aboutsummaryrefslogtreecommitdiffhomepage
path: root/doc/sphinx/addendum/generalized-rewriting.rst
diff options
context:
space:
mode:
Diffstat (limited to 'doc/sphinx/addendum/generalized-rewriting.rst')
-rw-r--r--doc/sphinx/addendum/generalized-rewriting.rst845
1 files changed, 845 insertions, 0 deletions
diff --git a/doc/sphinx/addendum/generalized-rewriting.rst b/doc/sphinx/addendum/generalized-rewriting.rst
new file mode 100644
index 000000000..da9e97e6f
--- /dev/null
+++ b/doc/sphinx/addendum/generalized-rewriting.rst
@@ -0,0 +1,845 @@
+.. _generalizedrewriting:
+
+-----------------------
+ Generalized rewriting
+-----------------------
+
+:Author: Matthieu Sozeau
+
+Generalized rewriting
+=====================
+
+
+This chapter presents the extension of several equality related
+tactics to work over user-defined structures (called setoids) that are
+equipped with ad-hoc equivalence relations meant to behave as
+equalities. Actually, the tactics have also been generalized to
+relations weaker then equivalences (e.g. rewriting systems). The
+toolbox also extends the automatic rewriting capabilities of the
+system, allowing the specification of custom strategies for rewriting.
+
+This documentation is adapted from the previous setoid documentation
+by Claudio Sacerdoti Coen (based on previous work by Clément Renard).
+The new implementation is a drop-in replacement for the old one
+[#tabareau]_, hence most of the documentation still applies.
+
+The work is a complete rewrite of the previous implementation, based
+on the type class infrastructure. It also improves on and generalizes
+the previous implementation in several ways:
+
+
++ User-extensible algorithm. The algorithm is separated in two parts:
+ generations of the rewriting constraints (done in ML) and solving of
+ these constraints using type class resolution. As type class
+ resolution is extensible using tactics, this allows users to define
+ general ways to solve morphism constraints.
++ Sub-relations. An example extension to the base algorithm is the
+ ability to define one relation as a subrelation of another so that
+ morphism declarations on one relation can be used automatically for
+ the other. This is done purely using tactics and type class search.
++ Rewriting under binders. It is possible to rewrite under binders in
+ the new implementation, if one provides the proper morphisms. Again,
+ most of the work is handled in the tactics.
++ First-class morphisms and signatures. Signatures and morphisms are
+ ordinary Coq terms, hence they can be manipulated inside Coq, put
+ inside structures and lemmas about them can be proved inside the
+ system. Higher-order morphisms are also allowed.
++ Performance. The implementation is based on a depth-first search for
+ the first solution to a set of constraints which can be as fast as
+ linear in the size of the term, and the size of the proof term is
+ linear in the size of the original term. Besides, the extensibility
+ allows the user to customize the proof search if necessary.
+
+.. [#tabareau] Nicolas Tabareau helped with the gluing.
+
+Introduction to generalized rewriting
+-------------------------------------
+
+
+Relations and morphisms
+~~~~~~~~~~~~~~~~~~~~~~~
+
+A parametric *relation* ``R`` is any term of type
+``forall (x1 :T1 ) ... (xn :Tn ), relation A``.
+The expression ``A``, which depends on ``x1 ... xn`` , is called the *carrier*
+of the relation and ``R`` is said to be a relation over ``A``; the list
+``x1,...,xn`` is the (possibly empty) list of parameters of the relation.
+
+**Example 1 (Parametric relation):**
+
+It is possible to implement finite sets of elements of type ``A`` as
+unordered list of elements of type ``A``.
+The function ``set_eq: forall (A: Type), relation (list A)``
+satisfied by two lists with the same elements is a parametric relation
+over ``(list A)`` with one parameter ``A``. The type of ``set_eq``
+is convertible with ``forall (A: Type), list A -> list A -> Prop.``
+
+An *instance* of a parametric relation ``R`` with n parameters is any term
+``(R t1 ... tn )``.
+
+Let ``R`` be a relation over ``A`` with ``n`` parameters. A term is a parametric
+proof of reflexivity for ``R`` if it has type
+``forall (x1 :T1 ) ... (xn :Tn), reflexive (R x1 ... xn )``.
+Similar definitions are given for parametric proofs of symmetry and transitivity.
+
+**Example 2 (Parametric relation (cont.)):**
+
+The ``set_eq`` relation of the previous example can be proved to be
+reflexive, symmetric and transitive. A parametric unary function ``f`` of type
+``forall (x1 :T1 ) ... (xn :Tn ), A1 -> A2`` covariantly respects two parametric relation instances
+``R1`` and ``R2`` if, whenever ``x``, ``y`` satisfy ``R1 x y``, their images (``f x``) and (``f y``)
+satisfy ``R2 (f x) (f y)``. An ``f`` that respects its input and output
+relations will be called a unary covariant *morphism*. We can also say
+that ``f`` is a monotone function with respect to ``R1`` and ``R2`` . The
+sequence ``x1 ... xn`` represents the parameters of the morphism.
+
+Let ``R1`` and ``R2`` be two parametric relations. The *signature* of a
+parametric morphism of type ``forall (x1 :T1 ) ... (xn :Tn ), A1 -> A2``
+that covariantly respects two instances :math:`I_{R_1}` and :math:`I_{R_2}` of ``R1`` and ``R2``
+is written :math:`I_{R_1} ++> I_{R_2}`. Notice that the special arrow ++>, which
+reminds the reader of covariance, is placed between the two relation
+instances, not between the two carriers. The signature relation
+instances and morphism will be typed in a context introducing
+variables for the parameters.
+
+The previous definitions are extended straightforwardly to n-ary
+morphisms, that are required to be simultaneously monotone on every
+argument.
+
+Morphisms can also be contravariant in one or more of their arguments.
+A morphism is contravariant on an argument associated to the relation
+instance :math`R` if it is covariant on the same argument when the inverse
+relation :math:`R^{−1}` (``inverse R`` in Coq) is considered. The special arrow ``-->``
+is used in signatures for contravariant morphisms.
+
+Functions having arguments related by symmetric relations instances
+are both covariant and contravariant in those arguments. The special
+arrow ``==>`` is used in signatures for morphisms that are both
+covariant and contravariant.
+
+An instance of a parametric morphism :math:`f` with :math:`n`
+parameters is any term :math:`f \, t_1 \ldots t_n`.
+
+**Example 3 (Morphisms):**
+
+Continuing the previous example, let ``union: forall (A: Type), list A -> list A -> list A``
+perform the union of two sets by appending one list to the other. ``union` is a binary
+morphism parametric over ``A`` that respects the relation instance
+``(set_eq A)``. The latter condition is proved by showing:
+
+.. coqtop:: in
+
+ forall (A: Type) (S1 S1’ S2 S2’: list A),
+ set_eq A S1 S1’ ->
+ set_eq A S2 S2’ ->
+ set_eq A (union A S1 S2) (union A S1’ S2’).
+
+The signature of the function ``union A`` is ``set_eq A ==> set_eq A ==> set_eq A``
+for all ``A``.
+
+**Example 4 (Contravariant morphism):**
+
+The division function ``Rdiv: R -> R -> R`` is a morphism of signature
+``le ++> le --> le`` where ``le`` is the usual order relation over
+real numbers. Notice that division is covariant in its first argument
+and contravariant in its second argument.
+
+Leibniz equality is a relation and every function is a morphism that
+respects Leibniz equality. Unfortunately, Leibniz equality is not
+always the intended equality for a given structure.
+
+In the next section we will describe the commands to register terms as
+parametric relations and morphisms. Several tactics that deal with
+equality in Coq can also work with the registered relations. The exact
+list of tactic will be given :ref:`in this section <tactics-enabled-on-user-provided-relations>`.
+For instance, the tactic reflexivity can be used to close a goal ``R n n`` whenever ``R``
+is an instance of a registered reflexive relation. However, the
+tactics that replace in a context ``C[]`` one term with another one
+related by ``R`` must verify that ``C[]`` is a morphism that respects the
+intended relation. Currently the verification consists in checking
+whether ``C[]`` is a syntactic composition of morphism instances that respects some obvious
+compatibility constraints.
+
+
+**Example 5 (Rewriting):**
+
+Continuing the previous examples, suppose that the user must prove
+``set_eq int (union int (union int S1 S2) S2) (f S1 S2)`` under the
+hypothesis ``H: set_eq int S2 (@nil int)``. It
+is possible to use the ``rewrite`` tactic to replace the first two
+occurrences of ``S2`` with ``@nil int`` in the goal since the
+context ``set_eq int (union int (union int S1 nil) nil) (f S1 S2)``,
+being a composition of morphisms instances, is a morphism. However the
+tactic will fail replacing the third occurrence of ``S2`` unless ``f``
+has also been declared as a morphism.
+
+
+Adding new relations and morphisms
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+A parametric relation :g:`Aeq: forall (y1 : β1 ... ym : βm )`,
+:g:`relation (A t1 ... tn)` over :g:`(A : αi -> ... αn -> Type)` can be
+declared with the following command:
+
+.. cmd:: Add Parametric Relation (x1 : T1) ... (xn : Tk) : (A t1 ... tn) (Aeq t′1 ... t′m ) {? reflexivity proved by refl} {? symmetry proved by sym} {? transitivity proved by trans} as @ident.
+
+after having required the ``Setoid`` module with the ``Require Setoid``
+command.
+
+The :g:`@ident` gives a unique name to the morphism and it is used
+by the command to generate fresh names for automatically provided
+lemmas used internally.
+
+Notice that the carrier and relation parameters may refer to the
+context of variables introduced at the beginning of the declaration,
+but the instances need not be made only of variables. Also notice that
+``A`` is *not* required to be a term having the same parameters as ``Aeq``,
+although that is often the case in practice (this departs from the
+previous implementation).
+
+
+.. cmd:: Add Relation
+
+In case the carrier and relations are not parametric, one can use this command
+instead, whose syntax is the same except there is no local context.
+
+The proofs of reflexivity, symmetry and transitivity can be omitted if
+the relation is not an equivalence relation. The proofs must be
+instances of the corresponding relation definitions: e.g. the proof of
+reflexivity must have a type convertible to
+:g:`reflexive (A t1 ... tn) (Aeq t′ 1 …t′ n )`.
+Each proof may refer to the introduced variables as well.
+
+**Example 6 (Parametric relation):**
+
+For Leibniz equality, we may declare:
+
+.. coqtop:: in
+
+ Add Parametric Relation (A : Type) : A (@eq A)
+ [reflexivity proved by @refl_equal A]
+ ...
+
+Some tactics (``reflexivity``, ``symmetry``, ``transitivity``) work only on
+relations that respect the expected properties. The remaining tactics
+(``replace``, ``rewrite`` and derived tactics such as ``autorewrite``) do not
+require any properties over the relation. However, they are able to
+replace terms with related ones only in contexts that are syntactic
+compositions of parametric morphism instances declared with the
+following command.
+
+.. cmd:: Add Parametric Morphism (x1 : T1 ) ... (xk : Tk ) : (f t1 ... tn ) with signature sig as @ident.
+
+The command declares ``f`` as a parametric morphism of signature ``sig``. The
+identifier ``id`` gives a unique name to the morphism and it is used as
+the base name of the type class instance definition and as the name of
+the lemma that proves the well-definedness of the morphism. The
+parameters of the morphism as well as the signature may refer to the
+context of variables. The command asks the user to prove interactively
+that ``f`` respects the relations identified from the signature.
+
+**Example 7:**
+
+We start the example by assuming a small theory over
+homogeneous sets and we declare set equality as a parametric
+equivalence relation and union of two sets as a parametric morphism.
+
+.. coqtop:: in
+
+ Require Export Setoid.
+ Require Export Relation_Definitions.
+
+ Set Implicit Arguments.
+
+ Parameter set: Type -> Type.
+ Parameter empty: forall A, set A.
+ Parameter eq_set: forall A, set A -> set A -> Prop.
+ Parameter union: forall A, set A -> set A -> set A.
+
+ Axiom eq_set_refl: forall A, reflexive _ (eq_set (A:=A)).
+ Axiom eq_set_sym: forall A, symmetric _ (eq_set (A:=A)).
+ Axiom eq_set_trans: forall A, transitive _ (eq_set (A:=A)).
+ Axiom empty_neutral: forall A (S: set A), eq_set (union S (empty A)) S.
+
+ Axiom union_compat: forall (A : Type),
+ forall x x' : set A, eq_set x x' ->
+ forall y y' : set A, eq_set y y' ->
+ eq_set (union x y) (union x' y').
+
+ Add Parametric Relation A : (set A) (@eq_set A)
+ reflexivity proved by (eq_set_refl (A:=A))
+ symmetry proved by (eq_set_sym (A:=A))
+ transitivity proved by (eq_set_trans (A:=A))
+ as eq_set_rel.
+
+ Add Parametric Morphism A : (@union A) with
+ signature (@eq_set A) ==> (@eq_set A) ==> (@eq_set A) as union_mor.
+ Proof.
+ exact (@union_compat A).
+ Qed.
+
+It is possible to reduce the burden of specifying parameters using
+(maximally inserted) implicit arguments. If ``A`` is always set as
+maximally implicit in the previous example, one can write:
+
+.. coqtop:: in
+
+ Add Parametric Relation A : (set A) eq_set
+ reflexivity proved by eq_set_refl
+ symmetry proved by eq_set_sym
+ transitivity proved by eq_set_trans
+ as eq_set_rel.
+
+.. coqtop:: in
+
+ Add Parametric Morphism A : (@union A) with
+ signature eq_set ==> eq_set ==> eq_set as union_mor.
+
+.. coqtop:: in
+
+ Proof. exact (@union_compat A). Qed.
+
+We proceed now by proving a simple lemma performing a rewrite step and
+then applying reflexivity, as we would do working with Leibniz
+equality. Both tactic applications are accepted since the required
+properties over ``eq_set`` and ``union`` can be established from the two
+declarations above.
+
+.. coqtop:: in
+
+ Goal forall (S: set nat),
+ eq_set (union (union S empty) S) (union S S).
+
+.. coqtop:: in
+
+ Proof. intros. rewrite empty_neutral. reflexivity. Qed.
+
+The tables of relations and morphisms are managed by the type class
+instance mechanism. The behavior on section close is to generalize the
+instances by the variables of the section (and possibly hypotheses
+used in the proofs of instance declarations) but not to export them in
+the rest of the development for proof search. One can use the
+``Existing Instance`` command to do so outside the section, using the name of the
+declared morphism suffixed by ``_Morphism``, or use the ``Global`` modifier
+for the corresponding class instance declaration
+(see :ref:`First Class Setoids and Morphisms <first-class-setoids-and-morphisms>`) at
+definition time. When loading a compiled file or importing a module,
+all the declarations of this module will be loaded.
+
+
+Rewriting and non reflexive relations
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+To replace only one argument of an n-ary morphism it is necessary to
+prove that all the other arguments are related to themselves by the
+respective relation instances.
+
+**Example 8:**
+
+To replace ``(union S empty)`` with ``S`` in ``(union (union S empty) S) (union S S)``
+the rewrite tactic must exploit the monotony of ``union`` (axiom ``union_compat``
+in the previous example). Applying ``union_compat`` by hand we are left with the
+goal ``eq_set (union S S) (union S S)``.
+
+When the relations associated to some arguments are not reflexive, the
+tactic cannot automatically prove the reflexivity goals, that are left
+to the user.
+
+Setoids whose relation are partial equivalence relations (PER) are
+useful to deal with partial functions. Let ``R`` be a PER. We say that an
+element ``x`` is defined if ``R x x``. A partial function whose domain
+comprises all the defined elements only is declared as a morphism that
+respects ``R``. Every time a rewriting step is performed the user must
+prove that the argument of the morphism is defined.
+
+**Example 9:**
+
+Let ``eqO`` be ``fun x y => x = y /\ x <> 0`` (the
+smaller PER over non zero elements). Division can be declared as a
+morphism of signature ``eq ==> eq0 ==> eq``. Replace ``x`` with
+``y`` in ``div x n = div y n`` opens the additional goal ``eq0 n n``
+that is equivalent to ``n = n /\ n <> 0``.
+
+
+Rewriting and non symmetric relations
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+When the user works up to relations that are not symmetric, it is no
+longer the case that any covariant morphism argument is also
+contravariant. As a result it is no longer possible to replace a term
+with a related one in every context, since the obtained goal implies
+the previous one if and only if the replacement has been performed in
+a contravariant position. In a similar way, replacement in an
+hypothesis can be performed only if the replaced term occurs in a
+covariant position.
+
+**Example 10 (Covariance and contravariance):**
+
+Suppose that division over real numbers has been defined as a morphism of signature
+``Z.div: Z.lt ++> Z.lt --> Z.lt`` (i.e. ``Z.div`` is increasing in
+its first argument, but decreasing on the second one). Let ``<``
+denotes ``Z.lt``. Under the hypothesis ``H: x < y`` we have
+``k < x / y -> k < x / x``, but not ``k < y / x -> k < x / x``. Dually,
+under the same hypothesis ``k < x / y -> k < y / y`` holds, but
+``k < y / x -> k < y / y`` does not. Thus, if the current goal is
+``k < x / x``, it is possible to replace only the second occurrence of
+``x`` (in contravariant position) with ``y`` since the obtained goal
+must imply the current one. On the contrary, if ``k < x / x`` is an
+hypothesis, it is possible to replace only the first occurrence of
+``x`` (in covariant position) with ``y`` since the current
+hypothesis must imply the obtained one.
+
+Contrary to the previous implementation, no specific error message
+will be raised when trying to replace a term that occurs in the wrong
+position. It will only fail because the rewriting constraints are not
+satisfiable. However it is possible to use the at modifier to specify
+which occurrences should be rewritten.
+
+As expected, composing morphisms together propagates the variance
+annotations by switching the variance every time a contravariant
+position is traversed.
+
+**Example 11:**
+
+Let us continue the previous example and let us consider
+the goal ``x / (x / x) < k``. The first and third occurrences of
+``x`` are in a contravariant position, while the second one is in
+covariant position. More in detail, the second occurrence of ``x``
+occurs covariantly in ``(x / x)`` (since division is covariant in
+its first argument), and thus contravariantly in ``x / (x / x)``
+(since division is contravariant in its second argument), and finally
+covariantly in ``x / (x / x) < k`` (since ``<``, as every
+transitive relation, is contravariant in its first argument with
+respect to the relation itself).
+
+
+Rewriting in ambiguous setoid contexts
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+One function can respect several different relations and thus it can
+be declared as a morphism having multiple signatures.
+
+**Example 12:**
+
+
+Union over homogeneous lists can be given all the
+following signatures: ``eq ==> eq ==> eq`` (``eq`` being the
+equality over ordered lists) ``set_eq ==> set_eq ==> set_eq``
+(``set_eq`` being the equality over unordered lists up to duplicates),
+``multiset_eq ==> multiset_eq ==> multiset_eq`` (``multiset_eq``
+being the equality over unordered lists).
+
+To declare multiple signatures for a morphism, repeat the ``Add Morphism``
+command.
+
+When morphisms have multiple signatures it can be the case that a
+rewrite request is ambiguous, since it is unclear what relations
+should be used to perform the rewriting. Contrary to the previous
+implementation, the tactic will always choose the first possible
+solution to the set of constraints generated by a rewrite and will not
+try to find *all* possible solutions to warn the user about.
+
+
+Commands and tactics
+--------------------
+
+
+.. _first-class-setoids-and-morphisms:
+
+First class setoids and morphisms
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+
+
+The implementation is based on a first-class representation of
+properties of relations and morphisms as type classes. That is, the
+various combinations of properties on relations and morphisms are
+represented as records and instances of theses classes are put in a
+hint database. For example, the declaration:
+
+.. coqtop:: in
+
+ Add Parametric Relation (x1 : T1) ... (xn : Tk) : (A t1 ... tn) (Aeq t′1 ... t′m)
+ [reflexivity proved by refl]
+ [symmetry proved by sym]
+ [transitivity proved by trans]
+ as id.
+
+
+is equivalent to an instance declaration:
+
+.. coqtop:: in
+
+ Instance (x1 : T1) ... (xn : Tk) => id : @Equivalence (A t1 ... tn) (Aeq t′1 ... t′m) :=
+ [Equivalence_Reflexive := refl]
+ [Equivalence_Symmetric := sym]
+ [Equivalence_Transitive := trans].
+
+The declaration itself amounts to the definition of an object of the
+record type ``Coq.Classes.RelationClasses.Equivalence`` and a hint added
+to the ``typeclass_instances`` hint database. Morphism declarations are
+also instances of a type class defined in ``Classes.Morphisms``. See the
+documentation on type classes :ref:`TODO-chapter-20-type-classes`
+and the theories files in Classes for further explanations.
+
+One can inform the rewrite tactic about morphisms and relations just
+by using the typeclass mechanism to declare them using Instance and
+Context vernacular commands. Any object of type Proper (the type of
+morphism declarations) in the local context will also be automatically
+used by the rewriting tactic to solve constraints.
+
+Other representations of first class setoids and morphisms can also be
+handled by encoding them as records. In the following example, the
+projections of the setoid relation and of the morphism function can be
+registered as parametric relations and morphisms.
+
+**Example 13 (First class setoids):**
+
+.. coqtop:: in
+
+ Require Import Relation_Definitions Setoid.
+
+ Record Setoid: Type :=
+ { car: Type;
+ eq: car -> car -> Prop;
+ refl: reflexive _ eq;
+ sym: symmetric _ eq;
+ trans: transitive _ eq
+ }.
+
+ Add Parametric Relation (s : Setoid) : (@car s) (@eq s)
+ reflexivity proved by (refl s)
+ symmetry proved by (sym s)
+ transitivity proved by (trans s) as eq_rel.
+
+ Record Morphism (S1 S2:Setoid): Type :=
+ { f: car S1 -> car S2;
+ compat: forall (x1 x2: car S1), eq S1 x1 x2 -> eq S2 (f x1) (f x2)
+ }.
+
+ Add Parametric Morphism (S1 S2 : Setoid) (M : Morphism S1 S2) :
+ (@f S1 S2 M) with signature (@eq S1 ==> @eq S2) as apply_mor.
+ Proof. apply (compat S1 S2 M). Qed.
+
+ Lemma test: forall (S1 S2:Setoid) (m: Morphism S1 S2)
+ (x y: car S1), eq S1 x y -> eq S2 (f _ _ m x) (f _ _ m y).
+ Proof. intros. rewrite H. reflexivity. Qed.
+
+.. _tactics-enabled-on-user-provided-relations:
+
+Tactics enabled on user provided relations
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+The following tactics, all prefixed by ``setoid_``, deal with arbitrary
+registered relations and morphisms. Moreover, all the corresponding
+unprefixed tactics (i.e. ``reflexivity``, ``symmetry``, ``transitivity``,
+``replace``, ``rewrite``) have been extended to fall back to their prefixed
+counterparts when the relation involved is not Leibniz equality.
+Notice, however, that using the prefixed tactics it is possible to
+pass additional arguments such as ``using relation``.
+
+.. tacv:: setoid_reflexivity
+
+.. tacv:: setoid_symmetry [in @ident]
+
+.. tacv:: setoid_transitivity
+
+.. tacv:: setoid_rewrite [@orientation] @term [at @occs] [in @ident]
+
+.. tacv:: setoid_replace @term with @term [in @ident] [using relation @term] [by @tactic]
+
+
+The ``using relation`` arguments cannot be passed to the unprefixed form.
+The latter argument tells the tactic what parametric relation should
+be used to replace the first tactic argument with the second one. If
+omitted, it defaults to the ``DefaultRelation`` instance on the type of
+the objects. By default, it means the most recent ``Equivalence`` instance
+in the environment, but it can be customized by declaring
+new ``DefaultRelation`` instances. As Leibniz equality is a declared
+equivalence, it will fall back to it if no other relation is declared
+on a given type.
+
+Every derived tactic that is based on the unprefixed forms of the
+tactics considered above will also work up to user defined relations.
+For instance, it is possible to register hints for ``autorewrite`` that
+are not proof of Leibniz equalities. In particular it is possible to
+exploit ``autorewrite`` to simulate normalization in a term rewriting
+system up to user defined equalities.
+
+
+Printing relations and morphisms
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+The ``Print Instances`` command can be used to show the list of currently
+registered ``Reflexive`` (using ``Print Instances Reflexive``), ``Symmetric``
+or ``Transitive`` relations, Equivalences, PreOrders, PERs, and Morphisms
+(implemented as ``Proper`` instances). When the rewriting tactics refuse
+to replace a term in a context because the latter is not a composition
+of morphisms, the ``Print Instances`` commands can be useful to understand
+what additional morphisms should be registered.
+
+
+Deprecated syntax and backward incompatibilities
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Due to backward compatibility reasons, the following syntax for the
+declaration of setoids and morphisms is also accepted.
+
+.. tacv:: Add Setoid @A @Aeq @ST as @ident
+
+where ``Aeq`` is a congruence relation without parameters, ``A`` is its carrier
+and ``ST`` is an object of type (``Setoid_Theory A Aeq``) (i.e. a record
+packing together the reflexivity, symmetry and transitivity lemmas).
+Notice that the syntax is not completely backward compatible since the
+identifier was not required.
+
+.. cmd:: Add Morphism f : @ident.
+
+The latter command also is restricted to the declaration of morphisms
+without parameters. It is not fully backward compatible since the
+property the user is asked to prove is slightly different: for n-ary
+morphisms the hypotheses of the property are permuted; moreover, when
+the morphism returns a proposition, the property is now stated using a
+bi-implication in place of a simple implication. In practice, porting
+an old development to the new semantics is usually quite simple.
+
+Notice that several limitations of the old implementation have been
+lifted. In particular, it is now possible to declare several relations
+with the same carrier and several signatures for the same morphism.
+Moreover, it is now also possible to declare several morphisms having
+the same signature. Finally, the replace and rewrite tactics can be
+used to replace terms in contexts that were refused by the old
+implementation. As discussed in the next section, the semantics of the
+new ``setoid_rewrite`` command differs slightly from the old one and
+``rewrite``.
+
+
+Extensions
+----------
+
+
+Rewriting under binders
+~~~~~~~~~~~~~~~~~~~~~~~
+
+warning:: Due to compatibility issues, this feature is enabled only
+when calling the ``setoid_rewrite`` tactics directly and not ``rewrite``.
+
+To be able to rewrite under binding constructs, one must declare
+morphisms with respect to pointwise (setoid) equivalence of functions.
+Example of such morphisms are the standard ``all`` and ``ex`` combinators for
+universal and existential quantification respectively. They are
+declared as morphisms in the ``Classes.Morphisms_Prop`` module. For
+example, to declare that universal quantification is a morphism for
+logical equivalence:
+
+.. coqtop:: in
+
+ Instance all_iff_morphism (A : Type) :
+ Proper (pointwise_relation A iff ==> iff) (@all A).
+
+.. coqtop:: all
+
+ Proof. simpl_relation.
+
+One then has to show that if two predicates are equivalent at every
+point, their universal quantifications are equivalent. Once we have
+declared such a morphism, it will be used by the setoid rewriting
+tactic each time we try to rewrite under an ``all`` application (products
+in ``Prop`` are implicitly translated to such applications).
+
+Indeed, when rewriting under a lambda, binding variable ``x``, say from ``P x``
+to ``Q x`` using the relation iff, the tactic will generate a proof of
+``pointwise_relation A iff (fun x => P x) (fun x => Q x)`` from the proof
+of ``iff (P x) (Q x)`` and a constraint of the form Proper
+``(pointwise_relation A iff ==> ?) m`` will be generated for the
+surrounding morphism ``m``.
+
+Hence, one can add higher-order combinators as morphisms by providing
+signatures using pointwise extension for the relations on the
+functional arguments (or whatever subrelation of the pointwise
+extension). For example, one could declare the ``map`` combinator on lists
+as a morphism:
+
+.. coqtop:: in
+
+ Instance map_morphism `{Equivalence A eqA, Equivalence B eqB} :
+ Proper ((eqA ==> eqB) ==> list_equiv eqA ==> list_equiv eqB) (@map A B).
+
+where ``list_equiv`` implements an equivalence on lists parameterized by
+an equivalence on the elements.
+
+Note that when one does rewriting with a lemma under a binder using
+``setoid_rewrite``, the application of the lemma may capture the bound
+variable, as the semantics are different from rewrite where the lemma
+is first matched on the whole term. With the new ``setoid_rewrite``,
+matching is done on each subterm separately and in its local
+environment, and all matches are rewritten *simultaneously* by
+default. The semantics of the previous ``setoid_rewrite`` implementation
+can almost be recovered using the ``at 1`` modifier.
+
+
+Sub-relations
+~~~~~~~~~~~~~
+
+Sub-relations can be used to specify that one relation is included in
+another, so that morphisms signatures for one can be used for the
+other. If a signature mentions a relation ``R`` on the left of an
+arrow ``==>``, then the signature also applies for any relation ``S`` that is
+smaller than ``R``, and the inverse applies on the right of an arrow. One
+can then declare only a few morphisms instances that generate the
+complete set of signatures for a particular constant. By default, the
+only declared subrelation is ``iff``, which is a subrelation of ``impl`` and
+``inverse impl`` (the dual of implication). That’s why we can declare only
+two morphisms for conjunction: ``Proper (impl ==> impl ==> impl) and`` and
+``Proper (iff ==> iff ==> iff) and``. This is sufficient to satisfy any
+rewriting constraints arising from a rewrite using ``iff``, ``impl`` or
+``inverse impl`` through ``and``.
+
+Sub-relations are implemented in ``Classes.Morphisms`` and are a prime
+example of a mostly user-space extension of the algorithm.
+
+
+Constant unfolding
+~~~~~~~~~~~~~~~~~~
+
+The resolution tactic is based on type classes and hence regards user-
+defined constants as transparent by default. This may slow down the
+resolution due to a lot of unifications (all the declared ``Proper``
+instances are tried at each node of the search tree). To speed it up,
+declare your constant as rigid for proof search using the command
+``Typeclasses Opaque`` (see :ref:`TODO-20.6.7-typeclasses-transparency`).
+
+
+Strategies for rewriting
+------------------------
+
+
+Definitions
+~~~~~~~~~~~
+
+The generalized rewriting tactic is based on a set of strategies that
+can be combined to obtain custom rewriting procedures. Its set of
+strategies is based on Elan’s rewriting strategies :ref:`TODO-102-biblio`. Rewriting
+strategies are applied using the tactic ``rewrite_strat s`` where ``s`` is a
+strategy expression. Strategies are defined inductively as described
+by the following grammar:
+
+.. productionlist:: rewriting
+ s, t, u : `strategy`
+ : | `lemma`
+ : | `lemma_right_to_left`
+ : | `failure`
+ : | `identity`
+ : | `reflexivity`
+ : | `progress`
+ : | `failure_catch`
+ : | `composition`
+ : | `left_biased_choice`
+ : | `iteration_one_or_more`
+ : | `iteration_zero_or_more`
+ : | `one_subterm`
+ : | `all_subterms`
+ : | `innermost_first`
+ : | `outermost_first`
+ : | `bottom_up`
+ : | `top_down`
+ : | `apply_hint`
+ : | `any_of_the_terms`
+ : | `apply_reduction`
+ : | `fold_expression`
+
+.. productionlist:: rewriting
+ strategy : "(" `s` ")"
+ lemma : `c`
+ lemma_right_to_left : "<-" `c`
+ failure : `fail`
+ identity : `id`
+ reflexivity : `refl`
+ progress : `progress` `s`
+ failure_catch : `try` `s`
+ composition : `s` ";" `u`
+ left_biased_choice : choice `s` `t`
+ iteration_one_or_more : `repeat` `s`
+ iteration_zero_or_more : `any` `s`
+ one_subterm : subterm `s`
+ all_subterms : subterms `s`
+ innermost_first : `innermost` `s`
+ outermost_first : `outermost` `s`
+ bottom_up : `bottomup` `s`
+ top_down : `topdown` `s`
+ apply_hint : hints `hintdb`
+ any_of_the_terms : terms (`c`)+
+ apply_reduction : eval `redexpr`
+ fold_expression : fold `c`
+
+
+Actually a few of these are defined in term of the others using a
+primitive fixpoint operator:
+
+.. productionlist:: rewriting
+ try `s` : choice `s` `id`
+ any `s` : fix `u`. try (`s` ; `u`)
+ repeat `s` : `s` ; `any` `s`
+ bottomup s : fix `bu`. (choice (progress (subterms bu)) s) ; try bu
+ topdown s : fix `td`. (choice s (progress (subterms td))) ; try td
+ innermost s : fix `i`. (choice (subterm i) s)
+ outermost s : fix `o`. (choice s (subterm o))
+
+The basic control strategy semantics are straightforward: strategies
+are applied to subterms of the term to rewrite, starting from the root
+of the term. The lemma strategies unify the left-hand-side of the
+lemma with the current subterm and on success rewrite it to the right-
+hand-side. Composition can be used to continue rewriting on the
+current subterm. The fail strategy always fails while the identity
+strategy succeeds without making progress. The reflexivity strategy
+succeeds, making progress using a reflexivity proof of rewriting.
+Progress tests progress of the argument strategy and fails if no
+progress was made, while ``try`` always succeeds, catching failures.
+Choice is left-biased: it will launch the first strategy and fall back
+on the second one in case of failure. One can iterate a strategy at
+least 1 time using ``repeat`` and at least 0 times using ``any``.
+
+The ``subterm`` and ``subterms`` strategies apply their argument strategy ``s`` to
+respectively one or all subterms of the current term under
+consideration, left-to-right. ``subterm`` stops at the first subterm for
+which ``s`` made progress. The composite strategies ``innermost`` and ``outermost``
+perform a single innermost or outermost rewrite using their argument
+strategy. Their counterparts ``bottomup`` and ``topdown`` perform as many
+rewritings as possible, starting from the bottom or the top of the
+term.
+
+Hint databases created for ``autorewrite`` can also be used
+by ``rewrite_strat`` using the ``hints`` strategy that applies any of the
+lemmas at the current subterm. The ``terms`` strategy takes the lemma
+names directly as arguments. The ``eval`` strategy expects a reduction
+expression (see :ref:`TODO-8.7-performing-computations`) and succeeds
+if it reduces the subterm under consideration. The ``fold`` strategy takes
+a term ``c`` and tries to *unify* it to the current subterm, converting it to ``c``
+on success, it is stronger than the tactic ``fold``.
+
+
+Usage
+~~~~~
+
+
+.. tacv:: rewrite_strat @s [in @ident]
+
+ Rewrite using the strategy s in hypothesis ident or the conclusion.
+
+ .. exn:: Nothing to rewrite.
+
+ If the strategy failed.
+
+ .. exn:: No progress made.
+
+ If the strategy succeeded but made no progress.
+
+ .. exn:: Unable to satisfy the rewriting constraints.
+
+ If the strategy succeeded and made progress but the
+ corresponding rewriting constraints are not satisfied.
+
+
+ The ``setoid_rewrite c`` tactic is basically equivalent to
+ ``rewrite_strat (outermost c)``.
+