diff options
Diffstat (limited to 'contrib7/ring/ZArithRing.v')
-rw-r--r-- | contrib7/ring/ZArithRing.v | 35 |
1 files changed, 0 insertions, 35 deletions
diff --git a/contrib7/ring/ZArithRing.v b/contrib7/ring/ZArithRing.v deleted file mode 100644 index 3e54deda9..000000000 --- a/contrib7/ring/ZArithRing.v +++ /dev/null @@ -1,35 +0,0 @@ -(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) -(* \VV/ **************************************************************) -(* // * This file is distributed under the terms of the *) -(* * GNU Lesser General Public License Version 2.1 *) -(************************************************************************) - -(* $Id$ *) - -(* Instantiation of the Ring tactic for the binary integers of ZArith *) - -Require Export ArithRing. -Require Export ZArith_base. -Require Eqdep_dec. - -Definition Zeq := [x,y:Z] - Cases `x ?= y ` of - EGAL => true - | _ => false - end. - -Lemma Zeq_prop : (x,y:Z)(Is_true (Zeq x y)) -> x==y. - Intros x y H; Unfold Zeq in H. - Apply Zcompare_EGAL_eq. - NewDestruct (Zcompare x y); [Reflexivity | Contradiction | Contradiction ]. -Save. - -Definition ZTheory : (Ring_Theory Zplus Zmult `1` `0` Zopp Zeq). - Split; Intros; Apply eq2eqT; EAuto with zarith. - Apply eqT2eq; Apply Zeq_prop; Assumption. -Save. - -(* NatConstants and NatTheory are defined in Ring_theory.v *) -Add Ring Z Zplus Zmult `1` `0` Zopp Zeq ZTheory [POS NEG ZERO xO xI xH]. |