aboutsummaryrefslogtreecommitdiffhomepage
path: root/contrib/omega
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/omega')
-rw-r--r--contrib/omega/coq_omega.ml81
-rwxr-xr-xcontrib/omega/omega.ml228
2 files changed, 165 insertions, 144 deletions
diff --git a/contrib/omega/coq_omega.ml b/contrib/omega/coq_omega.ml
index 86c064098..8d018bd04 100644
--- a/contrib/omega/coq_omega.ml
+++ b/contrib/omega/coq_omega.ml
@@ -56,16 +56,6 @@ let write f x = f:=x
open Goptions
-(* Obsolete, subsumed by Time Omega
-let _ =
- declare_bool_option
- { optsync = false;
- optname = "Omega time displaying flag";
- optkey = SecondaryTable ("Omega","Time");
- optread = read display_time_flag;
- optwrite = write display_time_flag }
-*)
-
let _ =
declare_bool_option
{ optsync = false;
@@ -110,6 +100,31 @@ let new_identifier_var =
let cpt = ref 0 in
(fun () -> let s = "Zvar" ^ string_of_int !cpt in incr cpt; id_of_string s)
+let new_id =
+ let cpt = ref 0 in fun () -> incr cpt; !cpt
+
+let new_var_num =
+ let cpt = ref 1000 in (fun () -> incr cpt; !cpt)
+
+let new_var =
+ let cpt = ref 0 in fun () -> incr cpt; Nameops.make_ident "WW" (Some !cpt)
+
+let display_var i = Printf.sprintf "O%d" i
+
+let intern_id,unintern_id =
+ let cpt = ref 0 in
+ let table = Hashtbl.create 7 and co_table = Hashtbl.create 7 in
+ (fun (name : identifier) ->
+ try Hashtbl.find table name with Not_found ->
+ let idx = !cpt in
+ Hashtbl.add table name idx;
+ Hashtbl.add co_table idx name;
+ incr cpt; idx),
+ (fun idx ->
+ try Hashtbl.find co_table idx with Not_found ->
+ let v = new_var () in
+ Hashtbl.add table v idx; Hashtbl.add co_table idx v; v)
+
let mk_then = tclTHENLIST
let exists_tac c = constructor_tac (Some 1) 1 (Rawterm.ImplicitBindings [c])
@@ -848,14 +863,14 @@ let rec negate p = function
| Oufo c -> [], Oufo (mkApp (Lazy.force coq_Zopp, [| c |]))
let rec transform p t =
- let default () =
+ let default isnat t' =
try
- let v,th,_ = find_constr t in
+ let v,th,_ = find_constr t' in
[clever_rewrite_base p (mkVar v) (mkVar th)], Oatom v
with _ ->
let v = new_identifier_var ()
and th = new_identifier () in
- hide_constr t v th false;
+ hide_constr t' v th isnat;
[clever_rewrite_base p (mkVar v) (mkVar th)], Oatom v
in
try match destructurate_term t with
@@ -884,26 +899,18 @@ let rec transform p t =
clever_rewrite p [[P_APP 1];[P_APP 2]]
(Lazy.force coq_fast_Zmult_sym) in
let tac,t' = scalar p n t2' in tac1 @ tac2 @ (sym :: tac),t'
- | _ -> default ()
+ | _ -> default false t
end
| Kapp((POS|NEG|ZERO),_) ->
- (try ([],Oz(recognize_number t)) with _ -> default ())
+ (try ([],Oz(recognize_number t)) with _ -> default false t)
| Kvar s -> [],Oatom s
| Kapp(Zopp,[t]) ->
let tac,t' = transform (P_APP 1 :: p) t in
let tac',t'' = negate p t' in
tac @ tac', t''
- | Kapp(Inject_nat,[t']) ->
- begin try
- let v,th,_ = find_constr t' in
- [clever_rewrite_base p (mkVar v) (mkVar th)],Oatom v
- with _ ->
- let v = new_identifier_var () and th = new_identifier () in
- hide_constr t' v th true;
- [clever_rewrite_base p (mkVar v) (mkVar th)], Oatom v
- end
- | _ -> default ()
- with e when catchable_exception e -> default ()
+ | Kapp(Inject_nat,[t']) -> default true t'
+ | _ -> default false t
+ with e when catchable_exception e -> default false t
let shrink_pair p f1 f2 =
match f1,f2 with
@@ -1184,13 +1191,13 @@ let replay_history tactic_normalisation =
(loop l) ];
tclTHEN (mk_then tac) reflexivity]
- | STATE(new_eq,def,orig,m,sigma) :: l ->
+ | STATE {st_new_eq=e;st_def=def;st_orig=orig;st_coef=m;st_var=v} :: l ->
let id = new_identifier ()
and id2 = hyp_of_tag orig.id in
- tag_hypothesis id new_eq.id;
+ tag_hypothesis id e.id;
let eq1 = val_of(decompile def)
and eq2 = val_of(decompile orig) in
- let vid = unintern_id sigma in
+ let vid = unintern_id v in
let theorem =
mkApp (build_coq_ex (), [|
Lazy.force coq_Z;
@@ -1206,7 +1213,7 @@ let replay_history tactic_normalisation =
clever_rewrite (P_APP 1 :: P_APP 1 :: P_APP 2 :: p_initial)
[[P_APP 1]] (Lazy.force coq_fast_Zopp_one) ::
shuffle_mult_right p_initial
- orig.body m ({c= -1;v=sigma}::def.body) in
+ orig.body m ({c= -1;v= v}::def.body) in
tclTHENS
(cut theorem)
[tclTHENLIST [
@@ -1362,7 +1369,7 @@ let destructure_omega gl tac_def (id,c) =
let reintroduce id =
(* [id] cannot be cleared if dependent: protect it by a try *)
tclTHEN (tclTRY (clear [id])) (intro_using id)
-
+
let coq_omega gl =
clear_tables ();
let tactic_normalisation, system =
@@ -1393,17 +1400,19 @@ let coq_omega gl =
(tclIDTAC,[]) (dump_tables ())
in
let system = system @ sys in
- if !display_system_flag then display_system system;
+ if !display_system_flag then display_system display_var system;
if !old_style_flag then begin
- try let _ = simplify false system in tclIDTAC gl
+ try
+ let _ = simplify (new_id,new_var_num,display_var) false system in
+ tclIDTAC gl
with UNSOLVABLE ->
let _,path = depend [] [] (history ()) in
- if !display_action_flag then display_action path;
+ if !display_action_flag then display_action display_var path;
(tclTHEN prelude (replay_history tactic_normalisation path)) gl
end else begin
try
- let path = simplify_strong system in
- if !display_action_flag then display_action path;
+ let path = simplify_strong (new_id,new_var_num,display_var) system in
+ if !display_action_flag then display_action display_var path;
(tclTHEN prelude (replay_history tactic_normalisation path)) gl
with NO_CONTRADICTION -> error "Omega can't solve this system"
end
diff --git a/contrib/omega/omega.ml b/contrib/omega/omega.ml
index f6d0b8107..0239bbe73 100755
--- a/contrib/omega/omega.ml
+++ b/contrib/omega/omega.ml
@@ -11,12 +11,12 @@
(* *)
(* Pierre Crégut (CNET, Lannion, France) *)
(* *)
+(* 13/10/2002 : modified to cope with an external numbering of equations *)
+(* and hypothesis. Its use for Omega is not more complex and it makes *)
+(* things much simpler for the reflexive version where we should limit *)
+(* the number of source of numbering. *)
(**************************************************************************)
-(* $Id$ *)
-
-open Util
-open Hashtbl
open Names
let flat_map f =
@@ -47,15 +47,6 @@ let floor_div a b =
| true, false -> (a-1) / b - 1
| false,true -> (a+1) / b - 1
-let new_id =
- let cpt = ref 0 in fun () -> incr cpt; ! cpt
-
-let new_var =
- let cpt = ref 0 in fun () -> incr cpt; Nameops.make_ident "WW" (Some !cpt)
-
-let new_var_num =
- let cpt = ref 1000 in (fun () -> incr cpt; !cpt)
-
type coeff = {c: int ; v: int}
type linear = coeff list
@@ -72,13 +63,20 @@ type afine = {
(* a constant *)
constant: int }
+type state_action = {
+ st_new_eq : afine;
+ st_def : afine;
+ st_orig : afine;
+ st_coef : int;
+ st_var : int }
+
type action =
| DIVIDE_AND_APPROX of afine * afine * int * int
| NOT_EXACT_DIVIDE of afine * int
| FORGET_C of int
| EXACT_DIVIDE of afine * int
| SUM of int * (int * afine) * (int * afine)
- | STATE of afine * afine * afine * int * int
+ | STATE of state_action
| HYP of afine
| FORGET of int * int
| FORGET_I of int * int
@@ -95,18 +93,7 @@ exception UNSOLVABLE
exception NO_CONTRADICTION
-let intern_id,unintern_id =
- let cpt = ref 0 in
- let table = create 7 and co_table = create 7 in
- (fun (name : identifier) ->
- try find table name with Not_found ->
- let idx = !cpt in
- add table name idx; add co_table idx name; incr cpt; idx),
- (fun idx ->
- try find co_table idx with Not_found ->
- let v = new_var () in add table v idx; add co_table idx v; v)
-
-let display_eq (l,e) =
+let display_eq print_var (l,e) =
let _ =
List.fold_left
(fun not_first f ->
@@ -114,9 +101,9 @@ let display_eq (l,e) =
(if f.c < 0 then "- " else if not_first then "+ " else "");
let c = abs f.c in
if c = 1 then
- Printf.printf "%s " (string_of_id (unintern_id f.v))
+ Printf.printf "%s " (print_var f.v)
else
- Printf.printf "%d %s " c (string_of_id (unintern_id f.v));
+ Printf.printf "%d %s " c (print_var f.v);
true)
false l
in
@@ -125,26 +112,33 @@ let display_eq (l,e) =
else if e < 0 then
Printf.printf "- %d " (abs e)
+let rec trace_length l =
+ let action_length accu = function
+ | SPLIT_INEQ (_,(_,l1),(_,l2)) ->
+ accu + 1 + trace_length l1 + trace_length l2
+ | _ -> accu + 1 in
+ List.fold_left action_length 0 l
+
let operator_of_eq = function
| EQUA -> "=" | DISE -> "!=" | INEQ -> ">="
let kind_of = function
| EQUA -> "equation" | DISE -> "disequation" | INEQ -> "inequation"
-let display_system l =
+let display_system print_var l =
List.iter
(fun { kind=b; body=e; constant=c; id=id} ->
print_int id; print_string ": ";
- display_eq (e,c); print_string (operator_of_eq b);
+ display_eq print_var (e,c); print_string (operator_of_eq b);
print_string "0\n")
l;
print_string "------------------------\n\n"
-let display_inequations l =
- List.iter (fun e -> display_eq e;print_string ">= 0\n") l;
+let display_inequations print_var l =
+ List.iter (fun e -> display_eq print_var e;print_string ">= 0\n") l;
print_string "------------------------\n\n"
-let rec display_action = function
+let rec display_action print_var = function
| act :: l -> begin match act with
| DIVIDE_AND_APPROX (e1,e2,k,d) ->
Printf.printf
@@ -167,13 +161,13 @@ let rec display_action = function
"We state %s E%d = %d %s E%d + %d %s E%d.\n"
(kind_of e1.kind) e c1 (kind_of e1.kind) e1.id c2
(kind_of e2.kind) e2.id
- | STATE (e,_,_,x,_) ->
+ | STATE { st_new_eq = e; st_coef = x} ->
Printf.printf "We define a new equation %d :" e.id;
- display_eq (e.body,e.constant);
+ display_eq print_var (e.body,e.constant);
print_string (operator_of_eq e.kind); print_string " 0\n"
| HYP e ->
Printf.printf "We define %d :" e.id;
- display_eq (e.body,e.constant);
+ display_eq print_var (e.body,e.constant);
print_string (operator_of_eq e.kind); print_string " 0\n"
| FORGET_C e -> Printf.printf "E%d is trivially satisfiable.\n" e
| FORGET (e1,e2) -> Printf.printf "E%d subsumes E%d.\n" e1 e2
@@ -196,19 +190,20 @@ let rec display_action = function
Printf.printf "inequation E%d states 0 != 0.\n" e
| SPLIT_INEQ (e,(e1,l1),(e2,l2)) ->
Printf.printf "equation E%d is split in E%d and E%d\n\n" e.id e1 e2;
- display_action l1;
+ display_action print_var l1;
print_newline ();
- display_action l2;
+ display_action print_var l2;
print_newline ()
- end; display_action l
+ end; display_action print_var l
| [] ->
flush stdout
(*""*)
+let default_print_var v = Printf.sprintf "XX%d" v
let add_event, history, clear_history =
let accu = ref [] in
- (fun (v : action) -> if !debug then display_action [v]; push v accu),
+ (fun (v:action) -> if !debug then display_action default_print_var [v]; push v accu),
(fun () -> !accu),
(fun () -> accu := [])
@@ -240,8 +235,8 @@ let rec sum p0 p1 = match (p0,p1) with
else
x2 :: sum l1' l2
-let sum_afine eq1 eq2 =
- { kind = eq1.kind; id = new_id ();
+let sum_afine new_eq_id eq1 eq2 =
+ { kind = eq1.kind; id = new_eq_id ();
body = sum eq1.body eq2.body; constant = eq1.constant + eq2.constant }
exception FACTOR1
@@ -288,81 +283,87 @@ let normalize ({id=id; kind=eq_flag; body=e; constant =x} as eq) =
[new_eq]
end else [eq]
-let eliminate_with_in {v=v;c=c_unite} eq2
+let eliminate_with_in new_eq_id {v=v;c=c_unite} eq2
({body=e1; constant=c1} as eq1) =
try
let (f,_) = chop_var v e1 in
let coeff = if c_unite=1 then -f.c else if c_unite= -1 then f.c
else failwith "eliminate_with_in" in
- let res = sum_afine eq1 (map_eq_afine (fun c -> c * coeff) eq2) in
+ let res = sum_afine new_eq_id eq1 (map_eq_afine (fun c -> c * coeff) eq2) in
add_event (SUM (res.id,(1,eq1),(coeff,eq2))); res
with CHOPVAR -> eq1
let omega_mod a b = a - b * floor_div (2 * a + b) (2 * b)
-let banerjee_step original l1 l2 =
+let banerjee_step (new_eq_id,new_var_id,print_var) original l1 l2 =
let e = original.body in
- let sigma = new_var_num () in
+ let sigma = new_var_id () in
let smallest,var =
try
List.fold_left (fun (v,p) c -> if v > (abs c.c) then abs c.c,c.v else (v,p))
(abs (List.hd e).c, (List.hd e).v) (List.tl e)
- with Failure "tl" -> display_system [original] ; failwith "TL" in
+ with Failure "tl" -> display_system print_var [original] ; failwith "TL" in
let m = smallest + 1 in
let new_eq =
{ constant = omega_mod original.constant m;
body = {c= -m;v=sigma} ::
map_eq_linear (fun a -> omega_mod a m) original.body;
- id = new_id (); kind = EQUA } in
+ id = new_eq_id (); kind = EQUA } in
let definition =
{ constant = - floor_div (2 * original.constant + m) (2 * m);
body = map_eq_linear (fun a -> - floor_div (2 * a + m) (2 * m))
original.body;
- id = new_id (); kind = EQUA } in
- add_event (STATE (new_eq,definition,original,m,sigma));
+ id = new_eq_id (); kind = EQUA } in
+ add_event (STATE {st_new_eq = new_eq; st_def = definition;
+ st_orig =original; st_coef = m; st_var = sigma});
let new_eq = List.hd (normalize new_eq) in
let eliminated_var, def = chop_var var new_eq.body in
let other_equations =
- flat_map (fun e -> normalize (eliminate_with_in eliminated_var new_eq e))
+ flat_map (fun e -> normalize (eliminate_with_in new_eq_id eliminated_var new_eq e))
l1 in
let inequations =
- flat_map (fun e -> normalize (eliminate_with_in eliminated_var new_eq e))
+ flat_map (fun e -> normalize (eliminate_with_in new_eq_id eliminated_var new_eq e))
l2 in
- let original' = eliminate_with_in eliminated_var new_eq original in
+ let original' = eliminate_with_in new_eq_id eliminated_var new_eq original in
let mod_original = map_eq_afine (fun c -> c / m) original' in
add_event (EXACT_DIVIDE (original',m));
List.hd (normalize mod_original),other_equations,inequations
-let rec eliminate_one_equation (e,other,ineqs) =
- if !debug then display_system (e::other);
+let rec eliminate_one_equation ((new_eq_id,new_var_id,print_var) as new_ids) (e,other,ineqs) =
+ if !debug then display_system print_var (e::other);
try
let v,def = chop_factor_1 e.body in
- (flat_map (fun e' -> normalize (eliminate_with_in v e e')) other,
- flat_map (fun e' -> normalize (eliminate_with_in v e e')) ineqs)
- with FACTOR1 -> eliminate_one_equation (banerjee_step e other ineqs)
+ (flat_map (fun e' -> normalize (eliminate_with_in new_eq_id v e e')) other,
+ flat_map (fun e' -> normalize (eliminate_with_in new_eq_id v e e')) ineqs)
+ with FACTOR1 ->
+ eliminate_one_equation new_ids (banerjee_step new_ids e other ineqs)
-let rec banerjee (sys_eq,sys_ineq) =
+let rec banerjee ((_,_,print_var) as new_ids) (sys_eq,sys_ineq) =
let rec fst_eq_1 = function
(eq::l) ->
if List.exists (fun x -> abs x.c = 1) eq.body then eq,l
else let (eq',l') = fst_eq_1 l in (eq',eq::l')
| [] -> raise Not_found in
match sys_eq with
- [] -> if !debug then display_system sys_ineq; sys_ineq
+ [] -> if !debug then display_system print_var sys_ineq; sys_ineq
| (e1::rest) ->
let eq,other = try fst_eq_1 sys_eq with Not_found -> (e1,rest) in
if eq.body = [] then
if eq.constant = 0 then begin
- add_event (FORGET_C eq.id); banerjee (other,sys_ineq)
+ add_event (FORGET_C eq.id); banerjee new_ids (other,sys_ineq)
end else begin
add_event (CONSTANT_NOT_NUL(eq.id,eq.constant)); raise UNSOLVABLE
end
- else banerjee (eliminate_one_equation (eq,other,sys_ineq))
+ else
+ banerjee new_ids
+ (eliminate_one_equation new_ids (eq,other,sys_ineq))
+
type kind = INVERTED | NORMAL
-let redundancy_elimination system =
+
+let redundancy_elimination new_eq_id system =
let normal = function
({body=f::_} as e) when f.c < 0 -> negate_eq e, INVERTED
| e -> e,NORMAL in
- let table = create 7 in
+ let table = Hashtbl.create 7 in
List.iter
(fun e ->
let ({body=ne} as nx) ,kind = normal e in
@@ -372,7 +373,7 @@ let redundancy_elimination system =
end else add_event (FORGET_C nx.id)
else
try
- let (optnormal,optinvert) = find table ne in
+ let (optnormal,optinvert) = Hashtbl.find table ne in
let final =
if kind = NORMAL then begin
match optnormal with
@@ -400,18 +401,18 @@ let redundancy_elimination system =
raise UNSOLVABLE
end
| _ -> () end;
- remove table ne;
- add table ne final
+ Hashtbl.remove table ne;
+ Hashtbl.add table ne final
with Not_found ->
- add table ne
+ Hashtbl.add table ne
(if kind = NORMAL then (Some nx,None) else (None,Some nx)))
system;
let accu_eq = ref [] in
let accu_ineq = ref [] in
- iter
+ Hashtbl.iter
(fun p0 p1 -> match (p0,p1) with
- | (e, (Some x, Some y)) when x.constant = y.constant ->
- let id=new_id () in
+ | (e, (Some x, Some y)) when x.constant = y.constant ->
+ let id=new_eq_id () in
add_event (MERGE_EQ(id,x,y.id));
push {id=id; kind=EQUA; body=x.body; constant=x.constant} accu_eq
| (e, (optnorm,optinvert)) ->
@@ -425,14 +426,14 @@ let redundancy_elimination system =
exception SOLVED_SYSTEM
let select_variable system =
- let table = create 7 in
+ let table = Hashtbl.create 7 in
let push v c=
- try let r = find table v in r := max !r (abs c)
- with Not_found -> add table v (ref (abs c)) in
+ try let r = Hashtbl.find table v in r := max !r (abs c)
+ with Not_found -> Hashtbl.add table v (ref (abs c)) in
List.iter (fun {body=l} -> List.iter (fun f -> push f.v f.c) l) system;
let vmin,cmin = ref (-1), ref 0 in
let var_cpt = ref 0 in
- iter
+ Hashtbl.iter
(fun v ({contents = c}) ->
incr var_cpt;
if c < !cmin or !vmin = (-1) then begin vmin := v; cmin := c end)
@@ -449,13 +450,13 @@ let classify v system =
with CHOPVAR -> (eq::not_occ,below,over))
([],[],[]) system
-let product dark_shadow low high =
+let product new_eq_id dark_shadow low high =
List.fold_left
(fun accu (a,eq1) ->
List.fold_left
(fun accu (b,eq2) ->
let eq =
- sum_afine (map_eq_afine (fun c -> c * b) eq1)
+ sum_afine new_eq_id (map_eq_afine (fun c -> c * b) eq1)
(map_eq_afine (fun c -> c * a) eq2) in
add_event(SUM(eq.id,(b,eq1),(a,eq2)));
match normalize eq with
@@ -473,33 +474,34 @@ let product dark_shadow low high =
accu high)
[] low
-let fourier_motzkin dark_shadow system =
+let fourier_motzkin (_,new_eq_id,print_var) dark_shadow system =
let v = select_variable system in
let (ineq_out, ineq_low,ineq_high) = classify v system in
- let expanded = ineq_out @ product dark_shadow ineq_low ineq_high in
- if !debug then display_system expanded; expanded
+ let expanded = ineq_out @ product new_eq_id dark_shadow ineq_low ineq_high in
+ if !debug then display_system print_var expanded; expanded
-let simplify dark_shadow system =
+let simplify ((new_eq_id,new_var_id,print_var) as new_ids) dark_shadow system =
if List.exists (fun e -> e.kind = DISE) system then
failwith "disequation in simplify";
clear_history ();
List.iter (fun e -> add_event (HYP e)) system;
let system = flat_map normalize system in
let eqs,ineqs = filter (fun e -> e.kind=EQUA) system in
- let simp_eq,simp_ineq = redundancy_elimination ineqs in
+ let simp_eq,simp_ineq = redundancy_elimination new_eq_id ineqs in
let system = (eqs @ simp_eq,simp_ineq) in
let rec loop1a system =
- let sys_ineq = banerjee system in
+ let sys_ineq = banerjee new_ids system in
loop1b sys_ineq
and loop1b sys_ineq =
- let simp_eq,simp_ineq = redundancy_elimination sys_ineq in
+ let simp_eq,simp_ineq = redundancy_elimination new_eq_id sys_ineq in
if simp_eq = [] then simp_ineq else loop1a (simp_eq,simp_ineq)
in
let rec loop2 system =
try
- let expanded = fourier_motzkin dark_shadow system in
+ let expanded = fourier_motzkin new_ids dark_shadow system in
loop2 (loop1b expanded)
- with SOLVED_SYSTEM -> if !debug then display_system system; system
+ with SOLVED_SYSTEM ->
+ if !debug then display_system print_var system; system
in
loop2 (loop1a system)
@@ -520,7 +522,7 @@ let rec depend relie_on accu = function
depend (e1.id::e2.id::relie_on) (act::accu) l
else
depend relie_on accu l
- | STATE (e,_,_,_,_) ->
+ | STATE {st_new_eq=e} ->
if List.mem e.id relie_on then depend relie_on (act::accu) l
else depend relie_on accu l
| HYP e ->
@@ -546,54 +548,63 @@ let rec depend relie_on accu = function
end
| [] -> relie_on, accu
-let solve system =
- try let _ = simplify false system in failwith "no contradiction"
- with UNSOLVABLE -> display_action (snd (depend [] [] (history ())))
+(*
+let depend relie_on accu trace =
+ Printf.printf "Longueur de la trace initiale : %d\n"
+ (trace_length trace + trace_length accu);
+ let rel',trace' = depend relie_on accu trace in
+ Printf.printf "Longueur de la trace simplifiée : %d\n" (trace_length trace');
+ rel',trace'
+*)
+
+let solve (new_eq_id,new_eq_var,print_var) system =
+ try let _ = simplify new_eq_id false system in failwith "no contradiction"
+ with UNSOLVABLE -> display_action print_var (snd (depend [] [] (history ())))
let negation (eqs,ineqs) =
let diseq,_ = filter (fun e -> e.kind = DISE) ineqs in
let normal = function
| ({body=f::_} as e) when f.c < 0 -> negate_eq e, INVERTED
| e -> e,NORMAL in
- let table = create 7 in
+ let table = Hashtbl.create 7 in
List.iter (fun e ->
let {body=ne;constant=c} ,kind = normal e in
- add table (ne,c) (kind,e)) diseq;
+ Hashtbl.add table (ne,c) (kind,e)) diseq;
List.iter (fun e ->
- if e.kind <> EQUA then pp 9999;
+ assert (e.kind <> EQUA);
let {body=ne;constant=c},kind = normal e in
try
- let (kind',e') = find table (ne,c) in
+ let (kind',e') = Hashtbl.find table (ne,c) in
add_event (NEGATE_CONTRADICT (e,e',kind=kind'));
raise UNSOLVABLE
with Not_found -> ()) eqs
exception FULL_SOLUTION of action list * int list
-let simplify_strong system =
+let simplify_strong ((new_eq_id,new_var_id,print_var) as new_ids) system =
clear_history ();
List.iter (fun e -> add_event (HYP e)) system;
(* Initial simplification phase *)
let rec loop1a system =
negation system;
- let sys_ineq = banerjee system in
+ let sys_ineq = banerjee new_ids system in
loop1b sys_ineq
and loop1b sys_ineq =
let dise,ine = filter (fun e -> e.kind = DISE) sys_ineq in
- let simp_eq,simp_ineq = redundancy_elimination ine in
+ let simp_eq,simp_ineq = redundancy_elimination new_eq_id ine in
if simp_eq = [] then dise @ simp_ineq
else loop1a (simp_eq,dise @ simp_ineq)
in
let rec loop2 system =
try
- let expanded = fourier_motzkin false system in
+ let expanded = fourier_motzkin new_ids false system in
loop2 (loop1b expanded)
- with SOLVED_SYSTEM -> if !debug then display_system system; system
+ with SOLVED_SYSTEM -> if !debug then display_system print_var system; system
in
let rec explode_diseq = function
| (de::diseq,ineqs,expl_map) ->
- let id1 = new_id ()
- and id2 = new_id () in
+ let id1 = new_eq_id ()
+ and id2 = new_eq_id () in
let e1 =
{id = id1; kind=INEQ; body = de.body; constant = de.constant - 1} in
let e2 =
@@ -612,7 +623,7 @@ let simplify_strong system =
let system = flat_map normalize system in
let eqs,ineqs = filter (fun e -> e.kind=EQUA) system in
let dise,ine = filter (fun e -> e.kind = DISE) ineqs in
- let simp_eq,simp_ineq = redundancy_elimination ine in
+ let simp_eq,simp_ineq = redundancy_elimination new_eq_id ine in
let system = (eqs @ simp_eq,simp_ineq @ dise) in
let system' = loop1a system in
let diseq,ineq = filter (fun e -> e.kind = DISE) system' in
@@ -631,14 +642,15 @@ let simplify_strong system =
sys_exploded
in
let max_count sys =
- let tbl = create 7 in
+ let tbl = Hashtbl.create 7 in
let augment x =
- try incr (find tbl x) with Not_found -> add tbl x (ref 1) in
+ try incr (Hashtbl.find tbl x)
+ with Not_found -> Hashtbl.add tbl x (ref 1) in
let eq = ref (-1) and c = ref 0 in
List.iter (function
| ([],r_on,_,path) -> raise (FULL_SOLUTION (path,r_on))
| (l,_,_,_) -> List.iter augment l) sys;
- iter (fun x v -> if !v > !c then begin eq := x; c := !v end) tbl;
+ Hashtbl.iter (fun x v -> if !v > !c then begin eq := x; c := !v end) tbl;
!eq
in
let rec solve systems =
@@ -649,13 +661,13 @@ let simplify_strong system =
| [] -> failwith "solve" in
let s1,s2 = filter (fun (_,_,decomp,_) -> sign decomp) systems in
let s1' =
- List.map (fun (dep,ro,dc,pa) -> (list_except id dep,ro,dc,pa)) s1 in
+ List.map (fun (dep,ro,dc,pa) -> (Util.list_except id dep,ro,dc,pa)) s1 in
let s2' =
- List.map (fun (dep,ro,dc,pa) -> (list_except id dep,ro,dc,pa)) s2 in
+ List.map (fun (dep,ro,dc,pa) -> (Util.list_except id dep,ro,dc,pa)) s2 in
let (r1,relie1) = solve s1'
and (r2,relie2) = solve s2' in
let (eq,id1,id2) = List.assoc id explode_map in
- [SPLIT_INEQ(eq,(id1,r1),(id2, r2))], eq.id :: list_union relie1 relie2
+ [SPLIT_INEQ(eq,(id1,r1),(id2, r2))], eq.id :: Util.list_union relie1 relie2
with FULL_SOLUTION (x0,x1) -> (x0,x1)
in
let act,relie_on = solve all_solutions in