aboutsummaryrefslogtreecommitdiffhomepage
path: root/contrib/field/Field_Tactic.v
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/field/Field_Tactic.v')
-rw-r--r--contrib/field/Field_Tactic.v713
1 files changed, 374 insertions, 339 deletions
diff --git a/contrib/field/Field_Tactic.v b/contrib/field/Field_Tactic.v
index cd382bc39..a5b206fb2 100644
--- a/contrib/field/Field_Tactic.v
+++ b/contrib/field/Field_Tactic.v
@@ -8,102 +8,101 @@
(* $Id$ *)
-Require Ring.
+Require Import Ring.
Require Export Field_Compl.
Require Export Field_Theory.
(**** Interpretation A --> ExprA ****)
-Recursive Tactic Definition MemAssoc var lvar :=
- Match lvar With
- | [(nilT ?)] -> false
- | [(consT ? ?1 ?2)] ->
- (Match ?1=var With
- | [?1=?1] -> true
- | _ -> (MemAssoc var ?2)).
-
-Recursive Tactic Definition SeekVarAux FT lvar trm :=
- Let AT = Eval Cbv Beta Delta [A] Iota in (A FT)
- And AzeroT = Eval Cbv Beta Delta [Azero] Iota in (Azero FT)
- And AoneT = Eval Cbv Beta Delta [Aone] Iota in (Aone FT)
- And AplusT = Eval Cbv Beta Delta [Aplus] Iota in (Aplus FT)
- And AmultT = Eval Cbv Beta Delta [Amult] Iota in (Amult FT)
- And AoppT = Eval Cbv Beta Delta [Aopp] Iota in (Aopp FT)
- And AinvT = Eval Cbv Beta Delta [Ainv] Iota in (Ainv FT) In
- Match trm With
- | [(AzeroT)] -> lvar
- | [(AoneT)] -> lvar
- | [(AplusT ?1 ?2)] ->
- Let l1 = (SeekVarAux FT lvar ?1) In
- (SeekVarAux FT l1 ?2)
- | [(AmultT ?1 ?2)] ->
- Let l1 = (SeekVarAux FT lvar ?1) In
- (SeekVarAux FT l1 ?2)
- | [(AoppT ?1)] -> (SeekVarAux FT lvar ?1)
- | [(AinvT ?1)] -> (SeekVarAux FT lvar ?1)
- | [?1] ->
- Let res = (MemAssoc ?1 lvar) In
- Match res With
- | [(true)] -> lvar
- | [(false)] -> '(consT AT ?1 lvar).
-
-Tactic Definition SeekVar FT trm :=
- Let AT = Eval Cbv Beta Delta [A] Iota in (A FT) In
- (SeekVarAux FT '(nilT AT) trm).
-
-Recursive Tactic Definition NumberAux lvar cpt :=
- Match lvar With
- | [(nilT ?1)] -> '(nilT (prodT ?1 nat))
- | [(consT ?1 ?2 ?3)] ->
- Let l2 = (NumberAux ?3 '(S cpt)) In
- '(consT (prodT ?1 nat) (pairT ?1 nat ?2 cpt) l2).
-
-Tactic Definition Number lvar := (NumberAux lvar O).
-
-Tactic Definition BuildVarList FT trm :=
- Let lvar = (SeekVar FT trm) In
- (Number lvar).
-V7only [
-(*Used by contrib Maple *)
-Tactic Definition build_var_list := BuildVarList.
-].
-
-Recursive Tactic Definition Assoc elt lst :=
- Match lst With
- | [(nilT ?)] -> Fail
- | [(consT (prodT ? nat) (pairT ? nat ?1 ?2) ?3)] ->
- Match elt= ?1 With
- | [?1= ?1] -> ?2
- | _ -> (Assoc elt ?3).
-
-Recursive Meta Definition interp_A FT lvar trm :=
- Let AT = Eval Cbv Beta Delta [A] Iota in (A FT)
- And AzeroT = Eval Cbv Beta Delta [Azero] Iota in (Azero FT)
- And AoneT = Eval Cbv Beta Delta [Aone] Iota in (Aone FT)
- And AplusT = Eval Cbv Beta Delta [Aplus] Iota in (Aplus FT)
- And AmultT = Eval Cbv Beta Delta [Amult] Iota in (Amult FT)
- And AoppT = Eval Cbv Beta Delta [Aopp] Iota in (Aopp FT)
- And AinvT = Eval Cbv Beta Delta [Ainv] Iota in (Ainv FT) In
- Match trm With
- | [(AzeroT)] -> EAzero
- | [(AoneT)] -> EAone
- | [(AplusT ?1 ?2)] ->
- Let e1 = (interp_A FT lvar ?1)
- And e2 = (interp_A FT lvar ?2) In
- '(EAplus e1 e2)
- | [(AmultT ?1 ?2)] ->
- Let e1 = (interp_A FT lvar ?1)
- And e2 = (interp_A FT lvar ?2) In
- '(EAmult e1 e2)
- | [(AoppT ?1)] ->
- Let e = (interp_A FT lvar ?1) In
- '(EAopp e)
- | [(AinvT ?1)] ->
- Let e = (interp_A FT lvar ?1) In
- '(EAinv e)
- | [?1] ->
- Let idx = (Assoc ?1 lvar) In
- '(EAvar idx).
+Ltac mem_assoc var lvar :=
+ match constr:lvar with
+ | (nilT _) => constr:false
+ | (consT _ ?X1 ?X2) =>
+ match constr:(X1 = var) with
+ | (?X1 = ?X1) => constr:true
+ | _ => mem_assoc var X2
+ end
+ end.
+
+Ltac seek_var_aux FT lvar trm :=
+ let AT := eval cbv beta iota delta [A] in (A FT)
+ with AzeroT := eval cbv beta iota delta [Azero] in (Azero FT)
+ with AoneT := eval cbv beta iota delta [Aone] in (Aone FT)
+ with AplusT := eval cbv beta iota delta [Aplus] in (Aplus FT)
+ with AmultT := eval cbv beta iota delta [Amult] in (Amult FT)
+ with AoppT := eval cbv beta iota delta [Aopp] in (Aopp FT)
+ with AinvT := eval cbv beta iota delta [Ainv] in (Ainv FT) in
+ match constr:trm with
+ | AzeroT => lvar
+ | AoneT => lvar
+ | (AplusT ?X1 ?X2) =>
+ let l1 := seek_var_aux FT lvar X1 in
+ seek_var_aux FT l1 X2
+ | (AmultT ?X1 ?X2) =>
+ let l1 := seek_var_aux FT lvar X1 in
+ seek_var_aux FT l1 X2
+ | (AoppT ?X1) => seek_var_aux FT lvar X1
+ | (AinvT ?X1) => seek_var_aux FT lvar X1
+ | ?X1 =>
+ let res := mem_assoc X1 lvar in
+ match constr:res with
+ | true => lvar
+ | false => constr:(consT AT X1 lvar)
+ end
+ end.
+
+Ltac seek_var FT trm :=
+ let AT := eval cbv beta iota delta [A] in (A FT) in
+ seek_var_aux FT (nilT AT) trm.
+
+Ltac number_aux lvar cpt :=
+ match constr:lvar with
+ | (nilT ?X1) => constr:(nilT (prodT X1 nat))
+ | (consT ?X1 ?X2 ?X3) =>
+ let l2 := number_aux X3 (S cpt) in
+ constr:(consT (prodT X1 nat) (pairT X1 nat X2 cpt) l2)
+ end.
+
+Ltac number lvar := number_aux lvar 0.
+
+Ltac build_varlist FT trm := let lvar := seek_var FT trm in
+ number lvar.
+
+Ltac assoc elt lst :=
+ match constr:lst with
+ | (nilT _) => fail
+ | (consT (prodT _ nat) (pairT _ nat ?X1 ?X2) ?X3) =>
+ match constr:(elt = X1) with
+ | (?X1 = ?X1) => constr:X2
+ | _ => assoc elt X3
+ end
+ end.
+
+Ltac interp_A FT lvar trm :=
+ let AT := eval cbv beta iota delta [A] in (A FT)
+ with AzeroT := eval cbv beta iota delta [Azero] in (Azero FT)
+ with AoneT := eval cbv beta iota delta [Aone] in (Aone FT)
+ with AplusT := eval cbv beta iota delta [Aplus] in (Aplus FT)
+ with AmultT := eval cbv beta iota delta [Amult] in (Amult FT)
+ with AoppT := eval cbv beta iota delta [Aopp] in (Aopp FT)
+ with AinvT := eval cbv beta iota delta [Ainv] in (Ainv FT) in
+ match constr:trm with
+ | AzeroT => constr:EAzero
+ | AoneT => constr:EAone
+ | (AplusT ?X1 ?X2) =>
+ let e1 := interp_A FT lvar X1 with e2 := interp_A FT lvar X2 in
+ constr:(EAplus e1 e2)
+ | (AmultT ?X1 ?X2) =>
+ let e1 := interp_A FT lvar X1 with e2 := interp_A FT lvar X2 in
+ constr:(EAmult e1 e2)
+ | (AoppT ?X1) =>
+ let e := interp_A FT lvar X1 in
+ constr:(EAopp e)
+ | (AinvT ?X1) => let e := interp_A FT lvar X1 in
+ constr:(EAinv e)
+ | ?X1 => let idx := assoc X1 lvar in
+ constr:(EAvar idx)
+ end.
(************************)
(* Simplification *)
@@ -111,166 +110,190 @@ Recursive Meta Definition interp_A FT lvar trm :=
(**** Generation of the multiplier ****)
-Recursive Tactic Definition Remove e l :=
- Match l With
- | [(nilT ?)] -> l
- | [(consT ?1 e ?2)] -> ?2
- | [(consT ?1 ?2 ?3)] ->
- Let nl = (Remove e ?3) In
- '(consT ?1 ?2 nl).
-
-Recursive Tactic Definition Union l1 l2 :=
- Match l1 With
- | [(nilT ?)] -> l2
- | [(consT ?1 ?2 ?3)] ->
- Let nl2 = (Remove ?2 l2) In
- Let nl = (Union ?3 nl2) In
- '(consT ?1 ?2 nl).
-
-Recursive Tactic Definition RawGiveMult trm :=
- Match trm With
- | [(EAinv ?1)] -> '(consT ExprA ?1 (nilT ExprA))
- | [(EAopp ?1)] -> (RawGiveMult ?1)
- | [(EAplus ?1 ?2)] ->
- Let l1 = (RawGiveMult ?1)
- And l2 = (RawGiveMult ?2) In
- (Union l1 l2)
- | [(EAmult ?1 ?2)] ->
- Let l1 = (RawGiveMult ?1)
- And l2 = (RawGiveMult ?2) In
- Eval Compute in (appT ExprA l1 l2)
- | _ -> '(nilT ExprA).
-
-Tactic Definition GiveMult trm :=
- Let ltrm = (RawGiveMult trm) In
- '(mult_of_list ltrm).
+Ltac remove e l :=
+ match constr:l with
+ | (nilT _) => l
+ | (consT ?X1 e ?X2) => constr:X2
+ | (consT ?X1 ?X2 ?X3) => let nl := remove e X3 in
+ constr:(consT X1 X2 nl)
+ end.
+
+Ltac union l1 l2 :=
+ match constr:l1 with
+ | (nilT _) => l2
+ | (consT ?X1 ?X2 ?X3) =>
+ let nl2 := remove X2 l2 in
+ let nl := union X3 nl2 in
+ constr:(consT X1 X2 nl)
+ end.
+
+Ltac raw_give_mult trm :=
+ match constr:trm with
+ | (EAinv ?X1) => constr:(consT ExprA X1 (nilT ExprA))
+ | (EAopp ?X1) => raw_give_mult X1
+ | (EAplus ?X1 ?X2) =>
+ let l1 := raw_give_mult X1 with l2 := raw_give_mult X2 in
+ union l1 l2
+ | (EAmult ?X1 ?X2) =>
+ let l1 := raw_give_mult X1 with l2 := raw_give_mult X2 in
+ eval compute in (appT ExprA l1 l2)
+ | _ => constr:(nilT ExprA)
+ end.
+
+Ltac give_mult trm :=
+ let ltrm := raw_give_mult trm in
+ constr:(mult_of_list ltrm).
(**** Associativity ****)
-Tactic Definition ApplyAssoc FT lvar trm :=
- Let t=Eval Compute in (assoc trm) In
- Match t=trm With
- | [ ?1=?1 ] -> Idtac
- | _ -> Rewrite <- (assoc_correct FT trm); Change (assoc trm) with t.
+Ltac apply_assoc FT lvar trm :=
+ let t := eval compute in (assoc trm) in
+ match constr:(t = trm) with
+ | (?X1 = ?X1) => idtac
+ | _ =>
+ rewrite <- (assoc_correct FT trm); change (assoc trm) with t in |- *
+ end.
(**** Distribution *****)
-Tactic Definition ApplyDistrib FT lvar trm :=
- Let t=Eval Compute in (distrib trm) In
- Match t=trm With
- | [ ?1=?1 ] -> Idtac
- | _ -> Rewrite <- (distrib_correct FT trm); Change (distrib trm) with t.
+Ltac apply_distrib FT lvar trm :=
+ let t := eval compute in (distrib trm) in
+ match constr:(t = trm) with
+ | (?X1 = ?X1) => idtac
+ | _ =>
+ rewrite <- (distrib_correct FT trm);
+ change (distrib trm) with t in |- *
+ end.
(**** Multiplication by the inverse product ****)
-Tactic Definition GrepMult :=
- Match Context With
- | [ id: ~(interp_ExprA ? ? ?)= ? |- ?] -> id.
-
-Tactic Definition WeakReduce :=
- Match Context With
- | [|-[(interp_ExprA ?1 ?2 ?)]] ->
- Cbv Beta Delta [interp_ExprA assoc_2nd eq_nat_dec mult_of_list ?1 ?2 A
- Azero Aone Aplus Amult Aopp Ainv] Zeta Iota.
-
-Tactic Definition Multiply mul :=
- Match Context With
- | [|-(interp_ExprA ?1 ?2 ?3)=(interp_ExprA ?1 ?2 ?4)] ->
- Let AzeroT = Eval Cbv Beta Delta [Azero ?1] Iota in (Azero ?1) In
- Cut ~(interp_ExprA ?1 ?2 mul)=AzeroT;
- [Intro;
- Let id = GrepMult In
- Apply (mult_eq ?1 ?3 ?4 mul ?2 id)
- |WeakReduce;
- Let AoneT = Eval Cbv Beta Delta [Aone ?1] Iota in (Aone ?1)
- And AmultT = Eval Cbv Beta Delta [Amult ?1] Iota in (Amult ?1) In
- Try (Match Context With
- | [|-[(AmultT ? AoneT)]] -> Rewrite (AmultT_1r ?1));Clear ?1 ?2].
-
-Tactic Definition ApplyMultiply FT lvar trm :=
- Let t=Eval Compute in (multiply trm) In
- Match t=trm With
- | [ ?1=?1 ] -> Idtac
- | _ -> Rewrite <- (multiply_correct FT trm); Change (multiply trm) with t.
+Ltac grep_mult := match goal with
+ | id:(interp_ExprA _ _ _ <> _) |- _ => id
+ end.
+
+Ltac weak_reduce :=
+ match goal with
+ | |- context [(interp_ExprA ?X1 ?X2 _)] =>
+ cbv beta iota zeta
+ delta [interp_ExprA assoc_2nd eq_nat_dec mult_of_list X1 X2 A Azero
+ Aone Aplus Amult Aopp Ainv] in |- *
+ end.
+
+Ltac multiply mul :=
+ match goal with
+ | |- (interp_ExprA ?X1 ?X2 ?X3 = interp_ExprA ?X1 ?X2 ?X4) =>
+ let AzeroT := eval cbv beta iota delta [Azero X1] in (Azero X1) in
+ (cut (interp_ExprA X1 X2 mul <> AzeroT);
+ [ intro; let id := grep_mult in
+ apply (mult_eq X1 X3 X4 mul X2 id)
+ | weak_reduce;
+ let AoneT := eval cbv beta iota delta [Aone X1] in (Aone X1)
+ with AmultT := eval cbv beta iota delta [Amult X1] in (Amult X1) in
+ (try
+ match goal with
+ | |- context [(AmultT _ AoneT)] => rewrite (AmultT_1r X1)
+ end; clear X1 X2) ])
+ end.
+
+Ltac apply_multiply FT lvar trm :=
+ let t := eval compute in (multiply trm) in
+ match constr:(t = trm) with
+ | (?X1 = ?X1) => idtac
+ | _ =>
+ rewrite <- (multiply_correct FT trm);
+ change (multiply trm) with t in |- *
+ end.
(**** Permutations and simplification ****)
-Tactic Definition ApplyInverse mul FT lvar trm :=
- Let t=Eval Compute in (inverse_simplif mul trm) In
- Match t=trm With
- | [ ?1=?1 ] -> Idtac
- | _ -> Rewrite <- (inverse_correct FT trm mul);
- [Change (inverse_simplif mul trm) with t|Assumption].
+Ltac apply_inverse mul FT lvar trm :=
+ let t := eval compute in (inverse_simplif mul trm) in
+ match constr:(t = trm) with
+ | (?X1 = ?X1) => idtac
+ | _ =>
+ rewrite <- (inverse_correct FT trm mul);
+ [ change (inverse_simplif mul trm) with t in |- * | assumption ]
+ end.
(**** Inverse test ****)
-Tactic Definition StrongFail tac := First [tac|Fail 2].
-
-Recursive Tactic Definition InverseTestAux FT trm :=
- Let AplusT = Eval Cbv Beta Delta [Aplus] Iota in (Aplus FT)
- And AmultT = Eval Cbv Beta Delta [Amult] Iota in (Amult FT)
- And AoppT = Eval Cbv Beta Delta [Aopp] Iota in (Aopp FT)
- And AinvT = Eval Cbv Beta Delta [Ainv] Iota in (Ainv FT) In
- Match trm With
- | [(AinvT ?)] -> Fail 1
- | [(AoppT ?1)] -> StrongFail ((InverseTestAux FT ?1);Idtac)
- | [(AplusT ?1 ?2)] ->
- StrongFail ((InverseTestAux FT ?1);(InverseTestAux FT ?2))
- | [(AmultT ?1 ?2)] ->
- StrongFail ((InverseTestAux FT ?1);(InverseTestAux FT ?2))
- | _ -> Idtac.
-
-Tactic Definition InverseTest FT :=
- Let AplusT = Eval Cbv Beta Delta [Aplus] Iota in (Aplus FT) In
- Match Context With
- | [|- ?1=?2] -> (InverseTestAux FT '(AplusT ?1 ?2)).
+Ltac strong_fail tac := first [ tac | fail 2 ].
+
+Ltac inverse_test_aux FT trm :=
+ let AplusT := eval cbv beta iota delta [Aplus] in (Aplus FT)
+ with AmultT := eval cbv beta iota delta [Amult] in (Amult FT)
+ with AoppT := eval cbv beta iota delta [Aopp] in (Aopp FT)
+ with AinvT := eval cbv beta iota delta [Ainv] in (Ainv FT) in
+ match constr:trm with
+ | (AinvT _) => fail 1
+ | (AoppT ?X1) =>
+ strong_fail ltac:(inverse_test_aux FT X1; idtac)
+ | (AplusT ?X1 ?X2) =>
+ strong_fail ltac:(inverse_test_aux FT X1; inverse_test_aux FT X2)
+ | (AmultT ?X1 ?X2) =>
+ strong_fail ltac:(inverse_test_aux FT X1; inverse_test_aux FT X2)
+ | _ => idtac
+ end.
+
+Ltac inverse_test FT :=
+ let AplusT := eval cbv beta iota delta [Aplus] in (Aplus FT) in
+ match goal with
+ | |- (?X1 = ?X2) => inverse_test_aux FT (AplusT X1 X2)
+ end.
(**** Field itself ****)
-Tactic Definition ApplySimplif sfun :=
- (Match Context With
- | [|- (interp_ExprA ?1 ?2 ?3)=(interp_ExprA ? ? ?)] ->
- (sfun ?1 ?2 ?3));
- (Match Context With
- | [|- (interp_ExprA ? ? ?)=(interp_ExprA ?1 ?2 ?3)] ->
- (sfun ?1 ?2 ?3)).
-
-Tactic Definition Unfolds FT :=
- (Match Eval Cbv Beta Delta [Aminus] Iota in (Aminus FT) With
- | [(Some ? ?1)] -> Unfold ?1
- | _ -> Idtac);
- (Match Eval Cbv Beta Delta [Adiv] Iota in (Adiv FT) With
- | [(Some ? ?1)] -> Unfold ?1
- | _ -> Idtac).
-
-Tactic Definition Reduce FT :=
- Let AzeroT = Eval Cbv Beta Delta [Azero] Iota in (Azero FT)
- And AoneT = Eval Cbv Beta Delta [Aone] Iota in (Aone FT)
- And AplusT = Eval Cbv Beta Delta [Aplus] Iota in (Aplus FT)
- And AmultT = Eval Cbv Beta Delta [Amult] Iota in (Amult FT)
- And AoppT = Eval Cbv Beta Delta [Aopp] Iota in (Aopp FT)
- And AinvT = Eval Cbv Beta Delta [Ainv] Iota in (Ainv FT) In
- Cbv Beta Delta -[AzeroT AoneT AplusT AmultT AoppT AinvT] Zeta Iota
- Orelse Compute.
-
-Recursive Tactic Definition Field_Gen_Aux FT :=
- Let AplusT = Eval Cbv Beta Delta [Aplus] Iota in (Aplus FT) In
- Match Context With
- | [|- ?1=?2] ->
- Let lvar = (BuildVarList FT '(AplusT ?1 ?2)) In
- Let trm1 = (interp_A FT lvar ?1)
- And trm2 = (interp_A FT lvar ?2) In
- Let mul = (GiveMult '(EAplus trm1 trm2)) In
- Cut [ft:=FT][vm:=lvar](interp_ExprA ft vm trm1)=(interp_ExprA ft vm trm2);
- [Compute;Auto
- |Intros ft vm;(ApplySimplif ApplyDistrib);(ApplySimplif ApplyAssoc);
- (Multiply mul);[(ApplySimplif ApplyMultiply);
- (ApplySimplif (ApplyInverse mul));
- (Let id = GrepMult In Clear id);WeakReduce;Clear ft vm;
- First [(InverseTest FT);Ring|(Field_Gen_Aux FT)]|Idtac]].
-
-Tactic Definition Field_Gen FT :=
- Unfolds FT;((InverseTest FT);Ring) Orelse (Field_Gen_Aux FT).
-V7only [Tactic Definition field_gen := Field_Gen.].
+Ltac apply_simplif sfun :=
+ match goal with
+ | |- (interp_ExprA ?X1 ?X2 ?X3 = interp_ExprA _ _ _) =>
+ sfun X1 X2 X3
+ end;
+ match goal with
+ | |- (interp_ExprA _ _ _ = interp_ExprA ?X1 ?X2 ?X3) =>
+ sfun X1 X2 X3
+ end.
+
+Ltac unfolds FT :=
+ match eval cbv beta iota delta [Aminus] in (Aminus FT) with
+ | (Some _ ?X1) => unfold X1 in |- *
+ | _ => idtac
+ end;
+ match eval cbv beta iota delta [Adiv] in (Adiv FT) with
+ | (Some _ ?X1) => unfold X1 in |- *
+ | _ => idtac
+ end.
+
+Ltac reduce FT :=
+ let AzeroT := eval cbv beta iota delta [Azero] in (Azero FT)
+ with AoneT := eval cbv beta iota delta [Aone] in (Aone FT)
+ with AplusT := eval cbv beta iota delta [Aplus] in (Aplus FT)
+ with AmultT := eval cbv beta iota delta [Amult] in (Amult FT)
+ with AoppT := eval cbv beta iota delta [Aopp] in (Aopp FT)
+ with AinvT := eval cbv beta iota delta [Ainv] in (Ainv FT) in
+ (cbv beta iota zeta delta -[AzeroT AoneT AplusT AmultT AoppT AinvT] in |- * ||
+ compute in |- *).
+
+Ltac field_gen_aux FT :=
+ let AplusT := eval cbv beta iota delta [Aplus] in (Aplus FT) in
+ match goal with
+ | |- (?X1 = ?X2) =>
+ let lvar := build_varlist FT (AplusT X1 X2) in
+ let trm1 := interp_A FT lvar X1 with trm2 := interp_A FT lvar X2 in
+ let mul := give_mult (EAplus trm1 trm2) in
+ (cut
+ (let ft := FT in
+ let vm := lvar in interp_ExprA ft vm trm1 = interp_ExprA ft vm trm2);
+ [ compute in |- *; auto
+ | intros ft vm; apply_simplif apply_distrib;
+ apply_simplif apply_assoc; multiply mul;
+ [ apply_simplif apply_multiply;
+ apply_simplif ltac:(apply_inverse mul);
+ let id := grep_mult in
+ clear id; weak_reduce; clear ft vm; first
+ [ inverse_test FT; ring | field_gen_aux FT ]
+ | idtac ] ])
+ end.
+
+Ltac field_gen FT := unfolds FT; (inverse_test FT; ring) || field_gen_aux FT.
(*****************************)
(* Term Simplification *)
@@ -278,120 +301,132 @@ V7only [Tactic Definition field_gen := Field_Gen.].
(**** Minus and division expansions ****)
-Meta Definition InitExp FT trm :=
- Let e =
- (Match Eval Cbv Beta Delta [Aminus] Iota in (Aminus FT) With
- | [(Some ? ?1)] -> Eval Cbv Beta Delta [?1] in trm
- | _ -> trm) In
- Match Eval Cbv Beta Delta [Adiv] Iota in (Adiv FT) With
- | [(Some ? ?1)] -> Eval Cbv Beta Delta [?1] in e
- | _ -> e.
-V7only [
-(*Used by contrib Maple *)
-Tactic Definition init_exp := InitExp.
-].
+Ltac init_exp FT trm :=
+ let e :=
+ (match eval cbv beta iota delta [Aminus] in (Aminus FT) with
+ | (Some _ ?X1) => eval cbv beta delta [X1] in trm
+ | _ => trm
+ end) in
+ match eval cbv beta iota delta [Adiv] in (Adiv FT) with
+ | (Some _ ?X1) => eval cbv beta delta [X1] in e
+ | _ => e
+ end.
(**** Inverses simplification ****)
-Recursive Meta Definition SimplInv trm:=
- Match trm With
- | [(EAplus ?1 ?2)] ->
- Let e1 = (SimplInv ?1)
- And e2 = (SimplInv ?2) In
- '(EAplus e1 e2)
- | [(EAmult ?1 ?2)] ->
- Let e1 = (SimplInv ?1)
- And e2 = (SimplInv ?2) In
- '(EAmult e1 e2)
- | [(EAopp ?1)] -> Let e = (SimplInv ?1) In '(EAopp e)
- | [(EAinv ?1)] -> (SimplInvAux ?1)
- | [?1] -> ?1
-And SimplInvAux trm :=
- Match trm With
- | [(EAinv ?1)] -> (SimplInv ?1)
- | [(EAmult ?1 ?2)] ->
- Let e1 = (SimplInv '(EAinv ?1))
- And e2 = (SimplInv '(EAinv ?2)) In
- '(EAmult e1 e2)
- | [?1] -> Let e = (SimplInv ?1) In '(EAinv e).
+Ltac simpl_inv trm :=
+ match constr:trm with
+ | (EAplus ?X1 ?X2) =>
+ let e1 := simpl_inv X1 with e2 := simpl_inv X2 in
+ constr:(EAplus e1 e2)
+ | (EAmult ?X1 ?X2) =>
+ let e1 := simpl_inv X1 with e2 := simpl_inv X2 in
+ constr:(EAmult e1 e2)
+ | (EAopp ?X1) => let e := simpl_inv X1 in
+ constr:(EAopp e)
+ | (EAinv ?X1) => SimplInvAux X1
+ | ?X1 => constr:X1
+ end
+ with SimplInvAux trm :=
+ match constr:trm with
+ | (EAinv ?X1) => simpl_inv X1
+ | (EAmult ?X1 ?X2) =>
+ let e1 := simpl_inv (EAinv X1) with e2 := simpl_inv (EAinv X2) in
+ constr:(EAmult e1 e2)
+ | ?X1 => let e := simpl_inv X1 in
+ constr:(EAinv e)
+ end.
(**** Monom simplification ****)
-Recursive Meta Definition Map fcn lst :=
- Match lst With
- | [(nilT ?)] -> lst
- | [(consT ?1 ?2 ?3)] ->
- Let r = (fcn ?2)
- And t = (Map fcn ?3) In
- '(consT ?1 r t).
-
-Recursive Meta Definition BuildMonomAux lst trm :=
- Match lst With
- | [(nilT ?)] -> Eval Compute in (assoc trm)
- | [(consT ? ?1 ?2)] -> BuildMonomAux ?2 '(EAmult trm ?1).
-
-Recursive Meta Definition BuildMonom lnum lden :=
- Let ildn = (Map (Fun e -> '(EAinv e)) lden) In
- Let ltot = Eval Compute in (appT ExprA lnum ildn) In
- Let trm = (BuildMonomAux ltot EAone) In
- Match trm With
- | [(EAmult ? ?1)] -> ?1
- | [?1] -> ?1.
-
-Recursive Meta Definition SimplMonomAux lnum lden trm :=
- Match trm With
- | [(EAmult (EAinv ?1) ?2)] ->
- Let mma = (MemAssoc ?1 lnum) In
- (Match mma With
- | [true] ->
- Let newlnum = (Remove ?1 lnum) In SimplMonomAux newlnum lden ?2
- | [false] -> SimplMonomAux lnum '(consT ExprA ?1 lden) ?2)
- | [(EAmult ?1 ?2)] ->
- Let mma = (MemAssoc ?1 lden) In
- (Match mma With
- | [true] ->
- Let newlden = (Remove ?1 lden) In SimplMonomAux lnum newlden ?2
- | [false] -> SimplMonomAux '(consT ExprA ?1 lnum) lden ?2)
- | [(EAinv ?1)] ->
- Let mma = (MemAssoc ?1 lnum) In
- (Match mma With
- | [true] ->
- Let newlnum = (Remove ?1 lnum) In BuildMonom newlnum lden
- | [false] -> BuildMonom lnum '(consT ExprA ?1 lden))
- | [?1] ->
- Let mma = (MemAssoc ?1 lden) In
- (Match mma With
- | [true] ->
- Let newlden = (Remove ?1 lden) In BuildMonom lnum newlden
- | [false] -> BuildMonom '(consT ExprA ?1 lnum) lden).
-
-Meta Definition SimplMonom trm :=
- SimplMonomAux '(nilT ExprA) '(nilT ExprA) trm.
-
-Recursive Meta Definition SimplAllMonoms trm :=
- Match trm With
- | [(EAplus ?1 ?2)] ->
- Let e1 = (SimplMonom ?1)
- And e2 = (SimplAllMonoms ?2) In
- '(EAplus e1 e2)
- | [?1] -> SimplMonom ?1.
+Ltac map_tactic fcn lst :=
+ match constr:lst with
+ | (nilT _) => lst
+ | (consT ?X1 ?X2 ?X3) =>
+ let r := fcn X2 with t := map_tactic fcn X3 in
+ constr:(consT X1 r t)
+ end.
+
+Ltac build_monom_aux lst trm :=
+ match constr:lst with
+ | (nilT _) => eval compute in (assoc trm)
+ | (consT _ ?X1 ?X2) => build_monom_aux X2 (EAmult trm X1)
+ end.
+
+Ltac build_monom lnum lden :=
+ let ildn := map_tactic ltac:(fun e => constr:(EAinv e)) lden in
+ let ltot := eval compute in (appT ExprA lnum ildn) in
+ let trm := build_monom_aux ltot EAone in
+ match constr:trm with
+ | (EAmult _ ?X1) => constr:X1
+ | ?X1 => constr:X1
+ end.
+
+Ltac simpl_monom_aux lnum lden trm :=
+ match constr:trm with
+ | (EAmult (EAinv ?X1) ?X2) =>
+ let mma := mem_assoc X1 lnum in
+ match constr:mma with
+ | true =>
+ let newlnum := remove X1 lnum in
+ simpl_monom_aux newlnum lden X2
+ | false => simpl_monom_aux lnum (consT ExprA X1 lden) X2
+ end
+ | (EAmult ?X1 ?X2) =>
+ let mma := mem_assoc X1 lden in
+ match constr:mma with
+ | true =>
+ let newlden := remove X1 lden in
+ simpl_monom_aux lnum newlden X2
+ | false => simpl_monom_aux (consT ExprA X1 lnum) lden X2
+ end
+ | (EAinv ?X1) =>
+ let mma := mem_assoc X1 lnum in
+ match constr:mma with
+ | true =>
+ let newlnum := remove X1 lnum in
+ build_monom newlnum lden
+ | false => build_monom lnum (consT ExprA X1 lden)
+ end
+ | ?X1 =>
+ let mma := mem_assoc X1 lden in
+ match constr:mma with
+ | true =>
+ let newlden := remove X1 lden in
+ build_monom lnum newlden
+ | false => build_monom (consT ExprA X1 lnum) lden
+ end
+ end.
+
+Ltac simpl_monom trm := simpl_monom_aux (nilT ExprA) (nilT ExprA) trm.
+
+Ltac simpl_all_monomials trm :=
+ match constr:trm with
+ | (EAplus ?X1 ?X2) =>
+ let e1 := simpl_monom X1 with e2 := simpl_all_monomials X2 in
+ constr:(EAplus e1 e2)
+ | ?X1 => simpl_monom X1
+ end.
(**** Associativity and distribution ****)
-Meta Definition AssocDistrib trm := Eval Compute in (assoc (distrib trm)).
+Ltac assoc_distrib trm := eval compute in (assoc (distrib trm)).
(**** The tactic Field_Term ****)
-Tactic Definition EvalWeakReduce trm :=
- Eval Cbv Beta Delta [interp_ExprA assoc_2nd eq_nat_dec mult_of_list A Azero
- Aone Aplus Amult Aopp Ainv] Zeta Iota in trm.
-
-Tactic Definition Field_Term FT exp :=
- Let newexp = (InitExp FT exp) In
- Let lvar = (BuildVarList FT newexp) In
- Let trm = (interp_A FT lvar newexp) In
- Let tma = Eval Compute in (assoc trm) In
- Let tsmp = (SimplAllMonoms (AssocDistrib (SimplAllMonoms
- (SimplInv tma)))) In
- Let trep = (EvalWeakReduce '(interp_ExprA FT lvar tsmp)) In
- Replace exp with trep;[Ring trep|Field_Gen FT].
+Ltac eval_weak_reduce trm :=
+ eval
+ cbv beta iota zeta
+ delta [interp_ExprA assoc_2nd eq_nat_dec mult_of_list A Azero Aone Aplus
+ Amult Aopp Ainv] in trm.
+
+Ltac field_term FT exp :=
+ let newexp := init_exp FT exp in
+ let lvar := build_varlist FT newexp in
+ let trm := interp_A FT lvar newexp in
+ let tma := eval compute in (assoc trm) in
+ let tsmp :=
+ simpl_all_monomials
+ ltac:(assoc_distrib ltac:(simpl_all_monomials ltac:(simpl_inv tma))) in
+ let trep := eval_weak_reduce (interp_ExprA FT lvar tsmp) in
+ (replace exp with trep; [ ring trep | field_gen FT ]). \ No newline at end of file