aboutsummaryrefslogtreecommitdiffhomepage
path: root/contrib/omega/coq_omega.ml
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/omega/coq_omega.ml')
-rw-r--r--contrib/omega/coq_omega.ml161
1 files changed, 83 insertions, 78 deletions
diff --git a/contrib/omega/coq_omega.ml b/contrib/omega/coq_omega.ml
index 4375ef2a4..a8ecf4cd1 100644
--- a/contrib/omega/coq_omega.ml
+++ b/contrib/omega/coq_omega.ml
@@ -14,7 +14,6 @@ open Reduction
open Proof_type
open Ast
open Names
-open Generic
open Term
open Sign
open Inductive
@@ -83,22 +82,29 @@ let resolve_with_bindings_tac (c,lbind) gl =
res_pf kONT clause gl
let reduce_to_mind gl t =
- let rec elimrec t l = match whd_castapp_stack t [] with
- | (DOPN(MutInd (x0,x1),_) as mind,_) -> (mind,prod_it t l)
- | (DOPN(Const _,_),_) ->
+ let rec elimrec t l =
+ let c, args = whd_castapp_stack t [] in
+ match kind_of_term c, args with
+ | (IsMutInd _,_) -> (c,Environ.it_mkProd_or_LetIn t l)
+ | (IsConst _,_) ->
(try
let t' = pf_nf_betaiota gl (pf_one_step_reduce gl t) in elimrec t' l
with e when catchable_exception e ->
errorlabstrm "tactics__reduce_to_mind"
[< 'sTR"Not an inductive product" >])
- | (DOPN(MutCase _,_),_) ->
+ | (IsMutCase _,_) ->
(try
let t' = pf_nf_betaiota gl (pf_one_step_reduce gl t) in elimrec t' l
with e when catchable_exception e ->
errorlabstrm "tactics__reduce_to_mind"
[< 'sTR"Not an inductive product" >])
- | (DOP2(Cast,c,_),[]) -> elimrec c l
- | (DOP2(Prod,ty,DLAM(n,t')),[]) -> elimrec t' ((n,ty)::l)
+ | (IsCast (c,_),[]) -> elimrec c l
+ | (IsProd (n,ty,t'),[]) ->
+ let ty' = Retyping.get_assumption_of (Global.env()) Evd.empty ty in
+ elimrec t' ((n,None,ty')::l)
+ | (IsLetIn (n,b,ty,t'),[]) ->
+ let ty' = Retyping.get_assumption_of (Global.env()) Evd.empty ty in
+ elimrec t' ((n,Some b,ty')::l)
| _ -> error "Not an inductive product"
in
elimrec t []
@@ -115,7 +121,7 @@ let constructor_tac nconstropt i lbind gl =
error "Not the expected number of constructors"
| _ -> ());
if i > nconstr then error "Not enough Constructors";
- let c = DOPN(MutConstruct((x0,x1),i),args) in
+ let c = mkMutConstruct (((x0,x1),i),args) in
let resolve_tac = resolve_with_bindings_tac (c,lbind) in
(tclTHEN (tclTHEN (change_in_concl redcl) intros) resolve_tac) gl
@@ -149,16 +155,7 @@ let hide_constr,find_constr,clear_tables,dump_tables =
(fun () -> l := []),
(fun () -> !l)
-let get_applist =
- let rec loop accu = function
- | DOPN(AppL,cl) ->
- begin match Array.to_list cl with
- | h :: l -> loop (l @ accu) h
- | [] -> failwith "get_applist" end
- | DOP2(Cast,c,t) -> loop accu c
- | t -> t,accu
- in
- loop []
+let get_applist c = whd_stack c []
exception Destruct
@@ -175,14 +172,18 @@ type result =
| Kimp of constr * constr
| Kufo
-let destructurate t =
- match get_applist t with
- | DOPN ((Const _ | MutConstruct _ | MutInd _) as c,_),args ->
- Kapp (string_of_id (Global.id_of_global c),args)
- | VAR id,[] -> Kvar(string_of_id id)
- | DOP2(Prod,typ,DLAM(Anonymous,body)),[] -> Kimp(typ,body)
- | DOP2(Prod,_,DLAM(Name _,_)),[] ->
- error "Omega: Not a quantifier-free goal"
+let destructurate t =
+ let c, args = get_applist t in
+ match kind_of_term c, args with
+ | IsConst (sp,_), args ->
+ Kapp (string_of_id (Global.id_of_global (Const sp)),args)
+ | IsMutConstruct (csp,_) , args ->
+ Kapp (string_of_id (Global.id_of_global (MutConstruct csp)),args)
+ | IsMutInd (isp,_), args ->
+ Kapp (string_of_id (Global.id_of_global (MutInd isp)),args)
+ | IsVar id,[] -> Kvar(string_of_id id)
+ | IsProd (Anonymous,typ,body), [] -> Kimp(typ,body)
+ | IsProd (Name _,_,_),[] -> error "Omega: Not a quantifier-free goal"
| _ -> Kufo
let recognize_number t =
@@ -425,58 +426,58 @@ type constr_path =
| P_ARG
let context operation path (t : constr) =
- let rec loop i p0 p1 =
- match (p0,p1) with
- | (p, (DOP2(Cast,c,t))) -> DOP2(Cast,loop i p c,t)
- | ([], t) -> operation i t
- | (p, (DLAM(n,t))) -> DLAM(n,loop (i+1) p t)
- | ((P_APP n :: p), (DOPN(AppL,v) as t)) ->
+ let rec loop i p0 t =
+ match (p0,kind_of_term t) with
+ | (p, IsCast (c,t)) -> mkCast (loop i p c,t)
+ | ([], _) -> operation i t
+ | ((P_APP n :: p), IsAppL _) ->
let f,l = get_applist t in
let v' = Array.of_list (f::l) in
- v'.(n) <- loop i p v'.(n); (DOPN(AppL,v'))
- | ((P_BRANCH n :: p), (DOPN(MutCase _,_) as t)) ->
- let (_,_,_,v) = destCase t in
- v.(n) <- loop i p v.(n); (DOPN(AppL,v))
- | ((P_ARITY :: p), (DOPN(AppL,v))) ->
- let v' = Array.copy v in
- v'.(0) <- loop i p v.(0); (DOPN(AppL,v'))
- | ((P_ARG :: p), (DOPN(AppL,v))) ->
- let v' = Array.copy v in
- v'.(1) <- loop i p v.(1); (DOPN(AppL,v'))
- | (p, (DOPN(Fix(_,n) as f,v))) ->
- let v' = Array.copy v in
- let l = Array.length v - 1 in
- v'.(l) <- loop i (P_BRANCH n :: p) v.(l); (DOPN(f,v'))
- | ((P_BRANCH n :: p), (DLAMV(name,v))) ->
+ v'.(n) <- loop i p v'.(n); (mkAppL v')
+ | ((P_BRANCH n :: p), IsMutCase (_,_,_,v)) ->
+ v.(n) <- loop i p v.(n); (mkAppL v) (* Not Mutcase ?? *)
+ | ((P_ARITY :: p), IsAppL (f,l)) ->
+ applist (loop i p f,l)
+ | ((P_ARG :: p), IsAppL (f,a::l)) ->
+ applist (f,(loop i p a)::l)
+ | (p, IsFix ((_,n as ln),(tys,lna,v))) ->
+ let l = Array.length v in
let v' = Array.copy v in
- v'.(n) <- loop (i+1) p v.(n); DLAMV(name,v')
- | ((P_BODY :: p), (DOP2((Prod | Lambda) as k, t,c))) ->
- (DOP2(k,t,loop i p c))
- | ((P_TYPE :: p), (DOP2((Prod | Lambda) as k, term,c))) ->
- (DOP2(k,loop i p term, c))
- | (p, t) ->
+ v'.(n) <- loop (i+l) p v.(n); (mkFix (ln,(tys,lna,v')))
+ | ((P_BODY :: p), IsProd (n,t,c)) ->
+ (mkProd (n,t,loop (i+1) p c))
+ | ((P_BODY :: p), IsLambda (n,t,c)) ->
+ (mkLambda (n,t,loop (i+1) p c))
+ | ((P_BODY :: p), IsLetIn (n,b,t,c)) ->
+ (mkLetIn (n,b,t,loop (i+1) p c))
+ | ((P_TYPE :: p), IsProd (n,t,c)) ->
+ (mkProd (n,loop i p t,c))
+ | ((P_TYPE :: p), IsLambda (n,t,c)) ->
+ (mkLambda (n,loop i p t,c))
+ | ((P_TYPE :: p), IsLetIn (n,b,t,c)) ->
+ (mkLetIn (n,b,loop i p t,c))
+ | (p, _) ->
pPNL [<Printer.prterm t>];
failwith ("abstract_path " ^ string_of_int(List.length p))
in
loop 1 path t
let occurence path (t : constr) =
- let rec loop p0 p1 = match (p0,p1) with
- | (p, (DOP2(Cast,c,t))) -> loop p c
- | ([], t) -> t
- | (p, (DLAM(n,t))) -> loop p t
- | ((P_APP n :: p), (DOPN(AppL,v) as t)) ->
- let f,l = get_applist t in loop p v.(n)
- | ((P_BRANCH n :: p), (DOPN(MutCase _,_) as t)) ->
- let (_,_,_,v) = destCase t in loop p v.(n)
- | ((P_ARITY :: p), (DOPN(AppL,v))) -> loop p v.(0)
- | ((P_ARG :: p), (DOPN(AppL,v))) -> loop p v.(1)
- | (p, (DOPN(Fix(_,n) as f,v))) ->
- let l = Array.length v - 1 in loop (P_BRANCH n :: p) v.(l)
- | ((P_BRANCH n :: p), (DLAMV(name,v))) -> loop p v.(n)
- | ((P_BODY :: p), (DOP2((Prod | Lambda) as k, t,c))) -> loop p c
- | ((P_TYPE :: p), (DOP2((Prod | Lambda) as k, term,c))) -> loop p term
- | (p, t) ->
+ let rec loop p0 t = match (p0,kind_of_term t) with
+ | (p, IsCast (c,t)) -> loop p c
+ | ([], _) -> t
+ | ((P_APP n :: p), IsAppL (f,l)) -> loop p (List.nth l (n-1))
+ | ((P_BRANCH n :: p), IsMutCase (_,_,_,v)) -> loop p v.(n)
+ | ((P_ARITY :: p), IsAppL (f,_)) -> loop p f
+ | ((P_ARG :: p), IsAppL (f,a::l)) -> loop p a
+ | (p, IsFix((_,n) ,(_,_,v))) -> loop p v.(n)
+ | ((P_BODY :: p), IsProd (n,t,c)) -> loop p c
+ | ((P_BODY :: p), IsLambda (n,t,c)) -> loop p c
+ | ((P_BODY :: p), IsLetIn (n,b,t,c)) -> loop p c
+ | ((P_TYPE :: p), IsProd (n,term,c)) -> loop p term
+ | ((P_TYPE :: p), IsLambda (n,term,c)) -> loop p term
+ | ((P_TYPE :: p), IsLetIn (n,b,term,c)) -> loop p term
+ | (p, _) ->
pPNL [<Printer.prterm t>];
failwith ("occurence " ^ string_of_int(List.length p))
in
@@ -485,7 +486,7 @@ let occurence path (t : constr) =
let abstract_path typ path t =
let term_occur = ref (Rel 0) in
let abstract = context (fun i t -> term_occur:= t; Rel i) path t in
- mkLambda (Name (id_of_string "x")) typ abstract, !term_occur
+ mkLambda (Name (id_of_string "x"), typ, abstract), !term_occur
let focused_simpl path gl =
let newc = context (fun i t -> pf_nf gl t) (List.rev path) (pf_concl gl) in
@@ -554,12 +555,14 @@ let clever_rewrite_base_poly typ p result theorem gl =
let (abstracted,occ) = abstract_path typ (List.rev p) full in
let t =
applist
- ((mkLambda (Name (id_of_string "P"))
- (mkArrow typ mkProp)
- (mkLambda (Name (id_of_string "H"))
- (applist (Rel 1,[result]))
- (mkAppL [| Lazy.force coq_eq_ind_r;
- typ; result; Rel 2; Rel 1; occ; theorem |]))),
+ (mkLambda
+ (Name (id_of_string "P"),
+ mkArrow typ mkProp,
+ mkLambda
+ (Name (id_of_string "H"),
+ applist (Rel 1,[result]),
+ mkAppL [| Lazy.force coq_eq_ind_r;
+ typ; result; Rel 2; Rel 1; occ; theorem |])),
[abstracted])
in
exact (applist(t,[mkNewMeta()])) gl
@@ -1206,8 +1209,10 @@ let replay_history tactic_normalisation =
let theorem =
mkAppL [| Lazy.force coq_ex;
Lazy.force coq_Z;
- mkLambda (Name(id_of_string v)) (Lazy.force coq_Z)
- (mk_eq (Rel 1) eq1) |]
+ mkLambda
+ (Name(id_of_string v),
+ Lazy.force coq_Z,
+ mk_eq (Rel 1) eq1) |]
in
let mm = mk_integer m in
let p_initial = [P_APP 2;P_TYPE] in