aboutsummaryrefslogtreecommitdiffhomepage
path: root/contrib
diff options
context:
space:
mode:
Diffstat (limited to 'contrib')
-rw-r--r--contrib/cc/CCSolve.v22
-rw-r--r--contrib/correctness/ArrayPermut.v194
-rw-r--r--contrib/correctness/Arrays.v41
-rw-r--r--contrib/correctness/Correctness.v2
-rw-r--r--contrib/correctness/Exchange.v107
-rw-r--r--contrib/correctness/ProgBool.v68
-rw-r--r--contrib/correctness/ProgInt.v6
-rw-r--r--contrib/correctness/Sorted.v268
-rw-r--r--contrib/correctness/Tuples.v148
-rw-r--r--contrib/field/Field.v2
-rw-r--r--contrib/field/Field_Compl.v91
-rw-r--r--contrib/field/Field_Tactic.v713
-rw-r--r--contrib/field/Field_Theory.v1015
-rw-r--r--contrib/fourier/Fourier.v7
-rw-r--r--contrib/fourier/Fourier_util.v406
-rwxr-xr-xcontrib/omega/Omega.v56
-rw-r--r--contrib/omega/OmegaLemmas.v532
-rw-r--r--contrib/ring/ArithRing.v102
-rw-r--r--contrib/ring/NArithRing.v48
-rw-r--r--contrib/ring/Quote.v83
-rw-r--r--contrib/ring/Ring.v26
-rw-r--r--contrib/ring/Ring_abstract.v1063
-rw-r--r--contrib/ring/Ring_normalize.v1414
-rw-r--r--contrib/ring/Ring_theory.v446
-rw-r--r--contrib/ring/Setoid_ring.v2
-rw-r--r--contrib/ring/Setoid_ring_normalize.v1930
-rw-r--r--contrib/ring/Setoid_ring_theory.v692
-rw-r--r--contrib/ring/ZArithRing.v29
-rw-r--r--contrib/romega/ROmega.v4
-rw-r--r--contrib/romega/ReflOmegaCore.v2840
30 files changed, 6192 insertions, 6165 deletions
diff --git a/contrib/cc/CCSolve.v b/contrib/cc/CCSolve.v
index 30622aeaa..c80ba16ec 100644
--- a/contrib/cc/CCSolve.v
+++ b/contrib/cc/CCSolve.v
@@ -8,13 +8,15 @@
(* $Id$ *)
-Tactic Definition CCsolve :=
- Repeat (Match Context With
- [ H: ?1 |- ?2] ->
- Let Heq = FreshId "Heq" In
- (Assert Heq:(?2==?1);[Congruence|(Rewrite Heq;Exact H)])
- |[ H: ?1; G: ?2 -> ?3 |- ?] ->
- Let Heq = FreshId "Heq" In
- (Assert Heq:(?2==?1) ;[Congruence|
- (Rewrite Heq in G;Generalize (G H);Clear G;Intro G)])).
-
+Ltac CCsolve :=
+ repeat
+ match goal with
+ | H:?X1 |- ?X2 =>
+ let Heq := fresh "Heq" in
+ (assert (Heq : X2 = X1); [ congruence | rewrite Heq; exact H ])
+ | H:?X1,G:(?X2 -> ?X3) |- _ =>
+ let Heq := fresh "Heq" in
+ (assert (Heq : X2 = X1);
+ [ congruence
+ | rewrite Heq in G; generalize (G H); clear G; intro G ])
+ end.
diff --git a/contrib/correctness/ArrayPermut.v b/contrib/correctness/ArrayPermut.v
index 55259b943..4223a0547 100644
--- a/contrib/correctness/ArrayPermut.v
+++ b/contrib/correctness/ArrayPermut.v
@@ -15,11 +15,11 @@
(* Definition and properties *)
(****************************************************************************)
-Require ProgInt.
-Require Arrays.
+Require Import ProgInt.
+Require Import Arrays.
Require Export Exchange.
-Require Omega.
+Require Import Omega.
Set Implicit Arguments.
@@ -27,18 +27,16 @@ Set Implicit Arguments.
* transpositions i.e. exchange of two elements.
*)
-Inductive permut [n:Z; A:Set] : (array n A)->(array n A)->Prop :=
- exchange_is_permut :
- (t,t':(array n A))(i,j:Z)(exchange t t' i j) -> (permut t t')
- | permut_refl :
- (t:(array n A))(permut t t)
- | permut_sym :
- (t,t':(array n A))(permut t t') -> (permut t' t)
- | permut_trans :
- (t,t',t'':(array n A))
- (permut t t') -> (permut t' t'') -> (permut t t'').
+Inductive permut (n:Z) (A:Set) : array n A -> array n A -> Prop :=
+ | exchange_is_permut :
+ forall (t t':array n A) (i j:Z), exchange t t' i j -> permut t t'
+ | permut_refl : forall t:array n A, permut t t
+ | permut_sym : forall t t':array n A, permut t t' -> permut t' t
+ | permut_trans :
+ forall t t' t'':array n A, permut t t' -> permut t' t'' -> permut t t''.
-Hints Resolve exchange_is_permut permut_refl permut_sym permut_trans : v62 datatypes.
+Hint Resolve exchange_is_permut permut_refl permut_sym permut_trans: v62
+ datatypes.
(* We also define the permutation on a segment of an array, "sub_permut",
* the other parts of the array being unchanged
@@ -47,137 +45,131 @@ Hints Resolve exchange_is_permut permut_refl permut_sym permut_trans : v62 datat
* transpositions on the given segment.
*)
-Inductive sub_permut [n:Z; A:Set; g,d:Z] : (array n A)->(array n A)->Prop :=
- exchange_is_sub_permut :
- (t,t':(array n A))(i,j:Z)`g <= i <= d` -> `g <= j <= d`
- -> (exchange t t' i j) -> (sub_permut g d t t')
- | sub_permut_refl :
- (t:(array n A))(sub_permut g d t t)
- | sub_permut_sym :
- (t,t':(array n A))(sub_permut g d t t') -> (sub_permut g d t' t)
- | sub_permut_trans :
- (t,t',t'':(array n A))
- (sub_permut g d t t') -> (sub_permut g d t' t'')
- -> (sub_permut g d t t'').
-
-Hints Resolve exchange_is_sub_permut sub_permut_refl sub_permut_sym sub_permut_trans
- : v62 datatypes.
+Inductive sub_permut (n:Z) (A:Set) (g d:Z) :
+array n A -> array n A -> Prop :=
+ | exchange_is_sub_permut :
+ forall (t t':array n A) (i j:Z),
+ (g <= i <= d)%Z ->
+ (g <= j <= d)%Z -> exchange t t' i j -> sub_permut g d t t'
+ | sub_permut_refl : forall t:array n A, sub_permut g d t t
+ | sub_permut_sym :
+ forall t t':array n A, sub_permut g d t t' -> sub_permut g d t' t
+ | sub_permut_trans :
+ forall t t' t'':array n A,
+ sub_permut g d t t' -> sub_permut g d t' t'' -> sub_permut g d t t''.
+
+Hint Resolve exchange_is_sub_permut sub_permut_refl sub_permut_sym
+ sub_permut_trans: v62 datatypes.
(* To express that some parts of arrays are equal we introduce the
* property "array_id" which says that a segment is the same on two
* arrays.
*)
-Definition array_id := [n:Z][A:Set][t,t':(array n A)][g,d:Z]
- (i:Z) `g <= i <= d` -> #t[i] = #t'[i].
+Definition array_id (n:Z) (A:Set) (t t':array n A)
+ (g d:Z) := forall i:Z, (g <= i <= d)%Z -> #t [i] = #t' [i].
(* array_id is an equivalence relation *)
-Lemma array_id_refl :
- (n:Z)(A:Set)(t:(array n A))(g,d:Z)
- (array_id t t g d).
+Lemma array_id_refl :
+ forall (n:Z) (A:Set) (t:array n A) (g d:Z), array_id t t g d.
Proof.
-Unfold array_id.
-Auto with datatypes.
-Save.
+unfold array_id in |- *.
+auto with datatypes.
+Qed.
-Hints Resolve array_id_refl : v62 datatypes.
+Hint Resolve array_id_refl: v62 datatypes.
Lemma array_id_sym :
- (n:Z)(A:Set)(t,t':(array n A))(g,d:Z)
- (array_id t t' g d)
- -> (array_id t' t g d).
+ forall (n:Z) (A:Set) (t t':array n A) (g d:Z),
+ array_id t t' g d -> array_id t' t g d.
Proof.
-Unfold array_id. Intros.
-Symmetry; Auto with datatypes.
-Save.
+unfold array_id in |- *. intros.
+symmetry in |- *; auto with datatypes.
+Qed.
-Hints Resolve array_id_sym : v62 datatypes.
+Hint Resolve array_id_sym: v62 datatypes.
Lemma array_id_trans :
- (n:Z)(A:Set)(t,t',t'':(array n A))(g,d:Z)
- (array_id t t' g d)
- -> (array_id t' t'' g d)
- -> (array_id t t'' g d).
+ forall (n:Z) (A:Set) (t t' t'':array n A) (g d:Z),
+ array_id t t' g d -> array_id t' t'' g d -> array_id t t'' g d.
Proof.
-Unfold array_id. Intros.
-Apply trans_eq with y:=#t'[i]; Auto with datatypes.
-Save.
+unfold array_id in |- *. intros.
+apply trans_eq with (y := #t' [i]); auto with datatypes.
+Qed.
-Hints Resolve array_id_trans: v62 datatypes.
+Hint Resolve array_id_trans: v62 datatypes.
(* Outside the segment [g,d] the elements are equal *)
Lemma sub_permut_id :
- (n:Z)(A:Set)(t,t':(array n A))(g,d:Z)
- (sub_permut g d t t') ->
- (array_id t t' `0` `g-1`) /\ (array_id t t' `d+1` `n-1`).
+ forall (n:Z) (A:Set) (t t':array n A) (g d:Z),
+ sub_permut g d t t' ->
+ array_id t t' 0 (g - 1) /\ array_id t t' (d + 1) (n - 1).
Proof.
-Intros n A t t' g d. Induction 1; Intros.
-Elim H2; Intros.
-Unfold array_id; Split; Intros.
-Apply H7; Omega.
-Apply H7; Omega.
-Auto with datatypes.
-Decompose [and] H1; Auto with datatypes.
-Decompose [and] H1; Decompose [and] H3; EAuto with datatypes.
-Save.
-
-Hints Resolve sub_permut_id.
+intros n A t t' g d. simple induction 1; intros.
+elim H2; intros.
+unfold array_id in |- *; split; intros.
+apply H7; omega.
+apply H7; omega.
+auto with datatypes.
+decompose [and] H1; auto with datatypes.
+decompose [and] H1; decompose [and] H3; eauto with datatypes.
+Qed.
+
+Hint Resolve sub_permut_id.
Lemma sub_permut_eq :
- (n:Z)(A:Set)(t,t':(array n A))(g,d:Z)
- (sub_permut g d t t') ->
- (i:Z) (`0<=i<g` \/ `d<i<n`) -> #t[i]=#t'[i].
+ forall (n:Z) (A:Set) (t t':array n A) (g d:Z),
+ sub_permut g d t t' ->
+ forall i:Z, (0 <= i < g)%Z \/ (d < i < n)%Z -> #t [i] = #t' [i].
Proof.
-Intros n A t t' g d Htt' i Hi.
-Elim (sub_permut_id Htt'). Unfold array_id.
-Intros.
-Elim Hi; [ Intro; Apply H; Omega | Intro; Apply H0; Omega ].
-Save.
+intros n A t t' g d Htt' i Hi.
+elim (sub_permut_id Htt'). unfold array_id in |- *.
+intros.
+elim Hi; [ intro; apply H; omega | intro; apply H0; omega ].
+Qed.
(* sub_permut is a particular case of permutation *)
Lemma sub_permut_is_permut :
- (n:Z)(A:Set)(t,t':(array n A))(g,d:Z)
- (sub_permut g d t t') ->
- (permut t t').
+ forall (n:Z) (A:Set) (t t':array n A) (g d:Z),
+ sub_permut g d t t' -> permut t t'.
Proof.
-Intros n A t t' g d. Induction 1; Intros; EAuto with datatypes.
-Save.
+intros n A t t' g d. simple induction 1; intros; eauto with datatypes.
+Qed.
-Hints Resolve sub_permut_is_permut.
+Hint Resolve sub_permut_is_permut.
(* If we have a sub-permutation on an empty segment, then we have a
* sub-permutation on any segment.
*)
Lemma sub_permut_void :
- (N:Z)(A:Set)(t,t':(array N A))
- (g,g',d,d':Z) `d < g`
- -> (sub_permut g d t t') -> (sub_permut g' d' t t').
+ forall (N:Z) (A:Set) (t t':array N A) (g g' d d':Z),
+ (d < g)%Z -> sub_permut g d t t' -> sub_permut g' d' t t'.
Proof.
-Intros N A t t' g g' d d' Hdg.
-(Induction 1; Intros).
-(Absurd `g <= d`; Omega).
-Auto with datatypes.
-Auto with datatypes.
-EAuto with datatypes.
-Save.
+intros N A t t' g g' d d' Hdg.
+simple induction 1; intros.
+absurd (g <= d)%Z; omega.
+auto with datatypes.
+auto with datatypes.
+eauto with datatypes.
+Qed.
(* A sub-permutation on a segment may be extended to any segment that
* contains the first one.
*)
Lemma sub_permut_extension :
- (N:Z)(A:Set)(t,t':(array N A))
- (g,g',d,d':Z) `g' <= g` -> `d <= d'`
- -> (sub_permut g d t t') -> (sub_permut g' d' t t').
+ forall (N:Z) (A:Set) (t t':array N A) (g g' d d':Z),
+ (g' <= g)%Z -> (d <= d')%Z -> sub_permut g d t t' -> sub_permut g' d' t t'.
Proof.
-Intros N A t t' g g' d d' Hgg' Hdd'.
-(Induction 1; Intros).
-Apply exchange_is_sub_permut with i:=i j:=j; [ Omega | Omega | Assumption ].
-Auto with datatypes.
-Auto with datatypes.
-EAuto with datatypes.
-Save.
+intros N A t t' g g' d d' Hgg' Hdd'.
+simple induction 1; intros.
+apply exchange_is_sub_permut with (i := i) (j := j);
+ [ omega | omega | assumption ].
+auto with datatypes.
+auto with datatypes.
+eauto with datatypes.
+Qed. \ No newline at end of file
diff --git a/contrib/correctness/Arrays.v b/contrib/correctness/Arrays.v
index 40b19e74f..000a5c913 100644
--- a/contrib/correctness/Arrays.v
+++ b/contrib/correctness/Arrays.v
@@ -39,37 +39,40 @@ Parameter array : Z -> Set -> Set.
(* Functions to create, access and modify arrays *)
-Parameter new : (n:Z)(T:Set) T -> (array n T).
+Parameter new : forall (n:Z) (T:Set), T -> array n T.
-Parameter access : (n:Z)(T:Set) (array n T) -> Z -> T.
+Parameter access : forall (n:Z) (T:Set), array n T -> Z -> T.
-Parameter store : (n:Z)(T:Set) (array n T) -> Z -> T -> (array n T).
+Parameter store : forall (n:Z) (T:Set), array n T -> Z -> T -> array n T.
(* Axioms *)
-Axiom new_def : (n:Z)(T:Set)(v0:T)
- (i:Z) `0<=i<n` -> (access (new n v0) i) = v0.
+Axiom
+ new_def :
+ forall (n:Z) (T:Set) (v0:T) (i:Z),
+ (0 <= i < n)%Z -> access (new n v0) i = v0.
-Axiom store_def_1 : (n:Z)(T:Set)(t:(array n T))(v:T)
- (i:Z) `0<=i<n` ->
- (access (store t i v) i) = v.
+Axiom
+ store_def_1 :
+ forall (n:Z) (T:Set) (t:array n T) (v:T) (i:Z),
+ (0 <= i < n)%Z -> access (store t i v) i = v.
-Axiom store_def_2 : (n:Z)(T:Set)(t:(array n T))(v:T)
- (i:Z)(j:Z) `0<=i<n` -> `0<=j<n` ->
- `i <> j` ->
- (access (store t i v) j) = (access t j).
+Axiom
+ store_def_2 :
+ forall (n:Z) (T:Set) (t:array n T) (v:T) (i j:Z),
+ (0 <= i < n)%Z ->
+ (0 <= j < n)%Z -> i <> j -> access (store t i v) j = access t j.
-Hints Resolve new_def store_def_1 store_def_2 : datatypes v62.
+Hint Resolve new_def store_def_1 store_def_2: datatypes v62.
(* A tactic to simplify access in arrays *)
-Tactic Definition ArrayAccess i j H :=
- Elim (Z_eq_dec i j); [
- Intro H; Rewrite H; Rewrite store_def_1
- | Intro H; Rewrite store_def_2; [ Idtac | Idtac | Idtac | Exact H ] ].
+Ltac array_access i j H :=
+ elim (Z_eq_dec i j);
+ [ intro H; rewrite H; rewrite store_def_1
+ | intro H; rewrite store_def_2; [ idtac | idtac | idtac | exact H ] ].
(* Symbolic notation for access *)
-Notation "# t [ c ]" := (access t c) (at level 0, t ident)
- V8only (at level 0, t at level 0).
+Notation "# t [ c ]" := (access t c) (at level 0, t at level 0). \ No newline at end of file
diff --git a/contrib/correctness/Correctness.v b/contrib/correctness/Correctness.v
index 8f3f90b95..cc36e829f 100644
--- a/contrib/correctness/Correctness.v
+++ b/contrib/correctness/Correctness.v
@@ -22,4 +22,4 @@ Require Export Arrays.
(*
Token "'".
-*)
+*) \ No newline at end of file
diff --git a/contrib/correctness/Exchange.v b/contrib/correctness/Exchange.v
index 85c19b48b..8016a2927 100644
--- a/contrib/correctness/Exchange.v
+++ b/contrib/correctness/Exchange.v
@@ -15,80 +15,81 @@
(* Definition and properties *)
(****************************************************************************)
-Require ProgInt.
-Require Arrays.
+Require Import ProgInt.
+Require Import Arrays.
Set Implicit Arguments.
(* Definition *)
-Inductive exchange [n:Z; A:Set; t,t':(array n A); i,j:Z] : Prop :=
- exchange_c :
- `0<=i<n` -> `0<=j<n` ->
- (#t[i] = #t'[j]) ->
- (#t[j] = #t'[i]) ->
- ((k:Z)`0<=k<n` -> `k<>i` -> `k<>j` -> #t[k] = #t'[k]) ->
- (exchange t t' i j).
+Inductive exchange (n:Z) (A:Set) (t t':array n A) (i j:Z) : Prop :=
+ exchange_c :
+ (0 <= i < n)%Z ->
+ (0 <= j < n)%Z ->
+ #t [i] = #t' [j] ->
+ #t [j] = #t' [i] ->
+ (forall k:Z, (0 <= k < n)%Z -> k <> i -> k <> j -> #t [k] = #t' [k]) ->
+ exchange t t' i j.
(* Properties about exchanges *)
-Lemma exchange_1 : (n:Z)(A:Set)(t:(array n A))
- (i,j:Z) `0<=i<n` -> `0<=j<n` ->
- (access (store (store t i #t[j]) j #t[i]) i) = #t[j].
+Lemma exchange_1 :
+ forall (n:Z) (A:Set) (t:array n A) (i j:Z),
+ (0 <= i < n)%Z ->
+ (0 <= j < n)%Z -> #(store (store t i #t [j]) j #t [i]) [i] = #t [j].
Proof.
-Intros n A t i j H_i H_j.
-Case (dec_eq j i).
-Intro eq_i_j. Rewrite eq_i_j.
-Auto with datatypes.
-Intro not_j_i.
-Rewrite (store_def_2 (store t i #t[j]) #t[i] H_j H_i not_j_i).
-Auto with datatypes.
-Save.
+intros n A t i j H_i H_j.
+case (dec_eq j i).
+intro eq_i_j. rewrite eq_i_j.
+auto with datatypes.
+intro not_j_i.
+rewrite (store_def_2 (store t i #t [j]) #t [i] H_j H_i not_j_i).
+auto with datatypes.
+Qed.
-Hints Resolve exchange_1 : v62 datatypes.
+Hint Resolve exchange_1: v62 datatypes.
Lemma exchange_proof :
- (n:Z)(A:Set)(t:(array n A))
- (i,j:Z) `0<=i<n` -> `0<=j<n` ->
- (exchange (store (store t i (access t j)) j (access t i)) t i j).
+ forall (n:Z) (A:Set) (t:array n A) (i j:Z),
+ (0 <= i < n)%Z ->
+ (0 <= j < n)%Z -> exchange (store (store t i #t [j]) j #t [i]) t i j.
Proof.
-Intros n A t i j H_i H_j.
-Apply exchange_c; Auto with datatypes.
-Intros k H_k not_k_i not_k_j.
-Cut ~j=k; Auto with datatypes. Intro not_j_k.
-Rewrite (store_def_2 (store t i (access t j)) (access t i) H_j H_k not_j_k).
-Auto with datatypes.
-Save.
+intros n A t i j H_i H_j.
+apply exchange_c; auto with datatypes.
+intros k H_k not_k_i not_k_j.
+cut (j <> k); auto with datatypes. intro not_j_k.
+rewrite (store_def_2 (store t i #t [j]) #t [i] H_j H_k not_j_k).
+auto with datatypes.
+Qed.
-Hints Resolve exchange_proof : v62 datatypes.
+Hint Resolve exchange_proof: v62 datatypes.
Lemma exchange_sym :
- (n:Z)(A:Set)(t,t':(array n A))(i,j:Z)
- (exchange t t' i j) -> (exchange t' t i j).
+ forall (n:Z) (A:Set) (t t':array n A) (i j:Z),
+ exchange t t' i j -> exchange t' t i j.
Proof.
-Intros n A t t' i j H1.
-Elim H1. Clear H1. Intros.
-Constructor 1; Auto with datatypes.
-Intros. Rewrite (H3 k); Auto with datatypes.
-Save.
+intros n A t t' i j H1.
+elim H1. clear H1. intros.
+constructor 1; auto with datatypes.
+intros. rewrite (H3 k); auto with datatypes.
+Qed.
-Hints Resolve exchange_sym : v62 datatypes.
+Hint Resolve exchange_sym: v62 datatypes.
Lemma exchange_id :
- (n:Z)(A:Set)(t,t':(array n A))(i,j:Z)
- (exchange t t' i j) ->
- i=j ->
- (k:Z) `0 <= k < n` -> (access t k)=(access t' k).
+ forall (n:Z) (A:Set) (t t':array n A) (i j:Z),
+ exchange t t' i j ->
+ i = j -> forall k:Z, (0 <= k < n)%Z -> #t [k] = #t' [k].
Proof.
-Intros n A t t' i j Hex Heq k Hk.
-Elim Hex. Clear Hex. Intros.
-Rewrite Heq in H1. Rewrite Heq in H2.
-Case (Z_eq_dec k j).
- Intro Heq'. Rewrite Heq'. Assumption.
- Intro Hnoteq. Apply (H3 k); Auto with datatypes. Rewrite Heq. Assumption.
-Save.
-
-Hints Resolve exchange_id : v62 datatypes.
+intros n A t t' i j Hex Heq k Hk.
+elim Hex. clear Hex. intros.
+rewrite Heq in H1. rewrite Heq in H2.
+case (Z_eq_dec k j).
+ intro Heq'. rewrite Heq'. assumption.
+ intro Hnoteq. apply (H3 k); auto with datatypes. rewrite Heq. assumption.
+Qed.
+
+Hint Resolve exchange_id: v62 datatypes. \ No newline at end of file
diff --git a/contrib/correctness/ProgBool.v b/contrib/correctness/ProgBool.v
index 364cc8d6a..6563fb68a 100644
--- a/contrib/correctness/ProgBool.v
+++ b/contrib/correctness/ProgBool.v
@@ -10,57 +10,57 @@
(* $Id$ *)
-Require ZArith.
+Require Import ZArith.
Require Export Bool_nat.
Require Export Sumbool.
Definition annot_bool :
- (b:bool) { b':bool | if b' then b=true else b=false }.
+ forall b:bool, {b' : bool | if b' then b = true else b = false}.
Proof.
-Intro b.
-Exists b. Case b; Trivial.
-Save.
+intro b.
+exists b. case b; trivial.
+Qed.
(* Logical connectives *)
-Definition spec_and := [A,B,C,D:Prop][b:bool]if b then A /\ C else B \/ D.
+Definition spec_and (A B C D:Prop) (b:bool) := if b then A /\ C else B \/ D.
Definition prog_bool_and :
- (Q1,Q2:bool->Prop) (sig bool Q1) -> (sig bool Q2)
- -> { b:bool | if b then (Q1 true) /\ (Q2 true)
- else (Q1 false) \/ (Q2 false) }.
+ forall Q1 Q2:bool -> Prop,
+ sig Q1 ->
+ sig Q2 ->
+ {b : bool | if b then Q1 true /\ Q2 true else Q1 false \/ Q2 false}.
Proof.
-Intros Q1 Q2 H1 H2.
-Elim H1. Intro b1. Elim H2. Intro b2.
-Case b1; Case b2; Intros.
-Exists true; Auto.
-Exists false; Auto. Exists false; Auto. Exists false; Auto.
-Save.
+intros Q1 Q2 H1 H2.
+elim H1. intro b1. elim H2. intro b2.
+case b1; case b2; intros.
+exists true; auto.
+exists false; auto. exists false; auto. exists false; auto.
+Qed.
-Definition spec_or := [A,B,C,D:Prop][b:bool]if b then A \/ C else B /\ D.
+Definition spec_or (A B C D:Prop) (b:bool) := if b then A \/ C else B /\ D.
Definition prog_bool_or :
- (Q1,Q2:bool->Prop) (sig bool Q1) -> (sig bool Q2)
- -> { b:bool | if b then (Q1 true) \/ (Q2 true)
- else (Q1 false) /\ (Q2 false) }.
+ forall Q1 Q2:bool -> Prop,
+ sig Q1 ->
+ sig Q2 ->
+ {b : bool | if b then Q1 true \/ Q2 true else Q1 false /\ Q2 false}.
Proof.
-Intros Q1 Q2 H1 H2.
-Elim H1. Intro b1. Elim H2. Intro b2.
-Case b1; Case b2; Intros.
-Exists true; Auto. Exists true; Auto. Exists true; Auto.
-Exists false; Auto.
-Save.
+intros Q1 Q2 H1 H2.
+elim H1. intro b1. elim H2. intro b2.
+case b1; case b2; intros.
+exists true; auto. exists true; auto. exists true; auto.
+exists false; auto.
+Qed.
-Definition spec_not:= [A,B:Prop][b:bool]if b then B else A.
+Definition spec_not (A B:Prop) (b:bool) := if b then B else A.
Definition prog_bool_not :
- (Q:bool->Prop) (sig bool Q)
- -> { b:bool | if b then (Q false) else (Q true) }.
+ forall Q:bool -> Prop, sig Q -> {b : bool | if b then Q false else Q true}.
Proof.
-Intros Q H.
-Elim H. Intro b.
-Case b; Intro.
-Exists false; Auto. Exists true; Auto.
-Save.
-
+intros Q H.
+elim H. intro b.
+case b; intro.
+exists false; auto. exists true; auto.
+Qed.
diff --git a/contrib/correctness/ProgInt.v b/contrib/correctness/ProgInt.v
index ec46e2de6..470162ca3 100644
--- a/contrib/correctness/ProgInt.v
+++ b/contrib/correctness/ProgInt.v
@@ -13,7 +13,7 @@
Require Export ZArith.
Require Export ZArith_dec.
-Theorem Znotzero : (x:Z){`x<>0`}+{`x=0`}.
+Theorem Znotzero : forall x:Z, {x <> 0%Z} + {x = 0%Z}.
Proof.
-Intro x. Elim (Z_eq_dec x `0`) ; Auto.
-Save.
+intro x. elim (Z_eq_dec x 0); auto.
+Qed. \ No newline at end of file
diff --git a/contrib/correctness/Sorted.v b/contrib/correctness/Sorted.v
index 7e656ae1b..0dafe1010 100644
--- a/contrib/correctness/Sorted.v
+++ b/contrib/correctness/Sorted.v
@@ -11,188 +11,192 @@
(* $Id$ *)
Require Export Arrays.
-Require ArrayPermut.
+Require Import ArrayPermut.
-Require ZArithRing.
-Require Omega.
-V7only [Import Z_scope.].
+Require Import ZArithRing.
+Require Import Omega.
Open Local Scope Z_scope.
Set Implicit Arguments.
(* Definition *)
-Definition sorted_array :=
- [N:Z][A:(array N Z)][deb:Z][fin:Z]
- `deb<=fin` -> (x:Z) `x>=deb` -> `x<fin` -> (Zle #A[x] #A[`x+1`]).
+Definition sorted_array (N:Z) (A:array N Z) (deb fin:Z) :=
+ deb <= fin -> forall x:Z, x >= deb -> x < fin -> #A [x] <= #A [x + 1].
(* Elements of a sorted sub-array are in increasing order *)
(* one element and the next one *)
Lemma sorted_elements_1 :
- (N:Z)(A:(array N Z))(n:Z)(m:Z)
- (sorted_array A n m)
- -> (k:Z)`k>=n`
- -> (i:Z) `0<=i` -> `k+i<=m`
- -> (Zle (access A k) (access A `k+i`)).
+ forall (N:Z) (A:array N Z) (n m:Z),
+ sorted_array A n m ->
+ forall k:Z,
+ k >= n -> forall i:Z, 0 <= i -> k + i <= m -> #A [k] <= #A [k + i].
Proof.
-Intros N A n m H_sorted k H_k i H_i.
-Pattern i. Apply natlike_ind.
-Intro.
-Replace `k+0` with k; Omega. (*** Ring `k+0` => BUG ***)
+intros N A n m H_sorted k H_k i H_i.
+pattern i in |- *. apply natlike_ind.
+intro.
+replace (k + 0) with k; omega. (*** Ring `k+0` => BUG ***)
-Intros.
-Apply Zle_trans with m:=(access A `k+x`).
-Apply H0 ; Omega.
+intros.
+apply Zle_trans with (m := #A [k + x]).
+apply H0; omega.
-Unfold Zs.
-Replace `k+(x+1)` with `(k+x)+1`.
-Unfold sorted_array in H_sorted.
-Apply H_sorted ; Omega.
+unfold Zsucc in |- *.
+replace (k + (x + 1)) with (k + x + 1).
+unfold sorted_array in H_sorted.
+apply H_sorted; omega.
-Omega.
+omega.
-Assumption.
-Save.
+assumption.
+Qed.
(* one element and any of the following *)
Lemma sorted_elements :
- (N:Z)(A:(array N Z))(n:Z)(m:Z)(k:Z)(l:Z)
- (sorted_array A n m)
- -> `k>=n` -> `l<N` -> `k<=l` -> `l<=m`
- -> (Zle (access A k) (access A l)).
+ forall (N:Z) (A:array N Z) (n m k l:Z),
+ sorted_array A n m ->
+ k >= n -> l < N -> k <= l -> l <= m -> #A [k] <= #A [l].
Proof.
-Intros.
-Replace l with `k+(l-k)`.
-Apply sorted_elements_1 with n:=n m:=m; [Assumption | Omega | Omega | Omega].
-Omega.
-Save.
+intros.
+replace l with (k + (l - k)).
+apply sorted_elements_1 with (n := n) (m := m);
+ [ assumption | omega | omega | omega ].
+omega.
+Qed.
-Hints Resolve sorted_elements : datatypes v62.
+Hint Resolve sorted_elements: datatypes v62.
(* A sub-array of a sorted array is sorted *)
-Lemma sub_sorted_array : (N:Z)(A:(array N Z))(deb:Z)(fin:Z)(i:Z)(j:Z)
- (sorted_array A deb fin) ->
- (`i>=deb` -> `j<=fin` -> `i<=j` -> (sorted_array A i j)).
+Lemma sub_sorted_array :
+ forall (N:Z) (A:array N Z) (deb fin i j:Z),
+ sorted_array A deb fin ->
+ i >= deb -> j <= fin -> i <= j -> sorted_array A i j.
Proof.
-Unfold sorted_array.
-Intros.
-Apply H ; Omega.
-Save.
+unfold sorted_array in |- *.
+intros.
+apply H; omega.
+Qed.
-Hints Resolve sub_sorted_array : datatypes v62.
+Hint Resolve sub_sorted_array: datatypes v62.
(* Extension on the left of the property of being sorted *)
-Lemma left_extension : (N:Z)(A:(array N Z))(i:Z)(j:Z)
- `i>0` -> `j<N` -> (sorted_array A i j)
- -> (Zle #A[`i-1`] #A[i]) -> (sorted_array A `i-1` j).
+Lemma left_extension :
+ forall (N:Z) (A:array N Z) (i j:Z),
+ i > 0 ->
+ j < N ->
+ sorted_array A i j -> #A [i - 1] <= #A [i] -> sorted_array A (i - 1) j.
Proof.
-(Intros; Unfold sorted_array ; Intros).
-Elim (Z_ge_lt_dec x i). (* (`x >= i`) + (`x < i`) *)
-Intro Hcut.
-Apply H1 ; Omega.
+intros; unfold sorted_array in |- *; intros.
+elim (Z_ge_lt_dec x i). (* (`x >= i`) + (`x < i`) *)
+intro Hcut.
+apply H1; omega.
-Intro Hcut.
-Replace x with `i-1`.
-Replace `i-1+1` with i ; [Assumption | Omega].
+intro Hcut.
+replace x with (i - 1).
+replace (i - 1 + 1) with i; [ assumption | omega ].
-Omega.
-Save.
+omega.
+Qed.
(* Extension on the right *)
-Lemma right_extension : (N:Z)(A:(array N Z))(i:Z)(j:Z)
- `i>=0` -> `j<N-1` -> (sorted_array A i j)
- -> (Zle #A[j] #A[`j+1`]) -> (sorted_array A i `j+1`).
+Lemma right_extension :
+ forall (N:Z) (A:array N Z) (i j:Z),
+ i >= 0 ->
+ j < N - 1 ->
+ sorted_array A i j -> #A [j] <= #A [j + 1] -> sorted_array A i (j + 1).
Proof.
-(Intros; Unfold sorted_array ; Intros).
-Elim (Z_lt_ge_dec x j).
-Intro Hcut.
-Apply H1 ; Omega.
+intros; unfold sorted_array in |- *; intros.
+elim (Z_lt_ge_dec x j).
+intro Hcut.
+apply H1; omega.
-Intro HCut.
-Replace x with j ; [Assumption | Omega].
-Save.
+intro HCut.
+replace x with j; [ assumption | omega ].
+Qed.
(* Substitution of the leftmost value by a smaller value *)
-Lemma left_substitution :
- (N:Z)(A:(array N Z))(i:Z)(j:Z)(v:Z)
- `i>=0` -> `j<N` -> (sorted_array A i j)
- -> (Zle v #A[i])
- -> (sorted_array (store A i v) i j).
+Lemma left_substitution :
+ forall (N:Z) (A:array N Z) (i j v:Z),
+ i >= 0 ->
+ j < N ->
+ sorted_array A i j -> v <= #A [i] -> sorted_array (store A i v) i j.
Proof.
-Intros N A i j v H_i H_j H_sorted H_v.
-Unfold sorted_array ; Intros.
-
-Cut `x = i`\/`x > i`.
-(Intro Hcut ; Elim Hcut ; Clear Hcut ; Intro).
-Rewrite H2.
-Rewrite store_def_1 ; Try Omega.
-Rewrite store_def_2 ; Try Omega.
-Apply Zle_trans with m:=(access A i) ; [Assumption | Apply H_sorted ; Omega].
-
-(Rewrite store_def_2; Try Omega).
-(Rewrite store_def_2; Try Omega).
-Apply H_sorted ; Omega.
-Omega.
-Save.
+intros N A i j v H_i H_j H_sorted H_v.
+unfold sorted_array in |- *; intros.
+
+cut (x = i \/ x > i).
+intro Hcut; elim Hcut; clear Hcut; intro.
+rewrite H2.
+rewrite store_def_1; try omega.
+rewrite store_def_2; try omega.
+apply Zle_trans with (m := #A [i]); [ assumption | apply H_sorted; omega ].
+
+rewrite store_def_2; try omega.
+rewrite store_def_2; try omega.
+apply H_sorted; omega.
+omega.
+Qed.
(* Substitution of the rightmost value by a larger value *)
-Lemma right_substitution :
- (N:Z)(A:(array N Z))(i:Z)(j:Z)(v:Z)
- `i>=0` -> `j<N` -> (sorted_array A i j)
- -> (Zle #A[j] v)
- -> (sorted_array (store A j v) i j).
+Lemma right_substitution :
+ forall (N:Z) (A:array N Z) (i j v:Z),
+ i >= 0 ->
+ j < N ->
+ sorted_array A i j -> #A [j] <= v -> sorted_array (store A j v) i j.
Proof.
-Intros N A i j v H_i H_j H_sorted H_v.
-Unfold sorted_array ; Intros.
-
-Cut `x = j-1`\/`x < j-1`.
-(Intro Hcut ; Elim Hcut ; Clear Hcut ; Intro).
-Rewrite H2.
-Replace `j-1+1` with j; [ Idtac | Omega ]. (*** Ring `j-1+1`. => BUG ***)
-Rewrite store_def_2 ; Try Omega.
-Rewrite store_def_1 ; Try Omega.
-Apply Zle_trans with m:=(access A j).
-Apply sorted_elements with n:=i m:=j ; Try Omega ; Assumption.
-Assumption.
-
-(Rewrite store_def_2; Try Omega).
-(Rewrite store_def_2; Try Omega).
-Apply H_sorted ; Omega.
-
-Omega.
-Save.
+intros N A i j v H_i H_j H_sorted H_v.
+unfold sorted_array in |- *; intros.
+
+cut (x = j - 1 \/ x < j - 1).
+intro Hcut; elim Hcut; clear Hcut; intro.
+rewrite H2.
+replace (j - 1 + 1) with j; [ idtac | omega ]. (*** Ring `j-1+1`. => BUG ***)
+rewrite store_def_2; try omega.
+rewrite store_def_1; try omega.
+apply Zle_trans with (m := #A [j]).
+apply sorted_elements with (n := i) (m := j); try omega; assumption.
+assumption.
+
+rewrite store_def_2; try omega.
+rewrite store_def_2; try omega.
+apply H_sorted; omega.
+
+omega.
+Qed.
(* Affectation outside of the sorted region *)
-Lemma no_effect :
- (N:Z)(A:(array N Z))(i:Z)(j:Z)(k:Z)(v:Z)
- `i>=0` -> `j<N` -> (sorted_array A i j)
- -> `0<=k<i`\/`j<k<N`
- -> (sorted_array (store A k v) i j).
+Lemma no_effect :
+ forall (N:Z) (A:array N Z) (i j k v:Z),
+ i >= 0 ->
+ j < N ->
+ sorted_array A i j ->
+ 0 <= k < i \/ j < k < N -> sorted_array (store A k v) i j.
Proof.
-Intros.
-Unfold sorted_array ; Intros.
-Rewrite store_def_2 ; Try Omega.
-Rewrite store_def_2 ; Try Omega.
-Apply H1 ; Assumption.
-Save.
-
-Lemma sorted_array_id : (N:Z)(t1,t2:(array N Z))(g,d:Z)
- (sorted_array t1 g d) -> (array_id t1 t2 g d) -> (sorted_array t2 g d).
+intros.
+unfold sorted_array in |- *; intros.
+rewrite store_def_2; try omega.
+rewrite store_def_2; try omega.
+apply H1; assumption.
+Qed.
+
+Lemma sorted_array_id :
+ forall (N:Z) (t1 t2:array N Z) (g d:Z),
+ sorted_array t1 g d -> array_id t1 t2 g d -> sorted_array t2 g d.
Proof.
-Intros N t1 t2 g d Hsorted Hid.
-Unfold array_id in Hid.
-Unfold sorted_array in Hsorted. Unfold sorted_array.
-Intros Hgd x H1x H2x.
-Rewrite <- (Hid x); [ Idtac | Omega ].
-Rewrite <- (Hid `x+1`); [ Idtac | Omega ].
-Apply Hsorted; Assumption.
-Save.
+intros N t1 t2 g d Hsorted Hid.
+unfold array_id in Hid.
+unfold sorted_array in Hsorted. unfold sorted_array in |- *.
+intros Hgd x H1x H2x.
+rewrite <- (Hid x); [ idtac | omega ].
+rewrite <- (Hid (x + 1)); [ idtac | omega ].
+apply Hsorted; assumption.
+Qed. \ No newline at end of file
diff --git a/contrib/correctness/Tuples.v b/contrib/correctness/Tuples.v
index f9a3b56b7..41ff10c04 100644
--- a/contrib/correctness/Tuples.v
+++ b/contrib/correctness/Tuples.v
@@ -12,95 +12,87 @@
(* Tuples *)
-Definition tuple_1 := [X:Set]X.
+Definition tuple_1 (X:Set) := X.
Definition tuple_2 := prod.
Definition Build_tuple_2 := pair.
Definition proj_2_1 := fst.
Definition proj_2_2 := snd.
-Record tuple_3 [ T1,T2,T3 : Set ] : Set :=
- { proj_3_1 : T1 ;
- proj_3_2 : T2 ;
- proj_3_3 : T3 }.
-
-Record tuple_4 [ T1,T2,T3,T4 : Set ] : Set :=
- { proj_4_1 : T1 ;
- proj_4_2 : T2 ;
- proj_4_3 : T3 ;
- proj_4_4 : T4 }.
-
-Record tuple_5 [ T1,T2,T3,T4,T5 : Set ] : Set :=
- { proj_5_1 : T1 ;
- proj_5_2 : T2 ;
- proj_5_3 : T3 ;
- proj_5_4 : T4 ;
- proj_5_5 : T5 }.
-
-Record tuple_6 [ T1,T2,T3,T4,T5,T6 : Set ] : Set :=
- { proj_6_1 : T1 ;
- proj_6_2 : T2 ;
- proj_6_3 : T3 ;
- proj_6_4 : T4 ;
- proj_6_5 : T5 ;
- proj_6_6 : T6 }.
-
-Record tuple_7 [ T1,T2,T3,T4,T5,T6,T7 : Set ] : Set :=
- { proj_7_1 : T1 ;
- proj_7_2 : T2 ;
- proj_7_3 : T3 ;
- proj_7_4 : T4 ;
- proj_7_5 : T5 ;
- proj_7_6 : T6 ;
- proj_7_7 : T7 }.
+Record tuple_3 (T1 T2 T3:Set) : Set :=
+ {proj_3_1 : T1; proj_3_2 : T2; proj_3_3 : T3}.
+Record tuple_4 (T1 T2 T3 T4:Set) : Set :=
+ {proj_4_1 : T1; proj_4_2 : T2; proj_4_3 : T3; proj_4_4 : T4}.
-(* Existentials *)
-
-Definition sig_1 := sig.
-Definition exist_1 := exist.
-
-Inductive sig_2 [ T1,T2 : Set; P:T1->T2->Prop ] : Set :=
- exist_2 : (x1:T1)(x2:T2)(P x1 x2) -> (sig_2 T1 T2 P).
-
-Inductive sig_3 [ T1,T2,T3 : Set; P:T1->T2->T3->Prop ] : Set :=
- exist_3 : (x1:T1)(x2:T2)(x3:T3)(P x1 x2 x3) -> (sig_3 T1 T2 T3 P).
+Record tuple_5 (T1 T2 T3 T4 T5:Set) : Set :=
+ {proj_5_1 : T1; proj_5_2 : T2; proj_5_3 : T3; proj_5_4 : T4; proj_5_5 : T5}.
+Record tuple_6 (T1 T2 T3 T4 T5 T6:Set) : Set :=
+ {proj_6_1 : T1;
+ proj_6_2 : T2;
+ proj_6_3 : T3;
+ proj_6_4 : T4;
+ proj_6_5 : T5;
+ proj_6_6 : T6}.
-Inductive sig_4 [ T1,T2,T3,T4 : Set;
- P:T1->T2->T3->T4->Prop ] : Set :=
- exist_4 : (x1:T1)(x2:T2)(x3:T3)(x4:T4)
- (P x1 x2 x3 x4)
- -> (sig_4 T1 T2 T3 T4 P).
+Record tuple_7 (T1 T2 T3 T4 T5 T6 T7:Set) : Set :=
+ {proj_7_1 : T1;
+ proj_7_2 : T2;
+ proj_7_3 : T3;
+ proj_7_4 : T4;
+ proj_7_5 : T5;
+ proj_7_6 : T6;
+ proj_7_7 : T7}.
-Inductive sig_5 [ T1,T2,T3,T4,T5 : Set;
- P:T1->T2->T3->T4->T5->Prop ] : Set :=
- exist_5 : (x1:T1)(x2:T2)(x3:T3)(x4:T4)(x5:T5)
- (P x1 x2 x3 x4 x5)
- -> (sig_5 T1 T2 T3 T4 T5 P).
-Inductive sig_6 [ T1,T2,T3,T4,T5,T6 : Set;
- P:T1->T2->T3->T4->T5->T6->Prop ] : Set :=
- exist_6 : (x1:T1)(x2:T2)(x3:T3)(x4:T4)(x5:T5)(x6:T6)
- (P x1 x2 x3 x4 x5 x6)
- -> (sig_6 T1 T2 T3 T4 T5 T6 P).
-
-Inductive sig_7 [ T1,T2,T3,T4,T5,T6,T7 : Set;
- P:T1->T2->T3->T4->T5->T6->T7->Prop ] : Set :=
- exist_7 : (x1:T1)(x2:T2)(x3:T3)(x4:T4)(x5:T5)(x6:T6)(x7:T7)
- (P x1 x2 x3 x4 x5 x6 x7)
- -> (sig_7 T1 T2 T3 T4 T5 T6 T7 P).
-
-Inductive sig_8 [ T1,T2,T3,T4,T5,T6,T7,T8 : Set;
- P:T1->T2->T3->T4->T5->T6->T7->T8->Prop ] : Set :=
- exist_8 : (x1:T1)(x2:T2)(x3:T3)(x4:T4)(x5:T5)(x6:T6)(x7:T7)(x8:T8)
- (P x1 x2 x3 x4 x5 x6 x7 x8)
- -> (sig_8 T1 T2 T3 T4 T5 T6 T7 T8 P).
-
-Inductive dep_tuple_2 [ T1,T2 : Set; P:T1->T2->Set ] : Set :=
- Build_dep_tuple_2 : (x1:T1)(x2:T2)(P x1 x2) -> (dep_tuple_2 T1 T2 P).
+(* Existentials *)
-Inductive dep_tuple_3 [ T1,T2,T3 : Set; P:T1->T2->T3->Set ] : Set :=
- Build_dep_tuple_3 : (x1:T1)(x2:T2)(x3:T3)(P x1 x2 x3)
- -> (dep_tuple_3 T1 T2 T3 P).
+Definition sig_1 := sig.
+Definition exist_1 := exist.
+Inductive sig_2 (T1 T2:Set) (P:T1 -> T2 -> Prop) : Set :=
+ exist_2 : forall (x1:T1) (x2:T2), P x1 x2 -> sig_2 T1 T2 P.
+
+Inductive sig_3 (T1 T2 T3:Set) (P:T1 -> T2 -> T3 -> Prop) : Set :=
+ exist_3 : forall (x1:T1) (x2:T2) (x3:T3), P x1 x2 x3 -> sig_3 T1 T2 T3 P.
+
+
+Inductive sig_4 (T1 T2 T3 T4:Set) (P:T1 -> T2 -> T3 -> T4 -> Prop) : Set :=
+ exist_4 :
+ forall (x1:T1) (x2:T2) (x3:T3) (x4:T4),
+ P x1 x2 x3 x4 -> sig_4 T1 T2 T3 T4 P.
+
+Inductive sig_5 (T1 T2 T3 T4 T5:Set) (P:T1 -> T2 -> T3 -> T4 -> T5 -> Prop) :
+Set :=
+ exist_5 :
+ forall (x1:T1) (x2:T2) (x3:T3) (x4:T4) (x5:T5),
+ P x1 x2 x3 x4 x5 -> sig_5 T1 T2 T3 T4 T5 P.
+
+Inductive sig_6 (T1 T2 T3 T4 T5 T6:Set)
+(P:T1 -> T2 -> T3 -> T4 -> T5 -> T6 -> Prop) : Set :=
+ exist_6 :
+ forall (x1:T1) (x2:T2) (x3:T3) (x4:T4) (x5:T5)
+ (x6:T6), P x1 x2 x3 x4 x5 x6 -> sig_6 T1 T2 T3 T4 T5 T6 P.
+
+Inductive sig_7 (T1 T2 T3 T4 T5 T6 T7:Set)
+(P:T1 -> T2 -> T3 -> T4 -> T5 -> T6 -> T7 -> Prop) : Set :=
+ exist_7 :
+ forall (x1:T1) (x2:T2) (x3:T3) (x4:T4) (x5:T5)
+ (x6:T6) (x7:T7),
+ P x1 x2 x3 x4 x5 x6 x7 -> sig_7 T1 T2 T3 T4 T5 T6 T7 P.
+
+Inductive sig_8 (T1 T2 T3 T4 T5 T6 T7 T8:Set)
+(P:T1 -> T2 -> T3 -> T4 -> T5 -> T6 -> T7 -> T8 -> Prop) : Set :=
+ exist_8 :
+ forall (x1:T1) (x2:T2) (x3:T3) (x4:T4) (x5:T5)
+ (x6:T6) (x7:T7) (x8:T8),
+ P x1 x2 x3 x4 x5 x6 x7 x8 -> sig_8 T1 T2 T3 T4 T5 T6 T7 T8 P.
+
+Inductive dep_tuple_2 (T1 T2:Set) (P:T1 -> T2 -> Set) : Set :=
+ Build_dep_tuple_2 :
+ forall (x1:T1) (x2:T2), P x1 x2 -> dep_tuple_2 T1 T2 P.
+
+Inductive dep_tuple_3 (T1 T2 T3:Set) (P:T1 -> T2 -> T3 -> Set) : Set :=
+ Build_dep_tuple_3 :
+ forall (x1:T1) (x2:T2) (x3:T3), P x1 x2 x3 -> dep_tuple_3 T1 T2 T3 P.
diff --git a/contrib/field/Field.v b/contrib/field/Field.v
index df2a44f3e..a7cf332a7 100644
--- a/contrib/field/Field.v
+++ b/contrib/field/Field.v
@@ -12,4 +12,4 @@ Require Export Field_Compl.
Require Export Field_Theory.
Require Export Field_Tactic.
-(* Command declarations are moved to the ML side *)
+(* Command declarations are moved to the ML side *) \ No newline at end of file
diff --git a/contrib/field/Field_Compl.v b/contrib/field/Field_Compl.v
index aa3a99147..c90fea1ec 100644
--- a/contrib/field/Field_Compl.v
+++ b/contrib/field/Field_Compl.v
@@ -8,55 +8,54 @@
(* $Id$ *)
-Inductive listT [A:Type] : Type :=
- nilT : (listT A) | consT : A->(listT A)->(listT A).
-
-Fixpoint appT [A:Type][l:(listT A)] : (listT A) -> (listT A) :=
- [m:(listT A)]
- Cases l of
- | nilT => m
- | (consT a l1) => (consT A a (appT A l1 m))
+Inductive listT (A:Type) : Type :=
+ | nilT : listT A
+ | consT : A -> listT A -> listT A.
+
+Fixpoint appT (A:Type) (l m:listT A) {struct l} : listT A :=
+ match l with
+ | nilT => m
+ | consT a l1 => consT A a (appT A l1 m)
end.
-Inductive prodT [A,B:Type] : Type :=
- pairT: A->B->(prodT A B).
+Inductive prodT (A B:Type) : Type :=
+ pairT : A -> B -> prodT A B.
Definition assoc_2nd :=
-Fix assoc_2nd_rec
- {assoc_2nd_rec
- [A:Type;B:Set;eq_dec:(e1,e2:B){e1=e2}+{~e1=e2};lst:(listT (prodT A B))]
- : B->A->A:=
- [key:B;default:A]
- Cases lst of
- | nilT => default
- | (consT (pairT v e) l) =>
- (Cases (eq_dec e key) of
- | (left _) => v
- | (right _) => (assoc_2nd_rec A B eq_dec l key default)
- end)
- end}.
-
-Definition fstT [A,B:Type;c:(prodT A B)] :=
- Cases c of
- | (pairT a _) => a
- end.
-
-Definition sndT [A,B:Type;c:(prodT A B)] :=
- Cases c of
- | (pairT _ a) => a
- end.
+ (fix assoc_2nd_rec (A:Type) (B:Set)
+ (eq_dec:forall e1 e2:B, {e1 = e2} + {e1 <> e2})
+ (lst:listT (prodT A B)) {struct lst} :
+ B -> A -> A :=
+ fun (key:B) (default:A) =>
+ match lst with
+ | nilT => default
+ | consT (pairT v e) l =>
+ match eq_dec e key with
+ | left _ => v
+ | right _ => assoc_2nd_rec A B eq_dec l key default
+ end
+ end).
+
+Definition fstT (A B:Type) (c:prodT A B) := match c with
+ | pairT a _ => a
+ end.
+
+Definition sndT (A B:Type) (c:prodT A B) := match c with
+ | pairT _ a => a
+ end.
Definition mem :=
-Fix mem {mem [A:Set;eq_dec:(e1,e2:A){e1=e2}+{~e1=e2};a:A;l:(listT A)] : bool :=
- Cases l of
- | nilT => false
- | (consT a1 l1) =>
- Cases (eq_dec a a1) of
- | (left _) => true
- | (right _) => (mem A eq_dec a l1)
- end
- end}.
-
-Inductive option [A:Type] : Type :=
- | None : (option A)
- | Some : (A -> A -> A) -> (option A).
+ (fix mem (A:Set) (eq_dec:forall e1 e2:A, {e1 = e2} + {e1 <> e2})
+ (a:A) (l:listT A) {struct l} : bool :=
+ match l with
+ | nilT => false
+ | consT a1 l1 =>
+ match eq_dec a a1 with
+ | left _ => true
+ | right _ => mem A eq_dec a l1
+ end
+ end).
+
+Inductive option (A:Type) : Type :=
+ | None : option A
+ | Some : (A -> A -> A) -> option A. \ No newline at end of file
diff --git a/contrib/field/Field_Tactic.v b/contrib/field/Field_Tactic.v
index cd382bc39..a5b206fb2 100644
--- a/contrib/field/Field_Tactic.v
+++ b/contrib/field/Field_Tactic.v
@@ -8,102 +8,101 @@
(* $Id$ *)
-Require Ring.
+Require Import Ring.
Require Export Field_Compl.
Require Export Field_Theory.
(**** Interpretation A --> ExprA ****)
-Recursive Tactic Definition MemAssoc var lvar :=
- Match lvar With
- | [(nilT ?)] -> false
- | [(consT ? ?1 ?2)] ->
- (Match ?1=var With
- | [?1=?1] -> true
- | _ -> (MemAssoc var ?2)).
-
-Recursive Tactic Definition SeekVarAux FT lvar trm :=
- Let AT = Eval Cbv Beta Delta [A] Iota in (A FT)
- And AzeroT = Eval Cbv Beta Delta [Azero] Iota in (Azero FT)
- And AoneT = Eval Cbv Beta Delta [Aone] Iota in (Aone FT)
- And AplusT = Eval Cbv Beta Delta [Aplus] Iota in (Aplus FT)
- And AmultT = Eval Cbv Beta Delta [Amult] Iota in (Amult FT)
- And AoppT = Eval Cbv Beta Delta [Aopp] Iota in (Aopp FT)
- And AinvT = Eval Cbv Beta Delta [Ainv] Iota in (Ainv FT) In
- Match trm With
- | [(AzeroT)] -> lvar
- | [(AoneT)] -> lvar
- | [(AplusT ?1 ?2)] ->
- Let l1 = (SeekVarAux FT lvar ?1) In
- (SeekVarAux FT l1 ?2)
- | [(AmultT ?1 ?2)] ->
- Let l1 = (SeekVarAux FT lvar ?1) In
- (SeekVarAux FT l1 ?2)
- | [(AoppT ?1)] -> (SeekVarAux FT lvar ?1)
- | [(AinvT ?1)] -> (SeekVarAux FT lvar ?1)
- | [?1] ->
- Let res = (MemAssoc ?1 lvar) In
- Match res With
- | [(true)] -> lvar
- | [(false)] -> '(consT AT ?1 lvar).
-
-Tactic Definition SeekVar FT trm :=
- Let AT = Eval Cbv Beta Delta [A] Iota in (A FT) In
- (SeekVarAux FT '(nilT AT) trm).
-
-Recursive Tactic Definition NumberAux lvar cpt :=
- Match lvar With
- | [(nilT ?1)] -> '(nilT (prodT ?1 nat))
- | [(consT ?1 ?2 ?3)] ->
- Let l2 = (NumberAux ?3 '(S cpt)) In
- '(consT (prodT ?1 nat) (pairT ?1 nat ?2 cpt) l2).
-
-Tactic Definition Number lvar := (NumberAux lvar O).
-
-Tactic Definition BuildVarList FT trm :=
- Let lvar = (SeekVar FT trm) In
- (Number lvar).
-V7only [
-(*Used by contrib Maple *)
-Tactic Definition build_var_list := BuildVarList.
-].
-
-Recursive Tactic Definition Assoc elt lst :=
- Match lst With
- | [(nilT ?)] -> Fail
- | [(consT (prodT ? nat) (pairT ? nat ?1 ?2) ?3)] ->
- Match elt= ?1 With
- | [?1= ?1] -> ?2
- | _ -> (Assoc elt ?3).
-
-Recursive Meta Definition interp_A FT lvar trm :=
- Let AT = Eval Cbv Beta Delta [A] Iota in (A FT)
- And AzeroT = Eval Cbv Beta Delta [Azero] Iota in (Azero FT)
- And AoneT = Eval Cbv Beta Delta [Aone] Iota in (Aone FT)
- And AplusT = Eval Cbv Beta Delta [Aplus] Iota in (Aplus FT)
- And AmultT = Eval Cbv Beta Delta [Amult] Iota in (Amult FT)
- And AoppT = Eval Cbv Beta Delta [Aopp] Iota in (Aopp FT)
- And AinvT = Eval Cbv Beta Delta [Ainv] Iota in (Ainv FT) In
- Match trm With
- | [(AzeroT)] -> EAzero
- | [(AoneT)] -> EAone
- | [(AplusT ?1 ?2)] ->
- Let e1 = (interp_A FT lvar ?1)
- And e2 = (interp_A FT lvar ?2) In
- '(EAplus e1 e2)
- | [(AmultT ?1 ?2)] ->
- Let e1 = (interp_A FT lvar ?1)
- And e2 = (interp_A FT lvar ?2) In
- '(EAmult e1 e2)
- | [(AoppT ?1)] ->
- Let e = (interp_A FT lvar ?1) In
- '(EAopp e)
- | [(AinvT ?1)] ->
- Let e = (interp_A FT lvar ?1) In
- '(EAinv e)
- | [?1] ->
- Let idx = (Assoc ?1 lvar) In
- '(EAvar idx).
+Ltac mem_assoc var lvar :=
+ match constr:lvar with
+ | (nilT _) => constr:false
+ | (consT _ ?X1 ?X2) =>
+ match constr:(X1 = var) with
+ | (?X1 = ?X1) => constr:true
+ | _ => mem_assoc var X2
+ end
+ end.
+
+Ltac seek_var_aux FT lvar trm :=
+ let AT := eval cbv beta iota delta [A] in (A FT)
+ with AzeroT := eval cbv beta iota delta [Azero] in (Azero FT)
+ with AoneT := eval cbv beta iota delta [Aone] in (Aone FT)
+ with AplusT := eval cbv beta iota delta [Aplus] in (Aplus FT)
+ with AmultT := eval cbv beta iota delta [Amult] in (Amult FT)
+ with AoppT := eval cbv beta iota delta [Aopp] in (Aopp FT)
+ with AinvT := eval cbv beta iota delta [Ainv] in (Ainv FT) in
+ match constr:trm with
+ | AzeroT => lvar
+ | AoneT => lvar
+ | (AplusT ?X1 ?X2) =>
+ let l1 := seek_var_aux FT lvar X1 in
+ seek_var_aux FT l1 X2
+ | (AmultT ?X1 ?X2) =>
+ let l1 := seek_var_aux FT lvar X1 in
+ seek_var_aux FT l1 X2
+ | (AoppT ?X1) => seek_var_aux FT lvar X1
+ | (AinvT ?X1) => seek_var_aux FT lvar X1
+ | ?X1 =>
+ let res := mem_assoc X1 lvar in
+ match constr:res with
+ | true => lvar
+ | false => constr:(consT AT X1 lvar)
+ end
+ end.
+
+Ltac seek_var FT trm :=
+ let AT := eval cbv beta iota delta [A] in (A FT) in
+ seek_var_aux FT (nilT AT) trm.
+
+Ltac number_aux lvar cpt :=
+ match constr:lvar with
+ | (nilT ?X1) => constr:(nilT (prodT X1 nat))
+ | (consT ?X1 ?X2 ?X3) =>
+ let l2 := number_aux X3 (S cpt) in
+ constr:(consT (prodT X1 nat) (pairT X1 nat X2 cpt) l2)
+ end.
+
+Ltac number lvar := number_aux lvar 0.
+
+Ltac build_varlist FT trm := let lvar := seek_var FT trm in
+ number lvar.
+
+Ltac assoc elt lst :=
+ match constr:lst with
+ | (nilT _) => fail
+ | (consT (prodT _ nat) (pairT _ nat ?X1 ?X2) ?X3) =>
+ match constr:(elt = X1) with
+ | (?X1 = ?X1) => constr:X2
+ | _ => assoc elt X3
+ end
+ end.
+
+Ltac interp_A FT lvar trm :=
+ let AT := eval cbv beta iota delta [A] in (A FT)
+ with AzeroT := eval cbv beta iota delta [Azero] in (Azero FT)
+ with AoneT := eval cbv beta iota delta [Aone] in (Aone FT)
+ with AplusT := eval cbv beta iota delta [Aplus] in (Aplus FT)
+ with AmultT := eval cbv beta iota delta [Amult] in (Amult FT)
+ with AoppT := eval cbv beta iota delta [Aopp] in (Aopp FT)
+ with AinvT := eval cbv beta iota delta [Ainv] in (Ainv FT) in
+ match constr:trm with
+ | AzeroT => constr:EAzero
+ | AoneT => constr:EAone
+ | (AplusT ?X1 ?X2) =>
+ let e1 := interp_A FT lvar X1 with e2 := interp_A FT lvar X2 in
+ constr:(EAplus e1 e2)
+ | (AmultT ?X1 ?X2) =>
+ let e1 := interp_A FT lvar X1 with e2 := interp_A FT lvar X2 in
+ constr:(EAmult e1 e2)
+ | (AoppT ?X1) =>
+ let e := interp_A FT lvar X1 in
+ constr:(EAopp e)
+ | (AinvT ?X1) => let e := interp_A FT lvar X1 in
+ constr:(EAinv e)
+ | ?X1 => let idx := assoc X1 lvar in
+ constr:(EAvar idx)
+ end.
(************************)
(* Simplification *)
@@ -111,166 +110,190 @@ Recursive Meta Definition interp_A FT lvar trm :=
(**** Generation of the multiplier ****)
-Recursive Tactic Definition Remove e l :=
- Match l With
- | [(nilT ?)] -> l
- | [(consT ?1 e ?2)] -> ?2
- | [(consT ?1 ?2 ?3)] ->
- Let nl = (Remove e ?3) In
- '(consT ?1 ?2 nl).
-
-Recursive Tactic Definition Union l1 l2 :=
- Match l1 With
- | [(nilT ?)] -> l2
- | [(consT ?1 ?2 ?3)] ->
- Let nl2 = (Remove ?2 l2) In
- Let nl = (Union ?3 nl2) In
- '(consT ?1 ?2 nl).
-
-Recursive Tactic Definition RawGiveMult trm :=
- Match trm With
- | [(EAinv ?1)] -> '(consT ExprA ?1 (nilT ExprA))
- | [(EAopp ?1)] -> (RawGiveMult ?1)
- | [(EAplus ?1 ?2)] ->
- Let l1 = (RawGiveMult ?1)
- And l2 = (RawGiveMult ?2) In
- (Union l1 l2)
- | [(EAmult ?1 ?2)] ->
- Let l1 = (RawGiveMult ?1)
- And l2 = (RawGiveMult ?2) In
- Eval Compute in (appT ExprA l1 l2)
- | _ -> '(nilT ExprA).
-
-Tactic Definition GiveMult trm :=
- Let ltrm = (RawGiveMult trm) In
- '(mult_of_list ltrm).
+Ltac remove e l :=
+ match constr:l with
+ | (nilT _) => l
+ | (consT ?X1 e ?X2) => constr:X2
+ | (consT ?X1 ?X2 ?X3) => let nl := remove e X3 in
+ constr:(consT X1 X2 nl)
+ end.
+
+Ltac union l1 l2 :=
+ match constr:l1 with
+ | (nilT _) => l2
+ | (consT ?X1 ?X2 ?X3) =>
+ let nl2 := remove X2 l2 in
+ let nl := union X3 nl2 in
+ constr:(consT X1 X2 nl)
+ end.
+
+Ltac raw_give_mult trm :=
+ match constr:trm with
+ | (EAinv ?X1) => constr:(consT ExprA X1 (nilT ExprA))
+ | (EAopp ?X1) => raw_give_mult X1
+ | (EAplus ?X1 ?X2) =>
+ let l1 := raw_give_mult X1 with l2 := raw_give_mult X2 in
+ union l1 l2
+ | (EAmult ?X1 ?X2) =>
+ let l1 := raw_give_mult X1 with l2 := raw_give_mult X2 in
+ eval compute in (appT ExprA l1 l2)
+ | _ => constr:(nilT ExprA)
+ end.
+
+Ltac give_mult trm :=
+ let ltrm := raw_give_mult trm in
+ constr:(mult_of_list ltrm).
(**** Associativity ****)
-Tactic Definition ApplyAssoc FT lvar trm :=
- Let t=Eval Compute in (assoc trm) In
- Match t=trm With
- | [ ?1=?1 ] -> Idtac
- | _ -> Rewrite <- (assoc_correct FT trm); Change (assoc trm) with t.
+Ltac apply_assoc FT lvar trm :=
+ let t := eval compute in (assoc trm) in
+ match constr:(t = trm) with
+ | (?X1 = ?X1) => idtac
+ | _ =>
+ rewrite <- (assoc_correct FT trm); change (assoc trm) with t in |- *
+ end.
(**** Distribution *****)
-Tactic Definition ApplyDistrib FT lvar trm :=
- Let t=Eval Compute in (distrib trm) In
- Match t=trm With
- | [ ?1=?1 ] -> Idtac
- | _ -> Rewrite <- (distrib_correct FT trm); Change (distrib trm) with t.
+Ltac apply_distrib FT lvar trm :=
+ let t := eval compute in (distrib trm) in
+ match constr:(t = trm) with
+ | (?X1 = ?X1) => idtac
+ | _ =>
+ rewrite <- (distrib_correct FT trm);
+ change (distrib trm) with t in |- *
+ end.
(**** Multiplication by the inverse product ****)
-Tactic Definition GrepMult :=
- Match Context With
- | [ id: ~(interp_ExprA ? ? ?)= ? |- ?] -> id.
-
-Tactic Definition WeakReduce :=
- Match Context With
- | [|-[(interp_ExprA ?1 ?2 ?)]] ->
- Cbv Beta Delta [interp_ExprA assoc_2nd eq_nat_dec mult_of_list ?1 ?2 A
- Azero Aone Aplus Amult Aopp Ainv] Zeta Iota.
-
-Tactic Definition Multiply mul :=
- Match Context With
- | [|-(interp_ExprA ?1 ?2 ?3)=(interp_ExprA ?1 ?2 ?4)] ->
- Let AzeroT = Eval Cbv Beta Delta [Azero ?1] Iota in (Azero ?1) In
- Cut ~(interp_ExprA ?1 ?2 mul)=AzeroT;
- [Intro;
- Let id = GrepMult In
- Apply (mult_eq ?1 ?3 ?4 mul ?2 id)
- |WeakReduce;
- Let AoneT = Eval Cbv Beta Delta [Aone ?1] Iota in (Aone ?1)
- And AmultT = Eval Cbv Beta Delta [Amult ?1] Iota in (Amult ?1) In
- Try (Match Context With
- | [|-[(AmultT ? AoneT)]] -> Rewrite (AmultT_1r ?1));Clear ?1 ?2].
-
-Tactic Definition ApplyMultiply FT lvar trm :=
- Let t=Eval Compute in (multiply trm) In
- Match t=trm With
- | [ ?1=?1 ] -> Idtac
- | _ -> Rewrite <- (multiply_correct FT trm); Change (multiply trm) with t.
+Ltac grep_mult := match goal with
+ | id:(interp_ExprA _ _ _ <> _) |- _ => id
+ end.
+
+Ltac weak_reduce :=
+ match goal with
+ | |- context [(interp_ExprA ?X1 ?X2 _)] =>
+ cbv beta iota zeta
+ delta [interp_ExprA assoc_2nd eq_nat_dec mult_of_list X1 X2 A Azero
+ Aone Aplus Amult Aopp Ainv] in |- *
+ end.
+
+Ltac multiply mul :=
+ match goal with
+ | |- (interp_ExprA ?X1 ?X2 ?X3 = interp_ExprA ?X1 ?X2 ?X4) =>
+ let AzeroT := eval cbv beta iota delta [Azero X1] in (Azero X1) in
+ (cut (interp_ExprA X1 X2 mul <> AzeroT);
+ [ intro; let id := grep_mult in
+ apply (mult_eq X1 X3 X4 mul X2 id)
+ | weak_reduce;
+ let AoneT := eval cbv beta iota delta [Aone X1] in (Aone X1)
+ with AmultT := eval cbv beta iota delta [Amult X1] in (Amult X1) in
+ (try
+ match goal with
+ | |- context [(AmultT _ AoneT)] => rewrite (AmultT_1r X1)
+ end; clear X1 X2) ])
+ end.
+
+Ltac apply_multiply FT lvar trm :=
+ let t := eval compute in (multiply trm) in
+ match constr:(t = trm) with
+ | (?X1 = ?X1) => idtac
+ | _ =>
+ rewrite <- (multiply_correct FT trm);
+ change (multiply trm) with t in |- *
+ end.
(**** Permutations and simplification ****)
-Tactic Definition ApplyInverse mul FT lvar trm :=
- Let t=Eval Compute in (inverse_simplif mul trm) In
- Match t=trm With
- | [ ?1=?1 ] -> Idtac
- | _ -> Rewrite <- (inverse_correct FT trm mul);
- [Change (inverse_simplif mul trm) with t|Assumption].
+Ltac apply_inverse mul FT lvar trm :=
+ let t := eval compute in (inverse_simplif mul trm) in
+ match constr:(t = trm) with
+ | (?X1 = ?X1) => idtac
+ | _ =>
+ rewrite <- (inverse_correct FT trm mul);
+ [ change (inverse_simplif mul trm) with t in |- * | assumption ]
+ end.
(**** Inverse test ****)
-Tactic Definition StrongFail tac := First [tac|Fail 2].
-
-Recursive Tactic Definition InverseTestAux FT trm :=
- Let AplusT = Eval Cbv Beta Delta [Aplus] Iota in (Aplus FT)
- And AmultT = Eval Cbv Beta Delta [Amult] Iota in (Amult FT)
- And AoppT = Eval Cbv Beta Delta [Aopp] Iota in (Aopp FT)
- And AinvT = Eval Cbv Beta Delta [Ainv] Iota in (Ainv FT) In
- Match trm With
- | [(AinvT ?)] -> Fail 1
- | [(AoppT ?1)] -> StrongFail ((InverseTestAux FT ?1);Idtac)
- | [(AplusT ?1 ?2)] ->
- StrongFail ((InverseTestAux FT ?1);(InverseTestAux FT ?2))
- | [(AmultT ?1 ?2)] ->
- StrongFail ((InverseTestAux FT ?1);(InverseTestAux FT ?2))
- | _ -> Idtac.
-
-Tactic Definition InverseTest FT :=
- Let AplusT = Eval Cbv Beta Delta [Aplus] Iota in (Aplus FT) In
- Match Context With
- | [|- ?1=?2] -> (InverseTestAux FT '(AplusT ?1 ?2)).
+Ltac strong_fail tac := first [ tac | fail 2 ].
+
+Ltac inverse_test_aux FT trm :=
+ let AplusT := eval cbv beta iota delta [Aplus] in (Aplus FT)
+ with AmultT := eval cbv beta iota delta [Amult] in (Amult FT)
+ with AoppT := eval cbv beta iota delta [Aopp] in (Aopp FT)
+ with AinvT := eval cbv beta iota delta [Ainv] in (Ainv FT) in
+ match constr:trm with
+ | (AinvT _) => fail 1
+ | (AoppT ?X1) =>
+ strong_fail ltac:(inverse_test_aux FT X1; idtac)
+ | (AplusT ?X1 ?X2) =>
+ strong_fail ltac:(inverse_test_aux FT X1; inverse_test_aux FT X2)
+ | (AmultT ?X1 ?X2) =>
+ strong_fail ltac:(inverse_test_aux FT X1; inverse_test_aux FT X2)
+ | _ => idtac
+ end.
+
+Ltac inverse_test FT :=
+ let AplusT := eval cbv beta iota delta [Aplus] in (Aplus FT) in
+ match goal with
+ | |- (?X1 = ?X2) => inverse_test_aux FT (AplusT X1 X2)
+ end.
(**** Field itself ****)
-Tactic Definition ApplySimplif sfun :=
- (Match Context With
- | [|- (interp_ExprA ?1 ?2 ?3)=(interp_ExprA ? ? ?)] ->
- (sfun ?1 ?2 ?3));
- (Match Context With
- | [|- (interp_ExprA ? ? ?)=(interp_ExprA ?1 ?2 ?3)] ->
- (sfun ?1 ?2 ?3)).
-
-Tactic Definition Unfolds FT :=
- (Match Eval Cbv Beta Delta [Aminus] Iota in (Aminus FT) With
- | [(Some ? ?1)] -> Unfold ?1
- | _ -> Idtac);
- (Match Eval Cbv Beta Delta [Adiv] Iota in (Adiv FT) With
- | [(Some ? ?1)] -> Unfold ?1
- | _ -> Idtac).
-
-Tactic Definition Reduce FT :=
- Let AzeroT = Eval Cbv Beta Delta [Azero] Iota in (Azero FT)
- And AoneT = Eval Cbv Beta Delta [Aone] Iota in (Aone FT)
- And AplusT = Eval Cbv Beta Delta [Aplus] Iota in (Aplus FT)
- And AmultT = Eval Cbv Beta Delta [Amult] Iota in (Amult FT)
- And AoppT = Eval Cbv Beta Delta [Aopp] Iota in (Aopp FT)
- And AinvT = Eval Cbv Beta Delta [Ainv] Iota in (Ainv FT) In
- Cbv Beta Delta -[AzeroT AoneT AplusT AmultT AoppT AinvT] Zeta Iota
- Orelse Compute.
-
-Recursive Tactic Definition Field_Gen_Aux FT :=
- Let AplusT = Eval Cbv Beta Delta [Aplus] Iota in (Aplus FT) In
- Match Context With
- | [|- ?1=?2] ->
- Let lvar = (BuildVarList FT '(AplusT ?1 ?2)) In
- Let trm1 = (interp_A FT lvar ?1)
- And trm2 = (interp_A FT lvar ?2) In
- Let mul = (GiveMult '(EAplus trm1 trm2)) In
- Cut [ft:=FT][vm:=lvar](interp_ExprA ft vm trm1)=(interp_ExprA ft vm trm2);
- [Compute;Auto
- |Intros ft vm;(ApplySimplif ApplyDistrib);(ApplySimplif ApplyAssoc);
- (Multiply mul);[(ApplySimplif ApplyMultiply);
- (ApplySimplif (ApplyInverse mul));
- (Let id = GrepMult In Clear id);WeakReduce;Clear ft vm;
- First [(InverseTest FT);Ring|(Field_Gen_Aux FT)]|Idtac]].
-
-Tactic Definition Field_Gen FT :=
- Unfolds FT;((InverseTest FT);Ring) Orelse (Field_Gen_Aux FT).
-V7only [Tactic Definition field_gen := Field_Gen.].
+Ltac apply_simplif sfun :=
+ match goal with
+ | |- (interp_ExprA ?X1 ?X2 ?X3 = interp_ExprA _ _ _) =>
+ sfun X1 X2 X3
+ end;
+ match goal with
+ | |- (interp_ExprA _ _ _ = interp_ExprA ?X1 ?X2 ?X3) =>
+ sfun X1 X2 X3
+ end.
+
+Ltac unfolds FT :=
+ match eval cbv beta iota delta [Aminus] in (Aminus FT) with
+ | (Some _ ?X1) => unfold X1 in |- *
+ | _ => idtac
+ end;
+ match eval cbv beta iota delta [Adiv] in (Adiv FT) with
+ | (Some _ ?X1) => unfold X1 in |- *
+ | _ => idtac
+ end.
+
+Ltac reduce FT :=
+ let AzeroT := eval cbv beta iota delta [Azero] in (Azero FT)
+ with AoneT := eval cbv beta iota delta [Aone] in (Aone FT)
+ with AplusT := eval cbv beta iota delta [Aplus] in (Aplus FT)
+ with AmultT := eval cbv beta iota delta [Amult] in (Amult FT)
+ with AoppT := eval cbv beta iota delta [Aopp] in (Aopp FT)
+ with AinvT := eval cbv beta iota delta [Ainv] in (Ainv FT) in
+ (cbv beta iota zeta delta -[AzeroT AoneT AplusT AmultT AoppT AinvT] in |- * ||
+ compute in |- *).
+
+Ltac field_gen_aux FT :=
+ let AplusT := eval cbv beta iota delta [Aplus] in (Aplus FT) in
+ match goal with
+ | |- (?X1 = ?X2) =>
+ let lvar := build_varlist FT (AplusT X1 X2) in
+ let trm1 := interp_A FT lvar X1 with trm2 := interp_A FT lvar X2 in
+ let mul := give_mult (EAplus trm1 trm2) in
+ (cut
+ (let ft := FT in
+ let vm := lvar in interp_ExprA ft vm trm1 = interp_ExprA ft vm trm2);
+ [ compute in |- *; auto
+ | intros ft vm; apply_simplif apply_distrib;
+ apply_simplif apply_assoc; multiply mul;
+ [ apply_simplif apply_multiply;
+ apply_simplif ltac:(apply_inverse mul);
+ let id := grep_mult in
+ clear id; weak_reduce; clear ft vm; first
+ [ inverse_test FT; ring | field_gen_aux FT ]
+ | idtac ] ])
+ end.
+
+Ltac field_gen FT := unfolds FT; (inverse_test FT; ring) || field_gen_aux FT.
(*****************************)
(* Term Simplification *)
@@ -278,120 +301,132 @@ V7only [Tactic Definition field_gen := Field_Gen.].
(**** Minus and division expansions ****)
-Meta Definition InitExp FT trm :=
- Let e =
- (Match Eval Cbv Beta Delta [Aminus] Iota in (Aminus FT) With
- | [(Some ? ?1)] -> Eval Cbv Beta Delta [?1] in trm
- | _ -> trm) In
- Match Eval Cbv Beta Delta [Adiv] Iota in (Adiv FT) With
- | [(Some ? ?1)] -> Eval Cbv Beta Delta [?1] in e
- | _ -> e.
-V7only [
-(*Used by contrib Maple *)
-Tactic Definition init_exp := InitExp.
-].
+Ltac init_exp FT trm :=
+ let e :=
+ (match eval cbv beta iota delta [Aminus] in (Aminus FT) with
+ | (Some _ ?X1) => eval cbv beta delta [X1] in trm
+ | _ => trm
+ end) in
+ match eval cbv beta iota delta [Adiv] in (Adiv FT) with
+ | (Some _ ?X1) => eval cbv beta delta [X1] in e
+ | _ => e
+ end.
(**** Inverses simplification ****)
-Recursive Meta Definition SimplInv trm:=
- Match trm With
- | [(EAplus ?1 ?2)] ->
- Let e1 = (SimplInv ?1)
- And e2 = (SimplInv ?2) In
- '(EAplus e1 e2)
- | [(EAmult ?1 ?2)] ->
- Let e1 = (SimplInv ?1)
- And e2 = (SimplInv ?2) In
- '(EAmult e1 e2)
- | [(EAopp ?1)] -> Let e = (SimplInv ?1) In '(EAopp e)
- | [(EAinv ?1)] -> (SimplInvAux ?1)
- | [?1] -> ?1
-And SimplInvAux trm :=
- Match trm With
- | [(EAinv ?1)] -> (SimplInv ?1)
- | [(EAmult ?1 ?2)] ->
- Let e1 = (SimplInv '(EAinv ?1))
- And e2 = (SimplInv '(EAinv ?2)) In
- '(EAmult e1 e2)
- | [?1] -> Let e = (SimplInv ?1) In '(EAinv e).
+Ltac simpl_inv trm :=
+ match constr:trm with
+ | (EAplus ?X1 ?X2) =>
+ let e1 := simpl_inv X1 with e2 := simpl_inv X2 in
+ constr:(EAplus e1 e2)
+ | (EAmult ?X1 ?X2) =>
+ let e1 := simpl_inv X1 with e2 := simpl_inv X2 in
+ constr:(EAmult e1 e2)
+ | (EAopp ?X1) => let e := simpl_inv X1 in
+ constr:(EAopp e)
+ | (EAinv ?X1) => SimplInvAux X1
+ | ?X1 => constr:X1
+ end
+ with SimplInvAux trm :=
+ match constr:trm with
+ | (EAinv ?X1) => simpl_inv X1
+ | (EAmult ?X1 ?X2) =>
+ let e1 := simpl_inv (EAinv X1) with e2 := simpl_inv (EAinv X2) in
+ constr:(EAmult e1 e2)
+ | ?X1 => let e := simpl_inv X1 in
+ constr:(EAinv e)
+ end.
(**** Monom simplification ****)
-Recursive Meta Definition Map fcn lst :=
- Match lst With
- | [(nilT ?)] -> lst
- | [(consT ?1 ?2 ?3)] ->
- Let r = (fcn ?2)
- And t = (Map fcn ?3) In
- '(consT ?1 r t).
-
-Recursive Meta Definition BuildMonomAux lst trm :=
- Match lst With
- | [(nilT ?)] -> Eval Compute in (assoc trm)
- | [(consT ? ?1 ?2)] -> BuildMonomAux ?2 '(EAmult trm ?1).
-
-Recursive Meta Definition BuildMonom lnum lden :=
- Let ildn = (Map (Fun e -> '(EAinv e)) lden) In
- Let ltot = Eval Compute in (appT ExprA lnum ildn) In
- Let trm = (BuildMonomAux ltot EAone) In
- Match trm With
- | [(EAmult ? ?1)] -> ?1
- | [?1] -> ?1.
-
-Recursive Meta Definition SimplMonomAux lnum lden trm :=
- Match trm With
- | [(EAmult (EAinv ?1) ?2)] ->
- Let mma = (MemAssoc ?1 lnum) In
- (Match mma With
- | [true] ->
- Let newlnum = (Remove ?1 lnum) In SimplMonomAux newlnum lden ?2
- | [false] -> SimplMonomAux lnum '(consT ExprA ?1 lden) ?2)
- | [(EAmult ?1 ?2)] ->
- Let mma = (MemAssoc ?1 lden) In
- (Match mma With
- | [true] ->
- Let newlden = (Remove ?1 lden) In SimplMonomAux lnum newlden ?2
- | [false] -> SimplMonomAux '(consT ExprA ?1 lnum) lden ?2)
- | [(EAinv ?1)] ->
- Let mma = (MemAssoc ?1 lnum) In
- (Match mma With
- | [true] ->
- Let newlnum = (Remove ?1 lnum) In BuildMonom newlnum lden
- | [false] -> BuildMonom lnum '(consT ExprA ?1 lden))
- | [?1] ->
- Let mma = (MemAssoc ?1 lden) In
- (Match mma With
- | [true] ->
- Let newlden = (Remove ?1 lden) In BuildMonom lnum newlden
- | [false] -> BuildMonom '(consT ExprA ?1 lnum) lden).
-
-Meta Definition SimplMonom trm :=
- SimplMonomAux '(nilT ExprA) '(nilT ExprA) trm.
-
-Recursive Meta Definition SimplAllMonoms trm :=
- Match trm With
- | [(EAplus ?1 ?2)] ->
- Let e1 = (SimplMonom ?1)
- And e2 = (SimplAllMonoms ?2) In
- '(EAplus e1 e2)
- | [?1] -> SimplMonom ?1.
+Ltac map_tactic fcn lst :=
+ match constr:lst with
+ | (nilT _) => lst
+ | (consT ?X1 ?X2 ?X3) =>
+ let r := fcn X2 with t := map_tactic fcn X3 in
+ constr:(consT X1 r t)
+ end.
+
+Ltac build_monom_aux lst trm :=
+ match constr:lst with
+ | (nilT _) => eval compute in (assoc trm)
+ | (consT _ ?X1 ?X2) => build_monom_aux X2 (EAmult trm X1)
+ end.
+
+Ltac build_monom lnum lden :=
+ let ildn := map_tactic ltac:(fun e => constr:(EAinv e)) lden in
+ let ltot := eval compute in (appT ExprA lnum ildn) in
+ let trm := build_monom_aux ltot EAone in
+ match constr:trm with
+ | (EAmult _ ?X1) => constr:X1
+ | ?X1 => constr:X1
+ end.
+
+Ltac simpl_monom_aux lnum lden trm :=
+ match constr:trm with
+ | (EAmult (EAinv ?X1) ?X2) =>
+ let mma := mem_assoc X1 lnum in
+ match constr:mma with
+ | true =>
+ let newlnum := remove X1 lnum in
+ simpl_monom_aux newlnum lden X2
+ | false => simpl_monom_aux lnum (consT ExprA X1 lden) X2
+ end
+ | (EAmult ?X1 ?X2) =>
+ let mma := mem_assoc X1 lden in
+ match constr:mma with
+ | true =>
+ let newlden := remove X1 lden in
+ simpl_monom_aux lnum newlden X2
+ | false => simpl_monom_aux (consT ExprA X1 lnum) lden X2
+ end
+ | (EAinv ?X1) =>
+ let mma := mem_assoc X1 lnum in
+ match constr:mma with
+ | true =>
+ let newlnum := remove X1 lnum in
+ build_monom newlnum lden
+ | false => build_monom lnum (consT ExprA X1 lden)
+ end
+ | ?X1 =>
+ let mma := mem_assoc X1 lden in
+ match constr:mma with
+ | true =>
+ let newlden := remove X1 lden in
+ build_monom lnum newlden
+ | false => build_monom (consT ExprA X1 lnum) lden
+ end
+ end.
+
+Ltac simpl_monom trm := simpl_monom_aux (nilT ExprA) (nilT ExprA) trm.
+
+Ltac simpl_all_monomials trm :=
+ match constr:trm with
+ | (EAplus ?X1 ?X2) =>
+ let e1 := simpl_monom X1 with e2 := simpl_all_monomials X2 in
+ constr:(EAplus e1 e2)
+ | ?X1 => simpl_monom X1
+ end.
(**** Associativity and distribution ****)
-Meta Definition AssocDistrib trm := Eval Compute in (assoc (distrib trm)).
+Ltac assoc_distrib trm := eval compute in (assoc (distrib trm)).
(**** The tactic Field_Term ****)
-Tactic Definition EvalWeakReduce trm :=
- Eval Cbv Beta Delta [interp_ExprA assoc_2nd eq_nat_dec mult_of_list A Azero
- Aone Aplus Amult Aopp Ainv] Zeta Iota in trm.
-
-Tactic Definition Field_Term FT exp :=
- Let newexp = (InitExp FT exp) In
- Let lvar = (BuildVarList FT newexp) In
- Let trm = (interp_A FT lvar newexp) In
- Let tma = Eval Compute in (assoc trm) In
- Let tsmp = (SimplAllMonoms (AssocDistrib (SimplAllMonoms
- (SimplInv tma)))) In
- Let trep = (EvalWeakReduce '(interp_ExprA FT lvar tsmp)) In
- Replace exp with trep;[Ring trep|Field_Gen FT].
+Ltac eval_weak_reduce trm :=
+ eval
+ cbv beta iota zeta
+ delta [interp_ExprA assoc_2nd eq_nat_dec mult_of_list A Azero Aone Aplus
+ Amult Aopp Ainv] in trm.
+
+Ltac field_term FT exp :=
+ let newexp := init_exp FT exp in
+ let lvar := build_varlist FT newexp in
+ let trm := interp_A FT lvar newexp in
+ let tma := eval compute in (assoc trm) in
+ let tsmp :=
+ simpl_all_monomials
+ ltac:(assoc_distrib ltac:(simpl_all_monomials ltac:(simpl_inv tma))) in
+ let trep := eval_weak_reduce (interp_ExprA FT lvar tsmp) in
+ (replace exp with trep; [ ring trep | field_gen FT ]). \ No newline at end of file
diff --git a/contrib/field/Field_Theory.v b/contrib/field/Field_Theory.v
index e2710260f..35f1125e4 100644
--- a/contrib/field/Field_Theory.v
+++ b/contrib/field/Field_Theory.v
@@ -8,86 +8,87 @@
(* $Id$ *)
-Require Peano_dec.
-Require Ring.
-Require Field_Compl.
-
-Record Field_Theory : Type :=
-{ A : Type;
- Aplus : A -> A -> A;
- Amult : A -> A -> A;
- Aone : A;
- Azero : A;
- Aopp : A -> A;
- Aeq : A -> A -> bool;
- Ainv : A -> A;
- Aminus : (option A);
- Adiv : (option A);
- RT : (Ring_Theory Aplus Amult Aone Azero Aopp Aeq);
- Th_inv_def : (n:A)~(n=Azero)->(Amult (Ainv n) n)=Aone
-}.
+Require Import Peano_dec.
+Require Import Ring.
+Require Import Field_Compl.
+
+Record Field_Theory : Type :=
+ {A : Type;
+ Aplus : A -> A -> A;
+ Amult : A -> A -> A;
+ Aone : A;
+ Azero : A;
+ Aopp : A -> A;
+ Aeq : A -> A -> bool;
+ Ainv : A -> A;
+ Aminus : option A;
+ Adiv : option A;
+ RT : Ring_Theory Aplus Amult Aone Azero Aopp Aeq;
+ Th_inv_def : forall n:A, n <> Azero -> Amult (Ainv n) n = Aone}.
(* The reflexion structure *)
Inductive ExprA : Set :=
-| EAzero : ExprA
-| EAone : ExprA
-| EAplus : ExprA -> ExprA -> ExprA
-| EAmult : ExprA -> ExprA -> ExprA
-| EAopp : ExprA -> ExprA
-| EAinv : ExprA -> ExprA
-| EAvar : nat -> ExprA.
+ | EAzero : ExprA
+ | EAone : ExprA
+ | EAplus : ExprA -> ExprA -> ExprA
+ | EAmult : ExprA -> ExprA -> ExprA
+ | EAopp : ExprA -> ExprA
+ | EAinv : ExprA -> ExprA
+ | EAvar : nat -> ExprA.
(**** Decidability of equality ****)
-Lemma eqExprA_O:(e1,e2:ExprA){e1=e2}+{~e1=e2}.
-Proof.
- Double Induction e1 e2;Try Intros;
- Try (Left;Reflexivity) Orelse Try (Right;Discriminate).
- Elim (H1 e0);Intro y;Elim (H2 e);Intro y0;
- Try (Left; Rewrite y; Rewrite y0;Auto)
- Orelse (Right;Red;Intro;Inversion H3;Auto).
- Elim (H1 e0);Intro y;Elim (H2 e);Intro y0;
- Try (Left; Rewrite y; Rewrite y0;Auto)
- Orelse (Right;Red;Intro;Inversion H3;Auto).
- Elim (H0 e);Intro y.
- Left; Rewrite y; Auto.
- Right;Red; Intro;Inversion H1;Auto.
- Elim (H0 e);Intro y.
- Left; Rewrite y; Auto.
- Right;Red; Intro;Inversion H1;Auto.
- Elim (eq_nat_dec n n0);Intro y.
- Left; Rewrite y; Auto.
- Right;Red;Intro;Inversion H;Auto.
+Lemma eqExprA_O : forall e1 e2:ExprA, {e1 = e2} + {e1 <> e2}.
+Proof.
+ double induction e1 e2; try intros;
+ try (left; reflexivity) || (try (right; discriminate)).
+ elim (H1 e0); intro y; elim (H2 e); intro y0;
+ try
+ (left; rewrite y; rewrite y0; auto) ||
+ (right; red in |- *; intro; inversion H3; auto).
+ elim (H1 e0); intro y; elim (H2 e); intro y0;
+ try
+ (left; rewrite y; rewrite y0; auto) ||
+ (right; red in |- *; intro; inversion H3; auto).
+ elim (H0 e); intro y.
+ left; rewrite y; auto.
+ right; red in |- *; intro; inversion H1; auto.
+ elim (H0 e); intro y.
+ left; rewrite y; auto.
+ right; red in |- *; intro; inversion H1; auto.
+ elim (eq_nat_dec n n0); intro y.
+ left; rewrite y; auto.
+ right; red in |- *; intro; inversion H; auto.
Defined.
-Definition eq_nat_dec := Eval Compute in Peano_dec.eq_nat_dec.
-Definition eqExprA := Eval Compute in eqExprA_O.
+Definition eq_nat_dec := Eval compute in eq_nat_dec.
+Definition eqExprA := Eval compute in eqExprA_O.
(**** Generation of the multiplier ****)
-Fixpoint mult_of_list [e:(listT ExprA)]: ExprA :=
- Cases e of
+Fixpoint mult_of_list (e:listT ExprA) : ExprA :=
+ match e with
| nilT => EAone
- | (consT e1 l1) => (EAmult e1 (mult_of_list l1))
+ | consT e1 l1 => EAmult e1 (mult_of_list l1)
end.
Section Theory_of_fields.
Variable T : Field_Theory.
-Local AT := (A T).
-Local AplusT := (Aplus T).
-Local AmultT := (Amult T).
-Local AoneT := (Aone T).
-Local AzeroT := (Azero T).
-Local AoppT := (Aopp T).
-Local AeqT := (Aeq T).
-Local AinvT := (Ainv T).
-Local RTT := (RT T).
-Local Th_inv_defT := (Th_inv_def T).
+Let AT := A T.
+Let AplusT := Aplus T.
+Let AmultT := Amult T.
+Let AoneT := Aone T.
+Let AzeroT := Azero T.
+Let AoppT := Aopp T.
+Let AeqT := Aeq T.
+Let AinvT := Ainv T.
+Let RTT := RT T.
+Let Th_inv_defT := Th_inv_def T.
-Add Abstract Ring (A T) (Aplus T) (Amult T) (Aone T) (Azero T) (Aopp T)
- (Aeq T) (RT T).
+Add Abstract Ring (A T) (Aplus T) (Amult T) (Aone T) (
+ Azero T) (Aopp T) (Aeq T) (RT T).
Add Abstract Ring AT AplusT AmultT AoneT AzeroT AoppT AeqT RTT.
@@ -95,93 +96,94 @@ Add Abstract Ring AT AplusT AmultT AoneT AzeroT AoppT AeqT RTT.
(* Lemmas to be used *)
(***************************)
-Lemma AplusT_sym:(r1,r2:AT)(AplusT r1 r2)=(AplusT r2 r1).
+Lemma AplusT_sym : forall r1 r2:AT, AplusT r1 r2 = AplusT r2 r1.
Proof.
- Intros;Ring.
-Save.
+ intros; ring.
+Qed.
-Lemma AplusT_assoc:(r1,r2,r3:AT)(AplusT (AplusT r1 r2) r3)=
- (AplusT r1 (AplusT r2 r3)).
+Lemma AplusT_assoc :
+ forall r1 r2 r3:AT, AplusT (AplusT r1 r2) r3 = AplusT r1 (AplusT r2 r3).
Proof.
- Intros;Ring.
-Save.
+ intros; ring.
+Qed.
-Lemma AmultT_sym:(r1,r2:AT)(AmultT r1 r2)=(AmultT r2 r1).
+Lemma AmultT_sym : forall r1 r2:AT, AmultT r1 r2 = AmultT r2 r1.
Proof.
- Intros;Ring.
-Save.
+ intros; ring.
+Qed.
-Lemma AmultT_assoc:(r1,r2,r3:AT)(AmultT (AmultT r1 r2) r3)=
- (AmultT r1 (AmultT r2 r3)).
+Lemma AmultT_assoc :
+ forall r1 r2 r3:AT, AmultT (AmultT r1 r2) r3 = AmultT r1 (AmultT r2 r3).
Proof.
- Intros;Ring.
-Save.
+ intros; ring.
+Qed.
-Lemma AplusT_Ol:(r:AT)(AplusT AzeroT r)=r.
+Lemma AplusT_Ol : forall r:AT, AplusT AzeroT r = r.
Proof.
- Intros;Ring.
-Save.
+ intros; ring.
+Qed.
-Lemma AmultT_1l:(r:AT)(AmultT AoneT r)=r.
+Lemma AmultT_1l : forall r:AT, AmultT AoneT r = r.
Proof.
- Intros;Ring.
-Save.
+ intros; ring.
+Qed.
-Lemma AplusT_AoppT_r:(r:AT)(AplusT r (AoppT r))=AzeroT.
+Lemma AplusT_AoppT_r : forall r:AT, AplusT r (AoppT r) = AzeroT.
Proof.
- Intros;Ring.
-Save.
+ intros; ring.
+Qed.
-Lemma AmultT_AplusT_distr:(r1,r2,r3:AT)(AmultT r1 (AplusT r2 r3))=
- (AplusT (AmultT r1 r2) (AmultT r1 r3)).
+Lemma AmultT_AplusT_distr :
+ forall r1 r2 r3:AT,
+ AmultT r1 (AplusT r2 r3) = AplusT (AmultT r1 r2) (AmultT r1 r3).
Proof.
- Intros;Ring.
-Save.
+ intros; ring.
+Qed.
-Lemma r_AplusT_plus:(r,r1,r2:AT)(AplusT r r1)=(AplusT r r2)->r1=r2.
+Lemma r_AplusT_plus : forall r r1 r2:AT, AplusT r r1 = AplusT r r2 -> r1 = r2.
Proof.
- Intros; Transitivity (AplusT (AplusT (AoppT r) r) r1).
- Ring.
- Transitivity (AplusT (AplusT (AoppT r) r) r2).
- Repeat Rewrite -> AplusT_assoc; Rewrite <- H; Reflexivity.
- Ring.
-Save.
+ intros; transitivity (AplusT (AplusT (AoppT r) r) r1).
+ ring.
+ transitivity (AplusT (AplusT (AoppT r) r) r2).
+ repeat rewrite AplusT_assoc; rewrite <- H; reflexivity.
+ ring.
+Qed.
-Lemma r_AmultT_mult:
- (r,r1,r2:AT)(AmultT r r1)=(AmultT r r2)->~r=AzeroT->r1=r2.
+Lemma r_AmultT_mult :
+ forall r r1 r2:AT, AmultT r r1 = AmultT r r2 -> r <> AzeroT -> r1 = r2.
Proof.
- Intros; Transitivity (AmultT (AmultT (AinvT r) r) r1).
- Rewrite Th_inv_defT;[Symmetry; Apply AmultT_1l;Auto|Auto].
- Transitivity (AmultT (AmultT (AinvT r) r) r2).
- Repeat Rewrite AmultT_assoc; Rewrite H; Trivial.
- Rewrite Th_inv_defT;[Apply AmultT_1l;Auto|Auto].
-Save.
+ intros; transitivity (AmultT (AmultT (AinvT r) r) r1).
+ rewrite Th_inv_defT; [ symmetry in |- *; apply AmultT_1l; auto | auto ].
+ transitivity (AmultT (AmultT (AinvT r) r) r2).
+ repeat rewrite AmultT_assoc; rewrite H; trivial.
+ rewrite Th_inv_defT; [ apply AmultT_1l; auto | auto ].
+Qed.
-Lemma AmultT_Or:(r:AT) (AmultT r AzeroT)=AzeroT.
+Lemma AmultT_Or : forall r:AT, AmultT r AzeroT = AzeroT.
Proof.
- Intro; Ring.
-Save.
+ intro; ring.
+Qed.
-Lemma AmultT_Ol:(r:AT)(AmultT AzeroT r)=AzeroT.
+Lemma AmultT_Ol : forall r:AT, AmultT AzeroT r = AzeroT.
Proof.
- Intro; Ring.
-Save.
+ intro; ring.
+Qed.
-Lemma AmultT_1r:(r:AT)(AmultT r AoneT)=r.
+Lemma AmultT_1r : forall r:AT, AmultT r AoneT = r.
Proof.
- Intro; Ring.
-Save.
+ intro; ring.
+Qed.
-Lemma AinvT_r:(r:AT)~r=AzeroT->(AmultT r (AinvT r))=AoneT.
+Lemma AinvT_r : forall r:AT, r <> AzeroT -> AmultT r (AinvT r) = AoneT.
Proof.
- Intros; Rewrite -> AmultT_sym; Apply Th_inv_defT; Auto.
-Save.
+ intros; rewrite AmultT_sym; apply Th_inv_defT; auto.
+Qed.
-Lemma without_div_O_contr:
- (r1,r2:AT)~(AmultT r1 r2)=AzeroT ->~r1=AzeroT/\~r2=AzeroT.
+Lemma Rmult_neq_0_reg :
+ forall r1 r2:AT, AmultT r1 r2 <> AzeroT -> r1 <> AzeroT /\ r2 <> AzeroT.
Proof.
- Intros r1 r2 H; Split; Red; Intro; Apply H; Rewrite H0; Ring.
-Save.
+ intros r1 r2 H; split; red in |- *; intro; apply H; rewrite H0; ring.
+Qed.
(************************)
(* Interpretation *)
@@ -189,15 +191,16 @@ Save.
(**** ExprA --> A ****)
-Fixpoint interp_ExprA [lvar:(listT (prodT AT nat));e:ExprA] : AT :=
- Cases e of
- | EAzero => AzeroT
- | EAone => AoneT
- | (EAplus e1 e2) => (AplusT (interp_ExprA lvar e1) (interp_ExprA lvar e2))
- | (EAmult e1 e2) => (AmultT (interp_ExprA lvar e1) (interp_ExprA lvar e2))
- | (EAopp e) => ((Aopp T) (interp_ExprA lvar e))
- | (EAinv e) => ((Ainv T) (interp_ExprA lvar e))
- | (EAvar n) => (assoc_2nd AT nat eq_nat_dec lvar n AzeroT)
+Fixpoint interp_ExprA (lvar:listT (prodT AT nat)) (e:ExprA) {struct e} :
+ AT :=
+ match e with
+ | EAzero => AzeroT
+ | EAone => AoneT
+ | EAplus e1 e2 => AplusT (interp_ExprA lvar e1) (interp_ExprA lvar e2)
+ | EAmult e1 e2 => AmultT (interp_ExprA lvar e1) (interp_ExprA lvar e2)
+ | EAopp e => Aopp T (interp_ExprA lvar e)
+ | EAinv e => Ainv T (interp_ExprA lvar e)
+ | EAvar n => assoc_2nd AT nat eq_nat_dec lvar n AzeroT
end.
(************************)
@@ -207,406 +210,436 @@ Fixpoint interp_ExprA [lvar:(listT (prodT AT nat));e:ExprA] : AT :=
(**** Associativity ****)
Definition merge_mult :=
- Fix merge_mult {merge_mult [e1:ExprA] : ExprA -> ExprA :=
- [e2:ExprA]Cases e1 of
- | (EAmult t1 t2) =>
- Cases t2 of
- | (EAmult t2 t3) => (EAmult t1 (EAmult t2 (merge_mult t3 e2)))
- | _ => (EAmult t1 (EAmult t2 e2))
- end
- | _ => (EAmult e1 e2)
- end}.
-
-Fixpoint assoc_mult [e:ExprA] : ExprA :=
- Cases e of
- | (EAmult e1 e3) =>
- Cases e1 of
- | (EAmult e1 e2) =>
- (merge_mult (merge_mult (assoc_mult e1) (assoc_mult e2))
- (assoc_mult e3))
- | _ => (EAmult e1 (assoc_mult e3))
- end
+ (fix merge_mult (e1:ExprA) : ExprA -> ExprA :=
+ fun e2:ExprA =>
+ match e1 with
+ | EAmult t1 t2 =>
+ match t2 with
+ | EAmult t2 t3 => EAmult t1 (EAmult t2 (merge_mult t3 e2))
+ | _ => EAmult t1 (EAmult t2 e2)
+ end
+ | _ => EAmult e1 e2
+ end).
+
+Fixpoint assoc_mult (e:ExprA) : ExprA :=
+ match e with
+ | EAmult e1 e3 =>
+ match e1 with
+ | EAmult e1 e2 =>
+ merge_mult (merge_mult (assoc_mult e1) (assoc_mult e2))
+ (assoc_mult e3)
+ | _ => EAmult e1 (assoc_mult e3)
+ end
| _ => e
end.
Definition merge_plus :=
- Fix merge_plus {merge_plus [e1:ExprA]:ExprA->ExprA:=
- [e2:ExprA]Cases e1 of
- | (EAplus t1 t2) =>
- Cases t2 of
- | (EAplus t2 t3) => (EAplus t1 (EAplus t2 (merge_plus t3 e2)))
- | _ => (EAplus t1 (EAplus t2 e2))
- end
- | _ => (EAplus e1 e2)
- end}.
-
-Fixpoint assoc [e:ExprA] : ExprA :=
- Cases e of
- | (EAplus e1 e3) =>
- Cases e1 of
- | (EAplus e1 e2) =>
- (merge_plus (merge_plus (assoc e1) (assoc e2)) (assoc e3))
- | _ => (EAplus (assoc_mult e1) (assoc e3))
- end
- | _ => (assoc_mult e)
+ (fix merge_plus (e1:ExprA) : ExprA -> ExprA :=
+ fun e2:ExprA =>
+ match e1 with
+ | EAplus t1 t2 =>
+ match t2 with
+ | EAplus t2 t3 => EAplus t1 (EAplus t2 (merge_plus t3 e2))
+ | _ => EAplus t1 (EAplus t2 e2)
+ end
+ | _ => EAplus e1 e2
+ end).
+
+Fixpoint assoc (e:ExprA) : ExprA :=
+ match e with
+ | EAplus e1 e3 =>
+ match e1 with
+ | EAplus e1 e2 =>
+ merge_plus (merge_plus (assoc e1) (assoc e2)) (assoc e3)
+ | _ => EAplus (assoc_mult e1) (assoc e3)
+ end
+ | _ => assoc_mult e
end.
-Lemma merge_mult_correct1:
- (e1,e2,e3:ExprA)(lvar:(listT (prodT AT nat)))
- (interp_ExprA lvar (merge_mult (EAmult e1 e2) e3))=
- (interp_ExprA lvar (EAmult e1 (merge_mult e2 e3))).
-Proof.
-Intros e1 e2;Generalize e1;Generalize e2;Clear e1 e2.
-Induction e2;Auto;Intros.
-Unfold 1 merge_mult;Fold merge_mult;
- Unfold 2 interp_ExprA;Fold interp_ExprA;
- Rewrite (H0 e e3 lvar);
- Unfold 1 interp_ExprA;Fold interp_ExprA;
- Unfold 5 interp_ExprA;Fold interp_ExprA;Auto.
-Save.
-
-Lemma merge_mult_correct:
- (e1,e2:ExprA)(lvar:(listT (prodT AT nat)))
- (interp_ExprA lvar (merge_mult e1 e2))=
- (interp_ExprA lvar (EAmult e1 e2)).
-Proof.
-Induction e1;Auto;Intros.
-Elim e0;Try (Intros;Simpl;Ring).
-Unfold interp_ExprA in H2;Fold interp_ExprA in H2;
- Cut (AmultT (interp_ExprA lvar e2) (AmultT (interp_ExprA lvar e4)
- (AmultT (interp_ExprA lvar e) (interp_ExprA lvar e3))))=
- (AmultT (AmultT (AmultT (interp_ExprA lvar e) (interp_ExprA lvar e4))
- (interp_ExprA lvar e2)) (interp_ExprA lvar e3)).
-Intro H3;Rewrite H3;Rewrite <-H2;
- Rewrite merge_mult_correct1;Simpl;Ring.
-Ring.
-Save.
-
-Lemma assoc_mult_correct1:(e1,e2:ExprA)(lvar:(listT (prodT AT nat)))
- (AmultT (interp_ExprA lvar (assoc_mult e1))
- (interp_ExprA lvar (assoc_mult e2)))=
- (interp_ExprA lvar (assoc_mult (EAmult e1 e2))).
-Proof.
-Induction e1;Auto;Intros.
-Rewrite <-(H e0 lvar);Simpl;Rewrite merge_mult_correct;Simpl;
- Rewrite merge_mult_correct;Simpl;Auto.
-Save.
-
-Lemma assoc_mult_correct:
- (e:ExprA)(lvar:(listT (prodT AT nat)))
- (interp_ExprA lvar (assoc_mult e))=(interp_ExprA lvar e).
-Proof.
-Induction e;Auto;Intros.
-Elim e0;Intros.
-Intros;Simpl;Ring.
-Simpl;Rewrite (AmultT_1l (interp_ExprA lvar (assoc_mult e1)));
- Rewrite (AmultT_1l (interp_ExprA lvar e1)); Apply H0.
-Simpl;Rewrite (H0 lvar);Auto.
-Simpl;Rewrite merge_mult_correct;Simpl;Rewrite merge_mult_correct;Simpl;
- Rewrite AmultT_assoc;Rewrite assoc_mult_correct1;Rewrite H2;Simpl;
- Rewrite <-assoc_mult_correct1 in H1;
- Unfold 3 interp_ExprA in H1;Fold interp_ExprA in H1;
- Rewrite (H0 lvar) in H1;
- Rewrite (AmultT_sym (interp_ExprA lvar e3) (interp_ExprA lvar e1));
- Rewrite <-AmultT_assoc;Rewrite H1;Rewrite AmultT_assoc;Ring.
-Simpl;Rewrite (H0 lvar);Auto.
-Simpl;Rewrite (H0 lvar);Auto.
-Simpl;Rewrite (H0 lvar);Auto.
-Save.
-
-Lemma merge_plus_correct1:
- (e1,e2,e3:ExprA)(lvar:(listT (prodT AT nat)))
- (interp_ExprA lvar (merge_plus (EAplus e1 e2) e3))=
- (interp_ExprA lvar (EAplus e1 (merge_plus e2 e3))).
-Proof.
-Intros e1 e2;Generalize e1;Generalize e2;Clear e1 e2.
-Induction e2;Auto;Intros.
-Unfold 1 merge_plus;Fold merge_plus;
- Unfold 2 interp_ExprA;Fold interp_ExprA;
- Rewrite (H0 e e3 lvar);
- Unfold 1 interp_ExprA;Fold interp_ExprA;
- Unfold 5 interp_ExprA;Fold interp_ExprA;Auto.
-Save.
-
-Lemma merge_plus_correct:
- (e1,e2:ExprA)(lvar:(listT (prodT AT nat)))
- (interp_ExprA lvar (merge_plus e1 e2))=
- (interp_ExprA lvar (EAplus e1 e2)).
-Proof.
-Induction e1;Auto;Intros.
-Elim e0;Try Intros;Try (Simpl;Ring).
-Unfold interp_ExprA in H2;Fold interp_ExprA in H2;
- Cut (AplusT (interp_ExprA lvar e2) (AplusT (interp_ExprA lvar e4)
- (AplusT (interp_ExprA lvar e) (interp_ExprA lvar e3))))=
- (AplusT (AplusT (AplusT (interp_ExprA lvar e) (interp_ExprA lvar e4))
- (interp_ExprA lvar e2)) (interp_ExprA lvar e3)).
-Intro H3;Rewrite H3;Rewrite <-H2;Rewrite merge_plus_correct1;Simpl;Ring.
-Ring.
-Save.
-
-Lemma assoc_plus_correct:(e1,e2:ExprA)(lvar:(listT (prodT AT nat)))
- (AplusT (interp_ExprA lvar (assoc e1)) (interp_ExprA lvar (assoc e2)))=
- (interp_ExprA lvar (assoc (EAplus e1 e2))).
-Proof.
-Induction e1;Auto;Intros.
-Rewrite <-(H e0 lvar);Simpl;Rewrite merge_plus_correct;Simpl;
- Rewrite merge_plus_correct;Simpl;Auto.
-Save.
-
-Lemma assoc_correct:
- (e:ExprA)(lvar:(listT (prodT AT nat)))
- (interp_ExprA lvar (assoc e))=(interp_ExprA lvar e).
-Proof.
-Induction e;Auto;Intros.
-Elim e0;Intros.
-Simpl;Rewrite (H0 lvar);Auto.
-Simpl;Rewrite (H0 lvar);Auto.
-Simpl;Rewrite merge_plus_correct;Simpl;Rewrite merge_plus_correct;
- Simpl;Rewrite AplusT_assoc;Rewrite assoc_plus_correct;Rewrite H2;
- Simpl;Apply (r_AplusT_plus (interp_ExprA lvar (assoc e1))
- (AplusT (interp_ExprA lvar (assoc e2))
- (AplusT (interp_ExprA lvar e3) (interp_ExprA lvar e1)))
- (AplusT (AplusT (interp_ExprA lvar e2) (interp_ExprA lvar e3))
- (interp_ExprA lvar e1)));Rewrite <-AplusT_assoc;
- Rewrite (AplusT_sym (interp_ExprA lvar (assoc e1))
- (interp_ExprA lvar (assoc e2)));
- Rewrite assoc_plus_correct;Rewrite H1;Simpl;Rewrite (H0 lvar);
- Rewrite <-(AplusT_assoc (AplusT (interp_ExprA lvar e2)
- (interp_ExprA lvar e1))
- (interp_ExprA lvar e3) (interp_ExprA lvar e1));
- Rewrite (AplusT_assoc (interp_ExprA lvar e2) (interp_ExprA lvar e1)
- (interp_ExprA lvar e3));
- Rewrite (AplusT_sym (interp_ExprA lvar e1) (interp_ExprA lvar e3));
- Rewrite <-(AplusT_assoc (interp_ExprA lvar e2) (interp_ExprA lvar e3)
- (interp_ExprA lvar e1));Apply AplusT_sym.
-Unfold assoc;Fold assoc;Unfold interp_ExprA;Fold interp_ExprA;
- Rewrite assoc_mult_correct;Rewrite (H0 lvar);Simpl;Auto.
-Simpl;Rewrite (H0 lvar);Auto.
-Simpl;Rewrite (H0 lvar);Auto.
-Simpl;Rewrite (H0 lvar);Auto.
-Unfold assoc;Fold assoc;Unfold interp_ExprA;Fold interp_ExprA;
- Rewrite assoc_mult_correct;Simpl;Auto.
-Save.
+Lemma merge_mult_correct1 :
+ forall (e1 e2 e3:ExprA) (lvar:listT (prodT AT nat)),
+ interp_ExprA lvar (merge_mult (EAmult e1 e2) e3) =
+ interp_ExprA lvar (EAmult e1 (merge_mult e2 e3)).
+Proof.
+intros e1 e2; generalize e1; generalize e2; clear e1 e2.
+simple induction e2; auto; intros.
+unfold merge_mult at 1 in |- *; fold merge_mult in |- *;
+ unfold interp_ExprA at 2 in |- *; fold interp_ExprA in |- *;
+ rewrite (H0 e e3 lvar); unfold interp_ExprA at 1 in |- *;
+ fold interp_ExprA in |- *; unfold interp_ExprA at 5 in |- *;
+ fold interp_ExprA in |- *; auto.
+Qed.
+
+Lemma merge_mult_correct :
+ forall (e1 e2:ExprA) (lvar:listT (prodT AT nat)),
+ interp_ExprA lvar (merge_mult e1 e2) = interp_ExprA lvar (EAmult e1 e2).
+Proof.
+simple induction e1; auto; intros.
+elim e0; try (intros; simpl in |- *; ring).
+unfold interp_ExprA in H2; fold interp_ExprA in H2;
+ cut
+ (AmultT (interp_ExprA lvar e2)
+ (AmultT (interp_ExprA lvar e4)
+ (AmultT (interp_ExprA lvar e) (interp_ExprA lvar e3))) =
+ AmultT
+ (AmultT (AmultT (interp_ExprA lvar e) (interp_ExprA lvar e4))
+ (interp_ExprA lvar e2)) (interp_ExprA lvar e3)).
+intro H3; rewrite H3; rewrite <- H2; rewrite merge_mult_correct1;
+ simpl in |- *; ring.
+ring.
+Qed.
+
+Lemma assoc_mult_correct1 :
+ forall (e1 e2:ExprA) (lvar:listT (prodT AT nat)),
+ AmultT (interp_ExprA lvar (assoc_mult e1))
+ (interp_ExprA lvar (assoc_mult e2)) =
+ interp_ExprA lvar (assoc_mult (EAmult e1 e2)).
+Proof.
+simple induction e1; auto; intros.
+rewrite <- (H e0 lvar); simpl in |- *; rewrite merge_mult_correct;
+ simpl in |- *; rewrite merge_mult_correct; simpl in |- *;
+ auto.
+Qed.
+
+Lemma assoc_mult_correct :
+ forall (e:ExprA) (lvar:listT (prodT AT nat)),
+ interp_ExprA lvar (assoc_mult e) = interp_ExprA lvar e.
+Proof.
+simple induction e; auto; intros.
+elim e0; intros.
+intros; simpl in |- *; ring.
+simpl in |- *; rewrite (AmultT_1l (interp_ExprA lvar (assoc_mult e1)));
+ rewrite (AmultT_1l (interp_ExprA lvar e1)); apply H0.
+simpl in |- *; rewrite (H0 lvar); auto.
+simpl in |- *; rewrite merge_mult_correct; simpl in |- *;
+ rewrite merge_mult_correct; simpl in |- *; rewrite AmultT_assoc;
+ rewrite assoc_mult_correct1; rewrite H2; simpl in |- *;
+ rewrite <- assoc_mult_correct1 in H1; unfold interp_ExprA at 3 in H1;
+ fold interp_ExprA in H1; rewrite (H0 lvar) in H1;
+ rewrite (AmultT_sym (interp_ExprA lvar e3) (interp_ExprA lvar e1));
+ rewrite <- AmultT_assoc; rewrite H1; rewrite AmultT_assoc;
+ ring.
+simpl in |- *; rewrite (H0 lvar); auto.
+simpl in |- *; rewrite (H0 lvar); auto.
+simpl in |- *; rewrite (H0 lvar); auto.
+Qed.
+
+Lemma merge_plus_correct1 :
+ forall (e1 e2 e3:ExprA) (lvar:listT (prodT AT nat)),
+ interp_ExprA lvar (merge_plus (EAplus e1 e2) e3) =
+ interp_ExprA lvar (EAplus e1 (merge_plus e2 e3)).
+Proof.
+intros e1 e2; generalize e1; generalize e2; clear e1 e2.
+simple induction e2; auto; intros.
+unfold merge_plus at 1 in |- *; fold merge_plus in |- *;
+ unfold interp_ExprA at 2 in |- *; fold interp_ExprA in |- *;
+ rewrite (H0 e e3 lvar); unfold interp_ExprA at 1 in |- *;
+ fold interp_ExprA in |- *; unfold interp_ExprA at 5 in |- *;
+ fold interp_ExprA in |- *; auto.
+Qed.
+
+Lemma merge_plus_correct :
+ forall (e1 e2:ExprA) (lvar:listT (prodT AT nat)),
+ interp_ExprA lvar (merge_plus e1 e2) = interp_ExprA lvar (EAplus e1 e2).
+Proof.
+simple induction e1; auto; intros.
+elim e0; try intros; try (simpl in |- *; ring).
+unfold interp_ExprA in H2; fold interp_ExprA in H2;
+ cut
+ (AplusT (interp_ExprA lvar e2)
+ (AplusT (interp_ExprA lvar e4)
+ (AplusT (interp_ExprA lvar e) (interp_ExprA lvar e3))) =
+ AplusT
+ (AplusT (AplusT (interp_ExprA lvar e) (interp_ExprA lvar e4))
+ (interp_ExprA lvar e2)) (interp_ExprA lvar e3)).
+intro H3; rewrite H3; rewrite <- H2; rewrite merge_plus_correct1;
+ simpl in |- *; ring.
+ring.
+Qed.
+
+Lemma assoc_plus_correct :
+ forall (e1 e2:ExprA) (lvar:listT (prodT AT nat)),
+ AplusT (interp_ExprA lvar (assoc e1)) (interp_ExprA lvar (assoc e2)) =
+ interp_ExprA lvar (assoc (EAplus e1 e2)).
+Proof.
+simple induction e1; auto; intros.
+rewrite <- (H e0 lvar); simpl in |- *; rewrite merge_plus_correct;
+ simpl in |- *; rewrite merge_plus_correct; simpl in |- *;
+ auto.
+Qed.
+
+Lemma assoc_correct :
+ forall (e:ExprA) (lvar:listT (prodT AT nat)),
+ interp_ExprA lvar (assoc e) = interp_ExprA lvar e.
+Proof.
+simple induction e; auto; intros.
+elim e0; intros.
+simpl in |- *; rewrite (H0 lvar); auto.
+simpl in |- *; rewrite (H0 lvar); auto.
+simpl in |- *; rewrite merge_plus_correct; simpl in |- *;
+ rewrite merge_plus_correct; simpl in |- *; rewrite AplusT_assoc;
+ rewrite assoc_plus_correct; rewrite H2; simpl in |- *;
+ apply
+ (r_AplusT_plus (interp_ExprA lvar (assoc e1))
+ (AplusT (interp_ExprA lvar (assoc e2))
+ (AplusT (interp_ExprA lvar e3) (interp_ExprA lvar e1)))
+ (AplusT (AplusT (interp_ExprA lvar e2) (interp_ExprA lvar e3))
+ (interp_ExprA lvar e1))); rewrite <- AplusT_assoc;
+ rewrite
+ (AplusT_sym (interp_ExprA lvar (assoc e1)) (interp_ExprA lvar (assoc e2)))
+ ; rewrite assoc_plus_correct; rewrite H1; simpl in |- *;
+ rewrite (H0 lvar);
+ rewrite <-
+ (AplusT_assoc (AplusT (interp_ExprA lvar e2) (interp_ExprA lvar e1))
+ (interp_ExprA lvar e3) (interp_ExprA lvar e1))
+ ;
+ rewrite
+ (AplusT_assoc (interp_ExprA lvar e2) (interp_ExprA lvar e1)
+ (interp_ExprA lvar e3));
+ rewrite (AplusT_sym (interp_ExprA lvar e1) (interp_ExprA lvar e3));
+ rewrite <-
+ (AplusT_assoc (interp_ExprA lvar e2) (interp_ExprA lvar e3)
+ (interp_ExprA lvar e1)); apply AplusT_sym.
+unfold assoc in |- *; fold assoc in |- *; unfold interp_ExprA in |- *;
+ fold interp_ExprA in |- *; rewrite assoc_mult_correct;
+ rewrite (H0 lvar); simpl in |- *; auto.
+simpl in |- *; rewrite (H0 lvar); auto.
+simpl in |- *; rewrite (H0 lvar); auto.
+simpl in |- *; rewrite (H0 lvar); auto.
+unfold assoc in |- *; fold assoc in |- *; unfold interp_ExprA in |- *;
+ fold interp_ExprA in |- *; rewrite assoc_mult_correct;
+ simpl in |- *; auto.
+Qed.
(**** Distribution *****)
-Fixpoint distrib_EAopp [e:ExprA] : ExprA :=
- Cases e of
- | (EAplus e1 e2) => (EAplus (distrib_EAopp e1) (distrib_EAopp e2))
- | (EAmult e1 e2) => (EAmult (distrib_EAopp e1) (distrib_EAopp e2))
- | (EAopp e) => (EAmult (EAopp EAone) (distrib_EAopp e))
+Fixpoint distrib_EAopp (e:ExprA) : ExprA :=
+ match e with
+ | EAplus e1 e2 => EAplus (distrib_EAopp e1) (distrib_EAopp e2)
+ | EAmult e1 e2 => EAmult (distrib_EAopp e1) (distrib_EAopp e2)
+ | EAopp e => EAmult (EAopp EAone) (distrib_EAopp e)
| e => e
end.
Definition distrib_mult_right :=
- Fix distrib_mult_right {distrib_mult_right [e1:ExprA]:ExprA->ExprA:=
- [e2:ExprA]Cases e1 of
- | (EAplus t1 t2) =>
- (EAplus (distrib_mult_right t1 e2) (distrib_mult_right t2 e2))
- | _ => (EAmult e1 e2)
- end}.
-
-Fixpoint distrib_mult_left [e1:ExprA] : ExprA->ExprA :=
- [e2:ExprA]
- Cases e1 of
- | (EAplus t1 t2) =>
- (EAplus (distrib_mult_left t1 e2) (distrib_mult_left t2 e2))
- | _ => (distrib_mult_right e2 e1)
+ (fix distrib_mult_right (e1:ExprA) : ExprA -> ExprA :=
+ fun e2:ExprA =>
+ match e1 with
+ | EAplus t1 t2 =>
+ EAplus (distrib_mult_right t1 e2) (distrib_mult_right t2 e2)
+ | _ => EAmult e1 e2
+ end).
+
+Fixpoint distrib_mult_left (e1 e2:ExprA) {struct e1} : ExprA :=
+ match e1 with
+ | EAplus t1 t2 =>
+ EAplus (distrib_mult_left t1 e2) (distrib_mult_left t2 e2)
+ | _ => distrib_mult_right e2 e1
end.
-Fixpoint distrib_main [e:ExprA] : ExprA :=
- Cases e of
- | (EAmult e1 e2) => (distrib_mult_left (distrib_main e1) (distrib_main e2))
- | (EAplus e1 e2) => (EAplus (distrib_main e1) (distrib_main e2))
- | (EAopp e) => (EAopp (distrib_main e))
+Fixpoint distrib_main (e:ExprA) : ExprA :=
+ match e with
+ | EAmult e1 e2 => distrib_mult_left (distrib_main e1) (distrib_main e2)
+ | EAplus e1 e2 => EAplus (distrib_main e1) (distrib_main e2)
+ | EAopp e => EAopp (distrib_main e)
| _ => e
end.
-Definition distrib [e:ExprA] : ExprA := (distrib_main (distrib_EAopp e)).
-
-Lemma distrib_mult_right_correct:
- (e1,e2:ExprA)(lvar:(listT (prodT AT nat)))
- (interp_ExprA lvar (distrib_mult_right e1 e2))=
- (AmultT (interp_ExprA lvar e1) (interp_ExprA lvar e2)).
-Proof.
-Induction e1;Try Intros;Simpl;Auto.
-Rewrite AmultT_sym;Rewrite AmultT_AplusT_distr;
- Rewrite (H e2 lvar);Rewrite (H0 e2 lvar);Ring.
-Save.
-
-Lemma distrib_mult_left_correct:
- (e1,e2:ExprA)(lvar:(listT (prodT AT nat)))
- (interp_ExprA lvar (distrib_mult_left e1 e2))=
- (AmultT (interp_ExprA lvar e1) (interp_ExprA lvar e2)).
-Proof.
-Induction e1;Try Intros;Simpl.
-Rewrite AmultT_Ol;Rewrite distrib_mult_right_correct;Simpl;Apply AmultT_Or.
-Rewrite distrib_mult_right_correct;Simpl;
- Apply AmultT_sym.
-Rewrite AmultT_sym;
- Rewrite (AmultT_AplusT_distr (interp_ExprA lvar e2) (interp_ExprA lvar e)
- (interp_ExprA lvar e0));
- Rewrite (AmultT_sym (interp_ExprA lvar e2) (interp_ExprA lvar e));
- Rewrite (AmultT_sym (interp_ExprA lvar e2) (interp_ExprA lvar e0));
- Rewrite (H e2 lvar);Rewrite (H0 e2 lvar);Auto.
-Rewrite distrib_mult_right_correct;Simpl;Apply AmultT_sym.
-Rewrite distrib_mult_right_correct;Simpl;Apply AmultT_sym.
-Rewrite distrib_mult_right_correct;Simpl;Apply AmultT_sym.
-Rewrite distrib_mult_right_correct;Simpl;Apply AmultT_sym.
-Save.
-
-Lemma distrib_correct:
- (e:ExprA)(lvar:(listT (prodT AT nat)))
- (interp_ExprA lvar (distrib e))=(interp_ExprA lvar e).
-Proof.
-Induction e;Intros;Auto.
-Simpl;Rewrite <- (H lvar);Rewrite <- (H0 lvar); Unfold distrib;Simpl;Auto.
-Simpl;Rewrite <- (H lvar);Rewrite <- (H0 lvar); Unfold distrib;Simpl;
- Apply distrib_mult_left_correct.
-Simpl;Fold AoppT;Rewrite <- (H lvar);Unfold distrib;Simpl;
- Rewrite distrib_mult_right_correct;
- Simpl;Fold AoppT;Ring.
-Save.
+Definition distrib (e:ExprA) : ExprA := distrib_main (distrib_EAopp e).
+
+Lemma distrib_mult_right_correct :
+ forall (e1 e2:ExprA) (lvar:listT (prodT AT nat)),
+ interp_ExprA lvar (distrib_mult_right e1 e2) =
+ AmultT (interp_ExprA lvar e1) (interp_ExprA lvar e2).
+Proof.
+simple induction e1; try intros; simpl in |- *; auto.
+rewrite AmultT_sym; rewrite AmultT_AplusT_distr; rewrite (H e2 lvar);
+ rewrite (H0 e2 lvar); ring.
+Qed.
+
+Lemma distrib_mult_left_correct :
+ forall (e1 e2:ExprA) (lvar:listT (prodT AT nat)),
+ interp_ExprA lvar (distrib_mult_left e1 e2) =
+ AmultT (interp_ExprA lvar e1) (interp_ExprA lvar e2).
+Proof.
+simple induction e1; try intros; simpl in |- *.
+rewrite AmultT_Ol; rewrite distrib_mult_right_correct; simpl in |- *;
+ apply AmultT_Or.
+rewrite distrib_mult_right_correct; simpl in |- *; apply AmultT_sym.
+rewrite AmultT_sym;
+ rewrite
+ (AmultT_AplusT_distr (interp_ExprA lvar e2) (interp_ExprA lvar e)
+ (interp_ExprA lvar e0));
+ rewrite (AmultT_sym (interp_ExprA lvar e2) (interp_ExprA lvar e));
+ rewrite (AmultT_sym (interp_ExprA lvar e2) (interp_ExprA lvar e0));
+ rewrite (H e2 lvar); rewrite (H0 e2 lvar); auto.
+rewrite distrib_mult_right_correct; simpl in |- *; apply AmultT_sym.
+rewrite distrib_mult_right_correct; simpl in |- *; apply AmultT_sym.
+rewrite distrib_mult_right_correct; simpl in |- *; apply AmultT_sym.
+rewrite distrib_mult_right_correct; simpl in |- *; apply AmultT_sym.
+Qed.
+
+Lemma distrib_correct :
+ forall (e:ExprA) (lvar:listT (prodT AT nat)),
+ interp_ExprA lvar (distrib e) = interp_ExprA lvar e.
+Proof.
+simple induction e; intros; auto.
+simpl in |- *; rewrite <- (H lvar); rewrite <- (H0 lvar);
+ unfold distrib in |- *; simpl in |- *; auto.
+simpl in |- *; rewrite <- (H lvar); rewrite <- (H0 lvar);
+ unfold distrib in |- *; simpl in |- *; apply distrib_mult_left_correct.
+simpl in |- *; fold AoppT in |- *; rewrite <- (H lvar);
+ unfold distrib in |- *; simpl in |- *; rewrite distrib_mult_right_correct;
+ simpl in |- *; fold AoppT in |- *; ring.
+Qed.
(**** Multiplication by the inverse product ****)
-Lemma mult_eq:
- (e1,e2,a:ExprA)(lvar:(listT (prodT AT nat)))
- ~((interp_ExprA lvar a)=AzeroT)->
- (interp_ExprA lvar (EAmult a e1))=(interp_ExprA lvar (EAmult a e2))->
- (interp_ExprA lvar e1)=(interp_ExprA lvar e2).
-Proof.
- Simpl;Intros;
- Apply (r_AmultT_mult (interp_ExprA lvar a) (interp_ExprA lvar e1)
- (interp_ExprA lvar e2));Assumption.
-Save.
-
-Fixpoint multiply_aux [a,e:ExprA] : ExprA :=
- Cases e of
- | (EAplus e1 e2) =>
- (EAplus (EAmult a e1) (multiply_aux a e2))
- | _ => (EAmult a e)
+Lemma mult_eq :
+ forall (e1 e2 a:ExprA) (lvar:listT (prodT AT nat)),
+ interp_ExprA lvar a <> AzeroT ->
+ interp_ExprA lvar (EAmult a e1) = interp_ExprA lvar (EAmult a e2) ->
+ interp_ExprA lvar e1 = interp_ExprA lvar e2.
+Proof.
+ simpl in |- *; intros;
+ apply
+ (r_AmultT_mult (interp_ExprA lvar a) (interp_ExprA lvar e1)
+ (interp_ExprA lvar e2)); assumption.
+Qed.
+
+Fixpoint multiply_aux (a e:ExprA) {struct e} : ExprA :=
+ match e with
+ | EAplus e1 e2 => EAplus (EAmult a e1) (multiply_aux a e2)
+ | _ => EAmult a e
end.
-Definition multiply [e:ExprA] : ExprA :=
- Cases e of
- | (EAmult a e1) => (multiply_aux a e1)
+Definition multiply (e:ExprA) : ExprA :=
+ match e with
+ | EAmult a e1 => multiply_aux a e1
| _ => e
end.
-Lemma multiply_aux_correct:
- (a,e:ExprA)(lvar:(listT (prodT AT nat)))
- (interp_ExprA lvar (multiply_aux a e))=
- (AmultT (interp_ExprA lvar a) (interp_ExprA lvar e)).
+Lemma multiply_aux_correct :
+ forall (a e:ExprA) (lvar:listT (prodT AT nat)),
+ interp_ExprA lvar (multiply_aux a e) =
+ AmultT (interp_ExprA lvar a) (interp_ExprA lvar e).
Proof.
-Induction e;Simpl;Intros;Try (Rewrite merge_mult_correct);Auto.
- Simpl;Rewrite (H0 lvar);Ring.
-Save.
+simple induction e; simpl in |- *; intros; try rewrite merge_mult_correct;
+ auto.
+ simpl in |- *; rewrite (H0 lvar); ring.
+Qed.
-Lemma multiply_correct:
- (e:ExprA)(lvar:(listT (prodT AT nat)))
- (interp_ExprA lvar (multiply e))=(interp_ExprA lvar e).
+Lemma multiply_correct :
+ forall (e:ExprA) (lvar:listT (prodT AT nat)),
+ interp_ExprA lvar (multiply e) = interp_ExprA lvar e.
Proof.
- Induction e;Simpl;Auto.
- Intros;Apply multiply_aux_correct.
-Save.
+ simple induction e; simpl in |- *; auto.
+ intros; apply multiply_aux_correct.
+Qed.
(**** Permutations and simplification ****)
-Fixpoint monom_remove [a,m:ExprA] : ExprA :=
- Cases m of
- | (EAmult m0 m1) =>
- (Cases (eqExprA m0 (EAinv a)) of
- | (left _) => m1
- | (right _) => (EAmult m0 (monom_remove a m1))
- end)
+Fixpoint monom_remove (a m:ExprA) {struct m} : ExprA :=
+ match m with
+ | EAmult m0 m1 =>
+ match eqExprA m0 (EAinv a) with
+ | left _ => m1
+ | right _ => EAmult m0 (monom_remove a m1)
+ end
| _ =>
- (Cases (eqExprA m (EAinv a)) of
- | (left _) => EAone
- | (right _) => (EAmult a m)
- end)
+ match eqExprA m (EAinv a) with
+ | left _ => EAone
+ | right _ => EAmult a m
+ end
end.
-Definition monom_simplif_rem :=
- Fix monom_simplif_rem {monom_simplif_rem/1:ExprA->ExprA->ExprA:=
- [a,m:ExprA]
- Cases a of
- | (EAmult a0 a1) => (monom_simplif_rem a1 (monom_remove a0 m))
- | _ => (monom_remove a m)
- end}.
-
-Definition monom_simplif [a,m:ExprA] : ExprA :=
- Cases m of
- | (EAmult a' m') =>
- (Cases (eqExprA a a') of
- | (left _) => (monom_simplif_rem a m')
- | (right _) => m
- end)
+Definition monom_simplif_rem :=
+ (fix monom_simplif_rem (a:ExprA) : ExprA -> ExprA :=
+ fun m:ExprA =>
+ match a with
+ | EAmult a0 a1 => monom_simplif_rem a1 (monom_remove a0 m)
+ | _ => monom_remove a m
+ end).
+
+Definition monom_simplif (a m:ExprA) : ExprA :=
+ match m with
+ | EAmult a' m' =>
+ match eqExprA a a' with
+ | left _ => monom_simplif_rem a m'
+ | right _ => m
+ end
| _ => m
end.
-Fixpoint inverse_simplif [a,e:ExprA] : ExprA :=
- Cases e of
- | (EAplus e1 e2) => (EAplus (monom_simplif a e1) (inverse_simplif a e2))
- | _ => (monom_simplif a e)
+Fixpoint inverse_simplif (a e:ExprA) {struct e} : ExprA :=
+ match e with
+ | EAplus e1 e2 => EAplus (monom_simplif a e1) (inverse_simplif a e2)
+ | _ => monom_simplif a e
end.
-Lemma monom_remove_correct:(e,a:ExprA)
- (lvar:(listT (prodT AT nat)))~((interp_ExprA lvar a)=AzeroT)->
- (interp_ExprA lvar (monom_remove a e))=
- (AmultT (interp_ExprA lvar a) (interp_ExprA lvar e)).
-Proof.
-Induction e; Intros.
-Simpl;Case (eqExprA EAzero (EAinv a));Intros;[Inversion e0|Simpl;Trivial].
-Simpl;Case (eqExprA EAone (EAinv a));Intros;[Inversion e0|Simpl;Trivial].
-Simpl;Case (eqExprA (EAplus e0 e1) (EAinv a));Intros;[Inversion e2|
- Simpl;Trivial].
-Simpl;Case (eqExprA e0 (EAinv a));Intros.
-Rewrite e2;Simpl;Fold AinvT.
-Rewrite <-(AmultT_assoc (interp_ExprA lvar a) (AinvT (interp_ExprA lvar a))
- (interp_ExprA lvar e1));
- Rewrite AinvT_r;[Ring|Assumption].
-Simpl;Rewrite H0;Auto; Ring.
-Simpl;Fold AoppT;Case (eqExprA (EAopp e0) (EAinv a));Intros;[Inversion e1|
- Simpl;Trivial].
-Unfold monom_remove;Case (eqExprA (EAinv e0) (EAinv a));Intros.
-Case (eqExprA e0 a);Intros.
-Rewrite e2;Simpl;Fold AinvT;Rewrite AinvT_r;Auto.
-Inversion e1;Simpl;ElimType False;Auto.
-Simpl;Trivial.
-Unfold monom_remove;Case (eqExprA (EAvar n) (EAinv a));Intros;
- [Inversion e0|Simpl;Trivial].
-Save.
-
-Lemma monom_simplif_rem_correct:(a,e:ExprA)
- (lvar:(listT (prodT AT nat)))~((interp_ExprA lvar a)=AzeroT)->
- (interp_ExprA lvar (monom_simplif_rem a e))=
- (AmultT (interp_ExprA lvar a) (interp_ExprA lvar e)).
-Proof.
-Induction a;Simpl;Intros; Try Rewrite monom_remove_correct;Auto.
-Elim (without_div_O_contr (interp_ExprA lvar e)
- (interp_ExprA lvar e0) H1);Intros.
-Rewrite (H0 (monom_remove e e1) lvar H3);Rewrite monom_remove_correct;Auto.
-Ring.
-Save.
-
-Lemma monom_simplif_correct:(e,a:ExprA)
- (lvar:(listT (prodT AT nat)))~((interp_ExprA lvar a)=AzeroT)->
- (interp_ExprA lvar (monom_simplif a e))=(interp_ExprA lvar e).
-Proof.
-Induction e;Intros;Auto.
-Simpl;Case (eqExprA a e0);Intros.
-Rewrite <-e2;Apply monom_simplif_rem_correct;Auto.
-Simpl;Trivial.
-Save.
-
-Lemma inverse_correct:
- (e,a:ExprA)(lvar:(listT (prodT AT nat)))~((interp_ExprA lvar a)=AzeroT)->
- (interp_ExprA lvar (inverse_simplif a e))=(interp_ExprA lvar e).
-Proof.
-Induction e;Intros;Auto.
-Simpl;Rewrite (H0 a lvar H1); Rewrite monom_simplif_correct ; Auto.
-Unfold inverse_simplif;Rewrite monom_simplif_correct ; Auto.
-Save.
-
-End Theory_of_fields.
+Lemma monom_remove_correct :
+ forall (e a:ExprA) (lvar:listT (prodT AT nat)),
+ interp_ExprA lvar a <> AzeroT ->
+ interp_ExprA lvar (monom_remove a e) =
+ AmultT (interp_ExprA lvar a) (interp_ExprA lvar e).
+Proof.
+simple induction e; intros.
+simpl in |- *; case (eqExprA EAzero (EAinv a)); intros;
+ [ inversion e0 | simpl in |- *; trivial ].
+simpl in |- *; case (eqExprA EAone (EAinv a)); intros;
+ [ inversion e0 | simpl in |- *; trivial ].
+simpl in |- *; case (eqExprA (EAplus e0 e1) (EAinv a)); intros;
+ [ inversion e2 | simpl in |- *; trivial ].
+simpl in |- *; case (eqExprA e0 (EAinv a)); intros.
+rewrite e2; simpl in |- *; fold AinvT in |- *.
+rewrite <-
+ (AmultT_assoc (interp_ExprA lvar a) (AinvT (interp_ExprA lvar a))
+ (interp_ExprA lvar e1)); rewrite AinvT_r; [ ring | assumption ].
+simpl in |- *; rewrite H0; auto; ring.
+simpl in |- *; fold AoppT in |- *; case (eqExprA (EAopp e0) (EAinv a));
+ intros; [ inversion e1 | simpl in |- *; trivial ].
+unfold monom_remove in |- *; case (eqExprA (EAinv e0) (EAinv a)); intros.
+case (eqExprA e0 a); intros.
+rewrite e2; simpl in |- *; fold AinvT in |- *; rewrite AinvT_r; auto.
+inversion e1; simpl in |- *; elimtype False; auto.
+simpl in |- *; trivial.
+unfold monom_remove in |- *; case (eqExprA (EAvar n) (EAinv a)); intros;
+ [ inversion e0 | simpl in |- *; trivial ].
+Qed.
+
+Lemma monom_simplif_rem_correct :
+ forall (a e:ExprA) (lvar:listT (prodT AT nat)),
+ interp_ExprA lvar a <> AzeroT ->
+ interp_ExprA lvar (monom_simplif_rem a e) =
+ AmultT (interp_ExprA lvar a) (interp_ExprA lvar e).
+Proof.
+simple induction a; simpl in |- *; intros; try rewrite monom_remove_correct;
+ auto.
+elim (Rmult_neq_0_reg (interp_ExprA lvar e) (interp_ExprA lvar e0) H1);
+ intros.
+rewrite (H0 (monom_remove e e1) lvar H3); rewrite monom_remove_correct; auto.
+ring.
+Qed.
+
+Lemma monom_simplif_correct :
+ forall (e a:ExprA) (lvar:listT (prodT AT nat)),
+ interp_ExprA lvar a <> AzeroT ->
+ interp_ExprA lvar (monom_simplif a e) = interp_ExprA lvar e.
+Proof.
+simple induction e; intros; auto.
+simpl in |- *; case (eqExprA a e0); intros.
+rewrite <- e2; apply monom_simplif_rem_correct; auto.
+simpl in |- *; trivial.
+Qed.
+
+Lemma inverse_correct :
+ forall (e a:ExprA) (lvar:listT (prodT AT nat)),
+ interp_ExprA lvar a <> AzeroT ->
+ interp_ExprA lvar (inverse_simplif a e) = interp_ExprA lvar e.
+Proof.
+simple induction e; intros; auto.
+simpl in |- *; rewrite (H0 a lvar H1); rewrite monom_simplif_correct; auto.
+unfold inverse_simplif in |- *; rewrite monom_simplif_correct; auto.
+Qed.
+
+End Theory_of_fields. \ No newline at end of file
diff --git a/contrib/fourier/Fourier.v b/contrib/fourier/Fourier.v
index b02688de6..d55092759 100644
--- a/contrib/fourier/Fourier.v
+++ b/contrib/fourier/Fourier.v
@@ -20,9 +20,6 @@ Require Export Fourier_util.
Require Export Field.
Require Export DiscrR.
-Tactic Definition Fourier :=
- Abstract (FourierZ;Field;DiscrR).
-
-Tactic Definition FourierEq :=
- Apply Rge_ge_eq ; Fourier.
+Ltac fourier := abstract (fourierz; field; discrR).
+Ltac fourier_eq := apply Rge_antisym; fourier.
diff --git a/contrib/fourier/Fourier_util.v b/contrib/fourier/Fourier_util.v
index 0f36eda8c..dcc45b66e 100644
--- a/contrib/fourier/Fourier_util.v
+++ b/contrib/fourier/Fourier_util.v
@@ -13,229 +13,215 @@ Comments "Lemmas used by the tactic Fourier".
Open Scope R_scope.
-Lemma Rfourier_lt:
- (x1, y1, a : R) (Rlt x1 y1) -> (Rlt R0 a) -> (Rlt (Rmult a x1) (Rmult a y1)).
-Intros; Apply Rlt_monotony; Assumption.
-Qed.
-
-Lemma Rfourier_le:
- (x1, y1, a : R) (Rle x1 y1) -> (Rlt R0 a) -> (Rle (Rmult a x1) (Rmult a y1)).
-Red.
-Intros.
-Case H; Auto with real.
-Qed.
-
-Lemma Rfourier_lt_lt:
- (x1, y1, x2, y2, a : R)
- (Rlt x1 y1) ->
- (Rlt x2 y2) ->
- (Rlt R0 a) -> (Rlt (Rplus x1 (Rmult a x2)) (Rplus y1 (Rmult a y2))).
-Intros x1 y1 x2 y2 a H H0 H1; Try Assumption.
-Apply Rplus_lt.
-Try Exact H.
-Apply Rfourier_lt.
-Try Exact H0.
-Try Exact H1.
-Qed.
-
-Lemma Rfourier_lt_le:
- (x1, y1, x2, y2, a : R)
- (Rlt x1 y1) ->
- (Rle x2 y2) ->
- (Rlt R0 a) -> (Rlt (Rplus x1 (Rmult a x2)) (Rplus y1 (Rmult a y2))).
-Intros x1 y1 x2 y2 a H H0 H1; Try Assumption.
-Case H0; Intros.
-Apply Rplus_lt.
-Try Exact H.
-Apply Rfourier_lt; Auto with real.
-Rewrite H2.
-Rewrite (Rplus_sym y1 (Rmult a y2)).
-Rewrite (Rplus_sym x1 (Rmult a y2)).
-Apply Rlt_compatibility.
-Try Exact H.
-Qed.
-
-Lemma Rfourier_le_lt:
- (x1, y1, x2, y2, a : R)
- (Rle x1 y1) ->
- (Rlt x2 y2) ->
- (Rlt R0 a) -> (Rlt (Rplus x1 (Rmult a x2)) (Rplus y1 (Rmult a y2))).
-Intros x1 y1 x2 y2 a H H0 H1; Try Assumption.
-Case H; Intros.
-Apply Rfourier_lt_le; Auto with real.
-Rewrite H2.
-Apply Rlt_compatibility.
-Apply Rfourier_lt; Auto with real.
-Qed.
-
-Lemma Rfourier_le_le:
- (x1, y1, x2, y2, a : R)
- (Rle x1 y1) ->
- (Rle x2 y2) ->
- (Rlt R0 a) -> (Rle (Rplus x1 (Rmult a x2)) (Rplus y1 (Rmult a y2))).
-Intros x1 y1 x2 y2 a H H0 H1; Try Assumption.
-Case H0; Intros.
-Red.
-Left; Try Assumption.
-Apply Rfourier_le_lt; Auto with real.
-Rewrite H2.
-Case H; Intros.
-Red.
-Left; Try Assumption.
-Rewrite (Rplus_sym x1 (Rmult a y2)).
-Rewrite (Rplus_sym y1 (Rmult a y2)).
-Apply Rlt_compatibility.
-Try Exact H3.
-Rewrite H3.
-Red.
-Right; Try Assumption.
-Auto with real.
-Qed.
-
-Lemma Rlt_zero_pos_plus1: (x : R) (Rlt R0 x) -> (Rlt R0 (Rplus R1 x)).
-Intros x H; Try Assumption.
-Rewrite Rplus_sym.
-Apply Rlt_r_plus_R1.
-Red; Auto with real.
-Qed.
-
-Lemma Rlt_mult_inv_pos:
- (x, y : R) (Rlt R0 x) -> (Rlt R0 y) -> (Rlt R0 (Rmult x (Rinv y))).
-Intros x y H H0; Try Assumption.
-Replace R0 with (Rmult x R0).
-Apply Rlt_monotony; Auto with real.
-Ring.
-Qed.
-
-Lemma Rlt_zero_1: (Rlt R0 R1).
-Exact Rlt_R0_R1.
-Qed.
-
-Lemma Rle_zero_pos_plus1: (x : R) (Rle R0 x) -> (Rle R0 (Rplus R1 x)).
-Intros x H; Try Assumption.
-Case H; Intros.
-Red.
-Left; Try Assumption.
-Apply Rlt_zero_pos_plus1; Auto with real.
-Rewrite <- H0.
-Replace (Rplus R1 R0) with R1.
-Red; Left.
-Exact Rlt_zero_1.
-Ring.
-Qed.
-
-Lemma Rle_mult_inv_pos:
- (x, y : R) (Rle R0 x) -> (Rlt R0 y) -> (Rle R0 (Rmult x (Rinv y))).
-Intros x y H H0; Try Assumption.
-Case H; Intros.
-Red; Left.
-Apply Rlt_mult_inv_pos; Auto with real.
-Rewrite <- H1.
-Red; Right; Ring.
-Qed.
-
-Lemma Rle_zero_1: (Rle R0 R1).
-Red; Left.
-Exact Rlt_zero_1.
-Qed.
-
-Lemma Rle_not_lt:
- (n, d : R) (Rle R0 (Rmult n (Rinv d))) -> ~ (Rlt R0 (Rmult (Ropp n) (Rinv d))).
-Intros n d H; Red; Intros H0; Try Exact H0.
-Generalize (Rle_not R0 (Rmult n (Rinv d))).
-Intros H1; Elim H1; Try Assumption.
-Replace (Rmult n (Rinv d)) with (Ropp (Ropp (Rmult n (Rinv d)))).
-Replace R0 with (Ropp (Ropp R0)).
-Replace (Ropp (Rmult n (Rinv d))) with (Rmult (Ropp n) (Rinv d)).
-Replace (Ropp R0) with R0.
-Red.
-Try Exact H0.
-Apply Rgt_Ropp.
-Replace (Ropp (Rmult n (Rinv d))) with (Rmult (Ropp n) (Rinv d)).
-Replace (Ropp R0) with R0.
-Red.
-Try Exact H0.
-Ring.
-Ring.
-Ring.
-Ring.
-Ring.
-Ring.
-Qed.
-
-Lemma Rnot_lt0: (x : R) ~ (Rlt R0 (Rmult R0 x)).
-Intros x; Try Assumption.
-Replace (Rmult R0 x) with R0.
-Apply Rlt_antirefl.
-Ring.
-Qed.
-
-Lemma Rlt_not_le:
- (n, d : R) (Rlt R0 (Rmult n (Rinv d))) -> ~ (Rle R0 (Rmult (Ropp n) (Rinv d))).
-Intros n d H; Try Assumption.
-Apply Rle_not.
-Replace R0 with (Ropp R0).
-Replace (Rmult (Ropp n) (Rinv d)) with (Ropp (Rmult n (Rinv d))).
-Apply Rlt_Ropp.
-Try Exact H.
-Ring.
-Ring.
+Lemma Rfourier_lt : forall x1 y1 a:R, x1 < y1 -> 0 < a -> a * x1 < a * y1.
+intros; apply Rmult_lt_compat_l; assumption.
+Qed.
+
+Lemma Rfourier_le : forall x1 y1 a:R, x1 <= y1 -> 0 < a -> a * x1 <= a * y1.
+red in |- *.
+intros.
+case H; auto with real.
+Qed.
+
+Lemma Rfourier_lt_lt :
+ forall x1 y1 x2 y2 a:R,
+ x1 < y1 -> x2 < y2 -> 0 < a -> x1 + a * x2 < y1 + a * y2.
+intros x1 y1 x2 y2 a H H0 H1; try assumption.
+apply Rplus_lt_compat.
+try exact H.
+apply Rfourier_lt.
+try exact H0.
+try exact H1.
+Qed.
+
+Lemma Rfourier_lt_le :
+ forall x1 y1 x2 y2 a:R,
+ x1 < y1 -> x2 <= y2 -> 0 < a -> x1 + a * x2 < y1 + a * y2.
+intros x1 y1 x2 y2 a H H0 H1; try assumption.
+case H0; intros.
+apply Rplus_lt_compat.
+try exact H.
+apply Rfourier_lt; auto with real.
+rewrite H2.
+rewrite (Rplus_comm y1 (a * y2)).
+rewrite (Rplus_comm x1 (a * y2)).
+apply Rplus_lt_compat_l.
+try exact H.
+Qed.
+
+Lemma Rfourier_le_lt :
+ forall x1 y1 x2 y2 a:R,
+ x1 <= y1 -> x2 < y2 -> 0 < a -> x1 + a * x2 < y1 + a * y2.
+intros x1 y1 x2 y2 a H H0 H1; try assumption.
+case H; intros.
+apply Rfourier_lt_le; auto with real.
+rewrite H2.
+apply Rplus_lt_compat_l.
+apply Rfourier_lt; auto with real.
+Qed.
+
+Lemma Rfourier_le_le :
+ forall x1 y1 x2 y2 a:R,
+ x1 <= y1 -> x2 <= y2 -> 0 < a -> x1 + a * x2 <= y1 + a * y2.
+intros x1 y1 x2 y2 a H H0 H1; try assumption.
+case H0; intros.
+red in |- *.
+left; try assumption.
+apply Rfourier_le_lt; auto with real.
+rewrite H2.
+case H; intros.
+red in |- *.
+left; try assumption.
+rewrite (Rplus_comm x1 (a * y2)).
+rewrite (Rplus_comm y1 (a * y2)).
+apply Rplus_lt_compat_l.
+try exact H3.
+rewrite H3.
+red in |- *.
+right; try assumption.
+auto with real.
+Qed.
+
+Lemma Rlt_zero_pos_plus1 : forall x:R, 0 < x -> 0 < 1 + x.
+intros x H; try assumption.
+rewrite Rplus_comm.
+apply Rle_lt_0_plus_1.
+red in |- *; auto with real.
+Qed.
+
+Lemma Rlt_mult_inv_pos : forall x y:R, 0 < x -> 0 < y -> 0 < x * / y.
+intros x y H H0; try assumption.
+replace 0 with (x * 0).
+apply Rmult_lt_compat_l; auto with real.
+ring.
+Qed.
+
+Lemma Rlt_zero_1 : 0 < 1.
+exact Rlt_0_1.
+Qed.
+
+Lemma Rle_zero_pos_plus1 : forall x:R, 0 <= x -> 0 <= 1 + x.
+intros x H; try assumption.
+case H; intros.
+red in |- *.
+left; try assumption.
+apply Rlt_zero_pos_plus1; auto with real.
+rewrite <- H0.
+replace (1 + 0) with 1.
+red in |- *; left.
+exact Rlt_zero_1.
+ring.
+Qed.
+
+Lemma Rle_mult_inv_pos : forall x y:R, 0 <= x -> 0 < y -> 0 <= x * / y.
+intros x y H H0; try assumption.
+case H; intros.
+red in |- *; left.
+apply Rlt_mult_inv_pos; auto with real.
+rewrite <- H1.
+red in |- *; right; ring.
+Qed.
+
+Lemma Rle_zero_1 : 0 <= 1.
+red in |- *; left.
+exact Rlt_zero_1.
+Qed.
+
+Lemma Rle_not_lt : forall n d:R, 0 <= n * / d -> ~ 0 < - n * / d.
+intros n d H; red in |- *; intros H0; try exact H0.
+generalize (Rgt_not_le 0 (n * / d)).
+intros H1; elim H1; try assumption.
+replace (n * / d) with (- - (n * / d)).
+replace 0 with (- -0).
+replace (- (n * / d)) with (- n * / d).
+replace (-0) with 0.
+red in |- *.
+try exact H0.
+apply Ropp_gt_lt_contravar.
+replace (- (n * / d)) with (- n * / d).
+replace (-0) with 0.
+red in |- *.
+try exact H0.
+ring.
+ring.
+ring.
+ring.
+ring.
+ring.
+Qed.
+
+Lemma Rnot_lt0 : forall x:R, ~ 0 < 0 * x.
+intros x; try assumption.
+replace (0 * x) with 0.
+apply Rlt_irrefl.
+ring.
+Qed.
+
+Lemma Rlt_not_le : forall n d:R, 0 < n * / d -> ~ 0 <= - n * / d.
+intros n d H; try assumption.
+apply Rgt_not_le.
+replace 0 with (-0).
+replace (- n * / d) with (- (n * / d)).
+apply Ropp_lt_gt_contravar.
+try exact H.
+ring.
+ring.
+Qed.
+
+Lemma Rnot_lt_lt : forall x y:R, ~ 0 < y - x -> ~ x < y.
+unfold not in |- *; intros.
+apply H.
+apply Rplus_lt_reg_r with x.
+replace (x + 0) with x.
+replace (x + (y - x)) with y.
+try exact H0.
+ring.
+ring.
Qed.
-Lemma Rnot_lt_lt: (x, y : R) ~ (Rlt R0 (Rminus y x)) -> ~ (Rlt x y).
-Unfold not; Intros.
-Apply H.
-Apply Rlt_anti_compatibility with x.
-Replace (Rplus x R0) with x.
-Replace (Rplus x (Rminus y x)) with y.
-Try Exact H0.
-Ring.
-Ring.
+Lemma Rnot_le_le : forall x y:R, ~ 0 <= y - x -> ~ x <= y.
+unfold not in |- *; intros.
+apply H.
+case H0; intros.
+left.
+apply Rplus_lt_reg_r with x.
+replace (x + 0) with x.
+replace (x + (y - x)) with y.
+try exact H1.
+ring.
+ring.
+right.
+rewrite H1; ring.
Qed.
-Lemma Rnot_le_le: (x, y : R) ~ (Rle R0 (Rminus y x)) -> ~ (Rle x y).
-Unfold not; Intros.
-Apply H.
-Case H0; Intros.
-Left.
-Apply Rlt_anti_compatibility with x.
-Replace (Rplus x R0) with x.
-Replace (Rplus x (Rminus y x)) with y.
-Try Exact H1.
-Ring.
-Ring.
-Right.
-Rewrite H1; Ring.
+Lemma Rfourier_gt_to_lt : forall x y:R, y > x -> x < y.
+unfold Rgt in |- *; intros; assumption.
Qed.
-Lemma Rfourier_gt_to_lt: (x, y : R) (Rgt y x) -> (Rlt x y).
-Unfold Rgt; Intros; Assumption.
-Qed.
-
-Lemma Rfourier_ge_to_le: (x, y : R) (Rge y x) -> (Rle x y).
-Intros x y; Exact (Rge_le y x).
-Qed.
-
-Lemma Rfourier_eqLR_to_le: (x, y : R) x == y -> (Rle x y).
-Exact eq_Rle.
+Lemma Rfourier_ge_to_le : forall x y:R, y >= x -> x <= y.
+intros x y; exact (Rge_le y x).
+Qed.
+
+Lemma Rfourier_eqLR_to_le : forall x y:R, x = y -> x <= y.
+exact Req_le.
Qed.
-Lemma Rfourier_eqRL_to_le: (x, y : R) y == x -> (Rle x y).
-Exact eq_Rle_sym.
+Lemma Rfourier_eqRL_to_le : forall x y:R, y = x -> x <= y.
+exact Req_le_sym.
Qed.
-Lemma Rfourier_not_ge_lt: (x, y : R) ((Rge x y) -> False) -> (Rlt x y).
-Exact not_Rge.
+Lemma Rfourier_not_ge_lt : forall x y:R, (x >= y -> False) -> x < y.
+exact Rnot_ge_lt.
Qed.
-Lemma Rfourier_not_gt_le: (x, y : R) ((Rgt x y) -> False) -> (Rle x y).
-Exact Rgt_not_le.
+Lemma Rfourier_not_gt_le : forall x y:R, (x > y -> False) -> x <= y.
+exact Rnot_gt_le.
Qed.
-Lemma Rfourier_not_le_gt: (x, y : R) ((Rle x y) -> False) -> (Rgt x y).
-Exact not_Rle.
+Lemma Rfourier_not_le_gt : forall x y:R, (x <= y -> False) -> x > y.
+exact Rnot_le_lt.
Qed.
-Lemma Rfourier_not_lt_ge: (x, y : R) ((Rlt x y) -> False) -> (Rge x y).
-Exact Rlt_not_ge.
-Qed.
+Lemma Rfourier_not_lt_ge : forall x y:R, (x < y -> False) -> x >= y.
+exact Rnot_lt_ge.
+Qed. \ No newline at end of file
diff --git a/contrib/omega/Omega.v b/contrib/omega/Omega.v
index 480f7594b..e381b1fbe 100755
--- a/contrib/omega/Omega.v
+++ b/contrib/omega/Omega.v
@@ -19,9 +19,9 @@
Require Export ZArith_base.
Require Export OmegaLemmas.
-Hints Resolve Zle_n Zplus_sym Zplus_assoc Zmult_sym Zmult_assoc
- Zero_left Zero_right Zmult_one Zplus_inverse_l Zplus_inverse_r
- Zmult_plus_distr_l Zmult_plus_distr_r : zarith.
+Hint Resolve Zle_refl Zplus_comm Zplus_assoc Zmult_comm Zmult_assoc Zplus_0_l
+ Zplus_0_r Zmult_1_l Zplus_opp_l Zplus_opp_r Zmult_plus_distr_l
+ Zmult_plus_distr_r: zarith.
Require Export Zhints.
@@ -30,28 +30,28 @@ Require Export Zhints.
Require Minus.
*)
-Hint eq_nat_Omega : zarith := Extern 10 (eq nat ? ?) Abstract Omega.
-Hint le_Omega : zarith := Extern 10 (le ? ?) Abstract Omega.
-Hint lt_Omega : zarith := Extern 10 (lt ? ?) Abstract Omega.
-Hint ge_Omega : zarith := Extern 10 (ge ? ?) Abstract Omega.
-Hint gt_Omega : zarith := Extern 10 (gt ? ?) Abstract Omega.
-
-Hint not_eq_nat_Omega : zarith := Extern 10 ~(eq nat ? ?) Abstract Omega.
-Hint not_le_Omega : zarith := Extern 10 ~(le ? ?) Abstract Omega.
-Hint not_lt_Omega : zarith := Extern 10 ~(lt ? ?) Abstract Omega.
-Hint not_ge_Omega : zarith := Extern 10 ~(ge ? ?) Abstract Omega.
-Hint not_gt_Omega : zarith := Extern 10 ~(gt ? ?) Abstract Omega.
-
-Hint eq_Z_Omega : zarith := Extern 10 (eq Z ? ?) Abstract Omega.
-Hint Zle_Omega : zarith := Extern 10 (Zle ? ?) Abstract Omega.
-Hint Zlt_Omega : zarith := Extern 10 (Zlt ? ?) Abstract Omega.
-Hint Zge_Omega : zarith := Extern 10 (Zge ? ?) Abstract Omega.
-Hint Zgt_Omega : zarith := Extern 10 (Zgt ? ?) Abstract Omega.
-
-Hint not_eq_nat_Omega : zarith := Extern 10 ~(eq Z ? ?) Abstract Omega.
-Hint not_Zle_Omega : zarith := Extern 10 ~(Zle ? ?) Abstract Omega.
-Hint not_Zlt_Omega : zarith := Extern 10 ~(Zlt ? ?) Abstract Omega.
-Hint not_Zge_Omega : zarith := Extern 10 ~(Zge ? ?) Abstract Omega.
-Hint not_Zgt_Omega : zarith := Extern 10 ~(Zgt ? ?) Abstract Omega.
-
-Hint false_Omega : zarith := Extern 10 False Abstract Omega.
+Hint Extern 10 (_ = _ :>nat) => abstract omega: zarith.
+Hint Extern 10 (_ <= _) => abstract omega: zarith.
+Hint Extern 10 (_ < _) => abstract omega: zarith.
+Hint Extern 10 (_ >= _) => abstract omega: zarith.
+Hint Extern 10 (_ > _) => abstract omega: zarith.
+
+Hint Extern 10 (_ <> _ :>nat) => abstract omega: zarith.
+Hint Extern 10 (~ _ <= _) => abstract omega: zarith.
+Hint Extern 10 (~ _ < _) => abstract omega: zarith.
+Hint Extern 10 (~ _ >= _) => abstract omega: zarith.
+Hint Extern 10 (~ _ > _) => abstract omega: zarith.
+
+Hint Extern 10 (_ = _ :>Z) => abstract omega: zarith.
+Hint Extern 10 (_ <= _)%Z => abstract omega: zarith.
+Hint Extern 10 (_ < _)%Z => abstract omega: zarith.
+Hint Extern 10 (_ >= _)%Z => abstract omega: zarith.
+Hint Extern 10 (_ > _)%Z => abstract omega: zarith.
+
+Hint Extern 10 (_ <> _ :>Z) => abstract omega: zarith.
+Hint Extern 10 (~ (_ <= _)%Z) => abstract omega: zarith.
+Hint Extern 10 (~ (_ < _)%Z) => abstract omega: zarith.
+Hint Extern 10 (~ (_ >= _)%Z) => abstract omega: zarith.
+Hint Extern 10 (~ (_ > _)%Z) => abstract omega: zarith.
+
+Hint Extern 10 False => abstract omega: zarith. \ No newline at end of file
diff --git a/contrib/omega/OmegaLemmas.v b/contrib/omega/OmegaLemmas.v
index c29224069..61747028e 100644
--- a/contrib/omega/OmegaLemmas.v
+++ b/contrib/omega/OmegaLemmas.v
@@ -8,392 +8,262 @@
(*i $Id$ i*)
-Require ZArith_base.
+Require Import ZArith_base.
(** These are specific variants of theorems dedicated for the Omega tactic *)
-Lemma new_var: (x:Z) (EX y:Z |(x=y)).
-Intros x; Exists x; Trivial with arith.
+Lemma new_var : forall x:Z, exists y : Z | x = y.
+intros x; exists x; trivial with arith.
Qed.
-Lemma OMEGA1 : (x,y:Z) (x=y) -> (Zle ZERO x) -> (Zle ZERO y).
-Intros x y H; Rewrite H; Auto with arith.
+Lemma OMEGA1 : forall x y:Z, x = y -> (0 <= x)%Z -> (0 <= y)%Z.
+intros x y H; rewrite H; auto with arith.
Qed.
-Lemma OMEGA2 : (x,y:Z) (Zle ZERO x) -> (Zle ZERO y) -> (Zle ZERO (Zplus x y)).
-Exact Zle_0_plus.
+Lemma OMEGA2 : forall x y:Z, (0 <= x)%Z -> (0 <= y)%Z -> (0 <= x + y)%Z.
+exact Zplus_le_0_compat.
Qed.
-Lemma OMEGA3 :
- (x,y,k:Z)(Zgt k ZERO)-> (x=(Zmult y k)) -> (x=ZERO) -> (y=ZERO).
+Lemma OMEGA3 :
+ forall x y k:Z, (k > 0)%Z -> x = (y * k)%Z -> x = 0%Z -> y = 0%Z.
-Intros x y k H1 H2 H3; Apply (Zmult_eq k); [
- Unfold not ; Intros H4; Absurd (Zgt k ZERO); [
- Rewrite H4; Unfold Zgt ; Simpl; Discriminate | Assumption]
- | Rewrite <- H2; Assumption].
+intros x y k H1 H2 H3; apply (Zmult_integral_l k);
+ [ unfold not in |- *; intros H4; absurd (k > 0)%Z;
+ [ rewrite H4; unfold Zgt in |- *; simpl in |- *; discriminate
+ | assumption ]
+ | rewrite <- H2; assumption ].
Qed.
-Lemma OMEGA4 :
- (x,y,z:Z)(Zgt x ZERO) -> (Zgt y x) -> ~(Zplus (Zmult z y) x) = ZERO.
-
-Unfold not ; Intros x y z H1 H2 H3; Cut (Zgt y ZERO); [
- Intros H4; Cut (Zle ZERO (Zplus (Zmult z y) x)); [
- Intros H5; Generalize (Zmult_le_approx y z x H4 H2 H5) ; Intros H6;
- Absurd (Zgt (Zplus (Zmult z y) x) ZERO); [
- Rewrite -> H3; Unfold Zgt ; Simpl; Discriminate
- | Apply Zle_gt_trans with x ; [
- Pattern 1 x ; Rewrite <- (Zero_left x); Apply Zle_reg_r;
- Rewrite -> Zmult_sym; Generalize H4 ; Unfold Zgt;
- Case y; [
- Simpl; Intros H7; Discriminate H7
- | Intros p H7; Rewrite <- (Zero_mult_right (POS p));
- Unfold Zle ; Rewrite -> Zcompare_Zmult_compatible; Exact H6
- | Simpl; Intros p H7; Discriminate H7]
- | Assumption]]
- | Rewrite -> H3; Unfold Zle ; Simpl; Discriminate]
- | Apply Zgt_trans with x ; [ Assumption | Assumption]].
+Lemma OMEGA4 : forall x y z:Z, (x > 0)%Z -> (y > x)%Z -> (z * y + x)%Z <> 0%Z.
+
+unfold not in |- *; intros x y z H1 H2 H3; cut (y > 0)%Z;
+ [ intros H4; cut (0 <= z * y + x)%Z;
+ [ intros H5; generalize (Zmult_le_approx y z x H4 H2 H5); intros H6;
+ absurd (z * y + x > 0)%Z;
+ [ rewrite H3; unfold Zgt in |- *; simpl in |- *; discriminate
+ | apply Zle_gt_trans with x;
+ [ pattern x at 1 in |- *; rewrite <- (Zplus_0_l x);
+ apply Zplus_le_compat_r; rewrite Zmult_comm;
+ generalize H4; unfold Zgt in |- *; case y;
+ [ simpl in |- *; intros H7; discriminate H7
+ | intros p H7; rewrite <- (Zmult_0_r (Zpos p));
+ unfold Zle in |- *; rewrite Zcompare_mult_compat;
+ exact H6
+ | simpl in |- *; intros p H7; discriminate H7 ]
+ | assumption ] ]
+ | rewrite H3; unfold Zle in |- *; simpl in |- *; discriminate ]
+ | apply Zgt_trans with x; [ assumption | assumption ] ].
Qed.
-Lemma OMEGA5: (x,y,z:Z)(x=ZERO) -> (y=ZERO) -> (Zplus x (Zmult y z)) = ZERO.
+Lemma OMEGA5 : forall x y z:Z, x = 0%Z -> y = 0%Z -> (x + y * z)%Z = 0%Z.
-Intros x y z H1 H2; Rewrite H1; Rewrite H2; Simpl; Trivial with arith.
+intros x y z H1 H2; rewrite H1; rewrite H2; simpl in |- *; trivial with arith.
Qed.
-Lemma OMEGA6:
- (x,y,z:Z)(Zle ZERO x) -> (y=ZERO) -> (Zle ZERO (Zplus x (Zmult y z))).
+Lemma OMEGA6 : forall x y z:Z, (0 <= x)%Z -> y = 0%Z -> (0 <= x + y * z)%Z.
-Intros x y z H1 H2; Rewrite H2; Simpl; Rewrite Zero_right; Assumption.
+intros x y z H1 H2; rewrite H2; simpl in |- *; rewrite Zplus_0_r; assumption.
Qed.
-Lemma OMEGA7:
- (x,y,z,t:Z)(Zgt z ZERO) -> (Zgt t ZERO) -> (Zle ZERO x) -> (Zle ZERO y) ->
- (Zle ZERO (Zplus (Zmult x z) (Zmult y t))).
+Lemma OMEGA7 :
+ forall x y z t:Z,
+ (z > 0)%Z ->
+ (t > 0)%Z -> (0 <= x)%Z -> (0 <= y)%Z -> (0 <= x * z + y * t)%Z.
-Intros x y z t H1 H2 H3 H4; Rewrite <- (Zero_left ZERO);
-Apply Zle_plus_plus; Apply Zle_mult; Assumption.
+intros x y z t H1 H2 H3 H4; rewrite <- (Zplus_0_l 0); apply Zplus_le_compat;
+ apply Zmult_gt_0_le_0_compat; assumption.
Qed.
-Lemma OMEGA8:
- (x,y:Z) (Zle ZERO x) -> (Zle ZERO y) -> x = (Zopp y) -> x = ZERO.
+Lemma OMEGA8 :
+ forall x y:Z, (0 <= x)%Z -> (0 <= y)%Z -> x = (- y)%Z -> x = 0%Z.
-Intros x y H1 H2 H3; Elim (Zle_lt_or_eq ZERO x H1); [
- Intros H4; Absurd (Zlt ZERO x); [
- Change (Zge ZERO x); Apply Zle_ge; Apply Zsimpl_le_plus_l with y;
- Rewrite -> H3; Rewrite Zplus_inverse_r; Rewrite Zero_right; Assumption
- | Assumption]
-| Intros H4; Rewrite -> H4; Trivial with arith].
+intros x y H1 H2 H3; elim (Zle_lt_or_eq 0 x H1);
+ [ intros H4; absurd (0 < x)%Z;
+ [ change (0 >= x)%Z in |- *; apply Zle_ge; apply Zplus_le_reg_l with y;
+ rewrite H3; rewrite Zplus_opp_r; rewrite Zplus_0_r;
+ assumption
+ | assumption ]
+ | intros H4; rewrite H4; trivial with arith ].
Qed.
-Lemma OMEGA9:(x,y,z,t:Z) y=ZERO -> x = z ->
- (Zplus y (Zmult (Zplus (Zopp x) z) t)) = ZERO.
+Lemma OMEGA9 :
+ forall x y z t:Z, y = 0%Z -> x = z -> (y + (- x + z) * t)%Z = 0%Z.
-Intros x y z t H1 H2; Rewrite H2; Rewrite Zplus_inverse_l;
-Rewrite Zero_mult_left; Rewrite Zero_right; Assumption.
+intros x y z t H1 H2; rewrite H2; rewrite Zplus_opp_l; rewrite Zmult_0_l;
+ rewrite Zplus_0_r; assumption.
Qed.
-Lemma OMEGA10:(v,c1,c2,l1,l2,k1,k2:Z)
- (Zplus (Zmult (Zplus (Zmult v c1) l1) k1) (Zmult (Zplus (Zmult v c2) l2) k2))
- = (Zplus (Zmult v (Zplus (Zmult c1 k1) (Zmult c2 k2)))
- (Zplus (Zmult l1 k1) (Zmult l2 k2))).
+Lemma OMEGA10 :
+ forall v c1 c2 l1 l2 k1 k2:Z,
+ ((v * c1 + l1) * k1 + (v * c2 + l2) * k2)%Z =
+ (v * (c1 * k1 + c2 * k2) + (l1 * k1 + l2 * k2))%Z.
-Intros; Repeat (Rewrite Zmult_plus_distr_l Orelse Rewrite Zmult_plus_distr_r);
-Repeat Rewrite Zmult_assoc; Repeat Elim Zplus_assoc;
-Rewrite (Zplus_permute (Zmult l1 k1) (Zmult (Zmult v c2) k2)); Trivial with arith.
+intros; repeat rewrite Zmult_plus_distr_l || rewrite Zmult_plus_distr_r;
+ repeat rewrite Zmult_assoc; repeat elim Zplus_assoc;
+ rewrite (Zplus_permute (l1 * k1) (v * c2 * k2)); trivial with arith.
Qed.
-Lemma OMEGA11:(v1,c1,l1,l2,k1:Z)
- (Zplus (Zmult (Zplus (Zmult v1 c1) l1) k1) l2)
- = (Zplus (Zmult v1 (Zmult c1 k1)) (Zplus (Zmult l1 k1) l2)).
+Lemma OMEGA11 :
+ forall v1 c1 l1 l2 k1:Z,
+ ((v1 * c1 + l1) * k1 + l2)%Z = (v1 * (c1 * k1) + (l1 * k1 + l2))%Z.
-Intros; Repeat (Rewrite Zmult_plus_distr_l Orelse Rewrite Zmult_plus_distr_r);
-Repeat Rewrite Zmult_assoc; Repeat Elim Zplus_assoc; Trivial with arith.
+intros; repeat rewrite Zmult_plus_distr_l || rewrite Zmult_plus_distr_r;
+ repeat rewrite Zmult_assoc; repeat elim Zplus_assoc;
+ trivial with arith.
Qed.
-Lemma OMEGA12:(v2,c2,l1,l2,k2:Z)
- (Zplus l1 (Zmult (Zplus (Zmult v2 c2) l2) k2))
- = (Zplus (Zmult v2 (Zmult c2 k2)) (Zplus l1 (Zmult l2 k2))).
+Lemma OMEGA12 :
+ forall v2 c2 l1 l2 k2:Z,
+ (l1 + (v2 * c2 + l2) * k2)%Z = (v2 * (c2 * k2) + (l1 + l2 * k2))%Z.
-Intros; Repeat (Rewrite Zmult_plus_distr_l Orelse Rewrite Zmult_plus_distr_r);
-Repeat Rewrite Zmult_assoc; Repeat Elim Zplus_assoc; Rewrite Zplus_permute;
-Trivial with arith.
+intros; repeat rewrite Zmult_plus_distr_l || rewrite Zmult_plus_distr_r;
+ repeat rewrite Zmult_assoc; repeat elim Zplus_assoc;
+ rewrite Zplus_permute; trivial with arith.
Qed.
-Lemma OMEGA13:(v,l1,l2:Z)(x:positive)
- (Zplus (Zplus (Zmult v (POS x)) l1) (Zplus (Zmult v (NEG x)) l2))
- = (Zplus l1 l2).
+Lemma OMEGA13 :
+ forall (v l1 l2:Z) (x:positive),
+ (v * Zpos x + l1 + (v * Zneg x + l2))%Z = (l1 + l2)%Z.
-Intros; Rewrite Zplus_assoc; Rewrite (Zplus_sym (Zmult v (POS x)) l1);
-Rewrite (Zplus_assoc_r l1); Rewrite <- Zmult_plus_distr_r;
-Rewrite <- Zopp_NEG; Rewrite (Zplus_sym (Zopp (NEG x)) (NEG x));
-Rewrite Zplus_inverse_r; Rewrite Zero_mult_right; Rewrite Zero_right; Trivial with arith.
+intros; rewrite Zplus_assoc; rewrite (Zplus_comm (v * Zpos x) l1);
+ rewrite (Zplus_assoc_reverse l1); rewrite <- Zmult_plus_distr_r;
+ rewrite <- Zopp_neg; rewrite (Zplus_comm (- Zneg x) (Zneg x));
+ rewrite Zplus_opp_r; rewrite Zmult_0_r; rewrite Zplus_0_r;
+ trivial with arith.
Qed.
-Lemma OMEGA14:(v,l1,l2:Z)(x:positive)
- (Zplus (Zplus (Zmult v (NEG x)) l1) (Zplus (Zmult v (POS x)) l2))
- = (Zplus l1 l2).
-
-Intros; Rewrite Zplus_assoc; Rewrite (Zplus_sym (Zmult v (NEG x)) l1);
-Rewrite (Zplus_assoc_r l1); Rewrite <- Zmult_plus_distr_r;
-Rewrite <- Zopp_NEG; Rewrite Zplus_inverse_r; Rewrite Zero_mult_right;
-Rewrite Zero_right; Trivial with arith.
+Lemma OMEGA14 :
+ forall (v l1 l2:Z) (x:positive),
+ (v * Zneg x + l1 + (v * Zpos x + l2))%Z = (l1 + l2)%Z.
+
+intros; rewrite Zplus_assoc; rewrite (Zplus_comm (v * Zneg x) l1);
+ rewrite (Zplus_assoc_reverse l1); rewrite <- Zmult_plus_distr_r;
+ rewrite <- Zopp_neg; rewrite Zplus_opp_r; rewrite Zmult_0_r;
+ rewrite Zplus_0_r; trivial with arith.
Qed.
-Lemma OMEGA15:(v,c1,c2,l1,l2,k2:Z)
- (Zplus (Zplus (Zmult v c1) l1) (Zmult (Zplus (Zmult v c2) l2) k2))
- = (Zplus (Zmult v (Zplus c1 (Zmult c2 k2)))
- (Zplus l1 (Zmult l2 k2))).
-
-Intros; Repeat (Rewrite Zmult_plus_distr_l Orelse Rewrite Zmult_plus_distr_r);
-Repeat Rewrite Zmult_assoc; Repeat Elim Zplus_assoc;
-Rewrite (Zplus_permute l1 (Zmult (Zmult v c2) k2)); Trivial with arith.
+Lemma OMEGA15 :
+ forall v c1 c2 l1 l2 k2:Z,
+ (v * c1 + l1 + (v * c2 + l2) * k2)%Z =
+ (v * (c1 + c2 * k2) + (l1 + l2 * k2))%Z.
+
+intros; repeat rewrite Zmult_plus_distr_l || rewrite Zmult_plus_distr_r;
+ repeat rewrite Zmult_assoc; repeat elim Zplus_assoc;
+ rewrite (Zplus_permute l1 (v * c2 * k2)); trivial with arith.
Qed.
-Lemma OMEGA16:
- (v,c,l,k:Z)
- (Zmult (Zplus (Zmult v c) l) k) = (Zplus (Zmult v (Zmult c k)) (Zmult l k)).
+Lemma OMEGA16 :
+ forall v c l k:Z, ((v * c + l) * k)%Z = (v * (c * k) + l * k)%Z.
-Intros; Repeat (Rewrite Zmult_plus_distr_l Orelse Rewrite Zmult_plus_distr_r);
-Repeat Rewrite Zmult_assoc; Repeat Elim Zplus_assoc; Trivial with arith.
+intros; repeat rewrite Zmult_plus_distr_l || rewrite Zmult_plus_distr_r;
+ repeat rewrite Zmult_assoc; repeat elim Zplus_assoc;
+ trivial with arith.
Qed.
-Lemma OMEGA17:
- (x,y,z:Z)(Zne x ZERO) -> (y=ZERO) -> (Zne (Zplus x (Zmult y z)) ZERO).
+Lemma OMEGA17 : forall x y z:Z, Zne x 0 -> y = 0%Z -> Zne (x + y * z) 0.
-Unfold Zne not; Intros x y z H1 H2 H3; Apply H1;
-Apply Zsimpl_plus_l with (Zmult y z); Rewrite Zplus_sym; Rewrite H3;
-Rewrite H2; Auto with arith.
+unfold Zne, not in |- *; intros x y z H1 H2 H3; apply H1;
+ apply Zplus_reg_l with (y * z)%Z; rewrite Zplus_comm;
+ rewrite H3; rewrite H2; auto with arith.
Qed.
-Lemma OMEGA18:
- (x,y,k:Z) x=(Zmult y k) -> (Zne x ZERO) -> (Zne y ZERO).
+Lemma OMEGA18 : forall x y k:Z, x = (y * k)%Z -> Zne x 0 -> Zne y 0.
-Unfold Zne not; Intros x y k H1 H2 H3; Apply H2; Rewrite H1; Rewrite H3; Auto with arith.
+unfold Zne, not in |- *; intros x y k H1 H2 H3; apply H2; rewrite H1;
+ rewrite H3; auto with arith.
Qed.
-Lemma OMEGA19:
- (x:Z) (Zne x ZERO) ->
- (Zle ZERO (Zplus x (NEG xH))) \/ (Zle ZERO (Zplus (Zmult x (NEG xH)) (NEG xH))).
-
-Unfold Zne ; Intros x H; Elim (Zle_or_lt ZERO x); [
- Intros H1; Elim Zle_lt_or_eq with 1:=H1; [
- Intros H2; Left; Change (Zle ZERO (Zpred x)); Apply Zle_S_n;
- Rewrite <- Zs_pred; Apply Zlt_le_S; Assumption
- | Intros H2; Absurd x=ZERO; Auto with arith]
-| Intros H1; Right; Rewrite <- Zopp_one; Rewrite Zplus_sym;
- Apply Zle_left; Apply Zle_S_n; Simpl; Apply Zlt_le_S; Auto with arith].
+Lemma OMEGA19 :
+ forall x:Z, Zne x 0 -> (0 <= x + -1)%Z \/ (0 <= x * -1 + -1)%Z.
+
+unfold Zne in |- *; intros x H; elim (Zle_or_lt 0 x);
+ [ intros H1; elim Zle_lt_or_eq with (1 := H1);
+ [ intros H2; left; change (0 <= Zpred x)%Z in |- *; apply Zsucc_le_reg;
+ rewrite <- Zsucc_pred; apply Zlt_le_succ; assumption
+ | intros H2; absurd (x = 0%Z); auto with arith ]
+ | intros H1; right; rewrite <- Zopp_eq_mult_neg_1; rewrite Zplus_comm;
+ apply Zle_left; apply Zsucc_le_reg; simpl in |- *;
+ apply Zlt_le_succ; auto with arith ].
Qed.
-Lemma OMEGA20:
- (x,y,z:Z)(Zne x ZERO) -> (y=ZERO) -> (Zne (Zplus x (Zmult y z)) ZERO).
+Lemma OMEGA20 : forall x y z:Z, Zne x 0 -> y = 0%Z -> Zne (x + y * z) 0.
-Unfold Zne not; Intros x y z H1 H2 H3; Apply H1; Rewrite H2 in H3;
-Simpl in H3; Rewrite Zero_right in H3; Trivial with arith.
+unfold Zne, not in |- *; intros x y z H1 H2 H3; apply H1; rewrite H2 in H3;
+ simpl in H3; rewrite Zplus_0_r in H3; trivial with arith.
Qed.
-Definition fast_Zplus_sym :=
-[x,y:Z][P:Z -> Prop][H: (P (Zplus y x))]
- (eq_ind_r Z (Zplus y x) P H (Zplus x y) (Zplus_sym x y)).
-
-Definition fast_Zplus_assoc_r :=
-[n,m,p:Z][P:Z -> Prop][H : (P (Zplus n (Zplus m p)))]
- (eq_ind_r Z (Zplus n (Zplus m p)) P H (Zplus (Zplus n m) p) (Zplus_assoc_r n m p)).
-
-Definition fast_Zplus_assoc_l :=
-[n,m,p:Z][P:Z -> Prop][H : (P (Zplus (Zplus n m) p))]
- (eq_ind_r Z (Zplus (Zplus n m) p) P H (Zplus n (Zplus m p))
- (Zplus_assoc_l n m p)).
-
-Definition fast_Zplus_permute :=
-[n,m,p:Z][P:Z -> Prop][H : (P (Zplus m (Zplus n p)))]
- (eq_ind_r Z (Zplus m (Zplus n p)) P H (Zplus n (Zplus m p))
- (Zplus_permute n m p)).
-
-Definition fast_OMEGA10 :=
-[v,c1,c2,l1,l2,k1,k2:Z][P:Z -> Prop]
-[H : (P (Zplus (Zmult v (Zplus (Zmult c1 k1) (Zmult c2 k2)))
- (Zplus (Zmult l1 k1) (Zmult l2 k2))))]
- (eq_ind_r Z
- (Zplus (Zmult v (Zplus (Zmult c1 k1) (Zmult c2 k2)))
- (Zplus (Zmult l1 k1) (Zmult l2 k2)))
- P H
- (Zplus (Zmult (Zplus (Zmult v c1) l1) k1)
- (Zmult (Zplus (Zmult v c2) l2) k2))
- (OMEGA10 v c1 c2 l1 l2 k1 k2)).
-
-Definition fast_OMEGA11 :=
-[v1,c1,l1,l2,k1:Z][P:Z -> Prop]
-[H : (P (Zplus (Zmult v1 (Zmult c1 k1)) (Zplus (Zmult l1 k1) l2)))]
- (eq_ind_r Z
- (Zplus (Zmult v1 (Zmult c1 k1)) (Zplus (Zmult l1 k1) l2))
- P H
- (Zplus (Zmult (Zplus (Zmult v1 c1) l1) k1) l2)
- (OMEGA11 v1 c1 l1 l2 k1)).
-Definition fast_OMEGA12 :=
-[v2,c2,l1,l2,k2:Z][P:Z -> Prop]
-[H : (P (Zplus (Zmult v2 (Zmult c2 k2)) (Zplus l1 (Zmult l2 k2))))]
- (eq_ind_r Z
- (Zplus (Zmult v2 (Zmult c2 k2)) (Zplus l1 (Zmult l2 k2)))
- P H
- (Zplus l1 (Zmult (Zplus (Zmult v2 c2) l2) k2))
- (OMEGA12 v2 c2 l1 l2 k2)).
-
-Definition fast_OMEGA15 :=
-[v,c1,c2,l1,l2,k2 :Z][P:Z -> Prop]
-[H : (P (Zplus (Zmult v (Zplus c1 (Zmult c2 k2))) (Zplus l1 (Zmult l2 k2))))]
- (eq_ind_r Z
- (Zplus (Zmult v (Zplus c1 (Zmult c2 k2))) (Zplus l1 (Zmult l2 k2)))
- P H
- (Zplus (Zplus (Zmult v c1) l1) (Zmult (Zplus (Zmult v c2) l2) k2))
- (OMEGA15 v c1 c2 l1 l2 k2)).
-Definition fast_OMEGA16 :=
-[v,c,l,k :Z][P:Z -> Prop]
-[H : (P (Zplus (Zmult v (Zmult c k)) (Zmult l k)))]
- (eq_ind_r Z
- (Zplus (Zmult v (Zmult c k)) (Zmult l k))
- P H
- (Zmult (Zplus (Zmult v c) l) k)
- (OMEGA16 v c l k)).
-
-Definition fast_OMEGA13 :=
-[v,l1,l2 :Z][x:positive][P:Z -> Prop]
-[H : (P (Zplus l1 l2))]
- (eq_ind_r Z
- (Zplus l1 l2)
- P H
- (Zplus (Zplus (Zmult v (POS x)) l1) (Zplus (Zmult v (NEG x)) l2))
- (OMEGA13 v l1 l2 x )).
-
-Definition fast_OMEGA14 :=
-[v,l1,l2 :Z][x:positive][P:Z -> Prop]
-[H : (P (Zplus l1 l2))]
- (eq_ind_r Z
- (Zplus l1 l2)
- P H
- (Zplus (Zplus (Zmult v (NEG x)) l1) (Zplus (Zmult v (POS x)) l2))
- (OMEGA14 v l1 l2 x )).
-Definition fast_Zred_factor0:=
-[x:Z][P:Z -> Prop]
-[H : (P (Zmult x (POS xH)) )]
- (eq_ind_r Z
- (Zmult x (POS xH))
- P H
- x
- (Zred_factor0 x)).
-
-Definition fast_Zopp_one :=
-[x:Z][P:Z -> Prop]
-[H : (P (Zmult x (NEG xH)))]
- (eq_ind_r Z
- (Zmult x (NEG xH))
- P H
- (Zopp x)
- (Zopp_one x)).
-
-Definition fast_Zmult_sym :=
-[x,y :Z][P:Z -> Prop]
-[H : (P (Zmult y x))]
- (eq_ind_r Z
-(Zmult y x)
- P H
-(Zmult x y)
- (Zmult_sym x y )).
-
-Definition fast_Zopp_Zplus :=
-[x,y :Z][P:Z -> Prop]
-[H : (P (Zplus (Zopp x) (Zopp y)) )]
- (eq_ind_r Z
- (Zplus (Zopp x) (Zopp y))
- P H
- (Zopp (Zplus x y))
- (Zopp_Zplus x y )).
-
-Definition fast_Zopp_Zopp :=
-[x:Z][P:Z -> Prop]
-[H : (P x )] (eq_ind_r Z x P H (Zopp (Zopp x)) (Zopp_Zopp x)).
-
-Definition fast_Zopp_Zmult_r :=
-[x,y:Z][P:Z -> Prop]
-[H : (P (Zmult x (Zopp y)))]
- (eq_ind_r Z
- (Zmult x (Zopp y))
- P H
- (Zopp (Zmult x y))
- (Zopp_Zmult_r x y )).
-
-Definition fast_Zmult_plus_distr :=
-[n,m,p:Z][P:Z -> Prop]
-[H : (P (Zplus (Zmult n p) (Zmult m p)))]
- (eq_ind_r Z
- (Zplus (Zmult n p) (Zmult m p))
- P H
- (Zmult (Zplus n m) p)
- (Zmult_plus_distr_l n m p)).
-Definition fast_Zmult_Zopp_left:=
-[x,y:Z][P:Z -> Prop]
-[H : (P (Zmult x (Zopp y)))]
- (eq_ind_r Z
- (Zmult x (Zopp y))
- P H
- (Zmult (Zopp x) y)
- (Zmult_Zopp_left x y)).
-
-Definition fast_Zmult_assoc_r :=
-[n,m,p :Z][P:Z -> Prop]
-[H : (P (Zmult n (Zmult m p)))]
- (eq_ind_r Z
- (Zmult n (Zmult m p))
- P H
- (Zmult (Zmult n m) p)
- (Zmult_assoc_r n m p)).
-
-Definition fast_Zred_factor1 :=
-[x:Z][P:Z -> Prop]
-[H : (P (Zmult x (POS (xO xH))) )]
- (eq_ind_r Z
- (Zmult x (POS (xO xH)))
- P H
- (Zplus x x)
- (Zred_factor1 x)).
-
-Definition fast_Zred_factor2 :=
-[x,y:Z][P:Z -> Prop]
-[H : (P (Zmult x (Zplus (POS xH) y)))]
- (eq_ind_r Z
- (Zmult x (Zplus (POS xH) y))
- P H
- (Zplus x (Zmult x y))
- (Zred_factor2 x y)).
-Definition fast_Zred_factor3 :=
-[x,y:Z][P:Z -> Prop]
-[H : (P (Zmult x (Zplus (POS xH) y)))]
- (eq_ind_r Z
- (Zmult x (Zplus (POS xH) y))
- P H
- (Zplus (Zmult x y) x)
- (Zred_factor3 x y)).
-
-Definition fast_Zred_factor4 :=
-[x,y,z:Z][P:Z -> Prop]
-[H : (P (Zmult x (Zplus y z)))]
- (eq_ind_r Z
- (Zmult x (Zplus y z))
- P H
- (Zplus (Zmult x y) (Zmult x z))
- (Zred_factor4 x y z)).
-
-Definition fast_Zred_factor5 :=
-[x,y:Z][P:Z -> Prop]
-[H : (P y)]
- (eq_ind_r Z
- y
- P H
- (Zplus (Zmult x ZERO) y)
- (Zred_factor5 x y)).
-
-Definition fast_Zred_factor6 :=
-[x :Z][P:Z -> Prop]
-[H : (P(Zplus x ZERO) )]
- (eq_ind_r Z
- (Zplus x ZERO)
- P H
- x
- (Zred_factor6 x )).
+Definition fast_Zplus_sym (x y:Z) (P:Z -> Prop) (H:P (y + x)%Z) :=
+ eq_ind_r P H (Zplus_comm x y).
+
+Definition fast_Zplus_assoc_r (n m p:Z) (P:Z -> Prop)
+ (H:P (n + (m + p))%Z) := eq_ind_r P H (Zplus_assoc_reverse n m p).
+
+Definition fast_Zplus_assoc_l (n m p:Z) (P:Z -> Prop)
+ (H:P (n + m + p)%Z) := eq_ind_r P H (Zplus_assoc n m p).
+
+Definition fast_Zplus_permute (n m p:Z) (P:Z -> Prop)
+ (H:P (m + (n + p))%Z) := eq_ind_r P H (Zplus_permute n m p).
+
+Definition fast_OMEGA10 (v c1 c2 l1 l2 k1 k2:Z) (P:Z -> Prop)
+ (H:P (v * (c1 * k1 + c2 * k2) + (l1 * k1 + l2 * k2))%Z) :=
+ eq_ind_r P H (OMEGA10 v c1 c2 l1 l2 k1 k2).
+
+Definition fast_OMEGA11 (v1 c1 l1 l2 k1:Z) (P:Z -> Prop)
+ (H:P (v1 * (c1 * k1) + (l1 * k1 + l2))%Z) :=
+ eq_ind_r P H (OMEGA11 v1 c1 l1 l2 k1).
+Definition fast_OMEGA12 (v2 c2 l1 l2 k2:Z) (P:Z -> Prop)
+ (H:P (v2 * (c2 * k2) + (l1 + l2 * k2))%Z) :=
+ eq_ind_r P H (OMEGA12 v2 c2 l1 l2 k2).
+
+Definition fast_OMEGA15 (v c1 c2 l1 l2 k2:Z) (P:Z -> Prop)
+ (H:P (v * (c1 + c2 * k2) + (l1 + l2 * k2))%Z) :=
+ eq_ind_r P H (OMEGA15 v c1 c2 l1 l2 k2).
+Definition fast_OMEGA16 (v c l k:Z) (P:Z -> Prop)
+ (H:P (v * (c * k) + l * k)%Z) := eq_ind_r P H (OMEGA16 v c l k).
+
+Definition fast_OMEGA13 (v l1 l2:Z) (x:positive) (P:Z -> Prop)
+ (H:P (l1 + l2)%Z) := eq_ind_r P H (OMEGA13 v l1 l2 x).
+
+Definition fast_OMEGA14 (v l1 l2:Z) (x:positive) (P:Z -> Prop)
+ (H:P (l1 + l2)%Z) := eq_ind_r P H (OMEGA14 v l1 l2 x).
+Definition fast_Zred_factor0 (x:Z) (P:Z -> Prop) (H:P (x * 1)%Z) :=
+ eq_ind_r P H (Zred_factor0 x).
+
+Definition fast_Zopp_one (x:Z) (P:Z -> Prop) (H:P (x * -1)%Z) :=
+ eq_ind_r P H (Zopp_eq_mult_neg_1 x).
+
+Definition fast_Zmult_sym (x y:Z) (P:Z -> Prop) (H:P (y * x)%Z) :=
+ eq_ind_r P H (Zmult_comm x y).
+
+Definition fast_Zopp_Zplus (x y:Z) (P:Z -> Prop) (H:P (- x + - y)%Z) :=
+ eq_ind_r P H (Zopp_plus_distr x y).
+
+Definition fast_Zopp_Zopp (x:Z) (P:Z -> Prop) (H:P x) :=
+ eq_ind_r P H (Zopp_involutive x).
+
+Definition fast_Zopp_Zmult_r (x y:Z) (P:Z -> Prop)
+ (H:P (x * - y)%Z) := eq_ind_r P H (Zopp_mult_distr_r x y).
+
+Definition fast_Zmult_plus_distr (n m p:Z) (P:Z -> Prop)
+ (H:P (n * p + m * p)%Z) := eq_ind_r P H (Zmult_plus_distr_l n m p).
+Definition fast_Zmult_Zopp_left (x y:Z) (P:Z -> Prop)
+ (H:P (x * - y)%Z) := eq_ind_r P H (Zmult_opp_comm x y).
+
+Definition fast_Zmult_assoc_r (n m p:Z) (P:Z -> Prop)
+ (H:P (n * (m * p))%Z) := eq_ind_r P H (Zmult_assoc_reverse n m p).
+
+Definition fast_Zred_factor1 (x:Z) (P:Z -> Prop) (H:P (x * 2)%Z) :=
+ eq_ind_r P H (Zred_factor1 x).
+
+Definition fast_Zred_factor2 (x y:Z) (P:Z -> Prop)
+ (H:P (x * (1 + y))%Z) := eq_ind_r P H (Zred_factor2 x y).
+Definition fast_Zred_factor3 (x y:Z) (P:Z -> Prop)
+ (H:P (x * (1 + y))%Z) := eq_ind_r P H (Zred_factor3 x y).
+
+Definition fast_Zred_factor4 (x y z:Z) (P:Z -> Prop)
+ (H:P (x * (y + z))%Z) := eq_ind_r P H (Zred_factor4 x y z).
+
+Definition fast_Zred_factor5 (x y:Z) (P:Z -> Prop)
+ (H:P y) := eq_ind_r P H (Zred_factor5 x y).
+
+Definition fast_Zred_factor6 (x:Z) (P:Z -> Prop) (H:P (x + 0)%Z) :=
+ eq_ind_r P H (Zred_factor6 x). \ No newline at end of file
diff --git a/contrib/ring/ArithRing.v b/contrib/ring/ArithRing.v
index 0a49ecb47..6c600e797 100644
--- a/contrib/ring/ArithRing.v
+++ b/contrib/ring/ArithRing.v
@@ -12,70 +12,78 @@
Require Export Ring.
Require Export Arith.
-Require Eqdep_dec.
+Require Import Eqdep_dec.
-V7only [Import nat_scope.].
Open Local Scope nat_scope.
-Fixpoint nateq [n,m:nat] : bool :=
- Cases n m of
- | O O => true
- | (S n') (S m') => (nateq n' m')
- | _ _ => false
+Fixpoint nateq (n m:nat) {struct m} : bool :=
+ match n, m with
+ | O, O => true
+ | S n', S m' => nateq n' m'
+ | _, _ => false
end.
-Lemma nateq_prop : (n,m:nat)(Is_true (nateq n m))->n==m.
+Lemma nateq_prop : forall n m:nat, Is_true (nateq n m) -> n = m.
Proof.
- Induction n; Induction m; Intros; Try Contradiction.
- Trivial.
- Unfold Is_true in H1.
- Rewrite (H n1 H1).
- Trivial.
-Save.
+ simple induction n; simple induction m; intros; try contradiction.
+ trivial.
+ unfold Is_true in H1.
+ rewrite (H n1 H1).
+ trivial.
+Qed.
-Hints Resolve nateq_prop eq2eqT : arithring.
+Hint Resolve nateq_prop eq2eqT: arithring.
-Definition NatTheory : (Semi_Ring_Theory plus mult (1) (0) nateq).
- Split; Intros; Auto with arith arithring.
- Apply eq2eqT; Apply simpl_plus_l with n:=n.
- Apply eqT2eq; Trivial.
+Definition NatTheory : Semi_Ring_Theory plus mult 1 0 nateq.
+ split; intros; auto with arith arithring.
+ apply eq2eqT; apply (fun n m p:nat => plus_reg_l m p n) with (n := n).
+ apply eqT2eq; trivial.
Defined.
-Add Semi Ring nat plus mult (1) (0) nateq NatTheory [O S].
+Add Semi Ring nat plus mult 1 0 nateq NatTheory [ 0 S ].
-Goal (n:nat)(S n)=(plus (S O) n).
-Intro; Reflexivity.
+Goal forall n:nat, S n = 1 + n.
+intro; reflexivity.
Save S_to_plus_one.
(* Replace all occurrences of (S exp) by (plus (S O) exp), except when
exp is already O and only for those occurrences than can be reached by going
down plus and mult operations *)
-Recursive Meta Definition S_to_plus t :=
- Match t With
- | [(S O)] -> '(S O)
- | [(S ?1)] -> Let t1 = (S_to_plus ?1) In
- '(plus (S O) t1)
- | [(plus ?1 ?2)] -> Let t1 = (S_to_plus ?1)
- And t2 = (S_to_plus ?2) In
- '(plus t1 t2)
- | [(mult ?1 ?2)] -> Let t1 = (S_to_plus ?1)
- And t2 = (S_to_plus ?2) In
- '(mult t1 t2)
- | [?] -> 't.
+Ltac rewrite_S_to_plus_term t :=
+ match constr:t with
+ | 1 => constr:1
+ | (S ?X1) =>
+ let t1 := rewrite_S_to_plus_term X1 in
+ constr:(1 + t1)
+ | (?X1 + ?X2) =>
+ let t1 := rewrite_S_to_plus_term X1
+ with t2 := rewrite_S_to_plus_term X2 in
+ constr:(t1 + t2)
+ | (?X1 * ?X2) =>
+ let t1 := rewrite_S_to_plus_term X1
+ with t2 := rewrite_S_to_plus_term X2 in
+ constr:(t1 * t2)
+ | _ => constr:t
+ end.
(* Apply S_to_plus on both sides of an equality *)
-Tactic Definition S_to_plus_eq :=
- Match Context With
- | [ |- ?1 = ?2 ] ->
- (**) Try (**)
- Let t1 = (S_to_plus ?1)
- And t2 = (S_to_plus ?2) In
- Change t1=t2
- | [ |- ?1 == ?2 ] ->
- (**) Try (**)
- Let t1 = (S_to_plus ?1)
- And t2 = (S_to_plus ?2) In
- Change (t1==t2).
+Ltac rewrite_S_to_plus :=
+ match goal with
+ | |- (?X1 = ?X2) =>
+ try
+ let t1 :=
+ (**) (**)
+ rewrite_S_to_plus_term X1
+ with t2 := rewrite_S_to_plus_term X2 in
+ change (t1 = t2) in |- *
+ | |- (?X1 = ?X2) =>
+ try
+ let t1 :=
+ (**) (**)
+ rewrite_S_to_plus_term X1
+ with t2 := rewrite_S_to_plus_term X2 in
+ change (t1 = t2) in |- *
+ end.
-Tactic Definition NatRing := S_to_plus_eq;Ring.
+Ltac ring_nat := rewrite_S_to_plus; ring. \ No newline at end of file
diff --git a/contrib/ring/NArithRing.v b/contrib/ring/NArithRing.v
index 65814a140..b0a1f1951 100644
--- a/contrib/ring/NArithRing.v
+++ b/contrib/ring/NArithRing.v
@@ -12,33 +12,33 @@
Require Export Ring.
Require Export ZArith_base.
-Require NArith.
-Require Eqdep_dec.
+Require Import NArith.
+Require Import Eqdep_dec.
-Definition Neq := [n,m:entier]
- Cases (Ncompare n m) of
- EGAL => true
+Definition Neq (n m:N) :=
+ match (n ?= m)%N with
+ | Datatypes.Eq => true
| _ => false
end.
-Lemma Neq_prop : (n,m:entier)(Is_true (Neq n m)) -> n=m.
- Intros n m H; Unfold Neq in H.
- Apply Ncompare_Eq_eq.
- NewDestruct (Ncompare n m); [Reflexivity | Contradiction | Contradiction ].
-Save.
+Lemma Neq_prop : forall n m:N, Is_true (Neq n m) -> n = m.
+ intros n m H; unfold Neq in H.
+ apply Ncompare_Eq_eq.
+ destruct (n ?= m)%N; [ reflexivity | contradiction | contradiction ].
+Qed.
-Definition NTheory : (Semi_Ring_Theory Nplus Nmult (Pos xH) Nul Neq).
- Split.
- Apply Nplus_comm.
- Apply Nplus_assoc.
- Apply Nmult_comm.
- Apply Nmult_assoc.
- Apply Nplus_0_l.
- Apply Nmult_1_l.
- Apply Nmult_0_l.
- Apply Nmult_plus_distr_r.
- Apply Nplus_reg_l.
- Apply Neq_prop.
-Save.
+Definition NTheory : Semi_Ring_Theory Nplus Nmult 1%N 0%N Neq.
+ split.
+ apply Nplus_comm.
+ apply Nplus_assoc.
+ apply Nmult_comm.
+ apply Nmult_assoc.
+ apply Nplus_0_l.
+ apply Nmult_1_l.
+ apply Nmult_0_l.
+ apply Nmult_plus_distr_r.
+ apply Nplus_reg_l.
+ apply Neq_prop.
+Qed.
-Add Semi Ring entier Nplus Nmult (Pos xH) Nul Neq NTheory [Pos Nul xO xI xH].
+Add Semi Ring N Nplus Nmult 1%N 0%N Neq NTheory [ Npos 0%N xO xI 1%positive ]. \ No newline at end of file
diff --git a/contrib/ring/Quote.v b/contrib/ring/Quote.v
index e2bd0c537..d50df9776 100644
--- a/contrib/ring/Quote.v
+++ b/contrib/ring/Quote.v
@@ -32,54 +32,53 @@ Section variables_map.
Variable A : Type.
Inductive varmap : Type :=
- Empty_vm : varmap
-| Node_vm : A->varmap->varmap->varmap.
-
-Inductive index : Set :=
-| Left_idx : index -> index
-| Right_idx : index -> index
-| End_idx : index
-.
-
-Fixpoint varmap_find [default_value:A; i:index; v:varmap] : A :=
- Cases i v of
- End_idx (Node_vm x _ _) => x
- | (Right_idx i1) (Node_vm x v1 v2) => (varmap_find default_value i1 v2)
- | (Left_idx i1) (Node_vm x v1 v2) => (varmap_find default_value i1 v1)
- | _ _ => default_value
+ | Empty_vm : varmap
+ | Node_vm : A -> varmap -> varmap -> varmap.
+
+Inductive index : Set :=
+ | Left_idx : index -> index
+ | Right_idx : index -> index
+ | End_idx : index.
+
+Fixpoint varmap_find (default_value:A) (i:index) (v:varmap) {struct v} : A :=
+ match i, v with
+ | End_idx, Node_vm x _ _ => x
+ | Right_idx i1, Node_vm x v1 v2 => varmap_find default_value i1 v2
+ | Left_idx i1, Node_vm x v1 v2 => varmap_find default_value i1 v1
+ | _, _ => default_value
end.
-Fixpoint index_eq [n,m:index] : bool :=
- Cases n m of
- | End_idx End_idx => true
- | (Left_idx n') (Left_idx m') => (index_eq n' m')
- | (Right_idx n') (Right_idx m') => (index_eq n' m')
- | _ _ => false
+Fixpoint index_eq (n m:index) {struct m} : bool :=
+ match n, m with
+ | End_idx, End_idx => true
+ | Left_idx n', Left_idx m' => index_eq n' m'
+ | Right_idx n', Right_idx m' => index_eq n' m'
+ | _, _ => false
end.
-Fixpoint index_lt[n,m:index] : bool :=
- Cases n m of
- | End_idx (Left_idx _) => true
- | End_idx (Right_idx _) => true
- | (Left_idx n') (Right_idx m') => true
- | (Right_idx n') (Right_idx m') => (index_lt n' m')
- | (Left_idx n') (Left_idx m') => (index_lt n' m')
- | _ _ => false
+Fixpoint index_lt (n m:index) {struct m} : bool :=
+ match n, m with
+ | End_idx, Left_idx _ => true
+ | End_idx, Right_idx _ => true
+ | Left_idx n', Right_idx m' => true
+ | Right_idx n', Right_idx m' => index_lt n' m'
+ | Left_idx n', Left_idx m' => index_lt n' m'
+ | _, _ => false
end.
-Lemma index_eq_prop : (n,m:index)(index_eq n m)=true -> n=m.
- Induction n; Induction m; Simpl; Intros.
- Rewrite (H i0 H1); Reflexivity.
- Discriminate.
- Discriminate.
- Discriminate.
- Rewrite (H i0 H1); Reflexivity.
- Discriminate.
- Discriminate.
- Discriminate.
- Reflexivity.
-Save.
+Lemma index_eq_prop : forall n m:index, index_eq n m = true -> n = m.
+ simple induction n; simple induction m; simpl in |- *; intros.
+ rewrite (H i0 H1); reflexivity.
+ discriminate.
+ discriminate.
+ discriminate.
+ rewrite (H i0 H1); reflexivity.
+ discriminate.
+ discriminate.
+ discriminate.
+ reflexivity.
+Qed.
End variables_map.
-Unset Implicit Arguments.
+Unset Implicit Arguments. \ No newline at end of file
diff --git a/contrib/ring/Ring.v b/contrib/ring/Ring.v
index fa2ba1ca0..942c41d65 100644
--- a/contrib/ring/Ring.v
+++ b/contrib/ring/Ring.v
@@ -18,17 +18,19 @@ Require Export Ring_abstract.
(* Other instatiations are given in ArithRing and ZArithRing in the
same directory *)
-Definition BoolTheory : (Ring_Theory xorb andb true false [b:bool]b eqb).
-Split; Simpl.
-NewDestruct n; NewDestruct m; Reflexivity.
-NewDestruct n; NewDestruct m; NewDestruct p; Reflexivity.
-NewDestruct n; NewDestruct m; Reflexivity.
-NewDestruct n; NewDestruct m; NewDestruct p; Reflexivity.
-NewDestruct n; Reflexivity.
-NewDestruct n; Reflexivity.
-NewDestruct n; Reflexivity.
-NewDestruct n; NewDestruct m; NewDestruct p; Reflexivity.
-NewDestruct x; NewDestruct y; Reflexivity Orelse Simpl; Tauto.
+Definition BoolTheory :
+ Ring_Theory xorb andb true false (fun b:bool => b) eqb.
+split; simpl in |- *.
+destruct n; destruct m; reflexivity.
+destruct n; destruct m; destruct p; reflexivity.
+destruct n; destruct m; reflexivity.
+destruct n; destruct m; destruct p; reflexivity.
+destruct n; reflexivity.
+destruct n; reflexivity.
+destruct n; reflexivity.
+destruct n; destruct m; destruct p; reflexivity.
+destruct x; destruct y; reflexivity || simpl in |- *; tauto.
Defined.
-Add Ring bool xorb andb true false [b:bool]b eqb BoolTheory [ true false ].
+Add Ring bool xorb andb true false (fun b:bool => b) eqb BoolTheory
+ [ true false ]. \ No newline at end of file
diff --git a/contrib/ring/Ring_abstract.v b/contrib/ring/Ring_abstract.v
index 98b4cb858..376cfb41f 100644
--- a/contrib/ring/Ring_abstract.v
+++ b/contrib/ring/Ring_abstract.v
@@ -8,76 +8,75 @@
(* $Id$ *)
-Require Ring_theory.
-Require Quote.
-Require Ring_normalize.
+Require Import Ring_theory.
+Require Import Quote.
+Require Import Ring_normalize.
Section abstract_semi_rings.
-Inductive Type aspolynomial :=
- ASPvar : index -> aspolynomial
-| ASP0 : aspolynomial
-| ASP1 : aspolynomial
-| ASPplus : aspolynomial -> aspolynomial -> aspolynomial
-| ASPmult : aspolynomial -> aspolynomial -> aspolynomial
-.
-
-Inductive abstract_sum : Type :=
-| Nil_acs : abstract_sum
-| Cons_acs : varlist -> abstract_sum -> abstract_sum
-.
-
-Fixpoint abstract_sum_merge [s1:abstract_sum]
- : abstract_sum -> abstract_sum :=
-Cases s1 of
-| (Cons_acs l1 t1) =>
- Fix asm_aux{asm_aux[s2:abstract_sum] : abstract_sum :=
- Cases s2 of
- | (Cons_acs l2 t2) =>
- if (varlist_lt l1 l2)
- then (Cons_acs l1 (abstract_sum_merge t1 s2))
- else (Cons_acs l2 (asm_aux t2))
- | Nil_acs => s1
- end}
-| Nil_acs => [s2]s2
-end.
-
-Fixpoint abstract_varlist_insert [l1:varlist; s2:abstract_sum]
- : abstract_sum :=
- Cases s2 of
- | (Cons_acs l2 t2) =>
- if (varlist_lt l1 l2)
- then (Cons_acs l1 s2)
- else (Cons_acs l2 (abstract_varlist_insert l1 t2))
- | Nil_acs => (Cons_acs l1 Nil_acs)
+Inductive aspolynomial : Type :=
+ | ASPvar : index -> aspolynomial
+ | ASP0 : aspolynomial
+ | ASP1 : aspolynomial
+ | ASPplus : aspolynomial -> aspolynomial -> aspolynomial
+ | ASPmult : aspolynomial -> aspolynomial -> aspolynomial.
+
+Inductive abstract_sum : Type :=
+ | Nil_acs : abstract_sum
+ | Cons_acs : varlist -> abstract_sum -> abstract_sum.
+
+Fixpoint abstract_sum_merge (s1:abstract_sum) :
+ abstract_sum -> abstract_sum :=
+ match s1 with
+ | Cons_acs l1 t1 =>
+ (fix asm_aux (s2:abstract_sum) : abstract_sum :=
+ match s2 with
+ | Cons_acs l2 t2 =>
+ if varlist_lt l1 l2
+ then Cons_acs l1 (abstract_sum_merge t1 s2)
+ else Cons_acs l2 (asm_aux t2)
+ | Nil_acs => s1
+ end)
+ | Nil_acs => fun s2 => s2
end.
-Fixpoint abstract_sum_scalar [l1:varlist; s2:abstract_sum]
- : abstract_sum :=
- Cases s2 of
- | (Cons_acs l2 t2) => (abstract_varlist_insert (varlist_merge l1 l2)
- (abstract_sum_scalar l1 t2))
+Fixpoint abstract_varlist_insert (l1:varlist) (s2:abstract_sum) {struct s2} :
+ abstract_sum :=
+ match s2 with
+ | Cons_acs l2 t2 =>
+ if varlist_lt l1 l2
+ then Cons_acs l1 s2
+ else Cons_acs l2 (abstract_varlist_insert l1 t2)
+ | Nil_acs => Cons_acs l1 Nil_acs
+ end.
+
+Fixpoint abstract_sum_scalar (l1:varlist) (s2:abstract_sum) {struct s2} :
+ abstract_sum :=
+ match s2 with
+ | Cons_acs l2 t2 =>
+ abstract_varlist_insert (varlist_merge l1 l2)
+ (abstract_sum_scalar l1 t2)
+ | Nil_acs => Nil_acs
+ end.
+
+Fixpoint abstract_sum_prod (s1 s2:abstract_sum) {struct s1} : abstract_sum :=
+ match s1 with
+ | Cons_acs l1 t1 =>
+ abstract_sum_merge (abstract_sum_scalar l1 s2)
+ (abstract_sum_prod t1 s2)
| Nil_acs => Nil_acs
end.
-Fixpoint abstract_sum_prod [s1:abstract_sum]
- : abstract_sum -> abstract_sum :=
- [s2]Cases s1 of
- | (Cons_acs l1 t1) =>
- (abstract_sum_merge (abstract_sum_scalar l1 s2)
- (abstract_sum_prod t1 s2))
- | Nil_acs => Nil_acs
- end.
-
-Fixpoint aspolynomial_normalize[p:aspolynomial] : abstract_sum :=
- Cases p of
- | (ASPvar i) => (Cons_acs (Cons_var i Nil_var) Nil_acs)
- | ASP1 => (Cons_acs Nil_var Nil_acs)
+Fixpoint aspolynomial_normalize (p:aspolynomial) : abstract_sum :=
+ match p with
+ | ASPvar i => Cons_acs (Cons_var i Nil_var) Nil_acs
+ | ASP1 => Cons_acs Nil_var Nil_acs
| ASP0 => Nil_acs
- | (ASPplus l r) => (abstract_sum_merge (aspolynomial_normalize l)
- (aspolynomial_normalize r))
- | (ASPmult l r) => (abstract_sum_prod (aspolynomial_normalize l)
- (aspolynomial_normalize r))
+ | ASPplus l r =>
+ abstract_sum_merge (aspolynomial_normalize l)
+ (aspolynomial_normalize r)
+ | ASPmult l r =>
+ abstract_sum_prod (aspolynomial_normalize l) (aspolynomial_normalize r)
end.
@@ -88,147 +87,151 @@ Variable Amult : A -> A -> A.
Variable Aone : A.
Variable Azero : A.
Variable Aeq : A -> A -> bool.
-Variable vm : (varmap A).
-Variable T : (Semi_Ring_Theory Aplus Amult Aone Azero Aeq).
+Variable vm : varmap A.
+Variable T : Semi_Ring_Theory Aplus Amult Aone Azero Aeq.
-Fixpoint interp_asp [p:aspolynomial] : A :=
- Cases p of
- | (ASPvar i) => (interp_var Azero vm i)
+Fixpoint interp_asp (p:aspolynomial) : A :=
+ match p with
+ | ASPvar i => interp_var Azero vm i
| ASP0 => Azero
| ASP1 => Aone
- | (ASPplus l r) => (Aplus (interp_asp l) (interp_asp r))
- | (ASPmult l r) => (Amult (interp_asp l) (interp_asp r))
+ | ASPplus l r => Aplus (interp_asp l) (interp_asp r)
+ | ASPmult l r => Amult (interp_asp l) (interp_asp r)
end.
-(* Local *) Definition iacs_aux := Fix iacs_aux{iacs_aux [a:A; s:abstract_sum] : A :=
- Cases s of
- | Nil_acs => a
- | (Cons_acs l t) => (Aplus a (iacs_aux (interp_vl Amult Aone Azero vm l) t))
- end}.
-
-Definition interp_acs [s:abstract_sum] : A :=
- Cases s of
- | (Cons_acs l t) => (iacs_aux (interp_vl Amult Aone Azero vm l) t)
+(* Local *) Definition iacs_aux :=
+ (fix iacs_aux (a:A) (s:abstract_sum) {struct s} : A :=
+ match s with
+ | Nil_acs => a
+ | Cons_acs l t =>
+ Aplus a (iacs_aux (interp_vl Amult Aone Azero vm l) t)
+ end).
+
+Definition interp_acs (s:abstract_sum) : A :=
+ match s with
+ | Cons_acs l t => iacs_aux (interp_vl Amult Aone Azero vm l) t
| Nil_acs => Azero
end.
-Hint SR_plus_sym_T := Resolve (SR_plus_sym T).
-Hint SR_plus_assoc_T := Resolve (SR_plus_assoc T).
-Hint SR_plus_assoc2_T := Resolve (SR_plus_assoc2 T).
-Hint SR_mult_sym_T := Resolve (SR_mult_sym T).
-Hint SR_mult_assoc_T := Resolve (SR_mult_assoc T).
-Hint SR_mult_assoc2_T := Resolve (SR_mult_assoc2 T).
-Hint SR_plus_zero_left_T := Resolve (SR_plus_zero_left T).
-Hint SR_plus_zero_left2_T := Resolve (SR_plus_zero_left2 T).
-Hint SR_mult_one_left_T := Resolve (SR_mult_one_left T).
-Hint SR_mult_one_left2_T := Resolve (SR_mult_one_left2 T).
-Hint SR_mult_zero_left_T := Resolve (SR_mult_zero_left T).
-Hint SR_mult_zero_left2_T := Resolve (SR_mult_zero_left2 T).
-Hint SR_distr_left_T := Resolve (SR_distr_left T).
-Hint SR_distr_left2_T := Resolve (SR_distr_left2 T).
-Hint SR_plus_reg_left_T := Resolve (SR_plus_reg_left T).
-Hint SR_plus_permute_T := Resolve (SR_plus_permute T).
-Hint SR_mult_permute_T := Resolve (SR_mult_permute T).
-Hint SR_distr_right_T := Resolve (SR_distr_right T).
-Hint SR_distr_right2_T := Resolve (SR_distr_right2 T).
-Hint SR_mult_zero_right_T := Resolve (SR_mult_zero_right T).
-Hint SR_mult_zero_right2_T := Resolve (SR_mult_zero_right2 T).
-Hint SR_plus_zero_right_T := Resolve (SR_plus_zero_right T).
-Hint SR_plus_zero_right2_T := Resolve (SR_plus_zero_right2 T).
-Hint SR_mult_one_right_T := Resolve (SR_mult_one_right T).
-Hint SR_mult_one_right2_T := Resolve (SR_mult_one_right2 T).
-Hint SR_plus_reg_right_T := Resolve (SR_plus_reg_right T).
-Hints Resolve refl_equal sym_equal trans_equal.
+Hint Resolve (SR_plus_comm T).
+Hint Resolve (SR_plus_assoc T).
+Hint Resolve (SR_plus_assoc2 T).
+Hint Resolve (SR_mult_comm T).
+Hint Resolve (SR_mult_assoc T).
+Hint Resolve (SR_mult_assoc2 T).
+Hint Resolve (SR_plus_zero_left T).
+Hint Resolve (SR_plus_zero_left2 T).
+Hint Resolve (SR_mult_one_left T).
+Hint Resolve (SR_mult_one_left2 T).
+Hint Resolve (SR_mult_zero_left T).
+Hint Resolve (SR_mult_zero_left2 T).
+Hint Resolve (SR_distr_left T).
+Hint Resolve (SR_distr_left2 T).
+Hint Resolve (SR_plus_reg_left T).
+Hint Resolve (SR_plus_permute T).
+Hint Resolve (SR_mult_permute T).
+Hint Resolve (SR_distr_right T).
+Hint Resolve (SR_distr_right2 T).
+Hint Resolve (SR_mult_zero_right T).
+Hint Resolve (SR_mult_zero_right2 T).
+Hint Resolve (SR_plus_zero_right T).
+Hint Resolve (SR_plus_zero_right2 T).
+Hint Resolve (SR_mult_one_right T).
+Hint Resolve (SR_mult_one_right2 T).
+Hint Resolve (SR_plus_reg_right T).
+Hint Resolve refl_equal sym_equal trans_equal.
(*Hints Resolve refl_eqT sym_eqT trans_eqT.*)
-Hints Immediate T.
+Hint Immediate T.
-Remark iacs_aux_ok : (x:A)(s:abstract_sum)
- (iacs_aux x s)==(Aplus x (interp_acs s)).
+Remark iacs_aux_ok :
+ forall (x:A) (s:abstract_sum), iacs_aux x s = Aplus x (interp_acs s).
Proof.
- Induction s; Simpl; Intros.
- Trivial.
- Reflexivity.
-Save.
+ simple induction s; simpl in |- *; intros.
+ trivial.
+ reflexivity.
+Qed.
-Hint rew_iacs_aux : core := Extern 10 (eqT A ? ?) Rewrite iacs_aux_ok.
+Hint Extern 10 (_ = _ :>A) => rewrite iacs_aux_ok: core.
-Lemma abstract_varlist_insert_ok : (l:varlist)(s:abstract_sum)
- (interp_acs (abstract_varlist_insert l s))
- ==(Aplus (interp_vl Amult Aone Azero vm l) (interp_acs s)).
+Lemma abstract_varlist_insert_ok :
+ forall (l:varlist) (s:abstract_sum),
+ interp_acs (abstract_varlist_insert l s) =
+ Aplus (interp_vl Amult Aone Azero vm l) (interp_acs s).
- Induction s.
- Trivial.
+ simple induction s.
+ trivial.
- Simpl; Intros.
- Elim (varlist_lt l v); Simpl.
- EAuto.
- Rewrite iacs_aux_ok.
- Rewrite H; Auto.
+ simpl in |- *; intros.
+ elim (varlist_lt l v); simpl in |- *.
+ eauto.
+ rewrite iacs_aux_ok.
+ rewrite H; auto.
-Save.
+Qed.
-Lemma abstract_sum_merge_ok : (x,y:abstract_sum)
- (interp_acs (abstract_sum_merge x y))
- ==(Aplus (interp_acs x) (interp_acs y)).
+Lemma abstract_sum_merge_ok :
+ forall x y:abstract_sum,
+ interp_acs (abstract_sum_merge x y) = Aplus (interp_acs x) (interp_acs y).
Proof.
- Induction x.
- Trivial.
- Induction y; Intros.
+ simple induction x.
+ trivial.
+ simple induction y; intros.
- Auto.
+ auto.
- Simpl; Elim (varlist_lt v v0); Simpl.
- Repeat Rewrite iacs_aux_ok.
- Rewrite H; Simpl; Auto.
+ simpl in |- *; elim (varlist_lt v v0); simpl in |- *.
+ repeat rewrite iacs_aux_ok.
+ rewrite H; simpl in |- *; auto.
- Simpl in H0.
- Repeat Rewrite iacs_aux_ok.
- Rewrite H0. Simpl; Auto.
-Save.
+ simpl in H0.
+ repeat rewrite iacs_aux_ok.
+ rewrite H0. simpl in |- *; auto.
+Qed.
-Lemma abstract_sum_scalar_ok : (l:varlist)(s:abstract_sum)
- (interp_acs (abstract_sum_scalar l s))
- == (Amult (interp_vl Amult Aone Azero vm l) (interp_acs s)).
+Lemma abstract_sum_scalar_ok :
+ forall (l:varlist) (s:abstract_sum),
+ interp_acs (abstract_sum_scalar l s) =
+ Amult (interp_vl Amult Aone Azero vm l) (interp_acs s).
Proof.
- Induction s.
- Simpl; EAuto.
+ simple induction s.
+ simpl in |- *; eauto.
- Simpl; Intros.
- Rewrite iacs_aux_ok.
- Rewrite abstract_varlist_insert_ok.
- Rewrite H.
- Rewrite (varlist_merge_ok A Aplus Amult Aone Azero Aeq vm T).
- Auto.
-Save.
+ simpl in |- *; intros.
+ rewrite iacs_aux_ok.
+ rewrite abstract_varlist_insert_ok.
+ rewrite H.
+ rewrite (varlist_merge_ok A Aplus Amult Aone Azero Aeq vm T).
+ auto.
+Qed.
-Lemma abstract_sum_prod_ok : (x,y:abstract_sum)
- (interp_acs (abstract_sum_prod x y))
- == (Amult (interp_acs x) (interp_acs y)).
+Lemma abstract_sum_prod_ok :
+ forall x y:abstract_sum,
+ interp_acs (abstract_sum_prod x y) = Amult (interp_acs x) (interp_acs y).
Proof.
- Induction x.
- Intros; Simpl; EAuto.
+ simple induction x.
+ intros; simpl in |- *; eauto.
- NewDestruct y; Intros.
+ destruct y as [| v0 a0]; intros.
- Simpl; Rewrite H; EAuto.
+ simpl in |- *; rewrite H; eauto.
- Unfold abstract_sum_prod; Fold abstract_sum_prod.
- Rewrite abstract_sum_merge_ok.
- Rewrite abstract_sum_scalar_ok.
- Rewrite H; Simpl; Auto.
-Save.
+ unfold abstract_sum_prod in |- *; fold abstract_sum_prod in |- *.
+ rewrite abstract_sum_merge_ok.
+ rewrite abstract_sum_scalar_ok.
+ rewrite H; simpl in |- *; auto.
+Qed.
-Theorem aspolynomial_normalize_ok : (x:aspolynomial)
- (interp_asp x)==(interp_acs (aspolynomial_normalize x)).
+Theorem aspolynomial_normalize_ok :
+ forall x:aspolynomial, interp_asp x = interp_acs (aspolynomial_normalize x).
Proof.
- Induction x; Simpl; Intros; Trivial.
- Rewrite abstract_sum_merge_ok.
- Rewrite H; Rewrite H0; EAuto.
- Rewrite abstract_sum_prod_ok.
- Rewrite H; Rewrite H0; EAuto.
-Save.
+ simple induction x; simpl in |- *; intros; trivial.
+ rewrite abstract_sum_merge_ok.
+ rewrite H; rewrite H0; eauto.
+ rewrite abstract_sum_prod_ok.
+ rewrite H; rewrite H0; eauto.
+Qed.
End abstract_semi_rings.
@@ -244,143 +247,141 @@ Section abstract_rings.
Nevertheless, they are two different types for semi-rings and rings
and there will be 2 correction theorems *)
-Inductive Type apolynomial :=
- APvar : index -> apolynomial
-| AP0 : apolynomial
-| AP1 : apolynomial
-| APplus : apolynomial -> apolynomial -> apolynomial
-| APmult : apolynomial -> apolynomial -> apolynomial
-| APopp : apolynomial -> apolynomial
-.
+Inductive apolynomial : Type :=
+ | APvar : index -> apolynomial
+ | AP0 : apolynomial
+ | AP1 : apolynomial
+ | APplus : apolynomial -> apolynomial -> apolynomial
+ | APmult : apolynomial -> apolynomial -> apolynomial
+ | APopp : apolynomial -> apolynomial.
(* A canonical "abstract" sum is a list of varlist with the sign "+" or "-".
Invariant : the list is sorted and there is no varlist is present
with both signs. +x +x +x -x is forbidden => the canonical form is +x+x *)
-Inductive signed_sum : Type :=
-| Nil_varlist : signed_sum
-| Plus_varlist : varlist -> signed_sum -> signed_sum
-| Minus_varlist : varlist -> signed_sum -> signed_sum
-.
-
-Fixpoint signed_sum_merge [s1:signed_sum]
- : signed_sum -> signed_sum :=
-Cases s1 of
-| (Plus_varlist l1 t1) =>
- Fix ssm_aux{ssm_aux[s2:signed_sum] : signed_sum :=
- Cases s2 of
- | (Plus_varlist l2 t2) =>
- if (varlist_lt l1 l2)
- then (Plus_varlist l1 (signed_sum_merge t1 s2))
- else (Plus_varlist l2 (ssm_aux t2))
- | (Minus_varlist l2 t2) =>
- if (varlist_eq l1 l2)
- then (signed_sum_merge t1 t2)
- else if (varlist_lt l1 l2)
- then (Plus_varlist l1 (signed_sum_merge t1 s2))
- else (Minus_varlist l2 (ssm_aux t2))
- | Nil_varlist => s1
- end}
-| (Minus_varlist l1 t1) =>
- Fix ssm_aux2{ssm_aux2[s2:signed_sum] : signed_sum :=
- Cases s2 of
- | (Plus_varlist l2 t2) =>
- if (varlist_eq l1 l2)
- then (signed_sum_merge t1 t2)
- else if (varlist_lt l1 l2)
- then (Minus_varlist l1 (signed_sum_merge t1 s2))
- else (Plus_varlist l2 (ssm_aux2 t2))
- | (Minus_varlist l2 t2) =>
- if (varlist_lt l1 l2)
- then (Minus_varlist l1 (signed_sum_merge t1 s2))
- else (Minus_varlist l2 (ssm_aux2 t2))
- | Nil_varlist => s1
- end}
-| Nil_varlist => [s2]s2
-end.
-
-Fixpoint plus_varlist_insert [l1:varlist; s2:signed_sum]
- : signed_sum :=
- Cases s2 of
- | (Plus_varlist l2 t2) =>
- if (varlist_lt l1 l2)
- then (Plus_varlist l1 s2)
- else (Plus_varlist l2 (plus_varlist_insert l1 t2))
- | (Minus_varlist l2 t2) =>
- if (varlist_eq l1 l2)
- then t2
- else if (varlist_lt l1 l2)
- then (Plus_varlist l1 s2)
- else (Minus_varlist l2 (plus_varlist_insert l1 t2))
- | Nil_varlist => (Plus_varlist l1 Nil_varlist)
+Inductive signed_sum : Type :=
+ | Nil_varlist : signed_sum
+ | Plus_varlist : varlist -> signed_sum -> signed_sum
+ | Minus_varlist : varlist -> signed_sum -> signed_sum.
+
+Fixpoint signed_sum_merge (s1:signed_sum) : signed_sum -> signed_sum :=
+ match s1 with
+ | Plus_varlist l1 t1 =>
+ (fix ssm_aux (s2:signed_sum) : signed_sum :=
+ match s2 with
+ | Plus_varlist l2 t2 =>
+ if varlist_lt l1 l2
+ then Plus_varlist l1 (signed_sum_merge t1 s2)
+ else Plus_varlist l2 (ssm_aux t2)
+ | Minus_varlist l2 t2 =>
+ if varlist_eq l1 l2
+ then signed_sum_merge t1 t2
+ else
+ if varlist_lt l1 l2
+ then Plus_varlist l1 (signed_sum_merge t1 s2)
+ else Minus_varlist l2 (ssm_aux t2)
+ | Nil_varlist => s1
+ end)
+ | Minus_varlist l1 t1 =>
+ (fix ssm_aux2 (s2:signed_sum) : signed_sum :=
+ match s2 with
+ | Plus_varlist l2 t2 =>
+ if varlist_eq l1 l2
+ then signed_sum_merge t1 t2
+ else
+ if varlist_lt l1 l2
+ then Minus_varlist l1 (signed_sum_merge t1 s2)
+ else Plus_varlist l2 (ssm_aux2 t2)
+ | Minus_varlist l2 t2 =>
+ if varlist_lt l1 l2
+ then Minus_varlist l1 (signed_sum_merge t1 s2)
+ else Minus_varlist l2 (ssm_aux2 t2)
+ | Nil_varlist => s1
+ end)
+ | Nil_varlist => fun s2 => s2
end.
-Fixpoint minus_varlist_insert [l1:varlist; s2:signed_sum]
- : signed_sum :=
- Cases s2 of
- | (Plus_varlist l2 t2) =>
- if (varlist_eq l1 l2)
- then t2
- else if (varlist_lt l1 l2)
- then (Minus_varlist l1 s2)
- else (Plus_varlist l2 (minus_varlist_insert l1 t2))
- | (Minus_varlist l2 t2) =>
- if (varlist_lt l1 l2)
- then (Minus_varlist l1 s2)
- else (Minus_varlist l2 (minus_varlist_insert l1 t2))
- | Nil_varlist => (Minus_varlist l1 Nil_varlist)
+Fixpoint plus_varlist_insert (l1:varlist) (s2:signed_sum) {struct s2} :
+ signed_sum :=
+ match s2 with
+ | Plus_varlist l2 t2 =>
+ if varlist_lt l1 l2
+ then Plus_varlist l1 s2
+ else Plus_varlist l2 (plus_varlist_insert l1 t2)
+ | Minus_varlist l2 t2 =>
+ if varlist_eq l1 l2
+ then t2
+ else
+ if varlist_lt l1 l2
+ then Plus_varlist l1 s2
+ else Minus_varlist l2 (plus_varlist_insert l1 t2)
+ | Nil_varlist => Plus_varlist l1 Nil_varlist
end.
-Fixpoint signed_sum_opp [s:signed_sum] : signed_sum :=
- Cases s of
- | (Plus_varlist l2 t2) => (Minus_varlist l2 (signed_sum_opp t2))
- | (Minus_varlist l2 t2) => (Plus_varlist l2 (signed_sum_opp t2))
+Fixpoint minus_varlist_insert (l1:varlist) (s2:signed_sum) {struct s2} :
+ signed_sum :=
+ match s2 with
+ | Plus_varlist l2 t2 =>
+ if varlist_eq l1 l2
+ then t2
+ else
+ if varlist_lt l1 l2
+ then Minus_varlist l1 s2
+ else Plus_varlist l2 (minus_varlist_insert l1 t2)
+ | Minus_varlist l2 t2 =>
+ if varlist_lt l1 l2
+ then Minus_varlist l1 s2
+ else Minus_varlist l2 (minus_varlist_insert l1 t2)
+ | Nil_varlist => Minus_varlist l1 Nil_varlist
+ end.
+
+Fixpoint signed_sum_opp (s:signed_sum) : signed_sum :=
+ match s with
+ | Plus_varlist l2 t2 => Minus_varlist l2 (signed_sum_opp t2)
+ | Minus_varlist l2 t2 => Plus_varlist l2 (signed_sum_opp t2)
| Nil_varlist => Nil_varlist
end.
-Fixpoint plus_sum_scalar [l1:varlist; s2:signed_sum]
- : signed_sum :=
- Cases s2 of
- | (Plus_varlist l2 t2) => (plus_varlist_insert (varlist_merge l1 l2)
- (plus_sum_scalar l1 t2))
- | (Minus_varlist l2 t2) => (minus_varlist_insert (varlist_merge l1 l2)
- (plus_sum_scalar l1 t2))
+Fixpoint plus_sum_scalar (l1:varlist) (s2:signed_sum) {struct s2} :
+ signed_sum :=
+ match s2 with
+ | Plus_varlist l2 t2 =>
+ plus_varlist_insert (varlist_merge l1 l2) (plus_sum_scalar l1 t2)
+ | Minus_varlist l2 t2 =>
+ minus_varlist_insert (varlist_merge l1 l2) (plus_sum_scalar l1 t2)
+ | Nil_varlist => Nil_varlist
+ end.
+
+Fixpoint minus_sum_scalar (l1:varlist) (s2:signed_sum) {struct s2} :
+ signed_sum :=
+ match s2 with
+ | Plus_varlist l2 t2 =>
+ minus_varlist_insert (varlist_merge l1 l2) (minus_sum_scalar l1 t2)
+ | Minus_varlist l2 t2 =>
+ plus_varlist_insert (varlist_merge l1 l2) (minus_sum_scalar l1 t2)
| Nil_varlist => Nil_varlist
end.
-Fixpoint minus_sum_scalar [l1:varlist; s2:signed_sum]
- : signed_sum :=
- Cases s2 of
- | (Plus_varlist l2 t2) => (minus_varlist_insert (varlist_merge l1 l2)
- (minus_sum_scalar l1 t2))
- | (Minus_varlist l2 t2) => (plus_varlist_insert (varlist_merge l1 l2)
- (minus_sum_scalar l1 t2))
+Fixpoint signed_sum_prod (s1 s2:signed_sum) {struct s1} : signed_sum :=
+ match s1 with
+ | Plus_varlist l1 t1 =>
+ signed_sum_merge (plus_sum_scalar l1 s2) (signed_sum_prod t1 s2)
+ | Minus_varlist l1 t1 =>
+ signed_sum_merge (minus_sum_scalar l1 s2) (signed_sum_prod t1 s2)
| Nil_varlist => Nil_varlist
end.
-Fixpoint signed_sum_prod [s1:signed_sum]
- : signed_sum -> signed_sum :=
- [s2]Cases s1 of
- | (Plus_varlist l1 t1) =>
- (signed_sum_merge (plus_sum_scalar l1 s2)
- (signed_sum_prod t1 s2))
- | (Minus_varlist l1 t1) =>
- (signed_sum_merge (minus_sum_scalar l1 s2)
- (signed_sum_prod t1 s2))
- | Nil_varlist => Nil_varlist
- end.
-
-Fixpoint apolynomial_normalize[p:apolynomial] : signed_sum :=
- Cases p of
- | (APvar i) => (Plus_varlist (Cons_var i Nil_var) Nil_varlist)
- | AP1 => (Plus_varlist Nil_var Nil_varlist)
+Fixpoint apolynomial_normalize (p:apolynomial) : signed_sum :=
+ match p with
+ | APvar i => Plus_varlist (Cons_var i Nil_var) Nil_varlist
+ | AP1 => Plus_varlist Nil_var Nil_varlist
| AP0 => Nil_varlist
- | (APplus l r) => (signed_sum_merge (apolynomial_normalize l)
- (apolynomial_normalize r))
- | (APmult l r) => (signed_sum_prod (apolynomial_normalize l)
- (apolynomial_normalize r))
- | (APopp q) => (signed_sum_opp (apolynomial_normalize q))
+ | APplus l r =>
+ signed_sum_merge (apolynomial_normalize l) (apolynomial_normalize r)
+ | APmult l r =>
+ signed_sum_prod (apolynomial_normalize l) (apolynomial_normalize r)
+ | APopp q => signed_sum_opp (apolynomial_normalize q)
end.
@@ -389,311 +390,315 @@ Variable Aplus : A -> A -> A.
Variable Amult : A -> A -> A.
Variable Aone : A.
Variable Azero : A.
-Variable Aopp :A -> A.
+Variable Aopp : A -> A.
Variable Aeq : A -> A -> bool.
-Variable vm : (varmap A).
-Variable T : (Ring_Theory Aplus Amult Aone Azero Aopp Aeq).
-
-(* Local *) Definition isacs_aux := Fix isacs_aux{isacs_aux [a:A; s:signed_sum] : A :=
- Cases s of
- | Nil_varlist => a
- | (Plus_varlist l t) =>
- (Aplus a (isacs_aux (interp_vl Amult Aone Azero vm l) t))
- | (Minus_varlist l t) =>
- (Aplus a (isacs_aux (Aopp (interp_vl Amult Aone Azero vm l)) t))
- end}.
-
-Definition interp_sacs [s:signed_sum] : A :=
- Cases s of
- | (Plus_varlist l t) => (isacs_aux (interp_vl Amult Aone Azero vm l) t)
- | (Minus_varlist l t) =>
- (isacs_aux (Aopp (interp_vl Amult Aone Azero vm l)) t)
+Variable vm : varmap A.
+Variable T : Ring_Theory Aplus Amult Aone Azero Aopp Aeq.
+
+(* Local *) Definition isacs_aux :=
+ (fix isacs_aux (a:A) (s:signed_sum) {struct s} : A :=
+ match s with
+ | Nil_varlist => a
+ | Plus_varlist l t =>
+ Aplus a (isacs_aux (interp_vl Amult Aone Azero vm l) t)
+ | Minus_varlist l t =>
+ Aplus a
+ (isacs_aux (Aopp (interp_vl Amult Aone Azero vm l)) t)
+ end).
+
+Definition interp_sacs (s:signed_sum) : A :=
+ match s with
+ | Plus_varlist l t => isacs_aux (interp_vl Amult Aone Azero vm l) t
+ | Minus_varlist l t => isacs_aux (Aopp (interp_vl Amult Aone Azero vm l)) t
| Nil_varlist => Azero
end.
-Fixpoint interp_ap [p:apolynomial] : A :=
- Cases p of
- | (APvar i) => (interp_var Azero vm i)
+Fixpoint interp_ap (p:apolynomial) : A :=
+ match p with
+ | APvar i => interp_var Azero vm i
| AP0 => Azero
| AP1 => Aone
- | (APplus l r) => (Aplus (interp_ap l) (interp_ap r))
- | (APmult l r) => (Amult (interp_ap l) (interp_ap r))
- | (APopp q) => (Aopp (interp_ap q))
+ | APplus l r => Aplus (interp_ap l) (interp_ap r)
+ | APmult l r => Amult (interp_ap l) (interp_ap r)
+ | APopp q => Aopp (interp_ap q)
end.
-Hint Th_plus_sym_T := Resolve (Th_plus_sym T).
-Hint Th_plus_assoc_T := Resolve (Th_plus_assoc T).
-Hint Th_plus_assoc2_T := Resolve (Th_plus_assoc2 T).
-Hint Th_mult_sym_T := Resolve (Th_mult_sym T).
-Hint Th_mult_assoc_T := Resolve (Th_mult_assoc T).
-Hint Th_mult_assoc2_T := Resolve (Th_mult_assoc2 T).
-Hint Th_plus_zero_left_T := Resolve (Th_plus_zero_left T).
-Hint Th_plus_zero_left2_T := Resolve (Th_plus_zero_left2 T).
-Hint Th_mult_one_left_T := Resolve (Th_mult_one_left T).
-Hint Th_mult_one_left2_T := Resolve (Th_mult_one_left2 T).
-Hint Th_mult_zero_left_T := Resolve (Th_mult_zero_left T).
-Hint Th_mult_zero_left2_T := Resolve (Th_mult_zero_left2 T).
-Hint Th_distr_left_T := Resolve (Th_distr_left T).
-Hint Th_distr_left2_T := Resolve (Th_distr_left2 T).
-Hint Th_plus_reg_left_T := Resolve (Th_plus_reg_left T).
-Hint Th_plus_permute_T := Resolve (Th_plus_permute T).
-Hint Th_mult_permute_T := Resolve (Th_mult_permute T).
-Hint Th_distr_right_T := Resolve (Th_distr_right T).
-Hint Th_distr_right2_T := Resolve (Th_distr_right2 T).
-Hint Th_mult_zero_right2_T := Resolve (Th_mult_zero_right2 T).
-Hint Th_plus_zero_right_T := Resolve (Th_plus_zero_right T).
-Hint Th_plus_zero_right2_T := Resolve (Th_plus_zero_right2 T).
-Hint Th_mult_one_right_T := Resolve (Th_mult_one_right T).
-Hint Th_mult_one_right2_T := Resolve (Th_mult_one_right2 T).
-Hint Th_plus_reg_right_T := Resolve (Th_plus_reg_right T).
-Hints Resolve refl_equal sym_equal trans_equal.
+Hint Resolve (Th_plus_comm T).
+Hint Resolve (Th_plus_assoc T).
+Hint Resolve (Th_plus_assoc2 T).
+Hint Resolve (Th_mult_sym T).
+Hint Resolve (Th_mult_assoc T).
+Hint Resolve (Th_mult_assoc2 T).
+Hint Resolve (Th_plus_zero_left T).
+Hint Resolve (Th_plus_zero_left2 T).
+Hint Resolve (Th_mult_one_left T).
+Hint Resolve (Th_mult_one_left2 T).
+Hint Resolve (Th_mult_zero_left T).
+Hint Resolve (Th_mult_zero_left2 T).
+Hint Resolve (Th_distr_left T).
+Hint Resolve (Th_distr_left2 T).
+Hint Resolve (Th_plus_reg_left T).
+Hint Resolve (Th_plus_permute T).
+Hint Resolve (Th_mult_permute T).
+Hint Resolve (Th_distr_right T).
+Hint Resolve (Th_distr_right2 T).
+Hint Resolve (Th_mult_zero_right2 T).
+Hint Resolve (Th_plus_zero_right T).
+Hint Resolve (Th_plus_zero_right2 T).
+Hint Resolve (Th_mult_one_right T).
+Hint Resolve (Th_mult_one_right2 T).
+Hint Resolve (Th_plus_reg_right T).
+Hint Resolve refl_equal sym_equal trans_equal.
(*Hints Resolve refl_eqT sym_eqT trans_eqT.*)
-Hints Immediate T.
+Hint Immediate T.
-Lemma isacs_aux_ok : (x:A)(s:signed_sum)
- (isacs_aux x s)==(Aplus x (interp_sacs s)).
+Lemma isacs_aux_ok :
+ forall (x:A) (s:signed_sum), isacs_aux x s = Aplus x (interp_sacs s).
Proof.
- Induction s; Simpl; Intros.
- Trivial.
- Reflexivity.
- Reflexivity.
-Save.
+ simple induction s; simpl in |- *; intros.
+ trivial.
+ reflexivity.
+ reflexivity.
+Qed.
-Hint rew_isacs_aux : core := Extern 10 (eqT A ? ?) Rewrite isacs_aux_ok.
+Hint Extern 10 (_ = _ :>A) => rewrite isacs_aux_ok: core.
-Tactic Definition Solve1 v v0 H H0 :=
- Simpl; Elim (varlist_lt v v0); Simpl; Rewrite isacs_aux_ok;
- [Rewrite H; Simpl; Auto
- |Simpl in H0; Rewrite H0; Auto ].
+Ltac solve1 v v0 H H0 :=
+ simpl in |- *; elim (varlist_lt v v0); simpl in |- *; rewrite isacs_aux_ok;
+ [ rewrite H; simpl in |- *; auto | simpl in H0; rewrite H0; auto ].
-Lemma signed_sum_merge_ok : (x,y:signed_sum)
- (interp_sacs (signed_sum_merge x y))
- ==(Aplus (interp_sacs x) (interp_sacs y)).
+Lemma signed_sum_merge_ok :
+ forall x y:signed_sum,
+ interp_sacs (signed_sum_merge x y) = Aplus (interp_sacs x) (interp_sacs y).
- Induction x.
- Intro; Simpl; Auto.
+ simple induction x.
+ intro; simpl in |- *; auto.
- Induction y; Intros.
+ simple induction y; intros.
- Auto.
+ auto.
- Solve1 v v0 H H0.
+ solve1 v v0 H H0.
- Simpl; Generalize (varlist_eq_prop v v0).
- Elim (varlist_eq v v0); Simpl.
+ simpl in |- *; generalize (varlist_eq_prop v v0).
+ elim (varlist_eq v v0); simpl in |- *.
- Intro Heq; Rewrite (Heq I).
- Rewrite H.
- Repeat Rewrite isacs_aux_ok.
- Rewrite (Th_plus_permute T).
- Repeat Rewrite (Th_plus_assoc T).
- Rewrite (Th_plus_sym T (Aopp (interp_vl Amult Aone Azero vm v0))
- (interp_vl Amult Aone Azero vm v0)).
- Rewrite (Th_opp_def T).
- Rewrite (Th_plus_zero_left T).
- Reflexivity.
+ intro Heq; rewrite (Heq I).
+ rewrite H.
+ repeat rewrite isacs_aux_ok.
+ rewrite (Th_plus_permute T).
+ repeat rewrite (Th_plus_assoc T).
+ rewrite
+ (Th_plus_comm T (Aopp (interp_vl Amult Aone Azero vm v0))
+ (interp_vl Amult Aone Azero vm v0)).
+ rewrite (Th_opp_def T).
+ rewrite (Th_plus_zero_left T).
+ reflexivity.
- Solve1 v v0 H H0.
+ solve1 v v0 H H0.
- Induction y; Intros.
+ simple induction y; intros.
- Auto.
+ auto.
- Simpl; Generalize (varlist_eq_prop v v0).
- Elim (varlist_eq v v0); Simpl.
+ simpl in |- *; generalize (varlist_eq_prop v v0).
+ elim (varlist_eq v v0); simpl in |- *.
- Intro Heq; Rewrite (Heq I).
- Rewrite H.
- Repeat Rewrite isacs_aux_ok.
- Rewrite (Th_plus_permute T).
- Repeat Rewrite (Th_plus_assoc T).
- Rewrite (Th_opp_def T).
- Rewrite (Th_plus_zero_left T).
- Reflexivity.
+ intro Heq; rewrite (Heq I).
+ rewrite H.
+ repeat rewrite isacs_aux_ok.
+ rewrite (Th_plus_permute T).
+ repeat rewrite (Th_plus_assoc T).
+ rewrite (Th_opp_def T).
+ rewrite (Th_plus_zero_left T).
+ reflexivity.
- Solve1 v v0 H H0.
+ solve1 v v0 H H0.
- Solve1 v v0 H H0.
+ solve1 v v0 H H0.
-Save.
+Qed.
-Tactic Definition Solve2 l v H :=
- Elim (varlist_lt l v); Simpl; Rewrite isacs_aux_ok;
- [ Auto
- | Rewrite H; Auto ].
+Ltac solve2 l v H :=
+ elim (varlist_lt l v); simpl in |- *; rewrite isacs_aux_ok;
+ [ auto | rewrite H; auto ].
-Lemma plus_varlist_insert_ok : (l:varlist)(s:signed_sum)
- (interp_sacs (plus_varlist_insert l s))
- == (Aplus (interp_vl Amult Aone Azero vm l) (interp_sacs s)).
+Lemma plus_varlist_insert_ok :
+ forall (l:varlist) (s:signed_sum),
+ interp_sacs (plus_varlist_insert l s) =
+ Aplus (interp_vl Amult Aone Azero vm l) (interp_sacs s).
Proof.
- Induction s.
- Trivial.
+ simple induction s.
+ trivial.
- Simpl; Intros.
- Solve2 l v H.
+ simpl in |- *; intros.
+ solve2 l v H.
- Simpl; Intros.
- Generalize (varlist_eq_prop l v).
- Elim (varlist_eq l v); Simpl.
+ simpl in |- *; intros.
+ generalize (varlist_eq_prop l v).
+ elim (varlist_eq l v); simpl in |- *.
- Intro Heq; Rewrite (Heq I).
- Repeat Rewrite isacs_aux_ok.
- Repeat Rewrite (Th_plus_assoc T).
- Rewrite (Th_opp_def T).
- Rewrite (Th_plus_zero_left T).
- Reflexivity.
+ intro Heq; rewrite (Heq I).
+ repeat rewrite isacs_aux_ok.
+ repeat rewrite (Th_plus_assoc T).
+ rewrite (Th_opp_def T).
+ rewrite (Th_plus_zero_left T).
+ reflexivity.
- Solve2 l v H.
+ solve2 l v H.
-Save.
+Qed.
-Lemma minus_varlist_insert_ok : (l:varlist)(s:signed_sum)
- (interp_sacs (minus_varlist_insert l s))
- == (Aplus (Aopp (interp_vl Amult Aone Azero vm l)) (interp_sacs s)).
+Lemma minus_varlist_insert_ok :
+ forall (l:varlist) (s:signed_sum),
+ interp_sacs (minus_varlist_insert l s) =
+ Aplus (Aopp (interp_vl Amult Aone Azero vm l)) (interp_sacs s).
Proof.
- Induction s.
- Trivial.
+ simple induction s.
+ trivial.
- Simpl; Intros.
- Generalize (varlist_eq_prop l v).
- Elim (varlist_eq l v); Simpl.
+ simpl in |- *; intros.
+ generalize (varlist_eq_prop l v).
+ elim (varlist_eq l v); simpl in |- *.
- Intro Heq; Rewrite (Heq I).
- Repeat Rewrite isacs_aux_ok.
- Repeat Rewrite (Th_plus_assoc T).
- Rewrite (Th_plus_sym T (Aopp (interp_vl Amult Aone Azero vm v))
- (interp_vl Amult Aone Azero vm v)).
- Rewrite (Th_opp_def T).
- Auto.
+ intro Heq; rewrite (Heq I).
+ repeat rewrite isacs_aux_ok.
+ repeat rewrite (Th_plus_assoc T).
+ rewrite
+ (Th_plus_comm T (Aopp (interp_vl Amult Aone Azero vm v))
+ (interp_vl Amult Aone Azero vm v)).
+ rewrite (Th_opp_def T).
+ auto.
- Simpl; Intros.
- Solve2 l v H.
+ simpl in |- *; intros.
+ solve2 l v H.
- Simpl; Intros; Solve2 l v H.
+ simpl in |- *; intros; solve2 l v H.
-Save.
+Qed.
-Lemma signed_sum_opp_ok : (s:signed_sum)
- (interp_sacs (signed_sum_opp s))
- == (Aopp (interp_sacs s)).
+Lemma signed_sum_opp_ok :
+ forall s:signed_sum, interp_sacs (signed_sum_opp s) = Aopp (interp_sacs s).
Proof.
- Induction s; Simpl; Intros.
+ simple induction s; simpl in |- *; intros.
- Symmetry; Apply (Th_opp_zero T).
+ symmetry in |- *; apply (Th_opp_zero T).
- Repeat Rewrite isacs_aux_ok.
- Rewrite H.
- Rewrite (Th_plus_opp_opp T).
- Reflexivity.
+ repeat rewrite isacs_aux_ok.
+ rewrite H.
+ rewrite (Th_plus_opp_opp T).
+ reflexivity.
- Repeat Rewrite isacs_aux_ok.
- Rewrite H.
- Rewrite <- (Th_plus_opp_opp T).
- Rewrite (Th_opp_opp T).
- Reflexivity.
+ repeat rewrite isacs_aux_ok.
+ rewrite H.
+ rewrite <- (Th_plus_opp_opp T).
+ rewrite (Th_opp_opp T).
+ reflexivity.
-Save.
+Qed.
-Lemma plus_sum_scalar_ok : (l:varlist)(s:signed_sum)
- (interp_sacs (plus_sum_scalar l s))
- == (Amult (interp_vl Amult Aone Azero vm l) (interp_sacs s)).
+Lemma plus_sum_scalar_ok :
+ forall (l:varlist) (s:signed_sum),
+ interp_sacs (plus_sum_scalar l s) =
+ Amult (interp_vl Amult Aone Azero vm l) (interp_sacs s).
Proof.
- Induction s.
- Trivial.
-
- Simpl; Intros.
- Rewrite plus_varlist_insert_ok.
- Rewrite (varlist_merge_ok A Aplus Amult Aone Azero Aeq vm T).
- Repeat Rewrite isacs_aux_ok.
- Rewrite H.
- Auto.
-
- Simpl; Intros.
- Rewrite minus_varlist_insert_ok.
- Repeat Rewrite isacs_aux_ok.
- Rewrite (varlist_merge_ok A Aplus Amult Aone Azero Aeq vm T).
- Rewrite H.
- Rewrite (Th_distr_right T).
- Rewrite <- (Th_opp_mult_right T).
- Reflexivity.
-
-Save.
-
-Lemma minus_sum_scalar_ok : (l:varlist)(s:signed_sum)
- (interp_sacs (minus_sum_scalar l s))
- == (Aopp (Amult (interp_vl Amult Aone Azero vm l) (interp_sacs s))).
+ simple induction s.
+ trivial.
+
+ simpl in |- *; intros.
+ rewrite plus_varlist_insert_ok.
+ rewrite (varlist_merge_ok A Aplus Amult Aone Azero Aeq vm T).
+ repeat rewrite isacs_aux_ok.
+ rewrite H.
+ auto.
+
+ simpl in |- *; intros.
+ rewrite minus_varlist_insert_ok.
+ repeat rewrite isacs_aux_ok.
+ rewrite (varlist_merge_ok A Aplus Amult Aone Azero Aeq vm T).
+ rewrite H.
+ rewrite (Th_distr_right T).
+ rewrite <- (Th_opp_mult_right T).
+ reflexivity.
+
+Qed.
+
+Lemma minus_sum_scalar_ok :
+ forall (l:varlist) (s:signed_sum),
+ interp_sacs (minus_sum_scalar l s) =
+ Aopp (Amult (interp_vl Amult Aone Azero vm l) (interp_sacs s)).
Proof.
- Induction s; Simpl; Intros.
-
- Rewrite (Th_mult_zero_right T); Symmetry; Apply (Th_opp_zero T).
-
- Simpl; Intros.
- Rewrite minus_varlist_insert_ok.
- Rewrite (varlist_merge_ok A Aplus Amult Aone Azero Aeq vm T).
- Repeat Rewrite isacs_aux_ok.
- Rewrite H.
- Rewrite (Th_distr_right T).
- Rewrite (Th_plus_opp_opp T).
- Reflexivity.
-
- Simpl; Intros.
- Rewrite plus_varlist_insert_ok.
- Repeat Rewrite isacs_aux_ok.
- Rewrite (varlist_merge_ok A Aplus Amult Aone Azero Aeq vm T).
- Rewrite H.
- Rewrite (Th_distr_right T).
- Rewrite <- (Th_opp_mult_right T).
- Rewrite <- (Th_plus_opp_opp T).
- Rewrite (Th_opp_opp T).
- Reflexivity.
-
-Save.
-
-Lemma signed_sum_prod_ok : (x,y:signed_sum)
- (interp_sacs (signed_sum_prod x y)) ==
- (Amult (interp_sacs x) (interp_sacs y)).
+ simple induction s; simpl in |- *; intros.
+
+ rewrite (Th_mult_zero_right T); symmetry in |- *; apply (Th_opp_zero T).
+
+ simpl in |- *; intros.
+ rewrite minus_varlist_insert_ok.
+ rewrite (varlist_merge_ok A Aplus Amult Aone Azero Aeq vm T).
+ repeat rewrite isacs_aux_ok.
+ rewrite H.
+ rewrite (Th_distr_right T).
+ rewrite (Th_plus_opp_opp T).
+ reflexivity.
+
+ simpl in |- *; intros.
+ rewrite plus_varlist_insert_ok.
+ repeat rewrite isacs_aux_ok.
+ rewrite (varlist_merge_ok A Aplus Amult Aone Azero Aeq vm T).
+ rewrite H.
+ rewrite (Th_distr_right T).
+ rewrite <- (Th_opp_mult_right T).
+ rewrite <- (Th_plus_opp_opp T).
+ rewrite (Th_opp_opp T).
+ reflexivity.
+
+Qed.
+
+Lemma signed_sum_prod_ok :
+ forall x y:signed_sum,
+ interp_sacs (signed_sum_prod x y) = Amult (interp_sacs x) (interp_sacs y).
Proof.
- Induction x.
+ simple induction x.
- Simpl; EAuto 1.
+ simpl in |- *; eauto 1.
- Intros; Simpl.
- Rewrite signed_sum_merge_ok.
- Rewrite plus_sum_scalar_ok.
- Repeat Rewrite isacs_aux_ok.
- Rewrite H.
- Auto.
+ intros; simpl in |- *.
+ rewrite signed_sum_merge_ok.
+ rewrite plus_sum_scalar_ok.
+ repeat rewrite isacs_aux_ok.
+ rewrite H.
+ auto.
- Intros; Simpl.
- Repeat Rewrite isacs_aux_ok.
- Rewrite signed_sum_merge_ok.
- Rewrite minus_sum_scalar_ok.
- Rewrite H.
- Rewrite (Th_distr_left T).
- Rewrite (Th_opp_mult_left T).
- Reflexivity.
+ intros; simpl in |- *.
+ repeat rewrite isacs_aux_ok.
+ rewrite signed_sum_merge_ok.
+ rewrite minus_sum_scalar_ok.
+ rewrite H.
+ rewrite (Th_distr_left T).
+ rewrite (Th_opp_mult_left T).
+ reflexivity.
-Save.
+Qed.
-Theorem apolynomial_normalize_ok : (p:apolynomial)
- (interp_sacs (apolynomial_normalize p))==(interp_ap p).
+Theorem apolynomial_normalize_ok :
+ forall p:apolynomial, interp_sacs (apolynomial_normalize p) = interp_ap p.
Proof.
- Induction p; Simpl; Auto 1.
- Intros.
- Rewrite signed_sum_merge_ok.
- Rewrite H; Rewrite H0; Reflexivity.
- Intros.
- Rewrite signed_sum_prod_ok.
- Rewrite H; Rewrite H0; Reflexivity.
- Intros.
- Rewrite signed_sum_opp_ok.
- Rewrite H; Reflexivity.
-Save.
-
-End abstract_rings.
+ simple induction p; simpl in |- *; auto 1.
+ intros.
+ rewrite signed_sum_merge_ok.
+ rewrite H; rewrite H0; reflexivity.
+ intros.
+ rewrite signed_sum_prod_ok.
+ rewrite H; rewrite H0; reflexivity.
+ intros.
+ rewrite signed_sum_opp_ok.
+ rewrite H; reflexivity.
+Qed.
+
+End abstract_rings. \ No newline at end of file
diff --git a/contrib/ring/Ring_normalize.v b/contrib/ring/Ring_normalize.v
index 94ad71ffc..faa892ce5 100644
--- a/contrib/ring/Ring_normalize.v
+++ b/contrib/ring/Ring_normalize.v
@@ -8,19 +8,19 @@
(* $Id$ *)
-Require Ring_theory.
-Require Quote.
+Require Import Ring_theory.
+Require Import Quote.
Set Implicit Arguments.
-Lemma index_eq_prop: (n,m:index)(Is_true (index_eq n m)) -> n=m.
+Lemma index_eq_prop : forall n m:index, Is_true (index_eq n m) -> n = m.
Proof.
- Intros.
- Apply Quote.index_eq_prop.
- Generalize H.
- Case (index_eq n m); Simpl; Trivial; Intros.
- Contradiction.
-Save.
+ intros.
+ apply index_eq_prop.
+ generalize H.
+ case (index_eq n m); simpl in |- *; trivial; intros.
+ contradiction.
+Qed.
Section semi_rings.
@@ -49,16 +49,14 @@ Variable Aeq : A -> A -> bool.
(* varlist is isomorphic to (list var), but we built a special inductive
for efficiency *)
-Inductive varlist : Type :=
-| Nil_var : varlist
-| Cons_var : index -> varlist -> varlist
-.
+Inductive varlist : Type :=
+ | Nil_var : varlist
+ | Cons_var : index -> varlist -> varlist.
-Inductive canonical_sum : Type :=
-| Nil_monom : canonical_sum
-| Cons_monom : A -> varlist -> canonical_sum -> canonical_sum
-| Cons_varlist : varlist -> canonical_sum -> canonical_sum
-.
+Inductive canonical_sum : Type :=
+ | Nil_monom : canonical_sum
+ | Cons_monom : A -> varlist -> canonical_sum -> canonical_sum
+ | Cons_varlist : varlist -> canonical_sum -> canonical_sum.
(* Order on monoms *)
@@ -75,199 +73,203 @@ Inductive canonical_sum : Type :=
4*x*y < 59*x*y*y*z
*)
-Fixpoint varlist_eq [x,y:varlist] : bool :=
- Cases x y of
- | Nil_var Nil_var => true
- | (Cons_var i xrest) (Cons_var j yrest) =>
- (andb (index_eq i j) (varlist_eq xrest yrest))
- | _ _ => false
+Fixpoint varlist_eq (x y:varlist) {struct y} : bool :=
+ match x, y with
+ | Nil_var, Nil_var => true
+ | Cons_var i xrest, Cons_var j yrest =>
+ andb (index_eq i j) (varlist_eq xrest yrest)
+ | _, _ => false
end.
-Fixpoint varlist_lt [x,y:varlist] : bool :=
- Cases x y of
- | Nil_var (Cons_var _ _) => true
- | (Cons_var i xrest) (Cons_var j yrest) =>
- if (index_lt i j) then true
- else (andb (index_eq i j) (varlist_lt xrest yrest))
- | _ _ => false
+Fixpoint varlist_lt (x y:varlist) {struct y} : bool :=
+ match x, y with
+ | Nil_var, Cons_var _ _ => true
+ | Cons_var i xrest, Cons_var j yrest =>
+ if index_lt i j
+ then true
+ else andb (index_eq i j) (varlist_lt xrest yrest)
+ | _, _ => false
end.
(* merges two variables lists *)
-Fixpoint varlist_merge [l1:varlist] : varlist -> varlist :=
- Cases l1 of
- | (Cons_var v1 t1) =>
- Fix vm_aux {vm_aux [l2:varlist] : varlist :=
- Cases l2 of
- | (Cons_var v2 t2) =>
- if (index_lt v1 v2)
- then (Cons_var v1 (varlist_merge t1 l2))
- else (Cons_var v2 (vm_aux t2))
- | Nil_var => l1
- end}
- | Nil_var => [l2]l2
+Fixpoint varlist_merge (l1:varlist) : varlist -> varlist :=
+ match l1 with
+ | Cons_var v1 t1 =>
+ (fix vm_aux (l2:varlist) : varlist :=
+ match l2 with
+ | Cons_var v2 t2 =>
+ if index_lt v1 v2
+ then Cons_var v1 (varlist_merge t1 l2)
+ else Cons_var v2 (vm_aux t2)
+ | Nil_var => l1
+ end)
+ | Nil_var => fun l2 => l2
end.
(* returns the sum of two canonical sums *)
-Fixpoint canonical_sum_merge [s1:canonical_sum]
- : canonical_sum -> canonical_sum :=
-Cases s1 of
-| (Cons_monom c1 l1 t1) =>
- Fix csm_aux{csm_aux[s2:canonical_sum] : canonical_sum :=
- Cases s2 of
- | (Cons_monom c2 l2 t2) =>
- if (varlist_eq l1 l2)
- then (Cons_monom (Aplus c1 c2) l1
- (canonical_sum_merge t1 t2))
- else if (varlist_lt l1 l2)
- then (Cons_monom c1 l1 (canonical_sum_merge t1 s2))
- else (Cons_monom c2 l2 (csm_aux t2))
- | (Cons_varlist l2 t2) =>
- if (varlist_eq l1 l2)
- then (Cons_monom (Aplus c1 Aone) l1
- (canonical_sum_merge t1 t2))
- else if (varlist_lt l1 l2)
- then (Cons_monom c1 l1 (canonical_sum_merge t1 s2))
- else (Cons_varlist l2 (csm_aux t2))
- | Nil_monom => s1
- end}
-| (Cons_varlist l1 t1) =>
- Fix csm_aux2{csm_aux2[s2:canonical_sum] : canonical_sum :=
- Cases s2 of
- | (Cons_monom c2 l2 t2) =>
- if (varlist_eq l1 l2)
- then (Cons_monom (Aplus Aone c2) l1
- (canonical_sum_merge t1 t2))
- else if (varlist_lt l1 l2)
- then (Cons_varlist l1 (canonical_sum_merge t1 s2))
- else (Cons_monom c2 l2 (csm_aux2 t2))
- | (Cons_varlist l2 t2) =>
- if (varlist_eq l1 l2)
- then (Cons_monom (Aplus Aone Aone) l1
- (canonical_sum_merge t1 t2))
- else if (varlist_lt l1 l2)
- then (Cons_varlist l1 (canonical_sum_merge t1 s2))
- else (Cons_varlist l2 (csm_aux2 t2))
- | Nil_monom => s1
- end}
-| Nil_monom => [s2]s2
-end.
+Fixpoint canonical_sum_merge (s1:canonical_sum) :
+ canonical_sum -> canonical_sum :=
+ match s1 with
+ | Cons_monom c1 l1 t1 =>
+ (fix csm_aux (s2:canonical_sum) : canonical_sum :=
+ match s2 with
+ | Cons_monom c2 l2 t2 =>
+ if varlist_eq l1 l2
+ then Cons_monom (Aplus c1 c2) l1 (canonical_sum_merge t1 t2)
+ else
+ if varlist_lt l1 l2
+ then Cons_monom c1 l1 (canonical_sum_merge t1 s2)
+ else Cons_monom c2 l2 (csm_aux t2)
+ | Cons_varlist l2 t2 =>
+ if varlist_eq l1 l2
+ then Cons_monom (Aplus c1 Aone) l1 (canonical_sum_merge t1 t2)
+ else
+ if varlist_lt l1 l2
+ then Cons_monom c1 l1 (canonical_sum_merge t1 s2)
+ else Cons_varlist l2 (csm_aux t2)
+ | Nil_monom => s1
+ end)
+ | Cons_varlist l1 t1 =>
+ (fix csm_aux2 (s2:canonical_sum) : canonical_sum :=
+ match s2 with
+ | Cons_monom c2 l2 t2 =>
+ if varlist_eq l1 l2
+ then Cons_monom (Aplus Aone c2) l1 (canonical_sum_merge t1 t2)
+ else
+ if varlist_lt l1 l2
+ then Cons_varlist l1 (canonical_sum_merge t1 s2)
+ else Cons_monom c2 l2 (csm_aux2 t2)
+ | Cons_varlist l2 t2 =>
+ if varlist_eq l1 l2
+ then Cons_monom (Aplus Aone Aone) l1 (canonical_sum_merge t1 t2)
+ else
+ if varlist_lt l1 l2
+ then Cons_varlist l1 (canonical_sum_merge t1 s2)
+ else Cons_varlist l2 (csm_aux2 t2)
+ | Nil_monom => s1
+ end)
+ | Nil_monom => fun s2 => s2
+ end.
(* Insertion of a monom in a canonical sum *)
-Fixpoint monom_insert [c1:A; l1:varlist; s2 : canonical_sum]
- : canonical_sum :=
- Cases s2 of
- | (Cons_monom c2 l2 t2) =>
- if (varlist_eq l1 l2)
- then (Cons_monom (Aplus c1 c2) l1 t2)
- else if (varlist_lt l1 l2)
- then (Cons_monom c1 l1 s2)
- else (Cons_monom c2 l2 (monom_insert c1 l1 t2))
- | (Cons_varlist l2 t2) =>
- if (varlist_eq l1 l2)
- then (Cons_monom (Aplus c1 Aone) l1 t2)
- else if (varlist_lt l1 l2)
- then (Cons_monom c1 l1 s2)
- else (Cons_varlist l2 (monom_insert c1 l1 t2))
- | Nil_monom => (Cons_monom c1 l1 Nil_monom)
+Fixpoint monom_insert (c1:A) (l1:varlist) (s2:canonical_sum) {struct s2} :
+ canonical_sum :=
+ match s2 with
+ | Cons_monom c2 l2 t2 =>
+ if varlist_eq l1 l2
+ then Cons_monom (Aplus c1 c2) l1 t2
+ else
+ if varlist_lt l1 l2
+ then Cons_monom c1 l1 s2
+ else Cons_monom c2 l2 (monom_insert c1 l1 t2)
+ | Cons_varlist l2 t2 =>
+ if varlist_eq l1 l2
+ then Cons_monom (Aplus c1 Aone) l1 t2
+ else
+ if varlist_lt l1 l2
+ then Cons_monom c1 l1 s2
+ else Cons_varlist l2 (monom_insert c1 l1 t2)
+ | Nil_monom => Cons_monom c1 l1 Nil_monom
end.
-Fixpoint varlist_insert [l1:varlist; s2:canonical_sum]
- : canonical_sum :=
- Cases s2 of
- | (Cons_monom c2 l2 t2) =>
- if (varlist_eq l1 l2)
- then (Cons_monom (Aplus Aone c2) l1 t2)
- else if (varlist_lt l1 l2)
- then (Cons_varlist l1 s2)
- else (Cons_monom c2 l2 (varlist_insert l1 t2))
- | (Cons_varlist l2 t2) =>
- if (varlist_eq l1 l2)
- then (Cons_monom (Aplus Aone Aone) l1 t2)
- else if (varlist_lt l1 l2)
- then (Cons_varlist l1 s2)
- else (Cons_varlist l2 (varlist_insert l1 t2))
- | Nil_monom => (Cons_varlist l1 Nil_monom)
+Fixpoint varlist_insert (l1:varlist) (s2:canonical_sum) {struct s2} :
+ canonical_sum :=
+ match s2 with
+ | Cons_monom c2 l2 t2 =>
+ if varlist_eq l1 l2
+ then Cons_monom (Aplus Aone c2) l1 t2
+ else
+ if varlist_lt l1 l2
+ then Cons_varlist l1 s2
+ else Cons_monom c2 l2 (varlist_insert l1 t2)
+ | Cons_varlist l2 t2 =>
+ if varlist_eq l1 l2
+ then Cons_monom (Aplus Aone Aone) l1 t2
+ else
+ if varlist_lt l1 l2
+ then Cons_varlist l1 s2
+ else Cons_varlist l2 (varlist_insert l1 t2)
+ | Nil_monom => Cons_varlist l1 Nil_monom
end.
(* Computes c0*s *)
-Fixpoint canonical_sum_scalar [c0:A; s:canonical_sum] : canonical_sum :=
- Cases s of
- | (Cons_monom c l t) =>
- (Cons_monom (Amult c0 c) l (canonical_sum_scalar c0 t))
- | (Cons_varlist l t) =>
- (Cons_monom c0 l (canonical_sum_scalar c0 t))
- | Nil_monom => Nil_monom
- end.
+Fixpoint canonical_sum_scalar (c0:A) (s:canonical_sum) {struct s} :
+ canonical_sum :=
+ match s with
+ | Cons_monom c l t => Cons_monom (Amult c0 c) l (canonical_sum_scalar c0 t)
+ | Cons_varlist l t => Cons_monom c0 l (canonical_sum_scalar c0 t)
+ | Nil_monom => Nil_monom
+ end.
(* Computes l0*s *)
-Fixpoint canonical_sum_scalar2 [l0:varlist; s:canonical_sum]
- : canonical_sum :=
- Cases s of
- | (Cons_monom c l t) =>
- (monom_insert c (varlist_merge l0 l) (canonical_sum_scalar2 l0 t))
- | (Cons_varlist l t) =>
- (varlist_insert (varlist_merge l0 l) (canonical_sum_scalar2 l0 t))
- | Nil_monom => Nil_monom
- end.
+Fixpoint canonical_sum_scalar2 (l0:varlist) (s:canonical_sum) {struct s} :
+ canonical_sum :=
+ match s with
+ | Cons_monom c l t =>
+ monom_insert c (varlist_merge l0 l) (canonical_sum_scalar2 l0 t)
+ | Cons_varlist l t =>
+ varlist_insert (varlist_merge l0 l) (canonical_sum_scalar2 l0 t)
+ | Nil_monom => Nil_monom
+ end.
(* Computes c0*l0*s *)
-Fixpoint canonical_sum_scalar3 [c0:A;l0:varlist; s:canonical_sum]
- : canonical_sum :=
- Cases s of
- | (Cons_monom c l t) =>
- (monom_insert (Amult c0 c) (varlist_merge l0 l)
- (canonical_sum_scalar3 c0 l0 t))
- | (Cons_varlist l t) =>
- (monom_insert c0 (varlist_merge l0 l)
- (canonical_sum_scalar3 c0 l0 t))
- | Nil_monom => Nil_monom
- end.
+Fixpoint canonical_sum_scalar3 (c0:A) (l0:varlist)
+ (s:canonical_sum) {struct s} : canonical_sum :=
+ match s with
+ | Cons_monom c l t =>
+ monom_insert (Amult c0 c) (varlist_merge l0 l)
+ (canonical_sum_scalar3 c0 l0 t)
+ | Cons_varlist l t =>
+ monom_insert c0 (varlist_merge l0 l) (canonical_sum_scalar3 c0 l0 t)
+ | Nil_monom => Nil_monom
+ end.
(* returns the product of two canonical sums *)
-Fixpoint canonical_sum_prod [s1:canonical_sum]
- : canonical_sum -> canonical_sum :=
- [s2]Cases s1 of
- | (Cons_monom c1 l1 t1) =>
- (canonical_sum_merge (canonical_sum_scalar3 c1 l1 s2)
- (canonical_sum_prod t1 s2))
- | (Cons_varlist l1 t1) =>
- (canonical_sum_merge (canonical_sum_scalar2 l1 s2)
- (canonical_sum_prod t1 s2))
- | Nil_monom => Nil_monom
- end.
+Fixpoint canonical_sum_prod (s1 s2:canonical_sum) {struct s1} :
+ canonical_sum :=
+ match s1 with
+ | Cons_monom c1 l1 t1 =>
+ canonical_sum_merge (canonical_sum_scalar3 c1 l1 s2)
+ (canonical_sum_prod t1 s2)
+ | Cons_varlist l1 t1 =>
+ canonical_sum_merge (canonical_sum_scalar2 l1 s2)
+ (canonical_sum_prod t1 s2)
+ | Nil_monom => Nil_monom
+ end.
(* The type to represent concrete semi-ring polynomials *)
-Inductive Type spolynomial :=
- SPvar : index -> spolynomial
-| SPconst : A -> spolynomial
-| SPplus : spolynomial -> spolynomial -> spolynomial
-| SPmult : spolynomial -> spolynomial -> spolynomial.
-
-Fixpoint spolynomial_normalize[p:spolynomial] : canonical_sum :=
- Cases p of
- | (SPvar i) => (Cons_varlist (Cons_var i Nil_var) Nil_monom)
- | (SPconst c) => (Cons_monom c Nil_var Nil_monom)
- | (SPplus l r) => (canonical_sum_merge (spolynomial_normalize l)
- (spolynomial_normalize r))
- | (SPmult l r) => (canonical_sum_prod (spolynomial_normalize l)
- (spolynomial_normalize r))
+Inductive spolynomial : Type :=
+ | SPvar : index -> spolynomial
+ | SPconst : A -> spolynomial
+ | SPplus : spolynomial -> spolynomial -> spolynomial
+ | SPmult : spolynomial -> spolynomial -> spolynomial.
+
+Fixpoint spolynomial_normalize (p:spolynomial) : canonical_sum :=
+ match p with
+ | SPvar i => Cons_varlist (Cons_var i Nil_var) Nil_monom
+ | SPconst c => Cons_monom c Nil_var Nil_monom
+ | SPplus l r =>
+ canonical_sum_merge (spolynomial_normalize l) (spolynomial_normalize r)
+ | SPmult l r =>
+ canonical_sum_prod (spolynomial_normalize l) (spolynomial_normalize r)
end.
(* Deletion of useless 0 and 1 in canonical sums *)
-Fixpoint canonical_sum_simplify [ s:canonical_sum] : canonical_sum :=
- Cases s of
- | (Cons_monom c l t) =>
- if (Aeq c Azero)
- then (canonical_sum_simplify t)
- else if (Aeq c Aone)
- then (Cons_varlist l (canonical_sum_simplify t))
- else (Cons_monom c l (canonical_sum_simplify t))
- | (Cons_varlist l t) => (Cons_varlist l (canonical_sum_simplify t))
+Fixpoint canonical_sum_simplify (s:canonical_sum) : canonical_sum :=
+ match s with
+ | Cons_monom c l t =>
+ if Aeq c Azero
+ then canonical_sum_simplify t
+ else
+ if Aeq c Aone
+ then Cons_varlist l (canonical_sum_simplify t)
+ else Cons_monom c l (canonical_sum_simplify t)
+ | Cons_varlist l t => Cons_varlist l (canonical_sum_simplify t)
| Nil_monom => Nil_monom
end.
-Definition spolynomial_simplify :=
- [x:spolynomial](canonical_sum_simplify (spolynomial_normalize x)).
+Definition spolynomial_simplify (x:spolynomial) :=
+ canonical_sum_simplify (spolynomial_normalize x).
(* End definitions. *)
@@ -277,7 +279,7 @@ Definition spolynomial_simplify :=
acording to a certain variables map. Once again the choosen definition
is generic and could be changed ****)
-Variable vm : (varmap A).
+Variable vm : varmap A.
(* Interpretation of list of variables
* [x1; ... ; xn ] is interpreted as (find v x1)* ... *(find v xn)
@@ -285,50 +287,49 @@ Variable vm : (varmap A).
* never occur. Since we want only to prove correctness theorems, which form
* is : for any varmap and any spolynom ... this is a safe and pain-saving
* choice *)
-Definition interp_var [i:index] := (varmap_find Azero i vm).
+Definition interp_var (i:index) := varmap_find Azero i vm.
-(* Local *) Definition ivl_aux := Fix ivl_aux {ivl_aux[x:index; t:varlist] : A :=
- Cases t of
- | Nil_var => (interp_var x)
- | (Cons_var x' t') => (Amult (interp_var x) (ivl_aux x' t'))
- end}.
+(* Local *) Definition ivl_aux :=
+ (fix ivl_aux (x:index) (t:varlist) {struct t} : A :=
+ match t with
+ | Nil_var => interp_var x
+ | Cons_var x' t' => Amult (interp_var x) (ivl_aux x' t')
+ end).
-Definition interp_vl := [l:varlist]
- Cases l of
+Definition interp_vl (l:varlist) :=
+ match l with
| Nil_var => Aone
- | (Cons_var x t) => (ivl_aux x t)
+ | Cons_var x t => ivl_aux x t
end.
-(* Local *) Definition interp_m := [c:A][l:varlist]
- Cases l of
- | Nil_var => c
- | (Cons_var x t) =>
- (Amult c (ivl_aux x t))
- end.
+(* Local *) Definition interp_m (c:A) (l:varlist) :=
+ match l with
+ | Nil_var => c
+ | Cons_var x t => Amult c (ivl_aux x t)
+ end.
-(* Local *) Definition ics_aux := Fix ics_aux{ics_aux[a:A; s:canonical_sum] : A :=
- Cases s of
- | Nil_monom => a
- | (Cons_varlist l t) => (Aplus a (ics_aux (interp_vl l) t))
- | (Cons_monom c l t) => (Aplus a (ics_aux (interp_m c l) t))
- end}.
+(* Local *) Definition ics_aux :=
+ (fix ics_aux (a:A) (s:canonical_sum) {struct s} : A :=
+ match s with
+ | Nil_monom => a
+ | Cons_varlist l t => Aplus a (ics_aux (interp_vl l) t)
+ | Cons_monom c l t => Aplus a (ics_aux (interp_m c l) t)
+ end).
(* Interpretation of a canonical sum *)
-Definition interp_cs : canonical_sum -> A :=
- [s]Cases s of
+Definition interp_cs (s:canonical_sum) : A :=
+ match s with
| Nil_monom => Azero
- | (Cons_varlist l t) =>
- (ics_aux (interp_vl l) t)
- | (Cons_monom c l t) =>
- (ics_aux (interp_m c l) t)
+ | Cons_varlist l t => ics_aux (interp_vl l) t
+ | Cons_monom c l t => ics_aux (interp_m c l) t
end.
-Fixpoint interp_sp [p:spolynomial] : A :=
- Cases p of
- (SPconst c) => c
- | (SPvar i) => (interp_var i)
- | (SPplus p1 p2) => (Aplus (interp_sp p1) (interp_sp p2))
- | (SPmult p1 p2) => (Amult (interp_sp p1) (interp_sp p2))
+Fixpoint interp_sp (p:spolynomial) : A :=
+ match p with
+ | SPconst c => c
+ | SPvar i => interp_var i
+ | SPplus p1 p2 => Aplus (interp_sp p1) (interp_sp p2)
+ | SPmult p1 p2 => Amult (interp_sp p1) (interp_sp p2)
end.
@@ -338,415 +339,420 @@ Unset Implicit Arguments.
(* Section properties. *)
-Variable T : (Semi_Ring_Theory Aplus Amult Aone Azero Aeq).
-
-Hint SR_plus_sym_T := Resolve (SR_plus_sym T).
-Hint SR_plus_assoc_T := Resolve (SR_plus_assoc T).
-Hint SR_plus_assoc2_T := Resolve (SR_plus_assoc2 T).
-Hint SR_mult_sym_T := Resolve (SR_mult_sym T).
-Hint SR_mult_assoc_T := Resolve (SR_mult_assoc T).
-Hint SR_mult_assoc2_T := Resolve (SR_mult_assoc2 T).
-Hint SR_plus_zero_left_T := Resolve (SR_plus_zero_left T).
-Hint SR_plus_zero_left2_T := Resolve (SR_plus_zero_left2 T).
-Hint SR_mult_one_left_T := Resolve (SR_mult_one_left T).
-Hint SR_mult_one_left2_T := Resolve (SR_mult_one_left2 T).
-Hint SR_mult_zero_left_T := Resolve (SR_mult_zero_left T).
-Hint SR_mult_zero_left2_T := Resolve (SR_mult_zero_left2 T).
-Hint SR_distr_left_T := Resolve (SR_distr_left T).
-Hint SR_distr_left2_T := Resolve (SR_distr_left2 T).
-Hint SR_plus_reg_left_T := Resolve (SR_plus_reg_left T).
-Hint SR_plus_permute_T := Resolve (SR_plus_permute T).
-Hint SR_mult_permute_T := Resolve (SR_mult_permute T).
-Hint SR_distr_right_T := Resolve (SR_distr_right T).
-Hint SR_distr_right2_T := Resolve (SR_distr_right2 T).
-Hint SR_mult_zero_right_T := Resolve (SR_mult_zero_right T).
-Hint SR_mult_zero_right2_T := Resolve (SR_mult_zero_right2 T).
-Hint SR_plus_zero_right_T := Resolve (SR_plus_zero_right T).
-Hint SR_plus_zero_right2_T := Resolve (SR_plus_zero_right2 T).
-Hint SR_mult_one_right_T := Resolve (SR_mult_one_right T).
-Hint SR_mult_one_right2_T := Resolve (SR_mult_one_right2 T).
-Hint SR_plus_reg_right_T := Resolve (SR_plus_reg_right T).
-Hints Resolve refl_equal sym_equal trans_equal.
+Variable T : Semi_Ring_Theory Aplus Amult Aone Azero Aeq.
+
+Hint Resolve (SR_plus_comm T).
+Hint Resolve (SR_plus_assoc T).
+Hint Resolve (SR_plus_assoc2 T).
+Hint Resolve (SR_mult_comm T).
+Hint Resolve (SR_mult_assoc T).
+Hint Resolve (SR_mult_assoc2 T).
+Hint Resolve (SR_plus_zero_left T).
+Hint Resolve (SR_plus_zero_left2 T).
+Hint Resolve (SR_mult_one_left T).
+Hint Resolve (SR_mult_one_left2 T).
+Hint Resolve (SR_mult_zero_left T).
+Hint Resolve (SR_mult_zero_left2 T).
+Hint Resolve (SR_distr_left T).
+Hint Resolve (SR_distr_left2 T).
+Hint Resolve (SR_plus_reg_left T).
+Hint Resolve (SR_plus_permute T).
+Hint Resolve (SR_mult_permute T).
+Hint Resolve (SR_distr_right T).
+Hint Resolve (SR_distr_right2 T).
+Hint Resolve (SR_mult_zero_right T).
+Hint Resolve (SR_mult_zero_right2 T).
+Hint Resolve (SR_plus_zero_right T).
+Hint Resolve (SR_plus_zero_right2 T).
+Hint Resolve (SR_mult_one_right T).
+Hint Resolve (SR_mult_one_right2 T).
+Hint Resolve (SR_plus_reg_right T).
+Hint Resolve refl_equal sym_equal trans_equal.
(* Hints Resolve refl_eqT sym_eqT trans_eqT. *)
-Hints Immediate T.
+Hint Immediate T.
-Lemma varlist_eq_prop : (x,y:varlist)
- (Is_true (varlist_eq x y))->x==y.
+Lemma varlist_eq_prop : forall x y:varlist, Is_true (varlist_eq x y) -> x = y.
Proof.
- Induction x; Induction y; Contradiction Orelse Try Reflexivity.
- Simpl; Intros.
- Generalize (andb_prop2 ? ? H1); Intros; Elim H2; Intros.
- Rewrite (index_eq_prop H3); Rewrite (H v0 H4); Reflexivity.
-Save.
-
-Remark ivl_aux_ok : (v:varlist)(i:index)
- (ivl_aux i v)==(Amult (interp_var i) (interp_vl v)).
+ simple induction x; simple induction y; contradiction || (try reflexivity).
+ simpl in |- *; intros.
+ generalize (andb_prop2 _ _ H1); intros; elim H2; intros.
+ rewrite (index_eq_prop _ _ H3); rewrite (H v0 H4); reflexivity.
+Qed.
+
+Remark ivl_aux_ok :
+ forall (v:varlist) (i:index),
+ ivl_aux i v = Amult (interp_var i) (interp_vl v).
Proof.
- Induction v; Simpl; Intros.
- Trivial.
- Rewrite H; Trivial.
-Save.
-
-Lemma varlist_merge_ok : (x,y:varlist)
- (interp_vl (varlist_merge x y))
- ==(Amult (interp_vl x) (interp_vl y)).
+ simple induction v; simpl in |- *; intros.
+ trivial.
+ rewrite H; trivial.
+Qed.
+
+Lemma varlist_merge_ok :
+ forall x y:varlist,
+ interp_vl (varlist_merge x y) = Amult (interp_vl x) (interp_vl y).
Proof.
- Induction x.
- Simpl; Trivial.
- Induction y.
- Simpl; Trivial.
- Simpl; Intros.
- Elim (index_lt i i0); Simpl; Intros.
-
- Repeat Rewrite ivl_aux_ok.
- Rewrite H. Simpl.
- Rewrite ivl_aux_ok.
- EAuto.
-
- Repeat Rewrite ivl_aux_ok.
- Rewrite H0.
- Rewrite ivl_aux_ok.
- EAuto.
-Save.
-
-Remark ics_aux_ok : (x:A)(s:canonical_sum)
- (ics_aux x s)==(Aplus x (interp_cs s)).
+ simple induction x.
+ simpl in |- *; trivial.
+ simple induction y.
+ simpl in |- *; trivial.
+ simpl in |- *; intros.
+ elim (index_lt i i0); simpl in |- *; intros.
+
+ repeat rewrite ivl_aux_ok.
+ rewrite H. simpl in |- *.
+ rewrite ivl_aux_ok.
+ eauto.
+
+ repeat rewrite ivl_aux_ok.
+ rewrite H0.
+ rewrite ivl_aux_ok.
+ eauto.
+Qed.
+
+Remark ics_aux_ok :
+ forall (x:A) (s:canonical_sum), ics_aux x s = Aplus x (interp_cs s).
Proof.
- Induction s; Simpl; Intros.
- Trivial.
- Reflexivity.
- Reflexivity.
-Save.
-
-Remark interp_m_ok : (x:A)(l:varlist)
- (interp_m x l)==(Amult x (interp_vl l)).
+ simple induction s; simpl in |- *; intros.
+ trivial.
+ reflexivity.
+ reflexivity.
+Qed.
+
+Remark interp_m_ok :
+ forall (x:A) (l:varlist), interp_m x l = Amult x (interp_vl l).
Proof.
- NewDestruct l.
- Simpl; Trivial.
- Reflexivity.
-Save.
+ destruct l as [| i v].
+ simpl in |- *; trivial.
+ reflexivity.
+Qed.
-Lemma canonical_sum_merge_ok : (x,y:canonical_sum)
- (interp_cs (canonical_sum_merge x y))
- ==(Aplus (interp_cs x) (interp_cs y)).
+Lemma canonical_sum_merge_ok :
+ forall x y:canonical_sum,
+ interp_cs (canonical_sum_merge x y) = Aplus (interp_cs x) (interp_cs y).
-Induction x; Simpl.
-Trivial.
+simple induction x; simpl in |- *.
+trivial.
-Induction y; Simpl; Intros.
+simple induction y; simpl in |- *; intros.
(* monom and nil *)
-EAuto.
+eauto.
(* monom and monom *)
-Generalize (varlist_eq_prop v v0).
-Elim (varlist_eq v v0).
-Intros; Rewrite (H1 I).
-Simpl; Repeat Rewrite ics_aux_ok; Rewrite H.
-Repeat Rewrite interp_m_ok.
-Rewrite (SR_distr_left T).
-Repeat Rewrite <- (SR_plus_assoc T).
-Apply congr_eqT with f:=(Aplus (Amult a (interp_vl v0))).
-Trivial.
-
-Elim (varlist_lt v v0); Simpl.
-Repeat Rewrite ics_aux_ok.
-Rewrite H; Simpl; Rewrite ics_aux_ok; EAuto.
-
-Rewrite ics_aux_ok; Rewrite H0; Repeat Rewrite ics_aux_ok; Simpl; EAuto.
+generalize (varlist_eq_prop v v0).
+elim (varlist_eq v v0).
+intros; rewrite (H1 I).
+simpl in |- *; repeat rewrite ics_aux_ok; rewrite H.
+repeat rewrite interp_m_ok.
+rewrite (SR_distr_left T).
+repeat rewrite <- (SR_plus_assoc T).
+apply f_equal with (f := Aplus (Amult a (interp_vl v0))).
+trivial.
+
+elim (varlist_lt v v0); simpl in |- *.
+repeat rewrite ics_aux_ok.
+rewrite H; simpl in |- *; rewrite ics_aux_ok; eauto.
+
+rewrite ics_aux_ok; rewrite H0; repeat rewrite ics_aux_ok; simpl in |- *;
+ eauto.
(* monom and varlist *)
-Generalize (varlist_eq_prop v v0).
-Elim (varlist_eq v v0).
-Intros; Rewrite (H1 I).
-Simpl; Repeat Rewrite ics_aux_ok; Rewrite H.
-Repeat Rewrite interp_m_ok.
-Rewrite (SR_distr_left T).
-Repeat Rewrite <- (SR_plus_assoc T).
-Apply congr_eqT with f:=(Aplus (Amult a (interp_vl v0))).
-Rewrite (SR_mult_one_left T).
-Trivial.
-
-Elim (varlist_lt v v0); Simpl.
-Repeat Rewrite ics_aux_ok.
-Rewrite H; Simpl; Rewrite ics_aux_ok; EAuto.
-Rewrite ics_aux_ok; Rewrite H0; Repeat Rewrite ics_aux_ok; Simpl; EAuto.
-
-Induction y; Simpl; Intros.
+generalize (varlist_eq_prop v v0).
+elim (varlist_eq v v0).
+intros; rewrite (H1 I).
+simpl in |- *; repeat rewrite ics_aux_ok; rewrite H.
+repeat rewrite interp_m_ok.
+rewrite (SR_distr_left T).
+repeat rewrite <- (SR_plus_assoc T).
+apply f_equal with (f := Aplus (Amult a (interp_vl v0))).
+rewrite (SR_mult_one_left T).
+trivial.
+
+elim (varlist_lt v v0); simpl in |- *.
+repeat rewrite ics_aux_ok.
+rewrite H; simpl in |- *; rewrite ics_aux_ok; eauto.
+rewrite ics_aux_ok; rewrite H0; repeat rewrite ics_aux_ok; simpl in |- *;
+ eauto.
+
+simple induction y; simpl in |- *; intros.
(* varlist and nil *)
-Trivial.
+trivial.
(* varlist and monom *)
-Generalize (varlist_eq_prop v v0).
-Elim (varlist_eq v v0).
-Intros; Rewrite (H1 I).
-Simpl; Repeat Rewrite ics_aux_ok; Rewrite H.
-Repeat Rewrite interp_m_ok.
-Rewrite (SR_distr_left T).
-Repeat Rewrite <- (SR_plus_assoc T).
-Rewrite (SR_mult_one_left T).
-Apply congr_eqT with f:=(Aplus (interp_vl v0)).
-Trivial.
-
-Elim (varlist_lt v v0); Simpl.
-Repeat Rewrite ics_aux_ok.
-Rewrite H; Simpl; Rewrite ics_aux_ok; EAuto.
-Rewrite ics_aux_ok; Rewrite H0; Repeat Rewrite ics_aux_ok; Simpl; EAuto.
+generalize (varlist_eq_prop v v0).
+elim (varlist_eq v v0).
+intros; rewrite (H1 I).
+simpl in |- *; repeat rewrite ics_aux_ok; rewrite H.
+repeat rewrite interp_m_ok.
+rewrite (SR_distr_left T).
+repeat rewrite <- (SR_plus_assoc T).
+rewrite (SR_mult_one_left T).
+apply f_equal with (f := Aplus (interp_vl v0)).
+trivial.
+
+elim (varlist_lt v v0); simpl in |- *.
+repeat rewrite ics_aux_ok.
+rewrite H; simpl in |- *; rewrite ics_aux_ok; eauto.
+rewrite ics_aux_ok; rewrite H0; repeat rewrite ics_aux_ok; simpl in |- *;
+ eauto.
(* varlist and varlist *)
-Generalize (varlist_eq_prop v v0).
-Elim (varlist_eq v v0).
-Intros; Rewrite (H1 I).
-Simpl; Repeat Rewrite ics_aux_ok; Rewrite H.
-Repeat Rewrite interp_m_ok.
-Rewrite (SR_distr_left T).
-Repeat Rewrite <- (SR_plus_assoc T).
-Rewrite (SR_mult_one_left T).
-Apply congr_eqT with f:=(Aplus (interp_vl v0)).
-Trivial.
-
-Elim (varlist_lt v v0); Simpl.
-Repeat Rewrite ics_aux_ok.
-Rewrite H; Simpl; Rewrite ics_aux_ok; EAuto.
-Rewrite ics_aux_ok; Rewrite H0; Repeat Rewrite ics_aux_ok; Simpl; EAuto.
-Save.
-
-Lemma monom_insert_ok: (a:A)(l:varlist)(s:canonical_sum)
- (interp_cs (monom_insert a l s))
- == (Aplus (Amult a (interp_vl l)) (interp_cs s)).
-Intros; Generalize s; Induction s0.
-
-Simpl; Rewrite interp_m_ok; Trivial.
-
-Simpl; Intros.
-Generalize (varlist_eq_prop l v); Elim (varlist_eq l v).
-Intro Hr; Rewrite (Hr I); Simpl; Rewrite interp_m_ok;
- Repeat Rewrite ics_aux_ok; Rewrite interp_m_ok;
- Rewrite (SR_distr_left T); EAuto.
-Elim (varlist_lt l v); Simpl;
-[ Repeat Rewrite interp_m_ok; Rewrite ics_aux_ok; EAuto
-| Repeat Rewrite interp_m_ok; Rewrite ics_aux_ok;
- Rewrite H; Rewrite ics_aux_ok; EAuto].
-
-Simpl; Intros.
-Generalize (varlist_eq_prop l v); Elim (varlist_eq l v).
-Intro Hr; Rewrite (Hr I); Simpl; Rewrite interp_m_ok;
- Repeat Rewrite ics_aux_ok;
- Rewrite (SR_distr_left T); Rewrite (SR_mult_one_left T); EAuto.
-Elim (varlist_lt l v); Simpl;
-[ Repeat Rewrite interp_m_ok; Rewrite ics_aux_ok; EAuto
-| Repeat Rewrite interp_m_ok; Rewrite ics_aux_ok;
- Rewrite H; Rewrite ics_aux_ok; EAuto].
-Save.
+generalize (varlist_eq_prop v v0).
+elim (varlist_eq v v0).
+intros; rewrite (H1 I).
+simpl in |- *; repeat rewrite ics_aux_ok; rewrite H.
+repeat rewrite interp_m_ok.
+rewrite (SR_distr_left T).
+repeat rewrite <- (SR_plus_assoc T).
+rewrite (SR_mult_one_left T).
+apply f_equal with (f := Aplus (interp_vl v0)).
+trivial.
+
+elim (varlist_lt v v0); simpl in |- *.
+repeat rewrite ics_aux_ok.
+rewrite H; simpl in |- *; rewrite ics_aux_ok; eauto.
+rewrite ics_aux_ok; rewrite H0; repeat rewrite ics_aux_ok; simpl in |- *;
+ eauto.
+Qed.
+
+Lemma monom_insert_ok :
+ forall (a:A) (l:varlist) (s:canonical_sum),
+ interp_cs (monom_insert a l s) =
+ Aplus (Amult a (interp_vl l)) (interp_cs s).
+intros; generalize s; simple induction s0.
+
+simpl in |- *; rewrite interp_m_ok; trivial.
+
+simpl in |- *; intros.
+generalize (varlist_eq_prop l v); elim (varlist_eq l v).
+intro Hr; rewrite (Hr I); simpl in |- *; rewrite interp_m_ok;
+ repeat rewrite ics_aux_ok; rewrite interp_m_ok; rewrite (SR_distr_left T);
+ eauto.
+elim (varlist_lt l v); simpl in |- *;
+ [ repeat rewrite interp_m_ok; rewrite ics_aux_ok; eauto
+ | repeat rewrite interp_m_ok; rewrite ics_aux_ok; rewrite H;
+ rewrite ics_aux_ok; eauto ].
+
+simpl in |- *; intros.
+generalize (varlist_eq_prop l v); elim (varlist_eq l v).
+intro Hr; rewrite (Hr I); simpl in |- *; rewrite interp_m_ok;
+ repeat rewrite ics_aux_ok; rewrite (SR_distr_left T);
+ rewrite (SR_mult_one_left T); eauto.
+elim (varlist_lt l v); simpl in |- *;
+ [ repeat rewrite interp_m_ok; rewrite ics_aux_ok; eauto
+ | repeat rewrite interp_m_ok; rewrite ics_aux_ok; rewrite H;
+ rewrite ics_aux_ok; eauto ].
+Qed.
Lemma varlist_insert_ok :
- (l:varlist)(s:canonical_sum)
- (interp_cs (varlist_insert l s))
- == (Aplus (interp_vl l) (interp_cs s)).
-Intros; Generalize s; Induction s0.
-
-Simpl; Trivial.
-
-Simpl; Intros.
-Generalize (varlist_eq_prop l v); Elim (varlist_eq l v).
-Intro Hr; Rewrite (Hr I); Simpl; Rewrite interp_m_ok;
- Repeat Rewrite ics_aux_ok; Rewrite interp_m_ok;
- Rewrite (SR_distr_left T); Rewrite (SR_mult_one_left T); EAuto.
-Elim (varlist_lt l v); Simpl;
-[ Repeat Rewrite interp_m_ok; Rewrite ics_aux_ok; EAuto
-| Repeat Rewrite interp_m_ok; Rewrite ics_aux_ok;
- Rewrite H; Rewrite ics_aux_ok; EAuto].
-
-Simpl; Intros.
-Generalize (varlist_eq_prop l v); Elim (varlist_eq l v).
-Intro Hr; Rewrite (Hr I); Simpl; Rewrite interp_m_ok;
- Repeat Rewrite ics_aux_ok;
- Rewrite (SR_distr_left T); Rewrite (SR_mult_one_left T); EAuto.
-Elim (varlist_lt l v); Simpl;
-[ Repeat Rewrite interp_m_ok; Rewrite ics_aux_ok; EAuto
-| Repeat Rewrite interp_m_ok; Rewrite ics_aux_ok;
- Rewrite H; Rewrite ics_aux_ok; EAuto].
-Save.
-
-Lemma canonical_sum_scalar_ok : (a:A)(s:canonical_sum)
- (interp_cs (canonical_sum_scalar a s))
- ==(Amult a (interp_cs s)).
-Induction s.
-Simpl; EAuto.
-
-Simpl; Intros.
-Repeat Rewrite ics_aux_ok.
-Repeat Rewrite interp_m_ok.
-Rewrite H.
-Rewrite (SR_distr_right T).
-Repeat Rewrite <- (SR_mult_assoc T).
-Reflexivity.
-
-Simpl; Intros.
-Repeat Rewrite ics_aux_ok.
-Repeat Rewrite interp_m_ok.
-Rewrite H.
-Rewrite (SR_distr_right T).
-Repeat Rewrite <- (SR_mult_assoc T).
-Reflexivity.
-Save.
-
-Lemma canonical_sum_scalar2_ok : (l:varlist; s:canonical_sum)
- (interp_cs (canonical_sum_scalar2 l s))
- ==(Amult (interp_vl l) (interp_cs s)).
-Induction s.
-Simpl; Trivial.
-
-Simpl; Intros.
-Rewrite monom_insert_ok.
-Repeat Rewrite ics_aux_ok.
-Repeat Rewrite interp_m_ok.
-Rewrite H.
-Rewrite varlist_merge_ok.
-Repeat Rewrite (SR_distr_right T).
-Repeat Rewrite <- (SR_mult_assoc T).
-Repeat Rewrite <- (SR_plus_assoc T).
-Rewrite (SR_mult_permute T a (interp_vl l) (interp_vl v)).
-Reflexivity.
-
-Simpl; Intros.
-Rewrite varlist_insert_ok.
-Repeat Rewrite ics_aux_ok.
-Repeat Rewrite interp_m_ok.
-Rewrite H.
-Rewrite varlist_merge_ok.
-Repeat Rewrite (SR_distr_right T).
-Repeat Rewrite <- (SR_mult_assoc T).
-Repeat Rewrite <- (SR_plus_assoc T).
-Reflexivity.
-Save.
-
-Lemma canonical_sum_scalar3_ok : (c:A; l:varlist; s:canonical_sum)
- (interp_cs (canonical_sum_scalar3 c l s))
- ==(Amult c (Amult (interp_vl l) (interp_cs s))).
-Induction s.
-Simpl; Repeat Rewrite (SR_mult_zero_right T); Reflexivity.
-
-Simpl; Intros.
-Rewrite monom_insert_ok.
-Repeat Rewrite ics_aux_ok.
-Repeat Rewrite interp_m_ok.
-Rewrite H.
-Rewrite varlist_merge_ok.
-Repeat Rewrite (SR_distr_right T).
-Repeat Rewrite <- (SR_mult_assoc T).
-Repeat Rewrite <- (SR_plus_assoc T).
-Rewrite (SR_mult_permute T a (interp_vl l) (interp_vl v)).
-Reflexivity.
-
-Simpl; Intros.
-Rewrite monom_insert_ok.
-Repeat Rewrite ics_aux_ok.
-Repeat Rewrite interp_m_ok.
-Rewrite H.
-Rewrite varlist_merge_ok.
-Repeat Rewrite (SR_distr_right T).
-Repeat Rewrite <- (SR_mult_assoc T).
-Repeat Rewrite <- (SR_plus_assoc T).
-Rewrite (SR_mult_permute T c (interp_vl l) (interp_vl v)).
-Reflexivity.
-Save.
-
-Lemma canonical_sum_prod_ok : (x,y:canonical_sum)
- (interp_cs (canonical_sum_prod x y))
- ==(Amult (interp_cs x) (interp_cs y)).
-Induction x; Simpl; Intros.
-Trivial.
-
-Rewrite canonical_sum_merge_ok.
-Rewrite canonical_sum_scalar3_ok.
-Rewrite ics_aux_ok.
-Rewrite interp_m_ok.
-Rewrite H.
-Rewrite (SR_mult_assoc T a (interp_vl v) (interp_cs y)).
-Symmetry.
-EAuto.
-
-Rewrite canonical_sum_merge_ok.
-Rewrite canonical_sum_scalar2_ok.
-Rewrite ics_aux_ok.
-Rewrite H.
-Trivial.
-Save.
-
-Theorem spolynomial_normalize_ok : (p:spolynomial)
- (interp_cs (spolynomial_normalize p)) == (interp_sp p).
-Induction p; Simpl; Intros.
-
-Reflexivity.
-Reflexivity.
-
-Rewrite canonical_sum_merge_ok.
-Rewrite H; Rewrite H0.
-Reflexivity.
-
-Rewrite canonical_sum_prod_ok.
-Rewrite H; Rewrite H0.
-Reflexivity.
-Save.
-
-Lemma canonical_sum_simplify_ok : (s:canonical_sum)
- (interp_cs (canonical_sum_simplify s)) == (interp_cs s).
-Induction s.
-
-Reflexivity.
+ forall (l:varlist) (s:canonical_sum),
+ interp_cs (varlist_insert l s) = Aplus (interp_vl l) (interp_cs s).
+intros; generalize s; simple induction s0.
+
+simpl in |- *; trivial.
+
+simpl in |- *; intros.
+generalize (varlist_eq_prop l v); elim (varlist_eq l v).
+intro Hr; rewrite (Hr I); simpl in |- *; rewrite interp_m_ok;
+ repeat rewrite ics_aux_ok; rewrite interp_m_ok; rewrite (SR_distr_left T);
+ rewrite (SR_mult_one_left T); eauto.
+elim (varlist_lt l v); simpl in |- *;
+ [ repeat rewrite interp_m_ok; rewrite ics_aux_ok; eauto
+ | repeat rewrite interp_m_ok; rewrite ics_aux_ok; rewrite H;
+ rewrite ics_aux_ok; eauto ].
+
+simpl in |- *; intros.
+generalize (varlist_eq_prop l v); elim (varlist_eq l v).
+intro Hr; rewrite (Hr I); simpl in |- *; rewrite interp_m_ok;
+ repeat rewrite ics_aux_ok; rewrite (SR_distr_left T);
+ rewrite (SR_mult_one_left T); eauto.
+elim (varlist_lt l v); simpl in |- *;
+ [ repeat rewrite interp_m_ok; rewrite ics_aux_ok; eauto
+ | repeat rewrite interp_m_ok; rewrite ics_aux_ok; rewrite H;
+ rewrite ics_aux_ok; eauto ].
+Qed.
+
+Lemma canonical_sum_scalar_ok :
+ forall (a:A) (s:canonical_sum),
+ interp_cs (canonical_sum_scalar a s) = Amult a (interp_cs s).
+simple induction s.
+simpl in |- *; eauto.
+
+simpl in |- *; intros.
+repeat rewrite ics_aux_ok.
+repeat rewrite interp_m_ok.
+rewrite H.
+rewrite (SR_distr_right T).
+repeat rewrite <- (SR_mult_assoc T).
+reflexivity.
+
+simpl in |- *; intros.
+repeat rewrite ics_aux_ok.
+repeat rewrite interp_m_ok.
+rewrite H.
+rewrite (SR_distr_right T).
+repeat rewrite <- (SR_mult_assoc T).
+reflexivity.
+Qed.
+
+Lemma canonical_sum_scalar2_ok :
+ forall (l:varlist) (s:canonical_sum),
+ interp_cs (canonical_sum_scalar2 l s) = Amult (interp_vl l) (interp_cs s).
+simple induction s.
+simpl in |- *; trivial.
+
+simpl in |- *; intros.
+rewrite monom_insert_ok.
+repeat rewrite ics_aux_ok.
+repeat rewrite interp_m_ok.
+rewrite H.
+rewrite varlist_merge_ok.
+repeat rewrite (SR_distr_right T).
+repeat rewrite <- (SR_mult_assoc T).
+repeat rewrite <- (SR_plus_assoc T).
+rewrite (SR_mult_permute T a (interp_vl l) (interp_vl v)).
+reflexivity.
+
+simpl in |- *; intros.
+rewrite varlist_insert_ok.
+repeat rewrite ics_aux_ok.
+repeat rewrite interp_m_ok.
+rewrite H.
+rewrite varlist_merge_ok.
+repeat rewrite (SR_distr_right T).
+repeat rewrite <- (SR_mult_assoc T).
+repeat rewrite <- (SR_plus_assoc T).
+reflexivity.
+Qed.
+
+Lemma canonical_sum_scalar3_ok :
+ forall (c:A) (l:varlist) (s:canonical_sum),
+ interp_cs (canonical_sum_scalar3 c l s) =
+ Amult c (Amult (interp_vl l) (interp_cs s)).
+simple induction s.
+simpl in |- *; repeat rewrite (SR_mult_zero_right T); reflexivity.
+
+simpl in |- *; intros.
+rewrite monom_insert_ok.
+repeat rewrite ics_aux_ok.
+repeat rewrite interp_m_ok.
+rewrite H.
+rewrite varlist_merge_ok.
+repeat rewrite (SR_distr_right T).
+repeat rewrite <- (SR_mult_assoc T).
+repeat rewrite <- (SR_plus_assoc T).
+rewrite (SR_mult_permute T a (interp_vl l) (interp_vl v)).
+reflexivity.
+
+simpl in |- *; intros.
+rewrite monom_insert_ok.
+repeat rewrite ics_aux_ok.
+repeat rewrite interp_m_ok.
+rewrite H.
+rewrite varlist_merge_ok.
+repeat rewrite (SR_distr_right T).
+repeat rewrite <- (SR_mult_assoc T).
+repeat rewrite <- (SR_plus_assoc T).
+rewrite (SR_mult_permute T c (interp_vl l) (interp_vl v)).
+reflexivity.
+Qed.
+
+Lemma canonical_sum_prod_ok :
+ forall x y:canonical_sum,
+ interp_cs (canonical_sum_prod x y) = Amult (interp_cs x) (interp_cs y).
+simple induction x; simpl in |- *; intros.
+trivial.
+
+rewrite canonical_sum_merge_ok.
+rewrite canonical_sum_scalar3_ok.
+rewrite ics_aux_ok.
+rewrite interp_m_ok.
+rewrite H.
+rewrite (SR_mult_assoc T a (interp_vl v) (interp_cs y)).
+symmetry in |- *.
+eauto.
+
+rewrite canonical_sum_merge_ok.
+rewrite canonical_sum_scalar2_ok.
+rewrite ics_aux_ok.
+rewrite H.
+trivial.
+Qed.
+
+Theorem spolynomial_normalize_ok :
+ forall p:spolynomial, interp_cs (spolynomial_normalize p) = interp_sp p.
+simple induction p; simpl in |- *; intros.
+
+reflexivity.
+reflexivity.
+
+rewrite canonical_sum_merge_ok.
+rewrite H; rewrite H0.
+reflexivity.
+
+rewrite canonical_sum_prod_ok.
+rewrite H; rewrite H0.
+reflexivity.
+Qed.
+
+Lemma canonical_sum_simplify_ok :
+ forall s:canonical_sum, interp_cs (canonical_sum_simplify s) = interp_cs s.
+simple induction s.
+
+reflexivity.
(* cons_monom *)
-Simpl; Intros.
-Generalize (SR_eq_prop T 8!a 9!Azero).
-Elim (Aeq a Azero).
-Intro Heq; Rewrite (Heq I).
-Rewrite H.
-Rewrite ics_aux_ok.
-Rewrite interp_m_ok.
-Rewrite (SR_mult_zero_left T).
-Trivial.
-
-Intros; Simpl.
-Generalize (SR_eq_prop T 8!a 9!Aone).
-Elim (Aeq a Aone).
-Intro Heq; Rewrite (Heq I).
-Simpl.
-Repeat Rewrite ics_aux_ok.
-Rewrite interp_m_ok.
-Rewrite H.
-Rewrite (SR_mult_one_left T).
-Reflexivity.
-
-Simpl.
-Repeat Rewrite ics_aux_ok.
-Rewrite interp_m_ok.
-Rewrite H.
-Reflexivity.
+simpl in |- *; intros.
+generalize (SR_eq_prop T a Azero).
+elim (Aeq a Azero).
+intro Heq; rewrite (Heq I).
+rewrite H.
+rewrite ics_aux_ok.
+rewrite interp_m_ok.
+rewrite (SR_mult_zero_left T).
+trivial.
+
+intros; simpl in |- *.
+generalize (SR_eq_prop T a Aone).
+elim (Aeq a Aone).
+intro Heq; rewrite (Heq I).
+simpl in |- *.
+repeat rewrite ics_aux_ok.
+rewrite interp_m_ok.
+rewrite H.
+rewrite (SR_mult_one_left T).
+reflexivity.
+
+simpl in |- *.
+repeat rewrite ics_aux_ok.
+rewrite interp_m_ok.
+rewrite H.
+reflexivity.
(* cons_varlist *)
-Simpl; Intros.
-Repeat Rewrite ics_aux_ok.
-Rewrite H.
-Reflexivity.
+simpl in |- *; intros.
+repeat rewrite ics_aux_ok.
+rewrite H.
+reflexivity.
-Save.
+Qed.
-Theorem spolynomial_simplify_ok : (p:spolynomial)
- (interp_cs (spolynomial_simplify p)) == (interp_sp p).
-Intro.
-Unfold spolynomial_simplify.
-Rewrite canonical_sum_simplify_ok.
-Apply spolynomial_normalize_ok.
-Save.
+Theorem spolynomial_simplify_ok :
+ forall p:spolynomial, interp_cs (spolynomial_simplify p) = interp_sp p.
+intro.
+unfold spolynomial_simplify in |- *.
+rewrite canonical_sum_simplify_ok.
+apply spolynomial_normalize_ok.
+Qed.
(* End properties. *)
End semi_rings.
-Implicits Cons_varlist.
-Implicits Cons_monom.
-Implicits SPconst.
-Implicits SPplus.
-Implicits SPmult.
+Implicit Arguments Cons_varlist.
+Implicit Arguments Cons_monom.
+Implicit Arguments SPconst.
+Implicit Arguments SPplus.
+Implicit Arguments SPmult.
Section rings.
@@ -761,133 +767,135 @@ Variable Aone : A.
Variable Azero : A.
Variable Aopp : A -> A.
Variable Aeq : A -> A -> bool.
-Variable vm : (varmap A).
-Variable T : (Ring_Theory Aplus Amult Aone Azero Aopp Aeq).
-
-Hint Th_plus_sym_T := Resolve (Th_plus_sym T).
-Hint Th_plus_assoc_T := Resolve (Th_plus_assoc T).
-Hint Th_plus_assoc2_T := Resolve (Th_plus_assoc2 T).
-Hint Th_mult_sym_T := Resolve (Th_mult_sym T).
-Hint Th_mult_assoc_T := Resolve (Th_mult_assoc T).
-Hint Th_mult_assoc2_T := Resolve (Th_mult_assoc2 T).
-Hint Th_plus_zero_left_T := Resolve (Th_plus_zero_left T).
-Hint Th_plus_zero_left2_T := Resolve (Th_plus_zero_left2 T).
-Hint Th_mult_one_left_T := Resolve (Th_mult_one_left T).
-Hint Th_mult_one_left2_T := Resolve (Th_mult_one_left2 T).
-Hint Th_mult_zero_left_T := Resolve (Th_mult_zero_left T).
-Hint Th_mult_zero_left2_T := Resolve (Th_mult_zero_left2 T).
-Hint Th_distr_left_T := Resolve (Th_distr_left T).
-Hint Th_distr_left2_T := Resolve (Th_distr_left2 T).
-Hint Th_plus_reg_left_T := Resolve (Th_plus_reg_left T).
-Hint Th_plus_permute_T := Resolve (Th_plus_permute T).
-Hint Th_mult_permute_T := Resolve (Th_mult_permute T).
-Hint Th_distr_right_T := Resolve (Th_distr_right T).
-Hint Th_distr_right2_T := Resolve (Th_distr_right2 T).
-Hint Th_mult_zero_right_T := Resolve (Th_mult_zero_right T).
-Hint Th_mult_zero_right2_T := Resolve (Th_mult_zero_right2 T).
-Hint Th_plus_zero_right_T := Resolve (Th_plus_zero_right T).
-Hint Th_plus_zero_right2_T := Resolve (Th_plus_zero_right2 T).
-Hint Th_mult_one_right_T := Resolve (Th_mult_one_right T).
-Hint Th_mult_one_right2_T := Resolve (Th_mult_one_right2 T).
-Hint Th_plus_reg_right_T := Resolve (Th_plus_reg_right T).
-Hints Resolve refl_equal sym_equal trans_equal.
+Variable vm : varmap A.
+Variable T : Ring_Theory Aplus Amult Aone Azero Aopp Aeq.
+
+Hint Resolve (Th_plus_comm T).
+Hint Resolve (Th_plus_assoc T).
+Hint Resolve (Th_plus_assoc2 T).
+Hint Resolve (Th_mult_sym T).
+Hint Resolve (Th_mult_assoc T).
+Hint Resolve (Th_mult_assoc2 T).
+Hint Resolve (Th_plus_zero_left T).
+Hint Resolve (Th_plus_zero_left2 T).
+Hint Resolve (Th_mult_one_left T).
+Hint Resolve (Th_mult_one_left2 T).
+Hint Resolve (Th_mult_zero_left T).
+Hint Resolve (Th_mult_zero_left2 T).
+Hint Resolve (Th_distr_left T).
+Hint Resolve (Th_distr_left2 T).
+Hint Resolve (Th_plus_reg_left T).
+Hint Resolve (Th_plus_permute T).
+Hint Resolve (Th_mult_permute T).
+Hint Resolve (Th_distr_right T).
+Hint Resolve (Th_distr_right2 T).
+Hint Resolve (Th_mult_zero_right T).
+Hint Resolve (Th_mult_zero_right2 T).
+Hint Resolve (Th_plus_zero_right T).
+Hint Resolve (Th_plus_zero_right2 T).
+Hint Resolve (Th_mult_one_right T).
+Hint Resolve (Th_mult_one_right2 T).
+Hint Resolve (Th_plus_reg_right T).
+Hint Resolve refl_equal sym_equal trans_equal.
(*Hints Resolve refl_eqT sym_eqT trans_eqT.*)
-Hints Immediate T.
+Hint Immediate T.
(*** Definitions *)
-Inductive Type polynomial :=
- Pvar : index -> polynomial
-| Pconst : A -> polynomial
-| Pplus : polynomial -> polynomial -> polynomial
-| Pmult : polynomial -> polynomial -> polynomial
-| Popp : polynomial -> polynomial.
-
-Fixpoint polynomial_normalize [x:polynomial] : (canonical_sum A) :=
- Cases x of
- (Pplus l r) => (canonical_sum_merge Aplus Aone
- (polynomial_normalize l)
- (polynomial_normalize r))
- | (Pmult l r) => (canonical_sum_prod Aplus Amult Aone
- (polynomial_normalize l)
- (polynomial_normalize r))
- | (Pconst c) => (Cons_monom c Nil_var (Nil_monom A))
- | (Pvar i) => (Cons_varlist (Cons_var i Nil_var) (Nil_monom A))
- | (Popp p) => (canonical_sum_scalar3 Aplus Amult Aone
- (Aopp Aone) Nil_var
- (polynomial_normalize p))
+Inductive polynomial : Type :=
+ | Pvar : index -> polynomial
+ | Pconst : A -> polynomial
+ | Pplus : polynomial -> polynomial -> polynomial
+ | Pmult : polynomial -> polynomial -> polynomial
+ | Popp : polynomial -> polynomial.
+
+Fixpoint polynomial_normalize (x:polynomial) : canonical_sum A :=
+ match x with
+ | Pplus l r =>
+ canonical_sum_merge Aplus Aone (polynomial_normalize l)
+ (polynomial_normalize r)
+ | Pmult l r =>
+ canonical_sum_prod Aplus Amult Aone (polynomial_normalize l)
+ (polynomial_normalize r)
+ | Pconst c => Cons_monom c Nil_var (Nil_monom A)
+ | Pvar i => Cons_varlist (Cons_var i Nil_var) (Nil_monom A)
+ | Popp p =>
+ canonical_sum_scalar3 Aplus Amult Aone (Aopp Aone) Nil_var
+ (polynomial_normalize p)
end.
-Definition polynomial_simplify :=
- [x:polynomial](canonical_sum_simplify Aone Azero Aeq
- (polynomial_normalize x)).
-
-Fixpoint spolynomial_of [x:polynomial] : (spolynomial A) :=
- Cases x of
- (Pplus l r) => (SPplus (spolynomial_of l) (spolynomial_of r))
- | (Pmult l r) => (SPmult (spolynomial_of l) (spolynomial_of r))
- | (Pconst c) => (SPconst c)
- | (Pvar i) => (SPvar A i)
- | (Popp p) => (SPmult (SPconst (Aopp Aone)) (spolynomial_of p))
+Definition polynomial_simplify (x:polynomial) :=
+ canonical_sum_simplify Aone Azero Aeq (polynomial_normalize x).
+
+Fixpoint spolynomial_of (x:polynomial) : spolynomial A :=
+ match x with
+ | Pplus l r => SPplus (spolynomial_of l) (spolynomial_of r)
+ | Pmult l r => SPmult (spolynomial_of l) (spolynomial_of r)
+ | Pconst c => SPconst c
+ | Pvar i => SPvar A i
+ | Popp p => SPmult (SPconst (Aopp Aone)) (spolynomial_of p)
end.
(*** Interpretation *)
-Fixpoint interp_p [p:polynomial] : A :=
- Cases p of
- (Pconst c) => c
- | (Pvar i) => (varmap_find Azero i vm)
- | (Pplus p1 p2) => (Aplus (interp_p p1) (interp_p p2))
- | (Pmult p1 p2) => (Amult (interp_p p1) (interp_p p2))
- | (Popp p1) => (Aopp (interp_p p1))
+Fixpoint interp_p (p:polynomial) : A :=
+ match p with
+ | Pconst c => c
+ | Pvar i => varmap_find Azero i vm
+ | Pplus p1 p2 => Aplus (interp_p p1) (interp_p p2)
+ | Pmult p1 p2 => Amult (interp_p p1) (interp_p p2)
+ | Popp p1 => Aopp (interp_p p1)
end.
(*** Properties *)
Unset Implicit Arguments.
-Lemma spolynomial_of_ok : (p:polynomial)
- (interp_p p)==(interp_sp Aplus Amult Azero vm (spolynomial_of p)).
-Induction p; Reflexivity Orelse (Simpl; Intros).
-Rewrite H; Rewrite H0; Reflexivity.
-Rewrite H; Rewrite H0; Reflexivity.
-Rewrite H.
-Rewrite (Th_opp_mult_left2 T).
-Rewrite (Th_mult_one_left T).
-Reflexivity.
-Save.
-
-Theorem polynomial_normalize_ok : (p:polynomial)
- (polynomial_normalize p)
- ==(spolynomial_normalize Aplus Amult Aone (spolynomial_of p)).
-Induction p; Reflexivity Orelse (Simpl; Intros).
-Rewrite H; Rewrite H0; Reflexivity.
-Rewrite H; Rewrite H0; Reflexivity.
-Rewrite H; Simpl.
-Elim (canonical_sum_scalar3 Aplus Amult Aone (Aopp Aone) Nil_var
- (spolynomial_normalize Aplus Amult Aone (spolynomial_of p0)));
-[ Reflexivity
-| Simpl; Intros; Rewrite H0; Reflexivity
-| Simpl; Intros; Rewrite H0; Reflexivity ].
-Save.
-
-Theorem polynomial_simplify_ok : (p:polynomial)
- (interp_cs Aplus Amult Aone Azero vm (polynomial_simplify p))
- ==(interp_p p).
-Intro.
-Unfold polynomial_simplify.
-Rewrite spolynomial_of_ok.
-Rewrite polynomial_normalize_ok.
-Rewrite (canonical_sum_simplify_ok A Aplus Amult Aone Azero Aeq vm T).
-Rewrite (spolynomial_normalize_ok A Aplus Amult Aone Azero Aeq vm T).
-Reflexivity.
-Save.
+Lemma spolynomial_of_ok :
+ forall p:polynomial,
+ interp_p p = interp_sp Aplus Amult Azero vm (spolynomial_of p).
+simple induction p; reflexivity || (simpl in |- *; intros).
+rewrite H; rewrite H0; reflexivity.
+rewrite H; rewrite H0; reflexivity.
+rewrite H.
+rewrite (Th_opp_mult_left2 T).
+rewrite (Th_mult_one_left T).
+reflexivity.
+Qed.
+
+Theorem polynomial_normalize_ok :
+ forall p:polynomial,
+ polynomial_normalize p =
+ spolynomial_normalize Aplus Amult Aone (spolynomial_of p).
+simple induction p; reflexivity || (simpl in |- *; intros).
+rewrite H; rewrite H0; reflexivity.
+rewrite H; rewrite H0; reflexivity.
+rewrite H; simpl in |- *.
+elim
+ (canonical_sum_scalar3 Aplus Amult Aone (Aopp Aone) Nil_var
+ (spolynomial_normalize Aplus Amult Aone (spolynomial_of p0)));
+ [ reflexivity
+ | simpl in |- *; intros; rewrite H0; reflexivity
+ | simpl in |- *; intros; rewrite H0; reflexivity ].
+Qed.
+
+Theorem polynomial_simplify_ok :
+ forall p:polynomial,
+ interp_cs Aplus Amult Aone Azero vm (polynomial_simplify p) = interp_p p.
+intro.
+unfold polynomial_simplify in |- *.
+rewrite spolynomial_of_ok.
+rewrite polynomial_normalize_ok.
+rewrite (canonical_sum_simplify_ok A Aplus Amult Aone Azero Aeq vm T).
+rewrite (spolynomial_normalize_ok A Aplus Amult Aone Azero Aeq vm T).
+reflexivity.
+Qed.
End rings.
-V8Infix "+" Pplus : ring_scope.
-V8Infix "*" Pmult : ring_scope.
-V8Notation "- x" := (Popp x) : ring_scope.
-V8Notation "[ x ]" := (Pvar x) (at level 1) : ring_scope.
+Infix "+" := Pplus : ring_scope.
+Infix "*" := Pmult : ring_scope.
+Notation "- x" := (Popp x) : ring_scope.
+Notation "[ x ]" := (Pvar x) (at level 1) : ring_scope.
-Delimits Scope ring_scope with ring.
+Delimit Scope ring_scope with ring. \ No newline at end of file
diff --git a/contrib/ring/Ring_theory.v b/contrib/ring/Ring_theory.v
index ddc52f812..c99cf3c4a 100644
--- a/contrib/ring/Ring_theory.v
+++ b/contrib/ring/Ring_theory.v
@@ -25,112 +25,110 @@ Variable Azero : A.
is a good choice. The proof of A_eq_prop is in this case easy. *)
Variable Aeq : A -> A -> bool.
-Infix 4 "+" Aplus V8only 50 (left associativity).
-Infix 4 "*" Amult V8only 40 (left associativity).
+Infix "+" := Aplus (at level 50, left associativity).
+Infix "*" := Amult (at level 40, left associativity).
Notation "0" := Azero.
Notation "1" := Aone.
-Record Semi_Ring_Theory : Prop :=
-{ SR_plus_sym : (n,m:A) n + m == m + n;
- SR_plus_assoc : (n,m,p:A) n + (m + p) == (n + m) + p;
- SR_mult_sym : (n,m:A) n*m == m*n;
- SR_mult_assoc : (n,m,p:A) n*(m*p) == (n*m)*p;
- SR_plus_zero_left :(n:A) 0 + n == n;
- SR_mult_one_left : (n:A) 1*n == n;
- SR_mult_zero_left : (n:A) 0*n == 0;
- SR_distr_left : (n,m,p:A) (n + m)*p == n*p + m*p;
- SR_plus_reg_left : (n,m,p:A) n + m == n + p -> m==p;
- SR_eq_prop : (x,y:A) (Is_true (Aeq x y)) -> x==y
-}.
+Record Semi_Ring_Theory : Prop :=
+ {SR_plus_comm : forall n m:A, n + m = m + n;
+ SR_plus_assoc : forall n m p:A, n + (m + p) = n + m + p;
+ SR_mult_comm : forall n m:A, n * m = m * n;
+ SR_mult_assoc : forall n m p:A, n * (m * p) = n * m * p;
+ SR_plus_zero_left : forall n:A, 0 + n = n;
+ SR_mult_one_left : forall n:A, 1 * n = n;
+ SR_mult_zero_left : forall n:A, 0 * n = 0;
+ SR_distr_left : forall n m p:A, (n + m) * p = n * p + m * p;
+ SR_plus_reg_left : forall n m p:A, n + m = n + p -> m = p;
+ SR_eq_prop : forall x y:A, Is_true (Aeq x y) -> x = y}.
Variable T : Semi_Ring_Theory.
-Local plus_sym := (SR_plus_sym T).
-Local plus_assoc := (SR_plus_assoc T).
-Local mult_sym := ( SR_mult_sym T).
-Local mult_assoc := (SR_mult_assoc T).
-Local plus_zero_left := (SR_plus_zero_left T).
-Local mult_one_left := (SR_mult_one_left T).
-Local mult_zero_left := (SR_mult_zero_left T).
-Local distr_left := (SR_distr_left T).
-Local plus_reg_left := (SR_plus_reg_left T).
+Let plus_comm := SR_plus_comm T.
+Let plus_assoc := SR_plus_assoc T.
+Let mult_comm := SR_mult_comm T.
+Let mult_assoc := SR_mult_assoc T.
+Let plus_zero_left := SR_plus_zero_left T.
+Let mult_one_left := SR_mult_one_left T.
+Let mult_zero_left := SR_mult_zero_left T.
+Let distr_left := SR_distr_left T.
+Let plus_reg_left := SR_plus_reg_left T.
-Hints Resolve plus_sym plus_assoc mult_sym mult_assoc
- plus_zero_left mult_one_left mult_zero_left distr_left
- plus_reg_left.
+Hint Resolve plus_comm plus_assoc mult_comm mult_assoc plus_zero_left
+ mult_one_left mult_zero_left distr_left plus_reg_left.
(* Lemmas whose form is x=y are also provided in form y=x because Auto does
not symmetry *)
-Lemma SR_mult_assoc2 : (n,m,p:A) (n * m) * p == n * (m * p).
-Symmetry; EAuto. Qed.
+Lemma SR_mult_assoc2 : forall n m p:A, n * m * p = n * (m * p).
+symmetry in |- *; eauto. Qed.
-Lemma SR_plus_assoc2 : (n,m,p:A) (n + m) + p == n + (m + p).
-Symmetry; EAuto. Qed.
+Lemma SR_plus_assoc2 : forall n m p:A, n + m + p = n + (m + p).
+symmetry in |- *; eauto. Qed.
-Lemma SR_plus_zero_left2 : (n:A) n == 0 + n.
-Symmetry; EAuto. Qed.
+Lemma SR_plus_zero_left2 : forall n:A, n = 0 + n.
+symmetry in |- *; eauto. Qed.
-Lemma SR_mult_one_left2 : (n:A) n == 1*n.
-Symmetry; EAuto. Qed.
+Lemma SR_mult_one_left2 : forall n:A, n = 1 * n.
+symmetry in |- *; eauto. Qed.
-Lemma SR_mult_zero_left2 : (n:A) 0 == 0*n.
-Symmetry; EAuto. Qed.
+Lemma SR_mult_zero_left2 : forall n:A, 0 = 0 * n.
+symmetry in |- *; eauto. Qed.
-Lemma SR_distr_left2 : (n,m,p:A) n*p + m*p == (n + m)*p.
-Symmetry; EAuto. Qed.
+Lemma SR_distr_left2 : forall n m p:A, n * p + m * p = (n + m) * p.
+symmetry in |- *; eauto. Qed.
-Lemma SR_plus_permute : (n,m,p:A) n + (m + p) == m + (n + p).
-Intros.
-Rewrite -> plus_assoc.
-Elim (plus_sym m n).
-Rewrite <- plus_assoc.
-Reflexivity.
+Lemma SR_plus_permute : forall n m p:A, n + (m + p) = m + (n + p).
+intros.
+rewrite plus_assoc.
+elim (plus_comm m n).
+rewrite <- plus_assoc.
+reflexivity.
Qed.
-Lemma SR_mult_permute : (n,m,p:A) n*(m*p) == m*(n*p).
-Intros.
-Rewrite -> mult_assoc.
-Elim (mult_sym m n).
-Rewrite <- mult_assoc.
-Reflexivity.
+Lemma SR_mult_permute : forall n m p:A, n * (m * p) = m * (n * p).
+intros.
+rewrite mult_assoc.
+elim (mult_comm m n).
+rewrite <- mult_assoc.
+reflexivity.
Qed.
-Hints Resolve SR_plus_permute SR_mult_permute.
+Hint Resolve SR_plus_permute SR_mult_permute.
-Lemma SR_distr_right : (n,m,p:A) n*(m + p) == (n*m) + (n*p).
-Intros.
-Repeat Rewrite -> (mult_sym n).
-EAuto.
+Lemma SR_distr_right : forall n m p:A, n * (m + p) = n * m + n * p.
+intros.
+repeat rewrite (mult_comm n).
+eauto.
Qed.
-Lemma SR_distr_right2 : (n,m,p:A) (n*m) + (n*p) == n*(m + p).
-Symmetry; Apply SR_distr_right. Qed.
+Lemma SR_distr_right2 : forall n m p:A, n * m + n * p = n * (m + p).
+symmetry in |- *; apply SR_distr_right. Qed.
-Lemma SR_mult_zero_right : (n:A) n*0 == 0.
-Intro; Rewrite mult_sym; EAuto.
+Lemma SR_mult_zero_right : forall n:A, n * 0 = 0.
+intro; rewrite mult_comm; eauto.
Qed.
-Lemma SR_mult_zero_right2 : (n:A) 0 == n*0.
-Intro; Rewrite mult_sym; EAuto.
+Lemma SR_mult_zero_right2 : forall n:A, 0 = n * 0.
+intro; rewrite mult_comm; eauto.
Qed.
-Lemma SR_plus_zero_right :(n:A) n + 0 == n.
-Intro; Rewrite plus_sym; EAuto.
+Lemma SR_plus_zero_right : forall n:A, n + 0 = n.
+intro; rewrite plus_comm; eauto.
Qed.
-Lemma SR_plus_zero_right2 :(n:A) n == n + 0.
-Intro; Rewrite plus_sym; EAuto.
+Lemma SR_plus_zero_right2 : forall n:A, n = n + 0.
+intro; rewrite plus_comm; eauto.
Qed.
-Lemma SR_mult_one_right : (n:A) n*1 == n.
-Intro; Elim mult_sym; Auto.
+Lemma SR_mult_one_right : forall n:A, n * 1 = n.
+intro; elim mult_comm; auto.
Qed.
-Lemma SR_mult_one_right2 : (n:A) n == n*1.
-Intro; Elim mult_sym; Auto.
+Lemma SR_mult_one_right2 : forall n:A, n = n * 1.
+intro; elim mult_comm; auto.
Qed.
-Lemma SR_plus_reg_right : (n,m,p:A) m + n == p + n -> m==p.
-Intros n m p; Rewrite (plus_sym m n); Rewrite (plus_sym p n); EAuto.
+Lemma SR_plus_reg_right : forall n m p:A, m + n = p + n -> m = p.
+intros n m p; rewrite (plus_comm m n); rewrite (plus_comm p n); eauto.
Qed.
End Theory_of_semi_rings.
@@ -146,228 +144,222 @@ Variable Azero : A.
Variable Aopp : A -> A.
Variable Aeq : A -> A -> bool.
-Infix 4 "+" Aplus V8only 50 (left associativity).
-Infix 4 "*" Amult V8only 40 (left associativity).
+Infix "+" := Aplus (at level 50, left associativity).
+Infix "*" := Amult (at level 40, left associativity).
Notation "0" := Azero.
Notation "1" := Aone.
-Notation "- x" := (Aopp x) (at level 0) V8only.
-
-Record Ring_Theory : Prop :=
-{ Th_plus_sym : (n,m:A) n + m == m + n;
- Th_plus_assoc : (n,m,p:A) n + (m + p) == (n + m) + p;
- Th_mult_sym : (n,m:A) n*m == m*n;
- Th_mult_assoc : (n,m,p:A) n*(m*p) == (n*m)*p;
- Th_plus_zero_left :(n:A) 0 + n == n;
- Th_mult_one_left : (n:A) 1*n == n;
- Th_opp_def : (n:A) n + (-n) == 0;
- Th_distr_left : (n,m,p:A) (n + m)*p == n*p + m*p;
- Th_eq_prop : (x,y:A) (Is_true (Aeq x y)) -> x==y
-}.
+Notation "- x" := (Aopp x).
+
+Record Ring_Theory : Prop :=
+ {Th_plus_comm : forall n m:A, n + m = m + n;
+ Th_plus_assoc : forall n m p:A, n + (m + p) = n + m + p;
+ Th_mult_sym : forall n m:A, n * m = m * n;
+ Th_mult_assoc : forall n m p:A, n * (m * p) = n * m * p;
+ Th_plus_zero_left : forall n:A, 0 + n = n;
+ Th_mult_one_left : forall n:A, 1 * n = n;
+ Th_opp_def : forall n:A, n + - n = 0;
+ Th_distr_left : forall n m p:A, (n + m) * p = n * p + m * p;
+ Th_eq_prop : forall x y:A, Is_true (Aeq x y) -> x = y}.
Variable T : Ring_Theory.
-Local plus_sym := (Th_plus_sym T).
-Local plus_assoc := (Th_plus_assoc T).
-Local mult_sym := ( Th_mult_sym T).
-Local mult_assoc := (Th_mult_assoc T).
-Local plus_zero_left := (Th_plus_zero_left T).
-Local mult_one_left := (Th_mult_one_left T).
-Local opp_def := (Th_opp_def T).
-Local distr_left := (Th_distr_left T).
+Let plus_comm := Th_plus_comm T.
+Let plus_assoc := Th_plus_assoc T.
+Let mult_comm := Th_mult_sym T.
+Let mult_assoc := Th_mult_assoc T.
+Let plus_zero_left := Th_plus_zero_left T.
+Let mult_one_left := Th_mult_one_left T.
+Let opp_def := Th_opp_def T.
+Let distr_left := Th_distr_left T.
-Hints Resolve plus_sym plus_assoc mult_sym mult_assoc
- plus_zero_left mult_one_left opp_def distr_left.
+Hint Resolve plus_comm plus_assoc mult_comm mult_assoc plus_zero_left
+ mult_one_left opp_def distr_left.
(* Lemmas whose form is x=y are also provided in form y=x because Auto does
not symmetry *)
-Lemma Th_mult_assoc2 : (n,m,p:A) (n * m) * p == n * (m * p).
-Symmetry; EAuto. Qed.
+Lemma Th_mult_assoc2 : forall n m p:A, n * m * p = n * (m * p).
+symmetry in |- *; eauto. Qed.
-Lemma Th_plus_assoc2 : (n,m,p:A) (n + m) + p == n + (m + p).
-Symmetry; EAuto. Qed.
+Lemma Th_plus_assoc2 : forall n m p:A, n + m + p = n + (m + p).
+symmetry in |- *; eauto. Qed.
-Lemma Th_plus_zero_left2 : (n:A) n == 0 + n.
-Symmetry; EAuto. Qed.
+Lemma Th_plus_zero_left2 : forall n:A, n = 0 + n.
+symmetry in |- *; eauto. Qed.
-Lemma Th_mult_one_left2 : (n:A) n == 1*n.
-Symmetry; EAuto. Qed.
+Lemma Th_mult_one_left2 : forall n:A, n = 1 * n.
+symmetry in |- *; eauto. Qed.
-Lemma Th_distr_left2 : (n,m,p:A) n*p + m*p == (n + m)*p.
-Symmetry; EAuto. Qed.
+Lemma Th_distr_left2 : forall n m p:A, n * p + m * p = (n + m) * p.
+symmetry in |- *; eauto. Qed.
-Lemma Th_opp_def2 : (n:A) 0 == n + (-n).
-Symmetry; EAuto. Qed.
+Lemma Th_opp_def2 : forall n:A, 0 = n + - n.
+symmetry in |- *; eauto. Qed.
-Lemma Th_plus_permute : (n,m,p:A) n + (m + p) == m + (n + p).
-Intros.
-Rewrite -> plus_assoc.
-Elim (plus_sym m n).
-Rewrite <- plus_assoc.
-Reflexivity.
+Lemma Th_plus_permute : forall n m p:A, n + (m + p) = m + (n + p).
+intros.
+rewrite plus_assoc.
+elim (plus_comm m n).
+rewrite <- plus_assoc.
+reflexivity.
Qed.
-Lemma Th_mult_permute : (n,m,p:A) n*(m*p) == m*(n*p).
-Intros.
-Rewrite -> mult_assoc.
-Elim (mult_sym m n).
-Rewrite <- mult_assoc.
-Reflexivity.
+Lemma Th_mult_permute : forall n m p:A, n * (m * p) = m * (n * p).
+intros.
+rewrite mult_assoc.
+elim (mult_comm m n).
+rewrite <- mult_assoc.
+reflexivity.
Qed.
-Hints Resolve Th_plus_permute Th_mult_permute.
-
-Lemma aux1 : (a:A) a + a == a -> a == 0.
-Intros.
-Generalize (opp_def a).
-Pattern 1 a.
-Rewrite <- H.
-Rewrite <- plus_assoc.
-Rewrite -> opp_def.
-Elim plus_sym.
-Rewrite plus_zero_left.
-Trivial.
+Hint Resolve Th_plus_permute Th_mult_permute.
+
+Lemma aux1 : forall a:A, a + a = a -> a = 0.
+intros.
+generalize (opp_def a).
+pattern a at 1 in |- *.
+rewrite <- H.
+rewrite <- plus_assoc.
+rewrite opp_def.
+elim plus_comm.
+rewrite plus_zero_left.
+trivial.
Qed.
-Lemma Th_mult_zero_left :(n:A) 0*n == 0.
-Intros.
-Apply aux1.
-Rewrite <- distr_left.
-Rewrite plus_zero_left.
-Reflexivity.
+Lemma Th_mult_zero_left : forall n:A, 0 * n = 0.
+intros.
+apply aux1.
+rewrite <- distr_left.
+rewrite plus_zero_left.
+reflexivity.
Qed.
-Hints Resolve Th_mult_zero_left.
-
-Lemma Th_mult_zero_left2 : (n:A) 0 == 0*n.
-Symmetry; EAuto. Qed.
-
-Lemma aux2 : (x,y,z:A) x+y==0 -> x+z==0 -> y==z.
-Intros.
-Rewrite <- (plus_zero_left y).
-Elim H0.
-Elim plus_assoc.
-Elim (plus_sym y z).
-Rewrite -> plus_assoc.
-Rewrite -> H.
-Rewrite plus_zero_left.
-Reflexivity.
+Hint Resolve Th_mult_zero_left.
+
+Lemma Th_mult_zero_left2 : forall n:A, 0 = 0 * n.
+symmetry in |- *; eauto. Qed.
+
+Lemma aux2 : forall x y z:A, x + y = 0 -> x + z = 0 -> y = z.
+intros.
+rewrite <- (plus_zero_left y).
+elim H0.
+elim plus_assoc.
+elim (plus_comm y z).
+rewrite plus_assoc.
+rewrite H.
+rewrite plus_zero_left.
+reflexivity.
Qed.
-Lemma Th_opp_mult_left : (x,y:A) -(x*y) == (-x)*y.
-Intros.
-Apply (aux2 1!x*y);
-[ Apply opp_def
-| Rewrite <- distr_left;
- Rewrite -> opp_def;
- Auto].
+Lemma Th_opp_mult_left : forall x y:A, - (x * y) = - x * y.
+intros.
+apply (aux2 (x:=(x * y)));
+ [ apply opp_def | rewrite <- distr_left; rewrite opp_def; auto ].
Qed.
-Hints Resolve Th_opp_mult_left.
+Hint Resolve Th_opp_mult_left.
-Lemma Th_opp_mult_left2 : (x,y:A) (-x)*y == -(x*y).
-Symmetry; EAuto. Qed.
+Lemma Th_opp_mult_left2 : forall x y:A, - x * y = - (x * y).
+symmetry in |- *; eauto. Qed.
-Lemma Th_mult_zero_right : (n:A) n*0 == 0.
-Intro; Elim mult_sym; EAuto.
+Lemma Th_mult_zero_right : forall n:A, n * 0 = 0.
+intro; elim mult_comm; eauto.
Qed.
-Lemma Th_mult_zero_right2 : (n:A) 0 == n*0.
-Intro; Elim mult_sym; EAuto.
+Lemma Th_mult_zero_right2 : forall n:A, 0 = n * 0.
+intro; elim mult_comm; eauto.
Qed.
-Lemma Th_plus_zero_right :(n:A) n + 0 == n.
-Intro; Rewrite plus_sym; EAuto.
+Lemma Th_plus_zero_right : forall n:A, n + 0 = n.
+intro; rewrite plus_comm; eauto.
Qed.
-Lemma Th_plus_zero_right2 :(n:A) n == n + 0.
-Intro; Rewrite plus_sym; EAuto.
+Lemma Th_plus_zero_right2 : forall n:A, n = n + 0.
+intro; rewrite plus_comm; eauto.
Qed.
-Lemma Th_mult_one_right : (n:A) n*1 == n.
-Intro;Elim mult_sym; EAuto.
+Lemma Th_mult_one_right : forall n:A, n * 1 = n.
+intro; elim mult_comm; eauto.
Qed.
-Lemma Th_mult_one_right2 : (n:A) n == n*1.
-Intro;Elim mult_sym; EAuto.
+Lemma Th_mult_one_right2 : forall n:A, n = n * 1.
+intro; elim mult_comm; eauto.
Qed.
-Lemma Th_opp_mult_right : (x,y:A) -(x*y) == x*(-y).
-Intros; Do 2 Rewrite -> (mult_sym x); Auto.
+Lemma Th_opp_mult_right : forall x y:A, - (x * y) = x * - y.
+intros; do 2 rewrite (mult_comm x); auto.
Qed.
-Lemma Th_opp_mult_right2 : (x,y:A) x*(-y) == -(x*y).
-Intros; Do 2 Rewrite -> (mult_sym x); Auto.
+Lemma Th_opp_mult_right2 : forall x y:A, x * - y = - (x * y).
+intros; do 2 rewrite (mult_comm x); auto.
Qed.
-Lemma Th_plus_opp_opp : (x,y:A) (-x) + (-y) == -(x+y).
-Intros.
-Apply (aux2 1! x + y);
-[ Elim plus_assoc;
- Rewrite -> (Th_plus_permute y (-x)); Rewrite -> plus_assoc;
- Rewrite -> opp_def; Rewrite plus_zero_left; Auto
-| Auto ].
+Lemma Th_plus_opp_opp : forall x y:A, - x + - y = - (x + y).
+intros.
+apply (aux2 (x:=(x + y)));
+ [ elim plus_assoc; rewrite (Th_plus_permute y (- x)); rewrite plus_assoc;
+ rewrite opp_def; rewrite plus_zero_left; auto
+ | auto ].
Qed.
-Lemma Th_plus_permute_opp: (n,m,p:A) (-m)+(n+p) == n+((-m)+p).
-EAuto. Qed.
+Lemma Th_plus_permute_opp : forall n m p:A, - m + (n + p) = n + (- m + p).
+eauto. Qed.
-Lemma Th_opp_opp : (n:A) -(-n) == n.
-Intro; Apply (aux2 1! -n);
- [ Auto | Elim plus_sym; Auto ].
+Lemma Th_opp_opp : forall n:A, - - n = n.
+intro; apply (aux2 (x:=(- n))); [ auto | elim plus_comm; auto ].
Qed.
-Hints Resolve Th_opp_opp.
+Hint Resolve Th_opp_opp.
-Lemma Th_opp_opp2 : (n:A) n == -(-n).
-Symmetry; EAuto. Qed.
+Lemma Th_opp_opp2 : forall n:A, n = - - n.
+symmetry in |- *; eauto. Qed.
-Lemma Th_mult_opp_opp : (x,y:A) (-x)*(-y) == x*y.
-Intros; Rewrite <- Th_opp_mult_left; Rewrite <- Th_opp_mult_right; Auto.
+Lemma Th_mult_opp_opp : forall x y:A, - x * - y = x * y.
+intros; rewrite <- Th_opp_mult_left; rewrite <- Th_opp_mult_right; auto.
Qed.
-Lemma Th_mult_opp_opp2 : (x,y:A) x*y == (-x)*(-y).
-Symmetry; Apply Th_mult_opp_opp. Qed.
+Lemma Th_mult_opp_opp2 : forall x y:A, x * y = - x * - y.
+symmetry in |- *; apply Th_mult_opp_opp. Qed.
-Lemma Th_opp_zero : -0 == 0.
-Rewrite <- (plus_zero_left (-0)).
-Auto. Qed.
+Lemma Th_opp_zero : - 0 = 0.
+rewrite <- (plus_zero_left (- 0)).
+auto. Qed.
-Lemma Th_plus_reg_left : (n,m,p:A) n + m == n + p -> m==p.
-Intros; Generalize (congr_eqT ? ? [z] (-n)+z ? ? H).
-Repeat Rewrite plus_assoc.
-Rewrite (plus_sym (-n) n).
-Rewrite opp_def.
-Repeat Rewrite Th_plus_zero_left; EAuto.
+Lemma Th_plus_reg_left : forall n m p:A, n + m = n + p -> m = p.
+intros; generalize (f_equal (fun z => - n + z) H).
+repeat rewrite plus_assoc.
+rewrite (plus_comm (- n) n).
+rewrite opp_def.
+repeat rewrite Th_plus_zero_left; eauto.
Qed.
-Lemma Th_plus_reg_right : (n,m,p:A) m + n == p + n -> m==p.
-Intros.
-EApply Th_plus_reg_left with n.
-Rewrite (plus_sym n m).
-Rewrite (plus_sym n p).
-Auto.
+Lemma Th_plus_reg_right : forall n m p:A, m + n = p + n -> m = p.
+intros.
+eapply Th_plus_reg_left with n.
+rewrite (plus_comm n m).
+rewrite (plus_comm n p).
+auto.
Qed.
-Lemma Th_distr_right : (n,m,p:A) n*(m + p) == (n*m) + (n*p).
-Intros.
-Repeat Rewrite -> (mult_sym n).
-EAuto.
+Lemma Th_distr_right : forall n m p:A, n * (m + p) = n * m + n * p.
+intros.
+repeat rewrite (mult_comm n).
+eauto.
Qed.
-Lemma Th_distr_right2 : (n,m,p:A) (n*m) + (n*p) == n*(m + p).
-Symmetry; Apply Th_distr_right.
+Lemma Th_distr_right2 : forall n m p:A, n * m + n * p = n * (m + p).
+symmetry in |- *; apply Th_distr_right.
Qed.
End Theory_of_rings.
-Hints Resolve Th_mult_zero_left Th_plus_reg_left : core.
+Hint Resolve Th_mult_zero_left Th_plus_reg_left: core.
Unset Implicit Arguments.
Definition Semi_Ring_Theory_of :
- (A:Type)(Aplus : A -> A -> A)(Amult : A -> A -> A)(Aone : A)
- (Azero : A)(Aopp : A -> A)(Aeq : A -> A -> bool)
- (Ring_Theory Aplus Amult Aone Azero Aopp Aeq)
- ->(Semi_Ring_Theory Aplus Amult Aone Azero Aeq).
-Intros until 1; Case H.
-Split; Intros; Simpl; EAuto.
+ forall (A:Type) (Aplus Amult:A -> A -> A) (Aone Azero:A)
+ (Aopp:A -> A) (Aeq:A -> A -> bool),
+ Ring_Theory Aplus Amult Aone Azero Aopp Aeq ->
+ Semi_Ring_Theory Aplus Amult Aone Azero Aeq.
+intros until 1; case H.
+split; intros; simpl in |- *; eauto.
Defined.
(* Every ring can be viewed as a semi-ring : this property will be used
@@ -381,4 +373,4 @@ End product_ring.
Section power_ring.
-End power_ring.
+End power_ring. \ No newline at end of file
diff --git a/contrib/ring/Setoid_ring.v b/contrib/ring/Setoid_ring.v
index 567517e98..6c33032a2 100644
--- a/contrib/ring/Setoid_ring.v
+++ b/contrib/ring/Setoid_ring.v
@@ -10,4 +10,4 @@
Require Export Setoid_ring_theory.
Require Export Quote.
-Require Export Setoid_ring_normalize.
+Require Export Setoid_ring_normalize. \ No newline at end of file
diff --git a/contrib/ring/Setoid_ring_normalize.v b/contrib/ring/Setoid_ring_normalize.v
index bbebde422..c619f3265 100644
--- a/contrib/ring/Setoid_ring_normalize.v
+++ b/contrib/ring/Setoid_ring_normalize.v
@@ -8,17 +8,18 @@
(* $Id$ *)
-Require Setoid_ring_theory.
-Require Quote.
+Require Import Setoid_ring_theory.
+Require Import Quote.
Set Implicit Arguments.
-Lemma index_eq_prop: (n,m:index)(Is_true (index_eq n m)) -> n=m.
+Lemma index_eq_prop : forall n m:index, Is_true (index_eq n m) -> n = m.
Proof.
- Induction n; Induction m; Simpl; Try (Reflexivity Orelse Contradiction).
- Intros; Rewrite (H i0); Trivial.
- Intros; Rewrite (H i0); Trivial.
-Save.
+ simple induction n; simple induction m; simpl in |- *;
+ try reflexivity || contradiction.
+ intros; rewrite (H i0); trivial.
+ intros; rewrite (H i0); trivial.
+Qed.
Section setoid.
@@ -31,35 +32,38 @@ Variable Azero : A.
Variable Aopp : A -> A.
Variable Aeq : A -> A -> bool.
-Variable S : (Setoid_Theory A Aequiv).
+Variable S : Setoid_Theory A Aequiv.
Add Setoid A Aequiv S.
-Variable plus_morph : (a,a0,a1,a2:A)
- (Aequiv a a0)->(Aequiv a1 a2)->(Aequiv (Aplus a a1) (Aplus a0 a2)).
-Variable mult_morph : (a,a0,a1,a2:A)
- (Aequiv a a0)->(Aequiv a1 a2)->(Aequiv (Amult a a1) (Amult a0 a2)).
-Variable opp_morph : (a,a0:A)
- (Aequiv a a0)->(Aequiv (Aopp a) (Aopp a0)).
+Variable
+ plus_morph :
+ forall a a0 a1 a2:A,
+ Aequiv a a0 -> Aequiv a1 a2 -> Aequiv (Aplus a a1) (Aplus a0 a2).
+Variable
+ mult_morph :
+ forall a a0 a1 a2:A,
+ Aequiv a a0 -> Aequiv a1 a2 -> Aequiv (Amult a a1) (Amult a0 a2).
+Variable opp_morph : forall a a0:A, Aequiv a a0 -> Aequiv (Aopp a) (Aopp a0).
Add Morphism Aplus : Aplus_ext.
-Exact plus_morph.
-Save.
+exact plus_morph.
+Qed.
Add Morphism Amult : Amult_ext.
-Exact mult_morph.
-Save.
+exact mult_morph.
+Qed.
Add Morphism Aopp : Aopp_ext.
-Exact opp_morph.
-Save.
+exact opp_morph.
+Qed.
-Local equiv_refl := (Seq_refl A Aequiv S).
-Local equiv_sym := (Seq_sym A Aequiv S).
-Local equiv_trans := (Seq_trans A Aequiv S).
+Let equiv_refl := Seq_refl A Aequiv S.
+Let equiv_sym := Seq_sym A Aequiv S.
+Let equiv_trans := Seq_trans A Aequiv S.
-Hints Resolve equiv_refl equiv_trans.
-Hints Immediate equiv_sym.
+Hint Resolve equiv_refl equiv_trans.
+Hint Immediate equiv_sym.
Section semi_setoid_rings.
@@ -81,16 +85,14 @@ Section semi_setoid_rings.
(* varlist is isomorphic to (list var), but we built a special inductive
for efficiency *)
-Inductive varlist : Type :=
-| Nil_var : varlist
-| Cons_var : index -> varlist -> varlist
-.
+Inductive varlist : Type :=
+ | Nil_var : varlist
+ | Cons_var : index -> varlist -> varlist.
-Inductive canonical_sum : Type :=
-| Nil_monom : canonical_sum
-| Cons_monom : A -> varlist -> canonical_sum -> canonical_sum
-| Cons_varlist : varlist -> canonical_sum -> canonical_sum
-.
+Inductive canonical_sum : Type :=
+ | Nil_monom : canonical_sum
+ | Cons_monom : A -> varlist -> canonical_sum -> canonical_sum
+ | Cons_varlist : varlist -> canonical_sum -> canonical_sum.
(* Order on monoms *)
@@ -107,244 +109,251 @@ Inductive canonical_sum : Type :=
4*x*y < 59*x*y*y*z
*)
-Fixpoint varlist_eq [x,y:varlist] : bool :=
- Cases x y of
- | Nil_var Nil_var => true
- | (Cons_var i xrest) (Cons_var j yrest) =>
- (andb (index_eq i j) (varlist_eq xrest yrest))
- | _ _ => false
+Fixpoint varlist_eq (x y:varlist) {struct y} : bool :=
+ match x, y with
+ | Nil_var, Nil_var => true
+ | Cons_var i xrest, Cons_var j yrest =>
+ andb (index_eq i j) (varlist_eq xrest yrest)
+ | _, _ => false
end.
-Fixpoint varlist_lt [x,y:varlist] : bool :=
- Cases x y of
- | Nil_var (Cons_var _ _) => true
- | (Cons_var i xrest) (Cons_var j yrest) =>
- if (index_lt i j) then true
- else (andb (index_eq i j) (varlist_lt xrest yrest))
- | _ _ => false
+Fixpoint varlist_lt (x y:varlist) {struct y} : bool :=
+ match x, y with
+ | Nil_var, Cons_var _ _ => true
+ | Cons_var i xrest, Cons_var j yrest =>
+ if index_lt i j
+ then true
+ else andb (index_eq i j) (varlist_lt xrest yrest)
+ | _, _ => false
end.
(* merges two variables lists *)
-Fixpoint varlist_merge [l1:varlist] : varlist -> varlist :=
- Cases l1 of
- | (Cons_var v1 t1) =>
- Fix vm_aux {vm_aux [l2:varlist] : varlist :=
- Cases l2 of
- | (Cons_var v2 t2) =>
- if (index_lt v1 v2)
- then (Cons_var v1 (varlist_merge t1 l2))
- else (Cons_var v2 (vm_aux t2))
- | Nil_var => l1
- end}
- | Nil_var => [l2]l2
+Fixpoint varlist_merge (l1:varlist) : varlist -> varlist :=
+ match l1 with
+ | Cons_var v1 t1 =>
+ (fix vm_aux (l2:varlist) : varlist :=
+ match l2 with
+ | Cons_var v2 t2 =>
+ if index_lt v1 v2
+ then Cons_var v1 (varlist_merge t1 l2)
+ else Cons_var v2 (vm_aux t2)
+ | Nil_var => l1
+ end)
+ | Nil_var => fun l2 => l2
end.
(* returns the sum of two canonical sums *)
-Fixpoint canonical_sum_merge [s1:canonical_sum]
- : canonical_sum -> canonical_sum :=
-Cases s1 of
-| (Cons_monom c1 l1 t1) =>
- Fix csm_aux{csm_aux[s2:canonical_sum] : canonical_sum :=
- Cases s2 of
- | (Cons_monom c2 l2 t2) =>
- if (varlist_eq l1 l2)
- then (Cons_monom (Aplus c1 c2) l1
- (canonical_sum_merge t1 t2))
- else if (varlist_lt l1 l2)
- then (Cons_monom c1 l1 (canonical_sum_merge t1 s2))
- else (Cons_monom c2 l2 (csm_aux t2))
- | (Cons_varlist l2 t2) =>
- if (varlist_eq l1 l2)
- then (Cons_monom (Aplus c1 Aone) l1
- (canonical_sum_merge t1 t2))
- else if (varlist_lt l1 l2)
- then (Cons_monom c1 l1 (canonical_sum_merge t1 s2))
- else (Cons_varlist l2 (csm_aux t2))
- | Nil_monom => s1
- end}
-| (Cons_varlist l1 t1) =>
- Fix csm_aux2{csm_aux2[s2:canonical_sum] : canonical_sum :=
- Cases s2 of
- | (Cons_monom c2 l2 t2) =>
- if (varlist_eq l1 l2)
- then (Cons_monom (Aplus Aone c2) l1
- (canonical_sum_merge t1 t2))
- else if (varlist_lt l1 l2)
- then (Cons_varlist l1 (canonical_sum_merge t1 s2))
- else (Cons_monom c2 l2 (csm_aux2 t2))
- | (Cons_varlist l2 t2) =>
- if (varlist_eq l1 l2)
- then (Cons_monom (Aplus Aone Aone) l1
- (canonical_sum_merge t1 t2))
- else if (varlist_lt l1 l2)
- then (Cons_varlist l1 (canonical_sum_merge t1 s2))
- else (Cons_varlist l2 (csm_aux2 t2))
- | Nil_monom => s1
- end}
-| Nil_monom => [s2]s2
-end.
+Fixpoint canonical_sum_merge (s1:canonical_sum) :
+ canonical_sum -> canonical_sum :=
+ match s1 with
+ | Cons_monom c1 l1 t1 =>
+ (fix csm_aux (s2:canonical_sum) : canonical_sum :=
+ match s2 with
+ | Cons_monom c2 l2 t2 =>
+ if varlist_eq l1 l2
+ then Cons_monom (Aplus c1 c2) l1 (canonical_sum_merge t1 t2)
+ else
+ if varlist_lt l1 l2
+ then Cons_monom c1 l1 (canonical_sum_merge t1 s2)
+ else Cons_monom c2 l2 (csm_aux t2)
+ | Cons_varlist l2 t2 =>
+ if varlist_eq l1 l2
+ then Cons_monom (Aplus c1 Aone) l1 (canonical_sum_merge t1 t2)
+ else
+ if varlist_lt l1 l2
+ then Cons_monom c1 l1 (canonical_sum_merge t1 s2)
+ else Cons_varlist l2 (csm_aux t2)
+ | Nil_monom => s1
+ end)
+ | Cons_varlist l1 t1 =>
+ (fix csm_aux2 (s2:canonical_sum) : canonical_sum :=
+ match s2 with
+ | Cons_monom c2 l2 t2 =>
+ if varlist_eq l1 l2
+ then Cons_monom (Aplus Aone c2) l1 (canonical_sum_merge t1 t2)
+ else
+ if varlist_lt l1 l2
+ then Cons_varlist l1 (canonical_sum_merge t1 s2)
+ else Cons_monom c2 l2 (csm_aux2 t2)
+ | Cons_varlist l2 t2 =>
+ if varlist_eq l1 l2
+ then Cons_monom (Aplus Aone Aone) l1 (canonical_sum_merge t1 t2)
+ else
+ if varlist_lt l1 l2
+ then Cons_varlist l1 (canonical_sum_merge t1 s2)
+ else Cons_varlist l2 (csm_aux2 t2)
+ | Nil_monom => s1
+ end)
+ | Nil_monom => fun s2 => s2
+ end.
(* Insertion of a monom in a canonical sum *)
-Fixpoint monom_insert [c1:A; l1:varlist; s2 : canonical_sum]
- : canonical_sum :=
- Cases s2 of
- | (Cons_monom c2 l2 t2) =>
- if (varlist_eq l1 l2)
- then (Cons_monom (Aplus c1 c2) l1 t2)
- else if (varlist_lt l1 l2)
- then (Cons_monom c1 l1 s2)
- else (Cons_monom c2 l2 (monom_insert c1 l1 t2))
- | (Cons_varlist l2 t2) =>
- if (varlist_eq l1 l2)
- then (Cons_monom (Aplus c1 Aone) l1 t2)
- else if (varlist_lt l1 l2)
- then (Cons_monom c1 l1 s2)
- else (Cons_varlist l2 (monom_insert c1 l1 t2))
- | Nil_monom => (Cons_monom c1 l1 Nil_monom)
+Fixpoint monom_insert (c1:A) (l1:varlist) (s2:canonical_sum) {struct s2} :
+ canonical_sum :=
+ match s2 with
+ | Cons_monom c2 l2 t2 =>
+ if varlist_eq l1 l2
+ then Cons_monom (Aplus c1 c2) l1 t2
+ else
+ if varlist_lt l1 l2
+ then Cons_monom c1 l1 s2
+ else Cons_monom c2 l2 (monom_insert c1 l1 t2)
+ | Cons_varlist l2 t2 =>
+ if varlist_eq l1 l2
+ then Cons_monom (Aplus c1 Aone) l1 t2
+ else
+ if varlist_lt l1 l2
+ then Cons_monom c1 l1 s2
+ else Cons_varlist l2 (monom_insert c1 l1 t2)
+ | Nil_monom => Cons_monom c1 l1 Nil_monom
end.
-Fixpoint varlist_insert [l1:varlist; s2:canonical_sum]
- : canonical_sum :=
- Cases s2 of
- | (Cons_monom c2 l2 t2) =>
- if (varlist_eq l1 l2)
- then (Cons_monom (Aplus Aone c2) l1 t2)
- else if (varlist_lt l1 l2)
- then (Cons_varlist l1 s2)
- else (Cons_monom c2 l2 (varlist_insert l1 t2))
- | (Cons_varlist l2 t2) =>
- if (varlist_eq l1 l2)
- then (Cons_monom (Aplus Aone Aone) l1 t2)
- else if (varlist_lt l1 l2)
- then (Cons_varlist l1 s2)
- else (Cons_varlist l2 (varlist_insert l1 t2))
- | Nil_monom => (Cons_varlist l1 Nil_monom)
+Fixpoint varlist_insert (l1:varlist) (s2:canonical_sum) {struct s2} :
+ canonical_sum :=
+ match s2 with
+ | Cons_monom c2 l2 t2 =>
+ if varlist_eq l1 l2
+ then Cons_monom (Aplus Aone c2) l1 t2
+ else
+ if varlist_lt l1 l2
+ then Cons_varlist l1 s2
+ else Cons_monom c2 l2 (varlist_insert l1 t2)
+ | Cons_varlist l2 t2 =>
+ if varlist_eq l1 l2
+ then Cons_monom (Aplus Aone Aone) l1 t2
+ else
+ if varlist_lt l1 l2
+ then Cons_varlist l1 s2
+ else Cons_varlist l2 (varlist_insert l1 t2)
+ | Nil_monom => Cons_varlist l1 Nil_monom
end.
(* Computes c0*s *)
-Fixpoint canonical_sum_scalar [c0:A; s:canonical_sum] : canonical_sum :=
- Cases s of
- | (Cons_monom c l t) =>
- (Cons_monom (Amult c0 c) l (canonical_sum_scalar c0 t))
- | (Cons_varlist l t) =>
- (Cons_monom c0 l (canonical_sum_scalar c0 t))
- | Nil_monom => Nil_monom
- end.
+Fixpoint canonical_sum_scalar (c0:A) (s:canonical_sum) {struct s} :
+ canonical_sum :=
+ match s with
+ | Cons_monom c l t => Cons_monom (Amult c0 c) l (canonical_sum_scalar c0 t)
+ | Cons_varlist l t => Cons_monom c0 l (canonical_sum_scalar c0 t)
+ | Nil_monom => Nil_monom
+ end.
(* Computes l0*s *)
-Fixpoint canonical_sum_scalar2 [l0:varlist; s:canonical_sum]
- : canonical_sum :=
- Cases s of
- | (Cons_monom c l t) =>
- (monom_insert c (varlist_merge l0 l) (canonical_sum_scalar2 l0 t))
- | (Cons_varlist l t) =>
- (varlist_insert (varlist_merge l0 l) (canonical_sum_scalar2 l0 t))
- | Nil_monom => Nil_monom
- end.
+Fixpoint canonical_sum_scalar2 (l0:varlist) (s:canonical_sum) {struct s} :
+ canonical_sum :=
+ match s with
+ | Cons_monom c l t =>
+ monom_insert c (varlist_merge l0 l) (canonical_sum_scalar2 l0 t)
+ | Cons_varlist l t =>
+ varlist_insert (varlist_merge l0 l) (canonical_sum_scalar2 l0 t)
+ | Nil_monom => Nil_monom
+ end.
(* Computes c0*l0*s *)
-Fixpoint canonical_sum_scalar3 [c0:A;l0:varlist; s:canonical_sum]
- : canonical_sum :=
- Cases s of
- | (Cons_monom c l t) =>
- (monom_insert (Amult c0 c) (varlist_merge l0 l)
- (canonical_sum_scalar3 c0 l0 t))
- | (Cons_varlist l t) =>
- (monom_insert c0 (varlist_merge l0 l)
- (canonical_sum_scalar3 c0 l0 t))
- | Nil_monom => Nil_monom
- end.
+Fixpoint canonical_sum_scalar3 (c0:A) (l0:varlist)
+ (s:canonical_sum) {struct s} : canonical_sum :=
+ match s with
+ | Cons_monom c l t =>
+ monom_insert (Amult c0 c) (varlist_merge l0 l)
+ (canonical_sum_scalar3 c0 l0 t)
+ | Cons_varlist l t =>
+ monom_insert c0 (varlist_merge l0 l) (canonical_sum_scalar3 c0 l0 t)
+ | Nil_monom => Nil_monom
+ end.
(* returns the product of two canonical sums *)
-Fixpoint canonical_sum_prod [s1:canonical_sum]
- : canonical_sum -> canonical_sum :=
- [s2]Cases s1 of
- | (Cons_monom c1 l1 t1) =>
- (canonical_sum_merge (canonical_sum_scalar3 c1 l1 s2)
- (canonical_sum_prod t1 s2))
- | (Cons_varlist l1 t1) =>
- (canonical_sum_merge (canonical_sum_scalar2 l1 s2)
- (canonical_sum_prod t1 s2))
- | Nil_monom => Nil_monom
- end.
+Fixpoint canonical_sum_prod (s1 s2:canonical_sum) {struct s1} :
+ canonical_sum :=
+ match s1 with
+ | Cons_monom c1 l1 t1 =>
+ canonical_sum_merge (canonical_sum_scalar3 c1 l1 s2)
+ (canonical_sum_prod t1 s2)
+ | Cons_varlist l1 t1 =>
+ canonical_sum_merge (canonical_sum_scalar2 l1 s2)
+ (canonical_sum_prod t1 s2)
+ | Nil_monom => Nil_monom
+ end.
(* The type to represent concrete semi-setoid-ring polynomials *)
-Inductive Type setspolynomial :=
- SetSPvar : index -> setspolynomial
-| SetSPconst : A -> setspolynomial
-| SetSPplus : setspolynomial -> setspolynomial -> setspolynomial
-| SetSPmult : setspolynomial -> setspolynomial -> setspolynomial.
-
-Fixpoint setspolynomial_normalize [p:setspolynomial] : canonical_sum :=
- Cases p of
- | (SetSPplus l r) => (canonical_sum_merge (setspolynomial_normalize l) (setspolynomial_normalize r))
- | (SetSPmult l r) => (canonical_sum_prod (setspolynomial_normalize l) (setspolynomial_normalize r))
- | (SetSPconst c) => (Cons_monom c Nil_var Nil_monom)
- | (SetSPvar i) => (Cons_varlist (Cons_var i Nil_var) Nil_monom)
- end.
-
-Fixpoint canonical_sum_simplify [ s:canonical_sum] : canonical_sum :=
- Cases s of
- | (Cons_monom c l t) =>
- if (Aeq c Azero)
- then (canonical_sum_simplify t)
- else if (Aeq c Aone)
- then (Cons_varlist l (canonical_sum_simplify t))
- else (Cons_monom c l (canonical_sum_simplify t))
- | (Cons_varlist l t) => (Cons_varlist l (canonical_sum_simplify t))
+Inductive setspolynomial : Type :=
+ | SetSPvar : index -> setspolynomial
+ | SetSPconst : A -> setspolynomial
+ | SetSPplus : setspolynomial -> setspolynomial -> setspolynomial
+ | SetSPmult : setspolynomial -> setspolynomial -> setspolynomial.
+
+Fixpoint setspolynomial_normalize (p:setspolynomial) : canonical_sum :=
+ match p with
+ | SetSPplus l r =>
+ canonical_sum_merge (setspolynomial_normalize l)
+ (setspolynomial_normalize r)
+ | SetSPmult l r =>
+ canonical_sum_prod (setspolynomial_normalize l)
+ (setspolynomial_normalize r)
+ | SetSPconst c => Cons_monom c Nil_var Nil_monom
+ | SetSPvar i => Cons_varlist (Cons_var i Nil_var) Nil_monom
+ end.
+
+Fixpoint canonical_sum_simplify (s:canonical_sum) : canonical_sum :=
+ match s with
+ | Cons_monom c l t =>
+ if Aeq c Azero
+ then canonical_sum_simplify t
+ else
+ if Aeq c Aone
+ then Cons_varlist l (canonical_sum_simplify t)
+ else Cons_monom c l (canonical_sum_simplify t)
+ | Cons_varlist l t => Cons_varlist l (canonical_sum_simplify t)
| Nil_monom => Nil_monom
end.
-Definition setspolynomial_simplify :=
- [x:setspolynomial] (canonical_sum_simplify (setspolynomial_normalize x)).
+Definition setspolynomial_simplify (x:setspolynomial) :=
+ canonical_sum_simplify (setspolynomial_normalize x).
-Variable vm : (varmap A).
+Variable vm : varmap A.
-Definition interp_var [i:index] := (varmap_find Azero i vm).
+Definition interp_var (i:index) := varmap_find Azero i vm.
-Definition ivl_aux := Fix ivl_aux {ivl_aux[x:index; t:varlist] : A :=
- Cases t of
- | Nil_var => (interp_var x)
- | (Cons_var x' t') => (Amult (interp_var x) (ivl_aux x' t'))
- end}.
+Definition ivl_aux :=
+ (fix ivl_aux (x:index) (t:varlist) {struct t} : A :=
+ match t with
+ | Nil_var => interp_var x
+ | Cons_var x' t' => Amult (interp_var x) (ivl_aux x' t')
+ end).
-Definition interp_vl := [l:varlist]
- Cases l of
+Definition interp_vl (l:varlist) :=
+ match l with
| Nil_var => Aone
- | (Cons_var x t) => (ivl_aux x t)
+ | Cons_var x t => ivl_aux x t
end.
-Definition interp_m := [c:A][l:varlist]
- Cases l of
+Definition interp_m (c:A) (l:varlist) :=
+ match l with
| Nil_var => c
- | (Cons_var x t) =>
- (Amult c (ivl_aux x t))
+ | Cons_var x t => Amult c (ivl_aux x t)
end.
-Definition ics_aux := Fix ics_aux{ics_aux[a:A; s:canonical_sum] : A :=
- Cases s of
- | Nil_monom => a
- | (Cons_varlist l t) => (Aplus a (ics_aux (interp_vl l) t))
- | (Cons_monom c l t) => (Aplus a (ics_aux (interp_m c l) t))
- end}.
+Definition ics_aux :=
+ (fix ics_aux (a:A) (s:canonical_sum) {struct s} : A :=
+ match s with
+ | Nil_monom => a
+ | Cons_varlist l t => Aplus a (ics_aux (interp_vl l) t)
+ | Cons_monom c l t => Aplus a (ics_aux (interp_m c l) t)
+ end).
-Definition interp_setcs : canonical_sum -> A :=
- [s]Cases s of
+Definition interp_setcs (s:canonical_sum) : A :=
+ match s with
| Nil_monom => Azero
- | (Cons_varlist l t) =>
- (ics_aux (interp_vl l) t)
- | (Cons_monom c l t) =>
- (ics_aux (interp_m c l) t)
+ | Cons_varlist l t => ics_aux (interp_vl l) t
+ | Cons_monom c l t => ics_aux (interp_m c l) t
end.
-Fixpoint interp_setsp [p:setspolynomial] : A :=
- Cases p of
- | (SetSPconst c) => c
- | (SetSPvar i) => (interp_var i)
- | (SetSPplus p1 p2) => (Aplus (interp_setsp p1) (interp_setsp p2))
- | (SetSPmult p1 p2) => (Amult (interp_setsp p1) (interp_setsp p2))
- end.
+Fixpoint interp_setsp (p:setspolynomial) : A :=
+ match p with
+ | SetSPconst c => c
+ | SetSPvar i => interp_var i
+ | SetSPplus p1 p2 => Aplus (interp_setsp p1) (interp_setsp p2)
+ | SetSPmult p1 p2 => Amult (interp_setsp p1) (interp_setsp p2)
+ end.
(* End interpretation. *)
@@ -352,655 +361,636 @@ Unset Implicit Arguments.
(* Section properties. *)
-Variable T : (Semi_Setoid_Ring_Theory Aequiv Aplus Amult Aone Azero Aeq).
-
-Hint SSR_plus_sym_T := Resolve (SSR_plus_sym T).
-Hint SSR_plus_assoc_T := Resolve (SSR_plus_assoc T).
-Hint SSR_plus_assoc2_T := Resolve (SSR_plus_assoc2 S T).
-Hint SSR_mult_sym_T := Resolve (SSR_mult_sym T).
-Hint SSR_mult_assoc_T := Resolve (SSR_mult_assoc T).
-Hint SSR_mult_assoc2_T := Resolve (SSR_mult_assoc2 S T).
-Hint SSR_plus_zero_left_T := Resolve (SSR_plus_zero_left T).
-Hint SSR_plus_zero_left2_T := Resolve (SSR_plus_zero_left2 S T).
-Hint SSR_mult_one_left_T := Resolve (SSR_mult_one_left T).
-Hint SSR_mult_one_left2_T := Resolve (SSR_mult_one_left2 S T).
-Hint SSR_mult_zero_left_T := Resolve (SSR_mult_zero_left T).
-Hint SSR_mult_zero_left2_T := Resolve (SSR_mult_zero_left2 S T).
-Hint SSR_distr_left_T := Resolve (SSR_distr_left T).
-Hint SSR_distr_left2_T := Resolve (SSR_distr_left2 S T).
-Hint SSR_plus_reg_left_T := Resolve (SSR_plus_reg_left T).
-Hint SSR_plus_permute_T := Resolve (SSR_plus_permute S plus_morph T).
-Hint SSR_mult_permute_T := Resolve (SSR_mult_permute S mult_morph T).
-Hint SSR_distr_right_T := Resolve (SSR_distr_right S plus_morph T).
-Hint SSR_distr_right2_T := Resolve (SSR_distr_right2 S plus_morph T).
-Hint SSR_mult_zero_right_T := Resolve (SSR_mult_zero_right S T).
-Hint SSR_mult_zero_right2_T := Resolve (SSR_mult_zero_right2 S T).
-Hint SSR_plus_zero_right_T := Resolve (SSR_plus_zero_right S T).
-Hint SSR_plus_zero_right2_T := Resolve (SSR_plus_zero_right2 S T).
-Hint SSR_mult_one_right_T := Resolve (SSR_mult_one_right S T).
-Hint SSR_mult_one_right2_T := Resolve (SSR_mult_one_right2 S T).
-Hint SSR_plus_reg_right_T := Resolve (SSR_plus_reg_right S T).
-Hints Resolve refl_equal sym_equal trans_equal.
+Variable T : Semi_Setoid_Ring_Theory Aequiv Aplus Amult Aone Azero Aeq.
+
+Hint Resolve (SSR_plus_comm T).
+Hint Resolve (SSR_plus_assoc T).
+Hint Resolve (SSR_plus_assoc2 S T).
+Hint Resolve (SSR_mult_comm T).
+Hint Resolve (SSR_mult_assoc T).
+Hint Resolve (SSR_mult_assoc2 S T).
+Hint Resolve (SSR_plus_zero_left T).
+Hint Resolve (SSR_plus_zero_left2 S T).
+Hint Resolve (SSR_mult_one_left T).
+Hint Resolve (SSR_mult_one_left2 S T).
+Hint Resolve (SSR_mult_zero_left T).
+Hint Resolve (SSR_mult_zero_left2 S T).
+Hint Resolve (SSR_distr_left T).
+Hint Resolve (SSR_distr_left2 S T).
+Hint Resolve (SSR_plus_reg_left T).
+Hint Resolve (SSR_plus_permute S plus_morph T).
+Hint Resolve (SSR_mult_permute S mult_morph T).
+Hint Resolve (SSR_distr_right S plus_morph T).
+Hint Resolve (SSR_distr_right2 S plus_morph T).
+Hint Resolve (SSR_mult_zero_right S T).
+Hint Resolve (SSR_mult_zero_right2 S T).
+Hint Resolve (SSR_plus_zero_right S T).
+Hint Resolve (SSR_plus_zero_right2 S T).
+Hint Resolve (SSR_mult_one_right S T).
+Hint Resolve (SSR_mult_one_right2 S T).
+Hint Resolve (SSR_plus_reg_right S T).
+Hint Resolve refl_equal sym_equal trans_equal.
(*Hints Resolve refl_eqT sym_eqT trans_eqT.*)
-Hints Immediate T.
+Hint Immediate T.
-Lemma varlist_eq_prop : (x,y:varlist)
- (Is_true (varlist_eq x y))->x==y.
+Lemma varlist_eq_prop : forall x y:varlist, Is_true (varlist_eq x y) -> x = y.
Proof.
- Induction x; Induction y; Contradiction Orelse Try Reflexivity.
- Simpl; Intros.
- Generalize (andb_prop2 ? ? H1); Intros; Elim H2; Intros.
- Rewrite (index_eq_prop H3); Rewrite (H v0 H4); Reflexivity.
-Save.
-
-Remark ivl_aux_ok : (v:varlist)(i:index)
- (Aequiv (ivl_aux i v) (Amult (interp_var i) (interp_vl v))).
+ simple induction x; simple induction y; contradiction || (try reflexivity).
+ simpl in |- *; intros.
+ generalize (andb_prop2 _ _ H1); intros; elim H2; intros.
+ rewrite (index_eq_prop _ _ H3); rewrite (H v0 H4); reflexivity.
+Qed.
+
+Remark ivl_aux_ok :
+ forall (v:varlist) (i:index),
+ Aequiv (ivl_aux i v) (Amult (interp_var i) (interp_vl v)).
Proof.
- Induction v; Simpl; Intros.
- Trivial.
- Rewrite (H i); Trivial.
-Save.
-
-Lemma varlist_merge_ok : (x,y:varlist)
- (Aequiv (interp_vl (varlist_merge x y)) (Amult (interp_vl x) (interp_vl y))).
+ simple induction v; simpl in |- *; intros.
+ trivial.
+ rewrite (H i); trivial.
+Qed.
+
+Lemma varlist_merge_ok :
+ forall x y:varlist,
+ Aequiv (interp_vl (varlist_merge x y)) (Amult (interp_vl x) (interp_vl y)).
Proof.
- Induction x.
- Simpl; Trivial.
- Induction y.
- Simpl; Trivial.
- Simpl; Intros.
- Elim (index_lt i i0); Simpl; Intros.
-
- Rewrite (ivl_aux_ok v i).
- Rewrite (ivl_aux_ok v0 i0).
- Rewrite (ivl_aux_ok (varlist_merge v (Cons_var i0 v0)) i).
- Rewrite (H (Cons_var i0 v0)).
- Simpl.
- Rewrite (ivl_aux_ok v0 i0).
- EAuto.
-
- Rewrite (ivl_aux_ok v i).
- Rewrite (ivl_aux_ok v0 i0).
- Rewrite (ivl_aux_ok
- (Fix vm_aux
- {vm_aux [l2:varlist] : varlist :=
- Cases (l2) of
- Nil_var => (Cons_var i v)
- | (Cons_var v2 t2) =>
- (if (index_lt i v2)
- then (Cons_var i (varlist_merge v l2))
- else (Cons_var v2 (vm_aux t2)))
- end} v0) i0).
- Rewrite H0.
- Rewrite (ivl_aux_ok v i).
- EAuto.
-Save.
-
-Remark ics_aux_ok : (x:A)(s:canonical_sum)
- (Aequiv (ics_aux x s) (Aplus x (interp_setcs s))).
+ simple induction x.
+ simpl in |- *; trivial.
+ simple induction y.
+ simpl in |- *; trivial.
+ simpl in |- *; intros.
+ elim (index_lt i i0); simpl in |- *; intros.
+
+ rewrite (ivl_aux_ok v i).
+ rewrite (ivl_aux_ok v0 i0).
+ rewrite (ivl_aux_ok (varlist_merge v (Cons_var i0 v0)) i).
+ rewrite (H (Cons_var i0 v0)).
+ simpl in |- *.
+ rewrite (ivl_aux_ok v0 i0).
+ eauto.
+
+ rewrite (ivl_aux_ok v i).
+ rewrite (ivl_aux_ok v0 i0).
+ rewrite
+ (ivl_aux_ok
+ ((fix vm_aux (l2:varlist) : varlist :=
+ match l2 with
+ | Nil_var => Cons_var i v
+ | Cons_var v2 t2 =>
+ if index_lt i v2
+ then Cons_var i (varlist_merge v l2)
+ else Cons_var v2 (vm_aux t2)
+ end) v0) i0).
+ rewrite H0.
+ rewrite (ivl_aux_ok v i).
+ eauto.
+Qed.
+
+Remark ics_aux_ok :
+ forall (x:A) (s:canonical_sum),
+ Aequiv (ics_aux x s) (Aplus x (interp_setcs s)).
Proof.
- Induction s; Simpl; Intros;Trivial.
-Save.
+ simple induction s; simpl in |- *; intros; trivial.
+Qed.
-Remark interp_m_ok : (x:A)(l:varlist)
- (Aequiv (interp_m x l) (Amult x (interp_vl l))).
+Remark interp_m_ok :
+ forall (x:A) (l:varlist), Aequiv (interp_m x l) (Amult x (interp_vl l)).
Proof.
- NewDestruct l;Trivial.
-Save.
+ destruct l as [| i v]; trivial.
+Qed.
-Hint ivl_aux_ok_ := Resolve ivl_aux_ok.
-Hint ics_aux_ok_ := Resolve ics_aux_ok.
-Hint interp_m_ok_ := Resolve interp_m_ok.
+Hint Resolve ivl_aux_ok.
+Hint Resolve ics_aux_ok.
+Hint Resolve interp_m_ok.
(* Hints Resolve ivl_aux_ok ics_aux_ok interp_m_ok. *)
-Lemma canonical_sum_merge_ok : (x,y:canonical_sum)
- (Aequiv (interp_setcs (canonical_sum_merge x y))
- (Aplus (interp_setcs x) (interp_setcs y))).
+Lemma canonical_sum_merge_ok :
+ forall x y:canonical_sum,
+ Aequiv (interp_setcs (canonical_sum_merge x y))
+ (Aplus (interp_setcs x) (interp_setcs y)).
Proof.
-Induction x; Simpl.
-Trivial.
-
-Induction y; Simpl; Intros.
-EAuto.
-
-Generalize (varlist_eq_prop v v0).
-Elim (varlist_eq v v0).
-Intros; Rewrite (H1 I).
-Simpl.
-Rewrite (ics_aux_ok (interp_m a v0) c).
-Rewrite (ics_aux_ok (interp_m a0 v0) c0).
-Rewrite (ics_aux_ok (interp_m (Aplus a a0) v0)
- (canonical_sum_merge c c0)).
-Rewrite (H c0).
-Rewrite (interp_m_ok (Aplus a a0) v0).
-Rewrite (interp_m_ok a v0).
-Rewrite (interp_m_ok a0 v0).
-Setoid_replace (Amult (Aplus a a0) (interp_vl v0))
- with (Aplus (Amult a (interp_vl v0)) (Amult a0 (interp_vl v0))).
-Setoid_replace (Aplus
- (Aplus (Amult a (interp_vl v0))
- (Amult a0 (interp_vl v0)))
- (Aplus (interp_setcs c) (interp_setcs c0)))
- with (Aplus (Amult a (interp_vl v0))
- (Aplus (Amult a0 (interp_vl v0))
- (Aplus (interp_setcs c) (interp_setcs c0)))).
-Setoid_replace (Aplus (Aplus (Amult a (interp_vl v0)) (interp_setcs c))
- (Aplus (Amult a0 (interp_vl v0)) (interp_setcs c0)))
- with (Aplus (Amult a (interp_vl v0))
- (Aplus (interp_setcs c)
- (Aplus (Amult a0 (interp_vl v0)) (interp_setcs c0)))).
-Auto.
-
-Elim (varlist_lt v v0); Simpl.
-Intro.
-Rewrite (ics_aux_ok (interp_m a v)
- (canonical_sum_merge c (Cons_monom a0 v0 c0))).
-Rewrite (ics_aux_ok (interp_m a v) c).
-Rewrite (ics_aux_ok (interp_m a0 v0) c0).
-Rewrite (H (Cons_monom a0 v0 c0)); Simpl.
-Rewrite (ics_aux_ok (interp_m a0 v0) c0); Auto.
-
-Intro.
-Rewrite (ics_aux_ok (interp_m a0 v0)
- (Fix csm_aux
- {csm_aux [s2:canonical_sum] : canonical_sum :=
- Cases (s2) of
- Nil_monom => (Cons_monom a v c)
- | (Cons_monom c2 l2 t2) =>
- (if (varlist_eq v l2)
- then
- (Cons_monom (Aplus a c2) v
- (canonical_sum_merge c t2))
- else
- (if (varlist_lt v l2)
- then
- (Cons_monom a v
- (canonical_sum_merge c s2))
- else (Cons_monom c2 l2 (csm_aux t2))))
- | (Cons_varlist l2 t2) =>
- (if (varlist_eq v l2)
- then
- (Cons_monom (Aplus a Aone) v
- (canonical_sum_merge c t2))
- else
- (if (varlist_lt v l2)
- then
- (Cons_monom a v
- (canonical_sum_merge c s2))
- else (Cons_varlist l2 (csm_aux t2))))
- end} c0)).
-Rewrite H0.
-Rewrite (ics_aux_ok (interp_m a v) c);
-Rewrite (ics_aux_ok (interp_m a0 v0) c0); Simpl; Auto.
-
-Generalize (varlist_eq_prop v v0).
-Elim (varlist_eq v v0).
-Intros; Rewrite (H1 I).
-Simpl.
-Rewrite (ics_aux_ok (interp_m (Aplus a Aone) v0)
- (canonical_sum_merge c c0));
-Rewrite (ics_aux_ok (interp_m a v0) c);
-Rewrite (ics_aux_ok (interp_vl v0) c0).
-Rewrite (H c0).
-Rewrite (interp_m_ok (Aplus a Aone) v0).
-Rewrite (interp_m_ok a v0).
-Setoid_replace (Amult (Aplus a Aone) (interp_vl v0))
- with (Aplus (Amult a (interp_vl v0)) (Amult Aone (interp_vl v0))).
-Setoid_replace (Aplus
- (Aplus (Amult a (interp_vl v0))
- (Amult Aone (interp_vl v0)))
- (Aplus (interp_setcs c) (interp_setcs c0)))
- with (Aplus (Amult a (interp_vl v0))
- (Aplus (Amult Aone (interp_vl v0))
- (Aplus (interp_setcs c) (interp_setcs c0)))).
-Setoid_replace (Aplus (Aplus (Amult a (interp_vl v0)) (interp_setcs c))
- (Aplus (interp_vl v0) (interp_setcs c0)))
- with (Aplus (Amult a (interp_vl v0))
- (Aplus (interp_setcs c) (Aplus (interp_vl v0) (interp_setcs c0)))).
-Setoid_replace (Amult Aone (interp_vl v0)) with (interp_vl v0).
-Auto.
-
-Elim (varlist_lt v v0); Simpl.
-Intro.
-Rewrite (ics_aux_ok (interp_m a v)
- (canonical_sum_merge c (Cons_varlist v0 c0)));
-Rewrite (ics_aux_ok (interp_m a v) c);
-Rewrite (ics_aux_ok (interp_vl v0) c0).
-Rewrite (H (Cons_varlist v0 c0)); Simpl.
-Rewrite (ics_aux_ok (interp_vl v0) c0).
-Auto.
-
-Intro.
-Rewrite (ics_aux_ok (interp_vl v0)
- (Fix csm_aux
- {csm_aux [s2:canonical_sum] : canonical_sum :=
- Cases (s2) of
- Nil_monom => (Cons_monom a v c)
- | (Cons_monom c2 l2 t2) =>
- (if (varlist_eq v l2)
- then
- (Cons_monom (Aplus a c2) v
- (canonical_sum_merge c t2))
- else
- (if (varlist_lt v l2)
- then
- (Cons_monom a v
- (canonical_sum_merge c s2))
- else (Cons_monom c2 l2 (csm_aux t2))))
- | (Cons_varlist l2 t2) =>
- (if (varlist_eq v l2)
- then
- (Cons_monom (Aplus a Aone) v
- (canonical_sum_merge c t2))
- else
- (if (varlist_lt v l2)
- then
- (Cons_monom a v
- (canonical_sum_merge c s2))
- else (Cons_varlist l2 (csm_aux t2))))
- end} c0)); Rewrite H0.
-Rewrite (ics_aux_ok (interp_m a v) c);
-Rewrite (ics_aux_ok (interp_vl v0) c0); Simpl.
-Auto.
-
-Induction y; Simpl; Intros.
-Trivial.
-
-Generalize (varlist_eq_prop v v0).
-Elim (varlist_eq v v0).
-Intros; Rewrite (H1 I).
-Simpl.
-Rewrite (ics_aux_ok (interp_m (Aplus Aone a) v0)
- (canonical_sum_merge c c0));
-Rewrite (ics_aux_ok (interp_vl v0) c);
-Rewrite (ics_aux_ok (interp_m a v0) c0); Rewrite (
-H c0).
-Rewrite (interp_m_ok (Aplus Aone a) v0);
-Rewrite (interp_m_ok a v0).
-Setoid_replace (Amult (Aplus Aone a) (interp_vl v0))
- with (Aplus (Amult Aone (interp_vl v0)) (Amult a (interp_vl v0)));
-Setoid_replace (Aplus
- (Aplus (Amult Aone (interp_vl v0))
- (Amult a (interp_vl v0)))
- (Aplus (interp_setcs c) (interp_setcs c0)))
- with (Aplus (Amult Aone (interp_vl v0))
- (Aplus (Amult a (interp_vl v0))
- (Aplus (interp_setcs c) (interp_setcs c0))));
-Setoid_replace (Aplus (Aplus (interp_vl v0) (interp_setcs c))
- (Aplus (Amult a (interp_vl v0)) (interp_setcs c0)))
- with (Aplus (interp_vl v0)
- (Aplus (interp_setcs c)
- (Aplus (Amult a (interp_vl v0)) (interp_setcs c0)))).
-Auto.
-
-Elim (varlist_lt v v0); Simpl; Intros.
-Rewrite (ics_aux_ok (interp_vl v)
- (canonical_sum_merge c (Cons_monom a v0 c0)));
-Rewrite (ics_aux_ok (interp_vl v) c);
-Rewrite (ics_aux_ok (interp_m a v0) c0).
-Rewrite (H (Cons_monom a v0 c0)); Simpl.
-Rewrite (ics_aux_ok (interp_m a v0) c0); Auto.
-
-Rewrite (ics_aux_ok (interp_m a v0)
- (Fix csm_aux2
- {csm_aux2 [s2:canonical_sum] : canonical_sum :=
- Cases (s2) of
- Nil_monom => (Cons_varlist v c)
- | (Cons_monom c2 l2 t2) =>
- (if (varlist_eq v l2)
- then
- (Cons_monom (Aplus Aone c2) v
- (canonical_sum_merge c t2))
- else
- (if (varlist_lt v l2)
- then
- (Cons_varlist v
- (canonical_sum_merge c s2))
- else (Cons_monom c2 l2 (csm_aux2 t2))))
- | (Cons_varlist l2 t2) =>
- (if (varlist_eq v l2)
- then
- (Cons_monom (Aplus Aone Aone) v
- (canonical_sum_merge c t2))
- else
- (if (varlist_lt v l2)
- then
- (Cons_varlist v
- (canonical_sum_merge c s2))
- else (Cons_varlist l2 (csm_aux2 t2))))
- end} c0)); Rewrite H0.
-Rewrite (ics_aux_ok (interp_vl v) c);
-Rewrite (ics_aux_ok (interp_m a v0) c0); Simpl; Auto.
-
-Generalize (varlist_eq_prop v v0).
-Elim (varlist_eq v v0); Intros.
-Rewrite (H1 I); Simpl.
-Rewrite (ics_aux_ok (interp_m (Aplus Aone Aone) v0)
- (canonical_sum_merge c c0));
-Rewrite (ics_aux_ok (interp_vl v0) c);
-Rewrite (ics_aux_ok (interp_vl v0) c0); Rewrite (
-H c0).
-Rewrite (interp_m_ok (Aplus Aone Aone) v0).
-Setoid_replace (Amult (Aplus Aone Aone) (interp_vl v0))
- with (Aplus (Amult Aone (interp_vl v0)) (Amult Aone (interp_vl v0)));
-Setoid_replace (Aplus
- (Aplus (Amult Aone (interp_vl v0))
- (Amult Aone (interp_vl v0)))
- (Aplus (interp_setcs c) (interp_setcs c0)))
- with (Aplus (Amult Aone (interp_vl v0))
- (Aplus (Amult Aone (interp_vl v0))
- (Aplus (interp_setcs c) (interp_setcs c0))));
-Setoid_replace (Aplus (Aplus (interp_vl v0) (interp_setcs c))
- (Aplus (interp_vl v0) (interp_setcs c0)))
- with (Aplus (interp_vl v0)
- (Aplus (interp_setcs c) (Aplus (interp_vl v0) (interp_setcs c0)))).
-Setoid_replace (Amult Aone (interp_vl v0)) with (interp_vl v0); Auto.
-
-Elim (varlist_lt v v0); Simpl.
-Rewrite (ics_aux_ok (interp_vl v)
- (canonical_sum_merge c (Cons_varlist v0 c0)));
-Rewrite (ics_aux_ok (interp_vl v) c);
-Rewrite (ics_aux_ok (interp_vl v0) c0);
-Rewrite (H (Cons_varlist v0 c0)); Simpl.
-Rewrite (ics_aux_ok (interp_vl v0) c0); Auto.
-
-Rewrite (ics_aux_ok (interp_vl v0)
- (Fix csm_aux2
- {csm_aux2 [s2:canonical_sum] : canonical_sum :=
- Cases (s2) of
- Nil_monom => (Cons_varlist v c)
- | (Cons_monom c2 l2 t2) =>
- (if (varlist_eq v l2)
- then
- (Cons_monom (Aplus Aone c2) v
- (canonical_sum_merge c t2))
- else
- (if (varlist_lt v l2)
- then
- (Cons_varlist v
- (canonical_sum_merge c s2))
- else (Cons_monom c2 l2 (csm_aux2 t2))))
- | (Cons_varlist l2 t2) =>
- (if (varlist_eq v l2)
- then
- (Cons_monom (Aplus Aone Aone) v
- (canonical_sum_merge c t2))
- else
- (if (varlist_lt v l2)
- then
- (Cons_varlist v
- (canonical_sum_merge c s2))
- else (Cons_varlist l2 (csm_aux2 t2))))
- end} c0)); Rewrite H0.
-Rewrite (ics_aux_ok (interp_vl v) c);
-Rewrite (ics_aux_ok (interp_vl v0) c0); Simpl; Auto.
-Save.
-
-Lemma monom_insert_ok: (a:A)(l:varlist)(s:canonical_sum)
- (Aequiv (interp_setcs (monom_insert a l s))
- (Aplus (Amult a (interp_vl l)) (interp_setcs s))).
+simple induction x; simpl in |- *.
+trivial.
+
+simple induction y; simpl in |- *; intros.
+eauto.
+
+generalize (varlist_eq_prop v v0).
+elim (varlist_eq v v0).
+intros; rewrite (H1 I).
+simpl in |- *.
+rewrite (ics_aux_ok (interp_m a v0) c).
+rewrite (ics_aux_ok (interp_m a0 v0) c0).
+rewrite (ics_aux_ok (interp_m (Aplus a a0) v0) (canonical_sum_merge c c0)).
+rewrite (H c0).
+rewrite (interp_m_ok (Aplus a a0) v0).
+rewrite (interp_m_ok a v0).
+rewrite (interp_m_ok a0 v0).
+setoid_replace (Amult (Aplus a a0) (interp_vl v0)) with
+ (Aplus (Amult a (interp_vl v0)) (Amult a0 (interp_vl v0))).
+setoid_replace
+ (Aplus (Aplus (Amult a (interp_vl v0)) (Amult a0 (interp_vl v0)))
+ (Aplus (interp_setcs c) (interp_setcs c0))) with
+ (Aplus (Amult a (interp_vl v0))
+ (Aplus (Amult a0 (interp_vl v0))
+ (Aplus (interp_setcs c) (interp_setcs c0)))).
+setoid_replace
+ (Aplus (Aplus (Amult a (interp_vl v0)) (interp_setcs c))
+ (Aplus (Amult a0 (interp_vl v0)) (interp_setcs c0))) with
+ (Aplus (Amult a (interp_vl v0))
+ (Aplus (interp_setcs c)
+ (Aplus (Amult a0 (interp_vl v0)) (interp_setcs c0)))).
+auto.
+
+elim (varlist_lt v v0); simpl in |- *.
+intro.
+rewrite
+ (ics_aux_ok (interp_m a v) (canonical_sum_merge c (Cons_monom a0 v0 c0)))
+ .
+rewrite (ics_aux_ok (interp_m a v) c).
+rewrite (ics_aux_ok (interp_m a0 v0) c0).
+rewrite (H (Cons_monom a0 v0 c0)); simpl in |- *.
+rewrite (ics_aux_ok (interp_m a0 v0) c0); auto.
+
+intro.
+rewrite
+ (ics_aux_ok (interp_m a0 v0)
+ ((fix csm_aux (s2:canonical_sum) : canonical_sum :=
+ match s2 with
+ | Nil_monom => Cons_monom a v c
+ | Cons_monom c2 l2 t2 =>
+ if varlist_eq v l2
+ then Cons_monom (Aplus a c2) v (canonical_sum_merge c t2)
+ else
+ if varlist_lt v l2
+ then Cons_monom a v (canonical_sum_merge c s2)
+ else Cons_monom c2 l2 (csm_aux t2)
+ | Cons_varlist l2 t2 =>
+ if varlist_eq v l2
+ then Cons_monom (Aplus a Aone) v (canonical_sum_merge c t2)
+ else
+ if varlist_lt v l2
+ then Cons_monom a v (canonical_sum_merge c s2)
+ else Cons_varlist l2 (csm_aux t2)
+ end) c0)).
+rewrite H0.
+rewrite (ics_aux_ok (interp_m a v) c);
+ rewrite (ics_aux_ok (interp_m a0 v0) c0); simpl in |- *;
+ auto.
+
+generalize (varlist_eq_prop v v0).
+elim (varlist_eq v v0).
+intros; rewrite (H1 I).
+simpl in |- *.
+rewrite (ics_aux_ok (interp_m (Aplus a Aone) v0) (canonical_sum_merge c c0));
+ rewrite (ics_aux_ok (interp_m a v0) c);
+ rewrite (ics_aux_ok (interp_vl v0) c0).
+rewrite (H c0).
+rewrite (interp_m_ok (Aplus a Aone) v0).
+rewrite (interp_m_ok a v0).
+setoid_replace (Amult (Aplus a Aone) (interp_vl v0)) with
+ (Aplus (Amult a (interp_vl v0)) (Amult Aone (interp_vl v0))).
+setoid_replace
+ (Aplus (Aplus (Amult a (interp_vl v0)) (Amult Aone (interp_vl v0)))
+ (Aplus (interp_setcs c) (interp_setcs c0))) with
+ (Aplus (Amult a (interp_vl v0))
+ (Aplus (Amult Aone (interp_vl v0))
+ (Aplus (interp_setcs c) (interp_setcs c0)))).
+setoid_replace
+ (Aplus (Aplus (Amult a (interp_vl v0)) (interp_setcs c))
+ (Aplus (interp_vl v0) (interp_setcs c0))) with
+ (Aplus (Amult a (interp_vl v0))
+ (Aplus (interp_setcs c) (Aplus (interp_vl v0) (interp_setcs c0)))).
+setoid_replace (Amult Aone (interp_vl v0)) with (interp_vl v0).
+auto.
+
+elim (varlist_lt v v0); simpl in |- *.
+intro.
+rewrite
+ (ics_aux_ok (interp_m a v) (canonical_sum_merge c (Cons_varlist v0 c0)))
+ ; rewrite (ics_aux_ok (interp_m a v) c);
+ rewrite (ics_aux_ok (interp_vl v0) c0).
+rewrite (H (Cons_varlist v0 c0)); simpl in |- *.
+rewrite (ics_aux_ok (interp_vl v0) c0).
+auto.
+
+intro.
+rewrite
+ (ics_aux_ok (interp_vl v0)
+ ((fix csm_aux (s2:canonical_sum) : canonical_sum :=
+ match s2 with
+ | Nil_monom => Cons_monom a v c
+ | Cons_monom c2 l2 t2 =>
+ if varlist_eq v l2
+ then Cons_monom (Aplus a c2) v (canonical_sum_merge c t2)
+ else
+ if varlist_lt v l2
+ then Cons_monom a v (canonical_sum_merge c s2)
+ else Cons_monom c2 l2 (csm_aux t2)
+ | Cons_varlist l2 t2 =>
+ if varlist_eq v l2
+ then Cons_monom (Aplus a Aone) v (canonical_sum_merge c t2)
+ else
+ if varlist_lt v l2
+ then Cons_monom a v (canonical_sum_merge c s2)
+ else Cons_varlist l2 (csm_aux t2)
+ end) c0)); rewrite H0.
+rewrite (ics_aux_ok (interp_m a v) c); rewrite (ics_aux_ok (interp_vl v0) c0);
+ simpl in |- *.
+auto.
+
+simple induction y; simpl in |- *; intros.
+trivial.
+
+generalize (varlist_eq_prop v v0).
+elim (varlist_eq v v0).
+intros; rewrite (H1 I).
+simpl in |- *.
+rewrite (ics_aux_ok (interp_m (Aplus Aone a) v0) (canonical_sum_merge c c0));
+ rewrite (ics_aux_ok (interp_vl v0) c);
+ rewrite (ics_aux_ok (interp_m a v0) c0); rewrite (H c0).
+rewrite (interp_m_ok (Aplus Aone a) v0); rewrite (interp_m_ok a v0).
+setoid_replace (Amult (Aplus Aone a) (interp_vl v0)) with
+ (Aplus (Amult Aone (interp_vl v0)) (Amult a (interp_vl v0)));
+ setoid_replace
+ (Aplus (Aplus (Amult Aone (interp_vl v0)) (Amult a (interp_vl v0)))
+ (Aplus (interp_setcs c) (interp_setcs c0))) with
+ (Aplus (Amult Aone (interp_vl v0))
+ (Aplus (Amult a (interp_vl v0))
+ (Aplus (interp_setcs c) (interp_setcs c0))));
+ setoid_replace
+ (Aplus (Aplus (interp_vl v0) (interp_setcs c))
+ (Aplus (Amult a (interp_vl v0)) (interp_setcs c0))) with
+ (Aplus (interp_vl v0)
+ (Aplus (interp_setcs c)
+ (Aplus (Amult a (interp_vl v0)) (interp_setcs c0)))).
+auto.
+
+elim (varlist_lt v v0); simpl in |- *; intros.
+rewrite
+ (ics_aux_ok (interp_vl v) (canonical_sum_merge c (Cons_monom a v0 c0)))
+ ; rewrite (ics_aux_ok (interp_vl v) c);
+ rewrite (ics_aux_ok (interp_m a v0) c0).
+rewrite (H (Cons_monom a v0 c0)); simpl in |- *.
+rewrite (ics_aux_ok (interp_m a v0) c0); auto.
+
+rewrite
+ (ics_aux_ok (interp_m a v0)
+ ((fix csm_aux2 (s2:canonical_sum) : canonical_sum :=
+ match s2 with
+ | Nil_monom => Cons_varlist v c
+ | Cons_monom c2 l2 t2 =>
+ if varlist_eq v l2
+ then Cons_monom (Aplus Aone c2) v (canonical_sum_merge c t2)
+ else
+ if varlist_lt v l2
+ then Cons_varlist v (canonical_sum_merge c s2)
+ else Cons_monom c2 l2 (csm_aux2 t2)
+ | Cons_varlist l2 t2 =>
+ if varlist_eq v l2
+ then Cons_monom (Aplus Aone Aone) v (canonical_sum_merge c t2)
+ else
+ if varlist_lt v l2
+ then Cons_varlist v (canonical_sum_merge c s2)
+ else Cons_varlist l2 (csm_aux2 t2)
+ end) c0)); rewrite H0.
+rewrite (ics_aux_ok (interp_vl v) c); rewrite (ics_aux_ok (interp_m a v0) c0);
+ simpl in |- *; auto.
+
+generalize (varlist_eq_prop v v0).
+elim (varlist_eq v v0); intros.
+rewrite (H1 I); simpl in |- *.
+rewrite
+ (ics_aux_ok (interp_m (Aplus Aone Aone) v0) (canonical_sum_merge c c0))
+ ; rewrite (ics_aux_ok (interp_vl v0) c);
+ rewrite (ics_aux_ok (interp_vl v0) c0); rewrite (H c0).
+rewrite (interp_m_ok (Aplus Aone Aone) v0).
+setoid_replace (Amult (Aplus Aone Aone) (interp_vl v0)) with
+ (Aplus (Amult Aone (interp_vl v0)) (Amult Aone (interp_vl v0)));
+ setoid_replace
+ (Aplus (Aplus (Amult Aone (interp_vl v0)) (Amult Aone (interp_vl v0)))
+ (Aplus (interp_setcs c) (interp_setcs c0))) with
+ (Aplus (Amult Aone (interp_vl v0))
+ (Aplus (Amult Aone (interp_vl v0))
+ (Aplus (interp_setcs c) (interp_setcs c0))));
+ setoid_replace
+ (Aplus (Aplus (interp_vl v0) (interp_setcs c))
+ (Aplus (interp_vl v0) (interp_setcs c0))) with
+ (Aplus (interp_vl v0)
+ (Aplus (interp_setcs c) (Aplus (interp_vl v0) (interp_setcs c0)))).
+setoid_replace (Amult Aone (interp_vl v0)) with (interp_vl v0); auto.
+
+elim (varlist_lt v v0); simpl in |- *.
+rewrite
+ (ics_aux_ok (interp_vl v) (canonical_sum_merge c (Cons_varlist v0 c0)))
+ ; rewrite (ics_aux_ok (interp_vl v) c);
+ rewrite (ics_aux_ok (interp_vl v0) c0); rewrite (H (Cons_varlist v0 c0));
+ simpl in |- *.
+rewrite (ics_aux_ok (interp_vl v0) c0); auto.
+
+rewrite
+ (ics_aux_ok (interp_vl v0)
+ ((fix csm_aux2 (s2:canonical_sum) : canonical_sum :=
+ match s2 with
+ | Nil_monom => Cons_varlist v c
+ | Cons_monom c2 l2 t2 =>
+ if varlist_eq v l2
+ then Cons_monom (Aplus Aone c2) v (canonical_sum_merge c t2)
+ else
+ if varlist_lt v l2
+ then Cons_varlist v (canonical_sum_merge c s2)
+ else Cons_monom c2 l2 (csm_aux2 t2)
+ | Cons_varlist l2 t2 =>
+ if varlist_eq v l2
+ then Cons_monom (Aplus Aone Aone) v (canonical_sum_merge c t2)
+ else
+ if varlist_lt v l2
+ then Cons_varlist v (canonical_sum_merge c s2)
+ else Cons_varlist l2 (csm_aux2 t2)
+ end) c0)); rewrite H0.
+rewrite (ics_aux_ok (interp_vl v) c); rewrite (ics_aux_ok (interp_vl v0) c0);
+ simpl in |- *; auto.
+Qed.
+
+Lemma monom_insert_ok :
+ forall (a:A) (l:varlist) (s:canonical_sum),
+ Aequiv (interp_setcs (monom_insert a l s))
+ (Aplus (Amult a (interp_vl l)) (interp_setcs s)).
Proof.
-Induction s; Intros.
-Simpl; Rewrite (interp_m_ok a l); Trivial.
-
-Simpl; Generalize (varlist_eq_prop l v); Elim (varlist_eq l v).
-Intro Hr; Rewrite (Hr I); Simpl.
-Rewrite (ics_aux_ok (interp_m (Aplus a a0) v) c);
-Rewrite (ics_aux_ok (interp_m a0 v) c).
-Rewrite (interp_m_ok (Aplus a a0) v);
-Rewrite (interp_m_ok a0 v).
-Setoid_replace (Amult (Aplus a a0) (interp_vl v))
- with (Aplus (Amult a (interp_vl v)) (Amult a0 (interp_vl v))).
-Auto.
-
-Elim (varlist_lt l v); Simpl; Intros.
-Rewrite (ics_aux_ok (interp_m a0 v) c).
-Rewrite (interp_m_ok a0 v); Rewrite (interp_m_ok a l).
-Auto.
-
-Rewrite (ics_aux_ok (interp_m a0 v) (monom_insert a l c));
-Rewrite (ics_aux_ok (interp_m a0 v) c); Rewrite H.
-Auto.
-
-Simpl.
-Generalize (varlist_eq_prop l v); Elim (varlist_eq l v).
-Intro Hr; Rewrite (Hr I); Simpl.
-Rewrite (ics_aux_ok (interp_m (Aplus a Aone) v) c);
-Rewrite (ics_aux_ok (interp_vl v) c).
-Rewrite (interp_m_ok (Aplus a Aone) v).
-Setoid_replace (Amult (Aplus a Aone) (interp_vl v))
- with (Aplus (Amult a (interp_vl v)) (Amult Aone (interp_vl v))).
-Setoid_replace (Amult Aone (interp_vl v)) with (interp_vl v).
-Auto.
-
-Elim (varlist_lt l v); Simpl; Intros; Auto.
-Rewrite (ics_aux_ok (interp_vl v) (monom_insert a l c));
-Rewrite H.
-Rewrite (ics_aux_ok (interp_vl v) c); Auto.
-Save.
+simple induction s; intros.
+simpl in |- *; rewrite (interp_m_ok a l); trivial.
+
+simpl in |- *; generalize (varlist_eq_prop l v); elim (varlist_eq l v).
+intro Hr; rewrite (Hr I); simpl in |- *.
+rewrite (ics_aux_ok (interp_m (Aplus a a0) v) c);
+ rewrite (ics_aux_ok (interp_m a0 v) c).
+rewrite (interp_m_ok (Aplus a a0) v); rewrite (interp_m_ok a0 v).
+setoid_replace (Amult (Aplus a a0) (interp_vl v)) with
+ (Aplus (Amult a (interp_vl v)) (Amult a0 (interp_vl v))).
+auto.
+
+elim (varlist_lt l v); simpl in |- *; intros.
+rewrite (ics_aux_ok (interp_m a0 v) c).
+rewrite (interp_m_ok a0 v); rewrite (interp_m_ok a l).
+auto.
+
+rewrite (ics_aux_ok (interp_m a0 v) (monom_insert a l c));
+ rewrite (ics_aux_ok (interp_m a0 v) c); rewrite H.
+auto.
+
+simpl in |- *.
+generalize (varlist_eq_prop l v); elim (varlist_eq l v).
+intro Hr; rewrite (Hr I); simpl in |- *.
+rewrite (ics_aux_ok (interp_m (Aplus a Aone) v) c);
+ rewrite (ics_aux_ok (interp_vl v) c).
+rewrite (interp_m_ok (Aplus a Aone) v).
+setoid_replace (Amult (Aplus a Aone) (interp_vl v)) with
+ (Aplus (Amult a (interp_vl v)) (Amult Aone (interp_vl v))).
+setoid_replace (Amult Aone (interp_vl v)) with (interp_vl v).
+auto.
+
+elim (varlist_lt l v); simpl in |- *; intros; auto.
+rewrite (ics_aux_ok (interp_vl v) (monom_insert a l c)); rewrite H.
+rewrite (ics_aux_ok (interp_vl v) c); auto.
+Qed.
Lemma varlist_insert_ok :
- (l:varlist)(s:canonical_sum)
- (Aequiv (interp_setcs (varlist_insert l s))
- (Aplus (interp_vl l) (interp_setcs s))).
+ forall (l:varlist) (s:canonical_sum),
+ Aequiv (interp_setcs (varlist_insert l s))
+ (Aplus (interp_vl l) (interp_setcs s)).
Proof.
-Induction s; Simpl; Intros.
-Trivial.
-
-Generalize (varlist_eq_prop l v); Elim (varlist_eq l v).
-Intro Hr; Rewrite (Hr I); Simpl.
-Rewrite (ics_aux_ok (interp_m (Aplus Aone a) v) c);
-Rewrite (ics_aux_ok (interp_m a v) c).
-Rewrite (interp_m_ok (Aplus Aone a) v);
-Rewrite (interp_m_ok a v).
-Setoid_replace (Amult (Aplus Aone a) (interp_vl v))
- with (Aplus (Amult Aone (interp_vl v)) (Amult a (interp_vl v))).
-Setoid_replace (Amult Aone (interp_vl v)) with (interp_vl v); Auto.
-
-Elim (varlist_lt l v); Simpl; Intros; Auto.
-Rewrite (ics_aux_ok (interp_m a v) (varlist_insert l c));
-Rewrite (ics_aux_ok (interp_m a v) c).
-Rewrite (interp_m_ok a v).
-Rewrite H; Auto.
-
-Generalize (varlist_eq_prop l v); Elim (varlist_eq l v).
-Intro Hr; Rewrite (Hr I); Simpl.
-Rewrite (ics_aux_ok (interp_m (Aplus Aone Aone) v) c);
-Rewrite (ics_aux_ok (interp_vl v) c).
-Rewrite (interp_m_ok (Aplus Aone Aone) v).
-Setoid_replace (Amult (Aplus Aone Aone) (interp_vl v))
- with (Aplus (Amult Aone (interp_vl v)) (Amult Aone (interp_vl v))).
-Setoid_replace (Amult Aone (interp_vl v)) with (interp_vl v); Auto.
-
-Elim (varlist_lt l v); Simpl; Intros; Auto.
-Rewrite (ics_aux_ok (interp_vl v) (varlist_insert l c)).
-Rewrite H.
-Rewrite (ics_aux_ok (interp_vl v) c); Auto.
-Save.
-
-Lemma canonical_sum_scalar_ok : (a:A)(s:canonical_sum)
- (Aequiv (interp_setcs (canonical_sum_scalar a s)) (Amult a (interp_setcs s))).
+simple induction s; simpl in |- *; intros.
+trivial.
+
+generalize (varlist_eq_prop l v); elim (varlist_eq l v).
+intro Hr; rewrite (Hr I); simpl in |- *.
+rewrite (ics_aux_ok (interp_m (Aplus Aone a) v) c);
+ rewrite (ics_aux_ok (interp_m a v) c).
+rewrite (interp_m_ok (Aplus Aone a) v); rewrite (interp_m_ok a v).
+setoid_replace (Amult (Aplus Aone a) (interp_vl v)) with
+ (Aplus (Amult Aone (interp_vl v)) (Amult a (interp_vl v))).
+setoid_replace (Amult Aone (interp_vl v)) with (interp_vl v); auto.
+
+elim (varlist_lt l v); simpl in |- *; intros; auto.
+rewrite (ics_aux_ok (interp_m a v) (varlist_insert l c));
+ rewrite (ics_aux_ok (interp_m a v) c).
+rewrite (interp_m_ok a v).
+rewrite H; auto.
+
+generalize (varlist_eq_prop l v); elim (varlist_eq l v).
+intro Hr; rewrite (Hr I); simpl in |- *.
+rewrite (ics_aux_ok (interp_m (Aplus Aone Aone) v) c);
+ rewrite (ics_aux_ok (interp_vl v) c).
+rewrite (interp_m_ok (Aplus Aone Aone) v).
+setoid_replace (Amult (Aplus Aone Aone) (interp_vl v)) with
+ (Aplus (Amult Aone (interp_vl v)) (Amult Aone (interp_vl v))).
+setoid_replace (Amult Aone (interp_vl v)) with (interp_vl v); auto.
+
+elim (varlist_lt l v); simpl in |- *; intros; auto.
+rewrite (ics_aux_ok (interp_vl v) (varlist_insert l c)).
+rewrite H.
+rewrite (ics_aux_ok (interp_vl v) c); auto.
+Qed.
+
+Lemma canonical_sum_scalar_ok :
+ forall (a:A) (s:canonical_sum),
+ Aequiv (interp_setcs (canonical_sum_scalar a s))
+ (Amult a (interp_setcs s)).
Proof.
-Induction s; Simpl; Intros.
-Trivial.
-
-Rewrite (ics_aux_ok (interp_m (Amult a a0) v)
- (canonical_sum_scalar a c));
-Rewrite (ics_aux_ok (interp_m a0 v) c).
-Rewrite (interp_m_ok (Amult a a0) v);
-Rewrite (interp_m_ok a0 v).
-Rewrite H.
-Setoid_replace (Amult a (Aplus (Amult a0 (interp_vl v)) (interp_setcs c)))
+simple induction s; simpl in |- *; intros.
+trivial.
+
+rewrite (ics_aux_ok (interp_m (Amult a a0) v) (canonical_sum_scalar a c));
+ rewrite (ics_aux_ok (interp_m a0 v) c).
+rewrite (interp_m_ok (Amult a a0) v); rewrite (interp_m_ok a0 v).
+rewrite H.
+setoid_replace (Amult a (Aplus (Amult a0 (interp_vl v)) (interp_setcs c)))
with (Aplus (Amult a (Amult a0 (interp_vl v))) (Amult a (interp_setcs c))).
-Auto.
-
-Rewrite (ics_aux_ok (interp_m a v) (canonical_sum_scalar a c));
-Rewrite (ics_aux_ok (interp_vl v) c); Rewrite H.
-Rewrite (interp_m_ok a v).
-Auto.
-Save.
-
-Lemma canonical_sum_scalar2_ok : (l:varlist; s:canonical_sum)
- (Aequiv (interp_setcs (canonical_sum_scalar2 l s)) (Amult (interp_vl l) (interp_setcs s))).
+auto.
+
+rewrite (ics_aux_ok (interp_m a v) (canonical_sum_scalar a c));
+ rewrite (ics_aux_ok (interp_vl v) c); rewrite H.
+rewrite (interp_m_ok a v).
+auto.
+Qed.
+
+Lemma canonical_sum_scalar2_ok :
+ forall (l:varlist) (s:canonical_sum),
+ Aequiv (interp_setcs (canonical_sum_scalar2 l s))
+ (Amult (interp_vl l) (interp_setcs s)).
Proof.
-Induction s; Simpl; Intros; Auto.
-Rewrite (monom_insert_ok a (varlist_merge l v)
- (canonical_sum_scalar2 l c)).
-Rewrite (ics_aux_ok (interp_m a v) c).
-Rewrite (interp_m_ok a v).
-Rewrite H.
-Rewrite (varlist_merge_ok l v).
-Setoid_replace (Amult (interp_vl l)
- (Aplus (Amult a (interp_vl v)) (interp_setcs c)))
- with (Aplus (Amult (interp_vl l) (Amult a (interp_vl v)))
- (Amult (interp_vl l) (interp_setcs c))).
-Auto.
-
-Rewrite (varlist_insert_ok (varlist_merge l v)
- (canonical_sum_scalar2 l c)).
-Rewrite (ics_aux_ok (interp_vl v) c).
-Rewrite H.
-Rewrite (varlist_merge_ok l v).
-Auto.
-Save.
-
-Lemma canonical_sum_scalar3_ok : (c:A; l:varlist; s:canonical_sum)
- (Aequiv (interp_setcs (canonical_sum_scalar3 c l s)) (Amult c (Amult (interp_vl l) (interp_setcs s)))).
+simple induction s; simpl in |- *; intros; auto.
+rewrite (monom_insert_ok a (varlist_merge l v) (canonical_sum_scalar2 l c)).
+rewrite (ics_aux_ok (interp_m a v) c).
+rewrite (interp_m_ok a v).
+rewrite H.
+rewrite (varlist_merge_ok l v).
+setoid_replace
+ (Amult (interp_vl l) (Aplus (Amult a (interp_vl v)) (interp_setcs c))) with
+ (Aplus (Amult (interp_vl l) (Amult a (interp_vl v)))
+ (Amult (interp_vl l) (interp_setcs c))).
+auto.
+
+rewrite (varlist_insert_ok (varlist_merge l v) (canonical_sum_scalar2 l c)).
+rewrite (ics_aux_ok (interp_vl v) c).
+rewrite H.
+rewrite (varlist_merge_ok l v).
+auto.
+Qed.
+
+Lemma canonical_sum_scalar3_ok :
+ forall (c:A) (l:varlist) (s:canonical_sum),
+ Aequiv (interp_setcs (canonical_sum_scalar3 c l s))
+ (Amult c (Amult (interp_vl l) (interp_setcs s))).
Proof.
-Induction s; Simpl; Intros.
-Rewrite (SSR_mult_zero_right S T (interp_vl l)).
-Auto.
-
-Rewrite (monom_insert_ok (Amult c a) (varlist_merge l v)
- (canonical_sum_scalar3 c l c0)).
-Rewrite (ics_aux_ok (interp_m a v) c0).
-Rewrite (interp_m_ok a v).
-Rewrite H.
-Rewrite (varlist_merge_ok l v).
-Setoid_replace (Amult (interp_vl l)
- (Aplus (Amult a (interp_vl v)) (interp_setcs c0)))
- with (Aplus (Amult (interp_vl l) (Amult a (interp_vl v)))
- (Amult (interp_vl l) (interp_setcs c0))).
-Setoid_replace (Amult c
- (Aplus (Amult (interp_vl l) (Amult a (interp_vl v)))
- (Amult (interp_vl l) (interp_setcs c0))))
- with (Aplus (Amult c (Amult (interp_vl l) (Amult a (interp_vl v))))
- (Amult c (Amult (interp_vl l) (interp_setcs c0)))).
-Setoid_replace (Amult (Amult c a) (Amult (interp_vl l) (interp_vl v)))
- with (Amult c (Amult a (Amult (interp_vl l) (interp_vl v)))).
-Auto.
-
-Rewrite (monom_insert_ok c (varlist_merge l v)
- (canonical_sum_scalar3 c l c0)).
-Rewrite (ics_aux_ok (interp_vl v) c0).
-Rewrite H.
-Rewrite (varlist_merge_ok l v).
-Setoid_replace (Aplus (Amult c (Amult (interp_vl l) (interp_vl v)))
- (Amult c (Amult (interp_vl l) (interp_setcs c0))))
- with (Amult c
- (Aplus (Amult (interp_vl l) (interp_vl v))
- (Amult (interp_vl l) (interp_setcs c0)))).
-Auto.
-Save.
-
-Lemma canonical_sum_prod_ok : (x,y:canonical_sum)
- (Aequiv (interp_setcs (canonical_sum_prod x y)) (Amult (interp_setcs x) (interp_setcs y))).
+simple induction s; simpl in |- *; intros.
+rewrite (SSR_mult_zero_right S T (interp_vl l)).
+auto.
+
+rewrite
+ (monom_insert_ok (Amult c a) (varlist_merge l v)
+ (canonical_sum_scalar3 c l c0)).
+rewrite (ics_aux_ok (interp_m a v) c0).
+rewrite (interp_m_ok a v).
+rewrite H.
+rewrite (varlist_merge_ok l v).
+setoid_replace
+ (Amult (interp_vl l) (Aplus (Amult a (interp_vl v)) (interp_setcs c0))) with
+ (Aplus (Amult (interp_vl l) (Amult a (interp_vl v)))
+ (Amult (interp_vl l) (interp_setcs c0))).
+setoid_replace
+ (Amult c
+ (Aplus (Amult (interp_vl l) (Amult a (interp_vl v)))
+ (Amult (interp_vl l) (interp_setcs c0)))) with
+ (Aplus (Amult c (Amult (interp_vl l) (Amult a (interp_vl v))))
+ (Amult c (Amult (interp_vl l) (interp_setcs c0)))).
+setoid_replace (Amult (Amult c a) (Amult (interp_vl l) (interp_vl v))) with
+ (Amult c (Amult a (Amult (interp_vl l) (interp_vl v)))).
+auto.
+
+rewrite
+ (monom_insert_ok c (varlist_merge l v) (canonical_sum_scalar3 c l c0))
+ .
+rewrite (ics_aux_ok (interp_vl v) c0).
+rewrite H.
+rewrite (varlist_merge_ok l v).
+setoid_replace
+ (Aplus (Amult c (Amult (interp_vl l) (interp_vl v)))
+ (Amult c (Amult (interp_vl l) (interp_setcs c0)))) with
+ (Amult c
+ (Aplus (Amult (interp_vl l) (interp_vl v))
+ (Amult (interp_vl l) (interp_setcs c0)))).
+auto.
+Qed.
+
+Lemma canonical_sum_prod_ok :
+ forall x y:canonical_sum,
+ Aequiv (interp_setcs (canonical_sum_prod x y))
+ (Amult (interp_setcs x) (interp_setcs y)).
Proof.
-Induction x; Simpl; Intros.
-Trivial.
-
-Rewrite (canonical_sum_merge_ok (canonical_sum_scalar3 a v y)
- (canonical_sum_prod c y)).
-Rewrite (canonical_sum_scalar3_ok a v y).
-Rewrite (ics_aux_ok (interp_m a v) c).
-Rewrite (interp_m_ok a v).
-Rewrite (H y).
-Setoid_replace (Amult a (Amult (interp_vl v) (interp_setcs y)))
- with (Amult (Amult a (interp_vl v)) (interp_setcs y)).
-Setoid_replace (Amult (Aplus (Amult a (interp_vl v)) (interp_setcs c))
- (interp_setcs y))
- with (Aplus (Amult (Amult a (interp_vl v)) (interp_setcs y))
- (Amult (interp_setcs c) (interp_setcs y))).
-Trivial.
-
-Rewrite (canonical_sum_merge_ok (canonical_sum_scalar2 v y)
- (canonical_sum_prod c y)).
-Rewrite (canonical_sum_scalar2_ok v y).
-Rewrite (ics_aux_ok (interp_vl v) c).
-Rewrite (H y).
-Trivial.
-Save.
-
-Theorem setspolynomial_normalize_ok : (p:setspolynomial)
- (Aequiv (interp_setcs (setspolynomial_normalize p)) (interp_setsp p)).
+simple induction x; simpl in |- *; intros.
+trivial.
+
+rewrite
+ (canonical_sum_merge_ok (canonical_sum_scalar3 a v y)
+ (canonical_sum_prod c y)).
+rewrite (canonical_sum_scalar3_ok a v y).
+rewrite (ics_aux_ok (interp_m a v) c).
+rewrite (interp_m_ok a v).
+rewrite (H y).
+setoid_replace (Amult a (Amult (interp_vl v) (interp_setcs y))) with
+ (Amult (Amult a (interp_vl v)) (interp_setcs y)).
+setoid_replace
+ (Amult (Aplus (Amult a (interp_vl v)) (interp_setcs c)) (interp_setcs y))
+ with
+ (Aplus (Amult (Amult a (interp_vl v)) (interp_setcs y))
+ (Amult (interp_setcs c) (interp_setcs y))).
+trivial.
+
+rewrite
+ (canonical_sum_merge_ok (canonical_sum_scalar2 v y) (canonical_sum_prod c y))
+ .
+rewrite (canonical_sum_scalar2_ok v y).
+rewrite (ics_aux_ok (interp_vl v) c).
+rewrite (H y).
+trivial.
+Qed.
+
+Theorem setspolynomial_normalize_ok :
+ forall p:setspolynomial,
+ Aequiv (interp_setcs (setspolynomial_normalize p)) (interp_setsp p).
Proof.
-Induction p; Simpl; Intros; Trivial.
-Rewrite (canonical_sum_merge_ok (setspolynomial_normalize s)
- (setspolynomial_normalize s0)).
-Rewrite H; Rewrite H0; Trivial.
-
-Rewrite (canonical_sum_prod_ok (setspolynomial_normalize s)
- (setspolynomial_normalize s0)).
-Rewrite H; Rewrite H0; Trivial.
-Save.
-
-Lemma canonical_sum_simplify_ok : (s:canonical_sum)
- (Aequiv (interp_setcs (canonical_sum_simplify s)) (interp_setcs s)).
+simple induction p; simpl in |- *; intros; trivial.
+rewrite
+ (canonical_sum_merge_ok (setspolynomial_normalize s)
+ (setspolynomial_normalize s0)).
+rewrite H; rewrite H0; trivial.
+
+rewrite
+ (canonical_sum_prod_ok (setspolynomial_normalize s)
+ (setspolynomial_normalize s0)).
+rewrite H; rewrite H0; trivial.
+Qed.
+
+Lemma canonical_sum_simplify_ok :
+ forall s:canonical_sum,
+ Aequiv (interp_setcs (canonical_sum_simplify s)) (interp_setcs s).
Proof.
-Induction s; Simpl; Intros.
-Trivial.
-
-Generalize (SSR_eq_prop T 9!a 10!Azero).
-Elim (Aeq a Azero).
-Simpl.
-Intros.
-Rewrite (ics_aux_ok (interp_m a v) c).
-Rewrite (interp_m_ok a v).
-Rewrite (H0 I).
-Setoid_replace (Amult Azero (interp_vl v)) with Azero.
-Rewrite H.
-Trivial.
-
-Intros; Simpl.
-Generalize (SSR_eq_prop T 9!a 10!Aone).
-Elim (Aeq a Aone).
-Intros.
-Rewrite (ics_aux_ok (interp_m a v) c).
-Rewrite (interp_m_ok a v).
-Rewrite (H1 I).
-Simpl.
-Rewrite (ics_aux_ok (interp_vl v) (canonical_sum_simplify c)).
-Rewrite H.
-Auto.
-
-Simpl.
-Intros.
-Rewrite (ics_aux_ok (interp_m a v) (canonical_sum_simplify c)).
-Rewrite (ics_aux_ok (interp_m a v) c).
-Rewrite H; Trivial.
-
-Rewrite (ics_aux_ok (interp_vl v) (canonical_sum_simplify c)).
-Rewrite H.
-Auto.
-Save.
-
-Theorem setspolynomial_simplify_ok : (p:setspolynomial)
- (Aequiv (interp_setcs (setspolynomial_simplify p)) (interp_setsp p)).
+simple induction s; simpl in |- *; intros.
+trivial.
+
+generalize (SSR_eq_prop T a Azero).
+elim (Aeq a Azero).
+simpl in |- *.
+intros.
+rewrite (ics_aux_ok (interp_m a v) c).
+rewrite (interp_m_ok a v).
+rewrite (H0 I).
+setoid_replace (Amult Azero (interp_vl v)) with Azero.
+rewrite H.
+trivial.
+
+intros; simpl in |- *.
+generalize (SSR_eq_prop T a Aone).
+elim (Aeq a Aone).
+intros.
+rewrite (ics_aux_ok (interp_m a v) c).
+rewrite (interp_m_ok a v).
+rewrite (H1 I).
+simpl in |- *.
+rewrite (ics_aux_ok (interp_vl v) (canonical_sum_simplify c)).
+rewrite H.
+auto.
+
+simpl in |- *.
+intros.
+rewrite (ics_aux_ok (interp_m a v) (canonical_sum_simplify c)).
+rewrite (ics_aux_ok (interp_m a v) c).
+rewrite H; trivial.
+
+rewrite (ics_aux_ok (interp_vl v) (canonical_sum_simplify c)).
+rewrite H.
+auto.
+Qed.
+
+Theorem setspolynomial_simplify_ok :
+ forall p:setspolynomial,
+ Aequiv (interp_setcs (setspolynomial_simplify p)) (interp_setsp p).
Proof.
-Intro.
-Unfold setspolynomial_simplify.
-Rewrite (canonical_sum_simplify_ok (setspolynomial_normalize p)).
-Exact (setspolynomial_normalize_ok p).
-Save.
+intro.
+unfold setspolynomial_simplify in |- *.
+rewrite (canonical_sum_simplify_ok (setspolynomial_normalize p)).
+exact (setspolynomial_normalize_ok p).
+Qed.
End semi_setoid_rings.
-Implicits Cons_varlist.
-Implicits Cons_monom.
-Implicits SetSPconst.
-Implicits SetSPplus.
-Implicits SetSPmult.
+Implicit Arguments Cons_varlist.
+Implicit Arguments Cons_monom.
+Implicit Arguments SetSPconst.
+Implicit Arguments SetSPplus.
+Implicit Arguments SetSPmult.
@@ -1008,134 +998,140 @@ Section setoid_rings.
Set Implicit Arguments.
-Variable vm : (varmap A).
-Variable T : (Setoid_Ring_Theory Aequiv Aplus Amult Aone Azero Aopp Aeq).
-
-Hint STh_plus_sym_T := Resolve (STh_plus_sym T).
-Hint STh_plus_assoc_T := Resolve (STh_plus_assoc T).
-Hint STh_plus_assoc2_T := Resolve (STh_plus_assoc2 S T).
-Hint STh_mult_sym_T := Resolve (STh_mult_sym T).
-Hint STh_mult_assoc_T := Resolve (STh_mult_assoc T).
-Hint STh_mult_assoc2_T := Resolve (STh_mult_assoc2 S T).
-Hint STh_plus_zero_left_T := Resolve (STh_plus_zero_left T).
-Hint STh_plus_zero_left2_T := Resolve (STh_plus_zero_left2 S T).
-Hint STh_mult_one_left_T := Resolve (STh_mult_one_left T).
-Hint STh_mult_one_left2_T := Resolve (STh_mult_one_left2 S T).
-Hint STh_mult_zero_left_T := Resolve (STh_mult_zero_left S plus_morph mult_morph T).
-Hint STh_mult_zero_left2_T := Resolve (STh_mult_zero_left2 S plus_morph mult_morph T).
-Hint STh_distr_left_T := Resolve (STh_distr_left T).
-Hint STh_distr_left2_T := Resolve (STh_distr_left2 S T).
-Hint STh_plus_reg_left_T := Resolve (STh_plus_reg_left S plus_morph T).
-Hint STh_plus_permute_T := Resolve (STh_plus_permute S plus_morph T).
-Hint STh_mult_permute_T := Resolve (STh_mult_permute S mult_morph T).
-Hint STh_distr_right_T := Resolve (STh_distr_right S plus_morph T).
-Hint STh_distr_right2_T := Resolve (STh_distr_right2 S plus_morph T).
-Hint STh_mult_zero_right_T := Resolve (STh_mult_zero_right S plus_morph mult_morph T).
-Hint STh_mult_zero_right2_T := Resolve (STh_mult_zero_right2 S plus_morph mult_morph T).
-Hint STh_plus_zero_right_T := Resolve (STh_plus_zero_right S T).
-Hint STh_plus_zero_right2_T := Resolve (STh_plus_zero_right2 S T).
-Hint STh_mult_one_right_T := Resolve (STh_mult_one_right S T).
-Hint STh_mult_one_right2_T := Resolve (STh_mult_one_right2 S T).
-Hint STh_plus_reg_right_T := Resolve (STh_plus_reg_right S plus_morph T).
-Hints Resolve refl_equal sym_equal trans_equal.
+Variable vm : varmap A.
+Variable T : Setoid_Ring_Theory Aequiv Aplus Amult Aone Azero Aopp Aeq.
+
+Hint Resolve (STh_plus_comm T).
+Hint Resolve (STh_plus_assoc T).
+Hint Resolve (STh_plus_assoc2 S T).
+Hint Resolve (STh_mult_sym T).
+Hint Resolve (STh_mult_assoc T).
+Hint Resolve (STh_mult_assoc2 S T).
+Hint Resolve (STh_plus_zero_left T).
+Hint Resolve (STh_plus_zero_left2 S T).
+Hint Resolve (STh_mult_one_left T).
+Hint Resolve (STh_mult_one_left2 S T).
+Hint Resolve (STh_mult_zero_left S plus_morph mult_morph T).
+Hint Resolve (STh_mult_zero_left2 S plus_morph mult_morph T).
+Hint Resolve (STh_distr_left T).
+Hint Resolve (STh_distr_left2 S T).
+Hint Resolve (STh_plus_reg_left S plus_morph T).
+Hint Resolve (STh_plus_permute S plus_morph T).
+Hint Resolve (STh_mult_permute S mult_morph T).
+Hint Resolve (STh_distr_right S plus_morph T).
+Hint Resolve (STh_distr_right2 S plus_morph T).
+Hint Resolve (STh_mult_zero_right S plus_morph mult_morph T).
+Hint Resolve (STh_mult_zero_right2 S plus_morph mult_morph T).
+Hint Resolve (STh_plus_zero_right S T).
+Hint Resolve (STh_plus_zero_right2 S T).
+Hint Resolve (STh_mult_one_right S T).
+Hint Resolve (STh_mult_one_right2 S T).
+Hint Resolve (STh_plus_reg_right S plus_morph T).
+Hint Resolve refl_equal sym_equal trans_equal.
(*Hints Resolve refl_eqT sym_eqT trans_eqT.*)
-Hints Immediate T.
+Hint Immediate T.
(*** Definitions *)
-Inductive Type setpolynomial :=
- SetPvar : index -> setpolynomial
-| SetPconst : A -> setpolynomial
-| SetPplus : setpolynomial -> setpolynomial -> setpolynomial
-| SetPmult : setpolynomial -> setpolynomial -> setpolynomial
-| SetPopp : setpolynomial -> setpolynomial.
-
-Fixpoint setpolynomial_normalize [x:setpolynomial] : canonical_sum :=
- Cases x of
- | (SetPplus l r) => (canonical_sum_merge
- (setpolynomial_normalize l)
- (setpolynomial_normalize r))
- | (SetPmult l r) => (canonical_sum_prod
- (setpolynomial_normalize l)
- (setpolynomial_normalize r))
- | (SetPconst c) => (Cons_monom c Nil_var Nil_monom)
- | (SetPvar i) => (Cons_varlist (Cons_var i Nil_var) Nil_monom)
- | (SetPopp p) => (canonical_sum_scalar3
- (Aopp Aone) Nil_var
- (setpolynomial_normalize p))
- end.
-
-Definition setpolynomial_simplify :=
- [x:setpolynomial](canonical_sum_simplify (setpolynomial_normalize x)).
-
-Fixpoint setspolynomial_of [x:setpolynomial] : setspolynomial :=
- Cases x of
- | (SetPplus l r) => (SetSPplus (setspolynomial_of l) (setspolynomial_of r))
- | (SetPmult l r) => (SetSPmult (setspolynomial_of l) (setspolynomial_of r))
- | (SetPconst c) => (SetSPconst c)
- | (SetPvar i) => (SetSPvar i)
- | (SetPopp p) => (SetSPmult (SetSPconst (Aopp Aone)) (setspolynomial_of p))
- end.
+Inductive setpolynomial : Type :=
+ | SetPvar : index -> setpolynomial
+ | SetPconst : A -> setpolynomial
+ | SetPplus : setpolynomial -> setpolynomial -> setpolynomial
+ | SetPmult : setpolynomial -> setpolynomial -> setpolynomial
+ | SetPopp : setpolynomial -> setpolynomial.
+
+Fixpoint setpolynomial_normalize (x:setpolynomial) : canonical_sum :=
+ match x with
+ | SetPplus l r =>
+ canonical_sum_merge (setpolynomial_normalize l)
+ (setpolynomial_normalize r)
+ | SetPmult l r =>
+ canonical_sum_prod (setpolynomial_normalize l)
+ (setpolynomial_normalize r)
+ | SetPconst c => Cons_monom c Nil_var Nil_monom
+ | SetPvar i => Cons_varlist (Cons_var i Nil_var) Nil_monom
+ | SetPopp p =>
+ canonical_sum_scalar3 (Aopp Aone) Nil_var (setpolynomial_normalize p)
+ end.
+
+Definition setpolynomial_simplify (x:setpolynomial) :=
+ canonical_sum_simplify (setpolynomial_normalize x).
+
+Fixpoint setspolynomial_of (x:setpolynomial) : setspolynomial :=
+ match x with
+ | SetPplus l r => SetSPplus (setspolynomial_of l) (setspolynomial_of r)
+ | SetPmult l r => SetSPmult (setspolynomial_of l) (setspolynomial_of r)
+ | SetPconst c => SetSPconst c
+ | SetPvar i => SetSPvar i
+ | SetPopp p => SetSPmult (SetSPconst (Aopp Aone)) (setspolynomial_of p)
+ end.
(*** Interpretation *)
-Fixpoint interp_setp [p:setpolynomial] : A :=
- Cases p of
- | (SetPconst c) => c
- | (SetPvar i) => (varmap_find Azero i vm)
- | (SetPplus p1 p2) => (Aplus (interp_setp p1) (interp_setp p2))
- | (SetPmult p1 p2) => (Amult (interp_setp p1) (interp_setp p2))
- | (SetPopp p1) => (Aopp (interp_setp p1))
- end.
+Fixpoint interp_setp (p:setpolynomial) : A :=
+ match p with
+ | SetPconst c => c
+ | SetPvar i => varmap_find Azero i vm
+ | SetPplus p1 p2 => Aplus (interp_setp p1) (interp_setp p2)
+ | SetPmult p1 p2 => Amult (interp_setp p1) (interp_setp p2)
+ | SetPopp p1 => Aopp (interp_setp p1)
+ end.
(*** Properties *)
Unset Implicit Arguments.
-Lemma setspolynomial_of_ok : (p:setpolynomial)
- (Aequiv (interp_setp p) (interp_setsp vm (setspolynomial_of p))).
-Induction p; Trivial; Simpl; Intros.
-Rewrite H; Rewrite H0; Trivial.
-Rewrite H; Rewrite H0; Trivial.
-Rewrite H.
-Rewrite (STh_opp_mult_left2 S plus_morph mult_morph T Aone
- (interp_setsp vm (setspolynomial_of s))).
-Rewrite (STh_mult_one_left T
- (interp_setsp vm (setspolynomial_of s))).
-Trivial.
-Save.
-
-Theorem setpolynomial_normalize_ok : (p:setpolynomial)
- (setpolynomial_normalize p)
- ==(setspolynomial_normalize (setspolynomial_of p)).
-Induction p; Trivial; Simpl; Intros.
-Rewrite H; Rewrite H0; Reflexivity.
-Rewrite H; Rewrite H0; Reflexivity.
-Rewrite H; Simpl.
-Elim (canonical_sum_scalar3 (Aopp Aone) Nil_var
- (setspolynomial_normalize (setspolynomial_of s)));
- [ Reflexivity
- | Simpl; Intros; Rewrite H0; Reflexivity
- | Simpl; Intros; Rewrite H0; Reflexivity ].
-Save.
-
-Theorem setpolynomial_simplify_ok : (p:setpolynomial)
- (Aequiv (interp_setcs vm (setpolynomial_simplify p)) (interp_setp p)).
-Intro.
-Unfold setpolynomial_simplify.
-Rewrite (setspolynomial_of_ok p).
-Rewrite setpolynomial_normalize_ok.
-Rewrite (canonical_sum_simplify_ok vm
- (Semi_Setoid_Ring_Theory_of A Aequiv S Aplus Amult Aone Azero Aopp
- Aeq plus_morph mult_morph T)
- (setspolynomial_normalize (setspolynomial_of p))).
-Rewrite (setspolynomial_normalize_ok vm
- (Semi_Setoid_Ring_Theory_of A Aequiv S Aplus Amult Aone Azero Aopp
- Aeq plus_morph mult_morph T) (setspolynomial_of p)).
-Trivial.
-Save.
+Lemma setspolynomial_of_ok :
+ forall p:setpolynomial,
+ Aequiv (interp_setp p) (interp_setsp vm (setspolynomial_of p)).
+simple induction p; trivial; simpl in |- *; intros.
+rewrite H; rewrite H0; trivial.
+rewrite H; rewrite H0; trivial.
+rewrite H.
+rewrite
+ (STh_opp_mult_left2 S plus_morph mult_morph T Aone
+ (interp_setsp vm (setspolynomial_of s))).
+rewrite (STh_mult_one_left T (interp_setsp vm (setspolynomial_of s))).
+trivial.
+Qed.
+
+Theorem setpolynomial_normalize_ok :
+ forall p:setpolynomial,
+ setpolynomial_normalize p = setspolynomial_normalize (setspolynomial_of p).
+simple induction p; trivial; simpl in |- *; intros.
+rewrite H; rewrite H0; reflexivity.
+rewrite H; rewrite H0; reflexivity.
+rewrite H; simpl in |- *.
+elim
+ (canonical_sum_scalar3 (Aopp Aone) Nil_var
+ (setspolynomial_normalize (setspolynomial_of s)));
+ [ reflexivity
+ | simpl in |- *; intros; rewrite H0; reflexivity
+ | simpl in |- *; intros; rewrite H0; reflexivity ].
+Qed.
+
+Theorem setpolynomial_simplify_ok :
+ forall p:setpolynomial,
+ Aequiv (interp_setcs vm (setpolynomial_simplify p)) (interp_setp p).
+intro.
+unfold setpolynomial_simplify in |- *.
+rewrite (setspolynomial_of_ok p).
+rewrite setpolynomial_normalize_ok.
+rewrite
+ (canonical_sum_simplify_ok vm
+ (Semi_Setoid_Ring_Theory_of A Aequiv S Aplus Amult Aone Azero Aopp Aeq
+ plus_morph mult_morph T)
+ (setspolynomial_normalize (setspolynomial_of p)))
+ .
+rewrite
+ (setspolynomial_normalize_ok vm
+ (Semi_Setoid_Ring_Theory_of A Aequiv S Aplus Amult Aone Azero Aopp Aeq
+ plus_morph mult_morph T) (setspolynomial_of p))
+ .
+trivial.
+Qed.
End setoid_rings.
-End setoid.
+End setoid. \ No newline at end of file
diff --git a/contrib/ring/Setoid_ring_theory.v b/contrib/ring/Setoid_ring_theory.v
index d6c19410f..fecdb294b 100644
--- a/contrib/ring/Setoid_ring_theory.v
+++ b/contrib/ring/Setoid_ring_theory.v
@@ -18,9 +18,9 @@ Section Setoid_rings.
Variable A : Type.
Variable Aequiv : A -> A -> Prop.
-Infix Local "==" Aequiv (at level 5, no associativity).
+Infix Local "==" := Aequiv (at level 70, no associativity).
-Variable S : (Setoid_Theory A Aequiv).
+Variable S : Setoid_Theory A Aequiv.
Add Setoid A Aequiv S.
@@ -31,390 +31,388 @@ Variable Azero : A.
Variable Aopp : A -> A.
Variable Aeq : A -> A -> bool.
-Infix 4 "+" Aplus V8only 50 (left associativity).
-Infix 4 "*" Amult V8only 40 (left associativity).
+Infix "+" := Aplus (at level 50, left associativity).
+Infix "*" := Amult (at level 40, left associativity).
Notation "0" := Azero.
Notation "1" := Aone.
-Notation "- x" := (Aopp x) (at level 0) V8only.
+Notation "- x" := (Aopp x).
-Variable plus_morph : (a,a0,a1,a2:A) a == a0 -> a1 == a2 -> a+a1 == a0+a2.
-Variable mult_morph : (a,a0,a1,a2:A) a == a0 -> a1 == a2 -> a*a1 == a0*a2.
-Variable opp_morph : (a,a0:A) a == a0 -> -a == -a0.
+Variable
+ plus_morph : forall a a0 a1 a2:A, a == a0 -> a1 == a2 -> a + a1 == a0 + a2.
+Variable
+ mult_morph : forall a a0 a1 a2:A, a == a0 -> a1 == a2 -> a * a1 == a0 * a2.
+Variable opp_morph : forall a a0:A, a == a0 -> - a == - a0.
Add Morphism Aplus : Aplus_ext.
-Exact plus_morph.
-Save.
+exact plus_morph.
+Qed.
Add Morphism Amult : Amult_ext.
-Exact mult_morph.
-Save.
+exact mult_morph.
+Qed.
Add Morphism Aopp : Aopp_ext.
-Exact opp_morph.
-Save.
+exact opp_morph.
+Qed.
Section Theory_of_semi_setoid_rings.
-Record Semi_Setoid_Ring_Theory : Prop :=
-{ SSR_plus_sym : (n,m:A) n + m == m + n;
- SSR_plus_assoc : (n,m,p:A) n + (m + p) == (n + m) + p;
- SSR_mult_sym : (n,m:A) n*m == m*n;
- SSR_mult_assoc : (n,m,p:A) n*(m*p) == (n*m)*p;
- SSR_plus_zero_left :(n:A) 0 + n == n;
- SSR_mult_one_left : (n:A) 1*n == n;
- SSR_mult_zero_left : (n:A) 0*n == 0;
- SSR_distr_left : (n,m,p:A) (n + m)*p == n*p + m*p;
- SSR_plus_reg_left : (n,m,p:A)n + m == n + p -> m == p;
- SSR_eq_prop : (x,y:A) (Is_true (Aeq x y)) -> x == y
-}.
+Record Semi_Setoid_Ring_Theory : Prop :=
+ {SSR_plus_comm : forall n m:A, n + m == m + n;
+ SSR_plus_assoc : forall n m p:A, n + (m + p) == n + m + p;
+ SSR_mult_comm : forall n m:A, n * m == m * n;
+ SSR_mult_assoc : forall n m p:A, n * (m * p) == n * m * p;
+ SSR_plus_zero_left : forall n:A, 0 + n == n;
+ SSR_mult_one_left : forall n:A, 1 * n == n;
+ SSR_mult_zero_left : forall n:A, 0 * n == 0;
+ SSR_distr_left : forall n m p:A, (n + m) * p == n * p + m * p;
+ SSR_plus_reg_left : forall n m p:A, n + m == n + p -> m == p;
+ SSR_eq_prop : forall x y:A, Is_true (Aeq x y) -> x == y}.
Variable T : Semi_Setoid_Ring_Theory.
-Local plus_sym := (SSR_plus_sym T).
-Local plus_assoc := (SSR_plus_assoc T).
-Local mult_sym := ( SSR_mult_sym T).
-Local mult_assoc := (SSR_mult_assoc T).
-Local plus_zero_left := (SSR_plus_zero_left T).
-Local mult_one_left := (SSR_mult_one_left T).
-Local mult_zero_left := (SSR_mult_zero_left T).
-Local distr_left := (SSR_distr_left T).
-Local plus_reg_left := (SSR_plus_reg_left T).
-Local equiv_refl := (Seq_refl A Aequiv S).
-Local equiv_sym := (Seq_sym A Aequiv S).
-Local equiv_trans := (Seq_trans A Aequiv S).
-
-Hints Resolve plus_sym plus_assoc mult_sym mult_assoc
- plus_zero_left mult_one_left mult_zero_left distr_left
- plus_reg_left equiv_refl (*equiv_sym*).
-Hints Immediate equiv_sym.
+Let plus_comm := SSR_plus_comm T.
+Let plus_assoc := SSR_plus_assoc T.
+Let mult_comm := SSR_mult_comm T.
+Let mult_assoc := SSR_mult_assoc T.
+Let plus_zero_left := SSR_plus_zero_left T.
+Let mult_one_left := SSR_mult_one_left T.
+Let mult_zero_left := SSR_mult_zero_left T.
+Let distr_left := SSR_distr_left T.
+Let plus_reg_left := SSR_plus_reg_left T.
+Let equiv_refl := Seq_refl A Aequiv S.
+Let equiv_sym := Seq_sym A Aequiv S.
+Let equiv_trans := Seq_trans A Aequiv S.
+
+Hint Resolve plus_comm plus_assoc mult_comm mult_assoc plus_zero_left
+ mult_one_left mult_zero_left distr_left plus_reg_left
+ equiv_refl (*equiv_sym*).
+Hint Immediate equiv_sym.
(* Lemmas whose form is x=y are also provided in form y=x because
Auto does not symmetry *)
-Lemma SSR_mult_assoc2 : (n,m,p:A) (n * m) * p == n * (m * p).
-Auto. Save.
-
-Lemma SSR_plus_assoc2 : (n,m,p:A) (n + m) + p == n + (m + p).
-Auto. Save.
-
-Lemma SSR_plus_zero_left2 : (n:A) n == 0 + n.
-Auto. Save.
-
-Lemma SSR_mult_one_left2 : (n:A) n == 1*n.
-Auto. Save.
-
-Lemma SSR_mult_zero_left2 : (n:A) 0 == 0*n.
-Auto. Save.
-
-Lemma SSR_distr_left2 : (n,m,p:A) n*p + m*p == (n + m)*p.
-Auto. Save.
-
-Lemma SSR_plus_permute : (n,m,p:A) n+(m+p) == m+(n+p).
-Intros.
-Rewrite (plus_assoc n m p).
-Rewrite (plus_sym n m).
-Rewrite <- (plus_assoc m n p).
-Trivial.
-Save.
-
-Lemma SSR_mult_permute : (n,m,p:A) n*(m*p) == m*(n*p).
-Intros.
-Rewrite (mult_assoc n m p).
-Rewrite (mult_sym n m).
-Rewrite <- (mult_assoc m n p).
-Trivial.
-Save.
-
-Hints Resolve SSR_plus_permute SSR_mult_permute.
-
-Lemma SSR_distr_right : (n,m,p:A) n*(m+p) == (n*m) + (n*p).
-Intros.
-Rewrite (mult_sym n (Aplus m p)).
-Rewrite (mult_sym n m).
-Rewrite (mult_sym n p).
-Auto.
-Save.
-
-Lemma SSR_distr_right2 : (n,m,p:A) (n*m) + (n*p) == n*(m + p).
-Intros.
-Apply equiv_sym.
-Apply SSR_distr_right.
-Save.
-
-Lemma SSR_mult_zero_right : (n:A) n*0 == 0.
-Intro; Rewrite (mult_sym n Azero); Auto.
-Save.
-
-Lemma SSR_mult_zero_right2 : (n:A) 0 == n*0.
-Intro; Rewrite (mult_sym n Azero); Auto.
-Save.
-
-Lemma SSR_plus_zero_right :(n:A) n + 0 == n.
-Intro; Rewrite (plus_sym n Azero); Auto.
-Save.
-
-Lemma SSR_plus_zero_right2 :(n:A) n == n + 0.
-Intro; Rewrite (plus_sym n Azero); Auto.
-Save.
-
-Lemma SSR_mult_one_right : (n:A) n*1 == n.
-Intro; Rewrite (mult_sym n Aone); Auto.
-Save.
-
-Lemma SSR_mult_one_right2 : (n:A) n == n*1.
-Intro; Rewrite (mult_sym n Aone); Auto.
-Save.
-
-Lemma SSR_plus_reg_right : (n,m,p:A) m+n == p+n -> m==p.
-Intros n m p; Rewrite (plus_sym m n); Rewrite (plus_sym p n).
-Intro; Apply plus_reg_left with n; Trivial.
-Save.
+Lemma SSR_mult_assoc2 : forall n m p:A, n * m * p == n * (m * p).
+auto. Qed.
+
+Lemma SSR_plus_assoc2 : forall n m p:A, n + m + p == n + (m + p).
+auto. Qed.
+
+Lemma SSR_plus_zero_left2 : forall n:A, n == 0 + n.
+auto. Qed.
+
+Lemma SSR_mult_one_left2 : forall n:A, n == 1 * n.
+auto. Qed.
+
+Lemma SSR_mult_zero_left2 : forall n:A, 0 == 0 * n.
+auto. Qed.
+
+Lemma SSR_distr_left2 : forall n m p:A, n * p + m * p == (n + m) * p.
+auto. Qed.
+
+Lemma SSR_plus_permute : forall n m p:A, n + (m + p) == m + (n + p).
+intros.
+rewrite (plus_assoc n m p).
+rewrite (plus_comm n m).
+rewrite <- (plus_assoc m n p).
+trivial.
+Qed.
+
+Lemma SSR_mult_permute : forall n m p:A, n * (m * p) == m * (n * p).
+intros.
+rewrite (mult_assoc n m p).
+rewrite (mult_comm n m).
+rewrite <- (mult_assoc m n p).
+trivial.
+Qed.
+
+Hint Resolve SSR_plus_permute SSR_mult_permute.
+
+Lemma SSR_distr_right : forall n m p:A, n * (m + p) == n * m + n * p.
+intros.
+rewrite (mult_comm n (m + p)).
+rewrite (mult_comm n m).
+rewrite (mult_comm n p).
+auto.
+Qed.
+
+Lemma SSR_distr_right2 : forall n m p:A, n * m + n * p == n * (m + p).
+intros.
+apply equiv_sym.
+apply SSR_distr_right.
+Qed.
+
+Lemma SSR_mult_zero_right : forall n:A, n * 0 == 0.
+intro; rewrite (mult_comm n 0); auto.
+Qed.
+
+Lemma SSR_mult_zero_right2 : forall n:A, 0 == n * 0.
+intro; rewrite (mult_comm n 0); auto.
+Qed.
+
+Lemma SSR_plus_zero_right : forall n:A, n + 0 == n.
+intro; rewrite (plus_comm n 0); auto.
+Qed.
+
+Lemma SSR_plus_zero_right2 : forall n:A, n == n + 0.
+intro; rewrite (plus_comm n 0); auto.
+Qed.
+
+Lemma SSR_mult_one_right : forall n:A, n * 1 == n.
+intro; rewrite (mult_comm n 1); auto.
+Qed.
+
+Lemma SSR_mult_one_right2 : forall n:A, n == n * 1.
+intro; rewrite (mult_comm n 1); auto.
+Qed.
+
+Lemma SSR_plus_reg_right : forall n m p:A, m + n == p + n -> m == p.
+intros n m p; rewrite (plus_comm m n); rewrite (plus_comm p n).
+intro; apply plus_reg_left with n; trivial.
+Qed.
End Theory_of_semi_setoid_rings.
Section Theory_of_setoid_rings.
-Record Setoid_Ring_Theory : Prop :=
-{ STh_plus_sym : (n,m:A) n + m == m + n;
- STh_plus_assoc : (n,m,p:A) n + (m + p) == (n + m) + p;
- STh_mult_sym : (n,m:A) n*m == m*n;
- STh_mult_assoc : (n,m,p:A) n*(m*p) == (n*m)*p;
- STh_plus_zero_left :(n:A) 0 + n == n;
- STh_mult_one_left : (n:A) 1*n == n;
- STh_opp_def : (n:A) n + (-n) == 0;
- STh_distr_left : (n,m,p:A) (n + m)*p == n*p + m*p;
- STh_eq_prop : (x,y:A) (Is_true (Aeq x y)) -> x == y
-}.
+Record Setoid_Ring_Theory : Prop :=
+ {STh_plus_comm : forall n m:A, n + m == m + n;
+ STh_plus_assoc : forall n m p:A, n + (m + p) == n + m + p;
+ STh_mult_sym : forall n m:A, n * m == m * n;
+ STh_mult_assoc : forall n m p:A, n * (m * p) == n * m * p;
+ STh_plus_zero_left : forall n:A, 0 + n == n;
+ STh_mult_one_left : forall n:A, 1 * n == n;
+ STh_opp_def : forall n:A, n + - n == 0;
+ STh_distr_left : forall n m p:A, (n + m) * p == n * p + m * p;
+ STh_eq_prop : forall x y:A, Is_true (Aeq x y) -> x == y}.
Variable T : Setoid_Ring_Theory.
-Local plus_sym := (STh_plus_sym T).
-Local plus_assoc := (STh_plus_assoc T).
-Local mult_sym := (STh_mult_sym T).
-Local mult_assoc := (STh_mult_assoc T).
-Local plus_zero_left := (STh_plus_zero_left T).
-Local mult_one_left := (STh_mult_one_left T).
-Local opp_def := (STh_opp_def T).
-Local distr_left := (STh_distr_left T).
-Local equiv_refl := (Seq_refl A Aequiv S).
-Local equiv_sym := (Seq_sym A Aequiv S).
-Local equiv_trans := (Seq_trans A Aequiv S).
-
-Hints Resolve plus_sym plus_assoc mult_sym mult_assoc
- plus_zero_left mult_one_left opp_def distr_left
- equiv_refl equiv_sym.
+Let plus_comm := STh_plus_comm T.
+Let plus_assoc := STh_plus_assoc T.
+Let mult_comm := STh_mult_sym T.
+Let mult_assoc := STh_mult_assoc T.
+Let plus_zero_left := STh_plus_zero_left T.
+Let mult_one_left := STh_mult_one_left T.
+Let opp_def := STh_opp_def T.
+Let distr_left := STh_distr_left T.
+Let equiv_refl := Seq_refl A Aequiv S.
+Let equiv_sym := Seq_sym A Aequiv S.
+Let equiv_trans := Seq_trans A Aequiv S.
+
+Hint Resolve plus_comm plus_assoc mult_comm mult_assoc plus_zero_left
+ mult_one_left opp_def distr_left equiv_refl equiv_sym.
(* Lemmas whose form is x=y are also provided in form y=x because Auto does
not symmetry *)
-Lemma STh_mult_assoc2 : (n,m,p:A) (n * m) * p == n * (m * p).
-Auto. Save.
-
-Lemma STh_plus_assoc2 : (n,m,p:A) (n + m) + p == n + (m + p).
-Auto. Save.
-
-Lemma STh_plus_zero_left2 : (n:A) n == 0 + n.
-Auto. Save.
-
-Lemma STh_mult_one_left2 : (n:A) n == 1*n.
-Auto. Save.
-
-Lemma STh_distr_left2 : (n,m,p:A) n*p + m*p == (n + m)*p.
-Auto. Save.
-
-Lemma STh_opp_def2 : (n:A) 0 == n + (-n).
-Auto. Save.
-
-Lemma STh_plus_permute : (n,m,p:A) n + (m + p) == m + (n + p).
-Intros.
-Rewrite (plus_assoc n m p).
-Rewrite (plus_sym n m).
-Rewrite <- (plus_assoc m n p).
-Trivial.
-Save.
-
-Lemma STh_mult_permute : (n,m,p:A) n*(m*p) == m*(n*p).
-Intros.
-Rewrite (mult_assoc n m p).
-Rewrite (mult_sym n m).
-Rewrite <- (mult_assoc m n p).
-Trivial.
-Save.
-
-Hints Resolve STh_plus_permute STh_mult_permute.
-
-Lemma Saux1 : (a:A) a + a == a -> a == 0.
-Intros.
-Rewrite <- (plus_zero_left a).
-Rewrite (plus_sym Azero a).
-Setoid_replace (Aplus a Azero) with (Aplus a (Aplus a (Aopp a))); Auto.
-Rewrite (plus_assoc a a (Aopp a)).
-Rewrite H.
-Apply opp_def.
-Save.
-
-Lemma STh_mult_zero_left :(n:A) 0*n == 0.
-Intros.
-Apply Saux1.
-Rewrite <- (distr_left Azero Azero n).
-Rewrite (plus_zero_left Azero).
-Trivial.
-Save.
-Hints Resolve STh_mult_zero_left.
-
-Lemma STh_mult_zero_left2 : (n:A) 0 == 0*n.
-Auto.
-Save.
-
-Lemma Saux2 : (x,y,z:A) x+y==0 -> x+z==0 -> y == z.
-Intros.
-Rewrite <- (plus_zero_left y).
-Rewrite <- H0.
-Rewrite <- (plus_assoc x z y).
-Rewrite (plus_sym z y).
-Rewrite (plus_assoc x y z).
-Rewrite H.
-Auto.
-Save.
-
-Lemma STh_opp_mult_left : (x,y:A) -(x*y) == (-x)*y.
-Intros.
-Apply Saux2 with (Amult x y); Auto.
-Rewrite <- (distr_left x (Aopp x) y).
-Rewrite (opp_def x).
-Auto.
-Save.
-Hints Resolve STh_opp_mult_left.
-
-Lemma STh_opp_mult_left2 : (x,y:A) (-x)*y == -(x*y) .
-Auto.
-Save.
-
-Lemma STh_mult_zero_right : (n:A) n*0 == 0.
-Intro; Rewrite (mult_sym n Azero); Auto.
-Save.
-
-Lemma STh_mult_zero_right2 : (n:A) 0 == n*0.
-Intro; Rewrite (mult_sym n Azero); Auto.
-Save.
-
-Lemma STh_plus_zero_right :(n:A) n + 0 == n.
-Intro; Rewrite (plus_sym n Azero); Auto.
-Save.
-
-Lemma STh_plus_zero_right2 :(n:A) n == n + 0.
-Intro; Rewrite (plus_sym n Azero); Auto.
-Save.
-
-Lemma STh_mult_one_right : (n:A) n*1 == n.
-Intro; Rewrite (mult_sym n Aone); Auto.
-Save.
-
-Lemma STh_mult_one_right2 : (n:A) n == n*1.
-Intro; Rewrite (mult_sym n Aone); Auto.
-Save.
-
-Lemma STh_opp_mult_right : (x,y:A) -(x*y) == x*(-y).
-Intros.
-Rewrite (mult_sym x y).
-Rewrite (mult_sym x (Aopp y)).
-Auto.
-Save.
-
-Lemma STh_opp_mult_right2 : (x,y:A) x*(-y) == -(x*y).
-Intros.
-Rewrite (mult_sym x y).
-Rewrite (mult_sym x (Aopp y)).
-Auto.
-Save.
-
-Lemma STh_plus_opp_opp : (x,y:A) (-x) + (-y) == -(x+y).
-Intros.
-Apply Saux2 with (Aplus x y); Auto.
-Rewrite (STh_plus_permute (Aplus x y) (Aopp x) (Aopp y)).
-Rewrite <- (plus_assoc x y (Aopp y)).
-Rewrite (opp_def y); Rewrite (STh_plus_zero_right x).
-Rewrite (STh_opp_def2 x); Trivial.
-Save.
-
-Lemma STh_plus_permute_opp: (n,m,p:A) (-m)+(n+p) == n+((-m)+p).
-Auto.
-Save.
-
-Lemma STh_opp_opp : (n:A) -(-n) == n.
-Intro.
-Apply Saux2 with (Aopp n); Auto.
-Rewrite (plus_sym (Aopp n) n); Auto.
-Save.
-Hints Resolve STh_opp_opp.
-
-Lemma STh_opp_opp2 : (n:A) n == -(-n).
-Auto.
-Save.
-
-Lemma STh_mult_opp_opp : (x,y:A) (-x)*(-y) == x*y.
-Intros.
-Rewrite (STh_opp_mult_left2 x (Aopp y)).
-Rewrite (STh_opp_mult_right2 x y).
-Trivial.
-Save.
-
-Lemma STh_mult_opp_opp2 : (x,y:A) x*y == (-x)*(-y).
-Intros.
-Apply equiv_sym.
-Apply STh_mult_opp_opp.
-Save.
-
-Lemma STh_opp_zero : -0 == 0.
-Rewrite <- (plus_zero_left (Aopp Azero)).
-Trivial.
-Save.
-
-Lemma STh_plus_reg_left : (n,m,p:A) n+m == n+p -> m==p.
-Intros.
-Rewrite <- (plus_zero_left m).
-Rewrite <- (plus_zero_left p).
-Rewrite <- (opp_def n).
-Rewrite (plus_sym n (Aopp n)).
-Rewrite <- (plus_assoc (Aopp n) n m).
-Rewrite <- (plus_assoc (Aopp n) n p).
-Auto.
-Save.
-
-Lemma STh_plus_reg_right : (n,m,p:A) m+n == p+n -> m==p.
-Intros.
-Apply STh_plus_reg_left with n.
-Rewrite (plus_sym n m); Rewrite (plus_sym n p);
-Assumption.
-Save.
-
-Lemma STh_distr_right : (n,m,p:A) n*(m+p) == (n*m)+(n*p).
-Intros.
-Rewrite (mult_sym n (Aplus m p)).
-Rewrite (mult_sym n m).
-Rewrite (mult_sym n p).
-Trivial.
-Save.
-
-Lemma STh_distr_right2 : (n,m,p:A) (n*m)+(n*p) == n*(m+p).
-Intros.
-Apply equiv_sym.
-Apply STh_distr_right.
-Save.
+Lemma STh_mult_assoc2 : forall n m p:A, n * m * p == n * (m * p).
+auto. Qed.
+
+Lemma STh_plus_assoc2 : forall n m p:A, n + m + p == n + (m + p).
+auto. Qed.
+
+Lemma STh_plus_zero_left2 : forall n:A, n == 0 + n.
+auto. Qed.
+
+Lemma STh_mult_one_left2 : forall n:A, n == 1 * n.
+auto. Qed.
+
+Lemma STh_distr_left2 : forall n m p:A, n * p + m * p == (n + m) * p.
+auto. Qed.
+
+Lemma STh_opp_def2 : forall n:A, 0 == n + - n.
+auto. Qed.
+
+Lemma STh_plus_permute : forall n m p:A, n + (m + p) == m + (n + p).
+intros.
+rewrite (plus_assoc n m p).
+rewrite (plus_comm n m).
+rewrite <- (plus_assoc m n p).
+trivial.
+Qed.
+
+Lemma STh_mult_permute : forall n m p:A, n * (m * p) == m * (n * p).
+intros.
+rewrite (mult_assoc n m p).
+rewrite (mult_comm n m).
+rewrite <- (mult_assoc m n p).
+trivial.
+Qed.
+
+Hint Resolve STh_plus_permute STh_mult_permute.
+
+Lemma Saux1 : forall a:A, a + a == a -> a == 0.
+intros.
+rewrite <- (plus_zero_left a).
+rewrite (plus_comm 0 a).
+setoid_replace (a + 0) with (a + (a + - a)); auto.
+rewrite (plus_assoc a a (- a)).
+rewrite H.
+apply opp_def.
+Qed.
+
+Lemma STh_mult_zero_left : forall n:A, 0 * n == 0.
+intros.
+apply Saux1.
+rewrite <- (distr_left 0 0 n).
+rewrite (plus_zero_left 0).
+trivial.
+Qed.
+Hint Resolve STh_mult_zero_left.
+
+Lemma STh_mult_zero_left2 : forall n:A, 0 == 0 * n.
+auto.
+Qed.
+
+Lemma Saux2 : forall x y z:A, x + y == 0 -> x + z == 0 -> y == z.
+intros.
+rewrite <- (plus_zero_left y).
+rewrite <- H0.
+rewrite <- (plus_assoc x z y).
+rewrite (plus_comm z y).
+rewrite (plus_assoc x y z).
+rewrite H.
+auto.
+Qed.
+
+Lemma STh_opp_mult_left : forall x y:A, - (x * y) == - x * y.
+intros.
+apply Saux2 with (x * y); auto.
+rewrite <- (distr_left x (- x) y).
+rewrite (opp_def x).
+auto.
+Qed.
+Hint Resolve STh_opp_mult_left.
+
+Lemma STh_opp_mult_left2 : forall x y:A, - x * y == - (x * y).
+auto.
+Qed.
+
+Lemma STh_mult_zero_right : forall n:A, n * 0 == 0.
+intro; rewrite (mult_comm n 0); auto.
+Qed.
+
+Lemma STh_mult_zero_right2 : forall n:A, 0 == n * 0.
+intro; rewrite (mult_comm n 0); auto.
+Qed.
+
+Lemma STh_plus_zero_right : forall n:A, n + 0 == n.
+intro; rewrite (plus_comm n 0); auto.
+Qed.
+
+Lemma STh_plus_zero_right2 : forall n:A, n == n + 0.
+intro; rewrite (plus_comm n 0); auto.
+Qed.
+
+Lemma STh_mult_one_right : forall n:A, n * 1 == n.
+intro; rewrite (mult_comm n 1); auto.
+Qed.
+
+Lemma STh_mult_one_right2 : forall n:A, n == n * 1.
+intro; rewrite (mult_comm n 1); auto.
+Qed.
+
+Lemma STh_opp_mult_right : forall x y:A, - (x * y) == x * - y.
+intros.
+rewrite (mult_comm x y).
+rewrite (mult_comm x (- y)).
+auto.
+Qed.
+
+Lemma STh_opp_mult_right2 : forall x y:A, x * - y == - (x * y).
+intros.
+rewrite (mult_comm x y).
+rewrite (mult_comm x (- y)).
+auto.
+Qed.
+
+Lemma STh_plus_opp_opp : forall x y:A, - x + - y == - (x + y).
+intros.
+apply Saux2 with (x + y); auto.
+rewrite (STh_plus_permute (x + y) (- x) (- y)).
+rewrite <- (plus_assoc x y (- y)).
+rewrite (opp_def y); rewrite (STh_plus_zero_right x).
+rewrite (STh_opp_def2 x); trivial.
+Qed.
+
+Lemma STh_plus_permute_opp : forall n m p:A, - m + (n + p) == n + (- m + p).
+auto.
+Qed.
+
+Lemma STh_opp_opp : forall n:A, - - n == n.
+intro.
+apply Saux2 with (- n); auto.
+rewrite (plus_comm (- n) n); auto.
+Qed.
+Hint Resolve STh_opp_opp.
+
+Lemma STh_opp_opp2 : forall n:A, n == - - n.
+auto.
+Qed.
+
+Lemma STh_mult_opp_opp : forall x y:A, - x * - y == x * y.
+intros.
+rewrite (STh_opp_mult_left2 x (- y)).
+rewrite (STh_opp_mult_right2 x y).
+trivial.
+Qed.
+
+Lemma STh_mult_opp_opp2 : forall x y:A, x * y == - x * - y.
+intros.
+apply equiv_sym.
+apply STh_mult_opp_opp.
+Qed.
+
+Lemma STh_opp_zero : - 0 == 0.
+rewrite <- (plus_zero_left (- 0)).
+trivial.
+Qed.
+
+Lemma STh_plus_reg_left : forall n m p:A, n + m == n + p -> m == p.
+intros.
+rewrite <- (plus_zero_left m).
+rewrite <- (plus_zero_left p).
+rewrite <- (opp_def n).
+rewrite (plus_comm n (- n)).
+rewrite <- (plus_assoc (- n) n m).
+rewrite <- (plus_assoc (- n) n p).
+auto.
+Qed.
+
+Lemma STh_plus_reg_right : forall n m p:A, m + n == p + n -> m == p.
+intros.
+apply STh_plus_reg_left with n.
+rewrite (plus_comm n m); rewrite (plus_comm n p); assumption.
+Qed.
+
+Lemma STh_distr_right : forall n m p:A, n * (m + p) == n * m + n * p.
+intros.
+rewrite (mult_comm n (m + p)).
+rewrite (mult_comm n m).
+rewrite (mult_comm n p).
+trivial.
+Qed.
+
+Lemma STh_distr_right2 : forall n m p:A, n * m + n * p == n * (m + p).
+intros.
+apply equiv_sym.
+apply STh_distr_right.
+Qed.
End Theory_of_setoid_rings.
-Hints Resolve STh_mult_zero_left STh_plus_reg_left : core.
+Hint Resolve STh_mult_zero_left STh_plus_reg_left: core.
Unset Implicit Arguments.
Definition Semi_Setoid_Ring_Theory_of :
Setoid_Ring_Theory -> Semi_Setoid_Ring_Theory.
-Intros until 1; Case H.
-Split; Intros; Simpl; EAuto.
+intros until 1; case H.
+split; intros; simpl in |- *; eauto.
Defined.
-Coercion Semi_Setoid_Ring_Theory_of :
- Setoid_Ring_Theory >-> Semi_Setoid_Ring_Theory.
+Coercion Semi_Setoid_Ring_Theory_of : Setoid_Ring_Theory >->
+ Semi_Setoid_Ring_Theory.
@@ -426,4 +424,4 @@ Section power_ring.
End power_ring.
-End Setoid_rings.
+End Setoid_rings. \ No newline at end of file
diff --git a/contrib/ring/ZArithRing.v b/contrib/ring/ZArithRing.v
index cf5e18c5e..e6a7bf2af 100644
--- a/contrib/ring/ZArithRing.v
+++ b/contrib/ring/ZArithRing.v
@@ -12,24 +12,25 @@
Require Export ArithRing.
Require Export ZArith_base.
-Require Eqdep_dec.
+Require Import Eqdep_dec.
-Definition Zeq := [x,y:Z]
- Cases `x ?= y ` of
- EGAL => true
+Definition Zeq (x y:Z) :=
+ match (x ?= y)%Z with
+ | Datatypes.Eq => true
| _ => false
end.
-Lemma Zeq_prop : (x,y:Z)(Is_true (Zeq x y)) -> x==y.
- Intros x y H; Unfold Zeq in H.
- Apply Zcompare_EGAL_eq.
- NewDestruct (Zcompare x y); [Reflexivity | Contradiction | Contradiction ].
-Save.
+Lemma Zeq_prop : forall x y:Z, Is_true (Zeq x y) -> x = y.
+ intros x y H; unfold Zeq in H.
+ apply Zcompare_Eq_eq.
+ destruct (x ?= y)%Z; [ reflexivity | contradiction | contradiction ].
+Qed.
-Definition ZTheory : (Ring_Theory Zplus Zmult `1` `0` Zopp Zeq).
- Split; Intros; Apply eq2eqT; EAuto with zarith.
- Apply eqT2eq; Apply Zeq_prop; Assumption.
-Save.
+Definition ZTheory : Ring_Theory Zplus Zmult 1%Z 0%Z Zopp Zeq.
+ split; intros; apply eq2eqT; eauto with zarith.
+ apply eqT2eq; apply Zeq_prop; assumption.
+Qed.
(* NatConstants and NatTheory are defined in Ring_theory.v *)
-Add Ring Z Zplus Zmult `1` `0` Zopp Zeq ZTheory [POS NEG ZERO xO xI xH].
+Add Ring Z Zplus Zmult 1%Z 0%Z Zopp Zeq ZTheory
+ [ Zpos Zneg 0%Z xO xI 1%positive ]. \ No newline at end of file
diff --git a/contrib/romega/ROmega.v b/contrib/romega/ROmega.v
index ba02b232e..f1ffcf13d 100644
--- a/contrib/romega/ROmega.v
+++ b/contrib/romega/ROmega.v
@@ -6,5 +6,5 @@
*************************************************************************)
-Require Omega.
-Require ReflOmegaCore.
+Require Import Omega.
+Require Import ReflOmegaCore. \ No newline at end of file
diff --git a/contrib/romega/ReflOmegaCore.v b/contrib/romega/ReflOmegaCore.v
index fa49badbf..b69f40df8 100644
--- a/contrib/romega/ReflOmegaCore.v
+++ b/contrib/romega/ReflOmegaCore.v
@@ -6,11 +6,11 @@
*************************************************************************)
-Require Arith.
-Require PolyList.
-Require Bool.
-Require ZArith_base.
-Require OmegaLemmas.
+Require Import Arith.
+Require Import List.
+Require Import Bool.
+Require Import ZArith_base.
+Require Import OmegaLemmas.
(* \subsection{Définition des types} *)
@@ -22,13 +22,12 @@ Require OmegaLemmas.
des termes. *)
Inductive term : Set :=
- Tint : Z -> term
- | Tplus : term -> term -> term
- | Tmult : term -> term -> term
- | Tminus : term -> term -> term
- | Topp : term -> term
- | Tvar : nat -> term
-.
+ | Tint : Z -> term
+ | Tplus : term -> term -> term
+ | Tmult : term -> term -> term
+ | Tminus : term -> term -> term
+ | Topp : term -> term
+ | Tvar : nat -> term.
(* \subsubsection{Définition des buts réifiés} *)
(* Définition très restreinte des prédicats manipulés (à enrichir).
@@ -40,26 +39,28 @@ Inductive term : Set :=
génération d'une liste de but et donc l'application d'une liste de
tactiques de résolution ([execute_omega]) *)
Inductive proposition : Set :=
- EqTerm : term -> term -> proposition
-| LeqTerm : term -> term -> proposition
-| TrueTerm : proposition
-| FalseTerm : proposition
-| Tnot : proposition -> proposition
-| GeqTerm : term -> term -> proposition
-| GtTerm : term -> term -> proposition
-| LtTerm : term -> term -> proposition
-| NeqTerm: term -> term -> proposition.
+ | EqTerm : term -> term -> proposition
+ | LeqTerm : term -> term -> proposition
+ | TrueTerm : proposition
+ | FalseTerm : proposition
+ | Tnot : proposition -> proposition
+ | GeqTerm : term -> term -> proposition
+ | GtTerm : term -> term -> proposition
+ | LtTerm : term -> term -> proposition
+ | NeqTerm : term -> term -> proposition.
(* Définition des hypothèses *)
Notation hyps := (list proposition).
-Definition absurd := (cons FalseTerm (nil proposition)).
+Definition absurd := FalseTerm :: nil.
(* \subsubsection{Traces de fusion d'équations} *)
Inductive t_fusion : Set :=
- F_equal : t_fusion | F_cancel : t_fusion
- | F_left : t_fusion | F_right : t_fusion.
+ | F_equal : t_fusion
+ | F_cancel : t_fusion
+ | F_left : t_fusion
+ | F_right : t_fusion.
(* \subsection{Egalité décidable efficace} *)
(* Pour chaque type de donnée réifié, on calcule un test d'égalité efficace.
@@ -74,176 +75,223 @@ Inductive t_fusion : Set :=
(* Ces deux tactiques permettent de résoudre pas mal de cas. L'une pour
les théorèmes positifs, l'autre pour les théorèmes négatifs *)
-Tactic Definition absurd_case := Simpl; Intros; Discriminate.
-Tactic Definition trivial_case := Unfold not; Intros; Discriminate.
+Ltac absurd_case := simpl in |- *; intros; discriminate.
+Ltac trivial_case := unfold not in |- *; intros; discriminate.
(* \subsubsection{Entiers naturels} *)
-Fixpoint eq_nat [t1,t2: nat] : bool :=
- Cases t1 of
- O => Cases t2 of O => true | _ => false end
- | (S n1)=> Cases t2 of O => false | (S n2) => (eq_nat n1 n2) end
+Fixpoint eq_nat (t1 t2:nat) {struct t2} : bool :=
+ match t1 with
+ | O => match t2 with
+ | O => true
+ | _ => false
+ end
+ | S n1 => match t2 with
+ | O => false
+ | S n2 => eq_nat n1 n2
+ end
end.
-Theorem eq_nat_true : (t1,t2: nat) (eq_nat t1 t2) = true -> t1 = t2.
+Theorem eq_nat_true : forall t1 t2:nat, eq_nat t1 t2 = true -> t1 = t2.
-Induction t1; [
- Intro t2; Case t2; [ Trivial | absurd_case ]
-| Intros n H t2; Case t2;
- [ absurd_case | Simpl; Intros; Rewrite (H n0); [ Trivial | Assumption]]].
+simple induction t1;
+ [ intro t2; case t2; [ trivial | absurd_case ]
+ | intros n H t2; case t2;
+ [ absurd_case
+ | simpl in |- *; intros; rewrite (H n0); [ trivial | assumption ] ] ].
-Save.
+Qed.
-Theorem eq_nat_false : (t1,t2: nat) (eq_nat t1 t2) = false -> ~t1 = t2.
+Theorem eq_nat_false : forall t1 t2:nat, eq_nat t1 t2 = false -> t1 <> t2.
-Induction t1; [
- Intro t2; Case t2;
- [ Simpl;Intros; Discriminate | trivial_case ]
-| Intros n H t2; Case t2; Simpl; Unfold not; Intros; [
- Discriminate
- | Elim (H n0 H0); Simplify_eq H1; Trivial]].
+simple induction t1;
+ [ intro t2; case t2; [ simpl in |- *; intros; discriminate | trivial_case ]
+ | intros n H t2; case t2; simpl in |- *; unfold not in |- *; intros;
+ [ discriminate | elim (H n0 H0); simplify_eq H1; trivial ] ].
-Save.
+Qed.
(* \subsubsection{Entiers positifs} *)
-Fixpoint eq_pos [p1,p2 : positive] : bool :=
- Cases p1 of
- (xI n1) => Cases p2 of (xI n2) => (eq_pos n1 n2) | _ => false end
- | (xO n1) => Cases p2 of (xO n2) => (eq_pos n1 n2) | _ => false end
- | xH => Cases p2 of xH => true | _ => false end
+Fixpoint eq_pos (p1 p2:positive) {struct p2} : bool :=
+ match p1 with
+ | xI n1 => match p2 with
+ | xI n2 => eq_pos n1 n2
+ | _ => false
+ end
+ | xO n1 => match p2 with
+ | xO n2 => eq_pos n1 n2
+ | _ => false
+ end
+ | xH => match p2 with
+ | xH => true
+ | _ => false
+ end
end.
-Theorem eq_pos_true : (t1,t2: positive) (eq_pos t1 t2) = true -> t1 = t2.
+Theorem eq_pos_true : forall t1 t2:positive, eq_pos t1 t2 = true -> t1 = t2.
-Induction t1; [
- Intros p H t2; Case t2; [
- Simpl; Intros; Rewrite (H p0 H0); Trivial | absurd_case | absurd_case ]
-| Intros p H t2; Case t2; [
- absurd_case | Simpl; Intros; Rewrite (H p0 H0); Trivial | absurd_case ]
-| Intro t2; Case t2; [ absurd_case | absurd_case | Auto ]].
+simple induction t1;
+ [ intros p H t2; case t2;
+ [ simpl in |- *; intros; rewrite (H p0 H0); trivial
+ | absurd_case
+ | absurd_case ]
+ | intros p H t2; case t2;
+ [ absurd_case
+ | simpl in |- *; intros; rewrite (H p0 H0); trivial
+ | absurd_case ]
+ | intro t2; case t2; [ absurd_case | absurd_case | auto ] ].
-Save.
+Qed.
-Theorem eq_pos_false : (t1,t2: positive) (eq_pos t1 t2) = false -> ~t1 = t2.
-
-Induction t1; [
- Intros p H t2; Case t2; [
- Simpl; Unfold not; Intros; Elim (H p0 H0); Simplify_eq H1; Auto
- | trivial_case | trivial_case ]
-| Intros p H t2; Case t2; [
- trivial_case
- | Simpl; Unfold not; Intros; Elim (H p0 H0); Simplify_eq H1; Auto
- | trivial_case ]
-| Intros t2; Case t2; [ trivial_case | trivial_case | absurd_case ]].
-Save.
+Theorem eq_pos_false :
+ forall t1 t2:positive, eq_pos t1 t2 = false -> t1 <> t2.
+
+simple induction t1;
+ [ intros p H t2; case t2;
+ [ simpl in |- *; unfold not in |- *; intros; elim (H p0 H0);
+ simplify_eq H1; auto
+ | trivial_case
+ | trivial_case ]
+ | intros p H t2; case t2;
+ [ trivial_case
+ | simpl in |- *; unfold not in |- *; intros; elim (H p0 H0);
+ simplify_eq H1; auto
+ | trivial_case ]
+ | intros t2; case t2; [ trivial_case | trivial_case | absurd_case ] ].
+Qed.
(* \subsubsection{Entiers relatifs} *)
-Definition eq_Z [z1,z2: Z] : bool :=
- Cases z1 of
- ZERO => Cases z2 of ZERO => true | _ => false end
- | (POS p1) => Cases z2 of (POS p2) => (eq_pos p1 p2) | _ => false end
- | (NEG p1) => Cases z2 of (NEG p2) => (eq_pos p1 p2) | _ => false end
+Definition eq_Z (z1 z2:Z) : bool :=
+ match z1 with
+ | Z0 => match z2 with
+ | Z0 => true
+ | _ => false
+ end
+ | Zpos p1 => match z2 with
+ | Zpos p2 => eq_pos p1 p2
+ | _ => false
+ end
+ | Zneg p1 => match z2 with
+ | Zneg p2 => eq_pos p1 p2
+ | _ => false
+ end
end.
-Theorem eq_Z_true : (t1,t2: Z) (eq_Z t1 t2) = true -> t1 = t2.
-
-Induction t1; [
- Intros t2; Case t2; [ Auto | absurd_case | absurd_case ]
-| Intros p t2; Case t2; [
- absurd_case | Simpl; Intros; Rewrite (eq_pos_true p p0 H); Trivial
- | absurd_case ]
-| Intros p t2; Case t2; [
- absurd_case | absurd_case
- | Simpl; Intros; Rewrite (eq_pos_true p p0 H); Trivial ]].
-
-Save.
-
-Theorem eq_Z_false : (t1,t2: Z) (eq_Z t1 t2) = false -> ~(t1 = t2).
-
-Induction t1; [
- Intros t2; Case t2; [ absurd_case | trivial_case | trivial_case ]
-| Intros p t2; Case t2; [
- absurd_case
- | Simpl; Unfold not; Intros; Elim (eq_pos_false p p0 H); Simplify_eq H0; Auto
- | trivial_case ]
-| Intros p t2; Case t2; [
- absurd_case | trivial_case
- | Simpl; Unfold not; Intros; Elim (eq_pos_false p p0 H);
- Simplify_eq H0; Auto]].
-Save.
+Theorem eq_Z_true : forall t1 t2:Z, eq_Z t1 t2 = true -> t1 = t2.
+
+simple induction t1;
+ [ intros t2; case t2; [ auto | absurd_case | absurd_case ]
+ | intros p t2; case t2;
+ [ absurd_case
+ | simpl in |- *; intros; rewrite (eq_pos_true p p0 H); trivial
+ | absurd_case ]
+ | intros p t2; case t2;
+ [ absurd_case
+ | absurd_case
+ | simpl in |- *; intros; rewrite (eq_pos_true p p0 H); trivial ] ].
+
+Qed.
+
+Theorem eq_Z_false : forall t1 t2:Z, eq_Z t1 t2 = false -> t1 <> t2.
+
+simple induction t1;
+ [ intros t2; case t2; [ absurd_case | trivial_case | trivial_case ]
+ | intros p t2; case t2;
+ [ absurd_case
+ | simpl in |- *; unfold not in |- *; intros; elim (eq_pos_false p p0 H);
+ simplify_eq H0; auto
+ | trivial_case ]
+ | intros p t2; case t2;
+ [ absurd_case
+ | trivial_case
+ | simpl in |- *; unfold not in |- *; intros; elim (eq_pos_false p p0 H);
+ simplify_eq H0; auto ] ].
+Qed.
(* \subsubsection{Termes réifiés} *)
-Fixpoint eq_term [t1,t2: term] : bool :=
- Cases t1 of
- (Tint st1) =>
- Cases t2 of (Tint st2) => (eq_Z st1 st2) | _ => false end
- | (Tplus st11 st12) =>
- Cases t2 of
- (Tplus st21 st22) =>
- (andb (eq_term st11 st21) (eq_term st12 st22))
- | _ => false
- end
- | (Tmult st11 st12) =>
- Cases t2 of
- (Tmult st21 st22) =>
- (andb (eq_term st11 st21) (eq_term st12 st22))
- | _ => false
- end
- | (Tminus st11 st12) =>
- Cases t2 of
- (Tminus st21 st22) =>
- (andb (eq_term st11 st21) (eq_term st12 st22))
- | _ => false
- end
- | (Topp st1) =>
- Cases t2 of (Topp st2) => (eq_term st1 st2) | _ => false end
- | (Tvar st1) =>
- Cases t2 of (Tvar st2) => (eq_nat st1 st2) | _ => false end
- end.
-
-Theorem eq_term_true : (t1,t2: term) (eq_term t1 t2) = true -> t1 = t2.
-
-
-Induction t1; Intros until t2; Case t2; Try absurd_case; Simpl; [
- Intros; Elim eq_Z_true with 1 := H; Trivial
-| Intros t21 t22 H3; Elim andb_prop with 1:= H3; Intros H4 H5;
- Elim H with 1 := H4; Elim H0 with 1 := H5; Trivial
-| Intros t21 t22 H3; Elim andb_prop with 1:= H3; Intros H4 H5;
- Elim H with 1 := H4; Elim H0 with 1 := H5; Trivial
-| Intros t21 t22 H3; Elim andb_prop with 1:= H3; Intros H4 H5;
- Elim H with 1 := H4; Elim H0 with 1 := H5; Trivial
-| Intros t21 H3; Elim H with 1 := H3; Trivial
-| Intros; Elim eq_nat_true with 1 := H; Trivial ].
-
-Save.
-
-Theorem eq_term_false : (t1,t2: term) (eq_term t1 t2) = false -> ~(t1 = t2).
-
-Induction t1; [
- Intros z t2; Case t2; Try trivial_case; Simpl; Unfold not; Intros;
- Elim eq_Z_false with 1:=H; Simplify_eq H0; Auto
-| Intros t11 H1 t12 H2 t2; Case t2; Try trivial_case; Simpl; Intros t21 t22 H3;
- Unfold not; Intro H4; Elim andb_false_elim with 1:= H3; Intros H5;
- [ Elim H1 with 1 := H5; Simplify_eq H4; Auto |
- Elim H2 with 1 := H5; Simplify_eq H4; Auto ]
-| Intros t11 H1 t12 H2 t2; Case t2; Try trivial_case; Simpl; Intros t21 t22 H3;
- Unfold not; Intro H4; Elim andb_false_elim with 1:= H3; Intros H5;
- [ Elim H1 with 1 := H5; Simplify_eq H4; Auto |
- Elim H2 with 1 := H5; Simplify_eq H4; Auto ]
-| Intros t11 H1 t12 H2 t2; Case t2; Try trivial_case; Simpl; Intros t21 t22 H3;
- Unfold not; Intro H4; Elim andb_false_elim with 1:= H3; Intros H5;
- [ Elim H1 with 1 := H5; Simplify_eq H4; Auto |
- Elim H2 with 1 := H5; Simplify_eq H4; Auto ]
-| Intros t11 H1 t2; Case t2; Try trivial_case; Simpl; Intros t21 H3;
- Unfold not; Intro H4; Elim H1 with 1 := H3; Simplify_eq H4; Auto
-| Intros n t2; Case t2; Try trivial_case; Simpl; Unfold not; Intros;
- Elim eq_nat_false with 1:=H; Simplify_eq H0; Auto ].
-
-Save.
+Fixpoint eq_term (t1 t2:term) {struct t2} : bool :=
+ match t1 with
+ | Tint st1 => match t2 with
+ | Tint st2 => eq_Z st1 st2
+ | _ => false
+ end
+ | Tplus st11 st12 =>
+ match t2 with
+ | Tplus st21 st22 => andb (eq_term st11 st21) (eq_term st12 st22)
+ | _ => false
+ end
+ | Tmult st11 st12 =>
+ match t2 with
+ | Tmult st21 st22 => andb (eq_term st11 st21) (eq_term st12 st22)
+ | _ => false
+ end
+ | Tminus st11 st12 =>
+ match t2 with
+ | Tminus st21 st22 => andb (eq_term st11 st21) (eq_term st12 st22)
+ | _ => false
+ end
+ | Topp st1 => match t2 with
+ | Topp st2 => eq_term st1 st2
+ | _ => false
+ end
+ | Tvar st1 => match t2 with
+ | Tvar st2 => eq_nat st1 st2
+ | _ => false
+ end
+ end.
+
+Theorem eq_term_true : forall t1 t2:term, eq_term t1 t2 = true -> t1 = t2.
+
+
+simple induction t1; intros until t2; case t2; try absurd_case; simpl in |- *;
+ [ intros; elim eq_Z_true with (1 := H); trivial
+ | intros t21 t22 H3; elim andb_prop with (1 := H3); intros H4 H5;
+ elim H with (1 := H4); elim H0 with (1 := H5);
+ trivial
+ | intros t21 t22 H3; elim andb_prop with (1 := H3); intros H4 H5;
+ elim H with (1 := H4); elim H0 with (1 := H5);
+ trivial
+ | intros t21 t22 H3; elim andb_prop with (1 := H3); intros H4 H5;
+ elim H with (1 := H4); elim H0 with (1 := H5);
+ trivial
+ | intros t21 H3; elim H with (1 := H3); trivial
+ | intros; elim eq_nat_true with (1 := H); trivial ].
+
+Qed.
+
+Theorem eq_term_false : forall t1 t2:term, eq_term t1 t2 = false -> t1 <> t2.
+
+simple induction t1;
+ [ intros z t2; case t2; try trivial_case; simpl in |- *; unfold not in |- *;
+ intros; elim eq_Z_false with (1 := H); simplify_eq H0;
+ auto
+ | intros t11 H1 t12 H2 t2; case t2; try trivial_case; simpl in |- *;
+ intros t21 t22 H3; unfold not in |- *; intro H4;
+ elim andb_false_elim with (1 := H3); intros H5;
+ [ elim H1 with (1 := H5); simplify_eq H4; auto
+ | elim H2 with (1 := H5); simplify_eq H4; auto ]
+ | intros t11 H1 t12 H2 t2; case t2; try trivial_case; simpl in |- *;
+ intros t21 t22 H3; unfold not in |- *; intro H4;
+ elim andb_false_elim with (1 := H3); intros H5;
+ [ elim H1 with (1 := H5); simplify_eq H4; auto
+ | elim H2 with (1 := H5); simplify_eq H4; auto ]
+ | intros t11 H1 t12 H2 t2; case t2; try trivial_case; simpl in |- *;
+ intros t21 t22 H3; unfold not in |- *; intro H4;
+ elim andb_false_elim with (1 := H3); intros H5;
+ [ elim H1 with (1 := H5); simplify_eq H4; auto
+ | elim H2 with (1 := H5); simplify_eq H4; auto ]
+ | intros t11 H1 t2; case t2; try trivial_case; simpl in |- *; intros t21 H3;
+ unfold not in |- *; intro H4; elim H1 with (1 := H3);
+ simplify_eq H4; auto
+ | intros n t2; case t2; try trivial_case; simpl in |- *; unfold not in |- *;
+ intros; elim eq_nat_false with (1 := H); simplify_eq H0;
+ auto ].
+
+Qed.
(* \subsubsection{Tactiques pour éliminer ces tests}
@@ -259,74 +307,72 @@ Save.
(* Le théorème suivant permet de garder dans les hypothèses la valeur
du booléen lors de l'élimination. *)
-Theorem bool_ind2 :
- (P:(bool->Prop)) (b:bool)
- (b = true -> (P true))->
- (b = false -> (P false)) -> (P b).
+Theorem bool_ind2 :
+ forall (P:bool -> Prop) (b:bool),
+ (b = true -> P true) -> (b = false -> P false) -> P b.
-Induction b; Auto.
-Save.
+simple induction b; auto.
+Qed.
(* Les tactiques définies si après se comportent exactement comme si on
avait utilisé le test précédent et fait une elimination dessus. *)
-Tactic Definition Elim_eq_term t1 t2 :=
- Pattern (eq_term t1 t2); Apply bool_ind2; Intro Aux; [
- Generalize (eq_term_true t1 t2 Aux); Clear Aux
- | Generalize (eq_term_false t1 t2 Aux); Clear Aux ].
+Ltac elim_eq_term t1 t2 :=
+ pattern (eq_term t1 t2) in |- *; apply bool_ind2; intro Aux;
+ [ generalize (eq_term_true t1 t2 Aux); clear Aux
+ | generalize (eq_term_false t1 t2 Aux); clear Aux ].
-Tactic Definition Elim_eq_Z t1 t2 :=
- Pattern (eq_Z t1 t2); Apply bool_ind2; Intro Aux; [
- Generalize (eq_Z_true t1 t2 Aux); Clear Aux
- | Generalize (eq_Z_false t1 t2 Aux); Clear Aux ].
+Ltac elim_eq_Z t1 t2 :=
+ pattern (eq_Z t1 t2) in |- *; apply bool_ind2; intro Aux;
+ [ generalize (eq_Z_true t1 t2 Aux); clear Aux
+ | generalize (eq_Z_false t1 t2 Aux); clear Aux ].
-Tactic Definition Elim_eq_pos t1 t2 :=
- Pattern (eq_pos t1 t2); Apply bool_ind2; Intro Aux; [
- Generalize (eq_pos_true t1 t2 Aux); Clear Aux
- | Generalize (eq_pos_false t1 t2 Aux); Clear Aux ].
+Ltac elim_eq_pos t1 t2 :=
+ pattern (eq_pos t1 t2) in |- *; apply bool_ind2; intro Aux;
+ [ generalize (eq_pos_true t1 t2 Aux); clear Aux
+ | generalize (eq_pos_false t1 t2 Aux); clear Aux ].
(* \subsubsection{Comparaison sur Z} *)
(* Sujet très lié au précédent : on introduit la tactique d'élimination
avec son théorème *)
-Theorem relation_ind2 :
- (P:(relation->Prop)) (b:relation)
- (b = EGAL -> (P EGAL))->
- (b = INFERIEUR -> (P INFERIEUR))->
- (b = SUPERIEUR -> (P SUPERIEUR)) -> (P b).
+Theorem relation_ind2 :
+ forall (P:Datatypes.comparison -> Prop) (b:Datatypes.comparison),
+ (b = Datatypes.Eq -> P Datatypes.Eq) ->
+ (b = Datatypes.Lt -> P Datatypes.Lt) ->
+ (b = Datatypes.Gt -> P Datatypes.Gt) -> P b.
-Induction b; Auto.
-Save.
+simple induction b; auto.
+Qed.
-Tactic Definition Elim_Zcompare t1 t2 :=
- Pattern (Zcompare t1 t2); Apply relation_ind2.
+Ltac elim_Zcompare t1 t2 := pattern (t1 ?= t2)%Z in |- *; apply relation_ind2.
(* \subsection{Interprétations}
\subsubsection{Interprétation des termes dans Z} *)
-Fixpoint interp_term [env:(list Z); t:term] : Z :=
- Cases t of
- (Tint x) => x
- | (Tplus t1 t2) => (Zplus (interp_term env t1) (interp_term env t2))
- | (Tmult t1 t2) => (Zmult (interp_term env t1) (interp_term env t2))
- | (Tminus t1 t2) => (Zminus (interp_term env t1) (interp_term env t2))
- | (Topp t) => (Zopp (interp_term env t))
- | (Tvar n) => (nth n env ZERO)
+Fixpoint interp_term (env:list Z) (t:term) {struct t} : Z :=
+ match t with
+ | Tint x => x
+ | Tplus t1 t2 => (interp_term env t1 + interp_term env t2)%Z
+ | Tmult t1 t2 => (interp_term env t1 * interp_term env t2)%Z
+ | Tminus t1 t2 => (interp_term env t1 - interp_term env t2)%Z
+ | Topp t => (- interp_term env t)%Z
+ | Tvar n => nth n env 0%Z
end.
(* \subsubsection{Interprétation des prédicats} *)
-Fixpoint interp_proposition [env: (list Z); p:proposition] : Prop :=
- Cases p of
- (EqTerm t1 t2) => ((interp_term env t1) = (interp_term env t2))
- | (LeqTerm t1 t2) => `(interp_term env t1) <= (interp_term env t2)`
+Fixpoint interp_proposition (env:list Z) (p:proposition) {struct p} : Prop :=
+ match p with
+ | EqTerm t1 t2 => interp_term env t1 = interp_term env t2
+ | LeqTerm t1 t2 => (interp_term env t1 <= interp_term env t2)%Z
| TrueTerm => True
| FalseTerm => False
- | (Tnot p') => ~(interp_proposition env p')
- | (GeqTerm t1 t2) => `(interp_term env t1) >= (interp_term env t2)`
- | (GtTerm t1 t2) => `(interp_term env t1) > (interp_term env t2)`
- | (LtTerm t1 t2) => `(interp_term env t1) < (interp_term env t2)`
- | (NeqTerm t1 t2) => `(Zne (interp_term env t1) (interp_term env t2))`
+ | Tnot p' => ~ interp_proposition env p'
+ | GeqTerm t1 t2 => (interp_term env t1 >= interp_term env t2)%Z
+ | GtTerm t1 t2 => (interp_term env t1 > interp_term env t2)%Z
+ | LtTerm t1 t2 => (interp_term env t1 < interp_term env t2)%Z
+ | NeqTerm t1 t2 => Zne (interp_term env t1) (interp_term env t2)
end.
(* \subsubsection{Inteprétation des listes d'hypothèses}
@@ -334,10 +380,10 @@ Fixpoint interp_proposition [env: (list Z); p:proposition] : Prop :=
Interprétation sous forme d'une conjonction d'hypothèses plus faciles
à manipuler individuellement *)
-Fixpoint interp_hyps [env : (list Z); l: hyps] : Prop :=
- Cases l of
- nil => True
- | (cons p' l') => (interp_proposition env p') /\ (interp_hyps env l')
+Fixpoint interp_hyps (env:list Z) (l:hyps) {struct l} : Prop :=
+ match l with
+ | nil => True
+ | p' :: l' => interp_proposition env p' /\ interp_hyps env l'
end.
(* \paragraph{Sous forme de but}
@@ -345,39 +391,37 @@ Fixpoint interp_hyps [env : (list Z); l: hyps] : Prop :=
[Generalize] et qu'une conjonction est forcément lourde (répétition des
types dans les conjonctions intermédiaires) *)
-Fixpoint interp_goal [env : (list Z); l: hyps] : Prop :=
- Cases l of
- nil => False
- | (cons p' l') => (interp_proposition env p') -> (interp_goal env l')
+Fixpoint interp_goal (env:list Z) (l:hyps) {struct l} : Prop :=
+ match l with
+ | nil => False
+ | p' :: l' => interp_proposition env p' -> interp_goal env l'
end.
(* Les théorèmes qui suivent assurent la correspondance entre les deux
interprétations. *)
-Theorem goal_to_hyps :
- (env : (list Z); l: hyps)
- ((interp_hyps env l) -> False) -> (interp_goal env l).
+Theorem goal_to_hyps :
+ forall (env:list Z) (l:hyps),
+ (interp_hyps env l -> False) -> interp_goal env l.
-Induction l; [
- Simpl; Auto
-| Simpl; Intros a l1 H1 H2 H3; Apply H1; Intro H4; Apply H2; Auto ].
-Save.
+simple induction l;
+ [ simpl in |- *; auto
+ | simpl in |- *; intros a l1 H1 H2 H3; apply H1; intro H4; apply H2; auto ].
+Qed.
-Theorem hyps_to_goal :
- (env : (list Z); l: hyps)
- (interp_goal env l) -> ((interp_hyps env l) -> False).
+Theorem hyps_to_goal :
+ forall (env:list Z) (l:hyps),
+ interp_goal env l -> interp_hyps env l -> False.
-Induction l; Simpl; [
- Auto
-| Intros; Apply H; Elim H1; Auto ].
-Save.
+simple induction l; simpl in |- *; [ auto | intros; apply H; elim H1; auto ].
+Qed.
(* \subsection{Manipulations sur les hypothèses} *)
(* \subsubsection{Définitions de base de stabilité pour la réflexion} *)
(* Une opération laisse un terme stable si l'égalité est préservée *)
-Definition term_stable [f: term -> term] :=
- (e: (list Z); t:term) (interp_term e t) = (interp_term e (f t)).
+Definition term_stable (f:term -> term) :=
+ forall (e:list Z) (t:term), interp_term e t = interp_term e (f t).
(* Une opération est valide sur une hypothèse, si l'hypothèse implique le
résultat de l'opération. \emph{Attention : cela ne concerne que des
@@ -385,155 +429,156 @@ Definition term_stable [f: term -> term] :=
On définit la validité pour une opération prenant une ou deux propositions
en argument (cela suffit pour omega). *)
-Definition valid1 [f: proposition -> proposition] :=
- (e: (list Z)) (p1: proposition)
- (interp_proposition e p1) -> (interp_proposition e (f p1)).
+Definition valid1 (f:proposition -> proposition) :=
+ forall (e:list Z) (p1:proposition),
+ interp_proposition e p1 -> interp_proposition e (f p1).
-Definition valid2 [f: proposition -> proposition -> proposition] :=
- (e: (list Z)) (p1,p2: proposition)
- (interp_proposition e p1) -> (interp_proposition e p2) ->
- (interp_proposition e (f p1 p2)).
+Definition valid2 (f:proposition -> proposition -> proposition) :=
+ forall (e:list Z) (p1 p2:proposition),
+ interp_proposition e p1 ->
+ interp_proposition e p2 -> interp_proposition e (f p1 p2).
(* Dans cette notion de validité, la fonction prend directement une
liste de propositions et rend une nouvelle liste de propositions.
On reste contravariant *)
-Definition valid_hyps [f: hyps -> hyps] :=
- (e : (list Z)) (lp: hyps) (interp_hyps e lp) -> (interp_hyps e (f lp)).
+Definition valid_hyps (f:hyps -> hyps) :=
+ forall (e:list Z) (lp:hyps), interp_hyps e lp -> interp_hyps e (f lp).
(* Enfin ce théorème élimine la contravariance et nous ramène à une
opération sur les buts *)
Theorem valid_goal :
- (env : (list Z); l: hyps; a : hyps -> hyps)
- (valid_hyps a) -> (interp_goal env (a l)) -> (interp_goal env l).
+ forall (env:list Z) (l:hyps) (a:hyps -> hyps),
+ valid_hyps a -> interp_goal env (a l) -> interp_goal env l.
-Intros; Apply goal_to_hyps; Intro H1; Apply (hyps_to_goal env (a l) H0);
-Apply H; Assumption.
-Save.
+intros; apply goal_to_hyps; intro H1; apply (hyps_to_goal env (a l) H0);
+ apply H; assumption.
+Qed.
(* \subsubsection{Généralisation à des listes de buts (disjonctions)} *)
Notation lhyps := (list hyps).
-Fixpoint interp_list_hyps [env: (list Z); l : lhyps] : Prop :=
- Cases l of
- nil => False
- | (cons h l') => (interp_hyps env h) \/ (interp_list_hyps env l')
- end.
-
-Fixpoint interp_list_goal [env: (list Z);l : lhyps] : Prop :=
- Cases l of
- nil => True
- | (cons h l') => (interp_goal env h) /\ (interp_list_goal env l')
- end.
-
-Theorem list_goal_to_hyps :
- (env: (list Z); l: lhyps)
- ((interp_list_hyps env l) -> False) -> (interp_list_goal env l).
-
-Induction l; Simpl; [
- Auto
-| Intros h1 l1 H H1; Split; [
- Apply goal_to_hyps; Intro H2; Apply H1; Auto
- | Apply H; Intro H2; Apply H1; Auto ]].
-Save.
-
-Theorem list_hyps_to_goal :
- (env: (list Z); l: lhyps)
- (interp_list_goal env l) -> ((interp_list_hyps env l) -> False).
-
-Induction l; Simpl; [
- Auto
-| Intros h1 l1 H (H1,H2) H3; Elim H3; Intro H4; [
- Apply hyps_to_goal with 1 := H1; Assumption
- | Auto ]].
-Save.
-
-Definition valid_list_hyps [f: hyps -> lhyps] :=
- (e : (list Z)) (lp: hyps) (interp_hyps e lp) -> (interp_list_hyps e (f lp)).
-
-Definition valid_list_goal [f: hyps -> lhyps] :=
- (e : (list Z)) (lp: hyps)
- (interp_list_goal e (f lp)) -> (interp_goal e lp) .
-
-Theorem goal_valid :
- (f: hyps -> lhyps) (valid_list_hyps f) -> (valid_list_goal f).
-
-Unfold valid_list_goal; Intros f H e lp H1; Apply goal_to_hyps;
-Intro H2; Apply list_hyps_to_goal with 1:=H1; Apply (H e lp); Assumption.
-Save.
+Fixpoint interp_list_hyps (env:list Z) (l:lhyps) {struct l} : Prop :=
+ match l with
+ | nil => False
+ | h :: l' => interp_hyps env h \/ interp_list_hyps env l'
+ end.
+
+Fixpoint interp_list_goal (env:list Z) (l:lhyps) {struct l} : Prop :=
+ match l with
+ | nil => True
+ | h :: l' => interp_goal env h /\ interp_list_goal env l'
+ end.
+
+Theorem list_goal_to_hyps :
+ forall (env:list Z) (l:lhyps),
+ (interp_list_hyps env l -> False) -> interp_list_goal env l.
+
+simple induction l; simpl in |- *;
+ [ auto
+ | intros h1 l1 H H1; split;
+ [ apply goal_to_hyps; intro H2; apply H1; auto
+ | apply H; intro H2; apply H1; auto ] ].
+Qed.
+
+Theorem list_hyps_to_goal :
+ forall (env:list Z) (l:lhyps),
+ interp_list_goal env l -> interp_list_hyps env l -> False.
+
+simple induction l; simpl in |- *;
+ [ auto
+ | intros h1 l1 H [H1 H2] H3; elim H3; intro H4;
+ [ apply hyps_to_goal with (1 := H1); assumption | auto ] ].
+Qed.
+
+Definition valid_list_hyps (f:hyps -> lhyps) :=
+ forall (e:list Z) (lp:hyps), interp_hyps e lp -> interp_list_hyps e (f lp).
+
+Definition valid_list_goal (f:hyps -> lhyps) :=
+ forall (e:list Z) (lp:hyps), interp_list_goal e (f lp) -> interp_goal e lp.
+
+Theorem goal_valid :
+ forall f:hyps -> lhyps, valid_list_hyps f -> valid_list_goal f.
+
+unfold valid_list_goal in |- *; intros f H e lp H1; apply goal_to_hyps;
+ intro H2; apply list_hyps_to_goal with (1 := H1);
+ apply (H e lp); assumption.
+Qed.
Theorem append_valid :
- (e: (list Z)) (l1,l2:lhyps)
- (interp_list_hyps e l1) \/ (interp_list_hyps e l2) ->
- (interp_list_hyps e (app l1 l2)).
+ forall (e:list Z) (l1 l2:lhyps),
+ interp_list_hyps e l1 \/ interp_list_hyps e l2 ->
+ interp_list_hyps e (l1 ++ l2).
-Intros e; Induction l1; [
- Simpl; Intros l2 [H | H]; [ Contradiction | Trivial ]
-| Simpl; Intros h1 t1 HR l2 [[H | H] | H] ;[
- Auto
- | Right; Apply (HR l2); Left; Trivial
- | Right; Apply (HR l2); Right; Trivial ]].
+intros e; simple induction l1;
+ [ simpl in |- *; intros l2 [H| H]; [ contradiction | trivial ]
+ | simpl in |- *; intros h1 t1 HR l2 [[H| H]| H];
+ [ auto
+ | right; apply (HR l2); left; trivial
+ | right; apply (HR l2); right; trivial ] ].
-Save.
+Qed.
(* \subsubsection{Opérateurs valides sur les hypothèses} *)
(* Extraire une hypothèse de la liste *)
-Definition nth_hyps [n:nat; l: hyps] := (nth n l TrueTerm).
+Definition nth_hyps (n:nat) (l:hyps) := nth n l TrueTerm.
Theorem nth_valid :
- (e: (list Z); i:nat; l: hyps)
- (interp_hyps e l) -> (interp_proposition e (nth_hyps i l)).
+ forall (e:list Z) (i:nat) (l:hyps),
+ interp_hyps e l -> interp_proposition e (nth_hyps i l).
-Unfold nth_hyps; Induction i; [
- Induction l; Simpl; [ Auto | Intros; Elim H0; Auto ]
-| Intros n H; Induction l;
- [ Simpl; Trivial | Intros; Simpl; Apply H; Elim H1; Auto ]].
-Save.
+unfold nth_hyps in |- *; simple induction i;
+ [ simple induction l; simpl in |- *; [ auto | intros; elim H0; auto ]
+ | intros n H; simple induction l;
+ [ simpl in |- *; trivial
+ | intros; simpl in |- *; apply H; elim H1; auto ] ].
+Qed.
(* Appliquer une opération (valide) sur deux hypothèses extraites de
la liste et ajouter le résultat à la liste. *)
-Definition apply_oper_2
- [i,j : nat; f : proposition -> proposition -> proposition ] :=
- [l: hyps] (cons (f (nth_hyps i l) (nth_hyps j l)) l).
+Definition apply_oper_2 (i j:nat)
+ (f:proposition -> proposition -> proposition) (l:hyps) :=
+ f (nth_hyps i l) (nth_hyps j l) :: l.
Theorem apply_oper_2_valid :
- (i,j : nat; f : proposition -> proposition -> proposition )
- (valid2 f) -> (valid_hyps (apply_oper_2 i j f)).
+ forall (i j:nat) (f:proposition -> proposition -> proposition),
+ valid2 f -> valid_hyps (apply_oper_2 i j f).
-Intros i j f Hf; Unfold apply_oper_2 valid_hyps; Simpl; Intros lp Hlp; Split;
- [ Apply Hf; Apply nth_valid; Assumption | Assumption].
-Save.
+intros i j f Hf; unfold apply_oper_2, valid_hyps in |- *; simpl in |- *;
+ intros lp Hlp; split; [ apply Hf; apply nth_valid; assumption | assumption ].
+Qed.
(* Modifier une hypothèse par application d'une opération valide *)
-Fixpoint apply_oper_1 [i:nat] : (proposition -> proposition) -> hyps -> hyps :=
- [f : (proposition -> proposition); l : hyps]
- Cases l of
- nil => (nil proposition)
- | (cons p l') =>
- Cases i of
- O => (cons (f p) l')
- | (S j) => (cons p (apply_oper_1 j f l'))
- end
- end.
+Fixpoint apply_oper_1 (i:nat) (f:proposition -> proposition)
+ (l:hyps) {struct i} : hyps :=
+ match l with
+ | nil => nil (A:=proposition)
+ | p :: l' =>
+ match i with
+ | O => f p :: l'
+ | S j => p :: apply_oper_1 j f l'
+ end
+ end.
Theorem apply_oper_1_valid :
- (i : nat; f : proposition -> proposition )
- (valid1 f) -> (valid_hyps (apply_oper_1 i f)).
+ forall (i:nat) (f:proposition -> proposition),
+ valid1 f -> valid_hyps (apply_oper_1 i f).
-Unfold valid_hyps; Intros i f Hf e; Elim i; [
- Intro lp; Case lp; [
- Simpl; Trivial
- | Simpl; Intros p l' (H1, H2); Split; [ Apply Hf with 1:=H1 | Assumption ]]
-| Intros n Hrec lp; Case lp; [
- Simpl; Auto
- | Simpl; Intros p l' (H1, H2);
- Split; [ Assumption | Apply Hrec; Assumption ]]].
+unfold valid_hyps in |- *; intros i f Hf e; elim i;
+ [ intro lp; case lp;
+ [ simpl in |- *; trivial
+ | simpl in |- *; intros p l' [H1 H2]; split;
+ [ apply Hf with (1 := H1) | assumption ] ]
+ | intros n Hrec lp; case lp;
+ [ simpl in |- *; auto
+ | simpl in |- *; intros p l' [H1 H2]; split;
+ [ assumption | apply Hrec; assumption ] ] ].
-Save.
+Qed.
(* \subsubsection{Manipulations de termes} *)
(* Les fonctions suivantes permettent d'appliquer une fonction de
@@ -541,25 +586,25 @@ Save.
cela permet de construire des réécritures complexes proches des
tactiques de conversion *)
-Definition apply_left [f: term -> term; t : term]:=
- Cases t of
- (Tplus x y) => (Tplus (f x) y)
- | (Tmult x y) => (Tmult (f x) y)
- | (Topp x) => (Topp (f x))
+Definition apply_left (f:term -> term) (t:term) :=
+ match t with
+ | Tplus x y => Tplus (f x) y
+ | Tmult x y => Tmult (f x) y
+ | Topp x => Topp (f x)
| x => x
end.
-Definition apply_right [f: term -> term; t : term]:=
- Cases t of
- (Tplus x y) => (Tplus x (f y))
- | (Tmult x y) => (Tmult x (f y))
+Definition apply_right (f:term -> term) (t:term) :=
+ match t with
+ | Tplus x y => Tplus x (f y)
+ | Tmult x y => Tmult x (f y)
| x => x
end.
-Definition apply_both [f,g: term -> term; t : term]:=
- Cases t of
- (Tplus x y) => (Tplus (f x) (g y))
- | (Tmult x y) => (Tmult (f x) (g y))
+Definition apply_both (f g:term -> term) (t:term) :=
+ match t with
+ | Tplus x y => Tplus (f x) (g y)
+ | Tmult x y => Tmult (f x) (g y)
| x => x
end.
@@ -567,33 +612,33 @@ Definition apply_both [f,g: term -> term; t : term]:=
fonctions. *)
Theorem apply_left_stable :
- (f: term -> term) (term_stable f) -> (term_stable (apply_left f)).
+ forall f:term -> term, term_stable f -> term_stable (apply_left f).
-Unfold term_stable; Intros f H e t; Case t; Auto; Simpl;
-Intros; Elim H; Trivial.
-Save.
+unfold term_stable in |- *; intros f H e t; case t; auto; simpl in |- *;
+ intros; elim H; trivial.
+Qed.
Theorem apply_right_stable :
- (f: term -> term) (term_stable f) -> (term_stable (apply_right f)).
+ forall f:term -> term, term_stable f -> term_stable (apply_right f).
-Unfold term_stable; Intros f H e t; Case t; Auto; Simpl;
-Intros t0 t1; Elim H; Trivial.
-Save.
+unfold term_stable in |- *; intros f H e t; case t; auto; simpl in |- *;
+ intros t0 t1; elim H; trivial.
+Qed.
Theorem apply_both_stable :
- (f,g: term -> term) (term_stable f) -> (term_stable g) ->
- (term_stable (apply_both f g)).
+ forall f g:term -> term,
+ term_stable f -> term_stable g -> term_stable (apply_both f g).
-Unfold term_stable; Intros f g H1 H2 e t; Case t; Auto; Simpl;
-Intros t0 t1; Elim H1; Elim H2; Trivial.
-Save.
+unfold term_stable in |- *; intros f g H1 H2 e t; case t; auto; simpl in |- *;
+ intros t0 t1; elim H1; elim H2; trivial.
+Qed.
Theorem compose_term_stable :
- (f,g: term -> term) (term_stable f) -> (term_stable g) ->
- (term_stable [t: term](f (g t))).
+ forall f g:term -> term,
+ term_stable f -> term_stable g -> term_stable (fun t:term => f (g t)).
-Unfold term_stable; Intros f g Hf Hg e t; Elim Hf; Apply Hg.
-Save.
+unfold term_stable in |- *; intros f g Hf Hg e t; elim Hf; apply Hg.
+Qed.
(* \subsection{Les règles de réécriture} *)
(* Chacune des règles de réécriture est accompagnée par sa preuve de
@@ -623,362 +668,385 @@ Save.
*)
(* \subsubsection{La tactique pour prouver la stabilité} *)
-Recursive Tactic Definition loop t := (
- Match t With
- (* Global *)
- [(?1 = ?2)] -> (loop ?1) Orelse (loop ?2)
- | [ ? -> ?1 ] -> (loop ?1)
+Ltac loop t :=
+ match constr:t with
+ | (?X1 = ?X2) =>
+ (* Global *)
+ loop X1 || loop X2
+ | (_ -> ?X1) => loop X1
+ | (interp_hyps _ ?X1) =>
+
(* Interprétations *)
- | [ (interp_hyps ? ?1) ] -> (loop ?1)
- | [ (interp_list_hyps ? ?1) ] -> (loop ?1)
- | [ (interp_proposition ? ?1) ] -> (loop ?1)
- | [ (interp_term ? ?1) ] -> (loop ?1)
- (* Propositions *)
- | [(EqTerm ?1 ?2)] -> (loop ?1) Orelse (loop ?2)
- | [(LeqTerm ?1 ?2)] -> (loop ?1) Orelse (loop ?2)
- (* Termes *)
- | [(Tplus ?1 ?2)] -> (loop ?1) Orelse (loop ?2)
- | [(Tminus ?1 ?2)] -> (loop ?1) Orelse (loop ?2)
- | [(Tmult ?1 ?2)] -> (loop ?1) Orelse (loop ?2)
- | [(Topp ?1)] -> (loop ?1)
- | [(Tint ?1)] -> (loop ?1)
- (* Eliminations *)
- | [(Cases ?1 of
- | (EqTerm _ _) => ?
- | (LeqTerm _ _) => ?
- | TrueTerm => ?
- | FalseTerm => ?
- | (Tnot _) => ?
- | (GeqTerm _ _) => ?
- | (GtTerm _ _) => ?
- | (LtTerm _ _) => ?
- | (NeqTerm _ _) => ?
- end)] ->
- (Case ?1; [ Intro; Intro | Intro; Intro | Idtac | Idtac
- | Intro | Intro; Intro | Intro; Intro | Intro; Intro
- | Intro; Intro ]);
- Auto; Simplify
- | [(Cases ?1 of
- (Tint _) => ?
- | (Tplus _ _) => ?
- | (Tmult _ _) => ?
- | (Tminus _ _) => ?
- | (Topp _) => ?
- | (Tvar _) => ?
- end)] ->
- (Case ?1; [ Intro | Intro; Intro | Intro; Intro | Intro; Intro |
- Intro | Intro ]); Auto; Simplify
- | [(Cases (Zcompare ?1 ?2) of
- EGAL => ?
- | INFERIEUR => ?
- | SUPERIEUR => ?
- end)] ->
- (Elim_Zcompare ?1 ?2) ; Intro ; Auto; Simplify
- | [(Cases ?1 of ZERO => ? | (POS _) => ? | (NEG _) => ? end)] ->
- (Case ?1; [ Idtac | Intro | Intro ]); Auto; Simplify
- | [(if (eq_Z ?1 ?2) then ? else ?)] ->
- ((Elim_eq_Z ?1 ?2); Intro H; [Rewrite H; Clear H | Clear H]);
- Simpl; Auto; Simplify
- | [(if (eq_term ?1 ?2) then ? else ?)] ->
- ((Elim_eq_term ?1 ?2); Intro H; [Rewrite H; Clear H | Clear H]);
- Simpl; Auto; Simplify
- | [(if (eq_pos ?1 ?2) then ? else ?)] ->
- ((Elim_eq_pos ?1 ?2); Intro H; [Rewrite H; Clear H | Clear H]);
- Simpl; Auto; Simplify
- | _ -> Fail)
-And Simplify := (
- Match Context With [|- ?1 ] -> Try (loop ?1) | _ -> Idtac).
-
-Tactic Definition ProveStable x th :=
- Unfold term_stable x; Intros; Simplify; Simpl; Apply th.
+ loop X1
+ | (interp_list_hyps _ ?X1) => loop X1
+ | (interp_proposition _ ?X1) => loop X1
+ | (interp_term _ ?X1) => loop X1
+ | (EqTerm ?X1 ?X2) =>
+
+ (* Propositions *)
+ loop X1 || loop X2
+ | (LeqTerm ?X1 ?X2) => loop X1 || loop X2
+ | (Tplus ?X1 ?X2) =>
+ (* Termes *)
+ loop X1 || loop X2
+ | (Tminus ?X1 ?X2) => loop X1 || loop X2
+ | (Tmult ?X1 ?X2) => loop X1 || loop X2
+ | (Topp ?X1) => loop X1
+ | (Tint ?X1) =>
+ loop X1
+ | match ?X1 with
+ | EqTerm x x0 => _
+ | LeqTerm x x0 => _
+ | TrueTerm => _
+ | FalseTerm => _
+ | Tnot x => _
+ | GeqTerm x x0 => _
+ | GtTerm x x0 => _
+ | LtTerm x x0 => _
+ | NeqTerm x x0 => _
+ end =>
+
+ (* Eliminations *)
+ case X1;
+ [ intro; intro
+ | intro; intro
+ | idtac
+ | idtac
+ | intro
+ | intro; intro
+ | intro; intro
+ | intro; intro
+ | intro; intro ]; auto; Simplify
+ | match ?X1 with
+ | Tint x => _
+ | Tplus x x0 => _
+ | Tmult x x0 => _
+ | Tminus x x0 => _
+ | Topp x => _
+ | Tvar x => _
+ end =>
+ case X1;
+ [ intro | intro; intro | intro; intro | intro; intro | intro | intro ];
+ auto; Simplify
+ | match (?X1 ?= ?X2)%Z with
+ | Datatypes.Eq => _
+ | Datatypes.Lt => _
+ | Datatypes.Gt => _
+ end =>
+ elim_Zcompare X1 X2; intro; auto; Simplify
+ | match ?X1 with
+ | Z0 => _
+ | Zpos x => _
+ | Zneg x => _
+ end =>
+ case X1; [ idtac | intro | intro ]; auto; Simplify
+ | (if eq_Z ?X1 ?X2 then _ else _) =>
+ elim_eq_Z X1 X2; intro H; [ rewrite H; clear H | clear H ];
+ simpl in |- *; auto; Simplify
+ | (if eq_term ?X1 ?X2 then _ else _) =>
+ elim_eq_term X1 X2; intro H; [ rewrite H; clear H | clear H ];
+ simpl in |- *; auto; Simplify
+ | (if eq_pos ?X1 ?X2 then _ else _) =>
+ elim_eq_pos X1 X2; intro H; [ rewrite H; clear H | clear H ];
+ simpl in |- *; auto; Simplify
+ | _ => fail
+ end
+ with Simplify := match goal with
+ | |- ?X1 => try loop X1
+ | _ => idtac
+ end.
+
+Ltac prove_stable x th :=
+ unfold term_stable, x in |- *; intros; Simplify; simpl in |- *; apply th.
(* \subsubsection{Les règles elle mêmes} *)
-Definition Tplus_assoc_l [t: term] :=
- Cases t of
- (Tplus n (Tplus m p)) => (Tplus (Tplus n m) p)
+Definition Tplus_assoc_l (t:term) :=
+ match t with
+ | Tplus n (Tplus m p) => Tplus (Tplus n m) p
| _ => t
end.
-Theorem Tplus_assoc_l_stable : (term_stable Tplus_assoc_l).
+Theorem Tplus_assoc_l_stable : term_stable Tplus_assoc_l.
-(ProveStable Tplus_assoc_l Zplus_assoc).
-Save.
+prove_stable Tplus_assoc_l Zplus_assoc.
+Qed.
-Definition Tplus_assoc_r [t: term] :=
- Cases t of
- (Tplus (Tplus n m) p) => (Tplus n (Tplus m p))
+Definition Tplus_assoc_r (t:term) :=
+ match t with
+ | Tplus (Tplus n m) p => Tplus n (Tplus m p)
| _ => t
end.
-Theorem Tplus_assoc_r_stable : (term_stable Tplus_assoc_r).
+Theorem Tplus_assoc_r_stable : term_stable Tplus_assoc_r.
-(ProveStable Tplus_assoc_r Zplus_assoc_r).
-Save.
+prove_stable Tplus_assoc_r Zplus_assoc_reverse.
+Qed.
-Definition Tmult_assoc_r [t: term] :=
- Cases t of
- (Tmult (Tmult n m) p) => (Tmult n (Tmult m p))
+Definition Tmult_assoc_r (t:term) :=
+ match t with
+ | Tmult (Tmult n m) p => Tmult n (Tmult m p)
| _ => t
end.
-Theorem Tmult_assoc_r_stable : (term_stable Tmult_assoc_r).
+Theorem Tmult_assoc_r_stable : term_stable Tmult_assoc_r.
-(ProveStable Tmult_assoc_r Zmult_assoc_r).
-Save.
+prove_stable Tmult_assoc_r Zmult_assoc_reverse.
+Qed.
-Definition Tplus_permute [t: term] :=
- Cases t of
- (Tplus n (Tplus m p)) => (Tplus m (Tplus n p))
+Definition Tplus_permute (t:term) :=
+ match t with
+ | Tplus n (Tplus m p) => Tplus m (Tplus n p)
| _ => t
end.
-Theorem Tplus_permute_stable : (term_stable Tplus_permute).
+Theorem Tplus_permute_stable : term_stable Tplus_permute.
-(ProveStable Tplus_permute Zplus_permute).
-Save.
+prove_stable Tplus_permute Zplus_permute.
+Qed.
-Definition Tplus_sym [t: term] :=
- Cases t of
- (Tplus x y) => (Tplus y x)
+Definition Tplus_sym (t:term) :=
+ match t with
+ | Tplus x y => Tplus y x
| _ => t
end.
-Theorem Tplus_sym_stable : (term_stable Tplus_sym).
+Theorem Tplus_sym_stable : term_stable Tplus_sym.
-(ProveStable Tplus_sym Zplus_sym).
-Save.
+prove_stable Tplus_sym Zplus_comm.
+Qed.
-Definition Tmult_sym [t: term] :=
- Cases t of
- (Tmult x y) => (Tmult y x)
+Definition Tmult_sym (t:term) :=
+ match t with
+ | Tmult x y => Tmult y x
| _ => t
end.
-Theorem Tmult_sym_stable : (term_stable Tmult_sym).
+Theorem Tmult_sym_stable : term_stable Tmult_sym.
-(ProveStable Tmult_sym Zmult_sym).
-Save.
+prove_stable Tmult_sym Zmult_comm.
+Qed.
-Definition T_OMEGA10 [t: term] :=
- Cases t of
- (Tplus (Tmult (Tplus (Tmult v (Tint c1)) l1) (Tint k1))
- (Tmult (Tplus (Tmult v' (Tint c2)) l2) (Tint k2))) =>
- Case (eq_term v v') of
- (Tplus (Tmult v (Tint (Zplus (Zmult c1 k1) (Zmult c2 k2))))
- (Tplus (Tmult l1 (Tint k1)) (Tmult l2 (Tint k2))))
- t
- end
+Definition T_OMEGA10 (t:term) :=
+ match t with
+ | Tplus (Tmult (Tplus (Tmult v (Tint c1)) l1) (Tint k1)) (Tmult (Tplus
+ (Tmult v' (Tint c2)) l2) (Tint k2)) =>
+ match eq_term v v' with
+ | true =>
+ Tplus (Tmult v (Tint (c1 * k1 + c2 * k2)))
+ (Tplus (Tmult l1 (Tint k1)) (Tmult l2 (Tint k2)))
+ | false => t
+ end
| _ => t
end.
-Theorem T_OMEGA10_stable : (term_stable T_OMEGA10).
+Theorem T_OMEGA10_stable : term_stable T_OMEGA10.
-(ProveStable T_OMEGA10 OMEGA10).
-Save.
+prove_stable T_OMEGA10 OMEGA10.
+Qed.
-Definition T_OMEGA11 [t: term] :=
- Cases t of
- (Tplus (Tmult (Tplus (Tmult v1 (Tint c1)) l1) (Tint k1)) l2) =>
- (Tplus (Tmult v1 (Tint (Zmult c1 k1))) (Tplus (Tmult l1 (Tint k1)) l2))
+Definition T_OMEGA11 (t:term) :=
+ match t with
+ | Tplus (Tmult (Tplus (Tmult v1 (Tint c1)) l1) (Tint k1)) l2 =>
+ Tplus (Tmult v1 (Tint (c1 * k1))) (Tplus (Tmult l1 (Tint k1)) l2)
| _ => t
end.
-Theorem T_OMEGA11_stable : (term_stable T_OMEGA11).
+Theorem T_OMEGA11_stable : term_stable T_OMEGA11.
-(ProveStable T_OMEGA11 OMEGA11).
-Save.
+prove_stable T_OMEGA11 OMEGA11.
+Qed.
-Definition T_OMEGA12 [t: term] :=
- Cases t of
- (Tplus l1 (Tmult (Tplus (Tmult v2 (Tint c2)) l2) (Tint k2))) =>
- (Tplus (Tmult v2 (Tint (Zmult c2 k2))) (Tplus l1 (Tmult l2 (Tint k2))))
+Definition T_OMEGA12 (t:term) :=
+ match t with
+ | Tplus l1 (Tmult (Tplus (Tmult v2 (Tint c2)) l2) (Tint k2)) =>
+ Tplus (Tmult v2 (Tint (c2 * k2))) (Tplus l1 (Tmult l2 (Tint k2)))
| _ => t
end.
-Theorem T_OMEGA12_stable : (term_stable T_OMEGA12).
-
-(ProveStable T_OMEGA12 OMEGA12).
-Save.
-
-Definition T_OMEGA13 [t: term] :=
- Cases t of
- (Tplus (Tplus (Tmult v (Tint (POS x))) l1)
- (Tplus (Tmult v' (Tint (NEG x'))) l2)) =>
- Case (eq_term v v') of
- Case (eq_pos x x') of
- (Tplus l1 l2)
- t
- end
- t
- end
- | (Tplus (Tplus (Tmult v (Tint (NEG x))) l1)
- (Tplus (Tmult v' (Tint (POS x'))) l2)) =>
- Case (eq_term v v') of
- Case (eq_pos x x') of
- (Tplus l1 l2)
- t
- end
- t
- end
-
+Theorem T_OMEGA12_stable : term_stable T_OMEGA12.
+
+prove_stable T_OMEGA12 OMEGA12.
+Qed.
+
+Definition T_OMEGA13 (t:term) :=
+ match t with
+ | Tplus (Tplus (Tmult v (Tint (Zpos x))) l1) (Tplus (Tmult v' (Tint (Zneg
+ x'))) l2) =>
+ match eq_term v v' with
+ | true => match eq_pos x x' with
+ | true => Tplus l1 l2
+ | false => t
+ end
+ | false => t
+ end
+ | Tplus (Tplus (Tmult v (Tint (Zneg x))) l1) (Tplus (Tmult v' (Tint (Zpos
+ x'))) l2) =>
+ match eq_term v v' with
+ | true => match eq_pos x x' with
+ | true => Tplus l1 l2
+ | false => t
+ end
+ | false => t
+ end
| _ => t
end.
-Theorem T_OMEGA13_stable : (term_stable T_OMEGA13).
-
-Unfold term_stable T_OMEGA13; Intros; Simplify; Simpl;
- [ Apply OMEGA13 | Apply OMEGA14 ].
-Save.
-
-Definition T_OMEGA15 [t: term] :=
- Cases t of
- (Tplus (Tplus (Tmult v (Tint c1)) l1)
- (Tmult (Tplus (Tmult v' (Tint c2)) l2) (Tint k2))) =>
- Case (eq_term v v') of
- (Tplus (Tmult v (Tint (Zplus c1 (Zmult c2 k2))))
- (Tplus l1 (Tmult l2 (Tint k2))))
- t
- end
+Theorem T_OMEGA13_stable : term_stable T_OMEGA13.
+
+unfold term_stable, T_OMEGA13 in |- *; intros; Simplify; simpl in |- *;
+ [ apply OMEGA13 | apply OMEGA14 ].
+Qed.
+
+Definition T_OMEGA15 (t:term) :=
+ match t with
+ | Tplus (Tplus (Tmult v (Tint c1)) l1) (Tmult (Tplus (Tmult v' (Tint c2))
+ l2) (Tint k2)) =>
+ match eq_term v v' with
+ | true =>
+ Tplus (Tmult v (Tint (c1 + c2 * k2)))
+ (Tplus l1 (Tmult l2 (Tint k2)))
+ | false => t
+ end
| _ => t
end.
-Theorem T_OMEGA15_stable : (term_stable T_OMEGA15).
+Theorem T_OMEGA15_stable : term_stable T_OMEGA15.
-(ProveStable T_OMEGA15 OMEGA15).
-Save.
+prove_stable T_OMEGA15 OMEGA15.
+Qed.
-Definition T_OMEGA16 [t: term] :=
- Cases t of
- (Tmult (Tplus (Tmult v (Tint c)) l) (Tint k)) =>
- (Tplus (Tmult v (Tint (Zmult c k))) (Tmult l (Tint k)))
+Definition T_OMEGA16 (t:term) :=
+ match t with
+ | Tmult (Tplus (Tmult v (Tint c)) l) (Tint k) =>
+ Tplus (Tmult v (Tint (c * k))) (Tmult l (Tint k))
| _ => t
end.
-Theorem T_OMEGA16_stable : (term_stable T_OMEGA16).
+Theorem T_OMEGA16_stable : term_stable T_OMEGA16.
-(ProveStable T_OMEGA16 OMEGA16).
-Save.
+prove_stable T_OMEGA16 OMEGA16.
+Qed.
-Definition Tred_factor5 [t: term] :=
- Cases t of
- (Tplus (Tmult x (Tint ZERO)) y) => y
- | _ => t
- end.
+Definition Tred_factor5 (t:term) :=
+ match t with
+ | Tplus (Tmult x (Tint Z0)) y => y
+ | _ => t
+ end.
-Theorem Tred_factor5_stable : (term_stable Tred_factor5).
+Theorem Tred_factor5_stable : term_stable Tred_factor5.
-(ProveStable Tred_factor5 Zred_factor5).
-Save.
+prove_stable Tred_factor5 Zred_factor5.
+Qed.
-Definition Topp_plus [t: term] :=
- Cases t of
- (Topp (Tplus x y)) => (Tplus (Topp x) (Topp y))
+Definition Topp_plus (t:term) :=
+ match t with
+ | Topp (Tplus x y) => Tplus (Topp x) (Topp y)
| _ => t
end.
-Theorem Topp_plus_stable : (term_stable Topp_plus).
+Theorem Topp_plus_stable : term_stable Topp_plus.
-(ProveStable Topp_plus Zopp_Zplus).
-Save.
+prove_stable Topp_plus Zopp_plus_distr.
+Qed.
-Definition Topp_opp [t: term] :=
- Cases t of
- (Topp (Topp x)) => x
+Definition Topp_opp (t:term) :=
+ match t with
+ | Topp (Topp x) => x
| _ => t
end.
-Theorem Topp_opp_stable : (term_stable Topp_opp).
+Theorem Topp_opp_stable : term_stable Topp_opp.
-(ProveStable Topp_opp Zopp_Zopp).
-Save.
+prove_stable Topp_opp Zopp_involutive.
+Qed.
-Definition Topp_mult_r [t: term] :=
- Cases t of
- (Topp (Tmult x (Tint k))) => (Tmult x (Tint (Zopp k)))
+Definition Topp_mult_r (t:term) :=
+ match t with
+ | Topp (Tmult x (Tint k)) => Tmult x (Tint (- k))
| _ => t
end.
-Theorem Topp_mult_r_stable : (term_stable Topp_mult_r).
+Theorem Topp_mult_r_stable : term_stable Topp_mult_r.
-(ProveStable Topp_mult_r Zopp_Zmult_r).
-Save.
+prove_stable Topp_mult_r Zopp_mult_distr_r.
+Qed.
-Definition Topp_one [t: term] :=
- Cases t of
- (Topp x) => (Tmult x (Tint `-1`))
+Definition Topp_one (t:term) :=
+ match t with
+ | Topp x => Tmult x (Tint (-1))
| _ => t
end.
-Theorem Topp_one_stable : (term_stable Topp_one).
+Theorem Topp_one_stable : term_stable Topp_one.
-(ProveStable Topp_one Zopp_one).
-Save.
+prove_stable Topp_one Zopp_eq_mult_neg_1.
+Qed.
-Definition Tmult_plus_distr [t: term] :=
- Cases t of
- (Tmult (Tplus n m) p) => (Tplus (Tmult n p) (Tmult m p))
+Definition Tmult_plus_distr (t:term) :=
+ match t with
+ | Tmult (Tplus n m) p => Tplus (Tmult n p) (Tmult m p)
| _ => t
end.
-Theorem Tmult_plus_distr_stable : (term_stable Tmult_plus_distr).
+Theorem Tmult_plus_distr_stable : term_stable Tmult_plus_distr.
-(ProveStable Tmult_plus_distr Zmult_plus_distr_l).
-Save.
+prove_stable Tmult_plus_distr Zmult_plus_distr_l.
+Qed.
-Definition Tmult_opp_left [t: term] :=
- Cases t of
- (Tmult (Topp x) (Tint y)) => (Tmult x (Tint (Zopp y)))
+Definition Tmult_opp_left (t:term) :=
+ match t with
+ | Tmult (Topp x) (Tint y) => Tmult x (Tint (- y))
| _ => t
end.
-Theorem Tmult_opp_left_stable : (term_stable Tmult_opp_left).
+Theorem Tmult_opp_left_stable : term_stable Tmult_opp_left.
-(ProveStable Tmult_opp_left Zmult_Zopp_left).
-Save.
+prove_stable Tmult_opp_left Zmult_opp_comm.
+Qed.
-Definition Tmult_assoc_reduced [t: term] :=
- Cases t of
- (Tmult (Tmult n (Tint m)) (Tint p)) => (Tmult n (Tint (Zmult m p)))
+Definition Tmult_assoc_reduced (t:term) :=
+ match t with
+ | Tmult (Tmult n (Tint m)) (Tint p) => Tmult n (Tint (m * p))
| _ => t
end.
-Theorem Tmult_assoc_reduced_stable : (term_stable Tmult_assoc_reduced).
+Theorem Tmult_assoc_reduced_stable : term_stable Tmult_assoc_reduced.
-(ProveStable Tmult_assoc_reduced Zmult_assoc_r).
-Save.
+prove_stable Tmult_assoc_reduced Zmult_assoc_reverse.
+Qed.
-Definition Tred_factor0 [t: term] := (Tmult t (Tint `1`)).
+Definition Tred_factor0 (t:term) := Tmult t (Tint 1).
-Theorem Tred_factor0_stable : (term_stable Tred_factor0).
+Theorem Tred_factor0_stable : term_stable Tred_factor0.
-(ProveStable Tred_factor0 Zred_factor0).
-Save.
+prove_stable Tred_factor0 Zred_factor0.
+Qed.
-Definition Tred_factor1 [t: term] :=
- Cases t of
- (Tplus x y) =>
- Case (eq_term x y) of
- (Tmult x (Tint `2`))
- t
- end
+Definition Tred_factor1 (t:term) :=
+ match t with
+ | Tplus x y =>
+ match eq_term x y with
+ | true => Tmult x (Tint 2)
+ | false => t
+ end
| _ => t
end.
-Theorem Tred_factor1_stable : (term_stable Tred_factor1).
+Theorem Tred_factor1_stable : term_stable Tred_factor1.
-(ProveStable Tred_factor1 Zred_factor1).
-Save.
+prove_stable Tred_factor1 Zred_factor1.
+Qed.
-Definition Tred_factor2 [t: term] :=
- Cases t of
- (Tplus x (Tmult y (Tint k))) =>
- Case (eq_term x y) of
- (Tmult x (Tint (Zplus `1` k)))
- t
- end
+Definition Tred_factor2 (t:term) :=
+ match t with
+ | Tplus x (Tmult y (Tint k)) =>
+ match eq_term x y with
+ | true => Tmult x (Tint (1 + k))
+ | false => t
+ end
| _ => t
end.
@@ -987,61 +1055,61 @@ Definition Tred_factor2 [t: term] :=
Opaque Zplus.
-Theorem Tred_factor2_stable : (term_stable Tred_factor2).
-(ProveStable Tred_factor2 Zred_factor2).
-Save.
-
-Definition Tred_factor3 [t: term] :=
- Cases t of
- (Tplus (Tmult x (Tint k)) y) =>
- Case (eq_term x y) of
- (Tmult x (Tint `1+k`))
- t
- end
+Theorem Tred_factor2_stable : term_stable Tred_factor2.
+prove_stable Tred_factor2 Zred_factor2.
+Qed.
+
+Definition Tred_factor3 (t:term) :=
+ match t with
+ | Tplus (Tmult x (Tint k)) y =>
+ match eq_term x y with
+ | true => Tmult x (Tint (1 + k))
+ | false => t
+ end
| _ => t
end.
-Theorem Tred_factor3_stable : (term_stable Tred_factor3).
+Theorem Tred_factor3_stable : term_stable Tred_factor3.
-(ProveStable Tred_factor3 Zred_factor3).
-Save.
+prove_stable Tred_factor3 Zred_factor3.
+Qed.
-Definition Tred_factor4 [t: term] :=
- Cases t of
- (Tplus (Tmult x (Tint k1)) (Tmult y (Tint k2))) =>
- Case (eq_term x y) of
- (Tmult x (Tint `k1+k2`))
- t
- end
+Definition Tred_factor4 (t:term) :=
+ match t with
+ | Tplus (Tmult x (Tint k1)) (Tmult y (Tint k2)) =>
+ match eq_term x y with
+ | true => Tmult x (Tint (k1 + k2))
+ | false => t
+ end
| _ => t
end.
-Theorem Tred_factor4_stable : (term_stable Tred_factor4).
+Theorem Tred_factor4_stable : term_stable Tred_factor4.
-(ProveStable Tred_factor4 Zred_factor4).
-Save.
+prove_stable Tred_factor4 Zred_factor4.
+Qed.
-Definition Tred_factor6 [t: term] := (Tplus t (Tint `0`)).
+Definition Tred_factor6 (t:term) := Tplus t (Tint 0).
-Theorem Tred_factor6_stable : (term_stable Tred_factor6).
+Theorem Tred_factor6_stable : term_stable Tred_factor6.
-(ProveStable Tred_factor6 Zred_factor6).
-Save.
+prove_stable Tred_factor6 Zred_factor6.
+Qed.
Transparent Zplus.
-Definition Tminus_def [t:term] :=
- Cases t of
- (Tminus x y) => (Tplus x (Topp y))
+Definition Tminus_def (t:term) :=
+ match t with
+ | Tminus x y => Tplus x (Topp y)
| _ => t
end.
-Theorem Tminus_def_stable : (term_stable Tminus_def).
+Theorem Tminus_def_stable : term_stable Tminus_def.
(* Le théorème ne sert à rien. Le but est prouvé avant. *)
-(ProveStable Tminus_def False).
-Save.
+prove_stable Tminus_def False.
+Qed.
(* \subsection{Fonctions de réécriture complexes} *)
@@ -1050,56 +1118,57 @@ Save.
suffit pour cela d'échanger le constructeur [Tint] avec les opérateurs
réifiés. La réduction est ``gratuite''. *)
-Fixpoint reduce [t:term] : term :=
- Cases t of
- (Tplus x y) =>
- Cases (reduce x) of
- (Tint x') =>
- Cases (reduce y) of
- (Tint y') => (Tint (Zplus x' y'))
- | y' => (Tplus (Tint x') y')
- end
- | x' => (Tplus x' (reduce y))
- end
- | (Tmult x y) =>
- Cases (reduce x) of
- (Tint x') =>
- Cases (reduce y) of
- (Tint y') => (Tint (Zmult x' y'))
- | y' => (Tmult (Tint x') y')
- end
- | x' => (Tmult x' (reduce y))
- end
- | (Tminus x y) =>
- Cases (reduce x) of
- (Tint x') =>
- Cases (reduce y) of
- (Tint y') => (Tint (Zminus x' y'))
- | y' => (Tminus (Tint x') y')
- end
- | x' => (Tminus x' (reduce y))
- end
- | (Topp x) =>
- Cases (reduce x) of
- (Tint x') => (Tint (Zopp x'))
- | x' => (Topp x')
- end
+Fixpoint reduce (t:term) : term :=
+ match t with
+ | Tplus x y =>
+ match reduce x with
+ | Tint x' =>
+ match reduce y with
+ | Tint y' => Tint (x' + y')
+ | y' => Tplus (Tint x') y'
+ end
+ | x' => Tplus x' (reduce y)
+ end
+ | Tmult x y =>
+ match reduce x with
+ | Tint x' =>
+ match reduce y with
+ | Tint y' => Tint (x' * y')
+ | y' => Tmult (Tint x') y'
+ end
+ | x' => Tmult x' (reduce y)
+ end
+ | Tminus x y =>
+ match reduce x with
+ | Tint x' =>
+ match reduce y with
+ | Tint y' => Tint (x' - y')
+ | y' => Tminus (Tint x') y'
+ end
+ | x' => Tminus x' (reduce y)
+ end
+ | Topp x =>
+ match reduce x with
+ | Tint x' => Tint (- x')
+ | x' => Topp x'
+ end
| _ => t
end.
-Theorem reduce_stable : (term_stable reduce).
-
-Unfold term_stable; Intros e t; Elim t; Auto;
-Try (Intros t0 H0 t1 H1; Simpl; Rewrite H0; Rewrite H1; (
- Case (reduce t0); [
- Intro z0; Case (reduce t1); Intros; Auto
- | Intros; Auto
- | Intros; Auto
- | Intros; Auto
- | Intros; Auto
- | Intros; Auto ]));
-Intros t0 H0; Simpl; Rewrite H0; Case (reduce t0); Intros; Auto.
-Save.
+Theorem reduce_stable : term_stable reduce.
+
+unfold term_stable in |- *; intros e t; elim t; auto;
+ try
+ (intros t0 H0 t1 H1; simpl in |- *; rewrite H0; rewrite H1;
+ (case (reduce t0);
+ [ intro z0; case (reduce t1); intros; auto
+ | intros; auto
+ | intros; auto
+ | intros; auto
+ | intros; auto
+ | intros; auto ])); intros t0 H0; simpl in |- *;
+ rewrite H0; case (reduce t0); intros; auto.
+Qed.
(* \subsubsection{Fusions}
\paragraph{Fusion de deux équations} *)
@@ -1108,407 +1177,413 @@ Save.
le terme en une équation normalisée. C'est une version très simplifiée
du moteur de réécriture [rewrite]. *)
-Fixpoint fusion [trace : (list t_fusion)] : term -> term := [t: term]
- Cases trace of
- nil => (reduce t)
- | (cons step trace') =>
- Cases step of
- | F_equal =>
- (apply_right (fusion trace') (T_OMEGA10 t))
- | F_cancel =>
- (fusion trace' (Tred_factor5 (T_OMEGA10 t)))
- | F_left =>
- (apply_right (fusion trace') (T_OMEGA11 t))
- | F_right =>
- (apply_right (fusion trace') (T_OMEGA12 t))
- end
+Fixpoint fusion (trace:list t_fusion) (t:term) {struct trace} : term :=
+ match trace with
+ | nil => reduce t
+ | step :: trace' =>
+ match step with
+ | F_equal => apply_right (fusion trace') (T_OMEGA10 t)
+ | F_cancel => fusion trace' (Tred_factor5 (T_OMEGA10 t))
+ | F_left => apply_right (fusion trace') (T_OMEGA11 t)
+ | F_right => apply_right (fusion trace') (T_OMEGA12 t)
+ end
end.
-Theorem fusion_stable : (t : (list t_fusion)) (term_stable (fusion t)).
-
-Induction t; Simpl; [
- Exact reduce_stable
-| Intros step l H; Case step; [
- Apply compose_term_stable;
- [ Apply apply_right_stable; Assumption | Exact T_OMEGA10_stable ]
- | Unfold term_stable; Intros e t1; Rewrite T_OMEGA10_stable;
- Rewrite Tred_factor5_stable; Apply H
- | Apply compose_term_stable;
- [ Apply apply_right_stable; Assumption | Exact T_OMEGA11_stable ]
- | Apply compose_term_stable;
- [ Apply apply_right_stable; Assumption | Exact T_OMEGA12_stable ]]].
-
-Save.
+Theorem fusion_stable : forall t:list t_fusion, term_stable (fusion t).
+
+simple induction t; simpl in |- *;
+ [ exact reduce_stable
+ | intros step l H; case step;
+ [ apply compose_term_stable;
+ [ apply apply_right_stable; assumption | exact T_OMEGA10_stable ]
+ | unfold term_stable in |- *; intros e t1; rewrite T_OMEGA10_stable;
+ rewrite Tred_factor5_stable; apply H
+ | apply compose_term_stable;
+ [ apply apply_right_stable; assumption | exact T_OMEGA11_stable ]
+ | apply compose_term_stable;
+ [ apply apply_right_stable; assumption | exact T_OMEGA12_stable ] ] ].
+
+Qed.
(* \paragraph{Fusion de deux équations dont une sans coefficient} *)
-Definition fusion_right [trace : (list t_fusion)] : term -> term := [t: term]
- Cases trace of
- nil => (reduce t) (* Il faut mettre un compute *)
- | (cons step trace') =>
- Cases step of
- | F_equal =>
- (apply_right (fusion trace') (T_OMEGA15 t))
- | F_cancel =>
- (fusion trace' (Tred_factor5 (T_OMEGA15 t)))
- | F_left =>
- (apply_right (fusion trace') (Tplus_assoc_r t))
- | F_right =>
- (apply_right (fusion trace') (T_OMEGA12 t))
- end
+Definition fusion_right (trace:list t_fusion) (t:term) : term :=
+ match trace with
+ | nil => reduce t (* Il faut mettre un compute *)
+ | step :: trace' =>
+ match step with
+ | F_equal => apply_right (fusion trace') (T_OMEGA15 t)
+ | F_cancel => fusion trace' (Tred_factor5 (T_OMEGA15 t))
+ | F_left => apply_right (fusion trace') (Tplus_assoc_r t)
+ | F_right => apply_right (fusion trace') (T_OMEGA12 t)
+ end
end.
(* \paragraph{Fusion avec anihilation} *)
(* Normalement le résultat est une constante *)
-Fixpoint fusion_cancel [trace:nat] : term -> term := [t:term]
- Cases trace of
- O => (reduce t)
- | (S trace') => (fusion_cancel trace' (T_OMEGA13 t))
+Fixpoint fusion_cancel (trace:nat) (t:term) {struct trace} : term :=
+ match trace with
+ | O => reduce t
+ | S trace' => fusion_cancel trace' (T_OMEGA13 t)
end.
-Theorem fusion_cancel_stable : (t:nat) (term_stable (fusion_cancel t)).
+Theorem fusion_cancel_stable : forall t:nat, term_stable (fusion_cancel t).
-Unfold term_stable fusion_cancel; Intros trace e; Elim trace; [
- Exact (reduce_stable e)
-| Intros n H t; Elim H; Exact (T_OMEGA13_stable e t) ].
-Save.
+unfold term_stable, fusion_cancel in |- *; intros trace e; elim trace;
+ [ exact (reduce_stable e)
+ | intros n H t; elim H; exact (T_OMEGA13_stable e t) ].
+Qed.
(* \subsubsection{Opérations afines sur une équation} *)
(* \paragraph{Multiplication scalaire et somme d'une constante} *)
-Fixpoint scalar_norm_add [trace:nat] : term -> term := [t: term]
- Cases trace of
- O => (reduce t)
- | (S trace') => (apply_right (scalar_norm_add trace') (T_OMEGA11 t))
+Fixpoint scalar_norm_add (trace:nat) (t:term) {struct trace} : term :=
+ match trace with
+ | O => reduce t
+ | S trace' => apply_right (scalar_norm_add trace') (T_OMEGA11 t)
end.
-Theorem scalar_norm_add_stable : (t:nat) (term_stable (scalar_norm_add t)).
+Theorem scalar_norm_add_stable :
+ forall t:nat, term_stable (scalar_norm_add t).
-Unfold term_stable scalar_norm_add; Intros trace; Elim trace; [
- Exact reduce_stable
-| Intros n H e t; Elim apply_right_stable;
- [ Exact (T_OMEGA11_stable e t) | Exact H ]].
-Save.
+unfold term_stable, scalar_norm_add in |- *; intros trace; elim trace;
+ [ exact reduce_stable
+ | intros n H e t; elim apply_right_stable;
+ [ exact (T_OMEGA11_stable e t) | exact H ] ].
+Qed.
(* \paragraph{Multiplication scalaire} *)
-Fixpoint scalar_norm [trace:nat] : term -> term := [t: term]
- Cases trace of
- O => (reduce t)
- | (S trace') => (apply_right (scalar_norm trace') (T_OMEGA16 t))
+Fixpoint scalar_norm (trace:nat) (t:term) {struct trace} : term :=
+ match trace with
+ | O => reduce t
+ | S trace' => apply_right (scalar_norm trace') (T_OMEGA16 t)
end.
-Theorem scalar_norm_stable : (t:nat) (term_stable (scalar_norm t)).
+Theorem scalar_norm_stable : forall t:nat, term_stable (scalar_norm t).
-Unfold term_stable scalar_norm; Intros trace; Elim trace; [
- Exact reduce_stable
-| Intros n H e t; Elim apply_right_stable;
- [ Exact (T_OMEGA16_stable e t) | Exact H ]].
-Save.
+unfold term_stable, scalar_norm in |- *; intros trace; elim trace;
+ [ exact reduce_stable
+ | intros n H e t; elim apply_right_stable;
+ [ exact (T_OMEGA16_stable e t) | exact H ] ].
+Qed.
(* \paragraph{Somme d'une constante} *)
-Fixpoint add_norm [trace:nat] : term -> term := [t: term]
- Cases trace of
- O => (reduce t)
- | (S trace') => (apply_right (add_norm trace') (Tplus_assoc_r t))
+Fixpoint add_norm (trace:nat) (t:term) {struct trace} : term :=
+ match trace with
+ | O => reduce t
+ | S trace' => apply_right (add_norm trace') (Tplus_assoc_r t)
end.
-Theorem add_norm_stable : (t:nat) (term_stable (add_norm t)).
+Theorem add_norm_stable : forall t:nat, term_stable (add_norm t).
-Unfold term_stable add_norm; Intros trace; Elim trace; [
- Exact reduce_stable
-| Intros n H e t; Elim apply_right_stable;
- [ Exact (Tplus_assoc_r_stable e t) | Exact H ]].
-Save.
+unfold term_stable, add_norm in |- *; intros trace; elim trace;
+ [ exact reduce_stable
+ | intros n H e t; elim apply_right_stable;
+ [ exact (Tplus_assoc_r_stable e t) | exact H ] ].
+Qed.
(* \subsection{La fonction de normalisation des termes (moteur de réécriture)} *)
-Inductive step : Set :=
- | C_DO_BOTH : step -> step -> step
- | C_LEFT : step -> step
- | C_RIGHT : step -> step
- | C_SEQ : step -> step -> step
- | C_NOP : step
- | C_OPP_PLUS : step
- | C_OPP_OPP : step
- | C_OPP_MULT_R : step
- | C_OPP_ONE : step
- | C_REDUCE : step
- | C_MULT_PLUS_DISTR : step
- | C_MULT_OPP_LEFT : step
- | C_MULT_ASSOC_R : step
- | C_PLUS_ASSOC_R : step
- | C_PLUS_ASSOC_L : step
- | C_PLUS_PERMUTE : step
- | C_PLUS_SYM : step
- | C_RED0 : step
- | C_RED1 : step
- | C_RED2 : step
- | C_RED3 : step
- | C_RED4 : step
- | C_RED5 : step
- | C_RED6 : step
- | C_MULT_ASSOC_REDUCED : step
- | C_MINUS :step
- | C_MULT_SYM : step
-.
-
-Fixpoint rewrite [s: step] : term -> term :=
- Cases s of
- | (C_DO_BOTH s1 s2) => (apply_both (rewrite s1) (rewrite s2))
- | (C_LEFT s) => (apply_left (rewrite s))
- | (C_RIGHT s) => (apply_right (rewrite s))
- | (C_SEQ s1 s2) => [t: term] (rewrite s2 (rewrite s1 t))
- | C_NOP => [t:term] t
- | C_OPP_PLUS => Topp_plus
- | C_OPP_OPP => Topp_opp
- | C_OPP_MULT_R => Topp_mult_r
- | C_OPP_ONE => Topp_one
- | C_REDUCE => reduce
- | C_MULT_PLUS_DISTR => Tmult_plus_distr
- | C_MULT_OPP_LEFT => Tmult_opp_left
- | C_MULT_ASSOC_R => Tmult_assoc_r
- | C_PLUS_ASSOC_R => Tplus_assoc_r
- | C_PLUS_ASSOC_L => Tplus_assoc_l
- | C_PLUS_PERMUTE => Tplus_permute
- | C_PLUS_SYM => Tplus_sym
- | C_RED0 => Tred_factor0
- | C_RED1 => Tred_factor1
- | C_RED2 => Tred_factor2
- | C_RED3 => Tred_factor3
- | C_RED4 => Tred_factor4
- | C_RED5 => Tred_factor5
- | C_RED6 => Tred_factor6
- | C_MULT_ASSOC_REDUCED => Tmult_assoc_reduced
- | C_MINUS => Tminus_def
- | C_MULT_SYM => Tmult_sym
+Inductive step : Set :=
+ | C_DO_BOTH : step -> step -> step
+ | C_LEFT : step -> step
+ | C_RIGHT : step -> step
+ | C_SEQ : step -> step -> step
+ | C_NOP : step
+ | C_OPP_PLUS : step
+ | C_OPP_OPP : step
+ | C_OPP_MULT_R : step
+ | C_OPP_ONE : step
+ | C_REDUCE : step
+ | C_MULT_PLUS_DISTR : step
+ | C_MULT_OPP_LEFT : step
+ | C_MULT_ASSOC_R : step
+ | C_PLUS_ASSOC_R : step
+ | C_PLUS_ASSOC_L : step
+ | C_PLUS_PERMUTE : step
+ | C_PLUS_SYM : step
+ | C_RED0 : step
+ | C_RED1 : step
+ | C_RED2 : step
+ | C_RED3 : step
+ | C_RED4 : step
+ | C_RED5 : step
+ | C_RED6 : step
+ | C_MULT_ASSOC_REDUCED : step
+ | C_MINUS : step
+ | C_MULT_SYM : step.
+
+Fixpoint rewrite (s:step) : term -> term :=
+ match s with
+ | C_DO_BOTH s1 s2 => apply_both (rewrite s1) (rewrite s2)
+ | C_LEFT s => apply_left (rewrite s)
+ | C_RIGHT s => apply_right (rewrite s)
+ | C_SEQ s1 s2 => fun t:term => rewrite s2 (rewrite s1 t)
+ | C_NOP => fun t:term => t
+ | C_OPP_PLUS => Topp_plus
+ | C_OPP_OPP => Topp_opp
+ | C_OPP_MULT_R => Topp_mult_r
+ | C_OPP_ONE => Topp_one
+ | C_REDUCE => reduce
+ | C_MULT_PLUS_DISTR => Tmult_plus_distr
+ | C_MULT_OPP_LEFT => Tmult_opp_left
+ | C_MULT_ASSOC_R => Tmult_assoc_r
+ | C_PLUS_ASSOC_R => Tplus_assoc_r
+ | C_PLUS_ASSOC_L => Tplus_assoc_l
+ | C_PLUS_PERMUTE => Tplus_permute
+ | C_PLUS_SYM => Tplus_sym
+ | C_RED0 => Tred_factor0
+ | C_RED1 => Tred_factor1
+ | C_RED2 => Tred_factor2
+ | C_RED3 => Tred_factor3
+ | C_RED4 => Tred_factor4
+ | C_RED5 => Tred_factor5
+ | C_RED6 => Tred_factor6
+ | C_MULT_ASSOC_REDUCED => Tmult_assoc_reduced
+ | C_MINUS => Tminus_def
+ | C_MULT_SYM => Tmult_sym
end.
-Theorem rewrite_stable : (s:step) (term_stable (rewrite s)).
-
-Induction s; Simpl; [
- Intros; Apply apply_both_stable; Auto
-| Intros; Apply apply_left_stable; Auto
-| Intros; Apply apply_right_stable; Auto
-| Unfold term_stable; Intros; Elim H0; Apply H
-| Unfold term_stable; Auto
-| Exact Topp_plus_stable
-| Exact Topp_opp_stable
-| Exact Topp_mult_r_stable
-| Exact Topp_one_stable
-| Exact reduce_stable
-| Exact Tmult_plus_distr_stable
-| Exact Tmult_opp_left_stable
-| Exact Tmult_assoc_r_stable
-| Exact Tplus_assoc_r_stable
-| Exact Tplus_assoc_l_stable
-| Exact Tplus_permute_stable
-| Exact Tplus_sym_stable
-| Exact Tred_factor0_stable
-| Exact Tred_factor1_stable
-| Exact Tred_factor2_stable
-| Exact Tred_factor3_stable
-| Exact Tred_factor4_stable
-| Exact Tred_factor5_stable
-| Exact Tred_factor6_stable
-| Exact Tmult_assoc_reduced_stable
-| Exact Tminus_def_stable
-| Exact Tmult_sym_stable ].
-Save.
+Theorem rewrite_stable : forall s:step, term_stable (rewrite s).
+
+simple induction s; simpl in |- *;
+ [ intros; apply apply_both_stable; auto
+ | intros; apply apply_left_stable; auto
+ | intros; apply apply_right_stable; auto
+ | unfold term_stable in |- *; intros; elim H0; apply H
+ | unfold term_stable in |- *; auto
+ | exact Topp_plus_stable
+ | exact Topp_opp_stable
+ | exact Topp_mult_r_stable
+ | exact Topp_one_stable
+ | exact reduce_stable
+ | exact Tmult_plus_distr_stable
+ | exact Tmult_opp_left_stable
+ | exact Tmult_assoc_r_stable
+ | exact Tplus_assoc_r_stable
+ | exact Tplus_assoc_l_stable
+ | exact Tplus_permute_stable
+ | exact Tplus_sym_stable
+ | exact Tred_factor0_stable
+ | exact Tred_factor1_stable
+ | exact Tred_factor2_stable
+ | exact Tred_factor3_stable
+ | exact Tred_factor4_stable
+ | exact Tred_factor5_stable
+ | exact Tred_factor6_stable
+ | exact Tmult_assoc_reduced_stable
+ | exact Tminus_def_stable
+ | exact Tmult_sym_stable ].
+Qed.
(* \subsection{tactiques de résolution d'un but omega normalisé}
Trace de la procédure
\subsubsection{Tactiques générant une contradiction}
\paragraph{[O_CONSTANT_NOT_NUL]} *)
-Definition constant_not_nul [i:nat; h: hyps] :=
- Cases (nth_hyps i h) of
- (EqTerm (Tint ZERO) (Tint n)) =>
- Case (eq_Z n ZERO) of
- h
- absurd
- end
- | _ => h
+Definition constant_not_nul (i:nat) (h:hyps) :=
+ match nth_hyps i h with
+ | EqTerm (Tint Z0) (Tint n) =>
+ match eq_Z n 0 with
+ | true => h
+ | false => absurd
+ end
+ | _ => h
end.
-Theorem constant_not_nul_valid :
- (i:nat) (valid_hyps (constant_not_nul i)).
+Theorem constant_not_nul_valid :
+ forall i:nat, valid_hyps (constant_not_nul i).
-Unfold valid_hyps constant_not_nul; Intros;
-Generalize (nth_valid e i lp); Simplify; Simpl; (Elim_eq_Z z0 ZERO); Auto;
-Simpl; Intros H1 H2; Elim H1; Symmetry; Auto.
-Save.
+unfold valid_hyps, constant_not_nul in |- *; intros;
+ generalize (nth_valid e i lp); Simplify; simpl in |- *;
+ elim_eq_Z z0 0%Z; auto; simpl in |- *; intros H1 H2;
+ elim H1; symmetry in |- *; auto.
+Qed.
(* \paragraph{[O_CONSTANT_NEG]} *)
-Definition constant_neg [i:nat; h: hyps] :=
- Cases (nth_hyps i h) of
- (LeqTerm (Tint ZERO) (Tint (NEG n))) => absurd
- | _ => h
- end.
+Definition constant_neg (i:nat) (h:hyps) :=
+ match nth_hyps i h with
+ | LeqTerm (Tint Z0) (Tint (Zneg n)) => absurd
+ | _ => h
+ end.
-Theorem constant_neg_valid : (i:nat) (valid_hyps (constant_neg i)).
+Theorem constant_neg_valid : forall i:nat, valid_hyps (constant_neg i).
-Unfold valid_hyps constant_neg; Intros;
-Generalize (nth_valid e i lp); Simplify; Simpl; Unfold Zle; Simpl;
-Intros H1; Elim H1; [ Assumption | Trivial ].
-Save.
+unfold valid_hyps, constant_neg in |- *; intros;
+ generalize (nth_valid e i lp); Simplify; simpl in |- *;
+ unfold Zle in |- *; simpl in |- *; intros H1; elim H1;
+ [ assumption | trivial ].
+Qed.
(* \paragraph{[NOT_EXACT_DIVIDE]} *)
-Definition not_exact_divide [k1,k2:Z; body:term; t:nat; i : nat; l:hyps] :=
- Cases (nth_hyps i l) of
- (EqTerm (Tint ZERO) b) =>
- Case (eq_term
- (scalar_norm_add t (Tplus (Tmult body (Tint k1)) (Tint k2))) b) of
- Cases (Zcompare k2 ZERO) of
- SUPERIEUR =>
- Cases (Zcompare k1 k2) of
- SUPERIEUR => absurd
- | _ => l
- end
- | _ => l
- end
- l
- end
- | _ => l
- end.
+Definition not_exact_divide (k1 k2:Z) (body:term) (t i:nat)
+ (l:hyps) :=
+ match nth_hyps i l with
+ | EqTerm (Tint Z0) b =>
+ match
+ eq_term (scalar_norm_add t (Tplus (Tmult body (Tint k1)) (Tint k2)))
+ b
+ with
+ | true =>
+ match (k2 ?= 0)%Z with
+ | Datatypes.Gt =>
+ match (k1 ?= k2)%Z with
+ | Datatypes.Gt => absurd
+ | _ => l
+ end
+ | _ => l
+ end
+ | false => l
+ end
+ | _ => l
+ end.
-Theorem not_exact_divide_valid : (k1,k2:Z; body:term; t:nat; i:nat)
- (valid_hyps (not_exact_divide k1 k2 body t i)).
+Theorem not_exact_divide_valid :
+ forall (k1 k2:Z) (body:term) (t i:nat),
+ valid_hyps (not_exact_divide k1 k2 body t i).
-Unfold valid_hyps not_exact_divide; Intros; Generalize (nth_valid e i lp);
-Simplify;
-(Elim_eq_term '(scalar_norm_add t (Tplus (Tmult body (Tint k1)) (Tint k2)))
- 't1); Auto;
-Simplify;
-Intro H2; Elim H2; Simpl; Elim (scalar_norm_add_stable t e); Simpl;
-Intro H4; Absurd `(interp_term e body)*k1+k2 = 0`; [
- Apply OMEGA4; Assumption | Symmetry; Auto ].
+unfold valid_hyps, not_exact_divide in |- *; intros;
+ generalize (nth_valid e i lp); Simplify;
+ elim_eq_term (scalar_norm_add t (Tplus (Tmult body (Tint k1)) (Tint k2))) t1;
+ auto; Simplify; intro H2; elim H2; simpl in |- *;
+ elim (scalar_norm_add_stable t e); simpl in |- *;
+ intro H4; absurd ((interp_term e body * k1 + k2)%Z = 0%Z);
+ [ apply OMEGA4; assumption | symmetry in |- *; auto ].
-Save.
+Qed.
(* \paragraph{[O_CONTRADICTION]} *)
-Definition contradiction [t: nat; i,j:nat;l:hyps] :=
- Cases (nth_hyps i l) of
- (LeqTerm (Tint ZERO) b1) =>
- Cases (nth_hyps j l) of
- (LeqTerm (Tint ZERO) b2) =>
- Cases (fusion_cancel t (Tplus b1 b2)) of
- (Tint k) =>
- Cases (Zcompare ZERO k) of
- SUPERIEUR => absurd
- | _ => l
- end
- | _ => l
- end
- | _ => l
- end
- | _ => l
+Definition contradiction (t i j:nat) (l:hyps) :=
+ match nth_hyps i l with
+ | LeqTerm (Tint Z0) b1 =>
+ match nth_hyps j l with
+ | LeqTerm (Tint Z0) b2 =>
+ match fusion_cancel t (Tplus b1 b2) with
+ | Tint k =>
+ match (0 ?= k)%Z with
+ | Datatypes.Gt => absurd
+ | _ => l
+ end
+ | _ => l
+ end
+ | _ => l
+ end
+ | _ => l
end.
-Theorem contradiction_valid : (t,i,j: nat) (valid_hyps (contradiction t i j)).
-
-Unfold valid_hyps contradiction; Intros t i j e l H;
-Generalize (nth_valid ? i ? H); Generalize (nth_valid ? j ? H);
-Case (nth_hyps i l); Auto; Intros t1 t2; Case t1; Auto; Intros z; Case z; Auto;
-Case (nth_hyps j l); Auto; Intros t3 t4; Case t3; Auto; Intros z'; Case z';
-Auto; Simpl; Intros H1 H2;
-Generalize (refl_equal Z (interp_term e (fusion_cancel t (Tplus t2 t4))));
-Pattern 2 3 (fusion_cancel t (Tplus t2 t4));
-Case (fusion_cancel t (Tplus t2 t4));
-Simpl; Auto; Intro k; Elim (fusion_cancel_stable t);
-Simpl; Intro E; Generalize (OMEGA2 ? ? H2 H1); Rewrite E; Case k;
-Auto;Unfold Zle; Simpl; Intros p H3; Elim H3; Auto.
-
-Save.
+Theorem contradiction_valid :
+ forall t i j:nat, valid_hyps (contradiction t i j).
+
+unfold valid_hyps, contradiction in |- *; intros t i j e l H;
+ generalize (nth_valid _ i _ H); generalize (nth_valid _ j _ H);
+ case (nth_hyps i l); auto; intros t1 t2; case t1;
+ auto; intros z; case z; auto; case (nth_hyps j l);
+ auto; intros t3 t4; case t3; auto; intros z'; case z';
+ auto; simpl in |- *; intros H1 H2;
+ generalize (refl_equal (interp_term e (fusion_cancel t (Tplus t2 t4))));
+ pattern (fusion_cancel t (Tplus t2 t4)) at 2 3 in |- *;
+ case (fusion_cancel t (Tplus t2 t4)); simpl in |- *;
+ auto; intro k; elim (fusion_cancel_stable t); simpl in |- *;
+ intro E; generalize (OMEGA2 _ _ H2 H1); rewrite E;
+ case k; auto; unfold Zle in |- *; simpl in |- *; intros p H3;
+ elim H3; auto.
+
+Qed.
(* \paragraph{[O_NEGATE_CONTRADICT]} *)
-Definition negate_contradict [i1,i2:nat; h:hyps]:=
- Cases (nth_hyps i1 h) of
- (EqTerm (Tint ZERO) b1) =>
- Cases (nth_hyps i2 h) of
- (NeqTerm (Tint ZERO) b2) =>
- Cases (eq_term b1 b2) of
- true => absurd
- | false => h
- end
- | _ => h
- end
- | (NeqTerm (Tint ZERO) b1) =>
- Cases (nth_hyps i2 h) of
- (EqTerm (Tint ZERO) b2) =>
- Cases (eq_term b1 b2) of
- true => absurd
- | false => h
- end
- | _ => h
- end
+Definition negate_contradict (i1 i2:nat) (h:hyps) :=
+ match nth_hyps i1 h with
+ | EqTerm (Tint Z0) b1 =>
+ match nth_hyps i2 h with
+ | NeqTerm (Tint Z0) b2 =>
+ match eq_term b1 b2 with
+ | true => absurd
+ | false => h
+ end
+ | _ => h
+ end
+ | NeqTerm (Tint Z0) b1 =>
+ match nth_hyps i2 h with
+ | EqTerm (Tint Z0) b2 =>
+ match eq_term b1 b2 with
+ | true => absurd
+ | false => h
+ end
+ | _ => h
+ end
| _ => h
end.
-Definition negate_contradict_inv [t:nat; i1,i2:nat; h:hyps]:=
- Cases (nth_hyps i1 h) of
- (EqTerm (Tint ZERO) b1) =>
- Cases (nth_hyps i2 h) of
- (NeqTerm (Tint ZERO) b2) =>
- Cases (eq_term b1 (scalar_norm t (Tmult b2 (Tint `-1`)))) of
- true => absurd
- | false => h
- end
- | _ => h
- end
- | (NeqTerm (Tint ZERO) b1) =>
- Cases (nth_hyps i2 h) of
- (EqTerm (Tint ZERO) b2) =>
- Cases (eq_term b1 (scalar_norm t (Tmult b2 (Tint `-1`)))) of
- true => absurd
- | false => h
- end
- | _ => h
- end
+Definition negate_contradict_inv (t i1 i2:nat) (h:hyps) :=
+ match nth_hyps i1 h with
+ | EqTerm (Tint Z0) b1 =>
+ match nth_hyps i2 h with
+ | NeqTerm (Tint Z0) b2 =>
+ match eq_term b1 (scalar_norm t (Tmult b2 (Tint (-1)))) with
+ | true => absurd
+ | false => h
+ end
+ | _ => h
+ end
+ | NeqTerm (Tint Z0) b1 =>
+ match nth_hyps i2 h with
+ | EqTerm (Tint Z0) b2 =>
+ match eq_term b1 (scalar_norm t (Tmult b2 (Tint (-1)))) with
+ | true => absurd
+ | false => h
+ end
+ | _ => h
+ end
| _ => h
end.
Theorem negate_contradict_valid :
- (i,j:nat) (valid_hyps (negate_contradict i j)).
+ forall i j:nat, valid_hyps (negate_contradict i j).
-Unfold valid_hyps negate_contradict; Intros i j e l H;
-Generalize (nth_valid ? i ? H); Generalize (nth_valid ? j ? H);
-Case (nth_hyps i l); Auto; Intros t1 t2; Case t1; Auto; Intros z; Case z; Auto;
-Case (nth_hyps j l); Auto; Intros t3 t4; Case t3; Auto; Intros z'; Case z';
-Auto; Simpl; Intros H1 H2; [
- (Elim_eq_term t2 t4); Intro H3; [ Elim H1; Elim H3; Assumption | Assumption ]
-| (Elim_eq_term t2 t4); Intro H3;
- [ Elim H2; Rewrite H3; Assumption | Assumption ]].
+unfold valid_hyps, negate_contradict in |- *; intros i j e l H;
+ generalize (nth_valid _ i _ H); generalize (nth_valid _ j _ H);
+ case (nth_hyps i l); auto; intros t1 t2; case t1;
+ auto; intros z; case z; auto; case (nth_hyps j l);
+ auto; intros t3 t4; case t3; auto; intros z'; case z';
+ auto; simpl in |- *; intros H1 H2;
+ [ elim_eq_term t2 t4; intro H3;
+ [ elim H1; elim H3; assumption | assumption ]
+ | elim_eq_term t2 t4; intro H3;
+ [ elim H2; rewrite H3; assumption | assumption ] ].
-Save.
+Qed.
Theorem negate_contradict_inv_valid :
- (t,i,j:nat) (valid_hyps (negate_contradict_inv t i j)).
-
-
-Unfold valid_hyps negate_contradict_inv; Intros t i j e l H;
-Generalize (nth_valid ? i ? H); Generalize (nth_valid ? j ? H);
-Case (nth_hyps i l); Auto; Intros t1 t2; Case t1; Auto; Intros z; Case z; Auto;
-Case (nth_hyps j l); Auto; Intros t3 t4; Case t3; Auto; Intros z'; Case z';
-Auto; Simpl; Intros H1 H2;
-(Pattern (eq_term t2 (scalar_norm t (Tmult t4 (Tint (NEG xH))))); Apply bool_ind2; Intro Aux; [
- Generalize (eq_term_true t2 (scalar_norm t (Tmult t4 (Tint (NEG xH)))) Aux);
- Clear Aux
-| Generalize (eq_term_false t2 (scalar_norm t (Tmult t4 (Tint (NEG xH)))) Aux);
- Clear Aux ]); [
- Intro H3; Elim H1; Generalize H2; Rewrite H3;
- Rewrite <- (scalar_norm_stable t e); Simpl; Elim (interp_term e t4) ;
- Simpl; Auto; Intros p H4; Discriminate H4
- | Auto
- | Intro H3; Elim H2; Rewrite H3; Elim (scalar_norm_stable t e); Simpl;
- Elim H1; Simpl; Trivial
- | Auto ].
-
-Save.
+ forall t i j:nat, valid_hyps (negate_contradict_inv t i j).
+
+
+unfold valid_hyps, negate_contradict_inv in |- *; intros t i j e l H;
+ generalize (nth_valid _ i _ H); generalize (nth_valid _ j _ H);
+ case (nth_hyps i l); auto; intros t1 t2; case t1;
+ auto; intros z; case z; auto; case (nth_hyps j l);
+ auto; intros t3 t4; case t3; auto; intros z'; case z';
+ auto; simpl in |- *; intros H1 H2;
+ (pattern (eq_term t2 (scalar_norm t (Tmult t4 (Tint (-1))))) in |- *;
+ apply bool_ind2; intro Aux;
+ [ generalize (eq_term_true t2 (scalar_norm t (Tmult t4 (Tint (-1)))) Aux);
+ clear Aux
+ | generalize (eq_term_false t2 (scalar_norm t (Tmult t4 (Tint (-1)))) Aux);
+ clear Aux ]);
+ [ intro H3; elim H1; generalize H2; rewrite H3;
+ rewrite <- (scalar_norm_stable t e); simpl in |- *;
+ elim (interp_term e t4); simpl in |- *; auto; intros p H4;
+ discriminate H4
+ | auto
+ | intro H3; elim H2; rewrite H3; elim (scalar_norm_stable t e);
+ simpl in |- *; elim H1; simpl in |- *; trivial
+ | auto ].
+
+Qed.
(* \subsubsection{Tactiques générant une nouvelle équation} *)
@@ -1518,139 +1593,143 @@ Save.
preuve un peu compliquée. On utilise quelques lemmes qui sont des
généralisations des théorèmes utilisés par OMEGA. *)
-Definition sum [k1,k2: Z; trace: (list t_fusion); prop1,prop2:proposition]:=
- Cases prop1 of
- (EqTerm (Tint ZERO) b1) =>
- Cases prop2 of
- (EqTerm (Tint ZERO) b2) =>
- (EqTerm
- (Tint ZERO)
- (fusion trace
- (Tplus (Tmult b1 (Tint k1)) (Tmult b2 (Tint k2)))))
- | (LeqTerm (Tint ZERO) b2) =>
- Cases (Zcompare k2 ZERO) of
- SUPERIEUR =>
- (LeqTerm
- (Tint ZERO)
- (fusion trace
- (Tplus (Tmult b1 (Tint k1)) (Tmult b2 (Tint k2)))))
- | _ => TrueTerm
- end
- | _ => TrueTerm
- end
- | (LeqTerm (Tint ZERO) b1) =>
- Cases (Zcompare k1 ZERO) of
- SUPERIEUR =>
- Cases prop2 of
- (EqTerm (Tint ZERO) b2) =>
- (LeqTerm
- (Tint ZERO)
- (fusion trace
- (Tplus (Tmult b1 (Tint k1)) (Tmult b2 (Tint k2)))))
- | (LeqTerm (Tint ZERO) b2) =>
- Cases (Zcompare k2 ZERO) of
- SUPERIEUR =>
- (LeqTerm
- (Tint ZERO)
- (fusion trace
- (Tplus (Tmult b1 (Tint k1))
- (Tmult b2 (Tint k2)))))
- | _ => TrueTerm
- end
- | _ => TrueTerm
- end
- | _ => TrueTerm
- end
- | (NeqTerm (Tint ZERO) b1) =>
- Cases prop2 of
- (EqTerm (Tint ZERO) b2) =>
- Case (eq_Z k1 ZERO) of
- TrueTerm
- (NeqTerm
- (Tint ZERO)
- (fusion trace
- (Tplus (Tmult b1 (Tint k1)) (Tmult b2 (Tint k2)))))
- end
+Definition sum (k1 k2:Z) (trace:list t_fusion) (prop1 prop2:proposition) :=
+ match prop1 with
+ | EqTerm (Tint Z0) b1 =>
+ match prop2 with
+ | EqTerm (Tint Z0) b2 =>
+ EqTerm (Tint 0)
+ (fusion trace (Tplus (Tmult b1 (Tint k1)) (Tmult b2 (Tint k2))))
+ | LeqTerm (Tint Z0) b2 =>
+ match (k2 ?= 0)%Z with
+ | Datatypes.Gt =>
+ LeqTerm (Tint 0)
+ (fusion trace
+ (Tplus (Tmult b1 (Tint k1)) (Tmult b2 (Tint k2))))
+ | _ => TrueTerm
+ end
+ | _ => TrueTerm
+ end
+ | LeqTerm (Tint Z0) b1 =>
+ match (k1 ?= 0)%Z with
+ | Datatypes.Gt =>
+ match prop2 with
+ | EqTerm (Tint Z0) b2 =>
+ LeqTerm (Tint 0)
+ (fusion trace
+ (Tplus (Tmult b1 (Tint k1)) (Tmult b2 (Tint k2))))
+ | LeqTerm (Tint Z0) b2 =>
+ match (k2 ?= 0)%Z with
+ | Datatypes.Gt =>
+ LeqTerm (Tint 0)
+ (fusion trace
+ (Tplus (Tmult b1 (Tint k1)) (Tmult b2 (Tint k2))))
+ | _ => TrueTerm
+ end
+ | _ => TrueTerm
+ end
+ | _ => TrueTerm
+ end
+ | NeqTerm (Tint Z0) b1 =>
+ match prop2 with
+ | EqTerm (Tint Z0) b2 =>
+ match eq_Z k1 0 with
+ | true => TrueTerm
+ | false =>
+ NeqTerm (Tint 0)
+ (fusion trace
+ (Tplus (Tmult b1 (Tint k1)) (Tmult b2 (Tint k2))))
+ end
| _ => TrueTerm
end
| _ => TrueTerm
end.
Theorem sum1 :
- (a,b,c,d:Z) (`0 = a`) -> (`0 = b`) -> (`0 = a*c + b*d`).
+ forall a b c d:Z, 0%Z = a -> 0%Z = b -> 0%Z = (a * c + b * d)%Z.
-Intros; Elim H; Elim H0; Simpl; Auto.
-Save.
+intros; elim H; elim H0; simpl in |- *; auto.
+Qed.
Theorem sum2 :
- (a,b,c,d:Z) (`0 <= d`) -> (`0 = a`) -> (`0 <= b`) ->(`0 <= a*c + b*d`).
+ forall a b c d:Z,
+ (0 <= d)%Z -> 0%Z = a -> (0 <= b)%Z -> (0 <= a * c + b * d)%Z.
-Intros; Elim H0; Simpl; Generalize H H1; Case b; Case d;
-Unfold Zle; Simpl; Auto.
-Save.
+intros; elim H0; simpl in |- *; generalize H H1; case b; case d;
+ unfold Zle in |- *; simpl in |- *; auto.
+Qed.
Theorem sum3 :
- (a,b,c,d:Z) (`0 <= c`) -> (`0 <= d`) -> (`0 <= a`) -> (`0 <= b`) ->(`0 <= a*c + b*d`).
+ forall a b c d:Z,
+ (0 <= c)%Z ->
+ (0 <= d)%Z -> (0 <= a)%Z -> (0 <= b)%Z -> (0 <= a * c + b * d)%Z.
-Intros a b c d; Case a; Case b; Case c; Case d; Unfold Zle; Simpl; Auto.
-Save.
+intros a b c d; case a; case b; case c; case d; unfold Zle in |- *;
+ simpl in |- *; auto.
+Qed.
-Theorem sum4 : (k:Z) (Zcompare k `0`)=SUPERIEUR -> (`0 <= k`).
+Theorem sum4 : forall k:Z, (k ?= 0)%Z = Datatypes.Gt -> (0 <= k)%Z.
-Intro; Case k; Unfold Zle; Simpl; Auto; Intros; Discriminate.
-Save.
+intro; case k; unfold Zle in |- *; simpl in |- *; auto; intros; discriminate.
+Qed.
Theorem sum5 :
- (a,b,c,d:Z) (`c <> 0`) -> (`0 <> a`) -> (`0 = b`) -> (`0 <> a*c + b*d`).
+ forall a b c d:Z,
+ c <> 0%Z -> 0%Z <> a -> 0%Z = b -> 0%Z <> (a * c + b * d)%Z.
-Intros a b c d H1 H2 H3; Elim H3; Simpl; Rewrite Zplus_sym;
-Simpl; Generalize H1 H2; Case a; Case c; Simpl; Intros; Try Discriminate;
-Assumption.
-Save.
+intros a b c d H1 H2 H3; elim H3; simpl in |- *; rewrite Zplus_comm;
+ simpl in |- *; generalize H1 H2; case a; case c; simpl in |- *;
+ intros; try discriminate; assumption.
+Qed.
-Theorem sum_valid : (k1,k2:Z; t:(list t_fusion)) (valid2 (sum k1 k2 t)).
+Theorem sum_valid : forall (k1 k2:Z) (t:list t_fusion), valid2 (sum k1 k2 t).
-Unfold valid2; Intros k1 k2 t e p1 p2; Unfold sum; Simplify; Simpl; Auto;
-Try (Elim (fusion_stable t)); Simpl; Intros; [
- Apply sum1; Assumption
-| Apply sum2; Try Assumption; Apply sum4; Assumption
-| Rewrite Zplus_sym; Apply sum2; Try Assumption; Apply sum4; Assumption
-| Apply sum3; Try Assumption; Apply sum4; Assumption
-| (Elim_eq_Z k1 ZERO); Simpl; Auto; Elim (fusion_stable t); Simpl; Intros;
- Unfold Zne; Apply sum5; Assumption].
-Save.
+unfold valid2 in |- *; intros k1 k2 t e p1 p2; unfold sum in |- *; Simplify;
+ simpl in |- *; auto; try elim (fusion_stable t); simpl in |- *;
+ intros;
+ [ apply sum1; assumption
+ | apply sum2; try assumption; apply sum4; assumption
+ | rewrite Zplus_comm; apply sum2; try assumption; apply sum4; assumption
+ | apply sum3; try assumption; apply sum4; assumption
+ | elim_eq_Z k1 0%Z; simpl in |- *; auto; elim (fusion_stable t);
+ simpl in |- *; intros; unfold Zne in |- *; apply sum5;
+ assumption ].
+Qed.
(* \paragraph{[O_EXACT_DIVIDE]}
c'est une oper1 valide mais on préfère une substitution a ce point la *)
-Definition exact_divide [k:Z; body:term; t: nat; prop:proposition] :=
- Cases prop of
- (EqTerm (Tint ZERO) b) =>
- Case (eq_term (scalar_norm t (Tmult body (Tint k))) b) of
- Case (eq_Z k ZERO) of
- TrueTerm
- (EqTerm (Tint ZERO) body)
- end
- TrueTerm
- end
- | _ => TrueTerm
- end.
+Definition exact_divide (k:Z) (body:term) (t:nat) (prop:proposition) :=
+ match prop with
+ | EqTerm (Tint Z0) b =>
+ match eq_term (scalar_norm t (Tmult body (Tint k))) b with
+ | true =>
+ match eq_Z k 0 with
+ | true => TrueTerm
+ | false => EqTerm (Tint 0) body
+ end
+ | false => TrueTerm
+ end
+ | _ => TrueTerm
+ end.
Theorem exact_divide_valid :
- (k:Z) (t:term) (n:nat) (valid1 (exact_divide k t n)).
+ forall (k:Z) (t:term) (n:nat), valid1 (exact_divide k t n).
-Unfold valid1 exact_divide; Intros k1 k2 t e p1; Simplify;Simpl; Auto;
-(Elim_eq_term '(scalar_norm t (Tmult k2 (Tint k1))) 't1); Simpl; Auto;
-(Elim_eq_Z 'k1 '(ZERO)); Simpl; Auto; Intros H1 H2; Elim H2;
-Elim scalar_norm_stable; Simpl; Generalize H1; Case (interp_term e k2);
-Try Trivial; (Case k1; Simpl; [
- Intros; Absurd `0 = 0`; Assumption
-| Intros p2 p3 H3 H4; Discriminate H4
-| Intros p2 p3 H3 H4; Discriminate H4 ]).
+unfold valid1, exact_divide in |- *; intros k1 k2 t e p1; Simplify;
+ simpl in |- *; auto; elim_eq_term (scalar_norm t (Tmult k2 (Tint k1))) t1;
+ simpl in |- *; auto; elim_eq_Z k1 0%Z; simpl in |- *;
+ auto; intros H1 H2; elim H2; elim scalar_norm_stable;
+ simpl in |- *; generalize H1; case (interp_term e k2);
+ try trivial;
+ (case k1; simpl in |- *;
+ [ intros; absurd (0%Z = 0%Z); assumption
+ | intros p2 p3 H3 H4; discriminate H4
+ | intros p2 p3 H3 H4; discriminate H4 ]).
-Save.
+Qed.
@@ -1658,302 +1737,327 @@ Save.
La preuve reprend le schéma de la précédente mais on
est sur une opération de type valid1 et non sur une opération terminale. *)
-Definition divide_and_approx [k1,k2:Z; body:term; t:nat; prop:proposition] :=
- Cases prop of
- (LeqTerm (Tint ZERO) b) =>
- Case (eq_term
- (scalar_norm_add t (Tplus (Tmult body (Tint k1)) (Tint k2))) b) of
- Cases (Zcompare k1 ZERO) of
- SUPERIEUR =>
- Cases (Zcompare k1 k2) of
- SUPERIEUR =>(LeqTerm (Tint ZERO) body)
- | _ => prop
- end
- | _ => prop
- end
- prop
- end
- | _ => prop
- end.
+Definition divide_and_approx (k1 k2:Z) (body:term)
+ (t:nat) (prop:proposition) :=
+ match prop with
+ | LeqTerm (Tint Z0) b =>
+ match
+ eq_term (scalar_norm_add t (Tplus (Tmult body (Tint k1)) (Tint k2)))
+ b
+ with
+ | true =>
+ match (k1 ?= 0)%Z with
+ | Datatypes.Gt =>
+ match (k1 ?= k2)%Z with
+ | Datatypes.Gt => LeqTerm (Tint 0) body
+ | _ => prop
+ end
+ | _ => prop
+ end
+ | false => prop
+ end
+ | _ => prop
+ end.
-Theorem divide_and_approx_valid : (k1,k2:Z; body:term; t:nat)
- (valid1 (divide_and_approx k1 k2 body t)).
+Theorem divide_and_approx_valid :
+ forall (k1 k2:Z) (body:term) (t:nat),
+ valid1 (divide_and_approx k1 k2 body t).
-Unfold valid1 divide_and_approx; Intros k1 k2 body t e p1;Simplify;
-(Elim_eq_term '(scalar_norm_add t (Tplus (Tmult body (Tint k1)) (Tint k2))) 't1); Simplify; Auto; Intro E; Elim E; Simpl;
-Elim (scalar_norm_add_stable t e); Simpl; Intro H1;
-Apply Zmult_le_approx with 3 := H1; Assumption.
-Save.
+unfold valid1, divide_and_approx in |- *; intros k1 k2 body t e p1; Simplify;
+ elim_eq_term (scalar_norm_add t (Tplus (Tmult body (Tint k1)) (Tint k2))) t1;
+ Simplify; auto; intro E; elim E; simpl in |- *;
+ elim (scalar_norm_add_stable t e); simpl in |- *;
+ intro H1; apply Zmult_le_approx with (3 := H1); assumption.
+Qed.
(* \paragraph{[MERGE_EQ]} *)
-Definition merge_eq [t: nat; prop1, prop2: proposition] :=
- Cases prop1 of
- (LeqTerm (Tint ZERO) b1) =>
- Cases prop2 of
- (LeqTerm (Tint ZERO) b2) =>
- Case (eq_term b1 (scalar_norm t (Tmult b2 (Tint `-1`)))) of
- (EqTerm (Tint ZERO) b1)
- TrueTerm
- end
- | _ => TrueTerm
- end
+Definition merge_eq (t:nat) (prop1 prop2:proposition) :=
+ match prop1 with
+ | LeqTerm (Tint Z0) b1 =>
+ match prop2 with
+ | LeqTerm (Tint Z0) b2 =>
+ match eq_term b1 (scalar_norm t (Tmult b2 (Tint (-1)))) with
+ | true => EqTerm (Tint 0) b1
+ | false => TrueTerm
+ end
+ | _ => TrueTerm
+ end
| _ => TrueTerm
end.
-Theorem merge_eq_valid : (n:nat) (valid2 (merge_eq n)).
+Theorem merge_eq_valid : forall n:nat, valid2 (merge_eq n).
-Unfold valid2 merge_eq; Intros n e p1 p2; Simplify; Simpl; Auto;
-Elim (scalar_norm_stable n e); Simpl; Intros; Symmetry;
-Apply OMEGA8 with 2 := H0; [ Assumption | Elim Zopp_one; Trivial ].
-Save.
+unfold valid2, merge_eq in |- *; intros n e p1 p2; Simplify; simpl in |- *;
+ auto; elim (scalar_norm_stable n e); simpl in |- *;
+ intros; symmetry in |- *; apply OMEGA8 with (2 := H0);
+ [ assumption | elim Zopp_eq_mult_neg_1; trivial ].
+Qed.
(* \paragraph{[O_CONSTANT_NUL]} *)
-Definition constant_nul [i:nat; h: hyps] :=
- Cases (nth_hyps i h) of
- (NeqTerm (Tint ZERO) (Tint ZERO)) => absurd
- | _ => h
+Definition constant_nul (i:nat) (h:hyps) :=
+ match nth_hyps i h with
+ | NeqTerm (Tint Z0) (Tint Z0) => absurd
+ | _ => h
end.
-Theorem constant_nul_valid :
- (i:nat) (valid_hyps (constant_nul i)).
+Theorem constant_nul_valid : forall i:nat, valid_hyps (constant_nul i).
-Unfold valid_hyps constant_nul; Intros; Generalize (nth_valid e i lp);
-Simplify; Simpl; Unfold Zne; Intro H1; Absurd `0=0`; Auto.
-Save.
+unfold valid_hyps, constant_nul in |- *; intros;
+ generalize (nth_valid e i lp); Simplify; simpl in |- *;
+ unfold Zne in |- *; intro H1; absurd (0%Z = 0%Z);
+ auto.
+Qed.
(* \paragraph{[O_STATE]} *)
-Definition state [m:Z;s:step; prop1,prop2:proposition] :=
- Cases prop1 of
- (EqTerm (Tint ZERO) b1) =>
- Cases prop2 of
- (EqTerm (Tint ZERO) (Tplus b2 (Topp b3))) =>
- (EqTerm (Tint ZERO) (rewrite s (Tplus b1 (Tmult (Tplus (Topp b3) b2) (Tint m)))))
- | _ => TrueTerm
- end
+Definition state (m:Z) (s:step) (prop1 prop2:proposition) :=
+ match prop1 with
+ | EqTerm (Tint Z0) b1 =>
+ match prop2 with
+ | EqTerm (Tint Z0) (Tplus b2 (Topp b3)) =>
+ EqTerm (Tint 0)
+ (rewrite s (Tplus b1 (Tmult (Tplus (Topp b3) b2) (Tint m))))
+ | _ => TrueTerm
+ end
| _ => TrueTerm
end.
-Theorem state_valid : (m:Z; s:step) (valid2 (state m s)).
+Theorem state_valid : forall (m:Z) (s:step), valid2 (state m s).
-Unfold valid2; Intros m s e p1 p2; Unfold state; Simplify; Simpl;Auto;
-Elim (rewrite_stable s e); Simpl; Intros H1 H2; Elim H1;
-Rewrite (Zplus_sym `-(interp_term e t5)` `(interp_term e t3)`);
-Elim H2; Simpl; Reflexivity.
+unfold valid2 in |- *; intros m s e p1 p2; unfold state in |- *; Simplify;
+ simpl in |- *; auto; elim (rewrite_stable s e); simpl in |- *;
+ intros H1 H2; elim H1;
+ rewrite (Zplus_comm (- interp_term e t5) (interp_term e t3));
+ elim H2; simpl in |- *; reflexivity.
-Save.
+Qed.
(* \subsubsection{Tactiques générant plusieurs but}
\paragraph{[O_SPLIT_INEQ]}
La seule pour le moment (tant que la normalisation n'est pas réfléchie). *)
-Definition split_ineq [i,t: nat; f1,f2:hyps -> lhyps; l:hyps] :=
- Cases (nth_hyps i l) of
- (NeqTerm (Tint ZERO) b1) =>
- (app (f1 (cons (LeqTerm (Tint ZERO) (add_norm t (Tplus b1 (Tint `-1`)))) l))
- (f2 (cons (LeqTerm (Tint ZERO)
- (scalar_norm_add t
- (Tplus (Tmult b1 (Tint `-1`)) (Tint `-1`))))
- l)))
- | _ => (cons l (nil ?))
+Definition split_ineq (i t:nat) (f1 f2:hyps -> lhyps)
+ (l:hyps) :=
+ match nth_hyps i l with
+ | NeqTerm (Tint Z0) b1 =>
+ f1 (LeqTerm (Tint 0) (add_norm t (Tplus b1 (Tint (-1)))) :: l) ++
+ f2
+ (LeqTerm (Tint 0)
+ (scalar_norm_add t (Tplus (Tmult b1 (Tint (-1))) (Tint (-1))))
+ :: l)
+ | _ => l :: nil
end.
-Theorem split_ineq_valid :
- (i,t: nat; f1,f2: hyps -> lhyps)
- (valid_list_hyps f1) ->(valid_list_hyps f2) ->
- (valid_list_hyps (split_ineq i t f1 f2)).
-
-Unfold valid_list_hyps split_ineq; Intros i t f1 f2 H1 H2 e lp H;
-Generalize (nth_valid ? i ? H);
-Case (nth_hyps i lp); Simpl; Auto; Intros t1 t2; Case t1; Simpl; Auto;
-Intros z; Case z; Simpl; Auto;
-Intro H3; Apply append_valid;Elim (OMEGA19 (interp_term e t2)) ;[
- Intro H4; Left; Apply H1; Simpl; Elim (add_norm_stable t); Simpl; Auto
-| Intro H4; Right; Apply H2; Simpl; Elim (scalar_norm_add_stable t);
- Simpl; Auto
-| Generalize H3; Unfold Zne not; Intros E1 E2; Apply E1; Symmetry; Trivial ].
-Save.
+Theorem split_ineq_valid :
+ forall (i t:nat) (f1 f2:hyps -> lhyps),
+ valid_list_hyps f1 ->
+ valid_list_hyps f2 -> valid_list_hyps (split_ineq i t f1 f2).
+
+unfold valid_list_hyps, split_ineq in |- *; intros i t f1 f2 H1 H2 e lp H;
+ generalize (nth_valid _ i _ H); case (nth_hyps i lp);
+ simpl in |- *; auto; intros t1 t2; case t1; simpl in |- *;
+ auto; intros z; case z; simpl in |- *; auto; intro H3;
+ apply append_valid; elim (OMEGA19 (interp_term e t2));
+ [ intro H4; left; apply H1; simpl in |- *; elim (add_norm_stable t);
+ simpl in |- *; auto
+ | intro H4; right; apply H2; simpl in |- *; elim (scalar_norm_add_stable t);
+ simpl in |- *; auto
+ | generalize H3; unfold Zne, not in |- *; intros E1 E2; apply E1;
+ symmetry in |- *; trivial ].
+Qed.
(* \subsection{La fonction de rejeu de la trace} *)
Inductive t_omega : Set :=
- (* n = 0 n!= 0 *)
- | O_CONSTANT_NOT_NUL : nat -> t_omega
- | O_CONSTANT_NEG : nat -> t_omega
- (* division et approximation d'une équation *)
- | O_DIV_APPROX : Z -> Z -> term -> nat -> t_omega -> nat -> t_omega
- (* pas de solution car pas de division exacte (fin) *)
- | O_NOT_EXACT_DIVIDE : Z -> Z -> term -> nat -> nat -> t_omega
- (* division exacte *)
- | O_EXACT_DIVIDE : Z -> term -> nat -> t_omega -> nat -> t_omega
- | O_SUM : Z -> nat -> Z -> nat -> (list t_fusion) -> t_omega -> t_omega
- | O_CONTRADICTION : nat -> nat -> nat -> t_omega
- | O_MERGE_EQ : nat -> nat -> nat -> t_omega -> t_omega
- | O_SPLIT_INEQ : nat -> nat -> t_omega -> t_omega -> t_omega
- | O_CONSTANT_NUL : nat -> t_omega
- | O_NEGATE_CONTRADICT : nat -> nat -> t_omega
- | O_NEGATE_CONTRADICT_INV : nat -> nat -> nat -> t_omega
- | O_STATE : Z -> step -> nat -> nat -> t_omega -> t_omega.
-
-Notation singleton := [a: hyps] (cons a (nil hyps)).
-
-Fixpoint execute_omega [t: t_omega] : hyps -> lhyps :=
- [l : hyps] Cases t of
- | (O_CONSTANT_NOT_NUL n) => (singleton (constant_not_nul n l))
- | (O_CONSTANT_NEG n) => (singleton (constant_neg n l))
- | (O_DIV_APPROX k1 k2 body t cont n) =>
- (execute_omega cont
- (apply_oper_1 n (divide_and_approx k1 k2 body t) l))
- | (O_NOT_EXACT_DIVIDE k1 k2 body t i) =>
- (singleton (not_exact_divide k1 k2 body t i l))
- | (O_EXACT_DIVIDE k body t cont n) =>
- (execute_omega cont (apply_oper_1 n (exact_divide k body t) l))
- | (O_SUM k1 i1 k2 i2 t cont) =>
- (execute_omega cont (apply_oper_2 i1 i2 (sum k1 k2 t) l))
- | (O_CONTRADICTION t i j) =>
- (singleton (contradiction t i j l))
- | (O_MERGE_EQ t i1 i2 cont) =>
- (execute_omega cont (apply_oper_2 i1 i2 (merge_eq t) l))
- | (O_SPLIT_INEQ t i cont1 cont2) =>
- (split_ineq i t (execute_omega cont1) (execute_omega cont2) l)
- | (O_CONSTANT_NUL i) => (singleton (constant_nul i l))
- | (O_NEGATE_CONTRADICT i j) => (singleton (negate_contradict i j l))
- | (O_NEGATE_CONTRADICT_INV t i j) => (singleton (negate_contradict_inv t i j l))
- | (O_STATE m s i1 i2 cont) =>
- (execute_omega cont (apply_oper_2 i1 i2 (state m s) l))
+ | O_CONSTANT_NOT_NUL :
+ (* n = 0 n!= 0 *)
+ nat -> t_omega
+ | O_CONSTANT_NEG :
+ nat -> t_omega
+ (* division et approximation d'une équation *)
+ | O_DIV_APPROX :
+ Z ->
+ Z ->
+ term ->
+ nat ->
+ t_omega ->
+ nat -> t_omega
+ (* pas de solution car pas de division exacte (fin) *)
+ | O_NOT_EXACT_DIVIDE :
+ Z -> Z -> term -> nat -> nat -> t_omega
+ (* division exacte *)
+ | O_EXACT_DIVIDE : Z -> term -> nat -> t_omega -> nat -> t_omega
+ | O_SUM : Z -> nat -> Z -> nat -> list t_fusion -> t_omega -> t_omega
+ | O_CONTRADICTION : nat -> nat -> nat -> t_omega
+ | O_MERGE_EQ : nat -> nat -> nat -> t_omega -> t_omega
+ | O_SPLIT_INEQ : nat -> nat -> t_omega -> t_omega -> t_omega
+ | O_CONSTANT_NUL : nat -> t_omega
+ | O_NEGATE_CONTRADICT : nat -> nat -> t_omega
+ | O_NEGATE_CONTRADICT_INV : nat -> nat -> nat -> t_omega
+ | O_STATE : Z -> step -> nat -> nat -> t_omega -> t_omega.
+
+Notation singleton := (fun a:hyps => a :: nil).
+
+Fixpoint execute_omega (t:t_omega) (l:hyps) {struct t} : lhyps :=
+ match t with
+ | O_CONSTANT_NOT_NUL n => singleton (constant_not_nul n l)
+ | O_CONSTANT_NEG n => singleton (constant_neg n l)
+ | O_DIV_APPROX k1 k2 body t cont n =>
+ execute_omega cont (apply_oper_1 n (divide_and_approx k1 k2 body t) l)
+ | O_NOT_EXACT_DIVIDE k1 k2 body t i =>
+ singleton (not_exact_divide k1 k2 body t i l)
+ | O_EXACT_DIVIDE k body t cont n =>
+ execute_omega cont (apply_oper_1 n (exact_divide k body t) l)
+ | O_SUM k1 i1 k2 i2 t cont =>
+ execute_omega cont (apply_oper_2 i1 i2 (sum k1 k2 t) l)
+ | O_CONTRADICTION t i j => singleton (contradiction t i j l)
+ | O_MERGE_EQ t i1 i2 cont =>
+ execute_omega cont (apply_oper_2 i1 i2 (merge_eq t) l)
+ | O_SPLIT_INEQ t i cont1 cont2 =>
+ split_ineq i t (execute_omega cont1) (execute_omega cont2) l
+ | O_CONSTANT_NUL i => singleton (constant_nul i l)
+ | O_NEGATE_CONTRADICT i j => singleton (negate_contradict i j l)
+ | O_NEGATE_CONTRADICT_INV t i j =>
+ singleton (negate_contradict_inv t i j l)
+ | O_STATE m s i1 i2 cont =>
+ execute_omega cont (apply_oper_2 i1 i2 (state m s) l)
end.
-Theorem omega_valid : (t: t_omega) (valid_list_hyps (execute_omega t)).
-
-Induction t; Simpl; [
- Unfold valid_list_hyps; Simpl; Intros; Left;
- Apply (constant_not_nul_valid n e lp H)
-| Unfold valid_list_hyps; Simpl; Intros; Left;
- Apply (constant_neg_valid n e lp H)
-| Unfold valid_list_hyps valid_hyps; Intros k1 k2 body n t' Ht' m e lp H;
- Apply Ht';
- Apply (apply_oper_1_valid m (divide_and_approx k1 k2 body n)
- (divide_and_approx_valid k1 k2 body n) e lp H)
-| Unfold valid_list_hyps; Simpl; Intros; Left;
- Apply (not_exact_divide_valid z z0 t0 n n0 e lp H)
-| Unfold valid_list_hyps valid_hyps; Intros k body n t' Ht' m e lp H;
- Apply Ht';
- Apply (apply_oper_1_valid m (exact_divide k body n)
- (exact_divide_valid k body n) e lp H)
-| Unfold valid_list_hyps valid_hyps; Intros k1 i1 k2 i2 trace t' Ht' e lp H;
- Apply Ht';
- Apply (apply_oper_2_valid i1 i2 (sum k1 k2 trace)
- (sum_valid k1 k2 trace) e lp H)
-| Unfold valid_list_hyps; Simpl; Intros; Left;
- Apply (contradiction_valid n n0 n1 e lp H)
-| Unfold valid_list_hyps valid_hyps; Intros trace i1 i2 t' Ht' e lp H;
- Apply Ht';
- Apply (apply_oper_2_valid i1 i2 (merge_eq trace)
- (merge_eq_valid trace) e lp H)
-| Intros t' i k1 H1 k2 H2; Unfold valid_list_hyps; Simpl; Intros e lp H;
- Apply (split_ineq_valid i t' (execute_omega k1) (execute_omega k2)
- H1 H2 e lp H)
-| Unfold valid_list_hyps; Simpl; Intros i e lp H; Left;
- Apply (constant_nul_valid i e lp H)
-| Unfold valid_list_hyps; Simpl; Intros i j e lp H; Left;
- Apply (negate_contradict_valid i j e lp H)
-| Unfold valid_list_hyps; Simpl; Intros n i j e lp H; Left;
- Apply (negate_contradict_inv_valid n i j e lp H)
-| Unfold valid_list_hyps valid_hyps; Intros m s i1 i2 t' Ht' e lp H; Apply Ht';
- Apply (apply_oper_2_valid i1 i2 (state m s) (state_valid m s) e lp H)
-].
-Save.
+Theorem omega_valid : forall t:t_omega, valid_list_hyps (execute_omega t).
+
+simple induction t; simpl in |- *;
+ [ unfold valid_list_hyps in |- *; simpl in |- *; intros; left;
+ apply (constant_not_nul_valid n e lp H)
+ | unfold valid_list_hyps in |- *; simpl in |- *; intros; left;
+ apply (constant_neg_valid n e lp H)
+ | unfold valid_list_hyps, valid_hyps in |- *;
+ intros k1 k2 body n t' Ht' m e lp H; apply Ht';
+ apply
+ (apply_oper_1_valid m (divide_and_approx k1 k2 body n)
+ (divide_and_approx_valid k1 k2 body n) e lp H)
+ | unfold valid_list_hyps in |- *; simpl in |- *; intros; left;
+ apply (not_exact_divide_valid z z0 t0 n n0 e lp H)
+ | unfold valid_list_hyps, valid_hyps in |- *;
+ intros k body n t' Ht' m e lp H; apply Ht';
+ apply
+ (apply_oper_1_valid m (exact_divide k body n)
+ (exact_divide_valid k body n) e lp H)
+ | unfold valid_list_hyps, valid_hyps in |- *;
+ intros k1 i1 k2 i2 trace t' Ht' e lp H; apply Ht';
+ apply
+ (apply_oper_2_valid i1 i2 (sum k1 k2 trace) (sum_valid k1 k2 trace) e lp
+ H)
+ | unfold valid_list_hyps in |- *; simpl in |- *; intros; left;
+ apply (contradiction_valid n n0 n1 e lp H)
+ | unfold valid_list_hyps, valid_hyps in |- *;
+ intros trace i1 i2 t' Ht' e lp H; apply Ht';
+ apply
+ (apply_oper_2_valid i1 i2 (merge_eq trace) (merge_eq_valid trace) e lp H)
+ | intros t' i k1 H1 k2 H2; unfold valid_list_hyps in |- *; simpl in |- *;
+ intros e lp H;
+ apply
+ (split_ineq_valid i t' (execute_omega k1) (execute_omega k2) H1 H2 e lp
+ H)
+ | unfold valid_list_hyps in |- *; simpl in |- *; intros i e lp H; left;
+ apply (constant_nul_valid i e lp H)
+ | unfold valid_list_hyps in |- *; simpl in |- *; intros i j e lp H; left;
+ apply (negate_contradict_valid i j e lp H)
+ | unfold valid_list_hyps in |- *; simpl in |- *; intros n i j e lp H; left;
+ apply (negate_contradict_inv_valid n i j e lp H)
+ | unfold valid_list_hyps, valid_hyps in |- *; intros m s i1 i2 t' Ht' e lp H;
+ apply Ht';
+ apply (apply_oper_2_valid i1 i2 (state m s) (state_valid m s) e lp H) ].
+Qed.
(* \subsection{Les opérations globales sur le but}
\subsubsection{Normalisation} *)
-Definition move_right [s: step; p:proposition] :=
- Cases p of
- (EqTerm t1 t2) => (EqTerm (Tint ZERO) (rewrite s (Tplus t1 (Topp t2))))
- | (LeqTerm t1 t2) => (LeqTerm (Tint ZERO) (rewrite s (Tplus t2 (Topp t1))))
- | (GeqTerm t1 t2) => (LeqTerm (Tint ZERO) (rewrite s (Tplus t1 (Topp t2))))
- | (LtTerm t1 t2) =>
- (LeqTerm (Tint ZERO)
- (rewrite s (Tplus (Tplus t2 (Tint `-1`)) (Topp t1))))
- | (GtTerm t1 t2) =>
- (LeqTerm (Tint ZERO)
- (rewrite s (Tplus (Tplus t1 (Tint `-1`)) (Topp t2))))
- | (NeqTerm t1 t2) => (NeqTerm (Tint ZERO) (rewrite s (Tplus t1 (Topp t2))))
- | p => p
+Definition move_right (s:step) (p:proposition) :=
+ match p with
+ | EqTerm t1 t2 => EqTerm (Tint 0) (rewrite s (Tplus t1 (Topp t2)))
+ | LeqTerm t1 t2 => LeqTerm (Tint 0) (rewrite s (Tplus t2 (Topp t1)))
+ | GeqTerm t1 t2 => LeqTerm (Tint 0) (rewrite s (Tplus t1 (Topp t2)))
+ | LtTerm t1 t2 =>
+ LeqTerm (Tint 0) (rewrite s (Tplus (Tplus t2 (Tint (-1))) (Topp t1)))
+ | GtTerm t1 t2 =>
+ LeqTerm (Tint 0) (rewrite s (Tplus (Tplus t1 (Tint (-1))) (Topp t2)))
+ | NeqTerm t1 t2 => NeqTerm (Tint 0) (rewrite s (Tplus t1 (Topp t2)))
+ | p => p
end.
-Theorem Zne_left_2 : (x,y:Z)(Zne x y)->(Zne `0` `x+(-y)`).
-Unfold Zne not; Intros x y H1 H2; Apply H1; Apply (Zsimpl_plus_l `-y`);
-Rewrite Zplus_sym; Elim H2; Rewrite Zplus_inverse_l; Trivial.
-Save.
-
-Theorem move_right_valid : (s: step) (valid1 (move_right s)).
-
-Unfold valid1 move_right; Intros s e p; Simplify; Simpl;
-Elim (rewrite_stable s e); Simpl; [
- Symmetry; Apply Zegal_left; Assumption
-| Intro; Apply Zle_left; Assumption
-| Intro; Apply Zge_left; Assumption
-| Intro; Apply Zgt_left; Assumption
-| Intro; Apply Zlt_left; Assumption
-| Intro; Apply Zne_left_2; Assumption
-].
-Save.
-
-Definition do_normalize [i:nat; s: step] := (apply_oper_1 i (move_right s)).
-
-Theorem do_normalize_valid : (i:nat; s:step) (valid_hyps (do_normalize i s)).
-
-Intros; Unfold do_normalize; Apply apply_oper_1_valid; Apply move_right_valid.
-Save.
-
-Fixpoint do_normalize_list [l:(list step)] : nat -> hyps -> hyps :=
- [i:nat; h:hyps] Cases l of
- (cons s l') => (do_normalize_list l' (S i) (do_normalize i s h))
+Theorem Zne_left_2 : forall x y:Z, Zne x y -> Zne 0 (x + - y).
+unfold Zne, not in |- *; intros x y H1 H2; apply H1;
+ apply (Zplus_reg_l (- y)); rewrite Zplus_comm; elim H2;
+ rewrite Zplus_opp_l; trivial.
+Qed.
+
+Theorem move_right_valid : forall s:step, valid1 (move_right s).
+
+unfold valid1, move_right in |- *; intros s e p; Simplify; simpl in |- *;
+ elim (rewrite_stable s e); simpl in |- *;
+ [ symmetry in |- *; apply Zegal_left; assumption
+ | intro; apply Zle_left; assumption
+ | intro; apply Zge_left; assumption
+ | intro; apply Zgt_left; assumption
+ | intro; apply Zlt_left; assumption
+ | intro; apply Zne_left_2; assumption ].
+Qed.
+
+Definition do_normalize (i:nat) (s:step) := apply_oper_1 i (move_right s).
+
+Theorem do_normalize_valid :
+ forall (i:nat) (s:step), valid_hyps (do_normalize i s).
+
+intros; unfold do_normalize in |- *; apply apply_oper_1_valid;
+ apply move_right_valid.
+Qed.
+
+Fixpoint do_normalize_list (l:list step) (i:nat) (h:hyps) {struct l} :
+ hyps :=
+ match l with
+ | s :: l' => do_normalize_list l' (S i) (do_normalize i s h)
| nil => h
end.
-Theorem do_normalize_list_valid :
- (l:(list step); i:nat) (valid_hyps (do_normalize_list l i)).
+Theorem do_normalize_list_valid :
+ forall (l:list step) (i:nat), valid_hyps (do_normalize_list l i).
-Induction l; Simpl; Unfold valid_hyps; [
- Auto
-| Intros a l' Hl' i e lp H; Unfold valid_hyps in Hl'; Apply Hl';
- Apply (do_normalize_valid i a e lp); Assumption ].
-Save.
+simple induction l; simpl in |- *; unfold valid_hyps in |- *;
+ [ auto
+ | intros a l' Hl' i e lp H; unfold valid_hyps in Hl'; apply Hl';
+ apply (do_normalize_valid i a e lp); assumption ].
+Qed.
Theorem normalize_goal :
- (s: (list step); env : (list Z); l: hyps)
- (interp_goal env (do_normalize_list s O l)) ->
- (interp_goal env l).
+ forall (s:list step) (env:list Z) (l:hyps),
+ interp_goal env (do_normalize_list s 0 l) -> interp_goal env l.
-Intros; Apply valid_goal with 2:=H; Apply do_normalize_list_valid.
-Save.
+intros; apply valid_goal with (2 := H); apply do_normalize_list_valid.
+Qed.
(* \subsubsection{Exécution de la trace} *)
Theorem execute_goal :
- (t : t_omega; env : (list Z); l: hyps)
- (interp_list_goal env (execute_omega t l)) -> (interp_goal env l).
+ forall (t:t_omega) (env:list Z) (l:hyps),
+ interp_list_goal env (execute_omega t l) -> interp_goal env l.
-Intros; Apply (goal_valid (execute_omega t) (omega_valid t) env l H).
-Save.
+intros; apply (goal_valid (execute_omega t) (omega_valid t) env l H).
+Qed.
Theorem append_goal :
- (e: (list Z)) (l1,l2:lhyps)
- (interp_list_goal e l1) /\ (interp_list_goal e l2) ->
- (interp_list_goal e (app l1 l2)).
-
-Intros e; Induction l1; [
- Simpl; Intros l2 (H1, H2); Assumption
-| Simpl; Intros h1 t1 HR l2 ((H1 , H2), H3) ; Split; Auto].
+ forall (e:list Z) (l1 l2:lhyps),
+ interp_list_goal e l1 /\ interp_list_goal e l2 ->
+ interp_list_goal e (l1 ++ l2).
+intros e; simple induction l1;
+ [ simpl in |- *; intros l2 [H1 H2]; assumption
+ | simpl in |- *; intros h1 t1 HR l2 [[H1 H2] H3]; split; auto ].
-Save.
+Qed.