if not specified.
+
+.. cmd:: {? Local|Global} Obligation Tactic := @tactic
+
+ Sets the default obligation solving tactic applied to all obligations
+ automatically, whether to solve them or when starting to prove one,
+ e.g. using :g:`Next`. :g:`Local` makes the setting last only for the current
+ module. Inside sections, local is the default.
+
+.. cmd:: Show Obligation Tactic
+
+ Displays the current default tactic.
+
+.. cmd:: Obligations {? of @ident}
+
+ Displays all remaining obligations.
+
+.. cmd:: Obligation num {? of @ident}
+
+ Start the proof of obligation num.
+
+.. cmd:: Next Obligation {? of @ident}
+
+ Start the proof of the next unsolved obligation.
+
+.. cmd:: Solve Obligations {? of @ident} {? with @tactic}
+
+ Tries to solve each obligation of ``ident`` using the given ``tactic`` or the default one.
+
+.. cmd:: Solve All Obligations {? with @tactic}
+
+ Tries to solve each obligation of every program using the given
+ tactic or the default one (useful for mutually recursive definitions).
+
+.. cmd:: Admit Obligations {? of @ident}
+
+ Admits all obligations (of ``ident``).
+
+ .. note:: Does not work with structurally recursive programs.
+
+.. cmd:: Preterm {? of @ident}
+
+ Shows the term that will be fed to the kernel once the obligations
+ are solved. Useful for debugging.
+
+.. opt:: Transparent Obligations
+
+ Control whether all obligations should be declared as transparent
+ (the default), or if the system should infer which obligations can be
+ declared opaque.
+
+.. opt:: Hide Obligations
+
+ Control whether obligations appearing in the
+ term should be hidden as implicit arguments of the special
+ constantProgram.Tactics.obligation.
+
+.. opt:: Shrink Obligations
+
+ *Deprecated since 8.7*
+
+ This option (on by default) controls whether obligations should have
+ their context minimized to the set of variables used in the proof of
+ the obligation, to avoid unnecessary dependencies.
+
+The module :g:`Coq.Program.Tactics` defines the default tactic for solving
+obligations called :g:`program_simpl`. Importing :g:`Coq.Program.Program` also
+adds some useful notations, as documented in the file itself.
+
+.. _program-faq:
+
+Frequently Asked Questions
+---------------------------
+
+
+.. exn:: Ill-formed recursive definition
+
+ This error can happen when one tries to define a function by structural
+ recursion on a subset object, which means the |Coq| function looks like:
+
+ ::
+
+ Program Fixpoint f (x : A | P) := match x with A b => f b end.
+
+ Supposing ``b : A``, the argument at the recursive call to ``f`` is not a
+ direct subterm of ``x`` as ``b`` is wrapped inside an ``exist`` constructor to
+ build an object of type ``{x : A | P}``. Hence the definition is
+ rejected by the guardedness condition checker. However one can use
+ wellfounded recursion on subset objects like this:
+
+ ::
+
+ Program Fixpoint f (x : A | P) { measure (size x) } :=
+ match x with A b => f b end.
+
+ One will then just have to prove that the measure decreases at each
+ recursive call. There are three drawbacks though:
+
+ #. A measure function has to be defined;
+ #. The reduction is a little more involved, although it works well
+ using lazy evaluation;
+ #. Mutual recursion on the underlying inductive type isn’t possible
+ anymore, but nested mutual recursion is always possible.
+
+.. bibliography:: ../biblio.bib
+ :keyprefix: p-
diff --git a/doc/sphinx/addendum/ring.rst b/doc/sphinx/addendum/ring.rst
new file mode 100644
index 000000000..b861892cb
--- /dev/null
+++ b/doc/sphinx/addendum/ring.rst
@@ -0,0 +1,770 @@
+.. include:: ../replaces.rst
+.. |ra| replace:: :math:`\rightarrow_{\beta\delta\iota}`
+.. |la| replace:: :math:`\leftarrow_{\beta\delta\iota}`
+.. |eq| replace:: `=`:sub:`(by the main correctness theorem)`
+.. |re| replace:: ``(PEeval`` `v` `ap`\ ``)``
+.. |le| replace:: ``(Pphi_dev`` `v` ``(norm`` `ap`\ ``))``
+
+
+.. _theringandfieldtacticfamilies:
+
+The ring and field tactic families
+====================================
+
+:Author: Bruno Barras, Benjamin Grégoire, Assia Mahboubi, Laurent Théry [#f1]_
+
+This chapter presents the tactics dedicated to deal with ring and
+field equations.
+
+What does this tactic do?
+------------------------------
+
+``ring`` does associative-commutative rewriting in ring and semi-ring
+structures. Assume you have two binary functions :math:`\oplus` and
+:math:`\otimes` that are associative and commutative, with :math:`\oplus`
+distributive on :math:`\otimes`, and two constants 0 and 1 that are unities for
+:math:`\oplus` and :math:`\otimes`. A polynomial is an expression built on
+variables :math:`V_0`, :math:`V_1`, :math:`\dots` and constants by application
+of :math:`\oplus` and :math:`\otimes`.
+
+Let an ordered product be a product of variables :math:`V_{i_1} \otimes \dots
+\otimes V_{i_n}` verifying :math:`i_1 ≤ i_2 ≤ \dots ≤ i_n` . Let a monomial be
+the product of a constant and an ordered product. We can order the monomials by
+the lexicographic order on products of variables. Let a canonical sum be an
+ordered sum of monomials that are all different, i.e. each monomial in the sum
+is strictly less than the following monomial according to the lexicographic
+order. It is an easy theorem to show that every polynomial is equivalent (modulo
+the ring properties) to exactly one canonical sum. This canonical sum is called
+the normal form of the polynomial. In fact, the actual representation shares
+monomials with same prefixes. So what does ring? It normalizes polynomials over
+any ring or semi-ring structure. The basic use of ``ring`` is to simplify ring
+expressions, so that the user does not have to deal manually with the theorems
+of associativity and commutativity.
+
+
+.. example::
+
+ In the ring of integers, the normal form of
+ :math:`x (3 + yx + 25(1 − z)) + zx`
+ is
+ :math:`28x + (−24)xz + xxy`.
+
+
+``ring`` is also able to compute a normal form modulo monomial equalities.
+For example, under the hypothesis that :math:`2x^2 = yz+1`, the normal form of
+:math:`2(x + 1)x − x − zy` is :math:`x+1`.
+
+The variables map
+----------------------
+
+It is frequent to have an expression built with :math:`+` and :math:`\times`,
+but rarely on variables only. Let us associate a number to each subterm of a
+ring expression in the Gallina language. For example in the ring |nat|, consider
+the expression:
+
+
+::
+
+ (plus (mult (plus (f (5)) x) x)
+ (mult (if b then (4) else (f (3))) (2)))
+
+
+As a ring expression, it has 3 subterms. Give each subterm a number in
+an arbitrary order:
+
+===== =============== =========================
+0 :math:`\mapsto` if b then (4) else (f (3))
+1 :math:`\mapsto` (f (5))
+2 :math:`\mapsto` x
+===== =============== =========================
+
+Then normalize the “abstract” polynomial
+:math:`((V_1 \otimes V_2 ) \oplus V_2) \oplus (V_0 \otimes 2)`
+In our example the normal form is:
+:math:`(2 \otimes V_0 ) \oplus (V_1 \otimes V_2) \oplus (V_2 \otimes V_2 )`.
+Then substitute the variables by their values in the variables map to
+get the concrete normal polynomial:
+
+::
+
+ (plus (mult (2) (if b then (4) else (f (3))))
+ (plus (mult (f (5)) x) (mult x x)))
+
+
+Is it automatic?
+---------------------
+
+Yes, building the variables map and doing the substitution after
+normalizing is automatically done by the tactic. So you can just
+forget this paragraph and use the tactic according to your intuition.
+
+Concrete usage in Coq
+--------------------------
+
+.. tacn:: ring
+
+The ``ring`` tactic solves equations upon polynomial expressions of a ring
+(or semi-ring) structure. It proceeds by normalizing both hand sides
+of the equation (w.r.t. associativity, commutativity and
+distributivity, constant propagation, rewriting of monomials) and
+comparing syntactically the results.
+
+.. tacn:: ring_simplify
+
+``ring_simplify`` applies the normalization procedure described above to
+the terms given. The tactic then replaces all occurrences of the terms
+given in the conclusion of the goal by their normal forms. If no term
+is given, then the conclusion should be an equation and both hand
+sides are normalized. The tactic can also be applied in a hypothesis.
+
+The tactic must be loaded by ``Require Import Ring``. The ring structures
+must be declared with the ``Add Ring`` command (see below). The ring of
+booleans is predefined; if one wants to use the tactic on |nat| one must
+first require the module ``ArithRing`` exported by ``Arith``); for |Z|, do
+``Require Import ZArithRing`` or simply ``Require Import ZArith``; for |N|, do
+``Require Import NArithRing`` or ``Require Import NArith``.
+
+
+.. example::
+
+ .. coqtop:: all
+
+ Require Import ZArith.
+ Open Scope Z_scope.
+ Goal forall a b c:Z,
+ (a + b + c) ^ 2 =
+ a * a + b ^ 2 + c * c + 2 * a * b + 2 * a * c + 2 * b * c.
+ intros; ring.
+ Abort.
+ Goal forall a b:Z,
+ 2 * a * b = 30 -> (a + b) ^ 2 = a ^ 2 + b ^ 2 + 30.
+ intros a b H; ring [H].
+ Abort.
+
+
+.. tacv:: ring [{* @term }]
+
+decides the equality of two terms modulo ring operations and
+the equalities defined by the :n:`@term`\ s.
+Each :n:`@term` has to be a proof of some equality `m = p`, where `m` is a monomial (after “abstraction”), `p` a polynomial and `=` the corresponding equality of the ring structure.
+
+.. tacv:: ring_simplify [{* @term }] {* @term } in @ident
+
+performs the simplification in the hypothesis named :n:`@ident`.
+
+
+.. note::
+
+ .. tacn:: ring_simplify @term1; ring_simplify @term2
+
+ is not equivalent to
+
+ .. tacn:: ring_simplify @term1 @term2
+
+ In the latter case the variables map
+ is shared between the two terms, and common subterm `t` of :n:`@term1` and :n:`@term2`
+ will have the same associated variable number. So the first
+ alternative should be avoided for terms belonging to the same ring
+ theory.
+
+
+Error messages:
+
+
+.. exn:: not a valid ring equation
+
+ The conclusion of the goal is not provable in the corresponding ring theory.
+
+.. exn:: arguments of ring_simplify do not have all the same type
+
+ ``ring_simplify`` cannot simplify terms of several rings at the same
+ time. Invoke the tactic once per ring structure.
+
+.. exn:: cannot find a declared ring structure over @term
+
+ No ring has been declared for the type of the terms to be simplified.
+ Use ``Add Ring`` first.
+
+.. exn:: cannot find a declared ring structure for equality @term
+
+ Same as above is the case of the ``ring`` tactic.
+
+
+Adding a ring structure
+----------------------------
+
+Declaring a new ring consists in proving that a ring signature (a
+carrier set, an equality, and ring operations: ``Ring_theory.ring_theory``
+and ``Ring_theory.semi_ring_theory``) satisfies the ring axioms. Semi-
+rings (rings without + inverse) are also supported. The equality can
+be either Leibniz equality, or any relation declared as a setoid (see
+:ref:`tactics-enabled-on-user-provided-relations`). The definition of ring and semi-rings (see module
+``Ring_theory``) is:
+
+.. coqtop:: in
+
+ Record ring_theory : Prop := mk_rt {
+ Radd_0_l : forall x, 0 + x == x;
+ Radd_sym : forall x y, x + y == y + x;
+ Radd_assoc : forall x y z, x + (y + z) == (x + y) + z;
+ Rmul_1_l : forall x, 1 * x == x;
+ Rmul_sym : forall x y, x * y == y * x;
+ Rmul_assoc : forall x y z, x * (y * z) == (x * y) * z;
+ Rdistr_l : forall x y z, (x + y) * z == (x * z) + (y * z);
+ Rsub_def : forall x y, x - y == x + -y;
+ Ropp_def : forall x, x + (- x) == 0
+ }.
+
+ Record semi_ring_theory : Prop := mk_srt {
+ SRadd_0_l : forall n, 0 + n == n;
+ SRadd_sym : forall n m, n + m == m + n ;
+ SRadd_assoc : forall n m p, n + (m + p) == (n + m) + p;
+ SRmul_1_l : forall n, 1*n == n;
+ SRmul_0_l : forall n, 0*n == 0;
+ SRmul_sym : forall n m, n*m == m*n;
+ SRmul_assoc : forall n m p, n*(m*p) == (n*m)*p;
+ SRdistr_l : forall n m p, (n + m)*p == n*p + m*p
+ }.
+
+
+This implementation of ``ring`` also features a notion of constant that
+can be parameterized. This can be used to improve the handling of
+closed expressions when operations are effective. It consists in
+introducing a type of *coefficients* and an implementation of the ring
+operations, and a morphism from the coefficient type to the ring
+carrier type. The morphism needs not be injective, nor surjective.
+
+As an example, one can consider the real numbers. The set of
+coefficients could be the rational numbers, upon which the ring
+operations can be implemented. The fact that there exists a morphism
+is defined by the following properties:
+
+.. coqtop:: in
+
+ Record ring_morph : Prop := mkmorph {
+ morph0 : [cO] == 0;
+ morph1 : [cI] == 1;
+ morph_add : forall x y, [x +! y] == [x]+[y];
+ morph_sub : forall x y, [x -! y] == [x]-[y];
+ morph_mul : forall x y, [x *! y] == [x]*[y];
+ morph_opp : forall x, [-!x] == -[x];
+ morph_eq : forall x y, x?=!y = true -> [x] == [y]
+ }.
+
+ Record semi_morph : Prop := mkRmorph {
+ Smorph0 : [cO] == 0;
+ Smorph1 : [cI] == 1;
+ Smorph_add : forall x y, [x +! y] == [x]+[y];
+ Smorph_mul : forall x y, [x *! y] == [x]*[y];
+ Smorph_eq : forall x y, x?=!y = true -> [x] == [y]
+ }.
+
+
+where ``c0`` and ``cI`` denote the 0 and 1 of the coefficient set, ``+!``, ``*!``, ``-!``
+are the implementations of the ring operations, ``==`` is the equality of
+the coefficients, ``?+!`` is an implementation of this equality, and ``[x]``
+is a notation for the image of ``x`` by the ring morphism.
+
+Since |Z| is an initial ring (and |N| is an initial semi-ring), it can
+always be considered as a set of coefficients. There are basically
+three kinds of (semi-)rings:
+
+abstract rings
+ to be used when operations are not effective. The set
+ of coefficients is |Z| (or |N| for semi-rings).
+
+computational rings
+ to be used when operations are effective. The
+ set of coefficients is the ring itself. The user only has to provide
+ an implementation for the equality.
+
+customized ring
+ for other cases. The user has to provide the
+ coefficient set and the morphism.
+
+
+This implementation of ring can also recognize simple power
+expressions as ring expressions. A power function is specified by the
+following property:
+
+.. coqtop:: in
+
+ Section POWER.
+ Variable Cpow : Set.
+ Variable Cp_phi : N -> Cpow.
+ Variable rpow : R -> Cpow -> R.
+
+ Record power_theory : Prop := mkpow_th {
+ rpow_pow_N : forall r n, req (rpow r (Cp_phi n)) (pow_N rI rmul r n)
+ }.
+
+ End POWER.
+
+
+The syntax for adding a new ring is
+
+.. cmd:: Add Ring @ident : @term {? ( @ring_mod {* , @ring_mod } )}.
+
+The :n:`@ident` is not relevant. It is just used for error messages. The
+:n:`@term` is a proof that the ring signature satisfies the (semi-)ring
+axioms. The optional list of modifiers is used to tailor the behavior
+of the tactic. The following list describes their syntax and effects:
+
+.. prodn::
+ ring_mod ::= abstract %| decidable @term %| morphism @term
+ %| setoid @term @term
+ %| constants [@ltac]
+ %| preprocess [@ltac]
+ %| postprocess [@ltac]
+ %| power_tac @term [@ltac]
+ %| sign @term
+ %| div @term
+
+
+abstract
+ declares the ring as abstract. This is the default.
+
+decidable :n:`@term`
+ declares the ring as computational. The expression
+ :n:`@term` is the correctness proof of an equality test ``?=!``
+ (which hould be evaluable). Its type should be of the form
+ ``forall x y, x ?=! y = true → x == y``.
+
+morphism :n:`@term`
+ declares the ring as a customized one. The expression
+ :n:`@term` is a proof that there exists a morphism between a set of
+ coefficient and the ring carrier (see ``Ring_theory.ring_morph`` and
+ ``Ring_theory.semi_morph``).
+
+setoid :n:`@term` :n:`@term`
+ forces the use of given setoid. The first
+ :n:`@term` is a proof that the equality is indeed a setoid (see
+ ``Setoid.Setoid_Theory``), and the second :n:`@term` a proof that the
+ ring operations are morphisms (see ``Ring_theory.ring_eq_ext`` and
+ ``Ring_theory.sring_eq_ext``).
+ This modifier needs not be used if the setoid and morphisms have been
+ declared.
+
+constants [:n:`@ltac`]
+ specifies a tactic expression :n:`@ltac` that, given a
+ term, returns either an object of the coefficient set that is mapped
+ to the expression via the morphism, or returns
+ ``InitialRing.NotConstant``. The default behavior is to map only 0 and 1
+ to their counterpart in the coefficient set. This is generally not
+ desirable for non trivial computational rings.
+
+preprocess [:n:`@ltac`]
+ specifies a tactic :n:`@ltac` that is applied as a
+ preliminary step for ``ring`` and ``ring_simplify``. It can be used to
+ transform a goal so that it is better recognized. For instance, ``S n``
+ can be changed to ``plus 1 n``.
+
+postprocess [:n:`@ltac`]
+ specifies a tactic :n:`@ltac` that is applied as a final
+ step for ``ring_simplify``. For instance, it can be used to undo
+ modifications of the preprocessor.
+
+power_tac :n:`@term` [:n:`@ltac`]
+ allows ``ring`` and ``ring_simplify`` to recognize
+ power expressions with a constant positive integer exponent (example:
+ ::math:`x^2` ). The term :n:`@term` is a proof that a given power function satisfies
+ the specification of a power function (term has to be a proof of
+ ``Ring_theory.power_theory``) and :n:`@ltac` specifies a tactic expression
+ that, given a term, “abstracts” it into an object of type |N| whose
+ interpretation via ``Cp_phi`` (the evaluation function of power
+ coefficient) is the original term, or returns ``InitialRing.NotConstant``
+ if not a constant coefficient (i.e. |L_tac| is the inverse function of
+ ``Cp_phi``). See files ``plugins/setoid_ring/ZArithRing.v``
+ and ``plugins/setoid_ring/RealField.v`` for examples. By default the tactic
+ does not recognize power expressions as ring expressions.
+
+sign :n:`@term`
+ allows ``ring_simplify`` to use a minus operation when
+ outputting its normal form, i.e writing ``x − y`` instead of ``x + (− y)``. The
+ term `:n:`@term` is a proof that a given sign function indicates expressions
+ that are signed (`term` has to be a proof of ``Ring_theory.get_sign``). See
+ ``plugins/setoid_ring/InitialRing.v`` for examples of sign function.
+
+div :n:`@term`
+ allows ``ring`` and ``ring_simplify`` to use monomials with
+ coefficient other than 1 in the rewriting. The term :n:`@term` is a proof
+ that a given division function satisfies the specification of an
+ euclidean division function (:n:`@term` has to be a proof of
+ ``Ring_theory.div_theory``). For example, this function is called when
+ trying to rewrite :math:`7x` by :math:`2x = z` to tell that :math:`7 = 3 \times 2 + 1`. See
+ ``plugins/setoid_ring/InitialRing.v`` for examples of div function.
+
+Error messages:
+
+.. exn:: bad ring structure
+
+ The proof of the ring structure provided is not
+ of the expected type.
+
+.. exn:: bad lemma for decidability of equality
+
+ The equality function
+ provided in the case of a computational ring has not the expected
+ type.
+
+.. exn:: ring operation should be declared as a morphism
+
+ A setoid associated to the carrier of the ring structure has been found,
+ but the ring operation should be declared as morphism. See :ref:`tactics-enabled-on-user-provided-relations`.
+
+How does it work?
+----------------------
+
+The code of ring is a good example of tactic written using *reflection*.
+What is reflection? Basically, it is writing |Coq| tactics in |Coq|, rather
+than in |OCaml|. From the philosophical point of view, it is
+using the ability of the Calculus of Constructions to speak and reason
+about itself. For the ring tactic we used Coq as a programming
+language and also as a proof environment to build a tactic and to
+prove it correctness.
+
+The interested reader is strongly advised to have a look at the
+file ``Ring_polynom.v``. Here a type for polynomials is defined:
+
+
+.. coqtop:: in
+
+ Inductive PExpr : Type :=
+ | PEc : C -> PExpr
+ | PEX : positive -> PExpr
+ | PEadd : PExpr -> PExpr -> PExpr
+ | PEsub : PExpr -> PExpr -> PExpr
+ | PEmul : PExpr -> PExpr -> PExpr
+ | PEopp : PExpr -> PExpr
+ | PEpow : PExpr -> N -> PExpr.
+
+
+Polynomials in normal form are defined as:
+
+
+.. coqtop:: in
+
+ Inductive Pol : Type :=
+ | Pc : C -> Pol
+ | Pinj : positive -> Pol -> Pol
+ | PX : Pol -> positive -> Pol -> Pol.
+
+
+where ``Pinj n P`` denotes ``P`` in which :math:`V_i` is replaced by :math:`V_{i+n}` ,
+and ``PX P n Q`` denotes :math:`P \otimes V_1^n \oplus Q'`, `Q'` being `Q` where :math:`V_i` is replaced by :math:`V_{i+1}`.
+
+Variables maps are represented by list of ring elements, and two
+interpretation functions, one that maps a variables map and a
+polynomial to an element of the concrete ring, and the second one that
+does the same for normal forms:
+
+
+.. coqtop:: in
+
+
+ Definition PEeval : list R -> PExpr -> R := [...].
+ Definition Pphi_dev : list R -> Pol -> R := [...].
+
+
+A function to normalize polynomials is defined, and the big theorem is
+its correctness w.r.t interpretation, that is:
+
+
+.. coqtop:: in
+
+ Definition norm : PExpr -> Pol := [...].
+ Lemma Pphi_dev_ok :
+ forall l pe npe, norm pe = npe -> PEeval l pe == Pphi_dev l npe.
+
+
+So now, what is the scheme for a normalization proof? Let p be the
+polynomial expression that the user wants to normalize. First a little
+piece of |ML| code guesses the type of `p`, the ring theory `T` to use, an
+abstract polynomial `ap` and a variables map `v` such that `p` is |bdi|-
+equivalent to ``(PEeval`` `v` `ap`\ ``)``. Then we replace it by ``(Pphi_dev`` `v`
+``(norm`` `ap`\ ``))``, using the main correctness theorem and we reduce it to a
+concrete expression `p’`, which is the concrete normal form of `p`. This is summarized in this diagram:
+
+========= ====== ====
+`p` |ra| |re|
+\ |eq| \
+`p’` |la| |le|
+========= ====== ====
+
+The user do not see the right part of the diagram. From outside, the
+tactic behaves like a |bdi| simplification extended with AC rewriting
+rules. Basically, the proof is only the application of the main
+correctness theorem to well-chosen arguments.
+
+Dealing with fields
+------------------------
+
+.. tacn:: field
+
+The ``field`` tactic is an extension of the ``ring`` to deal with rational
+expression. Given a rational expression :math:`F = 0`. It first reduces the
+expression `F` to a common denominator :math:`N/D = 0` where `N` and `D`
+are two ring expressions. For example, if we take :math:`F = (1 − 1/x) x − x + 1`, this
+gives :math:`N = (x − 1) x − x^2 + x` and :math:`D = x`. It then calls ring to solve
+:math:`N = 0`.
+Note that ``field`` also generates non-zero conditions for all the
+denominators it encounters in the reduction. In our example, it
+generates the condition :math:`x \neq 0`. These conditions appear as one subgoal
+which is a conjunction if there are several denominators. Non-zero
+conditions are always polynomial expressions. For example when
+reducing the expression :math:`1/(1 + 1/x)`, two side conditions are
+generated: :math:`x \neq 0` and :math:`x + 1 \neq 0`. Factorized expressions are broken since
+a field is an integral domain, and when the equality test on
+coefficients is complete w.r.t. the equality of the target field,
+constants can be proven different from zero automatically.
+
+The tactic must be loaded by ``Require Import Field``. New field
+structures can be declared to the system with the ``Add Field`` command
+(see below). The field of real numbers is defined in module ``RealField``
+(in ``plugins/setoid_ring``). It is exported by module ``Rbase``, so
+that requiring ``Rbase`` or ``Reals`` is enough to use the field tactics on
+real numbers. Rational numbers in canonical form are also declared as
+a field in module ``Qcanon``.
+
+
+.. example::
+
+ .. coqtop:: all
+
+ Require Import Reals.
+ Open Scope R_scope.
+ Goal forall x,
+ x <> 0 -> (1 - 1 / x) * x - x + 1 = 0.
+ intros; field; auto.
+ Abort.
+ Goal forall x y,
+ y <> 0 -> y = x -> x / y = 1.
+ intros x y H H1; field [H1]; auto.
+ Abort.
+
+.. tacv:: field [{* @term}]
+
+ decides the equality of two terms modulo
+ field operations and the equalities defined
+ by the :n:`@term`\ s. Each :n:`@term` has to be a proof of some equality
+ `m` ``=`` `p`, where `m` is a monomial (after “abstraction”), `p` a polynomial
+ and ``=`` the corresponding equality of the field structure.
+
+.. note::
+
+ rewriting works with the equality `m` ``=`` `p` only if `p` is a polynomial since
+ rewriting is handled by the underlying ring tactic.
+
+.. tacv:: field_simplify
+
+ performs the simplification in the conclusion of the
+ goal, :math:`F_1 = F_2` becomes :math:`N_1 / D_1 = N_2 / D_2`. A normalization step
+ (the same as the one for rings) is then applied to :math:`N_1`, :math:`D_1`,
+ :math:`N_2` and :math:`D_2`. This way, polynomials remain in factorized form during the
+ fraction simplifications. This yields smaller expressions when
+ reducing to the same denominator since common factors can be canceled.
+
+.. tacv:: field_simplify [{* @term }]
+
+ performs the simplification in the conclusion of the goal using the equalities
+ defined by the :n:`@term`\ s.
+
+.. tacv:: field_simplify [{* @term }] {* @term }
+
+ performs the simplification in the terms :n:`@terms` of the conclusion of the goal
+ using the equalities defined by :n:`@term`\ s inside the brackets.
+
+.. tacv :: field_simplify in @ident
+
+ performs the simplification in the assumption :n:`@ident`.
+
+.. tacv :: field_simplify [{* @term }] in @ident
+
+ performs the simplification
+ in the assumption :n:`@ident` using the equalities defined by the :n:`@term`\ s.
+
+.. tacv:: field_simplify [{* @term }] {* @term } in @ident
+
+ performs the simplification in the :n:`@term`\ s of the assumption :n:`@ident` using the
+ equalities defined by the :n:`@term`\ s inside the brackets.
+
+.. tacv:: field_simplify_eq
+
+ performs the simplification in the conclusion of
+ the goal removing the denominator. :math:`F_1 = F_2` becomes :math:`N_1 D_2 = N_2 D_1`.
+
+.. tacv:: field_simplify_eq [ {* @term }]
+
+ performs the simplification in
+ the conclusion of the goal using the equalities defined by
+ :n:`@term`\ s.
+
+.. tacv:: field_simplify_eq in @ident
+
+ performs the simplification in the assumption :n:`@ident`.
+
+.. tacv:: field_simplify_eq [{* @term}] in @ident
+
+ performs the simplification in the assumption :n:`@ident` using the equalities defined by
+ :n:`@terms`\ s and removing the denominator.
+
+
+Adding a new field structure
+---------------------------------
+
+Declaring a new field consists in proving that a field signature (a
+carrier set, an equality, and field operations:
+``Field_theory.field_theory`` and ``Field_theory.semi_field_theory``)
+satisfies the field axioms. Semi-fields (fields without + inverse) are
+also supported. The equality can be either Leibniz equality, or any
+relation declared as a setoid (see :ref:`tactics-enabled-on-user-provided-relations`). The definition of
+fields and semi-fields is:
+
+.. coqtop:: in
+
+ Record field_theory : Prop := mk_field {
+ F_R : ring_theory rO rI radd rmul rsub ropp req;
+ F_1_neq_0 : ~ 1 == 0;
+ Fdiv_def : forall p q, p / q == p * / q;
+ Finv_l : forall p, ~ p == 0 -> / p * p == 1
+ }.
+
+ Record semi_field_theory : Prop := mk_sfield {
+ SF_SR : semi_ring_theory rO rI radd rmul req;
+ SF_1_neq_0 : ~ 1 == 0;
+ SFdiv_def : forall p q, p / q == p * / q;
+ SFinv_l : forall p, ~ p == 0 -> / p * p == 1
+ }.
+
+
+The result of the normalization process is a fraction represented by
+the following type:
+
+.. coqtop:: in
+
+ Record linear : Type := mk_linear {
+ num : PExpr C;
+ denum : PExpr C;
+ condition : list (PExpr C)
+ }.
+
+
+where ``num`` and ``denum`` are the numerator and denominator; ``condition`` is a
+list of expressions that have appeared as a denominator during the
+normalization process. These expressions must be proven different from
+zero for the correctness of the algorithm.
+
+The syntax for adding a new field is
+
+.. cmd:: Add Field @ident : @term {? ( @field_mod {* , @field_mod } )}.
+
+The :n:`@ident` is not relevant. It is just used for error
+messages. :n:`@term` is a proof that the field signature satisfies the
+(semi-)field axioms. The optional list of modifiers is used to tailor
+the behavior of the tactic.
+
+.. prodn::
+ field_mod := @ring_mod %| completeness @term
+
+Since field tactics are built upon ``ring``
+tactics, all modifiers of the ``Add Ring`` apply. There is only one
+specific modifier:
+
+completeness :n:`@term`
+ allows the field tactic to prove automatically
+ that the image of non-zero coefficients are mapped to non-zero
+ elements of the field. :n:`@term` is a proof of
+
+ ``forall x y, [x] == [y] -> x ?=! y = true``,
+
+ which is the completeness of equality on coefficients
+ w.r.t. the field equality.
+
+
+History of ring
+--------------------
+
+First Samuel Boutin designed the tactic ``ACDSimpl``. This tactic did lot
+of rewriting. But the proofs terms generated by rewriting were too big
+for |Coq|’s type-checker. Let us see why:
+
+.. coqtop:: all
+
+ Require Import ZArith.
+ Open Scope Z_scope.
+ Goal forall x y z : Z,
+ x + 3 + y + y * z = x + 3 + y + z * y.
+ intros; rewrite (Zmult_comm y z); reflexivity.
+ Save foo.
+ Print foo.
+
+At each step of rewriting, the whole context is duplicated in the
+proof term. Then, a tactic that does hundreds of rewriting generates
+huge proof terms. Since ``ACDSimpl`` was too slow, Samuel Boutin rewrote
+it using reflection (see his article in TACS’97 [Bou97]_). Later, it
+was rewritten by Patrick Loiseleur: the new tactic does not any
+more require ``ACDSimpl`` to compile and it makes use of |bdi|-reduction not
+only to replace the rewriting steps, but also to achieve the
+interleaving of computation and reasoning (see :ref:`discussion_reflection`). He also wrote a
+few |ML| code for the ``Add Ring`` command, that allow to register new rings
+dynamically.
+
+Proofs terms generated by ring are quite small, they are linear in the
+number of :math:`\oplus` and :math:`\otimes` operations in the normalized terms. Type-checking
+those terms requires some time because it makes a large use of the
+conversion rule, but memory requirements are much smaller.
+
+
+.. _discussion_reflection:
+
+
+Discussion
+----------------
+
+
+Efficiency is not the only motivation to use reflection here. ``ring``
+also deals with constants, it rewrites for example the expression
+``34 + 2 * x − x + 12`` to the expected result ``x + 46``.
+For the tactic ``ACDSimpl``, the only constants were 0 and 1.
+So the expression ``34 + 2 * (x − 1) + 12``
+is interpreted as :math:`V_0 \oplus V_1 \otimes (V_2 \ominus 1) \oplus V_3`\ ,
+with the variables mapping
+:math:`\{V_0 \mapsto 34; V_1 \mapsto 2; V_2 \mapsto x; V_3 \mapsto 12\}`\ .
+Then it is rewritten to ``34 − x + 2 * x + 12``, very far from the expected result.
+Here rewriting is not sufficient: you have to do some kind of reduction
+(some kind of computation) to achieve the normalization.
+
+The tactic ``ring`` is not only faster than a classical one: using
+reflection, we get for free integration of computation and reasoning
+that would be very complex to implement in the classic fashion.
+
+Is it the ultimate way to write tactics? The answer is: yes and no.
+The ``ring`` tactic uses intensively the conversion rule of |Cic|, that is
+replaces proof by computation the most as it is possible. It can be
+useful in all situations where a classical tactic generates huge proof
+terms. Symbolic Processing and Tautologies are in that case. But there
+are also tactics like ``auto`` or ``linear`` that do many complex computations,
+using side-effects and backtracking, and generate a small proof term.
+Clearly, it would be significantly less efficient to replace them by
+tactics using reflection.
+
+Another idea suggested by Benjamin Werner: reflection could be used to
+couple an external tool (a rewriting program or a model checker)
+with |Coq|. We define (in |Coq|) a type of terms, a type of *traces*, and
+prove a correction theorem that states that *replaying traces* is safe
+w.r.t some interpretation. Then we let the external tool do every
+computation (using side-effects, backtracking, exception, or others
+features that are not available in pure lambda calculus) to produce
+the trace: now we can check in |Coq| that the trace has the expected
+semantic by applying the correction lemma.
+
+
+
+
+
+
+.. rubric:: Footnotes
+.. [#f1] based on previous work from Patrick Loiseleur and Samuel Boutin
+
+
+