diff options
Diffstat (limited to 'contrib/omega')
-rw-r--r-- | contrib/omega/coq_omega.ml | 81 | ||||
-rwxr-xr-x | contrib/omega/omega.ml | 228 |
2 files changed, 165 insertions, 144 deletions
diff --git a/contrib/omega/coq_omega.ml b/contrib/omega/coq_omega.ml index 86c064098..8d018bd04 100644 --- a/contrib/omega/coq_omega.ml +++ b/contrib/omega/coq_omega.ml @@ -56,16 +56,6 @@ let write f x = f:=x open Goptions -(* Obsolete, subsumed by Time Omega -let _ = - declare_bool_option - { optsync = false; - optname = "Omega time displaying flag"; - optkey = SecondaryTable ("Omega","Time"); - optread = read display_time_flag; - optwrite = write display_time_flag } -*) - let _ = declare_bool_option { optsync = false; @@ -110,6 +100,31 @@ let new_identifier_var = let cpt = ref 0 in (fun () -> let s = "Zvar" ^ string_of_int !cpt in incr cpt; id_of_string s) +let new_id = + let cpt = ref 0 in fun () -> incr cpt; !cpt + +let new_var_num = + let cpt = ref 1000 in (fun () -> incr cpt; !cpt) + +let new_var = + let cpt = ref 0 in fun () -> incr cpt; Nameops.make_ident "WW" (Some !cpt) + +let display_var i = Printf.sprintf "O%d" i + +let intern_id,unintern_id = + let cpt = ref 0 in + let table = Hashtbl.create 7 and co_table = Hashtbl.create 7 in + (fun (name : identifier) -> + try Hashtbl.find table name with Not_found -> + let idx = !cpt in + Hashtbl.add table name idx; + Hashtbl.add co_table idx name; + incr cpt; idx), + (fun idx -> + try Hashtbl.find co_table idx with Not_found -> + let v = new_var () in + Hashtbl.add table v idx; Hashtbl.add co_table idx v; v) + let mk_then = tclTHENLIST let exists_tac c = constructor_tac (Some 1) 1 (Rawterm.ImplicitBindings [c]) @@ -848,14 +863,14 @@ let rec negate p = function | Oufo c -> [], Oufo (mkApp (Lazy.force coq_Zopp, [| c |])) let rec transform p t = - let default () = + let default isnat t' = try - let v,th,_ = find_constr t in + let v,th,_ = find_constr t' in [clever_rewrite_base p (mkVar v) (mkVar th)], Oatom v with _ -> let v = new_identifier_var () and th = new_identifier () in - hide_constr t v th false; + hide_constr t' v th isnat; [clever_rewrite_base p (mkVar v) (mkVar th)], Oatom v in try match destructurate_term t with @@ -884,26 +899,18 @@ let rec transform p t = clever_rewrite p [[P_APP 1];[P_APP 2]] (Lazy.force coq_fast_Zmult_sym) in let tac,t' = scalar p n t2' in tac1 @ tac2 @ (sym :: tac),t' - | _ -> default () + | _ -> default false t end | Kapp((POS|NEG|ZERO),_) -> - (try ([],Oz(recognize_number t)) with _ -> default ()) + (try ([],Oz(recognize_number t)) with _ -> default false t) | Kvar s -> [],Oatom s | Kapp(Zopp,[t]) -> let tac,t' = transform (P_APP 1 :: p) t in let tac',t'' = negate p t' in tac @ tac', t'' - | Kapp(Inject_nat,[t']) -> - begin try - let v,th,_ = find_constr t' in - [clever_rewrite_base p (mkVar v) (mkVar th)],Oatom v - with _ -> - let v = new_identifier_var () and th = new_identifier () in - hide_constr t' v th true; - [clever_rewrite_base p (mkVar v) (mkVar th)], Oatom v - end - | _ -> default () - with e when catchable_exception e -> default () + | Kapp(Inject_nat,[t']) -> default true t' + | _ -> default false t + with e when catchable_exception e -> default false t let shrink_pair p f1 f2 = match f1,f2 with @@ -1184,13 +1191,13 @@ let replay_history tactic_normalisation = (loop l) ]; tclTHEN (mk_then tac) reflexivity] - | STATE(new_eq,def,orig,m,sigma) :: l -> + | STATE {st_new_eq=e;st_def=def;st_orig=orig;st_coef=m;st_var=v} :: l -> let id = new_identifier () and id2 = hyp_of_tag orig.id in - tag_hypothesis id new_eq.id; + tag_hypothesis id e.id; let eq1 = val_of(decompile def) and eq2 = val_of(decompile orig) in - let vid = unintern_id sigma in + let vid = unintern_id v in let theorem = mkApp (build_coq_ex (), [| Lazy.force coq_Z; @@ -1206,7 +1213,7 @@ let replay_history tactic_normalisation = clever_rewrite (P_APP 1 :: P_APP 1 :: P_APP 2 :: p_initial) [[P_APP 1]] (Lazy.force coq_fast_Zopp_one) :: shuffle_mult_right p_initial - orig.body m ({c= -1;v=sigma}::def.body) in + orig.body m ({c= -1;v= v}::def.body) in tclTHENS (cut theorem) [tclTHENLIST [ @@ -1362,7 +1369,7 @@ let destructure_omega gl tac_def (id,c) = let reintroduce id = (* [id] cannot be cleared if dependent: protect it by a try *) tclTHEN (tclTRY (clear [id])) (intro_using id) - + let coq_omega gl = clear_tables (); let tactic_normalisation, system = @@ -1393,17 +1400,19 @@ let coq_omega gl = (tclIDTAC,[]) (dump_tables ()) in let system = system @ sys in - if !display_system_flag then display_system system; + if !display_system_flag then display_system display_var system; if !old_style_flag then begin - try let _ = simplify false system in tclIDTAC gl + try + let _ = simplify (new_id,new_var_num,display_var) false system in + tclIDTAC gl with UNSOLVABLE -> let _,path = depend [] [] (history ()) in - if !display_action_flag then display_action path; + if !display_action_flag then display_action display_var path; (tclTHEN prelude (replay_history tactic_normalisation path)) gl end else begin try - let path = simplify_strong system in - if !display_action_flag then display_action path; + let path = simplify_strong (new_id,new_var_num,display_var) system in + if !display_action_flag then display_action display_var path; (tclTHEN prelude (replay_history tactic_normalisation path)) gl with NO_CONTRADICTION -> error "Omega can't solve this system" end diff --git a/contrib/omega/omega.ml b/contrib/omega/omega.ml index f6d0b8107..0239bbe73 100755 --- a/contrib/omega/omega.ml +++ b/contrib/omega/omega.ml @@ -11,12 +11,12 @@ (* *) (* Pierre Crégut (CNET, Lannion, France) *) (* *) +(* 13/10/2002 : modified to cope with an external numbering of equations *) +(* and hypothesis. Its use for Omega is not more complex and it makes *) +(* things much simpler for the reflexive version where we should limit *) +(* the number of source of numbering. *) (**************************************************************************) -(* $Id$ *) - -open Util -open Hashtbl open Names let flat_map f = @@ -47,15 +47,6 @@ let floor_div a b = | true, false -> (a-1) / b - 1 | false,true -> (a+1) / b - 1 -let new_id = - let cpt = ref 0 in fun () -> incr cpt; ! cpt - -let new_var = - let cpt = ref 0 in fun () -> incr cpt; Nameops.make_ident "WW" (Some !cpt) - -let new_var_num = - let cpt = ref 1000 in (fun () -> incr cpt; !cpt) - type coeff = {c: int ; v: int} type linear = coeff list @@ -72,13 +63,20 @@ type afine = { (* a constant *) constant: int } +type state_action = { + st_new_eq : afine; + st_def : afine; + st_orig : afine; + st_coef : int; + st_var : int } + type action = | DIVIDE_AND_APPROX of afine * afine * int * int | NOT_EXACT_DIVIDE of afine * int | FORGET_C of int | EXACT_DIVIDE of afine * int | SUM of int * (int * afine) * (int * afine) - | STATE of afine * afine * afine * int * int + | STATE of state_action | HYP of afine | FORGET of int * int | FORGET_I of int * int @@ -95,18 +93,7 @@ exception UNSOLVABLE exception NO_CONTRADICTION -let intern_id,unintern_id = - let cpt = ref 0 in - let table = create 7 and co_table = create 7 in - (fun (name : identifier) -> - try find table name with Not_found -> - let idx = !cpt in - add table name idx; add co_table idx name; incr cpt; idx), - (fun idx -> - try find co_table idx with Not_found -> - let v = new_var () in add table v idx; add co_table idx v; v) - -let display_eq (l,e) = +let display_eq print_var (l,e) = let _ = List.fold_left (fun not_first f -> @@ -114,9 +101,9 @@ let display_eq (l,e) = (if f.c < 0 then "- " else if not_first then "+ " else ""); let c = abs f.c in if c = 1 then - Printf.printf "%s " (string_of_id (unintern_id f.v)) + Printf.printf "%s " (print_var f.v) else - Printf.printf "%d %s " c (string_of_id (unintern_id f.v)); + Printf.printf "%d %s " c (print_var f.v); true) false l in @@ -125,26 +112,33 @@ let display_eq (l,e) = else if e < 0 then Printf.printf "- %d " (abs e) +let rec trace_length l = + let action_length accu = function + | SPLIT_INEQ (_,(_,l1),(_,l2)) -> + accu + 1 + trace_length l1 + trace_length l2 + | _ -> accu + 1 in + List.fold_left action_length 0 l + let operator_of_eq = function | EQUA -> "=" | DISE -> "!=" | INEQ -> ">=" let kind_of = function | EQUA -> "equation" | DISE -> "disequation" | INEQ -> "inequation" -let display_system l = +let display_system print_var l = List.iter (fun { kind=b; body=e; constant=c; id=id} -> print_int id; print_string ": "; - display_eq (e,c); print_string (operator_of_eq b); + display_eq print_var (e,c); print_string (operator_of_eq b); print_string "0\n") l; print_string "------------------------\n\n" -let display_inequations l = - List.iter (fun e -> display_eq e;print_string ">= 0\n") l; +let display_inequations print_var l = + List.iter (fun e -> display_eq print_var e;print_string ">= 0\n") l; print_string "------------------------\n\n" -let rec display_action = function +let rec display_action print_var = function | act :: l -> begin match act with | DIVIDE_AND_APPROX (e1,e2,k,d) -> Printf.printf @@ -167,13 +161,13 @@ let rec display_action = function "We state %s E%d = %d %s E%d + %d %s E%d.\n" (kind_of e1.kind) e c1 (kind_of e1.kind) e1.id c2 (kind_of e2.kind) e2.id - | STATE (e,_,_,x,_) -> + | STATE { st_new_eq = e; st_coef = x} -> Printf.printf "We define a new equation %d :" e.id; - display_eq (e.body,e.constant); + display_eq print_var (e.body,e.constant); print_string (operator_of_eq e.kind); print_string " 0\n" | HYP e -> Printf.printf "We define %d :" e.id; - display_eq (e.body,e.constant); + display_eq print_var (e.body,e.constant); print_string (operator_of_eq e.kind); print_string " 0\n" | FORGET_C e -> Printf.printf "E%d is trivially satisfiable.\n" e | FORGET (e1,e2) -> Printf.printf "E%d subsumes E%d.\n" e1 e2 @@ -196,19 +190,20 @@ let rec display_action = function Printf.printf "inequation E%d states 0 != 0.\n" e | SPLIT_INEQ (e,(e1,l1),(e2,l2)) -> Printf.printf "equation E%d is split in E%d and E%d\n\n" e.id e1 e2; - display_action l1; + display_action print_var l1; print_newline (); - display_action l2; + display_action print_var l2; print_newline () - end; display_action l + end; display_action print_var l | [] -> flush stdout (*""*) +let default_print_var v = Printf.sprintf "XX%d" v let add_event, history, clear_history = let accu = ref [] in - (fun (v : action) -> if !debug then display_action [v]; push v accu), + (fun (v:action) -> if !debug then display_action default_print_var [v]; push v accu), (fun () -> !accu), (fun () -> accu := []) @@ -240,8 +235,8 @@ let rec sum p0 p1 = match (p0,p1) with else x2 :: sum l1' l2 -let sum_afine eq1 eq2 = - { kind = eq1.kind; id = new_id (); +let sum_afine new_eq_id eq1 eq2 = + { kind = eq1.kind; id = new_eq_id (); body = sum eq1.body eq2.body; constant = eq1.constant + eq2.constant } exception FACTOR1 @@ -288,81 +283,87 @@ let normalize ({id=id; kind=eq_flag; body=e; constant =x} as eq) = [new_eq] end else [eq] -let eliminate_with_in {v=v;c=c_unite} eq2 +let eliminate_with_in new_eq_id {v=v;c=c_unite} eq2 ({body=e1; constant=c1} as eq1) = try let (f,_) = chop_var v e1 in let coeff = if c_unite=1 then -f.c else if c_unite= -1 then f.c else failwith "eliminate_with_in" in - let res = sum_afine eq1 (map_eq_afine (fun c -> c * coeff) eq2) in + let res = sum_afine new_eq_id eq1 (map_eq_afine (fun c -> c * coeff) eq2) in add_event (SUM (res.id,(1,eq1),(coeff,eq2))); res with CHOPVAR -> eq1 let omega_mod a b = a - b * floor_div (2 * a + b) (2 * b) -let banerjee_step original l1 l2 = +let banerjee_step (new_eq_id,new_var_id,print_var) original l1 l2 = let e = original.body in - let sigma = new_var_num () in + let sigma = new_var_id () in let smallest,var = try List.fold_left (fun (v,p) c -> if v > (abs c.c) then abs c.c,c.v else (v,p)) (abs (List.hd e).c, (List.hd e).v) (List.tl e) - with Failure "tl" -> display_system [original] ; failwith "TL" in + with Failure "tl" -> display_system print_var [original] ; failwith "TL" in let m = smallest + 1 in let new_eq = { constant = omega_mod original.constant m; body = {c= -m;v=sigma} :: map_eq_linear (fun a -> omega_mod a m) original.body; - id = new_id (); kind = EQUA } in + id = new_eq_id (); kind = EQUA } in let definition = { constant = - floor_div (2 * original.constant + m) (2 * m); body = map_eq_linear (fun a -> - floor_div (2 * a + m) (2 * m)) original.body; - id = new_id (); kind = EQUA } in - add_event (STATE (new_eq,definition,original,m,sigma)); + id = new_eq_id (); kind = EQUA } in + add_event (STATE {st_new_eq = new_eq; st_def = definition; + st_orig =original; st_coef = m; st_var = sigma}); let new_eq = List.hd (normalize new_eq) in let eliminated_var, def = chop_var var new_eq.body in let other_equations = - flat_map (fun e -> normalize (eliminate_with_in eliminated_var new_eq e)) + flat_map (fun e -> normalize (eliminate_with_in new_eq_id eliminated_var new_eq e)) l1 in let inequations = - flat_map (fun e -> normalize (eliminate_with_in eliminated_var new_eq e)) + flat_map (fun e -> normalize (eliminate_with_in new_eq_id eliminated_var new_eq e)) l2 in - let original' = eliminate_with_in eliminated_var new_eq original in + let original' = eliminate_with_in new_eq_id eliminated_var new_eq original in let mod_original = map_eq_afine (fun c -> c / m) original' in add_event (EXACT_DIVIDE (original',m)); List.hd (normalize mod_original),other_equations,inequations -let rec eliminate_one_equation (e,other,ineqs) = - if !debug then display_system (e::other); +let rec eliminate_one_equation ((new_eq_id,new_var_id,print_var) as new_ids) (e,other,ineqs) = + if !debug then display_system print_var (e::other); try let v,def = chop_factor_1 e.body in - (flat_map (fun e' -> normalize (eliminate_with_in v e e')) other, - flat_map (fun e' -> normalize (eliminate_with_in v e e')) ineqs) - with FACTOR1 -> eliminate_one_equation (banerjee_step e other ineqs) + (flat_map (fun e' -> normalize (eliminate_with_in new_eq_id v e e')) other, + flat_map (fun e' -> normalize (eliminate_with_in new_eq_id v e e')) ineqs) + with FACTOR1 -> + eliminate_one_equation new_ids (banerjee_step new_ids e other ineqs) -let rec banerjee (sys_eq,sys_ineq) = +let rec banerjee ((_,_,print_var) as new_ids) (sys_eq,sys_ineq) = let rec fst_eq_1 = function (eq::l) -> if List.exists (fun x -> abs x.c = 1) eq.body then eq,l else let (eq',l') = fst_eq_1 l in (eq',eq::l') | [] -> raise Not_found in match sys_eq with - [] -> if !debug then display_system sys_ineq; sys_ineq + [] -> if !debug then display_system print_var sys_ineq; sys_ineq | (e1::rest) -> let eq,other = try fst_eq_1 sys_eq with Not_found -> (e1,rest) in if eq.body = [] then if eq.constant = 0 then begin - add_event (FORGET_C eq.id); banerjee (other,sys_ineq) + add_event (FORGET_C eq.id); banerjee new_ids (other,sys_ineq) end else begin add_event (CONSTANT_NOT_NUL(eq.id,eq.constant)); raise UNSOLVABLE end - else banerjee (eliminate_one_equation (eq,other,sys_ineq)) + else + banerjee new_ids + (eliminate_one_equation new_ids (eq,other,sys_ineq)) + type kind = INVERTED | NORMAL -let redundancy_elimination system = + +let redundancy_elimination new_eq_id system = let normal = function ({body=f::_} as e) when f.c < 0 -> negate_eq e, INVERTED | e -> e,NORMAL in - let table = create 7 in + let table = Hashtbl.create 7 in List.iter (fun e -> let ({body=ne} as nx) ,kind = normal e in @@ -372,7 +373,7 @@ let redundancy_elimination system = end else add_event (FORGET_C nx.id) else try - let (optnormal,optinvert) = find table ne in + let (optnormal,optinvert) = Hashtbl.find table ne in let final = if kind = NORMAL then begin match optnormal with @@ -400,18 +401,18 @@ let redundancy_elimination system = raise UNSOLVABLE end | _ -> () end; - remove table ne; - add table ne final + Hashtbl.remove table ne; + Hashtbl.add table ne final with Not_found -> - add table ne + Hashtbl.add table ne (if kind = NORMAL then (Some nx,None) else (None,Some nx))) system; let accu_eq = ref [] in let accu_ineq = ref [] in - iter + Hashtbl.iter (fun p0 p1 -> match (p0,p1) with - | (e, (Some x, Some y)) when x.constant = y.constant -> - let id=new_id () in + | (e, (Some x, Some y)) when x.constant = y.constant -> + let id=new_eq_id () in add_event (MERGE_EQ(id,x,y.id)); push {id=id; kind=EQUA; body=x.body; constant=x.constant} accu_eq | (e, (optnorm,optinvert)) -> @@ -425,14 +426,14 @@ let redundancy_elimination system = exception SOLVED_SYSTEM let select_variable system = - let table = create 7 in + let table = Hashtbl.create 7 in let push v c= - try let r = find table v in r := max !r (abs c) - with Not_found -> add table v (ref (abs c)) in + try let r = Hashtbl.find table v in r := max !r (abs c) + with Not_found -> Hashtbl.add table v (ref (abs c)) in List.iter (fun {body=l} -> List.iter (fun f -> push f.v f.c) l) system; let vmin,cmin = ref (-1), ref 0 in let var_cpt = ref 0 in - iter + Hashtbl.iter (fun v ({contents = c}) -> incr var_cpt; if c < !cmin or !vmin = (-1) then begin vmin := v; cmin := c end) @@ -449,13 +450,13 @@ let classify v system = with CHOPVAR -> (eq::not_occ,below,over)) ([],[],[]) system -let product dark_shadow low high = +let product new_eq_id dark_shadow low high = List.fold_left (fun accu (a,eq1) -> List.fold_left (fun accu (b,eq2) -> let eq = - sum_afine (map_eq_afine (fun c -> c * b) eq1) + sum_afine new_eq_id (map_eq_afine (fun c -> c * b) eq1) (map_eq_afine (fun c -> c * a) eq2) in add_event(SUM(eq.id,(b,eq1),(a,eq2))); match normalize eq with @@ -473,33 +474,34 @@ let product dark_shadow low high = accu high) [] low -let fourier_motzkin dark_shadow system = +let fourier_motzkin (_,new_eq_id,print_var) dark_shadow system = let v = select_variable system in let (ineq_out, ineq_low,ineq_high) = classify v system in - let expanded = ineq_out @ product dark_shadow ineq_low ineq_high in - if !debug then display_system expanded; expanded + let expanded = ineq_out @ product new_eq_id dark_shadow ineq_low ineq_high in + if !debug then display_system print_var expanded; expanded -let simplify dark_shadow system = +let simplify ((new_eq_id,new_var_id,print_var) as new_ids) dark_shadow system = if List.exists (fun e -> e.kind = DISE) system then failwith "disequation in simplify"; clear_history (); List.iter (fun e -> add_event (HYP e)) system; let system = flat_map normalize system in let eqs,ineqs = filter (fun e -> e.kind=EQUA) system in - let simp_eq,simp_ineq = redundancy_elimination ineqs in + let simp_eq,simp_ineq = redundancy_elimination new_eq_id ineqs in let system = (eqs @ simp_eq,simp_ineq) in let rec loop1a system = - let sys_ineq = banerjee system in + let sys_ineq = banerjee new_ids system in loop1b sys_ineq and loop1b sys_ineq = - let simp_eq,simp_ineq = redundancy_elimination sys_ineq in + let simp_eq,simp_ineq = redundancy_elimination new_eq_id sys_ineq in if simp_eq = [] then simp_ineq else loop1a (simp_eq,simp_ineq) in let rec loop2 system = try - let expanded = fourier_motzkin dark_shadow system in + let expanded = fourier_motzkin new_ids dark_shadow system in loop2 (loop1b expanded) - with SOLVED_SYSTEM -> if !debug then display_system system; system + with SOLVED_SYSTEM -> + if !debug then display_system print_var system; system in loop2 (loop1a system) @@ -520,7 +522,7 @@ let rec depend relie_on accu = function depend (e1.id::e2.id::relie_on) (act::accu) l else depend relie_on accu l - | STATE (e,_,_,_,_) -> + | STATE {st_new_eq=e} -> if List.mem e.id relie_on then depend relie_on (act::accu) l else depend relie_on accu l | HYP e -> @@ -546,54 +548,63 @@ let rec depend relie_on accu = function end | [] -> relie_on, accu -let solve system = - try let _ = simplify false system in failwith "no contradiction" - with UNSOLVABLE -> display_action (snd (depend [] [] (history ()))) +(* +let depend relie_on accu trace = + Printf.printf "Longueur de la trace initiale : %d\n" + (trace_length trace + trace_length accu); + let rel',trace' = depend relie_on accu trace in + Printf.printf "Longueur de la trace simplifiée : %d\n" (trace_length trace'); + rel',trace' +*) + +let solve (new_eq_id,new_eq_var,print_var) system = + try let _ = simplify new_eq_id false system in failwith "no contradiction" + with UNSOLVABLE -> display_action print_var (snd (depend [] [] (history ()))) let negation (eqs,ineqs) = let diseq,_ = filter (fun e -> e.kind = DISE) ineqs in let normal = function | ({body=f::_} as e) when f.c < 0 -> negate_eq e, INVERTED | e -> e,NORMAL in - let table = create 7 in + let table = Hashtbl.create 7 in List.iter (fun e -> let {body=ne;constant=c} ,kind = normal e in - add table (ne,c) (kind,e)) diseq; + Hashtbl.add table (ne,c) (kind,e)) diseq; List.iter (fun e -> - if e.kind <> EQUA then pp 9999; + assert (e.kind <> EQUA); let {body=ne;constant=c},kind = normal e in try - let (kind',e') = find table (ne,c) in + let (kind',e') = Hashtbl.find table (ne,c) in add_event (NEGATE_CONTRADICT (e,e',kind=kind')); raise UNSOLVABLE with Not_found -> ()) eqs exception FULL_SOLUTION of action list * int list -let simplify_strong system = +let simplify_strong ((new_eq_id,new_var_id,print_var) as new_ids) system = clear_history (); List.iter (fun e -> add_event (HYP e)) system; (* Initial simplification phase *) let rec loop1a system = negation system; - let sys_ineq = banerjee system in + let sys_ineq = banerjee new_ids system in loop1b sys_ineq and loop1b sys_ineq = let dise,ine = filter (fun e -> e.kind = DISE) sys_ineq in - let simp_eq,simp_ineq = redundancy_elimination ine in + let simp_eq,simp_ineq = redundancy_elimination new_eq_id ine in if simp_eq = [] then dise @ simp_ineq else loop1a (simp_eq,dise @ simp_ineq) in let rec loop2 system = try - let expanded = fourier_motzkin false system in + let expanded = fourier_motzkin new_ids false system in loop2 (loop1b expanded) - with SOLVED_SYSTEM -> if !debug then display_system system; system + with SOLVED_SYSTEM -> if !debug then display_system print_var system; system in let rec explode_diseq = function | (de::diseq,ineqs,expl_map) -> - let id1 = new_id () - and id2 = new_id () in + let id1 = new_eq_id () + and id2 = new_eq_id () in let e1 = {id = id1; kind=INEQ; body = de.body; constant = de.constant - 1} in let e2 = @@ -612,7 +623,7 @@ let simplify_strong system = let system = flat_map normalize system in let eqs,ineqs = filter (fun e -> e.kind=EQUA) system in let dise,ine = filter (fun e -> e.kind = DISE) ineqs in - let simp_eq,simp_ineq = redundancy_elimination ine in + let simp_eq,simp_ineq = redundancy_elimination new_eq_id ine in let system = (eqs @ simp_eq,simp_ineq @ dise) in let system' = loop1a system in let diseq,ineq = filter (fun e -> e.kind = DISE) system' in @@ -631,14 +642,15 @@ let simplify_strong system = sys_exploded in let max_count sys = - let tbl = create 7 in + let tbl = Hashtbl.create 7 in let augment x = - try incr (find tbl x) with Not_found -> add tbl x (ref 1) in + try incr (Hashtbl.find tbl x) + with Not_found -> Hashtbl.add tbl x (ref 1) in let eq = ref (-1) and c = ref 0 in List.iter (function | ([],r_on,_,path) -> raise (FULL_SOLUTION (path,r_on)) | (l,_,_,_) -> List.iter augment l) sys; - iter (fun x v -> if !v > !c then begin eq := x; c := !v end) tbl; + Hashtbl.iter (fun x v -> if !v > !c then begin eq := x; c := !v end) tbl; !eq in let rec solve systems = @@ -649,13 +661,13 @@ let simplify_strong system = | [] -> failwith "solve" in let s1,s2 = filter (fun (_,_,decomp,_) -> sign decomp) systems in let s1' = - List.map (fun (dep,ro,dc,pa) -> (list_except id dep,ro,dc,pa)) s1 in + List.map (fun (dep,ro,dc,pa) -> (Util.list_except id dep,ro,dc,pa)) s1 in let s2' = - List.map (fun (dep,ro,dc,pa) -> (list_except id dep,ro,dc,pa)) s2 in + List.map (fun (dep,ro,dc,pa) -> (Util.list_except id dep,ro,dc,pa)) s2 in let (r1,relie1) = solve s1' and (r2,relie2) = solve s2' in let (eq,id1,id2) = List.assoc id explode_map in - [SPLIT_INEQ(eq,(id1,r1),(id2, r2))], eq.id :: list_union relie1 relie2 + [SPLIT_INEQ(eq,(id1,r1),(id2, r2))], eq.id :: Util.list_union relie1 relie2 with FULL_SOLUTION (x0,x1) -> (x0,x1) in let act,relie_on = solve all_solutions in |