aboutsummaryrefslogtreecommitdiffhomepage
path: root/contrib/micromega
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/micromega')
-rw-r--r--contrib/micromega/CheckerMaker.v121
-rw-r--r--contrib/micromega/Examples.v103
-rw-r--r--contrib/micromega/OrderedRing.v443
-rw-r--r--contrib/micromega/Refl.v74
-rw-r--r--contrib/micromega/RingMicromega.v570
-rw-r--r--contrib/micromega/ZCoeff.v142
6 files changed, 1453 insertions, 0 deletions
diff --git a/contrib/micromega/CheckerMaker.v b/contrib/micromega/CheckerMaker.v
new file mode 100644
index 000000000..8aeada77b
--- /dev/null
+++ b/contrib/micromega/CheckerMaker.v
@@ -0,0 +1,121 @@
+(********************************************************************)
+(* *)
+(* Micromega: A reflexive tactics using the Positivstellensatz *)
+(* *)
+(* Frédéric Besson (Irisa/Inria) 2006 *)
+(* *)
+(********************************************************************)
+
+Require Import Decidable.
+Require Import List.
+Require Import Refl.
+
+Set Implicit Arguments.
+
+Section CheckerMaker.
+
+(* 'Formula' is a syntactic representation of a certain kind of propositions. *)
+Variable Formula : Type.
+
+Variable Env : Type.
+
+Variable eval : Env -> Formula -> Prop.
+
+Variable Formula' : Type.
+
+Variable eval' : Env -> Formula' -> Prop.
+
+Variable normalise : Formula -> Formula'.
+
+Variable negate : Formula -> Formula'.
+
+Hypothesis normalise_sound :
+ forall (env : Env) (t : Formula), eval env t -> eval' env (normalise t).
+
+Hypothesis negate_correct :
+ forall (env : Env) (t : Formula), eval env t <-> ~ (eval' env (negate t)).
+
+Variable Witness : Type.
+
+Variable check_formulas' : list Formula' -> Witness -> bool.
+
+Hypothesis check_formulas'_sound :
+ forall (l : list Formula') (w : Witness),
+ check_formulas' l w = true ->
+ forall env : Env, make_impl (eval' env) l False.
+
+Definition normalise_list : list Formula -> list Formula' := map normalise.
+Definition negate_list : list Formula -> list Formula' := map negate.
+
+Definition check_formulas (l : list Formula) (w : Witness) : bool :=
+ check_formulas' (map normalise l) w.
+
+(* Contraposition of normalise_sound for lists *)
+Lemma normalise_sound_contr : forall (env : Env) (l : list Formula),
+ make_impl (eval' env) (map normalise l) False -> make_impl (eval env) l False.
+Proof.
+intros env l; induction l as [| t l IH]; simpl in *.
+trivial.
+intros H1 H2. apply IH. apply H1. now apply normalise_sound.
+Qed.
+
+Theorem check_formulas_sound :
+ forall (l : list Formula) (w : Witness),
+ check_formulas l w = true -> forall env : Env, make_impl (eval env) l False.
+Proof.
+unfold check_formulas; intros l w H env. destruct l as [| t l]; simpl in *.
+pose proof (check_formulas'_sound H env) as H1; now simpl in H1.
+intro H1. apply normalise_sound in H1.
+pose proof (check_formulas'_sound H env) as H2; simpl in H2.
+apply H2 in H1. now apply normalise_sound_contr.
+Qed.
+
+(* In check_conj_formulas', t2 is supposed to be a list of negations of
+formulas. If, for example, t1 = [A1, A2] and t2 = [~ B1, ~ B2], then
+check_conj_formulas' checks that each of [~ B1, A1, A2] and [~ B2, A1, A2] is
+inconsistent. This means that A1 /\ A2 -> B1 and A1 /\ A2 -> B1, i.e., that
+A1 /\ A2 -> B1 /\ B2. *)
+
+Fixpoint check_conj_formulas'
+ (t1 : list Formula') (wits : list Witness) (t2 : list Formula') {struct wits} : bool :=
+match t2 with
+| nil => true
+| t':: rt2 =>
+ match wits with
+ | nil => false
+ | w :: rwits =>
+ match check_formulas' (t':: t1) w with
+ | true => check_conj_formulas' t1 rwits rt2
+ | false => false
+ end
+ end
+end.
+
+(* checks whether the conjunction of t1 implies the conjunction of t2 *)
+
+Definition check_conj_formulas
+ (t1 : list Formula) (wits : list Witness) (t2 : list Formula) : bool :=
+ check_conj_formulas' (normalise_list t1) wits (negate_list t2).
+
+Theorem check_conj_formulas_sound :
+ forall (t1 : list Formula) (t2 : list Formula) (wits : list Witness),
+ check_conj_formulas t1 wits t2 = true ->
+ forall env : Env, make_impl (eval env) t1 (make_conj (eval env) t2).
+Proof.
+intro t1; induction t2 as [| a2 t2' IH].
+intros; apply make_impl_true.
+intros wits H env.
+unfold check_conj_formulas in H; simpl in H.
+destruct wits as [| w ws]; simpl in H. discriminate.
+case_eq (check_formulas' (negate a2 :: normalise_list t1) w);
+intro H1; rewrite H1 in H; [| discriminate].
+assert (H2 : make_impl (eval' env) (negate a2 :: normalise_list t1) False) by
+now apply check_formulas'_sound with (w := w). clear H1.
+pose proof (IH ws H env) as H1. simpl in H2.
+assert (H3 : eval' env (negate a2) -> make_impl (eval env) t1 False)
+by auto using normalise_sound_contr. clear H2. rewrite <- make_conj_impl in *.
+rewrite make_conj_cons. intro H2. split.
+apply <- negate_correct. intro; now elim H3. exact (H1 H2).
+Qed.
+
+End CheckerMaker.
diff --git a/contrib/micromega/Examples.v b/contrib/micromega/Examples.v
new file mode 100644
index 000000000..976815142
--- /dev/null
+++ b/contrib/micromega/Examples.v
@@ -0,0 +1,103 @@
+Require Import OrderedRing.
+Require Import RingMicromega.
+Require Import Ring_polynom.
+Require Import ZCoeff.
+Require Import Refl.
+Require Import ZArith.
+Require Import List.
+
+Import OrderedRingSyntax.
+
+Section Examples.
+
+Variable R : Type.
+Variables rO rI : R.
+Variables rplus rtimes rminus: R -> R -> R.
+Variable ropp : R -> R.
+Variables req rle rlt : R -> R -> Prop.
+
+Variable sor : SOR rO rI rplus rtimes rminus ropp req rle rlt.
+
+Notation "0" := rO.
+Notation "1" := rI.
+Notation "x + y" := (rplus x y).
+Notation "x * y " := (rtimes x y).
+Notation "x - y " := (rminus x y).
+Notation "- x" := (ropp x).
+Notation "x == y" := (req x y).
+Notation "x ~= y" := (~ req x y).
+Notation "x <= y" := (rle x y).
+Notation "x < y" := (rlt x y).
+
+Definition phi : Z -> R := gen_order_phi_Z 0 1 rplus rtimes ropp.
+
+Lemma ZSORaddon :
+ SORaddon 0 1 rplus rtimes rminus ropp req rle (* ring elements *)
+ 0%Z 1%Z Zplus Zmult Zminus Zopp (* coefficients *)
+ Zeq_bool Zle_bool
+ phi (fun x => x) (pow_N 1 rtimes).
+Proof.
+constructor.
+exact (Zring_morph sor).
+exact (pow_N_th 1 rtimes sor.(SORsetoid)).
+apply (Zcneqb_morph sor).
+apply (Zcleb_morph sor).
+Qed.
+
+Definition Zeval_formula :=
+ eval_formula 0 rplus rtimes rminus ropp req rle rlt phi (fun x => x) (pow_N 1 rtimes).
+Definition Z_In := S_In 0%Z Zeq_bool Zle_bool.
+Definition Z_Square := S_Square 0%Z Zeq_bool Zle_bool.
+
+(* Example: forall x y : Z, x + y = 0 -> x - y = 0 -> x < 0 -> False *)
+
+Lemma plus_minus : forall x y : R, x + y == 0 -> x - y == 0 -> x < 0 -> False.
+Proof.
+intros x y.
+Open Scope Z_scope.
+set (varmap := fun (x y : R) => x :: y :: nil).
+set (expr :=
+ Build_Formula (PEadd (PEX Z 1) (PEX Z 2)) OpEq (PEc 0)
+ :: Build_Formula (PEsub (PEX Z 1) (PEX Z 2)) OpEq (PEc 0)
+ :: Build_Formula (PEX Z 1) OpLt (PEc 0) :: nil).
+set (cert :=
+ S_Add (S_Mult (S_Pos 0 Zeq_bool Zle_bool 2 (refl_equal true)) (Z_In 2))
+ (S_Add (S_Ideal (PEc 1) (Z_In 1)) (S_Ideal (PEc 1) (Z_In 0)))).
+change (make_impl (Zeval_formula (varmap x y)) expr False).
+apply (check_formulas_sound sor ZSORaddon expr cert).
+reflexivity.
+Close Scope Z_scope.
+Qed.
+
+(* Example *)
+
+Let four : R := ((1 + 1) * (1 + 1)).
+Lemma Zdiscr :
+ forall a b c x : R,
+ a * (x * x) + b * x + c == 0 -> 0 <= b * b - four * a * c.
+Proof.
+Open Scope Z_scope.
+set (varmap := fun (a b c x : R) => a :: b :: c :: x:: nil).
+set (poly1 :=
+ (Build_Formula
+ (PEadd
+ (PEadd (PEmul (PEX Z 1) (PEmul (PEX Z 4) (PEX Z 4)))
+ (PEmul (PEX Z 2) (PEX Z 4))) (PEX Z 3)) OpEq (PEc 0)) :: nil).
+set (poly2 :=
+ (Build_Formula
+ (PEsub (PEmul (PEX Z 2) (PEX Z 2))
+ (PEmul (PEmul (PEc 4) (PEX Z 1)) (PEX Z 3))) OpGe (PEc 0)) :: nil).
+set (wit :=
+ (S_Add (Z_In 0)
+ (S_Add (S_Ideal (PEmul (PEc (-4)) (PEX Z 1)) (Z_In 1))
+ (Z_Square
+ (PEadd (PEmul (PEc 2) (PEmul (PEX Z 1) (PEX Z 4))) (PEX Z 2))))) :: nil).
+intros a b c x.
+change (make_impl (Zeval_formula (varmap a b c x)) poly1
+ (make_conj (Zeval_formula (varmap a b c x)) poly2)).
+apply (check_conj_formulas_sound sor ZSORaddon poly1 poly2 wit).
+reflexivity.
+Qed.
+
+End Examples.
+
diff --git a/contrib/micromega/OrderedRing.v b/contrib/micromega/OrderedRing.v
new file mode 100644
index 000000000..ac1833a13
--- /dev/null
+++ b/contrib/micromega/OrderedRing.v
@@ -0,0 +1,443 @@
+Require Import Setoid.
+Require Import Ring.
+
+Set Implicit Arguments.
+
+Module Import OrderedRingSyntax.
+Export RingSyntax.
+
+Reserved Notation "x ~= y" (at level 70, no associativity).
+Reserved Notation "x [=] y" (at level 70, no associativity).
+Reserved Notation "x [~=] y" (at level 70, no associativity).
+Reserved Notation "x [<] y" (at level 70, no associativity).
+Reserved Notation "x [<=] y" (at level 70, no associativity).
+End OrderedRingSyntax.
+
+Section DEFINITIONS.
+
+Variable R : Type.
+Variable (rO rI : R) (rplus rtimes rminus: R -> R -> R) (ropp : R -> R).
+Variable req rle rlt : R -> R -> Prop.
+Notation "0" := rO.
+Notation "1" := rI.
+Notation "x + y" := (rplus x y).
+Notation "x * y " := (rtimes x y).
+Notation "x - y " := (rminus x y).
+Notation "- x" := (ropp x).
+Notation "x == y" := (req x y).
+Notation "x ~= y" := (~ req x y).
+Notation "x <= y" := (rle x y).
+Notation "x < y" := (rlt x y).
+
+Record SOR : Prop := mk_SOR_theory {
+ SORsetoid : Setoid_Theory R req;
+ SORplus_wd : forall x1 x2, x1 == x2 -> forall y1 y2, y1 == y2 -> x1 + y1 == x2 + y2;
+ SORtimes_wd : forall x1 x2, x1 == x2 -> forall y1 y2, y1 == y2 -> x1 * y1 == x2 * y2;
+ SORopp_wd : forall x1 x2, x1 == x2 -> -x1 == -x2;
+ SORle_wd : forall x1 x2, x1 == x2 -> forall y1 y2, y1 == y2 -> (x1 <= y1 <-> x2 <= y2);
+ SORlt_wd : forall x1 x2, x1 == x2 -> forall y1 y2, y1 == y2 -> (x1 < y1 <-> x2 < y2);
+ SORrt : ring_theory rO rI rplus rtimes rminus ropp req;
+ SORle_refl : forall n : R, n <= n;
+ SORle_antisymm : forall n m : R, n <= m -> m <= n -> n == m;
+ SORle_trans : forall n m p : R, n <= m -> m <= p -> n <= p;
+ SORlt_le_neq : forall n m : R, n < m <-> n <= m /\ n ~= m;
+ SORlt_trichotomy : forall n m : R, n < m \/ n == m \/ m < n;
+ SORplus_le_mono_l : forall n m p : R, n <= m -> p + n <= p + m;
+ SORtimes_pos_pos : forall n m : R, 0 < n -> 0 < m -> 0 < n * m;
+ SORneq_0_1 : 0 ~= 1
+}.
+
+(* We cannot use Relation_Definitions.order.ord_antisym and
+Relations_1.Antisymmetric because they refer to Leibniz equality *)
+
+End DEFINITIONS.
+
+Section STRICT_ORDERED_RING.
+
+Variable R : Type.
+Variable (rO rI : R) (rplus rtimes rminus: R -> R -> R) (ropp : R -> R).
+Variable req rle rlt : R -> R -> Prop.
+
+Variable sor : SOR rO rI rplus rtimes rminus ropp req rle rlt.
+
+Notation "0" := rO.
+Notation "1" := rI.
+Notation "x + y" := (rplus x y).
+Notation "x * y " := (rtimes x y).
+Notation "x - y " := (rminus x y).
+Notation "- x" := (ropp x).
+Notation "x == y" := (req x y).
+Notation "x ~= y" := (~ req x y).
+Notation "x <= y" := (rle x y).
+Notation "x < y" := (rlt x y).
+
+Add Relation R req
+ reflexivity proved by sor.(SORsetoid).(Seq_refl _ _)
+ symmetry proved by sor.(SORsetoid).(Seq_sym _ _)
+ transitivity proved by sor.(SORsetoid).(Seq_trans _ _)
+as sor_setoid.
+
+Add Morphism rplus with signature req ==> req ==> req as rplus_morph.
+Proof.
+exact sor.(SORplus_wd).
+Qed.
+Add Morphism rtimes with signature req ==> req ==> req as rtimes_morph.
+Proof.
+exact sor.(SORtimes_wd).
+Qed.
+Add Morphism ropp with signature req ==> req as ropp_morph.
+Proof.
+exact sor.(SORopp_wd).
+Qed.
+Add Morphism rle with signature req ==> req ==> iff as rle_morph.
+Proof.
+exact sor.(SORle_wd).
+Qed.
+Add Morphism rlt with signature req ==> req ==> iff as rlt_morph.
+Proof.
+exact sor.(SORlt_wd).
+Qed.
+
+Add Ring SOR : sor.(SORrt).
+
+Add Morphism rminus with signature req ==> req ==> req as rminus_morph.
+Proof.
+intros x1 x2 H1 y1 y2 H2.
+rewrite (sor.(SORrt).(Rsub_def) x1 y1).
+rewrite (sor.(SORrt).(Rsub_def) x2 y2).
+rewrite H1; now rewrite H2.
+Qed.
+
+Theorem Rneq_symm : forall n m : R, n ~= m -> m ~= n.
+Proof.
+intros n m H1 H2; rewrite H2 in H1; now apply H1.
+Qed.
+
+(* Propeties of plus, minus and opp *)
+
+Theorem Rplus_0_l : forall n : R, 0 + n == n.
+Proof.
+intro; ring.
+Qed.
+
+Theorem Rplus_0_r : forall n : R, n + 0 == n.
+Proof.
+intro; ring.
+Qed.
+
+Theorem Rtimes_0_r : forall n : R, n * 0 == 0.
+Proof.
+intro; ring.
+Qed.
+
+Theorem Rplus_comm : forall n m : R, n + m == m + n.
+Proof.
+intros; ring.
+Qed.
+
+Theorem Rtimes_0_l : forall n : R, 0 * n == 0.
+Proof.
+intro; ring.
+Qed.
+
+Theorem Rtimes_comm : forall n m : R, n * m == m * n.
+Proof.
+intros; ring.
+Qed.
+
+Theorem Rminus_eq_0 : forall n m : R, n - m == 0 <-> n == m.
+Proof.
+intros n m.
+split; intro H. setoid_replace n with ((n - m) + m) by ring. rewrite H. now rewrite Rplus_0_l.
+rewrite H; ring.
+Qed.
+
+Theorem Rplus_cancel_l : forall n m p : R, p + n == p + m <-> n == m.
+Proof.
+intros n m p; split; intro H.
+setoid_replace n with (- p + (p + n)) by ring.
+setoid_replace m with (- p + (p + m)) by ring. now rewrite H.
+now rewrite H.
+Qed.
+
+(* Relations *)
+
+Theorem Rle_refl : forall n : R, n <= n.
+Proof sor.(SORle_refl).
+
+Theorem Rle_antisymm : forall n m : R, n <= m -> m <= n -> n == m.
+Proof sor.(SORle_antisymm).
+
+Theorem Rle_trans : forall n m p : R, n <= m -> m <= p -> n <= p.
+Proof sor.(SORle_trans).
+
+Theorem Rlt_trichotomy : forall n m : R, n < m \/ n == m \/ m < n.
+Proof sor.(SORlt_trichotomy).
+
+Theorem Rlt_le_neq : forall n m : R, n < m <-> n <= m /\ n ~= m.
+Proof sor.(SORlt_le_neq).
+
+Theorem Rneq_0_1 : 0 ~= 1.
+Proof sor.(SORneq_0_1).
+
+Theorem Req_em : forall n m : R, n == m \/ n ~= m.
+Proof.
+intros n m. destruct (Rlt_trichotomy n m) as [H | [H | H]]; try rewrite Rlt_le_neq in H.
+right; now destruct H.
+now left.
+right; apply Rneq_symm; now destruct H.
+Qed.
+
+Theorem Req_dne : forall n m : R, ~ ~ n == m <-> n == m.
+Proof.
+intros n m; destruct (Req_em n m) as [H | H].
+split; auto.
+split. intro H1; false_hyp H H1. auto.
+Qed.
+
+Theorem Rle_lt_eq : forall n m : R, n <= m <-> n < m \/ n == m.
+Proof.
+intros n m; rewrite Rlt_le_neq.
+split; [intro H | intros [[H1 H2] | H]].
+destruct (Req_em n m) as [H1 | H1]. now right. left; now split.
+assumption.
+rewrite H; apply Rle_refl.
+Qed.
+
+Ltac le_less := rewrite Rle_lt_eq; left; try assumption.
+Ltac le_equal := rewrite Rle_lt_eq; right; try reflexivity; try assumption.
+Ltac le_elim H := rewrite Rle_lt_eq in H; destruct H as [H | H].
+
+Theorem Rlt_trans : forall n m p : R, n < m -> m < p -> n < p.
+Proof.
+intros n m p; repeat rewrite Rlt_le_neq; intros [H1 H2] [H3 H4]; split.
+now apply Rle_trans with m.
+intro H. rewrite H in H1. pose proof (Rle_antisymm H3 H1). now apply H4.
+Qed.
+
+Theorem Rle_lt_trans : forall n m p : R, n <= m -> m < p -> n < p.
+Proof.
+intros n m p H1 H2; le_elim H1.
+now apply Rlt_trans with (m := m). now rewrite H1.
+Qed.
+
+Theorem Rlt_le_trans : forall n m p : R, n < m -> m <= p -> n < p.
+Proof.
+intros n m p H1 H2; le_elim H2.
+now apply Rlt_trans with (m := m). now rewrite <- H2.
+Qed.
+
+Theorem Rle_gt_cases : forall n m : R, n <= m \/ m < n.
+Proof.
+intros n m; destruct (Rlt_trichotomy n m) as [H | [H | H]].
+left; now le_less. left; now le_equal. now right.
+Qed.
+
+Theorem Rlt_neq : forall n m : R, n < m -> n ~= m.
+Proof.
+intros n m; rewrite Rlt_le_neq; now intros [_ H].
+Qed.
+
+Theorem Rle_ngt : forall n m : R, n <= m <-> ~ m < n.
+Proof.
+intros n m; split.
+intros H H1; assert (H2 : n < n) by now apply Rle_lt_trans with m. now apply (Rlt_neq H2).
+intro H. destruct (Rle_gt_cases n m) as [H1 | H1]. assumption. false_hyp H1 H.
+Qed.
+
+Theorem Rlt_nge : forall n m : R, n < m <-> ~ m <= n.
+Proof.
+intros n m; split.
+intros H H1; assert (H2 : n < n) by now apply Rlt_le_trans with m. now apply (Rlt_neq H2).
+intro H. destruct (Rle_gt_cases m n) as [H1 | H1]. false_hyp H1 H. assumption.
+Qed.
+
+(* Plus, minus and order *)
+
+Theorem Rplus_le_mono_l : forall n m p : R, n <= m <-> p + n <= p + m.
+Proof.
+intros n m p; split.
+apply sor.(SORplus_le_mono_l).
+intro H. apply (sor.(SORplus_le_mono_l) (p + n) (p + m) (- p)) in H.
+setoid_replace (- p + (p + n)) with n in H by ring.
+setoid_replace (- p + (p + m)) with m in H by ring. assumption.
+Qed.
+
+Theorem Rplus_le_mono_r : forall n m p : R, n <= m <-> n + p <= m + p.
+Proof.
+intros n m p; rewrite (Rplus_comm n p); rewrite (Rplus_comm m p).
+apply Rplus_le_mono_l.
+Qed.
+
+Theorem Rplus_lt_mono_l : forall n m p : R, n < m <-> p + n < p + m.
+Proof.
+intros n m p; do 2 rewrite Rlt_le_neq. rewrite Rplus_cancel_l.
+now rewrite <- Rplus_le_mono_l.
+Qed.
+
+Theorem Rplus_lt_mono_r : forall n m p : R, n < m <-> n + p < m + p.
+Proof.
+intros n m p.
+rewrite (Rplus_comm n p); rewrite (Rplus_comm m p); apply Rplus_lt_mono_l.
+Qed.
+
+Theorem Rplus_lt_mono : forall n m p q : R, n < m -> p < q -> n + p < m + q.
+Proof.
+intros n m p q H1 H2.
+apply Rlt_trans with (m + p); [now apply -> Rplus_lt_mono_r | now apply -> Rplus_lt_mono_l].
+Qed.
+
+Theorem Rplus_le_mono : forall n m p q : R, n <= m -> p <= q -> n + p <= m + q.
+Proof.
+intros n m p q H1 H2.
+apply Rle_trans with (m + p); [now apply -> Rplus_le_mono_r | now apply -> Rplus_le_mono_l].
+Qed.
+
+Theorem Rplus_lt_le_mono : forall n m p q : R, n < m -> p <= q -> n + p < m + q.
+Proof.
+intros n m p q H1 H2.
+apply Rlt_le_trans with (m + p); [now apply -> Rplus_lt_mono_r | now apply -> Rplus_le_mono_l].
+Qed.
+
+Theorem Rplus_le_lt_mono : forall n m p q : R, n <= m -> p < q -> n + p < m + q.
+Proof.
+intros n m p q H1 H2.
+apply Rle_lt_trans with (m + p); [now apply -> Rplus_le_mono_r | now apply -> Rplus_lt_mono_l].
+Qed.
+
+Theorem Rplus_pos_pos : forall n m : R, 0 < n -> 0 < m -> 0 < n + m.
+Proof.
+intros n m H1 H2. rewrite <- (Rplus_0_l 0). now apply Rplus_lt_mono.
+Qed.
+
+Theorem Rplus_pos_nonneg : forall n m : R, 0 < n -> 0 <= m -> 0 < n + m.
+Proof.
+intros n m H1 H2. rewrite <- (Rplus_0_l 0). now apply Rplus_lt_le_mono.
+Qed.
+
+Theorem Rplus_nonneg_pos : forall n m : R, 0 <= n -> 0 < m -> 0 < n + m.
+Proof.
+intros n m H1 H2. rewrite <- (Rplus_0_l 0). now apply Rplus_le_lt_mono.
+Qed.
+
+Theorem Rplus_nonneg_nonneg : forall n m : R, 0 <= n -> 0 <= m -> 0 <= n + m.
+Proof.
+intros n m H1 H2. rewrite <- (Rplus_0_l 0). now apply Rplus_le_mono.
+Qed.
+
+Theorem Rle_le_minus : forall n m : R, n <= m <-> 0 <= m - n.
+Proof.
+intros n m. rewrite (@Rplus_le_mono_r n m (- n)).
+setoid_replace (n + - n) with 0 by ring.
+now setoid_replace (m + - n) with (m - n) by ring.
+Qed.
+
+Theorem Rlt_lt_minus : forall n m : R, n < m <-> 0 < m - n.
+Proof.
+intros n m. rewrite (@Rplus_lt_mono_r n m (- n)).
+setoid_replace (n + - n) with 0 by ring.
+now setoid_replace (m + - n) with (m - n) by ring.
+Qed.
+
+Theorem Ropp_lt_mono : forall n m : R, n < m <-> - m < - n.
+Proof.
+intros n m. split; intro H.
+apply -> (@Rplus_lt_mono_l n m (- n - m)) in H.
+setoid_replace (- n - m + n) with (- m) in H by ring.
+now setoid_replace (- n - m + m) with (- n) in H by ring.
+apply -> (@Rplus_lt_mono_l (- m) (- n) (n + m)) in H.
+setoid_replace (n + m + - m) with n in H by ring.
+now setoid_replace (n + m + - n) with m in H by ring.
+Qed.
+
+Theorem Ropp_pos_neg : forall n : R, 0 < - n <-> n < 0.
+Proof.
+intro n; rewrite (Ropp_lt_mono n 0). now setoid_replace (- 0) with 0 by ring.
+Qed.
+
+(* Times and order *)
+
+Theorem Rtimes_pos_pos : forall n m : R, 0 < n -> 0 < m -> 0 < n * m.
+Proof sor.(SORtimes_pos_pos).
+
+Theorem Rtimes_nonneg_nonneg : forall n m : R, 0 <= n -> 0 <= m -> 0 <= n * m.
+Proof.
+intros n m H1 H2.
+le_elim H1. le_elim H2.
+le_less; now apply Rtimes_pos_pos.
+rewrite <- H2; rewrite Rtimes_0_r; le_equal.
+rewrite <- H1; rewrite Rtimes_0_l; le_equal.
+Qed.
+
+Theorem Rtimes_pos_neg : forall n m : R, 0 < n -> m < 0 -> n * m < 0.
+Proof.
+intros n m H1 H2. apply -> Ropp_pos_neg.
+setoid_replace (- (n * m)) with (n * (- m)) by ring.
+apply Rtimes_pos_pos. assumption. now apply <- Ropp_pos_neg.
+Qed.
+
+Theorem Rtimes_neg_neg : forall n m : R, n < 0 -> m < 0 -> 0 < n * m.
+Proof.
+intros n m H1 H2.
+setoid_replace (n * m) with ((- n) * (- m)) by ring.
+apply Rtimes_pos_pos; now apply <- Ropp_pos_neg.
+Qed.
+
+Theorem Rtimes_square_nonneg : forall n : R, 0 <= n * n.
+Proof.
+intro n; destruct (Rlt_trichotomy 0 n) as [H | [H | H]].
+le_less; now apply Rtimes_pos_pos.
+rewrite <- H, Rtimes_0_l; le_equal.
+le_less; now apply Rtimes_neg_neg.
+Qed.
+
+Theorem Rtimes_neq_0 : forall n m : R, n ~= 0 /\ m ~= 0 -> n * m ~= 0.
+Proof.
+intros n m [H1 H2].
+destruct (Rlt_trichotomy n 0) as [H3 | [H3 | H3]];
+destruct (Rlt_trichotomy m 0) as [H4 | [H4 | H4]];
+try (false_hyp H3 H1); try (false_hyp H4 H2).
+apply Rneq_symm. apply Rlt_neq. now apply Rtimes_neg_neg.
+apply Rlt_neq. rewrite Rtimes_comm. now apply Rtimes_pos_neg.
+apply Rlt_neq. now apply Rtimes_pos_neg.
+apply Rneq_symm. apply Rlt_neq. now apply Rtimes_pos_pos.
+Qed.
+
+(* The following theorems are used to build a morphism from Z to R and
+prove its properties in ZCoeff.v. They are not used in RingMicromega.v. *)
+
+(* Surprisingly, multilication is needed to prove the following theorem *)
+
+Theorem Ropp_neg_pos : forall n : R, - n < 0 <-> 0 < n.
+Proof.
+intro n; setoid_replace n with (- - n) by ring. rewrite Ropp_pos_neg.
+now setoid_replace (- - n) with n by ring.
+Qed.
+
+Theorem Rlt_0_1 : 0 < 1.
+Proof.
+apply <- Rlt_le_neq. split.
+setoid_replace 1 with (1 * 1) by ring; apply Rtimes_square_nonneg.
+apply Rneq_0_1.
+Qed.
+
+Theorem Rlt_succ_r : forall n : R, n < 1 + n.
+Proof.
+intro n. rewrite <- (Rplus_0_l n); setoid_replace (1 + (0 + n)) with (1 + n) by ring.
+apply -> Rplus_lt_mono_r. apply Rlt_0_1.
+Qed.
+
+Theorem Rlt_lt_succ : forall n m : R, n < m -> n < 1 + m.
+Proof.
+intros n m H; apply Rlt_trans with m. assumption. apply Rlt_succ_r.
+Qed.
+
+(*Theorem Rtimes_lt_mono_pos_l : forall n m p : R, 0 < p -> n < m -> p * n < p * m.
+Proof.
+intros n m p H1 H2. apply <- Rlt_lt_minus.
+setoid_replace (p * m - p * n) with (p * (m - n)) by ring.
+apply Rtimes_pos_pos. assumption. now apply -> Rlt_lt_minus.
+Qed.*)
+
+End STRICT_ORDERED_RING.
+
diff --git a/contrib/micromega/Refl.v b/contrib/micromega/Refl.v
new file mode 100644
index 000000000..8dced223b
--- /dev/null
+++ b/contrib/micromega/Refl.v
@@ -0,0 +1,74 @@
+(********************************************************************)
+(* *)
+(* Micromega: A reflexive tactics using the Positivstellensatz *)
+(* *)
+(* Frédéric Besson (Irisa/Inria) 2006 *)
+(* *)
+(********************************************************************)
+Require Import List.
+
+Set Implicit Arguments.
+
+(* Refl of '->' '/\': basic properties *)
+
+Fixpoint make_impl (A : Type) (eval : A -> Prop) (l : list A) (goal : Prop) {struct l} : Prop :=
+ match l with
+ | nil => goal
+ | cons e l => (eval e) -> (make_impl eval l goal)
+ end.
+
+Theorem make_impl_true :
+ forall (A : Type) (eval : A -> Prop) (l : list A), make_impl eval l True.
+Proof.
+induction l as [| a l IH]; simpl.
+trivial.
+intro; apply IH.
+Qed.
+
+Fixpoint make_conj (A : Type) (eval : A -> Prop) (l : list A) {struct l} : Prop :=
+ match l with
+ | nil => True
+ | cons e nil => (eval e)
+ | cons e l2 => ((eval e) /\ (make_conj eval l2))
+ end.
+
+Theorem make_conj_cons : forall (A : Type) (eval : A -> Prop) (a : A) (l : list A),
+ make_conj eval (a :: l) <-> eval a /\ make_conj eval l.
+Proof.
+intros; destruct l; simpl; tauto.
+Qed.
+
+Lemma make_conj_impl : forall (A : Type) (eval : A -> Prop) (l : list A) (g : Prop),
+ (make_conj eval l -> g) <-> make_impl eval l g.
+Proof.
+ induction l.
+ simpl.
+ tauto.
+ simpl.
+ intros.
+ destruct l.
+ simpl.
+ tauto.
+ generalize (IHl g).
+ tauto.
+Qed.
+
+Lemma make_conj_in : forall (A : Type) (eval : A -> Prop) (l : list A),
+ make_conj eval l -> (forall p, In p l -> eval p).
+Proof.
+ induction l.
+ simpl.
+ tauto.
+ simpl.
+ intros.
+ destruct l.
+ simpl in H0.
+ destruct H0.
+ subst; auto.
+ tauto.
+ destruct H.
+ destruct H0.
+ subst;auto.
+ apply IHl; auto.
+Qed.
+
diff --git a/contrib/micromega/RingMicromega.v b/contrib/micromega/RingMicromega.v
new file mode 100644
index 000000000..2d565321a
--- /dev/null
+++ b/contrib/micromega/RingMicromega.v
@@ -0,0 +1,570 @@
+Require Import Ring_polynom.
+
+
+Require Import NArith.
+Require Import Relation_Definitions.
+Require Import Setoid.
+Require Import Ring_polynom.
+Require Import List.
+Require Import Bool.
+Require Import OrderedRing.
+Require Import Refl.
+Require Import CheckerMaker.
+
+Set Implicit Arguments.
+
+Import OrderedRingSyntax.
+
+Section Micromega.
+
+(* Assume we have a strict(ly?) ordered ring *)
+
+Variable R : Type.
+Variables rO rI : R.
+Variables rplus rtimes rminus: R -> R -> R.
+Variable ropp : R -> R.
+Variables req rle rlt : R -> R -> Prop.
+
+Variable sor : SOR rO rI rplus rtimes rminus ropp req rle rlt.
+
+Notation "0" := rO.
+Notation "1" := rI.
+Notation "x + y" := (rplus x y).
+Notation "x * y " := (rtimes x y).
+Notation "x - y " := (rminus x y).
+Notation "- x" := (ropp x).
+Notation "x == y" := (req x y).
+Notation "x ~= y" := (~ req x y).
+Notation "x <= y" := (rle x y).
+Notation "x < y" := (rlt x y).
+
+(* Assume we have a type of coefficients C and a morphism from C to R *)
+
+Variable C : Type.
+Variables cO cI : C.
+Variables cplus ctimes cminus: C -> C -> C.
+Variable copp : C -> C.
+Variables ceqb cleb : C -> C -> bool.
+Variable phi : C -> R.
+
+(* Power coefficients *)
+Variable E : Set. (* the type of exponents *)
+Variable pow_phi : N -> E.
+Variable rpow : R -> E -> R.
+
+Notation "[ x ]" := (phi x).
+Notation "x [=] y" := (ceqb x y).
+Notation "x [<=] y" := (cleb x y).
+
+(* Let's collect all hypotheses in addition to the ordered ring axioms into
+one structure *)
+
+Record SORaddon := mk_SOR_addon {
+ SORrm : ring_morph 0 1 rplus rtimes rminus ropp req cO cI cplus ctimes cminus copp ceqb phi;
+ SORpower : power_theory rI rtimes req pow_phi rpow;
+ SORcneqb_morph : forall x y : C, x [=] y = false -> [x] ~= [y];
+ SORcleb_morph : forall x y : C, x [<=] y = true -> [x] <= [y]
+}.
+
+Variable addon : SORaddon.
+
+Add Relation R req
+ reflexivity proved by sor.(SORsetoid).(Seq_refl _ _)
+ symmetry proved by sor.(SORsetoid).(Seq_sym _ _)
+ transitivity proved by sor.(SORsetoid).(Seq_trans _ _)
+as micomega_sor_setoid.
+
+Add Morphism rplus with signature req ==> req ==> req as rplus_morph.
+Proof.
+exact sor.(SORplus_wd).
+Qed.
+Add Morphism rtimes with signature req ==> req ==> req as rtimes_morph.
+Proof.
+exact sor.(SORtimes_wd).
+Qed.
+Add Morphism ropp with signature req ==> req as ropp_morph.
+Proof.
+exact sor.(SORopp_wd).
+Qed.
+Add Morphism rle with signature req ==> req ==> iff as rle_morph.
+Proof.
+exact sor.(SORle_wd).
+Qed.
+Add Morphism rlt with signature req ==> req ==> iff as rlt_morph.
+Proof.
+exact sor.(SORlt_wd).
+Qed.
+
+Add Morphism rminus with signature req ==> req ==> req as rminus_morph.
+Proof (rminus_morph sor). (* We already proved that minus is a morphism in OrderedRing.v *)
+
+Definition cneqb (x y : C) := negb (ceqb x y).
+Definition cltb (x y : C) := (cleb x y) && (cneqb x y).
+
+Notation "x [~=] y" := (cneqb x y).
+Notation "x [<] y" := (cltb x y).
+
+Ltac le_less := rewrite (Rle_lt_eq sor); left; try assumption.
+Ltac le_equal := rewrite (Rle_lt_eq sor); right; try reflexivity; try assumption.
+Ltac le_elim H := rewrite (Rle_lt_eq sor) in H; destruct H as [H | H].
+
+Lemma cleb_sound : forall x y : C, x [<=] y = true -> [x] <= [y].
+Proof addon.(SORcleb_morph).
+
+Lemma cneqb_sound : forall x y : C, x [~=] y = true -> [x] ~= [y].
+Proof.
+intros x y H1. apply addon.(SORcneqb_morph). unfold cneqb, negb in H1.
+destruct (ceqb x y); now try discriminate.
+Qed.
+
+Lemma cltb_sound : forall x y : C, x [<] y = true -> [x] < [y].
+Proof.
+intros x y H. unfold cltb in H. apply andb_prop in H. destruct H as [H1 H2].
+apply cleb_sound in H1. apply cneqb_sound in H2. apply <- (Rlt_le_neq sor). now split.
+Qed.
+
+(* Begin Micromega *)
+
+Definition PExprC := PExpr C. (* arbitrary expressions built from +, *, - *)
+Definition PolC := Pol C. (* polynomials in generalized Horner form, defined in Ring_polynom *)
+Definition Env := list R.
+
+Definition eval_pexpr : Env -> PExprC -> R := PEeval 0 rplus rtimes rminus ropp phi pow_phi rpow.
+Definition eval_pol : Env -> PolC -> R := Pphi 0 rplus rtimes phi.
+
+Inductive Op2 : Set := (* binary relations *)
+| OpEq
+| OpNEq
+| OpLe
+| OpGe
+| OpLt
+| OpGt.
+
+Definition eval_op2 (o : Op2) : R -> R -> Prop :=
+match o with
+| OpEq => req
+| OpNEq => fun x y : R => x ~= y
+| OpLe => rle
+| OpGe => fun x y : R => y <= x
+| OpLt => fun x y : R => x < y
+| OpGt => fun x y : R => y < x
+end.
+
+Record Formula : Type := {
+ Flhs : PExprC;
+ Fop : Op2;
+ Frhs : PExprC
+}.
+
+Definition eval_formula (env : Env) (f : Formula) : Prop :=
+ let (lhs, op, rhs) := f in
+ (eval_op2 op) (eval_pexpr env lhs) (eval_pexpr env rhs).
+
+(* We normalize Formulas by moving terms to one side *)
+
+Inductive Op1 : Set := (* relations with 0 *)
+| Equal (* == 0 *)
+| NonEqual (* ~= 0 *)
+| Strict (* > 0 *)
+| NonStrict (* >= 0 *).
+
+Definition NFormula := (PExprC * Op1)%type. (* normalized formula *)
+
+Definition eval_op1 (o : Op1) : R -> Prop :=
+match o with
+| Equal => fun x => x == 0
+| NonEqual => fun x : R => x ~= 0
+| Strict => fun x : R => 0 < x
+| NonStrict => fun x : R => 0 <= x
+end.
+
+Definition eval_nformula (env : Env) (f : NFormula) : Prop :=
+let (p, op) := f in eval_op1 op (eval_pexpr env p).
+
+Definition normalise (f : Formula) : NFormula :=
+let (lhs, op, rhs) := f in
+ match op with
+ | OpEq => (PEsub lhs rhs, Equal)
+ | OpNEq => (PEsub lhs rhs, NonEqual)
+ | OpLe => (PEsub rhs lhs, NonStrict)
+ | OpGe => (PEsub lhs rhs, NonStrict)
+ | OpGt => (PEsub lhs rhs, Strict)
+ | OpLt => (PEsub rhs lhs, Strict)
+ end.
+
+Definition negate (f : Formula) : NFormula :=
+let (lhs, op, rhs) := f in
+ match op with
+ | OpEq => (PEsub rhs lhs, NonEqual)
+ | OpNEq => (PEsub rhs lhs, Equal)
+ | OpLe => (PEsub lhs rhs, Strict) (* e <= e' == ~ e > e' *)
+ | OpGe => (PEsub rhs lhs, Strict)
+ | OpGt => (PEsub rhs lhs, NonStrict)
+ | OpLt => (PEsub lhs rhs, NonStrict)
+end.
+
+Theorem normalise_sound :
+ forall (env : Env) (f : Formula),
+ eval_formula env f -> eval_nformula env (normalise f).
+Proof.
+intros env f H; destruct f as [lhs op rhs]; simpl in *.
+destruct op; simpl in *.
+now apply <- (Rminus_eq_0 sor).
+intros H1. apply -> (Rminus_eq_0 sor) in H1. now apply H.
+now apply -> (Rle_le_minus sor).
+now apply -> (Rle_le_minus sor).
+now apply -> (Rlt_lt_minus sor).
+now apply -> (Rlt_lt_minus sor).
+Qed.
+
+Theorem negate_correct :
+ forall (env : Env) (f : Formula),
+ eval_formula env f <-> ~ (eval_nformula env (negate f)).
+Proof.
+intros env f; destruct f as [lhs op rhs]; simpl.
+destruct op; simpl.
+symmetry. rewrite (Rminus_eq_0 sor).
+split; intro H; [symmetry; now apply -> (Req_dne sor) | symmetry in H; now apply <- (Req_dne sor)].
+rewrite (Rminus_eq_0 sor). split; intro; now apply (Rneq_symm sor).
+rewrite <- (Rlt_lt_minus sor). now rewrite <- (Rle_ngt sor).
+rewrite <- (Rlt_lt_minus sor). now rewrite <- (Rle_ngt sor).
+rewrite <- (Rle_le_minus sor). now rewrite <- (Rlt_nge sor).
+rewrite <- (Rle_le_minus sor). now rewrite <- (Rlt_nge sor).
+Qed.
+
+Definition OpMult (o o' : Op1) : Op1 :=
+match o with
+| Equal => Equal
+| NonStrict => NonStrict (* (OpMult NonStrict Equal) could be defined as Equal *)
+| Strict => o'
+| NonEqual => NonEqual (* does not matter what we return here; see the following lemmas *)
+end.
+
+Definition OpAdd (o o': Op1) : Op1 :=
+match o with
+| Equal => o'
+| NonStrict =>
+ match o' with
+ | Strict => Strict
+ | _ => NonStrict
+ end
+| Strict => Strict
+| NonEqual => NonEqual (* does not matter what we return here *)
+end.
+
+Lemma OpMultNonEqual :
+ forall o o' : Op1, o <> NonEqual -> o' <> NonEqual -> OpMult o o' <> NonEqual.
+Proof.
+intros o o' H1 H2; destruct o; destruct o'; simpl; try discriminate;
+try (intro H; apply H1; reflexivity);
+try (intro H; apply H2; reflexivity).
+Qed.
+
+Lemma OpAdd_NonEqual :
+ forall o o' : Op1, o <> NonEqual -> o' <> NonEqual -> OpAdd o o' <> NonEqual.
+Proof.
+intros o o' H1 H2; destruct o; destruct o'; simpl; try discriminate;
+try (intro H; apply H1; reflexivity);
+try (intro H; apply H2; reflexivity).
+Qed.
+
+Lemma OpMult_sound :
+ forall (o o' : Op1) (x y : R), o <> NonEqual -> o' <> NonEqual ->
+ eval_op1 o x -> eval_op1 o' y -> eval_op1 (OpMult o o') (x * y).
+Proof.
+unfold eval_op1; destruct o; simpl; intros o' x y H1 H2 H3 H4.
+rewrite H3; now rewrite (Rtimes_0_l sor).
+elimtype False; now apply H1.
+destruct o'.
+rewrite H4; now rewrite (Rtimes_0_r sor).
+elimtype False; now apply H2.
+now apply (Rtimes_pos_pos sor).
+apply (Rtimes_nonneg_nonneg sor); [le_less | assumption].
+destruct o'.
+rewrite H4, (Rtimes_0_r sor); le_equal.
+elimtype False; now apply H2.
+apply (Rtimes_nonneg_nonneg sor); [assumption | le_less].
+now apply (Rtimes_nonneg_nonneg sor).
+Qed.
+
+Lemma OpAdd_sound :
+ forall (o o' : Op1) (e e' : R), o <> NonEqual -> o' <> NonEqual ->
+ eval_op1 o e -> eval_op1 o' e' -> eval_op1 (OpAdd o o') (e + e').
+Proof.
+unfold eval_op1; destruct o; simpl; intros o' e e' H1 H2 H3 H4.
+destruct o'.
+now rewrite H3, H4, (Rplus_0_l sor).
+elimtype False; now apply H2.
+now rewrite H3, (Rplus_0_l sor).
+now rewrite H3, (Rplus_0_l sor).
+elimtype False; now apply H1.
+destruct o'.
+now rewrite H4, (Rplus_0_r sor).
+elimtype False; now apply H2.
+now apply (Rplus_pos_pos sor).
+now apply (Rplus_pos_nonneg sor).
+destruct o'.
+now rewrite H4, (Rplus_0_r sor).
+elimtype False; now apply H2.
+now apply (Rplus_nonneg_pos sor).
+now apply (Rplus_nonneg_nonneg sor).
+Qed.
+
+(* We consider a monoid whose generators are polynomials from the
+hypotheses of the form (p ~= 0). Thus it follows from the hypotheses that
+every element of the monoid (i.e., arbitrary product of generators) is ~=
+0. Therefore, the square of every element is > 0. *)
+
+Inductive Monoid (l : list NFormula) : PExprC -> Prop :=
+| M_One : Monoid l (PEc cI)
+| M_In : forall p : PExprC, In (p, NonEqual) l -> Monoid l p
+| M_Mult : forall (e1 e2 : PExprC), Monoid l e1 -> Monoid l e2 -> Monoid l (PEmul e1 e2).
+
+Inductive Cone (l : list (NFormula)) : PExprC -> Op1 -> Prop :=
+| InC : forall p op, In (p, op) l -> op <> NonEqual -> Cone l p op
+| IsIdeal : forall p, Cone l p Equal -> forall p', Cone l (PEmul p p') Equal
+| IsSquare : forall p, Cone l (PEmul p p) NonStrict
+| IsMonoid : forall p, Monoid l p -> Cone l (PEmul p p) Strict
+| IsMult : forall p op q oq, Cone l p op -> Cone l q oq -> Cone l (PEmul p q) (OpMult op oq)
+| IsAdd : forall p op q oq, Cone l p op -> Cone l q oq -> Cone l (PEadd p q) (OpAdd op oq)
+| IsPos : forall c : C, cltb cO c = true -> Cone l (PEc c) Strict
+| IsZ : Cone l (PEc cO) Equal.
+
+(* As promised, if all hypotheses are true in some environment, then every
+member of the monoid is nonzero in this environment *)
+
+Lemma monoid_nonzero : forall (l : list NFormula) (env : Env),
+ (forall f : NFormula, In f l -> eval_nformula env f) ->
+ forall p : PExprC, Monoid l p -> eval_pexpr env p ~= 0.
+Proof.
+intros l env H1 p H2. induction H2 as [| f H | e1 e2 H3 IH1 H4 IH2]; simpl.
+rewrite addon.(SORrm).(morph1). apply (Rneq_symm sor). apply (Rneq_0_1 sor).
+apply H1 in H. now simpl in H.
+simpl in IH1, IH2. apply (Rtimes_neq_0 sor). now split.
+Qed.
+
+(* If all members of a cone base are true in some environment, then every
+member of the cone is true as well *)
+
+Lemma cone_true :
+ forall (l : list NFormula) (env : Env),
+ (forall (f : NFormula), In f l -> eval_nformula env f) ->
+ forall (p : PExprC) (op : Op1), Cone l p op ->
+ op <> NonEqual /\ eval_nformula env (p, op).
+Proof.
+intros l env H1 p op H2. induction H2; simpl in *.
+split. assumption. apply H1 in H. now unfold eval_nformula in H.
+split. discriminate. destruct IHCone as [_ H3]. rewrite H3. now rewrite (Rtimes_0_l sor).
+split. discriminate. apply (Rtimes_square_nonneg sor).
+split. discriminate. apply <- (Rlt_le_neq sor). split. apply (Rtimes_square_nonneg sor).
+apply (Rneq_symm sor). apply (Rtimes_neq_0 sor). split; now apply monoid_nonzero with l.
+destruct IHCone1 as [IH1 IH2]; destruct IHCone2 as [IH3 IH4].
+split. now apply OpMultNonEqual. now apply OpMult_sound.
+destruct IHCone1 as [IH1 IH2]; destruct IHCone2 as [IH3 IH4].
+split. now apply OpAdd_NonEqual. now apply OpAdd_sound.
+split. discriminate. rewrite <- addon.(SORrm).(morph0). now apply cltb_sound.
+split. discriminate. apply addon.(SORrm).(morph0).
+Qed.
+
+(* Every element of a monoid is a product of some generators; therefore,
+to determine an element we can give a list of generators' indices *)
+
+Definition MonoidMember : Set := list nat.
+
+Inductive ConeMember : Type :=
+| S_In : nat -> ConeMember
+| S_Ideal : PExprC -> ConeMember -> ConeMember
+| S_Square : PExprC -> ConeMember
+| S_Monoid : MonoidMember -> ConeMember
+| S_Mult : ConeMember -> ConeMember -> ConeMember
+| S_Add : ConeMember -> ConeMember -> ConeMember
+| S_Pos : forall c : C, cltb cO c = true -> ConeMember (* the proof of cltb 0 c = true should be (refl_equal true) *)
+| S_Z : ConeMember.
+
+Definition nformula_times (f f' : NFormula) : NFormula :=
+let (p, op) := f in
+ let (p', op') := f' in
+ (PEmul p p', OpMult op op').
+
+Definition nformula_plus (f f' : NFormula) : NFormula :=
+let (p, op) := f in
+ let (p', op') := f' in
+ (PEadd p p', OpAdd op op').
+
+Definition nformula_times_0 (p : PExprC) (f : NFormula) : NFormula :=
+let (q, op) := f in
+ match op with
+ | Equal => (PEmul q p, Equal)
+ | _ => f
+ end.
+
+Fixpoint eval_monoid (l : list NFormula) (ns : MonoidMember) {struct ns} : PExprC :=
+match ns with
+| nil => PEc cI
+| n :: ns =>
+ let p := match nth n l (PEc cI, NonEqual) with
+ | (q, NonEqual) => q
+ | _ => PEc cI
+ end in
+ PEmul p (eval_monoid l ns)
+end.
+
+Theorem eval_monoid_in_monoid :
+ forall (l : list NFormula) (ns : MonoidMember), Monoid l (eval_monoid l ns).
+Proof.
+intro l; induction ns; simpl in *.
+constructor.
+apply M_Mult; [| assumption].
+destruct (nth_in_or_default a l (PEc cI, NonEqual)).
+destruct (nth a l (PEc cI, NonEqual)). destruct o; try constructor. assumption.
+rewrite e; simpl. constructor.
+Qed.
+
+(* Provides the cone member from the witness, i.e., ConeMember *)
+Fixpoint eval_cone (l : list NFormula) (cm : ConeMember) {struct cm} : NFormula :=
+match cm with
+| S_In n => match nth n l (PEc cO, Equal) with
+ | (_, NonEqual) => (PEc cO, Equal)
+ | f => f
+ end
+| S_Ideal p cm' => nformula_times_0 p (eval_cone l cm')
+| S_Square p => (PEmul p p, NonStrict)
+| S_Monoid m => let p := eval_monoid l m in (PEmul p p, Strict)
+| S_Mult p q => nformula_times (eval_cone l p) (eval_cone l q)
+| S_Add p q => nformula_plus (eval_cone l p) (eval_cone l q)
+| S_Pos c _ => (PEc c, Strict)
+| S_Z => (PEc cO, Equal)
+end.
+
+Theorem eval_cone_in_cone :
+ forall (l : list NFormula) (cm : ConeMember),
+ let (p, op) := eval_cone l cm in Cone l p op.
+Proof.
+intros l cm; induction cm; simpl.
+destruct (nth_in_or_default n l (PEc cO, Equal)).
+destruct (nth n l (PEc cO, Equal)). destruct o; try (now apply InC). apply IsZ.
+rewrite e. apply IsZ.
+destruct (eval_cone l cm). destruct o; simpl; try assumption. now apply IsIdeal.
+apply IsSquare.
+apply IsMonoid. apply eval_monoid_in_monoid.
+destruct (eval_cone l cm1). destruct (eval_cone l cm2). unfold nformula_times. now apply IsMult.
+destruct (eval_cone l cm1). destruct (eval_cone l cm2). unfold nformula_plus. now apply IsAdd.
+now apply IsPos. apply IsZ.
+Qed.
+
+(* (inconsistent_cone_member l p) means (p, op) is in the cone for some op
+(> 0, >= 0, == 0, or ~= 0) and this formula is inconsistent. This fact
+implies that l is inconsistent, as shown by the next lemma. Inconsistency
+of a formula (p, op) can be established by normalizing p and showing that
+it is a constant c for which (c, op) is false. (This is only a sufficient,
+not necessary, condition, of course.) Membership in the cone can be
+verified if we have a certificate. *)
+
+Definition inconsistent_cone_member (l : list NFormula) (p : PExprC) :=
+ exists op : Op1, Cone l p op /\
+ forall env : Env, ~ eval_op1 op (eval_pexpr env p).
+
+Implicit Arguments make_impl [A].
+
+(* If some element of a cone is inconsistent, then the base of the cone
+is also inconsistent *)
+
+Lemma prove_inconsistent :
+ forall (l : list NFormula) (p : PExprC),
+ inconsistent_cone_member l p -> forall env, make_impl (eval_nformula env) l False.
+Proof.
+intros l p H env.
+destruct H as [o [wit H]].
+apply -> make_conj_impl.
+intro H1. apply H with env.
+pose proof (@cone_true l env) as H2.
+cut (forall f : NFormula, In f l -> eval_nformula env f). intro H3.
+apply (proj2 (H2 H3 p o wit)). intro. now apply make_conj_in.
+Qed.
+
+Definition normalise_pexpr : PExprC -> PolC :=
+ norm_aux cO cI cplus ctimes cminus copp ceqb.
+
+Let Reqe := mk_reqe rplus rtimes ropp req
+ sor.(SORplus_wd)
+ sor.(SORtimes_wd)
+ sor.(SORopp_wd).
+
+Theorem normalise_pexpr_correct :
+ forall (env : Env) (e : PExprC), eval_pexpr env e == eval_pol env (normalise_pexpr e).
+intros env e. unfold eval_pexpr, eval_pol, normalise_pexpr.
+apply (norm_aux_spec sor.(SORsetoid) Reqe (Rth_ARth sor.(SORsetoid) Reqe sor.(SORrt))
+addon.(SORrm) addon.(SORpower) nil). constructor.
+Qed.
+
+(* Check that a formula f is inconsistent by normalizing and comparing the
+resulting constant with 0 *)
+
+Definition check_inconsistent (f : NFormula) : bool :=
+let (e, op) := f in
+ match normalise_pexpr e with
+ | Pc c =>
+ match op with
+ | Equal => cneqb c cO
+ | NonStrict => c [<] cO
+ | Strict => c [<=] cO
+ | NonEqual => false (* eval_cone never returns (p, NonEqual) *)
+ end
+ | _ => false (* not a constant *)
+ end.
+
+Lemma check_inconsistent_sound :
+ forall (p : PExprC) (op : Op1),
+ check_inconsistent (p, op) = true -> forall env, ~ eval_op1 op (eval_pexpr env p).
+Proof.
+intros p op H1 env. unfold check_inconsistent in H1.
+destruct op; simpl; rewrite normalise_pexpr_correct;
+destruct (normalise_pexpr p); simpl; try discriminate H1;
+rewrite <- addon.(SORrm).(morph0).
+now apply cneqb_sound.
+apply cleb_sound in H1. now apply -> (Rle_ngt sor).
+apply cltb_sound in H1. now apply -> (Rlt_nge sor).
+Qed.
+
+Definition check_normalised_formulas : list NFormula -> ConeMember -> bool :=
+ fun l cm => check_inconsistent (eval_cone l cm).
+
+Lemma checker_nf_sound :
+ forall (l : list NFormula) (cm : ConeMember),
+ check_normalised_formulas l cm = true ->
+ forall env : Env, make_impl (eval_nformula env) l False.
+Proof.
+intros l cm H env.
+unfold check_normalised_formulas in H.
+case_eq (eval_cone l cm). intros p op H1.
+apply prove_inconsistent with p. unfold inconsistent_cone_member. exists op. split.
+pose proof (eval_cone_in_cone l cm) as H2. now rewrite H1 in H2.
+apply check_inconsistent_sound. now rewrite <- H1.
+Qed.
+
+Definition check_formulas :=
+ CheckerMaker.check_formulas normalise check_normalised_formulas.
+
+Theorem check_formulas_sound :
+ forall (l : list Formula) (w : ConeMember),
+ check_formulas l w = true ->
+ forall env : Env, make_impl (eval_formula env) l False.
+Proof.
+exact (CheckerMaker.check_formulas_sound eval_formula eval_nformula normalise
+ normalise_sound check_normalised_formulas checker_nf_sound).
+Qed.
+
+Definition check_conj_formulas :=
+ CheckerMaker.check_conj_formulas normalise negate check_normalised_formulas.
+
+Theorem check_conj_formulas_sound :
+ forall (l1 : list Formula) (l2 : list Formula) (ws : list ConeMember),
+ check_conj_formulas l1 ws l2 = true ->
+ forall env : Env, make_impl (eval_formula env) l1 (make_conj (eval_formula env) l2).
+Proof.
+exact (check_conj_formulas_sound eval_formula eval_nformula normalise negate
+ normalise_sound negate_correct check_normalised_formulas checker_nf_sound).
+Qed.
+
+End Micromega.
+
diff --git a/contrib/micromega/ZCoeff.v b/contrib/micromega/ZCoeff.v
new file mode 100644
index 000000000..20c900780
--- /dev/null
+++ b/contrib/micromega/ZCoeff.v
@@ -0,0 +1,142 @@
+Require Import OrderedRing.
+Require Import RingMicromega.
+Require Import ZArith.
+Require Import InitialRing.
+Require Import Setoid.
+
+Import OrderedRingSyntax.
+
+Set Implicit Arguments.
+
+Section InitialMorphism.
+
+Variable R : Type.
+Variables rO rI : R.
+Variables rplus rtimes rminus: R -> R -> R.
+Variable ropp : R -> R.
+Variables req rle rlt : R -> R -> Prop.
+
+Variable sor : SOR rO rI rplus rtimes rminus ropp req rle rlt.
+
+Notation "0" := rO.
+Notation "1" := rI.
+Notation "x + y" := (rplus x y).
+Notation "x * y " := (rtimes x y).
+Notation "x - y " := (rminus x y).
+Notation "- x" := (ropp x).
+Notation "x == y" := (req x y).
+Notation "x ~= y" := (~ req x y).
+Notation "x <= y" := (rle x y).
+Notation "x < y" := (rlt x y).
+
+Add Relation R req
+ reflexivity proved by sor.(SORsetoid).(Seq_refl _ _)
+ symmetry proved by sor.(SORsetoid).(Seq_sym _ _)
+ transitivity proved by sor.(SORsetoid).(Seq_trans _ _)
+as sor_setoid.
+
+Add Morphism rplus with signature req ==> req ==> req as rplus_morph.
+Proof.
+exact sor.(SORplus_wd).
+Qed.
+Add Morphism rtimes with signature req ==> req ==> req as rtimes_morph.
+Proof.
+exact sor.(SORtimes_wd).
+Qed.
+Add Morphism ropp with signature req ==> req as ropp_morph.
+Proof.
+exact sor.(SORopp_wd).
+Qed.
+Add Morphism rle with signature req ==> req ==> iff as rle_morph.
+Proof.
+exact sor.(SORle_wd).
+Qed.
+Add Morphism rlt with signature req ==> req ==> iff as rlt_morph.
+Proof.
+exact sor.(SORlt_wd).
+Qed.
+Add Morphism rminus with signature req ==> req ==> req as rminus_morph.
+Proof (rminus_morph sor).
+
+Ltac le_less := rewrite (Rle_lt_eq sor); left; try assumption.
+Ltac le_equal := rewrite (Rle_lt_eq sor); right; try reflexivity; try assumption.
+
+Definition gen_order_phi_Z : Z -> R := gen_phiZ 0 1 rplus rtimes ropp.
+
+Notation phi_pos := (gen_phiPOS 1 rplus rtimes).
+Notation phi_pos1 := (gen_phiPOS1 1 rplus rtimes).
+
+Notation "[ x ]" := (gen_order_phi_Z x).
+
+Lemma ring_ops_wd : ring_eq_ext rplus rtimes ropp req.
+Proof.
+constructor.
+exact rplus_morph.
+exact rtimes_morph.
+exact ropp_morph.
+Qed.
+
+Lemma Zring_morph :
+ ring_morph 0 1 rplus rtimes rminus ropp req
+ 0%Z 1%Z Zplus Zmult Zminus Zopp
+ Zeq_bool gen_order_phi_Z.
+Proof.
+exact (gen_phiZ_morph sor.(SORsetoid) ring_ops_wd sor.(SORrt)).
+Qed.
+
+Lemma phi_pos1_pos : forall x : positive, 0 < phi_pos1 x.
+Proof.
+induction x as [x IH | x IH |]; simpl;
+try apply (Rplus_pos_pos sor); try apply (Rtimes_pos_pos sor); try apply (Rplus_pos_pos sor);
+try apply (Rlt_0_1 sor); assumption.
+Qed.
+
+Lemma phi_pos1_succ : forall x : positive, phi_pos1 (Psucc x) == 1 + phi_pos1 x.
+Proof.
+exact (ARgen_phiPOS_Psucc sor.(SORsetoid) ring_ops_wd
+ (Rth_ARth sor.(SORsetoid) ring_ops_wd sor.(SORrt))).
+Qed.
+
+Lemma clt_pos_morph : forall x y : positive, (x < y)%positive -> phi_pos1 x < phi_pos1 y.
+Proof.
+intros x y H. pattern y; apply Plt_ind with x.
+rewrite phi_pos1_succ; apply (Rlt_succ_r sor).
+clear y H; intros y _ H. rewrite phi_pos1_succ. now apply (Rlt_lt_succ sor).
+assumption.
+Qed.
+
+Lemma clt_morph : forall x y : Z, (x < y)%Z -> [x] < [y].
+Proof.
+unfold Zlt; intros x y H;
+do 2 rewrite (same_genZ sor.(SORsetoid) ring_ops_wd sor.(SORrt));
+destruct x; destruct y; simpl in *; try discriminate.
+apply phi_pos1_pos.
+now apply clt_pos_morph.
+apply <- (Ropp_neg_pos sor); apply phi_pos1_pos.
+apply (Rlt_trans sor) with 0. apply <- (Ropp_neg_pos sor); apply phi_pos1_pos.
+apply phi_pos1_pos.
+rewrite Pcompare_antisym in H; simpl in H. apply -> (Ropp_lt_mono sor).
+now apply clt_pos_morph.
+Qed.
+
+Lemma Zcleb_morph : forall x y : Z, Zle_bool x y = true -> [x] <= [y].
+Proof.
+unfold Zle_bool; intros x y H.
+case_eq (x ?= y)%Z; intro H1; rewrite H1 in H.
+le_equal. apply Zring_morph.(morph_eq). unfold Zeq_bool; now rewrite H1.
+le_less. now apply clt_morph.
+discriminate.
+Qed.
+
+Lemma Zcneqb_morph : forall x y : Z, Zeq_bool x y = false -> [x] ~= [y].
+Proof.
+intros x y H. unfold Zeq_bool in H.
+case_eq (Zcompare x y); intro H1; rewrite H1 in *; (discriminate || clear H).
+apply (Rlt_neq sor). now apply clt_morph.
+fold (x > y)%Z in H1. rewrite Zgt_iff_lt in H1.
+apply (Rneq_symm sor). apply (Rlt_neq sor). now apply clt_morph.
+Qed.
+
+End InitialMorphism.
+
+