aboutsummaryrefslogtreecommitdiffhomepage
path: root/doc/refman
diff options
context:
space:
mode:
Diffstat (limited to 'doc/refman')
-rw-r--r--doc/refman/Coercion.tex563
-rw-r--r--doc/refman/Extraction.tex620
-rw-r--r--doc/refman/Nsatz.tex102
-rw-r--r--doc/refman/Polynom.tex736
-rw-r--r--doc/refman/Program.tex329
-rw-r--r--doc/refman/Reference-Manual.tex6
-rw-r--r--doc/refman/Setoid.tex842
7 files changed, 0 insertions, 3198 deletions
diff --git a/doc/refman/Coercion.tex b/doc/refman/Coercion.tex
deleted file mode 100644
index 9862a9b30..000000000
--- a/doc/refman/Coercion.tex
+++ /dev/null
@@ -1,563 +0,0 @@
-\achapter{Implicit Coercions}
-%HEVEA\cutname{coercions.html}
-\aauthor{Amokrane Saïbi}
-
-\label{Coercions-full}
-\index{Coercions!presentation}
-
-\asection{General Presentation}
-
-This section describes the inheritance mechanism of {\Coq}. In {\Coq} with
-inheritance, we are not interested in adding any expressive power to
-our theory, but only convenience. Given a term, possibly not typable,
-we are interested in the problem of determining if it can be well
-typed modulo insertion of appropriate coercions. We allow to write:
-
-\begin{itemize}
-\item $f~a$ where $f:forall~ x:A, B$ and $a:A'$ when $A'$ can
- be seen in some sense as a subtype of $A$.
-\item $x:A$ when $A$ is not a type, but can be seen in
- a certain sense as a type: set, group, category etc.
-\item $f~a$ when $f$ is not a function, but can be seen in a certain sense
- as a function: bijection, functor, any structure morphism etc.
-\end{itemize}
-
-\asection{Classes}
-\index{Coercions!classes}
- A class with $n$ parameters is any defined name with a type
-$forall~ (x_1:A_1)..(x_n:A_n), s$ where $s$ is a sort. Thus a class with
-parameters is considered as a single class and not as a family of
-classes. An object of a class $C$ is any term of type $C~t_1
-.. t_n$. In addition to these user-classes, we have two abstract
-classes:
-
-\begin{itemize}
-\item {\tt Sortclass}, the class of sorts;
- its objects are the terms whose type is a sort (e.g., \texttt{Prop}
- or \texttt{Type}).
-\item {\tt Funclass}, the class of functions;
- its objects are all the terms with a functional
- type, i.e. of form $forall~ x:A, B$.
-\end{itemize}
-
-Formally, the syntax of a classes is defined on Figure~\ref{fig:classes}.
-\begin{figure}
-\begin{centerframe}
-\begin{tabular}{lcl}
-{\class} & ::= & {\qualid} \\
- & $|$ & {\tt Sortclass} \\
- & $|$ & {\tt Funclass}
-\end{tabular}
-\end{centerframe}
-\caption{Syntax of classes}
-\label{fig:classes}
-\end{figure}
-
-\asection{Coercions}
-\index{Coercions!Funclass}
-\index{Coercions!Sortclass}
- A name $f$ can be declared as a coercion between a source user-class
-$C$ with $n$ parameters and a target class $D$ if one of these
-conditions holds:
-
-\newcommand{\oftype}{\!:\!}
-
-\begin{itemize}
-\item $D$ is a user-class, then the type of $f$ must have the form
- $forall~ (x_1 \oftype A_1)..(x_n \oftype A_n)(y\oftype C~x_1..x_n), D~u_1..u_m$ where $m$
- is the number of parameters of $D$.
-\item $D$ is {\tt Funclass}, then the type of $f$ must have the form
- $forall~ (x_1\oftype A_1)..(x_n\oftype A_n)(y\oftype C~x_1..x_n)(x:A), B$.
-\item $D$ is {\tt Sortclass}, then the type of $f$ must have the form
- $forall~ (x_1\oftype A_1)..(x_n\oftype A_n)(y\oftype C~x_1..x_n), s$ with $s$ a sort.
-\end{itemize}
-
-We then write $f:C \mbox{\texttt{>->}} D$. The restriction on the type
-of coercions is called {\em the uniform inheritance condition}.
-Remark: the abstract class {\tt Sortclass} can be used as source class,
-but the abstract class {\tt Funclass} cannot.
-
-To coerce an object $t:C~t_1..t_n$ of $C$ towards $D$, we have to
-apply the coercion $f$ to it; the obtained term $f~t_1..t_n~t$ is
-then an object of $D$.
-
-\asection{Identity Coercions}
-\index{Coercions!identity}
-
- Identity coercions are special cases of coercions used to go around
-the uniform inheritance condition. Let $C$ and $D$ be two classes
-with respectively $n$ and $m$ parameters and
-$f:forall~(x_1:T_1)..(x_k:T_k)(y:C~u_1..u_n), D~v_1..v_m$ a function which
-does not verify the uniform inheritance condition. To declare $f$ as
-coercion, one has first to declare a subclass $C'$ of $C$:
-
-$$C' := fun~ (x_1:T_1)..(x_k:T_k) => C~u_1..u_n$$
-
-\noindent We then define an {\em identity coercion} between $C'$ and $C$:
-\begin{eqnarray*}
-Id\_C'\_C & := & fun~ (x_1:T_1)..(x_k:T_k)(y:C'~x_1..x_k) => (y:C~u_1..u_n)\\
-\end{eqnarray*}
-
-We can now declare $f$ as coercion from $C'$ to $D$, since we can
-``cast'' its type as
-$forall~ (x_1:T_1)..(x_k:T_k)(y:C'~x_1..x_k),D~v_1..v_m$.\\ The identity
-coercions have a special status: to coerce an object $t:C'~t_1..t_k$
-of $C'$ towards $C$, we does not have to insert explicitly $Id\_C'\_C$
-since $Id\_C'\_C~t_1..t_k~t$ is convertible with $t$. However we
-``rewrite'' the type of $t$ to become an object of $C$; in this case,
-it becomes $C~u_1^*..u_k^*$ where each $u_i^*$ is the result of the
-substitution in $u_i$ of the variables $x_j$ by $t_j$.
-
-
-\asection{Inheritance Graph}
-\index{Coercions!inheritance graph}
-Coercions form an inheritance graph with classes as nodes. We call
-{\em coercion path} an ordered list of coercions between two nodes of
-the graph. A class $C$ is said to be a subclass of $D$ if there is a
-coercion path in the graph from $C$ to $D$; we also say that $C$
-inherits from $D$. Our mechanism supports multiple inheritance since a
-class may inherit from several classes, contrary to simple inheritance
-where a class inherits from at most one class. However there must be
-at most one path between two classes. If this is not the case, only
-the {\em oldest} one is valid and the others are ignored. So the order
-of declaration of coercions is important.
-
-We extend notations for coercions to coercion paths. For instance
-$[f_1;..;f_k]:C \mbox{\texttt{>->}} D$ is the coercion path composed
-by the coercions $f_1..f_k$. The application of a coercion path to a
-term consists of the successive application of its coercions.
-
-\asection{Declaration of Coercions}
-
-%%%%% "Class" is useless, since classes are implicitely defined via coercions.
-
-% \asubsection{\tt Class {\qualid}.}\comindex{Class}
-% Declares {\qualid} as a new class.
-
-% \begin{ErrMsgs}
-% \item {\qualid} \errindex{not declared}
-% \item {\qualid} \errindex{is already a class}
-% \item \errindex{Type of {\qualid} does not end with a sort}
-% \end{ErrMsgs}
-
-% \begin{Variant}
-% \item {\tt Class Local {\qualid}.} \\
-% Declares the construction denoted by {\qualid} as a new local class to
-% the current section.
-% \end{Variant}
-
-% END "Class" is useless
-
-\asubsection{\tt Coercion {\qualid} : {\class$_1$} >-> {\class$_2$}.}
-\comindex{Coercion}
-
-Declares the construction denoted by {\qualid} as a coercion between
-{\class$_1$} and {\class$_2$}.
-
-% Useless information
-% The classes {\class$_1$} and {\class$_2$} are first declared if necessary.
-
-\begin{ErrMsgs}
-\item {\qualid} \errindex{not declared}
-\item {\qualid} \errindex{is already a coercion}
-\item \errindex{Funclass cannot be a source class}
-\item {\qualid} \errindex{is not a function}
-\item \errindex{Cannot find the source class of {\qualid}}
-\item \errindex{Cannot recognize {\class$_1$} as a source class of {\qualid}}
-\item {\qualid} \errindex{does not respect the uniform inheritance condition}
-\item \errindex{Found target class {\class} instead of {\class$_2$}}
-
-\end{ErrMsgs}
-
-When the coercion {\qualid} is added to the inheritance graph, non
-valid coercion paths are ignored; they are signaled by a warning.
-\\[0.3cm]
-\noindent {\bf Warning :}
-\begin{enumerate}
-\item \begin{tabbing}
-{\tt Ambiguous paths: }\= $[f_1^1;..;f_{n_1}^1] : C_1\mbox{\tt >->}D_1$\\
- \> {\ldots} \\
- \>$[f_1^m;..;f_{n_m}^m] : C_m\mbox{\tt >->}D_m$
- \end{tabbing}
-\end{enumerate}
-
-\begin{Variants}
-\item {\tt Local Coercion {\qualid} : {\class$_1$} >-> {\class$_2$}.}
-\comindex{Local Coercion}\\
- Declares the construction denoted by {\qualid} as a coercion local to
- the current section.
-
-\item {\tt Coercion {\ident} := {\term}}\comindex{Coercion}\\
- This defines {\ident} just like \texttt{Definition {\ident} :=
- {\term}}, and then declares {\ident} as a coercion between it
- source and its target.
-
-\item {\tt Coercion {\ident} := {\term} : {\type}}\\
- This defines {\ident} just like
- \texttt{Definition {\ident} : {\type} := {\term}}, and then
- declares {\ident} as a coercion between it source and its target.
-
-\item {\tt Local Coercion {\ident} := {\term}}\comindex{Local Coercion}\\
- This defines {\ident} just like \texttt{Let {\ident} :=
- {\term}}, and then declares {\ident} as a coercion between it
- source and its target.
-
-\item Assumptions can be declared as coercions at declaration
-time. This extends the grammar of assumptions from
-Figure~\ref{sentences-syntax} as follows:
-\comindex{Variable \mbox{\rm (and coercions)}}
-\comindex{Axiom \mbox{\rm (and coercions)}}
-\comindex{Parameter \mbox{\rm (and coercions)}}
-\comindex{Hypothesis \mbox{\rm (and coercions)}}
-
-\begin{tabular}{lcl}
-%% Declarations
-{\assumption} & ::= & {\assumptionkeyword} {\assums} {\tt .} \\
-&&\\
-{\assums} & ::= & {\simpleassums} \\
- & $|$ & \nelist{{\tt (} \simpleassums {\tt )}}{} \\
-&&\\
-{\simpleassums} & ::= & \nelist{\ident}{} {\tt :}\zeroone{{\tt >}} {\term}\\
-\end{tabular}
-
-If the extra {\tt >} is present before the type of some assumptions, these
-assumptions are declared as coercions.
-
-\item Constructors of inductive types can be declared as coercions at
-definition time of the inductive type. This extends and modifies the
-grammar of inductive types from Figure \ref{sentences-syntax} as follows:
-\comindex{Inductive \mbox{\rm (and coercions)}}
-\comindex{CoInductive \mbox{\rm (and coercions)}}
-
-\begin{center}
-\begin{tabular}{lcl}
-%% Inductives
-{\inductive} & ::= &
- {\tt Inductive} \nelist{\inductivebody}{with} {\tt .} \\
- & $|$ & {\tt CoInductive} \nelist{\inductivebody}{with} {\tt .} \\
- & & \\
-{\inductivebody} & ::= &
- {\ident} \zeroone{\binders} {\tt :} {\term} {\tt :=} \\
- && ~~~\zeroone{\zeroone{\tt |} \nelist{\constructor}{|}} \\
- & & \\
-{\constructor} & ::= & {\ident} \zeroone{\binders} \zeroone{{\tt :}\zeroone{\tt >} {\term}} \\
-\end{tabular}
-\end{center}
-
-Especially, if the extra {\tt >} is present in a constructor
-declaration, this constructor is declared as a coercion.
-\end{Variants}
-
-\asubsection{\tt Identity Coercion {\ident}:{\class$_1$} >-> {\class$_2$}.}
-\comindex{Identity Coercion}
-
-We check that {\class$_1$} is a constant with a value of the form
-$fun~ (x_1:T_1)..(x_n:T_n) => (\mbox{\class}_2~t_1..t_m)$ where $m$ is the
-number of parameters of \class$_2$. Then we define an identity
-function with the type
-$forall~ (x_1:T_1)..(x_n:T_n)(y:\mbox{\class}_1~x_1..x_n),
-{\mbox{\class}_2}~t_1..t_m$, and we declare it as an identity
-coercion between {\class$_1$} and {\class$_2$}.
-
-\begin{ErrMsgs}
-\item {\class$_1$} \errindex{must be a transparent constant}
-\end{ErrMsgs}
-
-\begin{Variants}
-\item {\tt Local Identity Coercion {\ident}:{\ident$_1$} >-> {\ident$_2$}.} \\
-Idem but locally to the current section.
-
-\item {\tt SubClass {\ident} := {\type}.} \\
-\comindex{SubClass}
- If {\type} is a class
-{\ident'} applied to some arguments then {\ident} is defined and an
-identity coercion of name {\tt Id\_{\ident}\_{\ident'}} is
-declared. Otherwise said, this is an abbreviation for
-
-{\tt Definition {\ident} := {\type}.}
-
- followed by
-
-{\tt Identity Coercion Id\_{\ident}\_{\ident'}:{\ident} >-> {\ident'}}.
-
-\item {\tt Local SubClass {\ident} := {\type}.} \\
-Same as before but locally to the current section.
-
-\end{Variants}
-
-\asection{Displaying Available Coercions}
-
-\asubsection{\tt Print Classes.}
-\comindex{Print Classes}
-Print the list of declared classes in the current context.
-
-\asubsection{\tt Print Coercions.}
-\comindex{Print Coercions}
-Print the list of declared coercions in the current context.
-
-\asubsection{\tt Print Graph.}
-\comindex{Print Graph}
-Print the list of valid coercion paths in the current context.
-
-\asubsection{\tt Print Coercion Paths {\class$_1$} {\class$_2$}.}
-\comindex{Print Coercion Paths}
-Print the list of valid coercion paths from {\class$_1$} to {\class$_2$}.
-
-\asection{Activating the Printing of Coercions}
-
-\asubsection{\tt Set Printing Coercions.}
-\optindex{Printing Coercions}
-
-This command forces all the coercions to be printed.
-Conversely, to skip the printing of coercions, use
- {\tt Unset Printing Coercions}.
-By default, coercions are not printed.
-
-\asubsection{\tt Add Printing Coercion {\qualid}.}
-\comindex{Add Printing Coercion}
-\comindex{Remove Printing Coercion}
-
-This command forces coercion denoted by {\qualid} to be printed.
-To skip the printing of coercion {\qualid}, use
- {\tt Remove Printing Coercion {\qualid}}.
-By default, a coercion is never printed.
-
-\asection{Classes as Records}
-\label{Coercions-and-records}
-\index{Coercions!and records}
-We allow the definition of {\em Structures with Inheritance} (or
-classes as records) by extending the existing {\tt Record} macro
-(see Section~\ref{Record}). Its new syntax is:
-
-\begin{center}
-\begin{tabular}{l}
-{\tt Record \zeroone{>}~{\ident} \zeroone{\binders} : {\sort} := \zeroone{\ident$_0$} \verb+{+} \\
-~~~~\begin{tabular}{l}
- {\tt \ident$_1$ $[$:$|$:>$]$ \term$_1$ ;} \\
- ... \\
- {\tt \ident$_n$ $[$:$|$:>$]$ \term$_n$ \verb+}+. }
- \end{tabular}
-\end{tabular}
-\end{center}
-The identifier {\ident} is the name of the defined record and {\sort}
-is its type. The identifier {\ident$_0$} is the name of its
-constructor. The identifiers {\ident$_1$}, .., {\ident$_n$} are the
-names of its fields and {\term$_1$}, .., {\term$_n$} their respective
-types. The alternative {\tt $[$:$|$:>$]$} is ``{\tt :}'' or ``{\tt
-:>}''. If {\tt {\ident$_i$}:>{\term$_i$}}, then {\ident$_i$} is
-automatically declared as coercion from {\ident} to the class of
-{\term$_i$}. Remark that {\ident$_i$} always verifies the uniform
-inheritance condition. If the optional ``{\tt >}'' before {\ident} is
-present, then {\ident$_0$} (or the default name {\tt Build\_{\ident}}
-if {\ident$_0$} is omitted) is automatically declared as a coercion
-from the class of {\term$_n$} to {\ident} (this may fail if the
-uniform inheritance condition is not satisfied).
-
-\Rem The keyword {\tt Structure}\comindex{Structure} is a synonym of {\tt
-Record}.
-
-\asection{Coercions and Sections}
-\index{Coercions!and sections}
- The inheritance mechanism is compatible with the section
-mechanism. The global classes and coercions defined inside a section
-are redefined after its closing, using their new value and new
-type. The classes and coercions which are local to the section are
-simply forgotten.
-Coercions with a local source class or a local target class, and
-coercions which do not verify the uniform inheritance condition any longer
-are also forgotten.
-
-\asection{Coercions and Modules}
-\index{Coercions!and modules}
-
-From Coq version 8.3, the coercions present in a module are activated
-only when the module is explicitly imported. Formerly, the coercions
-were activated as soon as the module was required, whatever it was
-imported or not.
-
-To recover the behavior of the versions of Coq prior to 8.3, use the
-following command:
-
-\optindex{Automatic Coercions Import}
-\begin{verbatim}
-Set Automatic Coercions Import.
-\end{verbatim}
-
-To cancel the effect of the option, use instead:
-
-\begin{verbatim}
-Unset Automatic Coercions Import.
-\end{verbatim}
-
-\asection{Examples}
-
- There are three situations:
-
-\begin{itemize}
-\item $f~a$ is ill-typed where $f:forall~x:A,B$ and $a:A'$. If there is a
- coercion path between $A'$ and $A$, $f~a$ is transformed into
- $f~a'$ where $a'$ is the result of the application of this
- coercion path to $a$.
-
-We first give an example of coercion between atomic inductive types
-
-%\begin{\small}
-\begin{coq_example}
-Definition bool_in_nat (b:bool) := if b then 0 else 1.
-Coercion bool_in_nat : bool >-> nat.
-Check (0 = true).
-Set Printing Coercions.
-Check (0 = true).
-\end{coq_example}
-%\end{small}
-
-\begin{coq_eval}
-Unset Printing Coercions.
-\end{coq_eval}
-
-\Warning ``\verb|Check true=O.|'' fails. This is ``normal'' behaviour of
-coercions. To validate \verb|true=O|, the coercion is searched from
-\verb=nat= to \verb=bool=. There is none.
-
-We give an example of coercion between classes with parameters.
-
-%\begin{\small}
-\begin{coq_example}
-Parameters
- (C : nat -> Set) (D : nat -> bool -> Set) (E : bool -> Set).
-Parameter f : forall n:nat, C n -> D (S n) true.
-Coercion f : C >-> D.
-Parameter g : forall (n:nat) (b:bool), D n b -> E b.
-Coercion g : D >-> E.
-Parameter c : C 0.
-Parameter T : E true -> nat.
-Check (T c).
-Set Printing Coercions.
-Check (T c).
-\end{coq_example}
-%\end{small}
-
-\begin{coq_eval}
-Unset Printing Coercions.
-\end{coq_eval}
-
-We give now an example using identity coercions.
-
-%\begin{small}
-\begin{coq_example}
-Definition D' (b:bool) := D 1 b.
-Identity Coercion IdD'D : D' >-> D.
-Print IdD'D.
-Parameter d' : D' true.
-Check (T d').
-Set Printing Coercions.
-Check (T d').
-\end{coq_example}
-%\end{small}
-
-\begin{coq_eval}
-Unset Printing Coercions.
-\end{coq_eval}
-
-
- In the case of functional arguments, we use the monotonic rule of
-sub-typing. Approximatively, to coerce $t:forall~x:A, B$ towards
-$forall~x:A',B'$, one have to coerce $A'$ towards $A$ and $B$ towards
-$B'$. An example is given below:
-
-%\begin{small}
-\begin{coq_example}
-Parameters (A B : Set) (h : A -> B).
-Coercion h : A >-> B.
-Parameter U : (A -> E true) -> nat.
-Parameter t : B -> C 0.
-Check (U t).
-Set Printing Coercions.
-Check (U t).
-\end{coq_example}
-%\end{small}
-
-\begin{coq_eval}
-Unset Printing Coercions.
-\end{coq_eval}
-
- Remark the changes in the result following the modification of the
-previous example.
-
-%\begin{small}
-\begin{coq_example}
-Parameter U' : (C 0 -> B) -> nat.
-Parameter t' : E true -> A.
-Check (U' t').
-Set Printing Coercions.
-Check (U' t').
-\end{coq_example}
-%\end{small}
-
-\begin{coq_eval}
-Unset Printing Coercions.
-\end{coq_eval}
-
-\item An assumption $x:A$ when $A$ is not a type, is ill-typed. It is
- replaced by $x:A'$ where $A'$ is the result of the application
- to $A$ of the coercion path between the class of $A$ and {\tt
- Sortclass} if it exists. This case occurs in the abstraction
- $fun~ x:A => t$, universal quantification $forall~x:A, B$,
- global variables and parameters of (co-)inductive definitions
- and functions. In $forall~x:A, B$, such a coercion path may be
- applied to $B$ also if necessary.
-
-%\begin{small}
-\begin{coq_example}
-Parameter Graph : Type.
-Parameter Node : Graph -> Type.
-Coercion Node : Graph >-> Sortclass.
-Parameter G : Graph.
-Parameter Arrows : G -> G -> Type.
-Check Arrows.
-Parameter fg : G -> G.
-Check fg.
-Set Printing Coercions.
-Check fg.
-\end{coq_example}
-%\end{small}
-
-\begin{coq_eval}
-Unset Printing Coercions.
-\end{coq_eval}
-
-\item $f~a$ is ill-typed because $f:A$ is not a function. The term
- $f$ is replaced by the term obtained by applying to $f$ the
- coercion path between $A$ and {\tt Funclass} if it exists.
-
-%\begin{small}
-\begin{coq_example}
-Parameter bij : Set -> Set -> Set.
-Parameter ap : forall A B:Set, bij A B -> A -> B.
-Coercion ap : bij >-> Funclass.
-Parameter b : bij nat nat.
-Check (b 0).
-Set Printing Coercions.
-Check (b 0).
-\end{coq_example}
-%\end{small}
-
-\begin{coq_eval}
-Unset Printing Coercions.
-\end{coq_eval}
-
-Let us see the resulting graph of this session.
-
-%\begin{small}
-\begin{coq_example}
-Print Graph.
-\end{coq_example}
-%\end{small}
-
-\end{itemize}
-
-
-%%% Local Variables:
-%%% mode: latex
-%%% TeX-master: "Reference-Manual"
-%%% End:
diff --git a/doc/refman/Extraction.tex b/doc/refman/Extraction.tex
deleted file mode 100644
index cff7be3e9..000000000
--- a/doc/refman/Extraction.tex
+++ /dev/null
@@ -1,620 +0,0 @@
-\achapter{Extraction of programs in OCaml and Haskell}
-%HEVEA\cutname{extraction.html}
-\label{Extraction}
-\aauthor{Jean-Christophe Filliâtre and Pierre Letouzey}
-\index{Extraction}
-
-\noindent We present here the \Coq\ extraction commands, used to build certified
-and relatively efficient functional programs, extracting them from
-either \Coq\ functions or \Coq\ proofs of specifications. The
-functional languages available as output are currently \ocaml{},
-\textsc{Haskell} and \textsc{Scheme}. In the following, ``ML'' will
-be used (abusively) to refer to any of the three.
-
-%% \paragraph{Differences with old versions.}
-%% The current extraction mechanism is new for version 7.0 of {\Coq}.
-%% In particular, the \FW\ toplevel used as an intermediate step between
-%% \Coq\ and ML has been withdrawn. It is also not possible
-%% any more to import ML objects in this \FW\ toplevel.
-%% The current mechanism also differs from
-%% the one in previous versions of \Coq: there is no more
-%% an explicit toplevel for the language (formerly called \textsc{Fml}).
-
-Before using any of the commands or options described in this chapter,
-the extraction framework should first be loaded explicitly
-via {\tt Require Extraction}, or via the more robust
-{\tt From Coq Require Extraction}.
-Note that in earlier versions of Coq, these commands and options were
-directly available without any preliminary {\tt Require}.
-
-\begin{coq_example}
-Require Extraction.
-\end{coq_example}
-
-\asection{Generating ML code}
-\comindex{Extraction}
-\comindex{Recursive Extraction}
-\comindex{Separate Extraction}
-\comindex{Extraction Library}
-\comindex{Recursive Extraction Library}
-
-The next two commands are meant to be used for rapid preview of
-extraction. They both display extracted term(s) inside \Coq.
-
-\begin{description}
-\item {\tt Extraction \qualid{}.} ~\par
- Extraction of a constant or module in the \Coq\ toplevel.
-
-\item {\tt Recursive Extraction} \qualid$_1$ \dots\ \qualid$_n$. ~\par
- Recursive extraction of all the globals (or modules) \qualid$_1$ \dots\
- \qualid$_n$ and all their dependencies in the \Coq\ toplevel.
-\end{description}
-
-%% TODO error messages
-
-\noindent All the following commands produce real ML files. User can choose to produce
-one monolithic file or one file per \Coq\ library.
-
-\begin{description}
-\item {\tt Extraction "{\em file}"}
- \qualid$_1$ \dots\ \qualid$_n$. ~\par
- Recursive extraction of all the globals (or modules) \qualid$_1$ \dots\
- \qualid$_n$ and all their dependencies in one monolithic file {\em file}.
- Global and local identifiers are renamed according to the chosen ML
- language to fulfill its syntactic conventions, keeping original
- names as much as possible.
-
-\item {\tt Extraction Library} \ident. ~\par
- Extraction of the whole \Coq\ library {\tt\ident.v} to an ML module
- {\tt\ident.ml}. In case of name clash, identifiers are here renamed
- using prefixes \verb!coq_! or \verb!Coq_! to ensure a
- session-independent renaming.
-
-\item {\tt Recursive Extraction Library} \ident. ~\par
- Extraction of the \Coq\ library {\tt\ident.v} and all other modules
- {\tt\ident.v} depends on.
-
-\item {\tt Separate Extraction}
- \qualid$_1$ \dots\ \qualid$_n$. ~\par
- Recursive extraction of all the globals (or modules) \qualid$_1$ \dots\
- \qualid$_n$ and all their dependencies, just as {\tt
- Extraction "{\em file}"}, but instead of producing one monolithic
- file, this command splits the produced code in separate ML files, one per
- corresponding Coq {\tt .v} file. This command is hence quite similar
- to {\tt Recursive Extraction Library}, except that only the needed
- parts of Coq libraries are extracted instead of the whole. The
- naming convention in case of name clash is the same one as
- {\tt Extraction Library}: identifiers are here renamed
- using prefixes \verb!coq_! or \verb!Coq_!.
-\end{description}
-
-\noindent The following command is meant to help automatic testing of
- the extraction, see for instance the {\tt test-suite} directory
- in the \Coq\ sources.
-
-\begin{description}
-\item {\tt Extraction TestCompile} \qualid$_1$ \dots\ \qualid$_n$. ~\par
- All the globals (or modules) \qualid$_1$ \dots\ \qualid$_n$ and all
- their dependencies are extracted to a temporary {\ocaml} file, just as in
- {\tt Extraction "{\em file}"}. Then this temporary file and its
- signature are compiled with the same {\ocaml} compiler used to built
- \Coq. This command succeeds only if the extraction and the {\ocaml}
- compilation succeed (and it fails if the current target language
- of the extraction is not {\ocaml}).
-\end{description}
-
-\asection{Extraction options}
-
-\asubsection{Setting the target language}
-\comindex{Extraction Language}
-
-The ability to fix target language is the first and more important
-of the extraction options. Default is {\ocaml}.
-\begin{description}
-\item {\tt Extraction Language OCaml}.
-\item {\tt Extraction Language Haskell}.
-\item {\tt Extraction Language Scheme}.
-\end{description}
-
-\asubsection{Inlining and optimizations}
-
-Since {\ocaml} is a strict language, the extracted code has to
-be optimized in order to be efficient (for instance, when using
-induction principles we do not want to compute all the recursive calls
-but only the needed ones). So the extraction mechanism provides an
-automatic optimization routine that will be called each time the user
-want to generate {\ocaml} programs. The optimizations can be split in two
-groups: the type-preserving ones -- essentially constant inlining and
-reductions -- and the non type-preserving ones -- some function
-abstractions of dummy types are removed when it is deemed safe in order
-to have more elegant types. Therefore some constants may not appear in the
-resulting monolithic {\ocaml} program. In the case of modular extraction,
-even if some inlining is done, the inlined constant are nevertheless
-printed, to ensure session-independent programs.
-
-Concerning Haskell, type-preserving optimizations are less useful
-because of laziness. We still make some optimizations, for example in
-order to produce more readable code.
-
-The type-preserving optimizations are controlled by the following \Coq\ options:
-
-\begin{description}
-
-\item \optindex{Extraction Optimize} {\tt Unset Extraction Optimize.}
-
-Default is Set. This controls all type-preserving optimizations made on
-the ML terms (mostly reduction of dummy beta/iota redexes, but also
-simplifications on Cases, etc). Put this option to Unset if you want a
-ML term as close as possible to the Coq term.
-
-\item \optindex{Extraction Conservative Types}
-{\tt Set Extraction Conservative Types.}
-
-Default is Unset. This controls the non type-preserving optimizations
-made on ML terms (which try to avoid function abstraction of dummy
-types). Turn this option to Set to make sure that {\tt e:t}
-implies that {\tt e':t'} where {\tt e'} and {\tt t'} are the extracted
-code of {\tt e} and {\tt t} respectively.
-
-\item \optindex{Extraction KeepSingleton}
-{\tt Set Extraction KeepSingleton.}
-
-Default is Unset. Normally, when the extraction of an inductive type
-produces a singleton type (i.e. a type with only one constructor, and
-only one argument to this constructor), the inductive structure is
-removed and this type is seen as an alias to the inner type.
-The typical example is {\tt sig}. This option allows disabling this
-optimization when one wishes to preserve the inductive structure of types.
-
-\item \optindex{Extraction AutoInline} {\tt Unset Extraction AutoInline.}
-
-Default is Set. The extraction mechanism
-inlines the bodies of some defined constants, according to some heuristics
-like size of bodies, uselessness of some arguments, etc. Those heuristics are
-not always perfect; if you want to disable this feature, do it by Unset.
-
-\item \comindex{Extraction Inline} \comindex{Extraction NoInline}
-{\tt Extraction [Inline|NoInline] \qualid$_1$ \dots\ \qualid$_n$}.
-
-In addition to the automatic inline feature, you can tell to
-inline some more constants by the {\tt Extraction Inline} command. Conversely,
-you can forbid the automatic inlining of some specific constants by
-the {\tt Extraction NoInline} command.
-Those two commands enable a precise control of what is inlined and what is not.
-
-\item \comindex{Print Extraction Inline}
-{\tt Print Extraction Inline}.
-
-Prints the current state of the table recording the custom inlinings
-declared by the two previous commands.
-
-\item \comindex{Reset Extraction Inline}
-{\tt Reset Extraction Inline}.
-
-Puts the table recording the custom inlinings back to empty.
-
-\end{description}
-
-
-\paragraph{Inlining and printing of a constant declaration.}
-
-A user can explicitly ask for a constant to be extracted by two means:
-\begin{itemize}
-\item by mentioning it on the extraction command line
-\item by extracting the whole \Coq\ module of this constant.
-\end{itemize}
-In both cases, the declaration of this constant will be present in the
-produced file.
-But this same constant may or may not be inlined in the following
-terms, depending on the automatic/custom inlining mechanism.
-
-
-For the constants non-explicitly required but needed for dependency
-reasons, there are two cases:
-\begin{itemize}
-\item If an inlining decision is taken, whether automatically or not,
-all occurrences of this constant are replaced by its extracted body, and
-this constant is not declared in the generated file.
-\item If no inlining decision is taken, the constant is normally
- declared in the produced file.
-\end{itemize}
-
-\asubsection{Extra elimination of useless arguments}
-
-The following command provides some extra manual control on the
-code elimination performed during extraction, in a way which
-is independent but complementary to the main elimination
-principles of extraction (logical parts and types).
-
-\begin{description}
-\item \comindex{Extraction Implicit}
- {\tt Extraction Implicit} \qualid\ [ \ident$_1$ \dots\ \ident$_n$ ].
-
-This experimental command allows declaring some arguments of
-\qualid\ as implicit, i.e. useless in extracted code and hence to
-be removed by extraction. Here \qualid\ can be any function or
-inductive constructor, and \ident$_i$ are the names of the concerned
-arguments. In fact, an argument can also be referred by a number
-indicating its position, starting from 1.
-\end{description}
-
-\noindent When an actual extraction takes place, an error is normally raised if the
-{\tt Extraction Implicit}
-declarations cannot be honored, that is if any of the implicited
-variables still occurs in the final code. This behavior can be relaxed
-via the following option:
-
-\begin{description}
-\item \optindex{Extraction SafeImplicits} {\tt Unset Extraction SafeImplicits.}
-
-Default is Set. When this option is Unset, a warning is emitted
-instead of an error if some implicited variables still occur in the
-final code of an extraction. This way, the extracted code may be
-obtained nonetheless and reviewed manually to locate the source of the issue
-(in the code, some comments mark the location of these remaining
-implicited variables).
-Note that this extracted code might not compile or run properly,
-depending of the use of these remaining implicited variables.
-
-\end{description}
-
-\asubsection{Realizing axioms}\label{extraction:axioms}
-
-Extraction will fail if it encounters an informative
-axiom not realized (see Section~\ref{extraction:axioms}).
-A warning will be issued if it encounters a logical axiom, to remind the
-user that inconsistent logical axioms may lead to incorrect or
-non-terminating extracted terms.
-
-It is possible to assume some axioms while developing a proof. Since
-these axioms can be any kind of proposition or object or type, they may
-perfectly well have some computational content. But a program must be
-a closed term, and of course the system cannot guess the program which
-realizes an axiom. Therefore, it is possible to tell the system
-what ML term corresponds to a given axiom.
-
-\comindex{Extract Constant}
-\begin{description}
-\item{\tt Extract Constant \qualid\ => \str.} ~\par
- Give an ML extraction for the given constant.
- The \str\ may be an identifier or a quoted string.
-\item{\tt Extract Inlined Constant \qualid\ => \str.} ~\par
- Same as the previous one, except that the given ML terms will
- be inlined everywhere instead of being declared via a let.
-\end{description}
-
-\noindent Note that the {\tt Extract Inlined Constant} command is sugar
-for an {\tt Extract Constant} followed by a {\tt Extraction Inline}.
-Hence a {\tt Reset Extraction Inline} will have an effect on the
-realized and inlined axiom.
-
-Of course, it is the responsibility of the user to ensure that the ML
-terms given to realize the axioms do have the expected types. In
-fact, the strings containing realizing code are just copied to the
-extracted files. The extraction recognizes whether the realized axiom
-should become a ML type constant or a ML object declaration.
-
-\Example
-\begin{coq_example*}
-Axiom X:Set.
-Axiom x:X.
-Extract Constant X => "int".
-Extract Constant x => "0".
-\end{coq_example*}
-
-\noindent Notice that in the case of type scheme axiom (i.e. whose type is an
-arity, that is a sequence of product finished by a sort), then some type
-variables have to be given. The syntax is then:
-
-\begin{description}
-\item{\tt Extract Constant \qualid\ \str$_1$ \dots\ \str$_n$ => \str.}
-\end{description}
-
-\noindent The number of type variables is checked by the system.
-
-\Example
-\begin{coq_example*}
-Axiom Y : Set -> Set -> Set.
-Extract Constant Y "'a" "'b" => " 'a*'b ".
-\end{coq_example*}
-
-\noindent Realizing an axiom via {\tt Extract Constant} is only useful in the
-case of an informative axiom (of sort Type or Set). A logical axiom
-have no computational content and hence will not appears in extracted
-terms. But a warning is nonetheless issued if extraction encounters a
-logical axiom. This warning reminds user that inconsistent logical
-axioms may lead to incorrect or non-terminating extracted terms.
-
-If an informative axiom has not been realized before an extraction, a
-warning is also issued and the definition of the axiom is filled with
-an exception labeled {\tt AXIOM TO BE REALIZED}. The user must then
-search these exceptions inside the extracted file and replace them by
-real code.
-
-\comindex{Extract Inductive}
-
-The system also provides a mechanism to specify ML terms for inductive
-types and constructors. For instance, the user may want to use the ML
-native boolean type instead of \Coq\ one. The syntax is the following:
-
-\begin{description}
-\item{\tt Extract Inductive \qualid\ => \str\ [ \str\ \dots\ \str\ ] {\it optstring}.}\par
- Give an ML extraction for the given inductive type. You must specify
- extractions for the type itself (first \str) and all its
- constructors (between square brackets). If given, the final optional
- string should contain a function emulating pattern-matching over this
- inductive type. If this optional string is not given, the ML
- extraction must be an ML inductive datatype, and the native
- pattern-matching of the language will be used.
-\end{description}
-
-\noindent For an inductive type with $k$ constructor, the function used to
-emulate the match should expect $(k+1)$ arguments, first the $k$
-branches in functional form, and then the inductive element to
-destruct. For instance, the match branch \verb$| S n => foo$ gives the
-functional form \verb$(fun n -> foo)$. Note that a constructor with no
-argument is considered to have one unit argument, in order to block
-early evaluation of the branch: \verb$| O => bar$ leads to the functional
-form \verb$(fun () -> bar)$. For instance, when extracting {\tt nat}
-into {\tt int}, the code to provide has type:
-{\tt (unit->'a)->(int->'a)->int->'a}.
-
-As for {\tt Extract Inductive}, this command should be used with care:
-\begin{itemize}
-\item The ML code provided by the user is currently \emph{not} checked at all by
- extraction, even for syntax errors.
-
-\item Extracting an inductive type to a pre-existing ML inductive type
-is quite sound. But extracting to a general type (by providing an
-ad-hoc pattern-matching) will often \emph{not} be fully rigorously
-correct. For instance, when extracting {\tt nat} to {\ocaml}'s {\tt
-int}, it is theoretically possible to build {\tt nat} values that are
-larger than {\ocaml}'s {\tt max\_int}. It is the user's responsibility to
-be sure that no overflow or other bad events occur in practice.
-
-\item Translating an inductive type to an ML type does \emph{not}
-magically improve the asymptotic complexity of functions, even if the
-ML type is an efficient representation. For instance, when extracting
-{\tt nat} to {\ocaml}'s {\tt int}, the function {\tt mult} stays
-quadratic. It might be interesting to associate this translation with
-some specific {\tt Extract Constant} when primitive counterparts exist.
-\end{itemize}
-
-\Example
-Typical examples are the following:
-\begin{coq_eval}
-Require Extraction.
-\end{coq_eval}
-\begin{coq_example}
-Extract Inductive unit => "unit" [ "()" ].
-Extract Inductive bool => "bool" [ "true" "false" ].
-Extract Inductive sumbool => "bool" [ "true" "false" ].
-\end{coq_example}
-
-\noindent When extracting to {\ocaml}, if an inductive constructor or type
-has arity 2 and the corresponding string is enclosed by parentheses,
-and the string meets {\ocaml}'s lexical criteria for an infix symbol,
-then the rest of the string is used as infix constructor or type.
-
-\begin{coq_example}
-Extract Inductive list => "list" [ "[]" "(::)" ].
-Extract Inductive prod => "(*)" [ "(,)" ].
-\end{coq_example}
-
-\noindent As an example of translation to a non-inductive datatype, let's turn
-{\tt nat} into {\ocaml}'s {\tt int} (see caveat above):
-\begin{coq_example}
-Extract Inductive nat => int [ "0" "succ" ]
- "(fun fO fS n -> if n=0 then fO () else fS (n-1))".
-\end{coq_example}
-
-\asubsection{Avoiding conflicts with existing filenames}
-
-\comindex{Extraction Blacklist}
-
-When using {\tt Extraction Library}, the names of the extracted files
-directly depends from the names of the \Coq\ files. It may happen that
-these filenames are in conflict with already existing files,
-either in the standard library of the target language or in other
-code that is meant to be linked with the extracted code.
-For instance the module {\tt List} exists both in \Coq\ and in {\ocaml}.
-It is possible to instruct the extraction not to use particular filenames.
-
-\begin{description}
-\item{\tt Extraction Blacklist} \ident\ \dots\ \ident. ~\par
- Instruct the extraction to avoid using these names as filenames
- for extracted code.
-\item{\tt Print Extraction Blacklist.} ~\par
- Show the current list of filenames the extraction should avoid.
-\item{\tt Reset Extraction Blacklist.} ~\par
- Allow the extraction to use any filename.
-\end{description}
-
-\noindent For {\ocaml}, a typical use of these commands is
-{\tt Extraction Blacklist String List}.
-
-\asection{Differences between \Coq\ and ML type systems}
-
-
-Due to differences between \Coq\ and ML type systems,
-some extracted programs are not directly typable in ML.
-We now solve this problem (at least in {\ocaml}) by adding
-when needed some unsafe casting {\tt Obj.magic}, which give
-a generic type {\tt 'a} to any term.
-
-For example, here are two kinds of problem that can occur:
-
-\begin{itemize}
- \item If some part of the program is {\em very} polymorphic, there
- may be no ML type for it. In that case the extraction to ML works
- alright but the generated code may be refused by the ML
- type-checker. A very well known example is the {\em distr-pair}
- function:
-\begin{verbatim}
-Definition dp :=
- fun (A B:Set)(x:A)(y:B)(f:forall C:Set, C->C) => (f A x, f B y).
-\end{verbatim}
-
-In {\ocaml}, for instance, the direct extracted term would be
-\begin{verbatim}
-let dp x y f = Pair((f () x),(f () y))
-\end{verbatim}
-
-and would have type
-\begin{verbatim}
-dp : 'a -> 'a -> (unit -> 'a -> 'b) -> ('b,'b) prod
-\end{verbatim}
-
-which is not its original type, but a restriction.
-
-We now produce the following correct version:
-\begin{verbatim}
-let dp x y f = Pair ((Obj.magic f () x), (Obj.magic f () y))
-\end{verbatim}
-
- \item Some definitions of \Coq\ may have no counterpart in ML. This
- happens when there is a quantification over types inside the type
- of a constructor; for example:
-\begin{verbatim}
-Inductive anything : Type := dummy : forall A:Set, A -> anything.
-\end{verbatim}
-
-which corresponds to the definition of an ML dynamic type.
-In {\ocaml}, we must cast any argument of the constructor dummy.
-
-\end{itemize}
-
-\noindent Even with those unsafe castings, you should never get error like
-``segmentation fault''. In fact even if your program may seem
-ill-typed to the {\ocaml} type-checker, it can't go wrong: it comes
-from a Coq well-typed terms, so for example inductives will always
-have the correct number of arguments, etc.
-
-More details about the correctness of the extracted programs can be
-found in \cite{Let02}.
-
-We have to say, though, that in most ``realistic'' programs, these
-problems do not occur. For example all the programs of Coq library are
-accepted by Caml type-checker without any {\tt Obj.magic} (see examples below).
-
-
-
-\asection{Some examples}
-
-We present here two examples of extractions, taken from the
-\Coq\ Standard Library. We choose \ocaml\ as target language,
-but all can be done in the other dialects with slight modifications.
-We then indicate where to find other examples and tests of Extraction.
-
-\asubsection{A detailed example: Euclidean division}
-
-The file {\tt Euclid} contains the proof of Euclidean division
-(theorem {\tt eucl\_dev}). The natural numbers defined in the example
-files are unary integers defined by two constructors $O$ and $S$:
-\begin{coq_example*}
-Inductive nat : Set :=
- | O : nat
- | S : nat -> nat.
-\end{coq_example*}
-
-\noindent This module contains a theorem {\tt eucl\_dev}, whose type is
-\begin{verbatim}
-forall b:nat, b > 0 -> forall a:nat, diveucl a b
-\end{verbatim}
-where {\tt diveucl} is a type for the pair of the quotient and the
-modulo, plus some logical assertions that disappear during extraction.
-We can now extract this program to \ocaml:
-
-\begin{coq_eval}
-Reset Initial.
-\end{coq_eval}
-\begin{coq_example}
-Require Extraction.
-Require Import Euclid Wf_nat.
-Extraction Inline gt_wf_rec lt_wf_rec induction_ltof2.
-Recursive Extraction eucl_dev.
-\end{coq_example}
-
-\noindent The inlining of {\tt gt\_wf\_rec} and others is not
-mandatory. It only enhances readability of extracted code.
-You can then copy-paste the output to a file {\tt euclid.ml} or let
-\Coq\ do it for you with the following command:
-
-\begin{verbatim}
-Extraction "euclid" eucl_dev.
-\end{verbatim}
-
-\noindent Let us play the resulting program:
-
-\begin{verbatim}
-# #use "euclid.ml";;
-type nat = O | S of nat
-type sumbool = Left | Right
-val minus : nat -> nat -> nat = <fun>
-val le_lt_dec : nat -> nat -> sumbool = <fun>
-val le_gt_dec : nat -> nat -> sumbool = <fun>
-type diveucl = Divex of nat * nat
-val eucl_dev : nat -> nat -> diveucl = <fun>
-# eucl_dev (S (S O)) (S (S (S (S (S O)))));;
-- : diveucl = Divex (S (S O), S O)
-\end{verbatim}
-It is easier to test on \ocaml\ integers:
-\begin{verbatim}
-# let rec nat_of_int = function 0 -> O | n -> S (nat_of_int (n-1));;
-val nat_of_int : int -> nat = <fun>
-# let rec int_of_nat = function O -> 0 | S p -> 1+(int_of_nat p);;
-val int_of_nat : nat -> int = <fun>
-# let div a b =
- let Divex (q,r) = eucl_dev (nat_of_int b) (nat_of_int a)
- in (int_of_nat q, int_of_nat r);;
-val div : int -> int -> int * int = <fun>
-# div 173 15;;
-- : int * int = (11, 8)
-\end{verbatim}
-
-\noindent Note that these {\tt nat\_of\_int} and {\tt int\_of\_nat} are now
-available via a mere {\tt Require Import ExtrOcamlIntConv} and then
-adding these functions to the list of functions to extract. This file
-{\tt ExtrOcamlIntConv.v} and some others in {\tt plugins/extraction/}
-are meant to help building concrete program via extraction.
-
-\asubsection{Extraction's horror museum}
-
-Some pathological examples of extraction are grouped in the file\\
-{\tt test-suite/success/extraction.v} of the sources of \Coq.
-
-\asubsection{Users' Contributions}
-
-Several of the \Coq\ Users' Contributions use extraction to produce
-certified programs. In particular the following ones have an automatic
-extraction test:
-
-\begin{itemize}
-\item {\tt additions}
-\item {\tt bdds}
-\item {\tt canon-bdds}
-\item {\tt chinese}
-\item {\tt continuations}
-\item {\tt coq-in-coq}
-\item {\tt exceptions}
-\item {\tt firing-squad}
-\item {\tt founify}
-\item {\tt graphs}
-\item {\tt higman-cf}
-\item {\tt higman-nw}
-\item {\tt hardware}
-\item {\tt multiplier}
-\item {\tt search-trees}
-\item {\tt stalmarck}
-\end{itemize}
-
-\noindent {\tt continuations} and {\tt multiplier} are a bit particular. They are
-examples of developments where {\tt Obj.magic} are needed. This is
-probably due to an heavy use of impredicativity. After compilation, those
-two examples run nonetheless, thanks to the correction of the
-extraction~\cite{Let02}.
-
-%%% Local Variables:
-%%% mode: latex
-%%% TeX-master: "Reference-Manual"
-%%% End:
diff --git a/doc/refman/Nsatz.tex b/doc/refman/Nsatz.tex
deleted file mode 100644
index 1401af10f..000000000
--- a/doc/refman/Nsatz.tex
+++ /dev/null
@@ -1,102 +0,0 @@
-\achapter{Nsatz: tactics for proving equalities in integral domains}
-%HEVEA\cutname{nsatz.html}
-\aauthor{Loïc Pottier}
-
-The tactic \texttt{nsatz} proves goals of the form
-
-\[ \begin{array}{l}
- \forall X_1,\ldots,X_n \in A,\\
- P_1(X_1,\ldots,X_n) = Q_1(X_1,\ldots,X_n) , \ldots , P_s(X_1,\ldots,X_n) =Q_s(X_1,\ldots,X_n)\\
- \vdash P(X_1,\ldots,X_n) = Q(X_1,\ldots,X_n)\\
- \end{array}
-\]
-where $P,Q, P_1,Q_1,\ldots,P_s,Q_s$ are polynomials and A is an integral
-domain, i.e. a commutative ring with no zero divisor. For example, A can be
-$\mathbb{R}$, $\mathbb{Z}$, of $\mathbb{Q}$. Note that the equality $=$ used in these
-goals can be any setoid equality
-(see \ref{setoidtactics})
-, not only Leibnitz equality.
-
-It also proves formulas
-\[ \begin{array}{l}
- \forall X_1,\ldots,X_n \in A,\\
- P_1(X_1,\ldots,X_n) = Q_1(X_1,\ldots,X_n) \wedge \ldots \wedge P_s(X_1,\ldots,X_n) =Q_s(X_1,\ldots,X_n)\\
- \rightarrow P(X_1,\ldots,X_n) = Q(X_1,\ldots,X_n)\\
- \end{array}
-\] doing automatic introductions.
-
-\asection{Using the basic tactic \texttt{nsatz}}
-\tacindex{nsatz}
-
-Load the
-\texttt{Nsatz} module: \texttt{Require Import Nsatz}.\\
- and use the tactic \texttt{nsatz}.
-
-\asection{More about \texttt{nsatz}}
-
-Hilbert's Nullstellensatz theorem shows how to reduce proofs of equalities on
-polynomials on a commutative ring A with no zero divisor to algebraic computations: it is easy to see that if a polynomial
-$P$ in $A[X_1,\ldots,X_n]$ verifies $c P^r = \sum_{i=1}^{s} S_i P_i$, with $c
-\in A$, $c \not = 0$, $r$ a positive integer, and the $S_i$s in
-$A[X_1,\ldots,X_n]$, then $P$ is zero whenever polynomials $P_1,...,P_s$ are
-zero (the converse is also true when A is an algebraic closed field:
-the method is complete).
-
-So, proving our initial problem can reduce into finding $S_1,\ldots,S_s$, $c$
-and $r$ such that $c (P-Q)^r = \sum_{i} S_i (P_i-Q_i)$, which will be proved by the
-tactic \texttt{ring}.
-
-This is achieved by the computation of a Groebner basis of the
-ideal generated by $P_1-Q_1,...,P_s-Q_s$, with an adapted version of the Buchberger
-algorithm.
-
-This computation is done after a step of {\em reification}, which is
-performed using {\em Type Classes}
-(see \ref{typeclasses})
-.
-
-The \texttt{Nsatz} module defines the tactic
-\texttt{nsatz}, which can be used without arguments: \\
-\vspace*{3mm}
-\texttt{nsatz}\\
-or with the syntax: \\
-\vspace*{3mm}
-\texttt{nsatz with radicalmax:={\em number}\%N strategy:={\em number}\%Z parameters:={\em list of variables} variables:={\em list of variables}}\\
-where:
-
-\begin{itemize}
- \item \texttt{radicalmax} is a bound when for searching r s.t.$c (P-Q)^r =
-\sum_{i=1..s} S_i (P_i - Q_i)$
-
- \item \texttt{strategy} gives the order on variables $X_1,...X_n$ and
-the strategy used in Buchberger algorithm (see
-\cite{sugar} for details):
-
- \begin{itemize}
- \item strategy = 0: reverse lexicographic order and newest s-polynomial.
- \item strategy = 1: reverse lexicographic order and sugar strategy.
- \item strategy = 2: pure lexicographic order and newest s-polynomial.
- \item strategy = 3: pure lexicographic order and sugar strategy.
- \end{itemize}
-
- \item \texttt{parameters} is the list of variables
-$X_{i_1},\ldots,X_{i_k}$ among $X_1,...,X_n$ which are considered as
- parameters: computation will be performed with rational fractions in these
- variables, i.e. polynomials are considered with coefficients in
-$R(X_{i_1},\ldots,X_{i_k})$. In this case, the coefficient $c$ can be a non
-constant polynomial in $X_{i_1},\ldots,X_{i_k}$, and the tactic produces a goal
-which states that $c$ is not zero.
-
- \item \texttt{variables} is the list of the variables
-in the decreasing order in which they will be used in Buchberger algorithm. If \texttt{variables} = {(@nil
-R)}, then \texttt{lvar} is replaced by all the variables which are not in
-parameters.
-
-\end{itemize}
-
-See file \texttt{Nsatz.v} for many examples, specially in geometry.
-
-%%% Local Variables:
-%%% mode: latex
-%%% TeX-master: "Reference-Manual"
-%%% End:
diff --git a/doc/refman/Polynom.tex b/doc/refman/Polynom.tex
deleted file mode 100644
index d9b8b8c52..000000000
--- a/doc/refman/Polynom.tex
+++ /dev/null
@@ -1,736 +0,0 @@
-\achapter{The \texttt{ring} and \texttt{field} tactic families}
-%HEVEA\cutname{ring.html}
-\aauthor{Bruno Barras, Benjamin Gr\'egoire, Assia
- Mahboubi, Laurent Th\'ery\footnote{based on previous work from
- Patrick Loiseleur and Samuel Boutin}}
-\label{ring}
-\tacindex{ring}
-
-This chapter presents the tactics dedicated to deal with ring and
-field equations.
-
-\asection{What does this tactic do?}
-
-\texttt{ring} does associative-commutative rewriting in ring and semi-ring
-structures. Assume you have two binary functions $\oplus$ and $\otimes$
-that are associative and commutative, with $\oplus$ distributive on
-$\otimes$, and two constants 0 and 1 that are unities for $\oplus$ and
-$\otimes$. A \textit{polynomial} is an expression built on variables $V_0, V_1,
-\dots$ and constants by application of $\oplus$ and $\otimes$.
-
-Let an {\it ordered product} be a product of variables $V_{i_1}
-\otimes \ldots \otimes V_{i_n}$ verifying $i_1 \le i_2 \le \dots \le
-i_n$. Let a \textit{monomial} be the product of a constant and an
-ordered product. We can order the monomials by the lexicographic
-order on products of variables. Let a \textit{canonical sum} be an
-ordered sum of monomials that are all different, i.e. each monomial in
-the sum is strictly less than the following monomial according to the
-lexicographic order. It is an easy theorem to show that every
-polynomial is equivalent (modulo the ring properties) to exactly one
-canonical sum. This canonical sum is called the \textit{normal form}
-of the polynomial. In fact, the actual representation shares monomials
-with same prefixes. So what does \texttt{ring}? It normalizes
-polynomials over any ring or semi-ring structure. The basic use of
-\texttt{ring} is to simplify ring expressions, so that the user does
-not have to deal manually with the theorems of associativity and
-commutativity.
-
-\begin{Examples}
-\item In the ring of integers, the normal form of
-$x (3 + yx + 25(1 - z)) + zx$ is $28x + (-24)xz + xxy$.
-\end{Examples}
-
-\texttt{ring} is also able to compute a normal form modulo monomial
-equalities. For example, under the hypothesis that $2x^2 = yz+1$,
- the normal form of $2(x + 1)x - x - zy$ is $x+1$.
-
-\asection{The variables map}
-
-It is frequent to have an expression built with + and
- $\times$, but rarely on variables only.
-Let us associate a number to each subterm of a ring
-expression in the \gallina\ language. For example in the ring
-\texttt{nat}, consider the expression:
-
-\begin{quotation}
-\begin{verbatim}
-(plus (mult (plus (f (5)) x) x)
- (mult (if b then (4) else (f (3))) (2)))
-\end{verbatim}
-\end{quotation}
-
-\noindent As a ring expression, it has 3 subterms. Give each subterm a
-number in an arbitrary order:
-
-\begin{tabular}{ccl}
-0 & $\mapsto$ & \verb|if b then (4) else (f (3))| \\
-1 & $\mapsto$ & \verb|(f (5))| \\
-2 & $\mapsto$ & \verb|x| \\
-\end{tabular}
-
-\noindent Then normalize the ``abstract'' polynomial
-
-$$((V_1 \otimes V_2) \oplus V_2) \oplus (V_0 \otimes 2) $$
-
-\noindent In our example the normal form is:
-
-$$(2 \otimes V_0) \oplus (V_1 \otimes V_2) \oplus (V_2 \otimes V_2)$$
-
-\noindent Then substitute the variables by their values in the variables map to
-get the concrete normal polynomial:
-
-\begin{quotation}
-\begin{verbatim}
-(plus (mult (2) (if b then (4) else (f (3))))
- (plus (mult (f (5)) x) (mult x x)))
-\end{verbatim}
-\end{quotation}
-
-\asection{Is it automatic?}
-
-Yes, building the variables map and doing the substitution after
-normalizing is automatically done by the tactic. So you can just forget
-this paragraph and use the tactic according to your intuition.
-
-\asection{Concrete usage in \Coq
-\tacindex{ring}
-\tacindex{ring\_simplify}}
-
-The {\tt ring} tactic solves equations upon polynomial expressions of
-a ring (or semi-ring) structure. It proceeds by normalizing both hand
-sides of the equation (w.r.t. associativity, commutativity and
-distributivity, constant propagation, rewriting of monomials)
-and comparing syntactically the results.
-
-{\tt ring\_simplify} applies the normalization procedure described
-above to the terms given. The tactic then replaces all occurrences of
-the terms given in the conclusion of the goal by their normal
-forms. If no term is given, then the conclusion should be an equation
-and both hand sides are normalized.
-The tactic can also be applied in a hypothesis.
-
-The tactic must be loaded by \texttt{Require Import Ring}. The ring
-structures must be declared with the \texttt{Add Ring} command (see
-below). The ring of booleans is predefined; if one wants to use the
-tactic on \texttt{nat} one must first require the module
-\texttt{ArithRing} (exported by \texttt{Arith});
-for \texttt{Z}, do \texttt{Require Import
-ZArithRing} or simply \texttt{Require Import ZArith};
-for \texttt{N}, do \texttt{Require Import NArithRing} or
-\texttt{Require Import NArith}.
-
-\Example
-\begin{coq_eval}
-Reset Initial.
-\end{coq_eval}
-\begin{coq_example*}
-Require Import ZArith.
-\end{coq_example*}
-\begin{coq_example}
-Open Scope Z_scope.
-Goal forall a b c:Z,
- (a + b + c)^2 =
- a * a + b^2 + c * c + 2 * a * b + 2 * a * c + 2 * b * c.
-\end{coq_example}
-\begin{coq_example}
-intros; ring.
-\end{coq_example}
-\begin{coq_eval}
-Abort.
-\end{coq_eval}
-\begin{coq_example}
-Goal forall a b:Z, 2*a*b = 30 ->
- (a+b)^2 = a^2 + b^2 + 30.
-\end{coq_example}
-\begin{coq_example}
-intros a b H; ring [H].
-\end{coq_example}
-\begin{coq_eval}
-Reset Initial.
-\end{coq_eval}
-
-\begin{Variants}
- \item {\tt ring [\term$_1$ {\ldots} \term$_n$]} decides the equality of two
- terms modulo ring operations and rewriting of the equalities
- defined by \term$_1$ {\ldots} \term$_n$. Each of \term$_1$
- {\ldots} \term$_n$ has to be a proof of some equality $m = p$,
- where $m$ is a monomial (after ``abstraction''),
- $p$ a polynomial and $=$ the corresponding equality of the ring structure.
-
- \item {\tt ring\_simplify [\term$_1$ {\ldots} \term$_n$] $t_1 \ldots t_m$ in
-{\ident}}
- performs the simplification in the hypothesis named {\tt ident}.
-\end{Variants}
-
-\Warning \texttt{ring\_simplify \term$_1$; ring\_simplify \term$_2$} is
-not equivalent to \texttt{ring\_simplify \term$_1$ \term$_2$}. In the
-latter case the variables map is shared between the two terms, and
-common subterm $t$ of \term$_1$ and \term$_2$ will have the same
-associated variable number. So the first alternative should be
-avoided for terms belonging to the same ring theory.
-
-
-\begin{ErrMsgs}
-\item \errindex{not a valid ring equation}
- The conclusion of the goal is not provable in the corresponding ring
- theory.
-\item \errindex{arguments of ring\_simplify do not have all the same type}
- {\tt ring\_simplify} cannot simplify terms of several rings at the
- same time. Invoke the tactic once per ring structure.
-\item \errindex{cannot find a declared ring structure over {\tt term}}
- No ring has been declared for the type of the terms to be
- simplified. Use {\tt Add Ring} first.
-\item \errindex{cannot find a declared ring structure for equality
- {\tt term}}
- Same as above is the case of the {\tt ring} tactic.
-\end{ErrMsgs}
-
-\asection{Adding a ring structure
-\comindex{Add Ring}}
-
-Declaring a new ring consists in proving that a ring signature (a
-carrier set, an equality, and ring operations: {\tt
-Ring\_theory.ring\_theory} and {\tt Ring\_theory.semi\_ring\_theory})
-satisfies the ring axioms. Semi-rings (rings without $+$ inverse) are
-also supported. The equality can be either Leibniz equality, or any
-relation declared as a setoid (see~\ref{setoidtactics}). The definition
-of ring and semi-rings (see module {\tt Ring\_theory}) is:
-\begin{verbatim}
-Record ring_theory : Prop := mk_rt {
- Radd_0_l : forall x, 0 + x == x;
- Radd_sym : forall x y, x + y == y + x;
- Radd_assoc : forall x y z, x + (y + z) == (x + y) + z;
- Rmul_1_l : forall x, 1 * x == x;
- Rmul_sym : forall x y, x * y == y * x;
- Rmul_assoc : forall x y z, x * (y * z) == (x * y) * z;
- Rdistr_l : forall x y z, (x + y) * z == (x * z) + (y * z);
- Rsub_def : forall x y, x - y == x + -y;
- Ropp_def : forall x, x + (- x) == 0
-}.
-
-Record semi_ring_theory : Prop := mk_srt {
- SRadd_0_l : forall n, 0 + n == n;
- SRadd_sym : forall n m, n + m == m + n ;
- SRadd_assoc : forall n m p, n + (m + p) == (n + m) + p;
- SRmul_1_l : forall n, 1*n == n;
- SRmul_0_l : forall n, 0*n == 0;
- SRmul_sym : forall n m, n*m == m*n;
- SRmul_assoc : forall n m p, n*(m*p) == (n*m)*p;
- SRdistr_l : forall n m p, (n + m)*p == n*p + m*p
-}.
-\end{verbatim}
-
-This implementation of {\tt ring} also features a notion of constant
-that can be parameterized. This can be used to improve the handling of
-closed expressions when operations are effective. It consists in
-introducing a type of \emph{coefficients} and an implementation of the
-ring operations, and a morphism from the coefficient type to the ring
-carrier type. The morphism needs not be injective, nor surjective.
-
-As
-an example, one can consider the real numbers. The set of coefficients
-could be the rational numbers, upon which the ring operations can be
-implemented. The fact that there exists a morphism is defined by the
-following properties:
-\begin{verbatim}
-Record ring_morph : Prop := mkmorph {
- morph0 : [cO] == 0;
- morph1 : [cI] == 1;
- morph_add : forall x y, [x +! y] == [x]+[y];
- morph_sub : forall x y, [x -! y] == [x]-[y];
- morph_mul : forall x y, [x *! y] == [x]*[y];
- morph_opp : forall x, [-!x] == -[x];
- morph_eq : forall x y, x?=!y = true -> [x] == [y]
-}.
-
-Record semi_morph : Prop := mkRmorph {
- Smorph0 : [cO] == 0;
- Smorph1 : [cI] == 1;
- Smorph_add : forall x y, [x +! y] == [x]+[y];
- Smorph_mul : forall x y, [x *! y] == [x]*[y];
- Smorph_eq : forall x y, x?=!y = true -> [x] == [y]
-}.
-\end{verbatim}
-where {\tt c0} and {\tt cI} denote the 0 and 1 of the coefficient set,
-{\tt +!}, {\tt *!}, {\tt -!} are the implementations of the ring
-operations, {\tt ==} is the equality of the coefficients, {\tt ?+!} is
-an implementation of this equality, and {\tt [x]} is a notation for
-the image of {\tt x} by the ring morphism.
-
-
-
-Since {\tt Z} is an initial ring (and {\tt N} is an initial
-semi-ring), it can always be considered as a set of
-coefficients. There are basically three kinds of (semi-)rings:
-\begin{description}
-\item[abstract rings] to be used when operations are not
- effective. The set of coefficients is {\tt Z} (or {\tt N} for
- semi-rings).
-\item[computational rings] to be used when operations are
- effective. The set of coefficients is the ring itself. The user only
- has to provide an implementation for the equality.
-\item[customized ring] for other cases. The user has to provide the
- coefficient set and the morphism.
-\end{description}
-
-This implementation of ring can also recognize simple
-power expressions as ring expressions. A power function is specified by
-the following property:
-\begin{verbatim}
-Section POWER.
- Variable Cpow : Set.
- Variable Cp_phi : N -> Cpow.
- Variable rpow : R -> Cpow -> R.
-
- Record power_theory : Prop := mkpow_th {
- rpow_pow_N : forall r n, req (rpow r (Cp_phi n)) (pow_N rI rmul r n)
- }.
-
-End POWER.
-\end{verbatim}
-
-
-The syntax for adding a new ring is {\tt Add Ring $name$ : $ring$
-($mod_1$,\dots,$mod_2$)}. The name is not relevant. It is just used
-for error messages. The term $ring$ is a proof that the ring signature
-satisfies the (semi-)ring axioms. The optional list of modifiers is
-used to tailor the behavior of the tactic. The following list
-describes their syntax and effects:
-\begin{description}
-\item[abstract] declares the ring as abstract. This is the default.
-\item[decidable \term] declares the ring as computational. The expression
- \term{} is
- the correctness proof of an equality test {\tt ?=!} (which should be
- evaluable). Its type should be of
- the form {\tt forall x y, x?=!y = true $\rightarrow$ x == y}.
-\item[morphism \term] declares the ring as a customized one. The expression
- \term{} is
- a proof that there exists a morphism between a set of coefficient
- and the ring carrier (see {\tt Ring\_theory.ring\_morph} and {\tt
- Ring\_theory.semi\_morph}).
-\item[setoid \term$_1$ \term$_2$] forces the use of given setoid. The
- expression \term$_1$ is a proof that the equality is indeed a setoid
- (see {\tt Setoid.Setoid\_Theory}), and \term$_2$ a proof that the
- ring operations are morphisms (see {\tt Ring\_theory.ring\_eq\_ext} and
- {\tt Ring\_theory.sring\_eq\_ext}). This modifier needs not be used if the
- setoid and morphisms have been declared.
-\item[constants [\ltac]] specifies a tactic expression that, given a term,
- returns either an object of the coefficient set that is mapped to
- the expression via the morphism, or returns {\tt
- InitialRing.NotConstant}. The default behavior is to map only 0 and
- 1 to their counterpart in the coefficient set. This is generally not
- desirable for non trivial computational rings.
-\item[preprocess [\ltac]]
- specifies a tactic that is applied as a preliminary step for {\tt
- ring} and {\tt ring\_simplify}. It can be used to transform a goal
- so that it is better recognized. For instance, {\tt S n} can be
- changed to {\tt plus 1 n}.
-\item[postprocess [\ltac]] specifies a tactic that is applied as a final step
- for {\tt ring\_simplify}. For instance, it can be used to undo
- modifications of the preprocessor.
-\item[power\_tac {\term} [\ltac]] allows {\tt ring} and {\tt ring\_simplify} to
- recognize power expressions with a constant positive integer exponent
- (example: $x^2$). The term {\term} is a proof that a given power function
- satisfies the specification of a power function ({\term} has to be a
- proof of {\tt Ring\_theory.power\_theory}) and {\ltac} specifies a
- tactic expression that, given a term, ``abstracts'' it into an
- object of type {\tt N} whose interpretation via {\tt Cp\_phi} (the
- evaluation function of power coefficient) is the original term, or
- returns {\tt InitialRing.NotConstant} if not a constant coefficient
- (i.e. {\ltac} is the inverse function of {\tt Cp\_phi}).
- See files {\tt plugins/setoid\_ring/ZArithRing.v} and
- {\tt plugins/setoid\_ring/RealField.v} for examples.
- By default the tactic does not recognize power expressions as ring
- expressions.
-\item[sign {\term}] allows {\tt ring\_simplify} to use a minus operation
- when outputting its normal form, i.e writing $x - y$ instead of $x + (-y)$.
- The term {\term} is a proof that a given sign function indicates expressions
- that are signed ({\term} has to be a
- proof of {\tt Ring\_theory.get\_sign}). See {\tt plugins/setoid\_ring/InitialRing.v} for examples of sign function.
-\item[div {\term}] allows {\tt ring} and {\tt ring\_simplify} to use monomials
-with coefficient other than 1 in the rewriting. The term {\term} is a proof that a given division function satisfies the specification of an euclidean
- division function ({\term} has to be a
- proof of {\tt Ring\_theory.div\_theory}). For example, this function is
- called when trying to rewrite $7x$ by $2x = z$ to tell that $7 = 3 * 2 + 1$.
- See {\tt plugins/setoid\_ring/InitialRing.v} for examples of div function.
-
-\end{description}
-
-
-\begin{ErrMsgs}
-\item \errindex{bad ring structure}
- The proof of the ring structure provided is not of the expected type.
-\item \errindex{bad lemma for decidability of equality}
- The equality function provided in the case of a computational ring
- has not the expected type.
-\item \errindex{ring {\it operation} should be declared as a morphism}
- A setoid associated to the carrier of the ring structure as been
- found, but the ring operation should be declared as
- morphism. See~\ref{setoidtactics}.
-\end{ErrMsgs}
-
-\asection{How does it work?}
-
-The code of \texttt{ring} is a good example of tactic written using
-\textit{reflection}. What is reflection? Basically, it is writing
-\Coq{} tactics in \Coq, rather than in \ocaml. From the philosophical
-point of view, it is using the ability of the Calculus of
-Constructions to speak and reason about itself. For the \texttt{ring}
-tactic we used \Coq\ as a programming language and also as a proof
-environment to build a tactic and to prove it correctness.
-
-The interested reader is strongly advised to have a look at the file
-\texttt{Ring\_polynom.v}. Here a type for polynomials is defined:
-
-\begin{small}
-\begin{flushleft}
-\begin{verbatim}
-Inductive PExpr : Type :=
- | PEc : C -> PExpr
- | PEX : positive -> PExpr
- | PEadd : PExpr -> PExpr -> PExpr
- | PEsub : PExpr -> PExpr -> PExpr
- | PEmul : PExpr -> PExpr -> PExpr
- | PEopp : PExpr -> PExpr
- | PEpow : PExpr -> N -> PExpr.
-\end{verbatim}
-\end{flushleft}
-\end{small}
-
-Polynomials in normal form are defined as:
-\begin{small}
-\begin{flushleft}
-\begin{verbatim}
-Inductive Pol : Type :=
- | Pc : C -> Pol
- | Pinj : positive -> Pol -> Pol
- | PX : Pol -> positive -> Pol -> Pol.
-\end{verbatim}
-\end{flushleft}
-\end{small}
-where {\tt Pinj n P} denotes $P$ in which $V_i$ is replaced by
-$V_{i+n}$, and {\tt PX P n Q} denotes $P \otimes V_1^{n} \oplus Q'$,
-$Q'$ being $Q$ where $V_i$ is replaced by $V_{i+1}$.
-
-
-Variables maps are represented by list of ring elements, and two
-interpretation functions, one that maps a variables map and a
-polynomial to an element of the concrete ring, and the second one that
-does the same for normal forms:
-\begin{small}
-\begin{flushleft}
-\begin{verbatim}
-Definition PEeval : list R -> PExpr -> R := [...].
-Definition Pphi_dev : list R -> Pol -> R := [...].
-\end{verbatim}
-\end{flushleft}
-\end{small}
-
-A function to normalize polynomials is defined, and the big theorem is
-its correctness w.r.t interpretation, that is:
-
-\begin{small}
-\begin{flushleft}
-\begin{verbatim}
-Definition norm : PExpr -> Pol := [...].
-Lemma Pphi_dev_ok :
- forall l pe npe, norm pe = npe -> PEeval l pe == Pphi_dev l npe.
-\end{verbatim}
-\end{flushleft}
-\end{small}
-
-So now, what is the scheme for a normalization proof? Let \texttt{p}
-be the polynomial expression that the user wants to normalize. First a
-little piece of ML code guesses the type of \texttt{p}, the ring
-theory \texttt{T} to use, an abstract polynomial \texttt{ap} and a
-variables map \texttt{v} such that \texttt{p} is
-$\beta\delta\iota$-equivalent to \verb|(PEeval v ap)|. Then we
-replace it by \verb|(Pphi_dev v (norm ap))|, using the
-main correctness theorem and we reduce it to a concrete expression
-\texttt{p'}, which is the concrete normal form of
-\texttt{p}. This is summarized in this diagram:
-\begin{center}
-\begin{tabular}{rcl}
-\texttt{p} & $\rightarrow_{\beta\delta\iota}$
- & \texttt{(PEeval v ap)} \\
- & & $=_{\mathrm{(by\ the\ main\ correctness\ theorem)}}$ \\
-\texttt{p'}
- & $\leftarrow_{\beta\delta\iota}$
- & \texttt{(Pphi\_dev v (norm ap))}
-\end{tabular}
-\end{center}
-The user do not see the right part of the diagram.
-From outside, the tactic behaves like a
-$\beta\delta\iota$ simplification extended with AC rewriting rules.
-Basically, the proof is only the application of the main
-correctness theorem to well-chosen arguments.
-
-
-\asection{Dealing with fields
-\tacindex{field}
-\tacindex{field\_simplify}
-\tacindex{field\_simplify\_eq}}
-
-
-The {\tt field} tactic is an extension of the {\tt ring} to deal with
-rational expression. Given a rational expression $F=0$. It first reduces the
-expression $F$ to a common denominator $N/D= 0$ where $N$ and $D$ are two ring
-expressions.
-For example, if we take $F = (1 - 1/x) x - x + 1$, this gives
-$ N= (x -1) x - x^2 + x$ and $D= x$. It then calls {\tt ring}
-to solve $N=0$. Note that {\tt field} also generates non-zero conditions
-for all the denominators it encounters in the reduction.
-In our example, it generates the condition $x \neq 0$. These
-conditions appear as one subgoal which is a conjunction if there are
-several denominators.
-Non-zero conditions are {\it always} polynomial expressions. For example
-when reducing the expression $1/(1 + 1/x)$, two side conditions are
-generated: $x\neq 0$ and $x + 1 \neq 0$. Factorized expressions are
-broken since a field is an integral domain, and when the equality test
-on coefficients is complete w.r.t. the equality of the target field,
-constants can be proven different from zero automatically.
-
-The tactic must be loaded by \texttt{Require Import Field}. New field
-structures can be declared to the system with the \texttt{Add Field}
-command (see below). The field of real numbers is defined in module
-\texttt{RealField} (in texttt{plugins/setoid\_ring}). It is exported
-by module \texttt{Rbase}, so that requiring \texttt{Rbase} or
-\texttt{Reals} is enough to use the field tactics on real
-numbers. Rational numbers in canonical form are also declared as a
-field in module \texttt{Qcanon}.
-
-
-\Example
-\begin{coq_eval}
-Reset Initial.
-\end{coq_eval}
-\begin{coq_example*}
-Require Import Reals.
-\end{coq_example*}
-\begin{coq_example}
-Open Scope R_scope.
-Goal forall x, x <> 0 ->
- (1 - 1/x) * x - x + 1 = 0.
-\end{coq_example}
-\begin{coq_example}
-intros; field; auto.
-\end{coq_example}
-\begin{coq_eval}
-Abort.
-\end{coq_eval}
-\begin{coq_example}
-Goal forall x y, y <> 0 -> y = x -> x/y = 1.
-\end{coq_example}
-\begin{coq_example}
-intros x y H H1; field [H1]; auto.
-\end{coq_example}
-\begin{coq_eval}
-Reset Initial.
-\end{coq_eval}
-
-\begin{Variants}
- \item {\tt field [\term$_1$ {\ldots} \term$_n$]} decides the equality of two
- terms modulo field operations and rewriting of the equalities
- defined by \term$_1$ {\ldots} \term$_n$. Each of \term$_1$
- {\ldots} \term$_n$ has to be a proof of some equality $m = p$,
- where $m$ is a monomial (after ``abstraction''),
- $p$ a polynomial and $=$ the corresponding equality of the field structure.
- Beware that rewriting works with the equality $m=p$ only if $p$ is a
- polynomial since rewriting is handled by the underlying {\tt ring}
- tactic.
- \item {\tt field\_simplify}
- performs the simplification in the conclusion of the goal, $F_1 = F_2$
- becomes $N_1/D_1 = N_2/D_2$. A normalization step (the same as the
- one for rings) is then applied to $N_1$, $D_1$, $N_2$ and
- $D_2$. This way, polynomials remain in factorized form during the
- fraction simplifications. This yields smaller expressions when
- reducing to the same denominator since common factors can be
- canceled.
-
- \item {\tt field\_simplify [\term$_1$ {\ldots} \term$_n$]}
- performs the simplification in the conclusion of the goal using
- the equalities
- defined by \term$_1$ {\ldots} \term$_n$.
-
- \item {\tt field\_simplify [\term$_1$ {\ldots} \term$_n$] $t_1$ \ldots
-$t_m$}
- performs the simplification in the terms $t_1$ \ldots $t_m$
- of the conclusion of the goal using
- the equalities
- defined by \term$_1$ {\ldots} \term$_n$.
-
- \item {\tt field\_simplify in $H$}
- performs the simplification in the assumption $H$.
-
- \item {\tt field\_simplify [\term$_1$ {\ldots} \term$_n$] in $H$}
- performs the simplification in the assumption $H$ using
- the equalities
- defined by \term$_1$ {\ldots} \term$_n$.
-
- \item {\tt field\_simplify [\term$_1$ {\ldots} \term$_n$] $t_1$ \ldots
-$t_m$ in $H$}
- performs the simplification in the terms $t_1$ \ldots $t_n$
- of the assumption $H$ using
- the equalities
- defined by \term$_1$ {\ldots} \term$_m$.
-
- \item {\tt field\_simplify\_eq}
- performs the simplification in the conclusion of the goal removing
- the denominator. $F_1 = F_2$
- becomes $N_1 D_2 = N_2 D_1$.
-
- \item {\tt field\_simplify\_eq [\term$_1$ {\ldots} \term$_n$]}
- performs the simplification in the conclusion of the goal using
- the equalities
- defined by \term$_1$ {\ldots} \term$_n$.
-
- \item {\tt field\_simplify\_eq} in $H$
- performs the simplification in the assumption $H$.
-
- \item {\tt field\_simplify\_eq [\term$_1$ {\ldots} \term$_n$] in $H$}
- performs the simplification in the assumption $H$ using
- the equalities
- defined by \term$_1$ {\ldots} \term$_n$.
-\end{Variants}
-
-\asection{Adding a new field structure
-\comindex{Add Field}}
-
-Declaring a new field consists in proving that a field signature (a
-carrier set, an equality, and field operations: {\tt
-Field\_theory.field\_theory} and {\tt Field\_theory.semi\_field\_theory})
-satisfies the field axioms. Semi-fields (fields without $+$ inverse) are
-also supported. The equality can be either Leibniz equality, or any
-relation declared as a setoid (see~\ref{setoidtactics}). The definition
-of fields and semi-fields is:
-\begin{verbatim}
-Record field_theory : Prop := mk_field {
- F_R : ring_theory rO rI radd rmul rsub ropp req;
- F_1_neq_0 : ~ 1 == 0;
- Fdiv_def : forall p q, p / q == p * / q;
- Finv_l : forall p, ~ p == 0 -> / p * p == 1
-}.
-
-Record semi_field_theory : Prop := mk_sfield {
- SF_SR : semi_ring_theory rO rI radd rmul req;
- SF_1_neq_0 : ~ 1 == 0;
- SFdiv_def : forall p q, p / q == p * / q;
- SFinv_l : forall p, ~ p == 0 -> / p * p == 1
-}.
-\end{verbatim}
-
-The result of the normalization process is a fraction represented by
-the following type:
-\begin{verbatim}
-Record linear : Type := mk_linear {
- num : PExpr C;
- denum : PExpr C;
- condition : list (PExpr C)
-}.
-\end{verbatim}
-where {\tt num} and {\tt denum} are the numerator and denominator;
-{\tt condition} is a list of expressions that have appeared as a
-denominator during the normalization process. These expressions must
-be proven different from zero for the correctness of the algorithm.
-
-The syntax for adding a new field is {\tt Add Field $name$ : $field$
-($mod_1$,\dots,$mod_2$)}. The name is not relevant. It is just used
-for error messages. $field$ is a proof that the field signature
-satisfies the (semi-)field axioms. The optional list of modifiers is
-used to tailor the behavior of the tactic. Since field tactics are
-built upon ring tactics, all modifiers of the {\tt Add Ring}
-apply. There is only one specific modifier:
-\begin{description}
-\item[completeness \term] allows the field tactic to prove
- automatically that the image of non-zero coefficients are mapped to
- non-zero elements of the field. \term is a proof of {\tt forall x y,
- [x] == [y] -> x?=!y = true}, which is the completeness of equality
- on coefficients w.r.t. the field equality.
-\end{description}
-
-\asection{History of \texttt{ring}}
-
-First Samuel Boutin designed the tactic \texttt{ACDSimpl}.
-This tactic did lot of rewriting. But the proofs
-terms generated by rewriting were too big for \Coq's type-checker.
-Let us see why:
-
-\begin{coq_eval}
-Require Import ZArith.
-Open Scope Z_scope.
-\end{coq_eval}
-\begin{coq_example}
-Goal forall x y z:Z, x + 3 + y + y * z = x + 3 + y + z * y.
-\end{coq_example}
-\begin{coq_example*}
-intros; rewrite (Z.mul_comm y z); reflexivity.
-Save toto.
-\end{coq_example*}
-\begin{coq_example}
-Print toto.
-\end{coq_example}
-
-At each step of rewriting, the whole context is duplicated in the proof
-term. Then, a tactic that does hundreds of rewriting generates huge proof
-terms. Since \texttt{ACDSimpl} was too slow, Samuel Boutin rewrote it
-using reflection (see his article in TACS'97 \cite{Bou97}). Later, the
-stuff was rewritten by Patrick
-Loiseleur: the new tactic does not any more require \texttt{ACDSimpl}
-to compile and it makes use of $\beta\delta\iota$-reduction
-not only to replace the rewriting steps, but also to achieve the
-interleaving of computation and
-reasoning (see \ref{DiscussReflection}). He also wrote a
-few ML code for the \texttt{Add Ring} command, that allow to register
-new rings dynamically.
-
-Proofs terms generated by \texttt{ring} are quite small, they are
-linear in the number of $\oplus$ and $\otimes$ operations in the
-normalized terms. Type-checking those terms requires some time because it
-makes a large use of the conversion rule, but
-memory requirements are much smaller.
-
-\asection{Discussion}
-\label{DiscussReflection}
-
-Efficiency is not the only motivation to use reflection
-here. \texttt{ring} also deals with constants, it rewrites for example the
-expression $34 + 2*x -x + 12$ to the expected result $x + 46$. For the
-tactic \texttt{ACDSimpl}, the only constants were 0 and 1. So the
-expression $34 + 2*(x - 1) + 12$ is interpreted as
-$V_0 \oplus V_1 \otimes (V_2 \ominus 1) \oplus V_3$,
-with the variables mapping
-$\{V_0 \mt 34; V_1 \mt 2; V_2 \mt x; V_3 \mt 12 \}$. Then it is
-rewritten to $34 - x + 2*x + 12$, very far from the expected
-result. Here rewriting is not sufficient: you have to do some kind of
-reduction (some kind of \textit{computation}) to achieve the
-normalization.
-
-The tactic \texttt{ring} is not only faster than a classical one:
-using reflection, we get for free integration of computation and
-reasoning that would be very complex to implement in the classic fashion.
-
-Is it the ultimate way to write tactics? The answer is: yes and
-no. The \texttt{ring} tactic uses intensively the conversion rule of
-\CIC, that is replaces proof by computation the most as it is
-possible. It can be useful in all situations where a classical tactic
-generates huge proof terms. Symbolic Processing and Tautologies are in
-that case. But there are also tactics like \texttt{auto} or
-\texttt{linear} that do many complex computations, using side-effects
-and backtracking, and generate a small proof term. Clearly, it would
-be significantly less efficient to replace them by tactics using
-reflection.
-
-Another idea suggested by Benjamin Werner: reflection could be used to
-couple an external tool (a rewriting program or a model checker) with
-\Coq. We define (in \Coq) a type of terms, a type of \emph{traces},
-and prove a correction theorem that states that \emph{replaying
-traces} is safe w.r.t some interpretation. Then we let the external
-tool do every computation (using side-effects, backtracking,
-exception, or others features that are not available in pure lambda
-calculus) to produce the trace: now we can check in Coq{} that the
-trace has the expected semantic by applying the correction lemma.
-
-%%% Local Variables:
-%%% mode: latex
-%%% TeX-master: "Reference-Manual"
-%%% End:
diff --git a/doc/refman/Program.tex b/doc/refman/Program.tex
deleted file mode 100644
index 1e204dc83..000000000
--- a/doc/refman/Program.tex
+++ /dev/null
@@ -1,329 +0,0 @@
-\achapter{\Program{}}
-%HEVEA\cutname{program.html}
-\label{Program}
-\aauthor{Matthieu Sozeau}
-\index{Program}
-
-We present here the \Program\ tactic commands, used to build certified
-\Coq\ programs, elaborating them from their algorithmic skeleton and a
-rich specification \cite{Sozeau06}. It can be thought of as a dual of extraction
-(see Chapter~\ref{Extraction}). The goal of \Program~is to program as in a regular
-functional programming language whilst using as rich a specification as
-desired and proving that the code meets the specification using the whole \Coq{} proof
-apparatus. This is done using a technique originating from the
-``Predicate subtyping'' mechanism of \PVS \cite{Rushby98}, which generates type-checking
-conditions while typing a term constrained to a particular type.
-Here we insert existential variables in the term, which must be filled
-with proofs to get a complete \Coq\ term. \Program\ replaces the
-\Program\ tactic by Catherine Parent \cite{Parent95b} which had a similar goal but is no longer
-maintained.
-
-The languages available as input are currently restricted to \Coq's term
-language, but may be extended to \ocaml{}, \textsc{Haskell} and others
-in the future. We use the same syntax as \Coq\ and permit to use implicit
-arguments and the existing coercion mechanism.
-Input terms and types are typed in an extended system (\Russell) and
-interpreted into \Coq\ terms. The interpretation process may produce
-some proof obligations which need to be resolved to create the final term.
-
-\asection{Elaborating programs}
-The main difference from \Coq\ is that an object in a type $T : \Set$
-can be considered as an object of type $\{ x : T~|~P\}$ for any
-wellformed $P : \Prop$.
-If we go from $T$ to the subset of $T$ verifying property $P$, we must
-prove that the object under consideration verifies it. \Russell\ will
-generate an obligation for every such coercion. In the other direction,
-\Russell\ will automatically insert a projection.
-
-Another distinction is the treatment of pattern-matching. Apart from the
-following differences, it is equivalent to the standard {\tt match}
-operation (see Section~\ref{Caseexpr}).
-\begin{itemize}
-\item Generation of equalities. A {\tt match} expression is always
- generalized by the corresponding equality. As an example,
- the expression:
-
-\begin{verbatim}
- match x with
- | 0 => t
- | S n => u
- end.
-\end{verbatim}
-will be first rewritten to:
-\begin{verbatim}
- (match x as y return (x = y -> _) with
- | 0 => fun H : x = 0 -> t
- | S n => fun H : x = S n -> u
- end) (eq_refl n).
-\end{verbatim}
-
- This permits to get the proper equalities in the context of proof
- obligations inside clauses, without which reasoning is very limited.
-
-\item Generation of inequalities. If a pattern intersects with a
- previous one, an inequality is added in the context of the second
- branch. See for example the definition of {\tt div2} below, where the second
- branch is typed in a context where $\forall p, \_ <> S (S p)$.
-
-\item Coercion. If the object being matched is coercible to an inductive
- type, the corresponding coercion will be automatically inserted. This also
- works with the previous mechanism.
-
-\end{itemize}
-
-There are options to control the generation of equalities
-and coercions.
-
-\begin{itemize}
-\item {\tt Unset Program Cases}\optindex{Program Cases} This deactivates
- the special treatment of pattern-matching generating equalities and
- inequalities when using \Program\ (it is on by default). All
- pattern-matchings and let-patterns are handled using the standard
- algorithm of Coq (see Section~\ref{Mult-match-full}) when this option is
- deactivated.
-\item {\tt Unset Program Generalized Coercion}\optindex{Program
- Generalized Coercion} This deactivates the coercion of general
- inductive types when using \Program\ (the option is on by default).
- Coercion of subset types and pairs is still active in this case.
-\end{itemize}
-
-\subsection{Syntactic control over equalities}
-\label{ProgramSyntax}
-To give more control over the generation of equalities, the typechecker will
-fall back directly to \Coq's usual typing of dependent pattern-matching
-if a {\tt return} or {\tt in} clause is specified. Likewise,
-the {\tt if} construct is not treated specially by \Program{} so boolean
-tests in the code are not automatically reflected in the obligations.
-One can use the {\tt dec} combinator to get the correct hypotheses as in:
-
-\begin{coq_eval}
-Require Import Program Arith.
-\end{coq_eval}
-\begin{coq_example}
-Program Definition id (n : nat) : { x : nat | x = n } :=
- if dec (leb n 0) then 0
- else S (pred n).
-\end{coq_example}
-
-The let tupling construct {\tt let (x1, ..., xn) := t in b}
-does not produce an equality, contrary to the let pattern construct
-{\tt let '(x1, ..., xn) := t in b}.
-Also, {\tt {\term}:>} explicitly asks the system to coerce {\tt \term} to its
-support type. It can be useful in notations, for example:
-\begin{coq_example}
-Notation " x `= y " := (@eq _ (x :>) (y :>)) (only parsing).
-\end{coq_example}
-
-This notation denotes equality on subset types using equality on their
-support types, avoiding uses of proof-irrelevance that would come up
-when reasoning with equality on the subset types themselves.
-
-The next two commands are similar to their standard counterparts
-Definition (see Section~\ref{Basic-definitions}) and Fixpoint (see Section~\ref{Fixpoint}) in that
-they define constants. However, they may require the user to prove some
-goals to construct the final definitions.
-
-\subsection{\tt Program Definition {\ident} := {\term}.
- \comindex{Program Definition}\label{ProgramDefinition}}
-
-This command types the value {\term} in \Russell\ and generates proof
-obligations. Once solved using the commands shown below, it binds the final
-\Coq\ term to the name {\ident} in the environment.
-
-\begin{ErrMsgs}
-\item \errindex{{\ident} already exists}
-\end{ErrMsgs}
-
-\begin{Variants}
-\item {\tt Program Definition {\ident} {\tt :}{\term$_1$} :=
- {\term$_2$}.}\\
- It interprets the type {\term$_1$}, potentially generating proof
- obligations to be resolved. Once done with them, we have a \Coq\ type
- {\term$_1'$}. It then checks that the type of the interpretation of
- {\term$_2$} is coercible to {\term$_1'$}, and registers {\ident} as
- being of type {\term$_1'$} once the set of obligations generated
- during the interpretation of {\term$_2$} and the aforementioned
- coercion derivation are solved.
-\item {\tt Program Definition {\ident} {\binder$_1$}\ldots{\binder$_n$}
- {\tt :}\term$_1$ {\tt :=} {\term$_2$}.}\\
- This is equivalent to \\
- {\tt Program Definition\,{\ident}\,{\tt :\,forall} %
- {\binder$_1$}\ldots{\binder$_n$}{\tt ,}\,\term$_1$\,{\tt :=}} \\
- \qquad {\tt fun}\,{\binder$_1$}\ldots{\binder$_n$}\,{\tt =>}\,{\term$_2$}\,%
- {\tt .}
-\end{Variants}
-
-\begin{ErrMsgs}
-\item \errindex{In environment {\dots} the term: {\term$_2$} does not have type
- {\term$_1$}}.\\
- \texttt{Actually, it has type {\term$_3$}}.
-\end{ErrMsgs}
-
-\SeeAlso Sections \ref{Opaque}, \ref{Transparent}, \ref{unfold}
-
-\subsection{\tt Program Fixpoint {\ident} {\params} {\tt \{order\}} : type := \term
- \comindex{Program Fixpoint}
- \label{ProgramFixpoint}}
-
-The structural fixpoint operator behaves just like the one of Coq
-(see Section~\ref{Fixpoint}), except it may also generate obligations.
-It works with mutually recursive definitions too.
-
-\begin{coq_eval}
-Admit Obligations.
-\end{coq_eval}
-\begin{coq_example}
-Program Fixpoint div2 (n : nat) : { x : nat | n = 2 * x \/ n = 2 * x + 1 } :=
- match n with
- | S (S p) => S (div2 p)
- | _ => O
- end.
-\end{coq_example}
-
-Here we have one obligation for each branch (branches for \verb:0: and \verb:(S 0): are
-automatically generated by the pattern-matching compilation algorithm).
-\begin{coq_example}
- Obligation 1.
-\end{coq_example}
-
-One can use a well-founded order or a measure as termination orders using the syntax:
-\begin{coq_eval}
-Reset Initial.
-Require Import Arith.
-Require Import Program.
-\end{coq_eval}
-\begin{coq_example*}
-Program Fixpoint div2 (n : nat) {measure n} :
- { x : nat | n = 2 * x \/ n = 2 * x + 1 } :=
- match n with
- | S (S p) => S (div2 p)
- | _ => O
- end.
-\end{coq_example*}
-
-The order annotation can be either:
-\begin{itemize}
-\item {\tt measure f (R)?} where {\tt f} is a value of type {\tt X}
- computed on any subset of the arguments and the optional
- (parenthesised) term {\tt (R)} is a relation
- on {\tt X}. By default {\tt X} defaults to {\tt nat} and {\tt R} to
- {\tt lt}.
-\item {\tt wf R x} which is equivalent to {\tt measure x (R)}.
-\end{itemize}
-
-\paragraph{Caution}
-When defining structurally recursive functions, the
-generated obligations should have the prototype of the currently defined functional
-in their context. In this case, the obligations should be transparent
-(e.g. defined using {\tt Defined}) so that the guardedness condition on
-recursive calls can be checked by the
-kernel's type-checker. There is an optimization in the generation of
-obligations which gets rid of the hypothesis corresponding to the
-functional when it is not necessary, so that the obligation can be
-declared opaque (e.g. using {\tt Qed}). However, as soon as it appears in the
-context, the proof of the obligation is \emph{required} to be declared transparent.
-
-No such problems arise when using measures or well-founded recursion.
-
-\subsection{\tt Program Lemma {\ident} : type.
- \comindex{Program Lemma}
- \label{ProgramLemma}}
-
-The \Russell\ language can also be used to type statements of logical
-properties. It will generate obligations, try to solve them
-automatically and fail if some unsolved obligations remain.
-In this case, one can first define the lemma's
-statement using {\tt Program Definition} and use it as the goal afterwards.
-Otherwise the proof will be started with the elaborated version as a goal.
-The {\tt Program} prefix can similarly be used as a prefix for {\tt Variable}, {\tt
- Hypothesis}, {\tt Axiom} etc...
-
-\section{Solving obligations}
-The following commands are available to manipulate obligations. The
-optional identifier is used when multiple functions have unsolved
-obligations (e.g. when defining mutually recursive blocks). The optional
-tactic is replaced by the default one if not specified.
-
-\begin{itemize}
-\item {\tt [Local|Global] Obligation Tactic := \tacexpr}\comindex{Obligation Tactic}
- Sets the default obligation
- solving tactic applied to all obligations automatically, whether to
- solve them or when starting to prove one, e.g. using {\tt Next}.
- Local makes the setting last only for the current module. Inside
- sections, local is the default.
-\item {\tt Show Obligation Tactic}\comindex{Show Obligation Tactic}
- Displays the current default tactic.
-\item {\tt Obligations [of \ident]}\comindex{Obligations} Displays all remaining
- obligations.
-\item {\tt Obligation num [of \ident]}\comindex{Obligation} Start the proof of
- obligation {\tt num}.
-\item {\tt Next Obligation [of \ident]}\comindex{Next Obligation} Start the proof of the next
- unsolved obligation.
-\item {\tt Solve Obligations [of \ident] [with
- \tacexpr]}\comindex{Solve Obligations}
- Tries to solve
- each obligation of \ident using the given tactic or the default one.
-\item {\tt Solve All Obligations [with \tacexpr]} Tries to solve
- each obligation of every program using the given tactic or the default
- one (useful for mutually recursive definitions).
-\item {\tt Admit Obligations [of \ident]}\comindex{Admit Obligations}
- Admits all obligations (does not work with structurally recursive programs).
-\item {\tt Preterm [of \ident]}\comindex{Preterm}
- Shows the term that will be fed to
- the kernel once the obligations are solved. Useful for debugging.
-\item {\tt Set Transparent Obligations}\optindex{Transparent Obligations}
- Control whether all obligations should be declared as transparent (the
- default), or if the system should infer which obligations can be declared opaque.
-\item {\tt Set Hide Obligations}\optindex{Hide Obligations}
- Control whether obligations appearing in the term should be hidden
- as implicit arguments of the special constant
- \texttt{Program.Tactics.obligation}.
-\item {\tt Set Shrink Obligations}\optindex{Shrink Obligations}
-\emph{Deprecated since 8.7}
- This option (on by default) controls whether obligations should have their
- context minimized to the set of variables used in the proof of the
- obligation, to avoid unnecessary dependencies.
-\end{itemize}
-
-The module {\tt Coq.Program.Tactics} defines the default tactic for solving
-obligations called {\tt program\_simpl}. Importing
-{\tt Coq.Program.Program} also adds some useful notations, as documented in the file itself.
-
-\section{Frequently Asked Questions
- \label{ProgramFAQ}}
-
-\begin{itemize}
-\item {Ill-formed recursive definitions}
- This error can happen when one tries to define a
- function by structural recursion on a subset object, which means the Coq
- function looks like:
-
- \verb$Program Fixpoint f (x : A | P) := match x with A b => f b end.$
-
- Supposing $b : A$, the argument at the recursive call to f is not a
- direct subterm of x as b is wrapped inside an {\tt exist} constructor to build
- an object of type \verb${x : A | P}$. Hence the definition is rejected
- by the guardedness condition checker. However one can use
- wellfounded recursion on subset objects like this:
-
-\begin{verbatim}
-Program Fixpoint f (x : A | P) { measure (size x) } :=
- match x with A b => f b end.
-\end{verbatim}
-
- One will then just have to prove that the measure decreases at each recursive
- call. There are three drawbacks though:
- \begin{enumerate}
- \item A measure function has to be defined;
- \item The reduction is a little more involved, although it works well
- using lazy evaluation;
- \item Mutual recursion on the underlying inductive type isn't possible
- anymore, but nested mutual recursion is always possible.
- \end{enumerate}
-\end{itemize}
-
-%%% Local Variables:
-%%% mode: latex
-%%% TeX-master: "Reference-Manual"
-%%% compile-command: "BIBINPUTS=\".\" make QUICK=1 -C ../.. doc/refman/Reference-Manual.pdf"
-%%% End:
diff --git a/doc/refman/Reference-Manual.tex b/doc/refman/Reference-Manual.tex
index 7ce28ccf8..cfb3c625b 100644
--- a/doc/refman/Reference-Manual.tex
+++ b/doc/refman/Reference-Manual.tex
@@ -117,12 +117,6 @@ Options A and B of the licence are {\em not} elected.}
%END LATEX
\part{Addendum to the Reference Manual}
\include{AddRefMan-pre}%
-\include{Coercion.v}%
-\include{Extraction.v}%
-\include{Program.v}%
-\include{Polynom.v}% = Ring
-\include{Nsatz.v}%
-\include{Setoid.v}% Tactique pour les setoides
\include{AsyncProofs}% Paral-ITP
\include{Universes.v}% Universe polymorphes
\include{Misc.v}
diff --git a/doc/refman/Setoid.tex b/doc/refman/Setoid.tex
deleted file mode 100644
index b7b343112..000000000
--- a/doc/refman/Setoid.tex
+++ /dev/null
@@ -1,842 +0,0 @@
-\newtheorem{cscexample}{Example}
-
-\achapter{\protect{Generalized rewriting}}
-%HEVEA\cutname{setoid.html}
-\aauthor{Matthieu Sozeau}
-\label{setoids}
-
-This chapter presents the extension of several equality related tactics
-to work over user-defined structures (called setoids) that are equipped
-with ad-hoc equivalence relations meant to behave as equalities.
-Actually, the tactics have also been generalized to relations weaker
-then equivalences (e.g. rewriting systems). The toolbox also extends the
-automatic rewriting capabilities of the system, allowing the specification of
-custom strategies for rewriting.
-
-This documentation is adapted from the previous setoid documentation by
-Claudio Sacerdoti Coen (based on previous work by Cl\'ement Renard).
-The new implementation is a drop-in replacement for the old one,\footnote{Nicolas
-Tabareau helped with the gluing.} hence most of the documentation still applies.
-
-The work is a complete rewrite of the previous implementation, based on
-the type class infrastructure. It also improves on and generalizes
-the previous implementation in several ways:
-\begin{itemize}
-\item User-extensible algorithm. The algorithm is separated in two
- parts: generations of the rewriting constraints (done in ML) and
- solving of these constraints using type class resolution. As type
- class resolution is extensible using tactics, this allows users to define
- general ways to solve morphism constraints.
-\item Sub-relations. An example extension to the base algorithm is the
- ability to define one relation as a subrelation of another so that
- morphism declarations on one relation can be used automatically for
- the other. This is done purely using tactics and type class search.
-\item Rewriting under binders. It is possible to rewrite under binders
- in the new implementation, if one provides the proper
- morphisms. Again, most of the work is handled in the tactics.
-\item First-class morphisms and signatures. Signatures and morphisms are
- ordinary Coq terms, hence they can be manipulated inside Coq, put
- inside structures and lemmas about them can be proved inside the
- system. Higher-order morphisms are also allowed.
-\item Performance. The implementation is based on a depth-first search for the first
- solution to a set of constraints which can be as fast as linear in the
- size of the term, and the size of the proof term is linear
- in the size of the original term. Besides, the extensibility allows the
- user to customize the proof search if necessary.
-\end{itemize}
-
-\asection{Introduction to generalized rewriting}
-
-\subsection{Relations and morphisms}
-
-A parametric \emph{relation} \texttt{R} is any term of type
-\texttt{forall ($x_1$:$T_1$) \ldots ($x_n$:$T_n$), relation $A$}. The
-expression $A$, which depends on $x_1$ \ldots $x_n$, is called the
-\emph{carrier} of the relation and \texttt{R} is
-said to be a relation over \texttt{A}; the list $x_1,\ldots,x_n$
-is the (possibly empty) list of parameters of the relation.
-
-\firstexample
-\begin{cscexample}[Parametric relation]
-It is possible to implement finite sets of elements of type \texttt{A}
-as unordered list of elements of type \texttt{A}. The function
-\texttt{set\_eq: forall (A: Type), relation (list A)} satisfied by two lists
-with the same elements is a parametric relation over \texttt{(list A)} with
-one parameter \texttt{A}. The type of \texttt{set\_eq} is convertible with
-\texttt{forall (A: Type), list A -> list A -> Prop}.
-\end{cscexample}
-
-An \emph{instance} of a parametric relation \texttt{R} with $n$ parameters
-is any term \texttt{(R $t_1$ \ldots $t_n$)}.
-
-Let \texttt{R} be a relation over \texttt{A} with $n$ parameters.
-A term is a parametric proof of reflexivity for \texttt{R} if it has type
-\texttt{forall ($x_1$:$T_1$) \ldots ($x_n$:$T_n$),
- reflexive (R $x_1$ \ldots $x_n$)}. Similar definitions are given for
-parametric proofs of symmetry and transitivity.
-
-\begin{cscexample}[Parametric relation (cont.)]
-The \texttt{set\_eq} relation of the previous example can be proved to be
-reflexive, symmetric and transitive.
-\end{cscexample}
-
-A parametric unary function $f$ of type
-\texttt{forall ($x_1$:$T_1$) \ldots ($x_n$:$T_n$), $A_1$ -> $A_2$}
-covariantly respects two parametric relation instances $R_1$ and $R_2$ if,
-whenever $x, y$ satisfy $R_1~x~y$, their images $(f~x)$ and $(f~y)$
-satisfy $R_2~(f~x)~(f~y)$ . An $f$ that respects its input and output relations
-will be called a unary covariant \emph{morphism}. We can also say that $f$ is
-a monotone function with respect to $R_1$ and $R_2$.
-The sequence $x_1,\ldots x_n$ represents the parameters of the morphism.
-
-Let $R_1$ and $R_2$ be two parametric relations.
-The \emph{signature} of a parametric morphism of type
-\texttt{forall ($x_1$:$T_1$) \ldots ($x_n$:$T_n$), $A_1$ -> $A_2$} that
-covariantly respects two instances $I_{R_1}$ and $I_{R_2}$ of $R_1$ and $R_2$ is written $I_{R_1} \texttt{++>} I_{R_2}$.
-Notice that the special arrow \texttt{++>}, which reminds the reader
-of covariance, is placed between the two relation instances, not
-between the two carriers. The signature relation instances and morphism will
-be typed in a context introducing variables for the parameters.
-
-The previous definitions are extended straightforwardly to $n$-ary morphisms,
-that are required to be simultaneously monotone on every argument.
-
-Morphisms can also be contravariant in one or more of their arguments.
-A morphism is contravariant on an argument associated to the relation instance
-$R$ if it is covariant on the same argument when the inverse relation
-$R^{-1}$ (\texttt{inverse R} in Coq) is considered.
-The special arrow \texttt{-{}->} is used in signatures
-for contravariant morphisms.
-
-Functions having arguments related by symmetric relations instances are both
-covariant and contravariant in those arguments. The special arrow
-\texttt{==>} is used in signatures for morphisms that are both covariant
-and contravariant.
-
-An instance of a parametric morphism $f$ with $n$ parameters is any term
-\texttt{f $t_1$ \ldots $t_n$}.
-
-\begin{cscexample}[Morphisms]
-Continuing the previous example, let
-\texttt{union: forall (A: Type), list A -> list A -> list A} perform the union
-of two sets by appending one list to the other. \texttt{union} is a binary
-morphism parametric over \texttt{A} that respects the relation instance
-\texttt{(set\_eq A)}. The latter condition is proved by showing
-\texttt{forall (A: Type) (S1 S1' S2 S2': list A), set\_eq A S1 S1' ->
- set\_eq A S2 S2' -> set\_eq A (union A S1 S2) (union A S1' S2')}.
-
-The signature of the function \texttt{union A} is
-\texttt{set\_eq A ==> set\_eq A ==> set\_eq A} for all \texttt{A}.
-\end{cscexample}
-
-\begin{cscexample}[Contravariant morphism]
-The division function \texttt{Rdiv: R -> R -> R} is a morphism of
-signature \texttt{le ++> le -{}-> le} where \texttt{le} is
-the usual order relation over real numbers. Notice that division is
-covariant in its first argument and contravariant in its second
-argument.
-\end{cscexample}
-
-Leibniz equality is a relation and every function is a
-morphism that respects Leibniz equality. Unfortunately, Leibniz equality
-is not always the intended equality for a given structure.
-
-In the next section we will describe the commands to register terms as
-parametric relations and morphisms. Several tactics that deal with equality
-in \Coq\ can also work with the registered relations.
-The exact list of tactic will be given in Sect.~\ref{setoidtactics}.
-For instance, the
-tactic \texttt{reflexivity} can be used to close a goal $R~n~n$ whenever
-$R$ is an instance of a registered reflexive relation. However, the tactics
-that replace in a context $C[]$ one term with another one related by $R$
-must verify that $C[]$ is a morphism that respects the intended relation.
-Currently the verification consists in checking whether $C[]$ is a syntactic
-composition of morphism instances that respects some obvious
-compatibility constraints.
-
-\begin{cscexample}[Rewriting]
-Continuing the previous examples, suppose that the user must prove
-\texttt{set\_eq int (union int (union int S1 S2) S2) (f S1 S2)} under the
-hypothesis \texttt{H: set\_eq int S2 (@nil int)}. It is possible to
-use the \texttt{rewrite} tactic to replace the first two occurrences of
-\texttt{S2} with \texttt{@nil int} in the goal since the context
-\texttt{set\_eq int (union int (union int S1 nil) nil) (f S1 S2)}, being
-a composition of morphisms instances, is a morphism. However the tactic
-will fail replacing the third occurrence of \texttt{S2} unless \texttt{f}
-has also been declared as a morphism.
-\end{cscexample}
-
-\subsection{Adding new relations and morphisms}
-A parametric relation
-\textit{Aeq}\texttt{: forall ($y_1 : \beta_!$ \ldots $y_m : \beta_m$), relation (A $t_1$ \ldots $t_n$)} over
-\textit{(A : $\alpha_i$ -> \ldots $\alpha_n$ -> }\texttt{Type})
-can be declared with the following command:
-
-\comindex{Add Parametric Relation}
-\begin{quote}
- \texttt{Add Parametric Relation} ($x_1 : T_1$) \ldots ($x_n : T_k$) :
- \textit{(A $t_1$ \ldots $t_n$) (Aeq $t'_1$ \ldots $t'_m$)}\\
- ~\zeroone{\texttt{reflexivity proved by} \textit{refl}}\\
- ~\zeroone{\texttt{symmetry proved by} \textit{sym}}\\
- ~\zeroone{\texttt{transitivity proved by} \textit{trans}}\\
- \texttt{~as} \textit{id}.
-\end{quote}
-after having required the \texttt{Setoid} module with the
-\texttt{Require Setoid} command.
-
-The identifier \textit{id} gives a unique name to the morphism and it is
-used by the command to generate fresh names for automatically provided lemmas
-used internally.
-
-Notice that the carrier and relation parameters may refer to the context
-of variables introduced at the beginning of the declaration, but the
-instances need not be made only of variables.
-Also notice that \textit{A} is \emph{not} required to be a term
-having the same parameters as \textit{Aeq}, although that is often the
-case in practice (this departs from the previous implementation).
-
-\comindex{Add Relation}
-In case the carrier and relations are not parametric, one can use the
-command \texttt{Add Relation} instead, whose syntax is the same except
-there is no local context.
-
-The proofs of reflexivity, symmetry and transitivity can be omitted if the
-relation is not an equivalence relation. The proofs must be instances of the
-corresponding relation definitions: e.g. the proof of reflexivity must
-have a type convertible to \texttt{reflexive (A $t_1$ \ldots $t_n$) (Aeq $t'_1$ \ldots
- $t'_n$)}. Each proof may refer to the introduced variables as well.
-
-\begin{cscexample}[Parametric relation]
-For Leibniz equality, we may declare:
-\texttt{Add Parametric Relation (A : Type) :} \texttt{A (@eq A)}\\
-~\zeroone{\texttt{reflexivity proved by} \texttt{@refl\_equal A}}\\
-\ldots
-\end{cscexample}
-
-Some tactics
-(\texttt{reflexivity}, \texttt{symmetry}, \texttt{transitivity}) work only
-on relations that respect the expected properties. The remaining tactics
-(\texttt{replace}, \texttt{rewrite} and derived tactics such as
-\texttt{autorewrite}) do not require any properties over the relation.
-However, they are able to replace terms with related ones only in contexts
-that are syntactic compositions of parametric morphism instances declared with
-the following command.
-
-\comindex{Add Parametric Morphism}
-\begin{quote}
- \texttt{Add Parametric Morphism} ($x_1 : \T_1$) \ldots ($x_k : \T_k$) :
- (\textit{f $t_1$ \ldots $t_n$})\\
- \texttt{~with signature} \textit{sig}\\
- \texttt{~as id}.\\
- \texttt{Proof}\\
- ~\ldots\\
- \texttt{Qed}
-\end{quote}
-
-The command declares \textit{f} as a parametric morphism of signature
-\textit{sig}. The identifier \textit{id} gives a unique name to the morphism
-and it is used as the base name of the type class instance definition
-and as the name of the lemma that proves the well-definedness of the morphism.
-The parameters of the morphism as well as the signature may refer to the
-context of variables.
-The command asks the user to prove interactively that \textit{f} respects
-the relations identified from the signature.
-
-\begin{cscexample}
-We start the example by assuming a small theory over homogeneous sets and
-we declare set equality as a parametric equivalence relation and
-union of two sets as a parametric morphism.
-\begin{coq_example*}
-Require Export Setoid.
-Require Export Relation_Definitions.
-Set Implicit Arguments.
-Parameter set: Type -> Type.
-Parameter empty: forall A, set A.
-Parameter eq_set: forall A, set A -> set A -> Prop.
-Parameter union: forall A, set A -> set A -> set A.
-Axiom eq_set_refl: forall A, reflexive _ (eq_set (A:=A)).
-Axiom eq_set_sym: forall A, symmetric _ (eq_set (A:=A)).
-Axiom eq_set_trans: forall A, transitive _ (eq_set (A:=A)).
-Axiom empty_neutral: forall A (S: set A), eq_set (union S (empty A)) S.
-Axiom union_compat:
- forall (A : Type),
- forall x x' : set A, eq_set x x' ->
- forall y y' : set A, eq_set y y' ->
- eq_set (union x y) (union x' y').
-Add Parametric Relation A : (set A) (@eq_set A)
- reflexivity proved by (eq_set_refl (A:=A))
- symmetry proved by (eq_set_sym (A:=A))
- transitivity proved by (eq_set_trans (A:=A))
- as eq_set_rel.
-Add Parametric Morphism A : (@union A) with
-signature (@eq_set A) ==> (@eq_set A) ==> (@eq_set A) as union_mor.
-Proof. exact (@union_compat A). Qed.
-\end{coq_example*}
-
-\end{cscexample}
-
-It is possible to reduce the burden of specifying parameters using
-(maximally inserted) implicit arguments. If \texttt{A} is always set as
-maximally implicit in the previous example, one can write:
-
-\begin{coq_eval}
-Reset Initial.
-Require Export Setoid.
-Require Export Relation_Definitions.
-Parameter set: Type -> Type.
-Parameter empty: forall {A}, set A.
-Parameter eq_set: forall {A}, set A -> set A -> Prop.
-Parameter union: forall {A}, set A -> set A -> set A.
-Axiom eq_set_refl: forall {A}, reflexive (set A) eq_set.
-Axiom eq_set_sym: forall {A}, symmetric (set A) eq_set.
-Axiom eq_set_trans: forall {A}, transitive (set A) eq_set.
-Axiom empty_neutral: forall A (S: set A), eq_set (union S empty) S.
-Axiom union_compat:
- forall (A : Type),
- forall x x' : set A, eq_set x x' ->
- forall y y' : set A, eq_set y y' ->
- eq_set (union x y) (union x' y').
-\end{coq_eval}
-
-\begin{coq_example*}
-Add Parametric Relation A : (set A) eq_set
- reflexivity proved by eq_set_refl
- symmetry proved by eq_set_sym
- transitivity proved by eq_set_trans
- as eq_set_rel.
-Add Parametric Morphism A : (@union A) with
- signature eq_set ==> eq_set ==> eq_set as union_mor.
-Proof. exact (@union_compat A). Qed.
-\end{coq_example*}
-
-We proceed now by proving a simple lemma performing a rewrite step
-and then applying reflexivity, as we would do working with Leibniz
-equality. Both tactic applications are accepted
-since the required properties over \texttt{eq\_set} and
-\texttt{union} can be established from the two declarations above.
-
-\begin{coq_example*}
-Goal forall (S: set nat),
- eq_set (union (union S empty) S) (union S S).
-Proof. intros. rewrite empty_neutral. reflexivity. Qed.
-\end{coq_example*}
-
-The tables of relations and morphisms are managed by the type class
-instance mechanism. The behavior on section close is to generalize
-the instances by the variables of the section (and possibly hypotheses
-used in the proofs of instance declarations) but not to export them in
-the rest of the development for proof search. One can use the
-\texttt{Existing Instance} command to do so outside the section,
-using the name of the declared morphism suffixed by \texttt{\_Morphism},
-or use the \texttt{Global} modifier for the corresponding class instance
-declaration (see \S\ref{setoid:first-class}) at definition time.
-When loading a compiled file or importing a module,
-all the declarations of this module will be loaded.
-
-\subsection{Rewriting and non reflexive relations}
-To replace only one argument of an n-ary morphism it is necessary to prove
-that all the other arguments are related to themselves by the respective
-relation instances.
-
-\begin{cscexample}
-To replace \texttt{(union S empty)} with \texttt{S} in
-\texttt{(union (union S empty) S) (union S S)} the rewrite tactic must
-exploit the monotony of \texttt{union} (axiom \texttt{union\_compat} in
-the previous example). Applying \texttt{union\_compat} by hand we are left
-with the goal \texttt{eq\_set (union S S) (union S S)}.
-\end{cscexample}
-
-When the relations associated to some arguments are not reflexive, the tactic
-cannot automatically prove the reflexivity goals, that are left to the user.
-
-Setoids whose relation are partial equivalence relations (PER)
-are useful to deal with partial functions. Let \texttt{R} be a PER. We say
-that an element \texttt{x} is defined if \texttt{R x x}. A partial function
-whose domain comprises all the defined elements only is declared as a
-morphism that respects \texttt{R}. Every time a rewriting step is performed
-the user must prove that the argument of the morphism is defined.
-
-\begin{cscexample}
-Let \texttt{eqO} be \texttt{fun x y => x = y $\land$ ~x$\neq$ 0} (the smaller PER over
-non zero elements). Division can be declared as a morphism of signature
-\texttt{eq ==> eq0 ==> eq}. Replace \texttt{x} with \texttt{y} in
-\texttt{div x n = div y n} opens the additional goal \texttt{eq0 n n} that
-is equivalent to \texttt{n=n $\land$ n$\neq$0}.
-\end{cscexample}
-
-\subsection{Rewriting and non symmetric relations}
-When the user works up to relations that are not symmetric, it is no longer
-the case that any covariant morphism argument is also contravariant. As a
-result it is no longer possible to replace a term with a related one in
-every context, since the obtained goal implies the previous one if and
-only if the replacement has been performed in a contravariant position.
-In a similar way, replacement in an hypothesis can be performed only if
-the replaced term occurs in a covariant position.
-
-\begin{cscexample}[Covariance and contravariance]
-Suppose that division over real numbers has been defined as a
-morphism of signature \texttt{Z.div: Z.lt ++> Z.lt -{}-> Z.lt} (i.e.
-\texttt{Z.div} is increasing in its first argument, but decreasing on the
-second one). Let \texttt{<} denotes \texttt{Z.lt}.
-Under the hypothesis \texttt{H: x < y} we have
-\texttt{k < x / y -> k < x / x}, but not
-\texttt{k < y / x -> k < x / x}.
-Dually, under the same hypothesis \texttt{k < x / y -> k < y / y} holds,
-but \texttt{k < y / x -> k < y / y} does not.
-Thus, if the current goal is \texttt{k < x / x}, it is possible to replace
-only the second occurrence of \texttt{x} (in contravariant position)
-with \texttt{y} since the obtained goal must imply the current one.
-On the contrary, if \texttt{k < x / x} is
-an hypothesis, it is possible to replace only the first occurrence of
-\texttt{x} (in covariant position) with \texttt{y} since
-the current hypothesis must imply the obtained one.
-\end{cscexample}
-
-Contrary to the previous implementation, no specific error message will
-be raised when trying to replace a term that occurs in the wrong
-position. It will only fail because the rewriting constraints are not
-satisfiable. However it is possible to use the \texttt{at} modifier to
-specify which occurrences should be rewritten.
-
-As expected, composing morphisms together propagates the variance annotations by
-switching the variance every time a contravariant position is traversed.
-\begin{cscexample}
-Let us continue the previous example and let us consider the goal
-\texttt{x / (x / x) < k}. The first and third occurrences of \texttt{x} are
-in a contravariant position, while the second one is in covariant position.
-More in detail, the second occurrence of \texttt{x} occurs
-covariantly in \texttt{(x / x)} (since division is covariant in its first
-argument), and thus contravariantly in \texttt{x / (x / x)} (since division
-is contravariant in its second argument), and finally covariantly in
-\texttt{x / (x / x) < k} (since \texttt{<}, as every transitive relation,
-is contravariant in its first argument with respect to the relation itself).
-\end{cscexample}
-
-\subsection{Rewriting in ambiguous setoid contexts}
-One function can respect several different relations and thus it can be
-declared as a morphism having multiple signatures.
-
-\begin{cscexample}
-Union over homogeneous lists can be given all the following signatures:
-\texttt{eq ==> eq ==> eq} (\texttt{eq} being the equality over ordered lists)
-\texttt{set\_eq ==> set\_eq ==> set\_eq} (\texttt{set\_eq} being the equality
-over unordered lists up to duplicates),
-\texttt{multiset\_eq ==> multiset\_eq ==> multiset\_eq} (\texttt{multiset\_eq}
-being the equality over unordered lists).
-\end{cscexample}
-
-To declare multiple signatures for a morphism, repeat the \texttt{Add Morphism}
-command.
-
-When morphisms have multiple signatures it can be the case that a rewrite
-request is ambiguous, since it is unclear what relations should be used to
-perform the rewriting. Contrary to the previous implementation, the
-tactic will always choose the first possible solution to the set of
-constraints generated by a rewrite and will not try to find \emph{all}
-possible solutions to warn the user about.
-
-\asection{Commands and tactics}
-\subsection{First class setoids and morphisms}
-\label{setoid:first-class}
-
-The implementation is based on a first-class representation of
-properties of relations and morphisms as type classes. That is,
-the various combinations of properties on relations and morphisms
-are represented as records and instances of theses classes are put
-in a hint database.
-For example, the declaration:
-
-\begin{quote}
- \texttt{Add Parametric Relation} ($x_1 : T_1$) \ldots ($x_n : T_k$) :
- \textit{(A $t_1$ \ldots $t_n$) (Aeq $t'_1$ \ldots $t'_m$)}\\
- ~\zeroone{\texttt{reflexivity proved by} \textit{refl}}\\
- ~\zeroone{\texttt{symmetry proved by} \textit{sym}}\\
- ~\zeroone{\texttt{transitivity proved by} \textit{trans}}\\
- \texttt{~as} \textit{id}.
-\end{quote}
-
-is equivalent to an instance declaration:
-
-\begin{quote}
- \texttt{Instance} ($x_1 : T_1$) \ldots ($x_n : T_k$) \texttt{=>}
- \textit{id} : \texttt{@Equivalence} \textit{(A $t_1$ \ldots $t_n$) (Aeq
- $t'_1$ \ldots $t'_m$)} :=\\
- ~\zeroone{\texttt{Equivalence\_Reflexive :=} \textit{refl}}\\
- ~\zeroone{\texttt{Equivalence\_Symmetric :=} \textit{sym}}\\
- ~\zeroone{\texttt{Equivalence\_Transitive :=} \textit{trans}}.
-\end{quote}
-
-The declaration itself amounts to the definition of an object of the
-record type \texttt{Coq.Classes.RelationClasses.Equivalence} and a
-hint added to the \texttt{typeclass\_instances} hint database.
-Morphism declarations are also instances of a type class defined in
-\texttt{Classes.Morphisms}.
-See the documentation on type classes \ref{typeclasses} and
-the theories files in \texttt{Classes} for further explanations.
-
-One can inform the rewrite tactic about morphisms and relations just by
-using the typeclass mechanism to declare them using \texttt{Instance}
-and \texttt{Context} vernacular commands.
-Any object of type \texttt{Proper} (the type of morphism declarations)
-in the local context will also be automatically used by the rewriting
-tactic to solve constraints.
-
-Other representations of first class setoids and morphisms can also
-be handled by encoding them as records. In the following example,
-the projections of the setoid relation and of the morphism function
-can be registered as parametric relations and morphisms.
-\begin{cscexample}[First class setoids]
-
-\begin{coq_example*}
-Require Import Relation_Definitions Setoid.
-Record Setoid: Type :=
-{ car:Type;
- eq:car->car->Prop;
- refl: reflexive _ eq;
- sym: symmetric _ eq;
- trans: transitive _ eq
-}.
-Add Parametric Relation (s : Setoid) : (@car s) (@eq s)
- reflexivity proved by (refl s)
- symmetry proved by (sym s)
- transitivity proved by (trans s) as eq_rel.
-Record Morphism (S1 S2:Setoid): Type :=
-{ f:car S1 ->car S2;
- compat: forall (x1 x2: car S1), eq S1 x1 x2 -> eq S2 (f x1) (f x2) }.
-Add Parametric Morphism (S1 S2 : Setoid) (M : Morphism S1 S2) :
- (@f S1 S2 M) with signature (@eq S1 ==> @eq S2) as apply_mor.
-Proof. apply (compat S1 S2 M). Qed.
-Lemma test: forall (S1 S2:Setoid) (m: Morphism S1 S2)
- (x y: car S1), eq S1 x y -> eq S2 (f _ _ m x) (f _ _ m y).
-Proof. intros. rewrite H. reflexivity. Qed.
-\end{coq_example*}
-\end{cscexample}
-
-\subsection{Tactics enabled on user provided relations}
-\label{setoidtactics}
-The following tactics, all prefixed by \texttt{setoid\_},
-deal with arbitrary
-registered relations and morphisms. Moreover, all the corresponding unprefixed
-tactics (i.e. \texttt{reflexivity}, \texttt{symmetry}, \texttt{transitivity},
-\texttt{replace}, \texttt{rewrite})
-have been extended to fall back to their prefixed counterparts when
-the relation involved is not Leibniz equality. Notice, however, that using
-the prefixed tactics it is possible to pass additional arguments such as
-\texttt{using relation}.
-\medskip
-
-\tacindex{setoid\_reflexivity}
-\texttt{setoid\_reflexivity}
-
-\tacindex{setoid\_symmetry}
-\texttt{setoid\_symmetry} \zeroone{\texttt{in} \textit{ident}}
-
-\tacindex{setoid\_transitivity}
-\texttt{setoid\_transitivity}
-
-\tacindex{setoid\_rewrite}
-\texttt{setoid\_rewrite} \zeroone{\textit{orientation}} \textit{term}
-~\zeroone{\texttt{at} \textit{occs}} ~\zeroone{\texttt{in} \textit{ident}}
-
-\tacindex{setoid\_replace}
-\texttt{setoid\_replace} \textit{term} \texttt{with} \textit{term}
-~\zeroone{\texttt{in} \textit{ident}}
-~\zeroone{\texttt{using relation} \textit{term}}
-~\zeroone{\texttt{by} \textit{tactic}}
-\medskip
-
-The \texttt{using relation}
-arguments cannot be passed to the unprefixed form. The latter argument
-tells the tactic what parametric relation should be used to replace
-the first tactic argument with the second one. If omitted, it defaults
-to the \texttt{DefaultRelation} instance on the type of the objects.
-By default, it means the most recent \texttt{Equivalence} instance in
-the environment, but it can be customized by declaring new
-\texttt{DefaultRelation} instances. As Leibniz equality is a declared
-equivalence, it will fall back to it if no other relation is declared on
-a given type.
-
-Every derived tactic that is based on the unprefixed forms of the tactics
-considered above will also work up to user defined relations. For instance,
-it is possible to register hints for \texttt{autorewrite} that are
-not proof of Leibniz equalities. In particular it is possible to exploit
-\texttt{autorewrite} to simulate normalization in a term rewriting system
-up to user defined equalities.
-
-\subsection{Printing relations and morphisms}
-The \texttt{Print Instances} command can be used to show the list of
-currently registered \texttt{Reflexive} (using \texttt{Print Instances Reflexive}),
-\texttt{Symmetric} or \texttt{Transitive} relations,
-\texttt{Equivalence}s, \texttt{PreOrder}s, \texttt{PER}s, and
-Morphisms (implemented as \texttt{Proper} instances). When
- the rewriting tactics refuse to replace a term in a context
-because the latter is not a composition of morphisms, the \texttt{Print Instances}
-commands can be useful to understand what additional morphisms should be
-registered.
-
-\subsection{Deprecated syntax and backward incompatibilities}
-Due to backward compatibility reasons, the following syntax for the
-declaration of setoids and morphisms is also accepted.
-
-\comindex{Add Setoid}
-\begin{quote}
- \texttt{Add Setoid} \textit{A Aeq ST} \texttt{as} \textit{ident}
-\end{quote}
-where \textit{Aeq} is a congruence relation without parameters,
-\textit{A} is its carrier and \textit{ST} is an object of type
-\texttt{(Setoid\_Theory A Aeq)} (i.e. a record packing together the reflexivity,
-symmetry and transitivity lemmas). Notice that the syntax is not completely
-backward compatible since the identifier was not required.
-
-\comindex{Add Morphism}
-\begin{quote}
- \texttt{Add Morphism} \textit{f}:\textit{ident}.\\
- Proof.\\
- \ldots\\
- Qed.
-\end{quote}
-
-The latter command also is restricted to the declaration of morphisms without
-parameters. It is not fully backward compatible since the property the user
-is asked to prove is slightly different: for $n$-ary morphisms the hypotheses
-of the property are permuted; moreover, when the morphism returns a
-proposition, the property is now stated using a bi-implication in place of
-a simple implication. In practice, porting an old development to the new
-semantics is usually quite simple.
-
-Notice that several limitations of the old implementation have been lifted.
-In particular, it is now possible to declare several relations with the
-same carrier and several signatures for the same morphism. Moreover, it is
-now also possible to declare several morphisms having the same signature.
-Finally, the replace and rewrite tactics can be used to replace terms in
-contexts that were refused by the old implementation. As discussed in
-the next section, the semantics of the new \texttt{setoid\_rewrite}
-command differs slightly from the old one and \texttt{rewrite}.
-
-\asection{Extensions}
-\subsection{Rewriting under binders}
-
-\textbf{Warning}: Due to compatibility issues, this feature is enabled only when calling
-the \texttt{setoid\_rewrite} tactics directly and not \texttt{rewrite}.
-
-To be able to rewrite under binding constructs, one must declare
-morphisms with respect to pointwise (setoid) equivalence of functions.
-Example of such morphisms are the standard \texttt{all} and \texttt{ex}
-combinators for universal and existential quantification respectively.
-They are declared as morphisms in the \texttt{Classes.Morphisms\_Prop}
-module. For example, to declare that universal quantification is a
-morphism for logical equivalence:
-
-\begin{coq_eval}
-Reset Initial.
-Require Import Setoid Morphisms.
-\end{coq_eval}
-\begin{coq_example}
-Instance all_iff_morphism (A : Type) :
- Proper (pointwise_relation A iff ==> iff) (@all A).
-Proof. simpl_relation.
-\end{coq_example}
-\begin{coq_eval}
-Admitted.
-\end{coq_eval}
-
-One then has to show that if two predicates are equivalent at every
-point, their universal quantifications are equivalent. Once we have
-declared such a morphism, it will be used by the setoid rewriting tactic
-each time we try to rewrite under an \texttt{all} application (products
-in \Prop{} are implicitly translated to such applications).
-
-Indeed, when rewriting under a lambda, binding variable $x$, say from
-$P~x$ to $Q~x$ using the relation \texttt{iff}, the tactic will generate
-a proof of \texttt{pointwise\_relation A iff (fun x => P x) (fun x => Q
-x)} from the proof of \texttt{iff (P x) (Q x)} and a constraint of the
-form \texttt{Proper (pointwise\_relation A iff ==> ?) m} will be
-generated for the surrounding morphism \texttt{m}.
-
-Hence, one can add higher-order combinators as morphisms by providing
-signatures using pointwise extension for the relations on the functional
-arguments (or whatever subrelation of the pointwise extension).
-For example, one could declare the \texttt{map} combinator on lists as
-a morphism:
-\begin{coq_eval}
-Require Import List Setoid Morphisms.
-Set Implicit Arguments.
-Inductive list_equiv {A:Type} (eqA : relation A) : relation (list A) :=
-| eq_nil : list_equiv eqA nil nil
-| eq_cons : forall x y, eqA x y ->
- forall l l', list_equiv eqA l l' -> list_equiv eqA (x :: l) (y :: l').
-Generalizable All Variables.
-\end{coq_eval}
-\begin{coq_example*}
-Instance map_morphism `{Equivalence A eqA, Equivalence B eqB} :
- Proper ((eqA ==> eqB) ==> list_equiv eqA ==> list_equiv eqB) (@map A B).
-\end{coq_example*}
-
-where \texttt{list\_equiv} implements an equivalence on lists
-parameterized by an equivalence on the elements.
-
-Note that when one does rewriting with a lemma under a binder
-using \texttt{setoid\_rewrite}, the application of the lemma may capture
-the bound variable, as the semantics are different from rewrite where
-the lemma is first matched on the whole term. With the new
-\texttt{setoid\_rewrite}, matching is done on each subterm separately
-and in its local environment, and all matches are rewritten
-\emph{simultaneously} by default. The semantics of the previous
-\texttt{setoid\_rewrite} implementation can almost be recovered using
-the \texttt{at 1} modifier.
-
-\subsection{Sub-relations}
-
-Sub-relations can be used to specify that one relation is included in
-another, so that morphisms signatures for one can be used for the other.
-If a signature mentions a relation $R$ on the left of an arrow
-\texttt{==>}, then the signature also applies for any relation $S$ that
-is smaller than $R$, and the inverse applies on the right of an arrow.
-One can then declare only a few morphisms instances that generate the complete set
-of signatures for a particular constant. By default, the only declared
-subrelation is \texttt{iff}, which is a subrelation of \texttt{impl}
-and \texttt{inverse impl} (the dual of implication). That's why we can
-declare only two morphisms for conjunction:
-\texttt{Proper (impl ==> impl ==> impl) and} and
-\texttt{Proper (iff ==> iff ==> iff) and}. This is sufficient to satisfy
-any rewriting constraints arising from a rewrite using \texttt{iff},
-\texttt{impl} or \texttt{inverse impl} through \texttt{and}.
-
-Sub-relations are implemented in \texttt{Classes.Morphisms} and are a
-prime example of a mostly user-space extension of the algorithm.
-
-\subsection{Constant unfolding}
-
-The resolution tactic is based on type classes and hence regards user-defined
-constants as transparent by default. This may slow down the resolution
-due to a lot of unifications (all the declared \texttt{Proper}
-instances are tried at each node of the search tree).
-To speed it up, declare your constant as rigid for proof search
-using the command \texttt{Typeclasses Opaque} (see \S
-\ref{TypeclassesTransparency}).
-
-\asection{Strategies for rewriting}
-
-\subsection{Definitions}
-The generalized rewriting tactic is based on a set of strategies that
-can be combined to obtain custom rewriting procedures. Its set of
-strategies is based on Elan's rewriting strategies
-\cite{Luttik97specificationof}. Rewriting strategies are applied using
-the tactic \texttt{rewrite\_strat $s$} where $s$ is a strategy
-expression. Strategies are defined inductively as described by the
-following grammar:
-
-\def\str#1{\texttt{#1}}
-
-\def\strline#1#2{& \vert & #1 & \text{#2}}
-\def\strlinea#1#2#3{& \vert & \str{#1}~#2 & \text{#3}}
-
-\[\begin{array}{lcll}
- s, t, u & ::= & ( s ) & \text{strategy} \\
- \strline{c}{lemma} \\
- \strline{\str{<-}~c}{lemma, right-to-left} \\
-
- \strline{\str{fail}}{failure} \\
- \strline{\str{id}}{identity} \\
- \strline{\str{refl}}{reflexivity} \\
- \strlinea{progress}{s}{progress} \\
- \strlinea{try}{s}{failure catch} \\
-
- \strline{s~\str{;}~u}{composition} \\
- \strline{\str{choice}~s~t}{left-biased choice} \\
-
- \strlinea{repeat}{s}{iteration (+)} \\
- \strlinea{any}{s}{iteration (*)} \\
-
- \strlinea{subterm}{s}{one subterm} \\
- \strlinea{subterms}{s}{all subterms} \\
- \strlinea{innermost}{s}{innermost first} \\
- \strlinea{outermost}{s}{outermost first}\\
- \strlinea{bottomup}{s}{bottom-up} \\
- \strlinea{topdown}{s}{top-down} \\
-
- \strlinea{hints}{hintdb}{apply hint} \\
- \strlinea{terms}{c \ldots c}{any of the terms}\\
- \strlinea{eval}{redexpr}{apply reduction}\\
- \strlinea{fold}{c}{fold expression}
-\end{array}\]
-
-Actually a few of these are defined in term of the others using
-a primitive fixpoint operator:
-
-\[\begin{array}{lcl}
- \str{try}~s & = & \str{choice}~s~\str{id} \\
- \str{any}~s & = & \str{fix}~u. \str{try}~(s~\str{;}~u) \\
- \str{repeat}~s & = & s~\str{;}~\str{any}~s \\
- \str{bottomup}~s & = &
- \str{fix}~bu. (\str{choice}~(\str{progress}~(\str{subterms}~bu))~s)~\str{;}~\str{try}~bu \\
- \str{topdown}~s & = &
- \str{fix}~td. (\str{choice}~s~(\str{progress}~(\str{subterms}~td)))~\str{;}~\str{try}~td \\
- \str{innermost}~s & = & \str{fix}~i. (\str{choice}~(\str{subterm}~i)~s) \\
- \str{outermost}~s & = &
- \str{fix}~o. (\str{choice}~s~(\str{subterm}~o))
-\end{array}\]
-
-The basic control strategy semantics are straightforward: strategies are
-applied to subterms of the term to rewrite, starting from the root of
-the term. The lemma strategies unify the left-hand-side of the
-lemma with the current subterm and on success rewrite it to the
-right-hand-side. Composition can be used to continue rewriting on the
-current subterm. The fail strategy always fails while the identity
-strategy succeeds without making progress. The reflexivity strategy
-succeeds, making progress using a reflexivity proof of
-rewriting. Progress tests progress of the argument strategy and fails if
-no progress was made, while \str{try} always succeeds, catching
-failures. Choice is left-biased: it will launch the first strategy and
-fall back on the second one in case of failure. One can iterate a
-strategy at least 1 time using \str{repeat} and at least 0 times using
-\str{any}.
-
-The \str{subterm} and \str{subterms} strategies apply their argument
-strategy $s$ to respectively one or all subterms of the current term
-under consideration, left-to-right. \str{subterm} stops at the first
-subterm for which $s$ made progress. The composite strategies
-\str{innermost} and \str{outermost} perform a single innermost our outermost
-rewrite using their argument strategy. Their counterparts
-\str{bottomup} and \str{topdown} perform as many rewritings as possible,
-starting from the bottom or the top of the term.
-
-Hint databases created for \texttt{autorewrite} can also be used by
-\texttt{rewrite\_strat} using the \str{hints} strategy that applies any
-of the lemmas at the current subterm. The \str{terms} strategy takes the
-lemma names directly as arguments. The \str{eval} strategy expects a
-reduction expression (see \S\ref{Conversion-tactics}) and succeeds if it
-reduces the subterm under consideration. The \str{fold} strategy takes a
-term $c$ and tries to \emph{unify} it to the current subterm, converting
-it to $c$ on success, it is stronger than the tactic \texttt{fold}.
-
-
-\subsection{Usage}
-\tacindex{rewrite\_strat}
-
-\texttt{rewrite\_strat}~\textit{s}~\zeroone{\texttt{in} \textit{ident}}:
-
- Rewrite using the strategy \textit{s} in hypothesis \textit{ident}
- or the conclusion.
-
- \begin{ErrMsgs}
- \item \errindex{Nothing to rewrite}. If the strategy failed.
- \item \errindex{No progress made}. If the strategy succeeded but
- made no progress.
- \item \errindex{Unable to satisfy the rewriting constraints}.
- If the strategy succeeded and made progress but the corresponding
- rewriting constraints are not satisfied.
- \end{ErrMsgs}
-
-
-The \texttt{setoid\_rewrite}~c tactic is basically equivalent to
-\texttt{rewrite\_strat}~(\str{outermost}~c).
-
-
-
-
-
-%%% Local Variables:
-%%% mode: latex
-%%% TeX-master: "Reference-Manual"
-%%% End: