aboutsummaryrefslogtreecommitdiffhomepage
diff options
context:
space:
mode:
-rw-r--r--.gitignore4
-rw-r--r--Makefile.build2
-rw-r--r--plugins/micromega/MExtraction.v2
-rw-r--r--plugins/micromega/micromega.ml1773
-rw-r--r--plugins/micromega/micromega.mli517
5 files changed, 2292 insertions, 6 deletions
diff --git a/.gitignore b/.gitignore
index fa83045e7..f66e8dcd8 100644
--- a/.gitignore
+++ b/.gitignore
@@ -179,9 +179,5 @@ user-contrib
test-suite/.lia.cache
test-suite/.nra.cache
-# these files are generated from plugins/micromega/MExtraction.v
-plugins/micromega/micromega.ml
-plugins/micromega/micromega.mli
-
plugins/ssr/ssrparser.ml
plugins/ssr/ssrvernac.ml
diff --git a/Makefile.build b/Makefile.build
index 2b0ef7aac..6e048ce94 100644
--- a/Makefile.build
+++ b/Makefile.build
@@ -95,7 +95,7 @@ plugins/micromega/certificate.cmx plugins/micromega/coq_micromega.cmx plugins/mi
plugins/micromega/micromega.cmx plugins/micromega/micromega.cmo : plugins/micromega/micromega.cmi
plugins/micromega/micromega.cmi : plugins/micromega/micromega.mli
-plugins/micromega/micromega.mli plugins/micromega/micromega.ml : plugins/micromega/MExtraction.vo
+plugins/micromega/generated_micromega.mli plugins/micromega/generated_micromega.ml : plugins/micromega/MExtraction.vo
@:
###########################################################################
diff --git a/plugins/micromega/MExtraction.v b/plugins/micromega/MExtraction.v
index 4d5c3b1d5..2451aeada 100644
--- a/plugins/micromega/MExtraction.v
+++ b/plugins/micromega/MExtraction.v
@@ -48,7 +48,7 @@ Extract Constant Rmult => "( * )".
Extract Constant Ropp => "fun x -> - x".
Extract Constant Rinv => "fun x -> 1 / x".
-Extraction "plugins/micromega/micromega.ml"
+Extraction "plugins/micromega/generated_micromega.ml"
List.map simpl_cone (*map_cone indexes*)
denorm Qpower vm_add
n_of_Z N.of_nat ZTautoChecker ZWeakChecker QTautoChecker RTautoChecker find.
diff --git a/plugins/micromega/micromega.ml b/plugins/micromega/micromega.ml
new file mode 100644
index 000000000..7da4a3b82
--- /dev/null
+++ b/plugins/micromega/micromega.ml
@@ -0,0 +1,1773 @@
+
+(** val negb : bool -> bool **)
+
+let negb = function
+| true -> false
+| false -> true
+
+type nat =
+| O
+| S of nat
+
+(** val app : 'a1 list -> 'a1 list -> 'a1 list **)
+
+let rec app l m =
+ match l with
+ | [] -> m
+ | a::l1 -> a::(app l1 m)
+
+type comparison =
+| Eq
+| Lt
+| Gt
+
+(** val compOpp : comparison -> comparison **)
+
+let compOpp = function
+| Eq -> Eq
+| Lt -> Gt
+| Gt -> Lt
+
+module Coq__1 = struct
+ (** val add : nat -> nat -> nat **)
+ let rec add n0 m =
+ match n0 with
+ | O -> m
+ | S p -> S (add p m)
+end
+include Coq__1
+
+type positive =
+| XI of positive
+| XO of positive
+| XH
+
+type n =
+| N0
+| Npos of positive
+
+type z =
+| Z0
+| Zpos of positive
+| Zneg of positive
+
+module Pos =
+ struct
+ type mask =
+ | IsNul
+ | IsPos of positive
+ | IsNeg
+ end
+
+module Coq_Pos =
+ struct
+ (** val succ : positive -> positive **)
+
+ let rec succ = function
+ | XI p -> XO (succ p)
+ | XO p -> XI p
+ | XH -> XO XH
+
+ (** val add : positive -> positive -> positive **)
+
+ let rec add x y =
+ match x with
+ | XI p ->
+ (match y with
+ | XI q0 -> XO (add_carry p q0)
+ | XO q0 -> XI (add p q0)
+ | XH -> XO (succ p))
+ | XO p ->
+ (match y with
+ | XI q0 -> XI (add p q0)
+ | XO q0 -> XO (add p q0)
+ | XH -> XI p)
+ | XH -> (match y with
+ | XI q0 -> XO (succ q0)
+ | XO q0 -> XI q0
+ | XH -> XO XH)
+
+ (** val add_carry : positive -> positive -> positive **)
+
+ and add_carry x y =
+ match x with
+ | XI p ->
+ (match y with
+ | XI q0 -> XI (add_carry p q0)
+ | XO q0 -> XO (add_carry p q0)
+ | XH -> XI (succ p))
+ | XO p ->
+ (match y with
+ | XI q0 -> XO (add_carry p q0)
+ | XO q0 -> XI (add p q0)
+ | XH -> XO (succ p))
+ | XH ->
+ (match y with
+ | XI q0 -> XI (succ q0)
+ | XO q0 -> XO (succ q0)
+ | XH -> XI XH)
+
+ (** val pred_double : positive -> positive **)
+
+ let rec pred_double = function
+ | XI p -> XI (XO p)
+ | XO p -> XI (pred_double p)
+ | XH -> XH
+
+ type mask = Pos.mask =
+ | IsNul
+ | IsPos of positive
+ | IsNeg
+
+ (** val succ_double_mask : mask -> mask **)
+
+ let succ_double_mask = function
+ | IsNul -> IsPos XH
+ | IsPos p -> IsPos (XI p)
+ | IsNeg -> IsNeg
+
+ (** val double_mask : mask -> mask **)
+
+ let double_mask = function
+ | IsPos p -> IsPos (XO p)
+ | x0 -> x0
+
+ (** val double_pred_mask : positive -> mask **)
+
+ let double_pred_mask = function
+ | XI p -> IsPos (XO (XO p))
+ | XO p -> IsPos (XO (pred_double p))
+ | XH -> IsNul
+
+ (** val sub_mask : positive -> positive -> mask **)
+
+ let rec sub_mask x y =
+ match x with
+ | XI p ->
+ (match y with
+ | XI q0 -> double_mask (sub_mask p q0)
+ | XO q0 -> succ_double_mask (sub_mask p q0)
+ | XH -> IsPos (XO p))
+ | XO p ->
+ (match y with
+ | XI q0 -> succ_double_mask (sub_mask_carry p q0)
+ | XO q0 -> double_mask (sub_mask p q0)
+ | XH -> IsPos (pred_double p))
+ | XH -> (match y with
+ | XH -> IsNul
+ | _ -> IsNeg)
+
+ (** val sub_mask_carry : positive -> positive -> mask **)
+
+ and sub_mask_carry x y =
+ match x with
+ | XI p ->
+ (match y with
+ | XI q0 -> succ_double_mask (sub_mask_carry p q0)
+ | XO q0 -> double_mask (sub_mask p q0)
+ | XH -> IsPos (pred_double p))
+ | XO p ->
+ (match y with
+ | XI q0 -> double_mask (sub_mask_carry p q0)
+ | XO q0 -> succ_double_mask (sub_mask_carry p q0)
+ | XH -> double_pred_mask p)
+ | XH -> IsNeg
+
+ (** val sub : positive -> positive -> positive **)
+
+ let sub x y =
+ match sub_mask x y with
+ | IsPos z0 -> z0
+ | _ -> XH
+
+ (** val mul : positive -> positive -> positive **)
+
+ let rec mul x y =
+ match x with
+ | XI p -> add y (XO (mul p y))
+ | XO p -> XO (mul p y)
+ | XH -> y
+
+ (** val size_nat : positive -> nat **)
+
+ let rec size_nat = function
+ | XI p2 -> S (size_nat p2)
+ | XO p2 -> S (size_nat p2)
+ | XH -> S O
+
+ (** val compare_cont : comparison -> positive -> positive -> comparison **)
+
+ let rec compare_cont r x y =
+ match x with
+ | XI p ->
+ (match y with
+ | XI q0 -> compare_cont r p q0
+ | XO q0 -> compare_cont Gt p q0
+ | XH -> Gt)
+ | XO p ->
+ (match y with
+ | XI q0 -> compare_cont Lt p q0
+ | XO q0 -> compare_cont r p q0
+ | XH -> Gt)
+ | XH -> (match y with
+ | XH -> r
+ | _ -> Lt)
+
+ (** val compare : positive -> positive -> comparison **)
+
+ let compare =
+ compare_cont Eq
+
+ (** val gcdn : nat -> positive -> positive -> positive **)
+
+ let rec gcdn n0 a b =
+ match n0 with
+ | O -> XH
+ | S n1 ->
+ (match a with
+ | XI a' ->
+ (match b with
+ | XI b' ->
+ (match compare a' b' with
+ | Eq -> a
+ | Lt -> gcdn n1 (sub b' a') a
+ | Gt -> gcdn n1 (sub a' b') b)
+ | XO b0 -> gcdn n1 a b0
+ | XH -> XH)
+ | XO a0 ->
+ (match b with
+ | XI _ -> gcdn n1 a0 b
+ | XO b0 -> XO (gcdn n1 a0 b0)
+ | XH -> XH)
+ | XH -> XH)
+
+ (** val gcd : positive -> positive -> positive **)
+
+ let gcd a b =
+ gcdn (Coq__1.add (size_nat a) (size_nat b)) a b
+
+ (** val of_succ_nat : nat -> positive **)
+
+ let rec of_succ_nat = function
+ | O -> XH
+ | S x -> succ (of_succ_nat x)
+ end
+
+module N =
+ struct
+ (** val of_nat : nat -> n **)
+
+ let of_nat = function
+ | O -> N0
+ | S n' -> Npos (Coq_Pos.of_succ_nat n')
+ end
+
+(** val pow_pos : ('a1 -> 'a1 -> 'a1) -> 'a1 -> positive -> 'a1 **)
+
+let rec pow_pos rmul x = function
+| XI i0 -> let p = pow_pos rmul x i0 in rmul x (rmul p p)
+| XO i0 -> let p = pow_pos rmul x i0 in rmul p p
+| XH -> x
+
+(** val nth : nat -> 'a1 list -> 'a1 -> 'a1 **)
+
+let rec nth n0 l default =
+ match n0 with
+ | O -> (match l with
+ | [] -> default
+ | x::_ -> x)
+ | S m -> (match l with
+ | [] -> default
+ | _::t0 -> nth m t0 default)
+
+(** val map : ('a1 -> 'a2) -> 'a1 list -> 'a2 list **)
+
+let rec map f = function
+| [] -> []
+| a::t0 -> (f a)::(map f t0)
+
+(** val fold_right : ('a2 -> 'a1 -> 'a1) -> 'a1 -> 'a2 list -> 'a1 **)
+
+let rec fold_right f a0 = function
+| [] -> a0
+| b::t0 -> f b (fold_right f a0 t0)
+
+module Z =
+ struct
+ (** val double : z -> z **)
+
+ let double = function
+ | Z0 -> Z0
+ | Zpos p -> Zpos (XO p)
+ | Zneg p -> Zneg (XO p)
+
+ (** val succ_double : z -> z **)
+
+ let succ_double = function
+ | Z0 -> Zpos XH
+ | Zpos p -> Zpos (XI p)
+ | Zneg p -> Zneg (Coq_Pos.pred_double p)
+
+ (** val pred_double : z -> z **)
+
+ let pred_double = function
+ | Z0 -> Zneg XH
+ | Zpos p -> Zpos (Coq_Pos.pred_double p)
+ | Zneg p -> Zneg (XI p)
+
+ (** val pos_sub : positive -> positive -> z **)
+
+ let rec pos_sub x y =
+ match x with
+ | XI p ->
+ (match y with
+ | XI q0 -> double (pos_sub p q0)
+ | XO q0 -> succ_double (pos_sub p q0)
+ | XH -> Zpos (XO p))
+ | XO p ->
+ (match y with
+ | XI q0 -> pred_double (pos_sub p q0)
+ | XO q0 -> double (pos_sub p q0)
+ | XH -> Zpos (Coq_Pos.pred_double p))
+ | XH ->
+ (match y with
+ | XI q0 -> Zneg (XO q0)
+ | XO q0 -> Zneg (Coq_Pos.pred_double q0)
+ | XH -> Z0)
+
+ (** val add : z -> z -> z **)
+
+ let add x y =
+ match x with
+ | Z0 -> y
+ | Zpos x' ->
+ (match y with
+ | Z0 -> x
+ | Zpos y' -> Zpos (Coq_Pos.add x' y')
+ | Zneg y' -> pos_sub x' y')
+ | Zneg x' ->
+ (match y with
+ | Z0 -> x
+ | Zpos y' -> pos_sub y' x'
+ | Zneg y' -> Zneg (Coq_Pos.add x' y'))
+
+ (** val opp : z -> z **)
+
+ let opp = function
+ | Z0 -> Z0
+ | Zpos x0 -> Zneg x0
+ | Zneg x0 -> Zpos x0
+
+ (** val sub : z -> z -> z **)
+
+ let sub m n0 =
+ add m (opp n0)
+
+ (** val mul : z -> z -> z **)
+
+ let mul x y =
+ match x with
+ | Z0 -> Z0
+ | Zpos x' ->
+ (match y with
+ | Z0 -> Z0
+ | Zpos y' -> Zpos (Coq_Pos.mul x' y')
+ | Zneg y' -> Zneg (Coq_Pos.mul x' y'))
+ | Zneg x' ->
+ (match y with
+ | Z0 -> Z0
+ | Zpos y' -> Zneg (Coq_Pos.mul x' y')
+ | Zneg y' -> Zpos (Coq_Pos.mul x' y'))
+
+ (** val compare : z -> z -> comparison **)
+
+ let compare x y =
+ match x with
+ | Z0 -> (match y with
+ | Z0 -> Eq
+ | Zpos _ -> Lt
+ | Zneg _ -> Gt)
+ | Zpos x' -> (match y with
+ | Zpos y' -> Coq_Pos.compare x' y'
+ | _ -> Gt)
+ | Zneg x' ->
+ (match y with
+ | Zneg y' -> compOpp (Coq_Pos.compare x' y')
+ | _ -> Lt)
+
+ (** val leb : z -> z -> bool **)
+
+ let leb x y =
+ match compare x y with
+ | Gt -> false
+ | _ -> true
+
+ (** val ltb : z -> z -> bool **)
+
+ let ltb x y =
+ match compare x y with
+ | Lt -> true
+ | _ -> false
+
+ (** val gtb : z -> z -> bool **)
+
+ let gtb x y =
+ match compare x y with
+ | Gt -> true
+ | _ -> false
+
+ (** val max : z -> z -> z **)
+
+ let max n0 m =
+ match compare n0 m with
+ | Lt -> m
+ | _ -> n0
+
+ (** val abs : z -> z **)
+
+ let abs = function
+ | Zneg p -> Zpos p
+ | x -> x
+
+ (** val to_N : z -> n **)
+
+ let to_N = function
+ | Zpos p -> Npos p
+ | _ -> N0
+
+ (** val pos_div_eucl : positive -> z -> z * z **)
+
+ let rec pos_div_eucl a b =
+ match a with
+ | XI a' ->
+ let q0,r = pos_div_eucl a' b in
+ let r' = add (mul (Zpos (XO XH)) r) (Zpos XH) in
+ if ltb r' b
+ then (mul (Zpos (XO XH)) q0),r'
+ else (add (mul (Zpos (XO XH)) q0) (Zpos XH)),(sub r' b)
+ | XO a' ->
+ let q0,r = pos_div_eucl a' b in
+ let r' = mul (Zpos (XO XH)) r in
+ if ltb r' b
+ then (mul (Zpos (XO XH)) q0),r'
+ else (add (mul (Zpos (XO XH)) q0) (Zpos XH)),(sub r' b)
+ | XH -> if leb (Zpos (XO XH)) b then Z0,(Zpos XH) else (Zpos XH),Z0
+
+ (** val div_eucl : z -> z -> z * z **)
+
+ let div_eucl a b =
+ match a with
+ | Z0 -> Z0,Z0
+ | Zpos a' ->
+ (match b with
+ | Z0 -> Z0,Z0
+ | Zpos _ -> pos_div_eucl a' b
+ | Zneg b' ->
+ let q0,r = pos_div_eucl a' (Zpos b') in
+ (match r with
+ | Z0 -> (opp q0),Z0
+ | _ -> (opp (add q0 (Zpos XH))),(add b r)))
+ | Zneg a' ->
+ (match b with
+ | Z0 -> Z0,Z0
+ | Zpos _ ->
+ let q0,r = pos_div_eucl a' b in
+ (match r with
+ | Z0 -> (opp q0),Z0
+ | _ -> (opp (add q0 (Zpos XH))),(sub b r))
+ | Zneg b' -> let q0,r = pos_div_eucl a' (Zpos b') in q0,(opp r))
+
+ (** val div : z -> z -> z **)
+
+ let div a b =
+ let q0,_ = div_eucl a b in q0
+
+ (** val gcd : z -> z -> z **)
+
+ let gcd a b =
+ match a with
+ | Z0 -> abs b
+ | Zpos a0 ->
+ (match b with
+ | Z0 -> abs a
+ | Zpos b0 -> Zpos (Coq_Pos.gcd a0 b0)
+ | Zneg b0 -> Zpos (Coq_Pos.gcd a0 b0))
+ | Zneg a0 ->
+ (match b with
+ | Z0 -> abs a
+ | Zpos b0 -> Zpos (Coq_Pos.gcd a0 b0)
+ | Zneg b0 -> Zpos (Coq_Pos.gcd a0 b0))
+ end
+
+(** val zeq_bool : z -> z -> bool **)
+
+let zeq_bool x y =
+ match Z.compare x y with
+ | Eq -> true
+ | _ -> false
+
+type 'c pol =
+| Pc of 'c
+| Pinj of positive * 'c pol
+| PX of 'c pol * positive * 'c pol
+
+(** val p0 : 'a1 -> 'a1 pol **)
+
+let p0 cO =
+ Pc cO
+
+(** val p1 : 'a1 -> 'a1 pol **)
+
+let p1 cI =
+ Pc cI
+
+(** val peq : ('a1 -> 'a1 -> bool) -> 'a1 pol -> 'a1 pol -> bool **)
+
+let rec peq ceqb p p' =
+ match p with
+ | Pc c -> (match p' with
+ | Pc c' -> ceqb c c'
+ | _ -> false)
+ | Pinj (j, q0) ->
+ (match p' with
+ | Pinj (j', q') ->
+ (match Coq_Pos.compare j j' with
+ | Eq -> peq ceqb q0 q'
+ | _ -> false)
+ | _ -> false)
+ | PX (p2, i, q0) ->
+ (match p' with
+ | PX (p'0, i', q') ->
+ (match Coq_Pos.compare i i' with
+ | Eq -> if peq ceqb p2 p'0 then peq ceqb q0 q' else false
+ | _ -> false)
+ | _ -> false)
+
+(** val mkPinj : positive -> 'a1 pol -> 'a1 pol **)
+
+let mkPinj j p = match p with
+| Pc _ -> p
+| Pinj (j', q0) -> Pinj ((Coq_Pos.add j j'), q0)
+| PX (_, _, _) -> Pinj (j, p)
+
+(** val mkPinj_pred : positive -> 'a1 pol -> 'a1 pol **)
+
+let mkPinj_pred j p =
+ match j with
+ | XI j0 -> Pinj ((XO j0), p)
+ | XO j0 -> Pinj ((Coq_Pos.pred_double j0), p)
+ | XH -> p
+
+(** val mkPX :
+ 'a1 -> ('a1 -> 'a1 -> bool) -> 'a1 pol -> positive -> 'a1 pol -> 'a1 pol **)
+
+let mkPX cO ceqb p i q0 =
+ match p with
+ | Pc c -> if ceqb c cO then mkPinj XH q0 else PX (p, i, q0)
+ | Pinj (_, _) -> PX (p, i, q0)
+ | PX (p', i', q') ->
+ if peq ceqb q' (p0 cO)
+ then PX (p', (Coq_Pos.add i' i), q0)
+ else PX (p, i, q0)
+
+(** val mkXi : 'a1 -> 'a1 -> positive -> 'a1 pol **)
+
+let mkXi cO cI i =
+ PX ((p1 cI), i, (p0 cO))
+
+(** val mkX : 'a1 -> 'a1 -> 'a1 pol **)
+
+let mkX cO cI =
+ mkXi cO cI XH
+
+(** val popp : ('a1 -> 'a1) -> 'a1 pol -> 'a1 pol **)
+
+let rec popp copp = function
+| Pc c -> Pc (copp c)
+| Pinj (j, q0) -> Pinj (j, (popp copp q0))
+| PX (p2, i, q0) -> PX ((popp copp p2), i, (popp copp q0))
+
+(** val paddC : ('a1 -> 'a1 -> 'a1) -> 'a1 pol -> 'a1 -> 'a1 pol **)
+
+let rec paddC cadd p c =
+ match p with
+ | Pc c1 -> Pc (cadd c1 c)
+ | Pinj (j, q0) -> Pinj (j, (paddC cadd q0 c))
+ | PX (p2, i, q0) -> PX (p2, i, (paddC cadd q0 c))
+
+(** val psubC : ('a1 -> 'a1 -> 'a1) -> 'a1 pol -> 'a1 -> 'a1 pol **)
+
+let rec psubC csub p c =
+ match p with
+ | Pc c1 -> Pc (csub c1 c)
+ | Pinj (j, q0) -> Pinj (j, (psubC csub q0 c))
+ | PX (p2, i, q0) -> PX (p2, i, (psubC csub q0 c))
+
+(** val paddI :
+ ('a1 -> 'a1 -> 'a1) -> ('a1 pol -> 'a1 pol -> 'a1 pol) -> 'a1 pol ->
+ positive -> 'a1 pol -> 'a1 pol **)
+
+let rec paddI cadd pop q0 j = function
+| Pc c -> mkPinj j (paddC cadd q0 c)
+| Pinj (j', q') ->
+ (match Z.pos_sub j' j with
+ | Z0 -> mkPinj j (pop q' q0)
+ | Zpos k -> mkPinj j (pop (Pinj (k, q')) q0)
+ | Zneg k -> mkPinj j' (paddI cadd pop q0 k q'))
+| PX (p2, i, q') ->
+ (match j with
+ | XI j0 -> PX (p2, i, (paddI cadd pop q0 (XO j0) q'))
+ | XO j0 -> PX (p2, i, (paddI cadd pop q0 (Coq_Pos.pred_double j0) q'))
+ | XH -> PX (p2, i, (pop q' q0)))
+
+(** val psubI :
+ ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1) -> ('a1 pol -> 'a1 pol -> 'a1 pol) ->
+ 'a1 pol -> positive -> 'a1 pol -> 'a1 pol **)
+
+let rec psubI cadd copp pop q0 j = function
+| Pc c -> mkPinj j (paddC cadd (popp copp q0) c)
+| Pinj (j', q') ->
+ (match Z.pos_sub j' j with
+ | Z0 -> mkPinj j (pop q' q0)
+ | Zpos k -> mkPinj j (pop (Pinj (k, q')) q0)
+ | Zneg k -> mkPinj j' (psubI cadd copp pop q0 k q'))
+| PX (p2, i, q') ->
+ (match j with
+ | XI j0 -> PX (p2, i, (psubI cadd copp pop q0 (XO j0) q'))
+ | XO j0 -> PX (p2, i, (psubI cadd copp pop q0 (Coq_Pos.pred_double j0) q'))
+ | XH -> PX (p2, i, (pop q' q0)))
+
+(** val paddX :
+ 'a1 -> ('a1 -> 'a1 -> bool) -> ('a1 pol -> 'a1 pol -> 'a1 pol) -> 'a1 pol
+ -> positive -> 'a1 pol -> 'a1 pol **)
+
+let rec paddX cO ceqb pop p' i' p = match p with
+| Pc _ -> PX (p', i', p)
+| Pinj (j, q') ->
+ (match j with
+ | XI j0 -> PX (p', i', (Pinj ((XO j0), q')))
+ | XO j0 -> PX (p', i', (Pinj ((Coq_Pos.pred_double j0), q')))
+ | XH -> PX (p', i', q'))
+| PX (p2, i, q') ->
+ (match Z.pos_sub i i' with
+ | Z0 -> mkPX cO ceqb (pop p2 p') i q'
+ | Zpos k -> mkPX cO ceqb (pop (PX (p2, k, (p0 cO))) p') i' q'
+ | Zneg k -> mkPX cO ceqb (paddX cO ceqb pop p' k p2) i q')
+
+(** val psubX :
+ 'a1 -> ('a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> ('a1 pol -> 'a1 pol -> 'a1
+ pol) -> 'a1 pol -> positive -> 'a1 pol -> 'a1 pol **)
+
+let rec psubX cO copp ceqb pop p' i' p = match p with
+| Pc _ -> PX ((popp copp p'), i', p)
+| Pinj (j, q') ->
+ (match j with
+ | XI j0 -> PX ((popp copp p'), i', (Pinj ((XO j0), q')))
+ | XO j0 -> PX ((popp copp p'), i', (Pinj ((Coq_Pos.pred_double j0), q')))
+ | XH -> PX ((popp copp p'), i', q'))
+| PX (p2, i, q') ->
+ (match Z.pos_sub i i' with
+ | Z0 -> mkPX cO ceqb (pop p2 p') i q'
+ | Zpos k -> mkPX cO ceqb (pop (PX (p2, k, (p0 cO))) p') i' q'
+ | Zneg k -> mkPX cO ceqb (psubX cO copp ceqb pop p' k p2) i q')
+
+(** val padd :
+ 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 pol -> 'a1 pol
+ -> 'a1 pol **)
+
+let rec padd cO cadd ceqb p = function
+| Pc c' -> paddC cadd p c'
+| Pinj (j', q') -> paddI cadd (padd cO cadd ceqb) q' j' p
+| PX (p'0, i', q') ->
+ (match p with
+ | Pc c -> PX (p'0, i', (paddC cadd q' c))
+ | Pinj (j, q0) ->
+ (match j with
+ | XI j0 -> PX (p'0, i', (padd cO cadd ceqb (Pinj ((XO j0), q0)) q'))
+ | XO j0 ->
+ PX (p'0, i',
+ (padd cO cadd ceqb (Pinj ((Coq_Pos.pred_double j0), q0)) q'))
+ | XH -> PX (p'0, i', (padd cO cadd ceqb q0 q')))
+ | PX (p2, i, q0) ->
+ (match Z.pos_sub i i' with
+ | Z0 ->
+ mkPX cO ceqb (padd cO cadd ceqb p2 p'0) i (padd cO cadd ceqb q0 q')
+ | Zpos k ->
+ mkPX cO ceqb (padd cO cadd ceqb (PX (p2, k, (p0 cO))) p'0) i'
+ (padd cO cadd ceqb q0 q')
+ | Zneg k ->
+ mkPX cO ceqb (paddX cO ceqb (padd cO cadd ceqb) p'0 k p2) i
+ (padd cO cadd ceqb q0 q')))
+
+(** val psub :
+ 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1) -> ('a1
+ -> 'a1 -> bool) -> 'a1 pol -> 'a1 pol -> 'a1 pol **)
+
+let rec psub cO cadd csub copp ceqb p = function
+| Pc c' -> psubC csub p c'
+| Pinj (j', q') -> psubI cadd copp (psub cO cadd csub copp ceqb) q' j' p
+| PX (p'0, i', q') ->
+ (match p with
+ | Pc c -> PX ((popp copp p'0), i', (paddC cadd (popp copp q') c))
+ | Pinj (j, q0) ->
+ (match j with
+ | XI j0 ->
+ PX ((popp copp p'0), i',
+ (psub cO cadd csub copp ceqb (Pinj ((XO j0), q0)) q'))
+ | XO j0 ->
+ PX ((popp copp p'0), i',
+ (psub cO cadd csub copp ceqb (Pinj ((Coq_Pos.pred_double j0), q0))
+ q'))
+ | XH -> PX ((popp copp p'0), i', (psub cO cadd csub copp ceqb q0 q')))
+ | PX (p2, i, q0) ->
+ (match Z.pos_sub i i' with
+ | Z0 ->
+ mkPX cO ceqb (psub cO cadd csub copp ceqb p2 p'0) i
+ (psub cO cadd csub copp ceqb q0 q')
+ | Zpos k ->
+ mkPX cO ceqb (psub cO cadd csub copp ceqb (PX (p2, k, (p0 cO))) p'0)
+ i' (psub cO cadd csub copp ceqb q0 q')
+ | Zneg k ->
+ mkPX cO ceqb
+ (psubX cO copp ceqb (psub cO cadd csub copp ceqb) p'0 k p2) i
+ (psub cO cadd csub copp ceqb q0 q')))
+
+(** val pmulC_aux :
+ 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 pol -> 'a1 ->
+ 'a1 pol **)
+
+let rec pmulC_aux cO cmul ceqb p c =
+ match p with
+ | Pc c' -> Pc (cmul c' c)
+ | Pinj (j, q0) -> mkPinj j (pmulC_aux cO cmul ceqb q0 c)
+ | PX (p2, i, q0) ->
+ mkPX cO ceqb (pmulC_aux cO cmul ceqb p2 c) i (pmulC_aux cO cmul ceqb q0 c)
+
+(** val pmulC :
+ 'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 pol ->
+ 'a1 -> 'a1 pol **)
+
+let pmulC cO cI cmul ceqb p c =
+ if ceqb c cO
+ then p0 cO
+ else if ceqb c cI then p else pmulC_aux cO cmul ceqb p c
+
+(** val pmulI :
+ 'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> ('a1 pol ->
+ 'a1 pol -> 'a1 pol) -> 'a1 pol -> positive -> 'a1 pol -> 'a1 pol **)
+
+let rec pmulI cO cI cmul ceqb pmul0 q0 j = function
+| Pc c -> mkPinj j (pmulC cO cI cmul ceqb q0 c)
+| Pinj (j', q') ->
+ (match Z.pos_sub j' j with
+ | Z0 -> mkPinj j (pmul0 q' q0)
+ | Zpos k -> mkPinj j (pmul0 (Pinj (k, q')) q0)
+ | Zneg k -> mkPinj j' (pmulI cO cI cmul ceqb pmul0 q0 k q'))
+| PX (p', i', q') ->
+ (match j with
+ | XI j' ->
+ mkPX cO ceqb (pmulI cO cI cmul ceqb pmul0 q0 j p') i'
+ (pmulI cO cI cmul ceqb pmul0 q0 (XO j') q')
+ | XO j' ->
+ mkPX cO ceqb (pmulI cO cI cmul ceqb pmul0 q0 j p') i'
+ (pmulI cO cI cmul ceqb pmul0 q0 (Coq_Pos.pred_double j') q')
+ | XH ->
+ mkPX cO ceqb (pmulI cO cI cmul ceqb pmul0 q0 XH p') i' (pmul0 q' q0))
+
+(** val pmul :
+ 'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1
+ -> bool) -> 'a1 pol -> 'a1 pol -> 'a1 pol **)
+
+let rec pmul cO cI cadd cmul ceqb p p'' = match p'' with
+| Pc c -> pmulC cO cI cmul ceqb p c
+| Pinj (j', q') -> pmulI cO cI cmul ceqb (pmul cO cI cadd cmul ceqb) q' j' p
+| PX (p', i', q') ->
+ (match p with
+ | Pc c -> pmulC cO cI cmul ceqb p'' c
+ | Pinj (j, q0) ->
+ let qQ' =
+ match j with
+ | XI j0 -> pmul cO cI cadd cmul ceqb (Pinj ((XO j0), q0)) q'
+ | XO j0 ->
+ pmul cO cI cadd cmul ceqb (Pinj ((Coq_Pos.pred_double j0), q0)) q'
+ | XH -> pmul cO cI cadd cmul ceqb q0 q'
+ in
+ mkPX cO ceqb (pmul cO cI cadd cmul ceqb p p') i' qQ'
+ | PX (p2, i, q0) ->
+ let qQ' = pmul cO cI cadd cmul ceqb q0 q' in
+ let pQ' = pmulI cO cI cmul ceqb (pmul cO cI cadd cmul ceqb) q' XH p2 in
+ let qP' = pmul cO cI cadd cmul ceqb (mkPinj XH q0) p' in
+ let pP' = pmul cO cI cadd cmul ceqb p2 p' in
+ padd cO cadd ceqb
+ (mkPX cO ceqb (padd cO cadd ceqb (mkPX cO ceqb pP' i (p0 cO)) qP') i'
+ (p0 cO)) (mkPX cO ceqb pQ' i qQ'))
+
+(** val psquare :
+ 'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1
+ -> bool) -> 'a1 pol -> 'a1 pol **)
+
+let rec psquare cO cI cadd cmul ceqb = function
+| Pc c -> Pc (cmul c c)
+| Pinj (j, q0) -> Pinj (j, (psquare cO cI cadd cmul ceqb q0))
+| PX (p2, i, q0) ->
+ let twoPQ =
+ pmul cO cI cadd cmul ceqb p2
+ (mkPinj XH (pmulC cO cI cmul ceqb q0 (cadd cI cI)))
+ in
+ let q2 = psquare cO cI cadd cmul ceqb q0 in
+ let p3 = psquare cO cI cadd cmul ceqb p2 in
+ mkPX cO ceqb (padd cO cadd ceqb (mkPX cO ceqb p3 i (p0 cO)) twoPQ) i q2
+
+type 'c pExpr =
+| PEc of 'c
+| PEX of positive
+| PEadd of 'c pExpr * 'c pExpr
+| PEsub of 'c pExpr * 'c pExpr
+| PEmul of 'c pExpr * 'c pExpr
+| PEopp of 'c pExpr
+| PEpow of 'c pExpr * n
+
+(** val mk_X : 'a1 -> 'a1 -> positive -> 'a1 pol **)
+
+let mk_X cO cI j =
+ mkPinj_pred j (mkX cO cI)
+
+(** val ppow_pos :
+ 'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1
+ -> bool) -> ('a1 pol -> 'a1 pol) -> 'a1 pol -> 'a1 pol -> positive -> 'a1
+ pol **)
+
+let rec ppow_pos cO cI cadd cmul ceqb subst_l res p = function
+| XI p3 ->
+ subst_l
+ (pmul cO cI cadd cmul ceqb
+ (ppow_pos cO cI cadd cmul ceqb subst_l
+ (ppow_pos cO cI cadd cmul ceqb subst_l res p p3) p p3) p)
+| XO p3 ->
+ ppow_pos cO cI cadd cmul ceqb subst_l
+ (ppow_pos cO cI cadd cmul ceqb subst_l res p p3) p p3
+| XH -> subst_l (pmul cO cI cadd cmul ceqb res p)
+
+(** val ppow_N :
+ 'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1
+ -> bool) -> ('a1 pol -> 'a1 pol) -> 'a1 pol -> n -> 'a1 pol **)
+
+let ppow_N cO cI cadd cmul ceqb subst_l p = function
+| N0 -> p1 cI
+| Npos p2 -> ppow_pos cO cI cadd cmul ceqb subst_l (p1 cI) p p2
+
+(** val norm_aux :
+ 'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1
+ -> 'a1) -> ('a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 pExpr -> 'a1 pol **)
+
+let rec norm_aux cO cI cadd cmul csub copp ceqb = function
+| PEc c -> Pc c
+| PEX j -> mk_X cO cI j
+| PEadd (pe1, pe2) ->
+ (match pe1 with
+ | PEopp pe3 ->
+ psub cO cadd csub copp ceqb
+ (norm_aux cO cI cadd cmul csub copp ceqb pe2)
+ (norm_aux cO cI cadd cmul csub copp ceqb pe3)
+ | _ ->
+ (match pe2 with
+ | PEopp pe3 ->
+ psub cO cadd csub copp ceqb
+ (norm_aux cO cI cadd cmul csub copp ceqb pe1)
+ (norm_aux cO cI cadd cmul csub copp ceqb pe3)
+ | _ ->
+ padd cO cadd ceqb (norm_aux cO cI cadd cmul csub copp ceqb pe1)
+ (norm_aux cO cI cadd cmul csub copp ceqb pe2)))
+| PEsub (pe1, pe2) ->
+ psub cO cadd csub copp ceqb (norm_aux cO cI cadd cmul csub copp ceqb pe1)
+ (norm_aux cO cI cadd cmul csub copp ceqb pe2)
+| PEmul (pe1, pe2) ->
+ pmul cO cI cadd cmul ceqb (norm_aux cO cI cadd cmul csub copp ceqb pe1)
+ (norm_aux cO cI cadd cmul csub copp ceqb pe2)
+| PEopp pe1 -> popp copp (norm_aux cO cI cadd cmul csub copp ceqb pe1)
+| PEpow (pe1, n0) ->
+ ppow_N cO cI cadd cmul ceqb (fun p -> p)
+ (norm_aux cO cI cadd cmul csub copp ceqb pe1) n0
+
+type 'a bFormula =
+| TT
+| FF
+| X
+| A of 'a
+| Cj of 'a bFormula * 'a bFormula
+| D of 'a bFormula * 'a bFormula
+| N of 'a bFormula
+| I of 'a bFormula * 'a bFormula
+
+(** val map_bformula : ('a1 -> 'a2) -> 'a1 bFormula -> 'a2 bFormula **)
+
+let rec map_bformula fct = function
+| TT -> TT
+| FF -> FF
+| X -> X
+| A a -> A (fct a)
+| Cj (f1, f2) -> Cj ((map_bformula fct f1), (map_bformula fct f2))
+| D (f1, f2) -> D ((map_bformula fct f1), (map_bformula fct f2))
+| N f0 -> N (map_bformula fct f0)
+| I (f1, f2) -> I ((map_bformula fct f1), (map_bformula fct f2))
+
+type 'x clause = 'x list
+
+type 'x cnf = 'x clause list
+
+(** val tt : 'a1 cnf **)
+
+let tt =
+ []
+
+(** val ff : 'a1 cnf **)
+
+let ff =
+ []::[]
+
+(** val add_term :
+ ('a1 -> bool) -> ('a1 -> 'a1 -> 'a1 option) -> 'a1 -> 'a1 clause -> 'a1
+ clause option **)
+
+let rec add_term unsat deduce t0 = function
+| [] ->
+ (match deduce t0 t0 with
+ | Some u -> if unsat u then None else Some (t0::[])
+ | None -> Some (t0::[]))
+| t'::cl0 ->
+ (match deduce t0 t' with
+ | Some u ->
+ if unsat u
+ then None
+ else (match add_term unsat deduce t0 cl0 with
+ | Some cl' -> Some (t'::cl')
+ | None -> None)
+ | None ->
+ (match add_term unsat deduce t0 cl0 with
+ | Some cl' -> Some (t'::cl')
+ | None -> None))
+
+(** val or_clause :
+ ('a1 -> bool) -> ('a1 -> 'a1 -> 'a1 option) -> 'a1 clause -> 'a1 clause
+ -> 'a1 clause option **)
+
+let rec or_clause unsat deduce cl1 cl2 =
+ match cl1 with
+ | [] -> Some cl2
+ | t0::cl ->
+ (match add_term unsat deduce t0 cl2 with
+ | Some cl' -> or_clause unsat deduce cl cl'
+ | None -> None)
+
+(** val or_clause_cnf :
+ ('a1 -> bool) -> ('a1 -> 'a1 -> 'a1 option) -> 'a1 clause -> 'a1 cnf ->
+ 'a1 cnf **)
+
+let or_clause_cnf unsat deduce t0 f =
+ fold_right (fun e acc ->
+ match or_clause unsat deduce t0 e with
+ | Some cl -> cl::acc
+ | None -> acc) [] f
+
+(** val or_cnf :
+ ('a1 -> bool) -> ('a1 -> 'a1 -> 'a1 option) -> 'a1 cnf -> 'a1 cnf -> 'a1
+ cnf **)
+
+let rec or_cnf unsat deduce f f' =
+ match f with
+ | [] -> tt
+ | e::rst ->
+ app (or_cnf unsat deduce rst f') (or_clause_cnf unsat deduce e f')
+
+(** val and_cnf : 'a1 cnf -> 'a1 cnf -> 'a1 cnf **)
+
+let and_cnf f1 f2 =
+ app f1 f2
+
+(** val xcnf :
+ ('a2 -> bool) -> ('a2 -> 'a2 -> 'a2 option) -> ('a1 -> 'a2 cnf) -> ('a1
+ -> 'a2 cnf) -> bool -> 'a1 bFormula -> 'a2 cnf **)
+
+let rec xcnf unsat deduce normalise0 negate0 pol0 = function
+| TT -> if pol0 then tt else ff
+| FF -> if pol0 then ff else tt
+| X -> ff
+| A x -> if pol0 then normalise0 x else negate0 x
+| Cj (e1, e2) ->
+ if pol0
+ then and_cnf (xcnf unsat deduce normalise0 negate0 pol0 e1)
+ (xcnf unsat deduce normalise0 negate0 pol0 e2)
+ else or_cnf unsat deduce (xcnf unsat deduce normalise0 negate0 pol0 e1)
+ (xcnf unsat deduce normalise0 negate0 pol0 e2)
+| D (e1, e2) ->
+ if pol0
+ then or_cnf unsat deduce (xcnf unsat deduce normalise0 negate0 pol0 e1)
+ (xcnf unsat deduce normalise0 negate0 pol0 e2)
+ else and_cnf (xcnf unsat deduce normalise0 negate0 pol0 e1)
+ (xcnf unsat deduce normalise0 negate0 pol0 e2)
+| N e -> xcnf unsat deduce normalise0 negate0 (negb pol0) e
+| I (e1, e2) ->
+ if pol0
+ then or_cnf unsat deduce
+ (xcnf unsat deduce normalise0 negate0 (negb pol0) e1)
+ (xcnf unsat deduce normalise0 negate0 pol0 e2)
+ else and_cnf (xcnf unsat deduce normalise0 negate0 (negb pol0) e1)
+ (xcnf unsat deduce normalise0 negate0 pol0 e2)
+
+(** val cnf_checker :
+ ('a1 list -> 'a2 -> bool) -> 'a1 cnf -> 'a2 list -> bool **)
+
+let rec cnf_checker checker f l =
+ match f with
+ | [] -> true
+ | e::f0 ->
+ (match l with
+ | [] -> false
+ | c::l0 -> if checker e c then cnf_checker checker f0 l0 else false)
+
+(** val tauto_checker :
+ ('a2 -> bool) -> ('a2 -> 'a2 -> 'a2 option) -> ('a1 -> 'a2 cnf) -> ('a1
+ -> 'a2 cnf) -> ('a2 list -> 'a3 -> bool) -> 'a1 bFormula -> 'a3 list ->
+ bool **)
+
+let tauto_checker unsat deduce normalise0 negate0 checker f w =
+ cnf_checker checker (xcnf unsat deduce normalise0 negate0 true f) w
+
+(** val cneqb : ('a1 -> 'a1 -> bool) -> 'a1 -> 'a1 -> bool **)
+
+let cneqb ceqb x y =
+ negb (ceqb x y)
+
+(** val cltb :
+ ('a1 -> 'a1 -> bool) -> ('a1 -> 'a1 -> bool) -> 'a1 -> 'a1 -> bool **)
+
+let cltb ceqb cleb x y =
+ (&&) (cleb x y) (cneqb ceqb x y)
+
+type 'c polC = 'c pol
+
+type op1 =
+| Equal
+| NonEqual
+| Strict
+| NonStrict
+
+type 'c nFormula = 'c polC * op1
+
+(** val opMult : op1 -> op1 -> op1 option **)
+
+let opMult o o' =
+ match o with
+ | Equal -> Some Equal
+ | NonEqual ->
+ (match o' with
+ | Equal -> Some Equal
+ | NonEqual -> Some NonEqual
+ | _ -> None)
+ | Strict -> (match o' with
+ | NonEqual -> None
+ | _ -> Some o')
+ | NonStrict ->
+ (match o' with
+ | Equal -> Some Equal
+ | NonEqual -> None
+ | _ -> Some NonStrict)
+
+(** val opAdd : op1 -> op1 -> op1 option **)
+
+let opAdd o o' =
+ match o with
+ | Equal -> Some o'
+ | NonEqual -> (match o' with
+ | Equal -> Some NonEqual
+ | _ -> None)
+ | Strict -> (match o' with
+ | NonEqual -> None
+ | _ -> Some Strict)
+ | NonStrict ->
+ (match o' with
+ | Equal -> Some NonStrict
+ | NonEqual -> None
+ | x -> Some x)
+
+type 'c psatz =
+| PsatzIn of nat
+| PsatzSquare of 'c polC
+| PsatzMulC of 'c polC * 'c psatz
+| PsatzMulE of 'c psatz * 'c psatz
+| PsatzAdd of 'c psatz * 'c psatz
+| PsatzC of 'c
+| PsatzZ
+
+(** val map_option : ('a1 -> 'a2 option) -> 'a1 option -> 'a2 option **)
+
+let map_option f = function
+| Some x -> f x
+| None -> None
+
+(** val map_option2 :
+ ('a1 -> 'a2 -> 'a3 option) -> 'a1 option -> 'a2 option -> 'a3 option **)
+
+let map_option2 f o o' =
+ match o with
+ | Some x -> (match o' with
+ | Some x' -> f x x'
+ | None -> None)
+ | None -> None
+
+(** val pexpr_times_nformula :
+ 'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1
+ -> bool) -> 'a1 polC -> 'a1 nFormula -> 'a1 nFormula option **)
+
+let pexpr_times_nformula cO cI cplus ctimes ceqb e = function
+| ef,o ->
+ (match o with
+ | Equal -> Some ((pmul cO cI cplus ctimes ceqb e ef),Equal)
+ | _ -> None)
+
+(** val nformula_times_nformula :
+ 'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1
+ -> bool) -> 'a1 nFormula -> 'a1 nFormula -> 'a1 nFormula option **)
+
+let nformula_times_nformula cO cI cplus ctimes ceqb f1 f2 =
+ let e1,o1 = f1 in
+ let e2,o2 = f2 in
+ map_option (fun x -> Some ((pmul cO cI cplus ctimes ceqb e1 e2),x))
+ (opMult o1 o2)
+
+(** val nformula_plus_nformula :
+ 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 nFormula -> 'a1
+ nFormula -> 'a1 nFormula option **)
+
+let nformula_plus_nformula cO cplus ceqb f1 f2 =
+ let e1,o1 = f1 in
+ let e2,o2 = f2 in
+ map_option (fun x -> Some ((padd cO cplus ceqb e1 e2),x)) (opAdd o1 o2)
+
+(** val eval_Psatz :
+ 'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1
+ -> bool) -> ('a1 -> 'a1 -> bool) -> 'a1 nFormula list -> 'a1 psatz -> 'a1
+ nFormula option **)
+
+let rec eval_Psatz cO cI cplus ctimes ceqb cleb l = function
+| PsatzIn n0 -> Some (nth n0 l ((Pc cO),Equal))
+| PsatzSquare e0 -> Some ((psquare cO cI cplus ctimes ceqb e0),NonStrict)
+| PsatzMulC (re, e0) ->
+ map_option (pexpr_times_nformula cO cI cplus ctimes ceqb re)
+ (eval_Psatz cO cI cplus ctimes ceqb cleb l e0)
+| PsatzMulE (f1, f2) ->
+ map_option2 (nformula_times_nformula cO cI cplus ctimes ceqb)
+ (eval_Psatz cO cI cplus ctimes ceqb cleb l f1)
+ (eval_Psatz cO cI cplus ctimes ceqb cleb l f2)
+| PsatzAdd (f1, f2) ->
+ map_option2 (nformula_plus_nformula cO cplus ceqb)
+ (eval_Psatz cO cI cplus ctimes ceqb cleb l f1)
+ (eval_Psatz cO cI cplus ctimes ceqb cleb l f2)
+| PsatzC c -> if cltb ceqb cleb cO c then Some ((Pc c),Strict) else None
+| PsatzZ -> Some ((Pc cO),Equal)
+
+(** val check_inconsistent :
+ 'a1 -> ('a1 -> 'a1 -> bool) -> ('a1 -> 'a1 -> bool) -> 'a1 nFormula ->
+ bool **)
+
+let check_inconsistent cO ceqb cleb = function
+| e,op ->
+ (match e with
+ | Pc c ->
+ (match op with
+ | Equal -> cneqb ceqb c cO
+ | NonEqual -> ceqb c cO
+ | Strict -> cleb c cO
+ | NonStrict -> cltb ceqb cleb c cO)
+ | _ -> false)
+
+(** val check_normalised_formulas :
+ 'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1
+ -> bool) -> ('a1 -> 'a1 -> bool) -> 'a1 nFormula list -> 'a1 psatz -> bool **)
+
+let check_normalised_formulas cO cI cplus ctimes ceqb cleb l cm =
+ match eval_Psatz cO cI cplus ctimes ceqb cleb l cm with
+ | Some f -> check_inconsistent cO ceqb cleb f
+ | None -> false
+
+type op2 =
+| OpEq
+| OpNEq
+| OpLe
+| OpGe
+| OpLt
+| OpGt
+
+type 't formula = { flhs : 't pExpr; fop : op2; frhs : 't pExpr }
+
+(** val norm :
+ 'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1
+ -> 'a1) -> ('a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 pExpr -> 'a1 pol **)
+
+let norm cO cI cplus ctimes cminus copp ceqb =
+ norm_aux cO cI cplus ctimes cminus copp ceqb
+
+(** val psub0 :
+ 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1) -> ('a1
+ -> 'a1 -> bool) -> 'a1 pol -> 'a1 pol -> 'a1 pol **)
+
+let psub0 cO cplus cminus copp ceqb =
+ psub cO cplus cminus copp ceqb
+
+(** val padd0 :
+ 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 pol -> 'a1 pol
+ -> 'a1 pol **)
+
+let padd0 cO cplus ceqb =
+ padd cO cplus ceqb
+
+(** val xnormalise :
+ 'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1
+ -> 'a1) -> ('a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 formula -> 'a1
+ nFormula list **)
+
+let xnormalise cO cI cplus ctimes cminus copp ceqb t0 =
+ let { flhs = lhs; fop = o; frhs = rhs } = t0 in
+ let lhs0 = norm cO cI cplus ctimes cminus copp ceqb lhs in
+ let rhs0 = norm cO cI cplus ctimes cminus copp ceqb rhs in
+ (match o with
+ | OpEq ->
+ ((psub0 cO cplus cminus copp ceqb lhs0 rhs0),Strict)::(((psub0 cO cplus
+ cminus copp
+ ceqb rhs0 lhs0),Strict)::[])
+ | OpNEq -> ((psub0 cO cplus cminus copp ceqb lhs0 rhs0),Equal)::[]
+ | OpLe -> ((psub0 cO cplus cminus copp ceqb lhs0 rhs0),Strict)::[]
+ | OpGe -> ((psub0 cO cplus cminus copp ceqb rhs0 lhs0),Strict)::[]
+ | OpLt -> ((psub0 cO cplus cminus copp ceqb lhs0 rhs0),NonStrict)::[]
+ | OpGt -> ((psub0 cO cplus cminus copp ceqb rhs0 lhs0),NonStrict)::[])
+
+(** val cnf_normalise :
+ 'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1
+ -> 'a1) -> ('a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 formula -> 'a1
+ nFormula cnf **)
+
+let cnf_normalise cO cI cplus ctimes cminus copp ceqb t0 =
+ map (fun x -> x::[]) (xnormalise cO cI cplus ctimes cminus copp ceqb t0)
+
+(** val xnegate :
+ 'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1
+ -> 'a1) -> ('a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 formula -> 'a1
+ nFormula list **)
+
+let xnegate cO cI cplus ctimes cminus copp ceqb t0 =
+ let { flhs = lhs; fop = o; frhs = rhs } = t0 in
+ let lhs0 = norm cO cI cplus ctimes cminus copp ceqb lhs in
+ let rhs0 = norm cO cI cplus ctimes cminus copp ceqb rhs in
+ (match o with
+ | OpEq -> ((psub0 cO cplus cminus copp ceqb lhs0 rhs0),Equal)::[]
+ | OpNEq ->
+ ((psub0 cO cplus cminus copp ceqb lhs0 rhs0),Strict)::(((psub0 cO cplus
+ cminus copp
+ ceqb rhs0 lhs0),Strict)::[])
+ | OpLe -> ((psub0 cO cplus cminus copp ceqb rhs0 lhs0),NonStrict)::[]
+ | OpGe -> ((psub0 cO cplus cminus copp ceqb lhs0 rhs0),NonStrict)::[]
+ | OpLt -> ((psub0 cO cplus cminus copp ceqb rhs0 lhs0),Strict)::[]
+ | OpGt -> ((psub0 cO cplus cminus copp ceqb lhs0 rhs0),Strict)::[])
+
+(** val cnf_negate :
+ 'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1
+ -> 'a1) -> ('a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 formula -> 'a1
+ nFormula cnf **)
+
+let cnf_negate cO cI cplus ctimes cminus copp ceqb t0 =
+ map (fun x -> x::[]) (xnegate cO cI cplus ctimes cminus copp ceqb t0)
+
+(** val xdenorm : positive -> 'a1 pol -> 'a1 pExpr **)
+
+let rec xdenorm jmp = function
+| Pc c -> PEc c
+| Pinj (j, p2) -> xdenorm (Coq_Pos.add j jmp) p2
+| PX (p2, j, q0) ->
+ PEadd ((PEmul ((xdenorm jmp p2), (PEpow ((PEX jmp), (Npos j))))),
+ (xdenorm (Coq_Pos.succ jmp) q0))
+
+(** val denorm : 'a1 pol -> 'a1 pExpr **)
+
+let denorm p =
+ xdenorm XH p
+
+(** val map_PExpr : ('a2 -> 'a1) -> 'a2 pExpr -> 'a1 pExpr **)
+
+let rec map_PExpr c_of_S = function
+| PEc c -> PEc (c_of_S c)
+| PEX p -> PEX p
+| PEadd (e1, e2) -> PEadd ((map_PExpr c_of_S e1), (map_PExpr c_of_S e2))
+| PEsub (e1, e2) -> PEsub ((map_PExpr c_of_S e1), (map_PExpr c_of_S e2))
+| PEmul (e1, e2) -> PEmul ((map_PExpr c_of_S e1), (map_PExpr c_of_S e2))
+| PEopp e0 -> PEopp (map_PExpr c_of_S e0)
+| PEpow (e0, n0) -> PEpow ((map_PExpr c_of_S e0), n0)
+
+(** val map_Formula : ('a2 -> 'a1) -> 'a2 formula -> 'a1 formula **)
+
+let map_Formula c_of_S f =
+ let { flhs = l; fop = o; frhs = r } = f in
+ { flhs = (map_PExpr c_of_S l); fop = o; frhs = (map_PExpr c_of_S r) }
+
+(** val simpl_cone :
+ 'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 psatz ->
+ 'a1 psatz **)
+
+let simpl_cone cO cI ctimes ceqb e = match e with
+| PsatzSquare t0 ->
+ (match t0 with
+ | Pc c -> if ceqb cO c then PsatzZ else PsatzC (ctimes c c)
+ | _ -> PsatzSquare t0)
+| PsatzMulE (t1, t2) ->
+ (match t1 with
+ | PsatzMulE (x, x0) ->
+ (match x with
+ | PsatzC p2 ->
+ (match t2 with
+ | PsatzC c -> PsatzMulE ((PsatzC (ctimes c p2)), x0)
+ | PsatzZ -> PsatzZ
+ | _ -> e)
+ | _ ->
+ (match x0 with
+ | PsatzC p2 ->
+ (match t2 with
+ | PsatzC c -> PsatzMulE ((PsatzC (ctimes c p2)), x)
+ | PsatzZ -> PsatzZ
+ | _ -> e)
+ | _ ->
+ (match t2 with
+ | PsatzC c -> if ceqb cI c then t1 else PsatzMulE (t1, t2)
+ | PsatzZ -> PsatzZ
+ | _ -> e)))
+ | PsatzC c ->
+ (match t2 with
+ | PsatzMulE (x, x0) ->
+ (match x with
+ | PsatzC p2 -> PsatzMulE ((PsatzC (ctimes c p2)), x0)
+ | _ ->
+ (match x0 with
+ | PsatzC p2 -> PsatzMulE ((PsatzC (ctimes c p2)), x)
+ | _ -> if ceqb cI c then t2 else PsatzMulE (t1, t2)))
+ | PsatzAdd (y, z0) ->
+ PsatzAdd ((PsatzMulE ((PsatzC c), y)), (PsatzMulE ((PsatzC c), z0)))
+ | PsatzC c0 -> PsatzC (ctimes c c0)
+ | PsatzZ -> PsatzZ
+ | _ -> if ceqb cI c then t2 else PsatzMulE (t1, t2))
+ | PsatzZ -> PsatzZ
+ | _ ->
+ (match t2 with
+ | PsatzC c -> if ceqb cI c then t1 else PsatzMulE (t1, t2)
+ | PsatzZ -> PsatzZ
+ | _ -> e))
+| PsatzAdd (t1, t2) ->
+ (match t1 with
+ | PsatzZ -> t2
+ | _ -> (match t2 with
+ | PsatzZ -> t1
+ | _ -> PsatzAdd (t1, t2)))
+| _ -> e
+
+type q = { qnum : z; qden : positive }
+
+(** val qnum : q -> z **)
+
+let qnum x = x.qnum
+
+(** val qden : q -> positive **)
+
+let qden x = x.qden
+
+(** val qeq_bool : q -> q -> bool **)
+
+let qeq_bool x y =
+ zeq_bool (Z.mul x.qnum (Zpos y.qden)) (Z.mul y.qnum (Zpos x.qden))
+
+(** val qle_bool : q -> q -> bool **)
+
+let qle_bool x y =
+ Z.leb (Z.mul x.qnum (Zpos y.qden)) (Z.mul y.qnum (Zpos x.qden))
+
+(** val qplus : q -> q -> q **)
+
+let qplus x y =
+ { qnum = (Z.add (Z.mul x.qnum (Zpos y.qden)) (Z.mul y.qnum (Zpos x.qden)));
+ qden = (Coq_Pos.mul x.qden y.qden) }
+
+(** val qmult : q -> q -> q **)
+
+let qmult x y =
+ { qnum = (Z.mul x.qnum y.qnum); qden = (Coq_Pos.mul x.qden y.qden) }
+
+(** val qopp : q -> q **)
+
+let qopp x =
+ { qnum = (Z.opp x.qnum); qden = x.qden }
+
+(** val qminus : q -> q -> q **)
+
+let qminus x y =
+ qplus x (qopp y)
+
+(** val qinv : q -> q **)
+
+let qinv x =
+ match x.qnum with
+ | Z0 -> { qnum = Z0; qden = XH }
+ | Zpos p -> { qnum = (Zpos x.qden); qden = p }
+ | Zneg p -> { qnum = (Zneg x.qden); qden = p }
+
+(** val qpower_positive : q -> positive -> q **)
+
+let qpower_positive =
+ pow_pos qmult
+
+(** val qpower : q -> z -> q **)
+
+let qpower q0 = function
+| Z0 -> { qnum = (Zpos XH); qden = XH }
+| Zpos p -> qpower_positive q0 p
+| Zneg p -> qinv (qpower_positive q0 p)
+
+type 'a t =
+| Empty
+| Leaf of 'a
+| Node of 'a t * 'a * 'a t
+
+(** val find : 'a1 -> 'a1 t -> positive -> 'a1 **)
+
+let rec find default vm p =
+ match vm with
+ | Empty -> default
+ | Leaf i -> i
+ | Node (l, e, r) ->
+ (match p with
+ | XI p2 -> find default r p2
+ | XO p2 -> find default l p2
+ | XH -> e)
+
+(** val singleton : 'a1 -> positive -> 'a1 -> 'a1 t **)
+
+let rec singleton default x v =
+ match x with
+ | XI p -> Node (Empty, default, (singleton default p v))
+ | XO p -> Node ((singleton default p v), default, Empty)
+ | XH -> Leaf v
+
+(** val vm_add : 'a1 -> positive -> 'a1 -> 'a1 t -> 'a1 t **)
+
+let rec vm_add default x v = function
+| Empty -> singleton default x v
+| Leaf vl ->
+ (match x with
+ | XI p -> Node (Empty, vl, (singleton default p v))
+ | XO p -> Node ((singleton default p v), vl, Empty)
+ | XH -> Leaf v)
+| Node (l, o, r) ->
+ (match x with
+ | XI p -> Node (l, o, (vm_add default p v r))
+ | XO p -> Node ((vm_add default p v l), o, r)
+ | XH -> Node (l, v, r))
+
+type zWitness = z psatz
+
+(** val zWeakChecker : z nFormula list -> z psatz -> bool **)
+
+let zWeakChecker =
+ check_normalised_formulas Z0 (Zpos XH) Z.add Z.mul zeq_bool Z.leb
+
+(** val psub1 : z pol -> z pol -> z pol **)
+
+let psub1 =
+ psub0 Z0 Z.add Z.sub Z.opp zeq_bool
+
+(** val padd1 : z pol -> z pol -> z pol **)
+
+let padd1 =
+ padd0 Z0 Z.add zeq_bool
+
+(** val norm0 : z pExpr -> z pol **)
+
+let norm0 =
+ norm Z0 (Zpos XH) Z.add Z.mul Z.sub Z.opp zeq_bool
+
+(** val xnormalise0 : z formula -> z nFormula list **)
+
+let xnormalise0 t0 =
+ let { flhs = lhs; fop = o; frhs = rhs } = t0 in
+ let lhs0 = norm0 lhs in
+ let rhs0 = norm0 rhs in
+ (match o with
+ | OpEq ->
+ ((psub1 lhs0 (padd1 rhs0 (Pc (Zpos XH)))),NonStrict)::(((psub1 rhs0
+ (padd1 lhs0
+ (Pc (Zpos
+ XH)))),NonStrict)::[])
+ | OpNEq -> ((psub1 lhs0 rhs0),Equal)::[]
+ | OpLe -> ((psub1 lhs0 (padd1 rhs0 (Pc (Zpos XH)))),NonStrict)::[]
+ | OpGe -> ((psub1 rhs0 (padd1 lhs0 (Pc (Zpos XH)))),NonStrict)::[]
+ | OpLt -> ((psub1 lhs0 rhs0),NonStrict)::[]
+ | OpGt -> ((psub1 rhs0 lhs0),NonStrict)::[])
+
+(** val normalise : z formula -> z nFormula cnf **)
+
+let normalise t0 =
+ map (fun x -> x::[]) (xnormalise0 t0)
+
+(** val xnegate0 : z formula -> z nFormula list **)
+
+let xnegate0 t0 =
+ let { flhs = lhs; fop = o; frhs = rhs } = t0 in
+ let lhs0 = norm0 lhs in
+ let rhs0 = norm0 rhs in
+ (match o with
+ | OpEq -> ((psub1 lhs0 rhs0),Equal)::[]
+ | OpNEq ->
+ ((psub1 lhs0 (padd1 rhs0 (Pc (Zpos XH)))),NonStrict)::(((psub1 rhs0
+ (padd1 lhs0
+ (Pc (Zpos
+ XH)))),NonStrict)::[])
+ | OpLe -> ((psub1 rhs0 lhs0),NonStrict)::[]
+ | OpGe -> ((psub1 lhs0 rhs0),NonStrict)::[]
+ | OpLt -> ((psub1 rhs0 (padd1 lhs0 (Pc (Zpos XH)))),NonStrict)::[]
+ | OpGt -> ((psub1 lhs0 (padd1 rhs0 (Pc (Zpos XH)))),NonStrict)::[])
+
+(** val negate : z formula -> z nFormula cnf **)
+
+let negate t0 =
+ map (fun x -> x::[]) (xnegate0 t0)
+
+(** val zunsat : z nFormula -> bool **)
+
+let zunsat =
+ check_inconsistent Z0 zeq_bool Z.leb
+
+(** val zdeduce : z nFormula -> z nFormula -> z nFormula option **)
+
+let zdeduce =
+ nformula_plus_nformula Z0 Z.add zeq_bool
+
+(** val ceiling : z -> z -> z **)
+
+let ceiling a b =
+ let q0,r = Z.div_eucl a b in
+ (match r with
+ | Z0 -> q0
+ | _ -> Z.add q0 (Zpos XH))
+
+type zArithProof =
+| DoneProof
+| RatProof of zWitness * zArithProof
+| CutProof of zWitness * zArithProof
+| EnumProof of zWitness * zWitness * zArithProof list
+
+(** val zgcdM : z -> z -> z **)
+
+let zgcdM x y =
+ Z.max (Z.gcd x y) (Zpos XH)
+
+(** val zgcd_pol : z polC -> z * z **)
+
+let rec zgcd_pol = function
+| Pc c -> Z0,c
+| Pinj (_, p2) -> zgcd_pol p2
+| PX (p2, _, q0) ->
+ let g1,c1 = zgcd_pol p2 in
+ let g2,c2 = zgcd_pol q0 in (zgcdM (zgcdM g1 c1) g2),c2
+
+(** val zdiv_pol : z polC -> z -> z polC **)
+
+let rec zdiv_pol p x =
+ match p with
+ | Pc c -> Pc (Z.div c x)
+ | Pinj (j, p2) -> Pinj (j, (zdiv_pol p2 x))
+ | PX (p2, j, q0) -> PX ((zdiv_pol p2 x), j, (zdiv_pol q0 x))
+
+(** val makeCuttingPlane : z polC -> z polC * z **)
+
+let makeCuttingPlane p =
+ let g,c = zgcd_pol p in
+ if Z.gtb g Z0
+ then (zdiv_pol (psubC Z.sub p c) g),(Z.opp (ceiling (Z.opp c) g))
+ else p,Z0
+
+(** val genCuttingPlane : z nFormula -> ((z polC * z) * op1) option **)
+
+let genCuttingPlane = function
+| e,op ->
+ (match op with
+ | Equal ->
+ let g,c = zgcd_pol e in
+ if (&&) (Z.gtb g Z0)
+ ((&&) (negb (zeq_bool c Z0)) (negb (zeq_bool (Z.gcd g c) g)))
+ then None
+ else Some ((makeCuttingPlane e),Equal)
+ | NonEqual -> Some ((e,Z0),op)
+ | Strict -> Some ((makeCuttingPlane (psubC Z.sub e (Zpos XH))),NonStrict)
+ | NonStrict -> Some ((makeCuttingPlane e),NonStrict))
+
+(** val nformula_of_cutting_plane : ((z polC * z) * op1) -> z nFormula **)
+
+let nformula_of_cutting_plane = function
+| e_z,o -> let e,z0 = e_z in (padd1 e (Pc z0)),o
+
+(** val is_pol_Z0 : z polC -> bool **)
+
+let is_pol_Z0 = function
+| Pc z0 -> (match z0 with
+ | Z0 -> true
+ | _ -> false)
+| _ -> false
+
+(** val eval_Psatz0 : z nFormula list -> zWitness -> z nFormula option **)
+
+let eval_Psatz0 =
+ eval_Psatz Z0 (Zpos XH) Z.add Z.mul zeq_bool Z.leb
+
+(** val valid_cut_sign : op1 -> bool **)
+
+let valid_cut_sign = function
+| Equal -> true
+| NonStrict -> true
+| _ -> false
+
+(** val zChecker : z nFormula list -> zArithProof -> bool **)
+
+let rec zChecker l = function
+| DoneProof -> false
+| RatProof (w, pf0) ->
+ (match eval_Psatz0 l w with
+ | Some f -> if zunsat f then true else zChecker (f::l) pf0
+ | None -> false)
+| CutProof (w, pf0) ->
+ (match eval_Psatz0 l w with
+ | Some f ->
+ (match genCuttingPlane f with
+ | Some cp -> zChecker ((nformula_of_cutting_plane cp)::l) pf0
+ | None -> true)
+ | None -> false)
+| EnumProof (w1, w2, pf0) ->
+ (match eval_Psatz0 l w1 with
+ | Some f1 ->
+ (match eval_Psatz0 l w2 with
+ | Some f2 ->
+ (match genCuttingPlane f1 with
+ | Some p ->
+ let p2,op3 = p in
+ let e1,z1 = p2 in
+ (match genCuttingPlane f2 with
+ | Some p3 ->
+ let p4,op4 = p3 in
+ let e2,z2 = p4 in
+ if (&&) ((&&) (valid_cut_sign op3) (valid_cut_sign op4))
+ (is_pol_Z0 (padd1 e1 e2))
+ then let rec label pfs lb ub =
+ match pfs with
+ | [] -> Z.gtb lb ub
+ | pf1::rsr ->
+ (&&) (zChecker (((psub1 e1 (Pc lb)),Equal)::l) pf1)
+ (label rsr (Z.add lb (Zpos XH)) ub)
+ in label pf0 (Z.opp z1) z2
+ else false
+ | None -> true)
+ | None -> true)
+ | None -> false)
+ | None -> false)
+
+(** val zTautoChecker : z formula bFormula -> zArithProof list -> bool **)
+
+let zTautoChecker f w =
+ tauto_checker zunsat zdeduce normalise negate zChecker f w
+
+type qWitness = q psatz
+
+(** val qWeakChecker : q nFormula list -> q psatz -> bool **)
+
+let qWeakChecker =
+ check_normalised_formulas { qnum = Z0; qden = XH } { qnum = (Zpos XH);
+ qden = XH } qplus qmult qeq_bool qle_bool
+
+(** val qnormalise : q formula -> q nFormula cnf **)
+
+let qnormalise =
+ cnf_normalise { qnum = Z0; qden = XH } { qnum = (Zpos XH); qden = XH }
+ qplus qmult qminus qopp qeq_bool
+
+(** val qnegate : q formula -> q nFormula cnf **)
+
+let qnegate =
+ cnf_negate { qnum = Z0; qden = XH } { qnum = (Zpos XH); qden = XH } qplus
+ qmult qminus qopp qeq_bool
+
+(** val qunsat : q nFormula -> bool **)
+
+let qunsat =
+ check_inconsistent { qnum = Z0; qden = XH } qeq_bool qle_bool
+
+(** val qdeduce : q nFormula -> q nFormula -> q nFormula option **)
+
+let qdeduce =
+ nformula_plus_nformula { qnum = Z0; qden = XH } qplus qeq_bool
+
+(** val qTautoChecker : q formula bFormula -> qWitness list -> bool **)
+
+let qTautoChecker f w =
+ tauto_checker qunsat qdeduce qnormalise qnegate qWeakChecker f w
+
+type rcst =
+| C0
+| C1
+| CQ of q
+| CZ of z
+| CPlus of rcst * rcst
+| CMinus of rcst * rcst
+| CMult of rcst * rcst
+| CInv of rcst
+| COpp of rcst
+
+(** val q_of_Rcst : rcst -> q **)
+
+let rec q_of_Rcst = function
+| C0 -> { qnum = Z0; qden = XH }
+| C1 -> { qnum = (Zpos XH); qden = XH }
+| CQ q0 -> q0
+| CZ z0 -> { qnum = z0; qden = XH }
+| CPlus (r1, r2) -> qplus (q_of_Rcst r1) (q_of_Rcst r2)
+| CMinus (r1, r2) -> qminus (q_of_Rcst r1) (q_of_Rcst r2)
+| CMult (r1, r2) -> qmult (q_of_Rcst r1) (q_of_Rcst r2)
+| CInv r0 -> qinv (q_of_Rcst r0)
+| COpp r0 -> qopp (q_of_Rcst r0)
+
+type rWitness = q psatz
+
+(** val rWeakChecker : q nFormula list -> q psatz -> bool **)
+
+let rWeakChecker =
+ check_normalised_formulas { qnum = Z0; qden = XH } { qnum = (Zpos XH);
+ qden = XH } qplus qmult qeq_bool qle_bool
+
+(** val rnormalise : q formula -> q nFormula cnf **)
+
+let rnormalise =
+ cnf_normalise { qnum = Z0; qden = XH } { qnum = (Zpos XH); qden = XH }
+ qplus qmult qminus qopp qeq_bool
+
+(** val rnegate : q formula -> q nFormula cnf **)
+
+let rnegate =
+ cnf_negate { qnum = Z0; qden = XH } { qnum = (Zpos XH); qden = XH } qplus
+ qmult qminus qopp qeq_bool
+
+(** val runsat : q nFormula -> bool **)
+
+let runsat =
+ check_inconsistent { qnum = Z0; qden = XH } qeq_bool qle_bool
+
+(** val rdeduce : q nFormula -> q nFormula -> q nFormula option **)
+
+let rdeduce =
+ nformula_plus_nformula { qnum = Z0; qden = XH } qplus qeq_bool
+
+(** val rTautoChecker : rcst formula bFormula -> rWitness list -> bool **)
+
+let rTautoChecker f w =
+ tauto_checker runsat rdeduce rnormalise rnegate rWeakChecker
+ (map_bformula (map_Formula q_of_Rcst) f) w
diff --git a/plugins/micromega/micromega.mli b/plugins/micromega/micromega.mli
new file mode 100644
index 000000000..961978178
--- /dev/null
+++ b/plugins/micromega/micromega.mli
@@ -0,0 +1,517 @@
+
+val negb : bool -> bool
+
+type nat =
+| O
+| S of nat
+
+val app : 'a1 list -> 'a1 list -> 'a1 list
+
+type comparison =
+| Eq
+| Lt
+| Gt
+
+val compOpp : comparison -> comparison
+
+val add : nat -> nat -> nat
+
+type positive =
+| XI of positive
+| XO of positive
+| XH
+
+type n =
+| N0
+| Npos of positive
+
+type z =
+| Z0
+| Zpos of positive
+| Zneg of positive
+
+module Pos :
+ sig
+ type mask =
+ | IsNul
+ | IsPos of positive
+ | IsNeg
+ end
+
+module Coq_Pos :
+ sig
+ val succ : positive -> positive
+
+ val add : positive -> positive -> positive
+
+ val add_carry : positive -> positive -> positive
+
+ val pred_double : positive -> positive
+
+ type mask = Pos.mask =
+ | IsNul
+ | IsPos of positive
+ | IsNeg
+
+ val succ_double_mask : mask -> mask
+
+ val double_mask : mask -> mask
+
+ val double_pred_mask : positive -> mask
+
+ val sub_mask : positive -> positive -> mask
+
+ val sub_mask_carry : positive -> positive -> mask
+
+ val sub : positive -> positive -> positive
+
+ val mul : positive -> positive -> positive
+
+ val size_nat : positive -> nat
+
+ val compare_cont : comparison -> positive -> positive -> comparison
+
+ val compare : positive -> positive -> comparison
+
+ val gcdn : nat -> positive -> positive -> positive
+
+ val gcd : positive -> positive -> positive
+
+ val of_succ_nat : nat -> positive
+ end
+
+module N :
+ sig
+ val of_nat : nat -> n
+ end
+
+val pow_pos : ('a1 -> 'a1 -> 'a1) -> 'a1 -> positive -> 'a1
+
+val nth : nat -> 'a1 list -> 'a1 -> 'a1
+
+val map : ('a1 -> 'a2) -> 'a1 list -> 'a2 list
+
+val fold_right : ('a2 -> 'a1 -> 'a1) -> 'a1 -> 'a2 list -> 'a1
+
+module Z :
+ sig
+ val double : z -> z
+
+ val succ_double : z -> z
+
+ val pred_double : z -> z
+
+ val pos_sub : positive -> positive -> z
+
+ val add : z -> z -> z
+
+ val opp : z -> z
+
+ val sub : z -> z -> z
+
+ val mul : z -> z -> z
+
+ val compare : z -> z -> comparison
+
+ val leb : z -> z -> bool
+
+ val ltb : z -> z -> bool
+
+ val gtb : z -> z -> bool
+
+ val max : z -> z -> z
+
+ val abs : z -> z
+
+ val to_N : z -> n
+
+ val pos_div_eucl : positive -> z -> z * z
+
+ val div_eucl : z -> z -> z * z
+
+ val div : z -> z -> z
+
+ val gcd : z -> z -> z
+ end
+
+val zeq_bool : z -> z -> bool
+
+type 'c pol =
+| Pc of 'c
+| Pinj of positive * 'c pol
+| PX of 'c pol * positive * 'c pol
+
+val p0 : 'a1 -> 'a1 pol
+
+val p1 : 'a1 -> 'a1 pol
+
+val peq : ('a1 -> 'a1 -> bool) -> 'a1 pol -> 'a1 pol -> bool
+
+val mkPinj : positive -> 'a1 pol -> 'a1 pol
+
+val mkPinj_pred : positive -> 'a1 pol -> 'a1 pol
+
+val mkPX :
+ 'a1 -> ('a1 -> 'a1 -> bool) -> 'a1 pol -> positive -> 'a1 pol -> 'a1 pol
+
+val mkXi : 'a1 -> 'a1 -> positive -> 'a1 pol
+
+val mkX : 'a1 -> 'a1 -> 'a1 pol
+
+val popp : ('a1 -> 'a1) -> 'a1 pol -> 'a1 pol
+
+val paddC : ('a1 -> 'a1 -> 'a1) -> 'a1 pol -> 'a1 -> 'a1 pol
+
+val psubC : ('a1 -> 'a1 -> 'a1) -> 'a1 pol -> 'a1 -> 'a1 pol
+
+val paddI :
+ ('a1 -> 'a1 -> 'a1) -> ('a1 pol -> 'a1 pol -> 'a1 pol) -> 'a1 pol ->
+ positive -> 'a1 pol -> 'a1 pol
+
+val psubI :
+ ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1) -> ('a1 pol -> 'a1 pol -> 'a1 pol) ->
+ 'a1 pol -> positive -> 'a1 pol -> 'a1 pol
+
+val paddX :
+ 'a1 -> ('a1 -> 'a1 -> bool) -> ('a1 pol -> 'a1 pol -> 'a1 pol) -> 'a1 pol
+ -> positive -> 'a1 pol -> 'a1 pol
+
+val psubX :
+ 'a1 -> ('a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> ('a1 pol -> 'a1 pol -> 'a1
+ pol) -> 'a1 pol -> positive -> 'a1 pol -> 'a1 pol
+
+val padd :
+ 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 pol -> 'a1 pol ->
+ 'a1 pol
+
+val psub :
+ 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1) -> ('a1
+ -> 'a1 -> bool) -> 'a1 pol -> 'a1 pol -> 'a1 pol
+
+val pmulC_aux :
+ 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 pol -> 'a1 -> 'a1
+ pol
+
+val pmulC :
+ 'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 pol -> 'a1
+ -> 'a1 pol
+
+val pmulI :
+ 'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> ('a1 pol ->
+ 'a1 pol -> 'a1 pol) -> 'a1 pol -> positive -> 'a1 pol -> 'a1 pol
+
+val pmul :
+ 'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 ->
+ bool) -> 'a1 pol -> 'a1 pol -> 'a1 pol
+
+val psquare :
+ 'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 ->
+ bool) -> 'a1 pol -> 'a1 pol
+
+type 'c pExpr =
+| PEc of 'c
+| PEX of positive
+| PEadd of 'c pExpr * 'c pExpr
+| PEsub of 'c pExpr * 'c pExpr
+| PEmul of 'c pExpr * 'c pExpr
+| PEopp of 'c pExpr
+| PEpow of 'c pExpr * n
+
+val mk_X : 'a1 -> 'a1 -> positive -> 'a1 pol
+
+val ppow_pos :
+ 'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 ->
+ bool) -> ('a1 pol -> 'a1 pol) -> 'a1 pol -> 'a1 pol -> positive -> 'a1 pol
+
+val ppow_N :
+ 'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 ->
+ bool) -> ('a1 pol -> 'a1 pol) -> 'a1 pol -> n -> 'a1 pol
+
+val norm_aux :
+ 'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 ->
+ 'a1) -> ('a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 pExpr -> 'a1 pol
+
+type 'a bFormula =
+| TT
+| FF
+| X
+| A of 'a
+| Cj of 'a bFormula * 'a bFormula
+| D of 'a bFormula * 'a bFormula
+| N of 'a bFormula
+| I of 'a bFormula * 'a bFormula
+
+val map_bformula : ('a1 -> 'a2) -> 'a1 bFormula -> 'a2 bFormula
+
+type 'x clause = 'x list
+
+type 'x cnf = 'x clause list
+
+val tt : 'a1 cnf
+
+val ff : 'a1 cnf
+
+val add_term :
+ ('a1 -> bool) -> ('a1 -> 'a1 -> 'a1 option) -> 'a1 -> 'a1 clause -> 'a1
+ clause option
+
+val or_clause :
+ ('a1 -> bool) -> ('a1 -> 'a1 -> 'a1 option) -> 'a1 clause -> 'a1 clause ->
+ 'a1 clause option
+
+val or_clause_cnf :
+ ('a1 -> bool) -> ('a1 -> 'a1 -> 'a1 option) -> 'a1 clause -> 'a1 cnf -> 'a1
+ cnf
+
+val or_cnf :
+ ('a1 -> bool) -> ('a1 -> 'a1 -> 'a1 option) -> 'a1 cnf -> 'a1 cnf -> 'a1 cnf
+
+val and_cnf : 'a1 cnf -> 'a1 cnf -> 'a1 cnf
+
+val xcnf :
+ ('a2 -> bool) -> ('a2 -> 'a2 -> 'a2 option) -> ('a1 -> 'a2 cnf) -> ('a1 ->
+ 'a2 cnf) -> bool -> 'a1 bFormula -> 'a2 cnf
+
+val cnf_checker : ('a1 list -> 'a2 -> bool) -> 'a1 cnf -> 'a2 list -> bool
+
+val tauto_checker :
+ ('a2 -> bool) -> ('a2 -> 'a2 -> 'a2 option) -> ('a1 -> 'a2 cnf) -> ('a1 ->
+ 'a2 cnf) -> ('a2 list -> 'a3 -> bool) -> 'a1 bFormula -> 'a3 list -> bool
+
+val cneqb : ('a1 -> 'a1 -> bool) -> 'a1 -> 'a1 -> bool
+
+val cltb : ('a1 -> 'a1 -> bool) -> ('a1 -> 'a1 -> bool) -> 'a1 -> 'a1 -> bool
+
+type 'c polC = 'c pol
+
+type op1 =
+| Equal
+| NonEqual
+| Strict
+| NonStrict
+
+type 'c nFormula = 'c polC * op1
+
+val opMult : op1 -> op1 -> op1 option
+
+val opAdd : op1 -> op1 -> op1 option
+
+type 'c psatz =
+| PsatzIn of nat
+| PsatzSquare of 'c polC
+| PsatzMulC of 'c polC * 'c psatz
+| PsatzMulE of 'c psatz * 'c psatz
+| PsatzAdd of 'c psatz * 'c psatz
+| PsatzC of 'c
+| PsatzZ
+
+val map_option : ('a1 -> 'a2 option) -> 'a1 option -> 'a2 option
+
+val map_option2 :
+ ('a1 -> 'a2 -> 'a3 option) -> 'a1 option -> 'a2 option -> 'a3 option
+
+val pexpr_times_nformula :
+ 'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 ->
+ bool) -> 'a1 polC -> 'a1 nFormula -> 'a1 nFormula option
+
+val nformula_times_nformula :
+ 'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 ->
+ bool) -> 'a1 nFormula -> 'a1 nFormula -> 'a1 nFormula option
+
+val nformula_plus_nformula :
+ 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 nFormula -> 'a1
+ nFormula -> 'a1 nFormula option
+
+val eval_Psatz :
+ 'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 ->
+ bool) -> ('a1 -> 'a1 -> bool) -> 'a1 nFormula list -> 'a1 psatz -> 'a1
+ nFormula option
+
+val check_inconsistent :
+ 'a1 -> ('a1 -> 'a1 -> bool) -> ('a1 -> 'a1 -> bool) -> 'a1 nFormula -> bool
+
+val check_normalised_formulas :
+ 'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 ->
+ bool) -> ('a1 -> 'a1 -> bool) -> 'a1 nFormula list -> 'a1 psatz -> bool
+
+type op2 =
+| OpEq
+| OpNEq
+| OpLe
+| OpGe
+| OpLt
+| OpGt
+
+type 't formula = { flhs : 't pExpr; fop : op2; frhs : 't pExpr }
+
+val norm :
+ 'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 ->
+ 'a1) -> ('a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 pExpr -> 'a1 pol
+
+val psub0 :
+ 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1) -> ('a1
+ -> 'a1 -> bool) -> 'a1 pol -> 'a1 pol -> 'a1 pol
+
+val padd0 :
+ 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 pol -> 'a1 pol ->
+ 'a1 pol
+
+val xnormalise :
+ 'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 ->
+ 'a1) -> ('a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 formula -> 'a1 nFormula
+ list
+
+val cnf_normalise :
+ 'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 ->
+ 'a1) -> ('a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 formula -> 'a1 nFormula
+ cnf
+
+val xnegate :
+ 'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 ->
+ 'a1) -> ('a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 formula -> 'a1 nFormula
+ list
+
+val cnf_negate :
+ 'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 ->
+ 'a1) -> ('a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 formula -> 'a1 nFormula
+ cnf
+
+val xdenorm : positive -> 'a1 pol -> 'a1 pExpr
+
+val denorm : 'a1 pol -> 'a1 pExpr
+
+val map_PExpr : ('a2 -> 'a1) -> 'a2 pExpr -> 'a1 pExpr
+
+val map_Formula : ('a2 -> 'a1) -> 'a2 formula -> 'a1 formula
+
+val simpl_cone :
+ 'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 psatz ->
+ 'a1 psatz
+
+type q = { qnum : z; qden : positive }
+
+val qnum : q -> z
+
+val qden : q -> positive
+
+val qeq_bool : q -> q -> bool
+
+val qle_bool : q -> q -> bool
+
+val qplus : q -> q -> q
+
+val qmult : q -> q -> q
+
+val qopp : q -> q
+
+val qminus : q -> q -> q
+
+val qinv : q -> q
+
+val qpower_positive : q -> positive -> q
+
+val qpower : q -> z -> q
+
+type 'a t =
+| Empty
+| Leaf of 'a
+| Node of 'a t * 'a * 'a t
+
+val find : 'a1 -> 'a1 t -> positive -> 'a1
+
+val singleton : 'a1 -> positive -> 'a1 -> 'a1 t
+
+val vm_add : 'a1 -> positive -> 'a1 -> 'a1 t -> 'a1 t
+
+type zWitness = z psatz
+
+val zWeakChecker : z nFormula list -> z psatz -> bool
+
+val psub1 : z pol -> z pol -> z pol
+
+val padd1 : z pol -> z pol -> z pol
+
+val norm0 : z pExpr -> z pol
+
+val xnormalise0 : z formula -> z nFormula list
+
+val normalise : z formula -> z nFormula cnf
+
+val xnegate0 : z formula -> z nFormula list
+
+val negate : z formula -> z nFormula cnf
+
+val zunsat : z nFormula -> bool
+
+val zdeduce : z nFormula -> z nFormula -> z nFormula option
+
+val ceiling : z -> z -> z
+
+type zArithProof =
+| DoneProof
+| RatProof of zWitness * zArithProof
+| CutProof of zWitness * zArithProof
+| EnumProof of zWitness * zWitness * zArithProof list
+
+val zgcdM : z -> z -> z
+
+val zgcd_pol : z polC -> z * z
+
+val zdiv_pol : z polC -> z -> z polC
+
+val makeCuttingPlane : z polC -> z polC * z
+
+val genCuttingPlane : z nFormula -> ((z polC * z) * op1) option
+
+val nformula_of_cutting_plane : ((z polC * z) * op1) -> z nFormula
+
+val is_pol_Z0 : z polC -> bool
+
+val eval_Psatz0 : z nFormula list -> zWitness -> z nFormula option
+
+val valid_cut_sign : op1 -> bool
+
+val zChecker : z nFormula list -> zArithProof -> bool
+
+val zTautoChecker : z formula bFormula -> zArithProof list -> bool
+
+type qWitness = q psatz
+
+val qWeakChecker : q nFormula list -> q psatz -> bool
+
+val qnormalise : q formula -> q nFormula cnf
+
+val qnegate : q formula -> q nFormula cnf
+
+val qunsat : q nFormula -> bool
+
+val qdeduce : q nFormula -> q nFormula -> q nFormula option
+
+val qTautoChecker : q formula bFormula -> qWitness list -> bool
+
+type rcst =
+| C0
+| C1
+| CQ of q
+| CZ of z
+| CPlus of rcst * rcst
+| CMinus of rcst * rcst
+| CMult of rcst * rcst
+| CInv of rcst
+| COpp of rcst
+
+val q_of_Rcst : rcst -> q
+
+type rWitness = q psatz
+
+val rWeakChecker : q nFormula list -> q psatz -> bool
+
+val rnormalise : q formula -> q nFormula cnf
+
+val rnegate : q formula -> q nFormula cnf
+
+val runsat : q nFormula -> bool
+
+val rdeduce : q nFormula -> q nFormula -> q nFormula option
+
+val rTautoChecker : rcst formula bFormula -> rWitness list -> bool