aboutsummaryrefslogtreecommitdiffhomepage
path: root/doc/refman/Micromega.tex
diff options
context:
space:
mode:
Diffstat (limited to 'doc/refman/Micromega.tex')
-rw-r--r--doc/refman/Micromega.tex4
1 files changed, 2 insertions, 2 deletions
diff --git a/doc/refman/Micromega.tex b/doc/refman/Micromega.tex
index a43cd15b0..2fe7c2f7f 100644
--- a/doc/refman/Micromega.tex
+++ b/doc/refman/Micromega.tex
@@ -96,9 +96,9 @@ To illustrate the working of the tactic, consider we wish to prove the following
Goal forall x, -x^2 >= 0 -> x - 1 >= 0 -> False.
\end{coq_example*}
\begin{coq_eval}
-intro x; psatz Z.
+intro x; psatz Z 2.
\end{coq_eval}
-Such a goal is solved by {\tt intro x; psatz Z}. The oracle returns the cone expression $2 \times
+Such a goal is solved by {\tt intro x; psatz Z 2}. The oracle returns the cone expression $2 \times
(\mathbf{x-1}) + \mathbf{x-1}\times\mathbf{x-1} + \mathbf{-x^2}$ (polynomial hypotheses are printed in bold). By construction, this
expression belongs to $Cone(\{-x^2, x -1\})$. Moreover, by running {\tt ring} we obtain $-1$. By
Theorem~\ref{thm:psatz}, the goal is valid.