diff options
Diffstat (limited to 'contrib')
-rw-r--r-- | contrib/field/LegacyField_Tactic.v | 22 | ||||
-rw-r--r-- | contrib/setoid_ring/Field_tac.v | 74 | ||||
-rw-r--r-- | contrib/setoid_ring/Ring_tac.v | 18 |
3 files changed, 42 insertions, 72 deletions
diff --git a/contrib/field/LegacyField_Tactic.v b/contrib/field/LegacyField_Tactic.v index a52a1f205..63d9bdda6 100644 --- a/contrib/field/LegacyField_Tactic.v +++ b/contrib/field/LegacyField_Tactic.v @@ -184,15 +184,15 @@ Ltac multiply mul := match goal with | |- (interp_ExprA ?FT ?X2 ?X3 = interp_ExprA ?FT ?X2 ?X4) => let AzeroT := get_component Azero FT in - (cut (interp_ExprA FT X2 mul <> AzeroT); - [ intro; let id := grep_mult in apply (mult_eq FT X3 X4 mul X2 id) - | weak_reduce; - let AoneT := get_component Aone ltac:(body_of FT) + cut (interp_ExprA FT X2 mul <> AzeroT); + [ intro; (let id := grep_mult in apply (mult_eq FT X3 X4 mul X2 id)) + | weak_reduce; + (let AoneT := get_component Aone ltac:(body_of FT) with AmultT := get_component Amult ltac:(body_of FT) in - (try + try match goal with | |- context [(AmultT _ AoneT)] => rewrite (AmultT_1r FT) - end; clear FT X2) ]) + end; clear FT X2) ] end. Ltac apply_multiply FT lvar trm := @@ -279,7 +279,7 @@ Ltac field_gen_aux FT := let lvar := build_varlist FT (AplusT X1 X2) in let trm1 := interp_A FT lvar X1 with trm2 := interp_A FT lvar X2 in let mul := give_mult (EAplus trm1 trm2) in - (cut + cut (let ft := FT in let vm := lvar in interp_ExprA ft vm trm1 = interp_ExprA ft vm trm2); [ compute in |- *; auto @@ -287,10 +287,10 @@ Ltac field_gen_aux FT := apply_simplif apply_assoc; multiply mul; [ apply_simplif apply_multiply; apply_simplif ltac:(apply_inverse mul); - let id := grep_mult in - clear id; weak_reduce; clear ft vm; first - [ inverse_test FT; legacy ring | field_gen_aux FT ] - | idtac ] ]) + (let id := grep_mult in + clear id; weak_reduce; clear ft vm; first + [ inverse_test FT; legacy ring | field_gen_aux FT ]) + | idtac ] ] end. Ltac field_gen FT := diff --git a/contrib/setoid_ring/Field_tac.v b/contrib/setoid_ring/Field_tac.v index 91ccf2216..786654abb 100644 --- a/contrib/setoid_ring/Field_tac.v +++ b/contrib/setoid_ring/Field_tac.v @@ -93,63 +93,31 @@ Ltac Field_simplify lemma Cond_lemma req Cst_tac := let mkFV := FFV Cst_tac radd rmul rsub ropp rdiv rinv in let mkFE := mkFieldexpr C Cst_tac radd rmul rsub ropp rdiv rinv in let simpl_field H := protect_fv "field" in H in - (fun f rl => (f mkFV mkFE simpl_field lemma req rl; - try (apply Cond_lemma; simpl_PCond req))) + fun f rl => f mkFV mkFE simpl_field lemma req rl; + try (apply Cond_lemma; simpl_PCond req) | _ => fail 1 "field anomaly: bad correctness lemma (rewr)" end in Make_tac ReflexiveRewriteTactic. (* Pb: second rewrite are applied to non-zero condition of first rewrite... *) Tactic Notation (at level 0) "field_simplify" constr_list(rl) := - field_lookup (fun req cst_tac _ _ field_simplify_ok cond_ok pre post rl => - (pre(); Field_simplify field_simplify_ok cond_ok req cst_tac; post())). + field_lookup + (fun req cst_tac _ _ field_simplify_ok cond_ok pre post rl => + pre(); Field_simplify field_simplify_ok cond_ok req cst_tac rl; post()). (* Generic form of field tactics *) Ltac Field_Scheme FV_tac SYN_tac SIMPL_tac lemma Cond_lemma req := - let ParseLemma := - match type of lemma with - | forall l fe1 fe2 nfe1 nfe2, _ = nfe1 -> _ = nfe2 -> _ -> - PCond _ _ _ _ _ _ _ _ _ -> - req (@FEeval ?R ?rO _ _ _ _ _ _ _ _ l fe1) _ => - (fun f => f R rO) - | _ => fail 1 "field anomaly: bad correctness lemma (scheme)" - end in - let ParseExpr2 ilemma := - match type of ilemma with - forall nfe1 nfe2, ?fe1 = nfe1 -> ?fe2 = nfe2 -> _ => (fun f => f fe1 fe2) - | _ => fail 1 "field anomaly: cannot find norm expression" - end in - let Main r1 r2 R rO := - let fv := FV_tac r1 (@List.nil R) in - let fv := FV_tac r2 fv in - let fe1 := SYN_tac r1 fv in - let fe2 := SYN_tac r2 fv in - ParseExpr2 (lemma fv fe1 fe2) - ltac:(fun nfrac_val1 nfrac_val2 => - (let nfrac1 := fresh "frac1" in - let norm_hyp1 := fresh "norm_frac1" in - (compute_assertion norm_hyp1 nfrac1 nfrac_val1; - let nfrac2 := fresh "frac2" in - let norm_hyp2 := fresh "norm_frac2" in - (compute_assertion norm_hyp2 nfrac2 nfrac_val2; - (apply (lemma fv fe1 fe2 nfrac1 nfrac2 norm_hyp1 norm_hyp2) - || fail "field anomaly: failed in applying lemma"); - [ SIMPL_tac | apply Cond_lemma; simpl_PCond req]; - try clear nfrac1 nfrac2 norm_hyp1 norm_hyp2)))) in - ParseLemma ltac:(OnEquation req Main). - -Ltac Field_Scheme_n FV_tac SYN_tac SIMPL_tac lemma Cond_lemma req := let R := match type of req with ?R -> _ => R end in let rec ParseExpr ilemma := match type of ilemma with forall nfe, ?fe = nfe -> _ => (fun t => - (let x := fresh "fld_expr" in + let x := fresh "fld_expr" in let H := fresh "norm_fld_expr" in - (compute_assertion H x fe; - ParseExpr (ilemma x H) t; - try clear x H))) + compute_assertion H x fe; + ParseExpr (ilemma x H) t; + try clear x H) | _ => (fun t => t ilemma) end in let Main r1 r2 := @@ -159,8 +127,8 @@ Ltac Field_Scheme_n FV_tac SYN_tac SIMPL_tac lemma Cond_lemma req := let fe2 := SYN_tac r2 fv in ParseExpr (lemma fv fe1 fe2) ltac:(fun ilemma => - ((apply ilemma || fail "field anomaly: failed in applying lemma"); - [ SIMPL_tac | apply Cond_lemma; simpl_PCond req])) in + apply ilemma || fail "field anomaly: failed in applying lemma"; + [ SIMPL_tac | apply Cond_lemma; simpl_PCond req]) in OnEquation req Main. (* solve completely a field equation, leaving non-zero conditions to be @@ -170,13 +138,14 @@ Ltac Field lemma Cond_lemma req Cst_tac := let mkFV := FFV Cst_tac radd rmul rsub ropp rdiv rinv in let mkFE := mkFieldexpr C Cst_tac radd rmul rsub ropp rdiv rinv in let Simpl := - vm_compute; (reflexivity || fail "not a valid field equation") in - Field_Scheme_n mkFV mkFE Simpl lemma Cond_lemma req in + vm_compute; reflexivity || fail "not a valid field equation" in + Field_Scheme mkFV mkFE Simpl lemma Cond_lemma req in ParseFieldComponents lemma req Main. Tactic Notation (at level 0) "field" := - field_lookup (fun req cst_tac field_ok _ _ cond_ok pre post rl => - (pre(); Field field_ok cond_ok req cst_tac; post())). + field_lookup + (fun req cst_tac field_ok _ _ cond_ok pre post rl => + pre(); Field field_ok cond_ok req cst_tac; post()). (* transforms a field equation to an equivalent (simplified) ring equation, and leaves non-zero conditions to be proved (field_simplify_eq) *) @@ -185,13 +154,14 @@ Ltac Field_simplify_eq lemma Cond_lemma req Cst_tac := let mkFV := FFV Cst_tac radd rmul rsub ropp rdiv rinv in let mkFE := mkFieldexpr C Cst_tac radd rmul rsub ropp rdiv rinv in let Simpl := (protect_fv "field") in - Field_Scheme_n mkFV mkFE Simpl lemma Cond_lemma req in + Field_Scheme mkFV mkFE Simpl lemma Cond_lemma req in ParseFieldComponents lemma req Main. -Tactic Notation (at level 0) "field_simplify_eq" constr_list(rl) := - field_lookup (fun req cst_tac _ field_simplify_eq_ok _ cond_ok pre post rl => - (pre(); Field_simplify_eq field_simplify_eq_ok cond_ok req cst_tac; - post())) rl. +Tactic Notation (at level 0) "field_simplify_eq" := + field_lookup + (fun req cst_tac _ field_simplify_eq_ok _ cond_ok pre post rl => + pre(); Field_simplify_eq field_simplify_eq_ok cond_ok req cst_tac; + post()). (* Adding a new field *) diff --git a/contrib/setoid_ring/Ring_tac.v b/contrib/setoid_ring/Ring_tac.v index ec09d4f0b..95efde7f5 100644 --- a/contrib/setoid_ring/Ring_tac.v +++ b/contrib/setoid_ring/Ring_tac.v @@ -28,7 +28,7 @@ Ltac OnMainSubgoal H ty := match ty with | _ -> ?ty' => let subtac := OnMainSubgoal H ty' in - (fun tac => (lapply H; [clear H; intro H; subtac tac | idtac])) + fun tac => lapply H; [clear H; intro H; subtac tac | idtac] | _ => (fun tac => tac) end. @@ -59,7 +59,7 @@ Ltac ReflexiveRewriteTactic FV_tac SYN_tac SIMPL_tac lemma2 req rl := list_iter ltac:(fun r => let ast := SYN_tac r fv in - (try ApplyLemmaAndSimpl SIMPL_tac (lemma2 fv) ast)) + try ApplyLemmaAndSimpl SIMPL_tac (lemma2 fv) ast) rl). (********************************************************) @@ -117,18 +117,18 @@ Ltac FV Cst add mul sub opp t fv := req (PEeval ?rO ?add ?mul ?sub ?opp ?phi l pe1) _ => let mkFV := FV Cst_tac add mul sub opp in let mkPol := mkPolexpr C Cst_tac add mul sub opp in - (fun f => f R mkFV mkPol) + fun f => f R mkFV mkPol | _ => fail 1 "ring anomaly: bad correctness lemma" end in let Main r1 r2 R mkFV mkPol := let fv := mkFV r1 (@List.nil R) in let fv := mkFV r2 fv in - (check_fv fv; - let pe1 := mkPol r1 fv in + check_fv fv; + (let pe1 := mkPol r1 fv in let pe2 := mkPol r2 fv in - (apply (lemma1 fv pe1 pe2) || fail "typing error while applying ring"); + apply (lemma1 fv pe1 pe2) || fail "typing error while applying ring"; vm_compute; - (exact (refl_equal true) || fail "not a valid ring equation")) in + exact (refl_equal true) || fail "not a valid ring equation") in Make_tac ltac:(OnEquation req Main). Ltac Ring_simplify Cst_tac lemma2 req rl := @@ -149,12 +149,12 @@ Ltac Ring_simplify Cst_tac lemma2 req rl := Tactic Notation (at level 0) "ring" := ring_lookup (fun req sth ext morph arth cst_tac lemma1 lemma2 pre post rl => - (pre(); Ring cst_tac lemma1 req)). + pre(); Ring cst_tac lemma1 req). Tactic Notation (at level 0) "ring_simplify" constr_list(rl) := ring_lookup (fun req sth ext morph arth cst_tac lemma1 lemma2 pre post rl => - (pre(); Ring_simplify cst_tac lemma2 req rl; post())) rl. + pre(); Ring_simplify cst_tac lemma2 req rl; post()) rl. (* A simple macro tactic to be prefered to ring_simplify *) Ltac ring_replace t1 t2 := replace t1 with t2 by ring. |