aboutsummaryrefslogtreecommitdiffhomepage
path: root/contrib7/correctness/Arrays.v
diff options
context:
space:
mode:
Diffstat (limited to 'contrib7/correctness/Arrays.v')
-rw-r--r--contrib7/correctness/Arrays.v75
1 files changed, 0 insertions, 75 deletions
diff --git a/contrib7/correctness/Arrays.v b/contrib7/correctness/Arrays.v
deleted file mode 100644
index 29108a32d..000000000
--- a/contrib7/correctness/Arrays.v
+++ /dev/null
@@ -1,75 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-(* Certification of Imperative Programs / Jean-Christophe Filliātre *)
-
-(* $Id$ *)
-
-(**********************************************)
-(* Functional arrays, for use in Correctness. *)
-(**********************************************)
-
-(* This is an axiomatization of arrays.
- *
- * The type (array N T) is the type of arrays ranging from 0 to N-1
- * which elements are of type T.
- *
- * Arrays are created with new, accessed with access and modified with store.
- *
- * Operations of accessing and storing are not guarded, but axioms are.
- * So these arrays can be viewed as arrays where accessing and storing
- * out of the bounds has no effect.
- *)
-
-
-Require Export ProgInt.
-
-Set Implicit Arguments.
-
-
-(* The type of arrays *)
-
-Parameter array : Z -> Set -> Set.
-
-
-(* Functions to create, access and modify arrays *)
-
-Parameter new : (n:Z)(T:Set) T -> (array n T).
-
-Parameter access : (n:Z)(T:Set) (array n T) -> Z -> T.
-
-Parameter store : (n:Z)(T:Set) (array n T) -> Z -> T -> (array n T).
-
-
-(* Axioms *)
-
-Axiom new_def : (n:Z)(T:Set)(v0:T)
- (i:Z) `0<=i<n` -> (access (new n v0) i) = v0.
-
-Axiom store_def_1 : (n:Z)(T:Set)(t:(array n T))(v:T)
- (i:Z) `0<=i<n` ->
- (access (store t i v) i) = v.
-
-Axiom store_def_2 : (n:Z)(T:Set)(t:(array n T))(v:T)
- (i:Z)(j:Z) `0<=i<n` -> `0<=j<n` ->
- `i <> j` ->
- (access (store t i v) j) = (access t j).
-
-Hints Resolve new_def store_def_1 store_def_2 : datatypes v62.
-
-(* A tactic to simplify access in arrays *)
-
-Tactic Definition ArrayAccess i j H :=
- Elim (Z_eq_dec i j); [
- Intro H; Rewrite H; Rewrite store_def_1
- | Intro H; Rewrite store_def_2; [ Idtac | Idtac | Idtac | Exact H ] ].
-
-(* Symbolic notation for access *)
-
-Notation "# t [ c ]" := (access t c) (at level 0, t ident)
- V8only (at level 0, t at level 0).