diff options
-rw-r--r-- | .gitignore | 4 | ||||
-rw-r--r-- | Makefile.build | 2 | ||||
-rw-r--r-- | plugins/micromega/MExtraction.v | 2 | ||||
-rw-r--r-- | plugins/micromega/micromega.ml | 1773 | ||||
-rw-r--r-- | plugins/micromega/micromega.mli | 517 |
5 files changed, 2292 insertions, 6 deletions
diff --git a/.gitignore b/.gitignore index fa83045e7..f66e8dcd8 100644 --- a/.gitignore +++ b/.gitignore @@ -179,9 +179,5 @@ user-contrib test-suite/.lia.cache test-suite/.nra.cache -# these files are generated from plugins/micromega/MExtraction.v -plugins/micromega/micromega.ml -plugins/micromega/micromega.mli - plugins/ssr/ssrparser.ml plugins/ssr/ssrvernac.ml diff --git a/Makefile.build b/Makefile.build index 2b0ef7aac..6e048ce94 100644 --- a/Makefile.build +++ b/Makefile.build @@ -95,7 +95,7 @@ plugins/micromega/certificate.cmx plugins/micromega/coq_micromega.cmx plugins/mi plugins/micromega/micromega.cmx plugins/micromega/micromega.cmo : plugins/micromega/micromega.cmi plugins/micromega/micromega.cmi : plugins/micromega/micromega.mli -plugins/micromega/micromega.mli plugins/micromega/micromega.ml : plugins/micromega/MExtraction.vo +plugins/micromega/generated_micromega.mli plugins/micromega/generated_micromega.ml : plugins/micromega/MExtraction.vo @: ########################################################################### diff --git a/plugins/micromega/MExtraction.v b/plugins/micromega/MExtraction.v index 4d5c3b1d5..2451aeada 100644 --- a/plugins/micromega/MExtraction.v +++ b/plugins/micromega/MExtraction.v @@ -48,7 +48,7 @@ Extract Constant Rmult => "( * )". Extract Constant Ropp => "fun x -> - x". Extract Constant Rinv => "fun x -> 1 / x". -Extraction "plugins/micromega/micromega.ml" +Extraction "plugins/micromega/generated_micromega.ml" List.map simpl_cone (*map_cone indexes*) denorm Qpower vm_add n_of_Z N.of_nat ZTautoChecker ZWeakChecker QTautoChecker RTautoChecker find. diff --git a/plugins/micromega/micromega.ml b/plugins/micromega/micromega.ml new file mode 100644 index 000000000..7da4a3b82 --- /dev/null +++ b/plugins/micromega/micromega.ml @@ -0,0 +1,1773 @@ + +(** val negb : bool -> bool **) + +let negb = function +| true -> false +| false -> true + +type nat = +| O +| S of nat + +(** val app : 'a1 list -> 'a1 list -> 'a1 list **) + +let rec app l m = + match l with + | [] -> m + | a::l1 -> a::(app l1 m) + +type comparison = +| Eq +| Lt +| Gt + +(** val compOpp : comparison -> comparison **) + +let compOpp = function +| Eq -> Eq +| Lt -> Gt +| Gt -> Lt + +module Coq__1 = struct + (** val add : nat -> nat -> nat **) + let rec add n0 m = + match n0 with + | O -> m + | S p -> S (add p m) +end +include Coq__1 + +type positive = +| XI of positive +| XO of positive +| XH + +type n = +| N0 +| Npos of positive + +type z = +| Z0 +| Zpos of positive +| Zneg of positive + +module Pos = + struct + type mask = + | IsNul + | IsPos of positive + | IsNeg + end + +module Coq_Pos = + struct + (** val succ : positive -> positive **) + + let rec succ = function + | XI p -> XO (succ p) + | XO p -> XI p + | XH -> XO XH + + (** val add : positive -> positive -> positive **) + + let rec add x y = + match x with + | XI p -> + (match y with + | XI q0 -> XO (add_carry p q0) + | XO q0 -> XI (add p q0) + | XH -> XO (succ p)) + | XO p -> + (match y with + | XI q0 -> XI (add p q0) + | XO q0 -> XO (add p q0) + | XH -> XI p) + | XH -> (match y with + | XI q0 -> XO (succ q0) + | XO q0 -> XI q0 + | XH -> XO XH) + + (** val add_carry : positive -> positive -> positive **) + + and add_carry x y = + match x with + | XI p -> + (match y with + | XI q0 -> XI (add_carry p q0) + | XO q0 -> XO (add_carry p q0) + | XH -> XI (succ p)) + | XO p -> + (match y with + | XI q0 -> XO (add_carry p q0) + | XO q0 -> XI (add p q0) + | XH -> XO (succ p)) + | XH -> + (match y with + | XI q0 -> XI (succ q0) + | XO q0 -> XO (succ q0) + | XH -> XI XH) + + (** val pred_double : positive -> positive **) + + let rec pred_double = function + | XI p -> XI (XO p) + | XO p -> XI (pred_double p) + | XH -> XH + + type mask = Pos.mask = + | IsNul + | IsPos of positive + | IsNeg + + (** val succ_double_mask : mask -> mask **) + + let succ_double_mask = function + | IsNul -> IsPos XH + | IsPos p -> IsPos (XI p) + | IsNeg -> IsNeg + + (** val double_mask : mask -> mask **) + + let double_mask = function + | IsPos p -> IsPos (XO p) + | x0 -> x0 + + (** val double_pred_mask : positive -> mask **) + + let double_pred_mask = function + | XI p -> IsPos (XO (XO p)) + | XO p -> IsPos (XO (pred_double p)) + | XH -> IsNul + + (** val sub_mask : positive -> positive -> mask **) + + let rec sub_mask x y = + match x with + | XI p -> + (match y with + | XI q0 -> double_mask (sub_mask p q0) + | XO q0 -> succ_double_mask (sub_mask p q0) + | XH -> IsPos (XO p)) + | XO p -> + (match y with + | XI q0 -> succ_double_mask (sub_mask_carry p q0) + | XO q0 -> double_mask (sub_mask p q0) + | XH -> IsPos (pred_double p)) + | XH -> (match y with + | XH -> IsNul + | _ -> IsNeg) + + (** val sub_mask_carry : positive -> positive -> mask **) + + and sub_mask_carry x y = + match x with + | XI p -> + (match y with + | XI q0 -> succ_double_mask (sub_mask_carry p q0) + | XO q0 -> double_mask (sub_mask p q0) + | XH -> IsPos (pred_double p)) + | XO p -> + (match y with + | XI q0 -> double_mask (sub_mask_carry p q0) + | XO q0 -> succ_double_mask (sub_mask_carry p q0) + | XH -> double_pred_mask p) + | XH -> IsNeg + + (** val sub : positive -> positive -> positive **) + + let sub x y = + match sub_mask x y with + | IsPos z0 -> z0 + | _ -> XH + + (** val mul : positive -> positive -> positive **) + + let rec mul x y = + match x with + | XI p -> add y (XO (mul p y)) + | XO p -> XO (mul p y) + | XH -> y + + (** val size_nat : positive -> nat **) + + let rec size_nat = function + | XI p2 -> S (size_nat p2) + | XO p2 -> S (size_nat p2) + | XH -> S O + + (** val compare_cont : comparison -> positive -> positive -> comparison **) + + let rec compare_cont r x y = + match x with + | XI p -> + (match y with + | XI q0 -> compare_cont r p q0 + | XO q0 -> compare_cont Gt p q0 + | XH -> Gt) + | XO p -> + (match y with + | XI q0 -> compare_cont Lt p q0 + | XO q0 -> compare_cont r p q0 + | XH -> Gt) + | XH -> (match y with + | XH -> r + | _ -> Lt) + + (** val compare : positive -> positive -> comparison **) + + let compare = + compare_cont Eq + + (** val gcdn : nat -> positive -> positive -> positive **) + + let rec gcdn n0 a b = + match n0 with + | O -> XH + | S n1 -> + (match a with + | XI a' -> + (match b with + | XI b' -> + (match compare a' b' with + | Eq -> a + | Lt -> gcdn n1 (sub b' a') a + | Gt -> gcdn n1 (sub a' b') b) + | XO b0 -> gcdn n1 a b0 + | XH -> XH) + | XO a0 -> + (match b with + | XI _ -> gcdn n1 a0 b + | XO b0 -> XO (gcdn n1 a0 b0) + | XH -> XH) + | XH -> XH) + + (** val gcd : positive -> positive -> positive **) + + let gcd a b = + gcdn (Coq__1.add (size_nat a) (size_nat b)) a b + + (** val of_succ_nat : nat -> positive **) + + let rec of_succ_nat = function + | O -> XH + | S x -> succ (of_succ_nat x) + end + +module N = + struct + (** val of_nat : nat -> n **) + + let of_nat = function + | O -> N0 + | S n' -> Npos (Coq_Pos.of_succ_nat n') + end + +(** val pow_pos : ('a1 -> 'a1 -> 'a1) -> 'a1 -> positive -> 'a1 **) + +let rec pow_pos rmul x = function +| XI i0 -> let p = pow_pos rmul x i0 in rmul x (rmul p p) +| XO i0 -> let p = pow_pos rmul x i0 in rmul p p +| XH -> x + +(** val nth : nat -> 'a1 list -> 'a1 -> 'a1 **) + +let rec nth n0 l default = + match n0 with + | O -> (match l with + | [] -> default + | x::_ -> x) + | S m -> (match l with + | [] -> default + | _::t0 -> nth m t0 default) + +(** val map : ('a1 -> 'a2) -> 'a1 list -> 'a2 list **) + +let rec map f = function +| [] -> [] +| a::t0 -> (f a)::(map f t0) + +(** val fold_right : ('a2 -> 'a1 -> 'a1) -> 'a1 -> 'a2 list -> 'a1 **) + +let rec fold_right f a0 = function +| [] -> a0 +| b::t0 -> f b (fold_right f a0 t0) + +module Z = + struct + (** val double : z -> z **) + + let double = function + | Z0 -> Z0 + | Zpos p -> Zpos (XO p) + | Zneg p -> Zneg (XO p) + + (** val succ_double : z -> z **) + + let succ_double = function + | Z0 -> Zpos XH + | Zpos p -> Zpos (XI p) + | Zneg p -> Zneg (Coq_Pos.pred_double p) + + (** val pred_double : z -> z **) + + let pred_double = function + | Z0 -> Zneg XH + | Zpos p -> Zpos (Coq_Pos.pred_double p) + | Zneg p -> Zneg (XI p) + + (** val pos_sub : positive -> positive -> z **) + + let rec pos_sub x y = + match x with + | XI p -> + (match y with + | XI q0 -> double (pos_sub p q0) + | XO q0 -> succ_double (pos_sub p q0) + | XH -> Zpos (XO p)) + | XO p -> + (match y with + | XI q0 -> pred_double (pos_sub p q0) + | XO q0 -> double (pos_sub p q0) + | XH -> Zpos (Coq_Pos.pred_double p)) + | XH -> + (match y with + | XI q0 -> Zneg (XO q0) + | XO q0 -> Zneg (Coq_Pos.pred_double q0) + | XH -> Z0) + + (** val add : z -> z -> z **) + + let add x y = + match x with + | Z0 -> y + | Zpos x' -> + (match y with + | Z0 -> x + | Zpos y' -> Zpos (Coq_Pos.add x' y') + | Zneg y' -> pos_sub x' y') + | Zneg x' -> + (match y with + | Z0 -> x + | Zpos y' -> pos_sub y' x' + | Zneg y' -> Zneg (Coq_Pos.add x' y')) + + (** val opp : z -> z **) + + let opp = function + | Z0 -> Z0 + | Zpos x0 -> Zneg x0 + | Zneg x0 -> Zpos x0 + + (** val sub : z -> z -> z **) + + let sub m n0 = + add m (opp n0) + + (** val mul : z -> z -> z **) + + let mul x y = + match x with + | Z0 -> Z0 + | Zpos x' -> + (match y with + | Z0 -> Z0 + | Zpos y' -> Zpos (Coq_Pos.mul x' y') + | Zneg y' -> Zneg (Coq_Pos.mul x' y')) + | Zneg x' -> + (match y with + | Z0 -> Z0 + | Zpos y' -> Zneg (Coq_Pos.mul x' y') + | Zneg y' -> Zpos (Coq_Pos.mul x' y')) + + (** val compare : z -> z -> comparison **) + + let compare x y = + match x with + | Z0 -> (match y with + | Z0 -> Eq + | Zpos _ -> Lt + | Zneg _ -> Gt) + | Zpos x' -> (match y with + | Zpos y' -> Coq_Pos.compare x' y' + | _ -> Gt) + | Zneg x' -> + (match y with + | Zneg y' -> compOpp (Coq_Pos.compare x' y') + | _ -> Lt) + + (** val leb : z -> z -> bool **) + + let leb x y = + match compare x y with + | Gt -> false + | _ -> true + + (** val ltb : z -> z -> bool **) + + let ltb x y = + match compare x y with + | Lt -> true + | _ -> false + + (** val gtb : z -> z -> bool **) + + let gtb x y = + match compare x y with + | Gt -> true + | _ -> false + + (** val max : z -> z -> z **) + + let max n0 m = + match compare n0 m with + | Lt -> m + | _ -> n0 + + (** val abs : z -> z **) + + let abs = function + | Zneg p -> Zpos p + | x -> x + + (** val to_N : z -> n **) + + let to_N = function + | Zpos p -> Npos p + | _ -> N0 + + (** val pos_div_eucl : positive -> z -> z * z **) + + let rec pos_div_eucl a b = + match a with + | XI a' -> + let q0,r = pos_div_eucl a' b in + let r' = add (mul (Zpos (XO XH)) r) (Zpos XH) in + if ltb r' b + then (mul (Zpos (XO XH)) q0),r' + else (add (mul (Zpos (XO XH)) q0) (Zpos XH)),(sub r' b) + | XO a' -> + let q0,r = pos_div_eucl a' b in + let r' = mul (Zpos (XO XH)) r in + if ltb r' b + then (mul (Zpos (XO XH)) q0),r' + else (add (mul (Zpos (XO XH)) q0) (Zpos XH)),(sub r' b) + | XH -> if leb (Zpos (XO XH)) b then Z0,(Zpos XH) else (Zpos XH),Z0 + + (** val div_eucl : z -> z -> z * z **) + + let div_eucl a b = + match a with + | Z0 -> Z0,Z0 + | Zpos a' -> + (match b with + | Z0 -> Z0,Z0 + | Zpos _ -> pos_div_eucl a' b + | Zneg b' -> + let q0,r = pos_div_eucl a' (Zpos b') in + (match r with + | Z0 -> (opp q0),Z0 + | _ -> (opp (add q0 (Zpos XH))),(add b r))) + | Zneg a' -> + (match b with + | Z0 -> Z0,Z0 + | Zpos _ -> + let q0,r = pos_div_eucl a' b in + (match r with + | Z0 -> (opp q0),Z0 + | _ -> (opp (add q0 (Zpos XH))),(sub b r)) + | Zneg b' -> let q0,r = pos_div_eucl a' (Zpos b') in q0,(opp r)) + + (** val div : z -> z -> z **) + + let div a b = + let q0,_ = div_eucl a b in q0 + + (** val gcd : z -> z -> z **) + + let gcd a b = + match a with + | Z0 -> abs b + | Zpos a0 -> + (match b with + | Z0 -> abs a + | Zpos b0 -> Zpos (Coq_Pos.gcd a0 b0) + | Zneg b0 -> Zpos (Coq_Pos.gcd a0 b0)) + | Zneg a0 -> + (match b with + | Z0 -> abs a + | Zpos b0 -> Zpos (Coq_Pos.gcd a0 b0) + | Zneg b0 -> Zpos (Coq_Pos.gcd a0 b0)) + end + +(** val zeq_bool : z -> z -> bool **) + +let zeq_bool x y = + match Z.compare x y with + | Eq -> true + | _ -> false + +type 'c pol = +| Pc of 'c +| Pinj of positive * 'c pol +| PX of 'c pol * positive * 'c pol + +(** val p0 : 'a1 -> 'a1 pol **) + +let p0 cO = + Pc cO + +(** val p1 : 'a1 -> 'a1 pol **) + +let p1 cI = + Pc cI + +(** val peq : ('a1 -> 'a1 -> bool) -> 'a1 pol -> 'a1 pol -> bool **) + +let rec peq ceqb p p' = + match p with + | Pc c -> (match p' with + | Pc c' -> ceqb c c' + | _ -> false) + | Pinj (j, q0) -> + (match p' with + | Pinj (j', q') -> + (match Coq_Pos.compare j j' with + | Eq -> peq ceqb q0 q' + | _ -> false) + | _ -> false) + | PX (p2, i, q0) -> + (match p' with + | PX (p'0, i', q') -> + (match Coq_Pos.compare i i' with + | Eq -> if peq ceqb p2 p'0 then peq ceqb q0 q' else false + | _ -> false) + | _ -> false) + +(** val mkPinj : positive -> 'a1 pol -> 'a1 pol **) + +let mkPinj j p = match p with +| Pc _ -> p +| Pinj (j', q0) -> Pinj ((Coq_Pos.add j j'), q0) +| PX (_, _, _) -> Pinj (j, p) + +(** val mkPinj_pred : positive -> 'a1 pol -> 'a1 pol **) + +let mkPinj_pred j p = + match j with + | XI j0 -> Pinj ((XO j0), p) + | XO j0 -> Pinj ((Coq_Pos.pred_double j0), p) + | XH -> p + +(** val mkPX : + 'a1 -> ('a1 -> 'a1 -> bool) -> 'a1 pol -> positive -> 'a1 pol -> 'a1 pol **) + +let mkPX cO ceqb p i q0 = + match p with + | Pc c -> if ceqb c cO then mkPinj XH q0 else PX (p, i, q0) + | Pinj (_, _) -> PX (p, i, q0) + | PX (p', i', q') -> + if peq ceqb q' (p0 cO) + then PX (p', (Coq_Pos.add i' i), q0) + else PX (p, i, q0) + +(** val mkXi : 'a1 -> 'a1 -> positive -> 'a1 pol **) + +let mkXi cO cI i = + PX ((p1 cI), i, (p0 cO)) + +(** val mkX : 'a1 -> 'a1 -> 'a1 pol **) + +let mkX cO cI = + mkXi cO cI XH + +(** val popp : ('a1 -> 'a1) -> 'a1 pol -> 'a1 pol **) + +let rec popp copp = function +| Pc c -> Pc (copp c) +| Pinj (j, q0) -> Pinj (j, (popp copp q0)) +| PX (p2, i, q0) -> PX ((popp copp p2), i, (popp copp q0)) + +(** val paddC : ('a1 -> 'a1 -> 'a1) -> 'a1 pol -> 'a1 -> 'a1 pol **) + +let rec paddC cadd p c = + match p with + | Pc c1 -> Pc (cadd c1 c) + | Pinj (j, q0) -> Pinj (j, (paddC cadd q0 c)) + | PX (p2, i, q0) -> PX (p2, i, (paddC cadd q0 c)) + +(** val psubC : ('a1 -> 'a1 -> 'a1) -> 'a1 pol -> 'a1 -> 'a1 pol **) + +let rec psubC csub p c = + match p with + | Pc c1 -> Pc (csub c1 c) + | Pinj (j, q0) -> Pinj (j, (psubC csub q0 c)) + | PX (p2, i, q0) -> PX (p2, i, (psubC csub q0 c)) + +(** val paddI : + ('a1 -> 'a1 -> 'a1) -> ('a1 pol -> 'a1 pol -> 'a1 pol) -> 'a1 pol -> + positive -> 'a1 pol -> 'a1 pol **) + +let rec paddI cadd pop q0 j = function +| Pc c -> mkPinj j (paddC cadd q0 c) +| Pinj (j', q') -> + (match Z.pos_sub j' j with + | Z0 -> mkPinj j (pop q' q0) + | Zpos k -> mkPinj j (pop (Pinj (k, q')) q0) + | Zneg k -> mkPinj j' (paddI cadd pop q0 k q')) +| PX (p2, i, q') -> + (match j with + | XI j0 -> PX (p2, i, (paddI cadd pop q0 (XO j0) q')) + | XO j0 -> PX (p2, i, (paddI cadd pop q0 (Coq_Pos.pred_double j0) q')) + | XH -> PX (p2, i, (pop q' q0))) + +(** val psubI : + ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1) -> ('a1 pol -> 'a1 pol -> 'a1 pol) -> + 'a1 pol -> positive -> 'a1 pol -> 'a1 pol **) + +let rec psubI cadd copp pop q0 j = function +| Pc c -> mkPinj j (paddC cadd (popp copp q0) c) +| Pinj (j', q') -> + (match Z.pos_sub j' j with + | Z0 -> mkPinj j (pop q' q0) + | Zpos k -> mkPinj j (pop (Pinj (k, q')) q0) + | Zneg k -> mkPinj j' (psubI cadd copp pop q0 k q')) +| PX (p2, i, q') -> + (match j with + | XI j0 -> PX (p2, i, (psubI cadd copp pop q0 (XO j0) q')) + | XO j0 -> PX (p2, i, (psubI cadd copp pop q0 (Coq_Pos.pred_double j0) q')) + | XH -> PX (p2, i, (pop q' q0))) + +(** val paddX : + 'a1 -> ('a1 -> 'a1 -> bool) -> ('a1 pol -> 'a1 pol -> 'a1 pol) -> 'a1 pol + -> positive -> 'a1 pol -> 'a1 pol **) + +let rec paddX cO ceqb pop p' i' p = match p with +| Pc _ -> PX (p', i', p) +| Pinj (j, q') -> + (match j with + | XI j0 -> PX (p', i', (Pinj ((XO j0), q'))) + | XO j0 -> PX (p', i', (Pinj ((Coq_Pos.pred_double j0), q'))) + | XH -> PX (p', i', q')) +| PX (p2, i, q') -> + (match Z.pos_sub i i' with + | Z0 -> mkPX cO ceqb (pop p2 p') i q' + | Zpos k -> mkPX cO ceqb (pop (PX (p2, k, (p0 cO))) p') i' q' + | Zneg k -> mkPX cO ceqb (paddX cO ceqb pop p' k p2) i q') + +(** val psubX : + 'a1 -> ('a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> ('a1 pol -> 'a1 pol -> 'a1 + pol) -> 'a1 pol -> positive -> 'a1 pol -> 'a1 pol **) + +let rec psubX cO copp ceqb pop p' i' p = match p with +| Pc _ -> PX ((popp copp p'), i', p) +| Pinj (j, q') -> + (match j with + | XI j0 -> PX ((popp copp p'), i', (Pinj ((XO j0), q'))) + | XO j0 -> PX ((popp copp p'), i', (Pinj ((Coq_Pos.pred_double j0), q'))) + | XH -> PX ((popp copp p'), i', q')) +| PX (p2, i, q') -> + (match Z.pos_sub i i' with + | Z0 -> mkPX cO ceqb (pop p2 p') i q' + | Zpos k -> mkPX cO ceqb (pop (PX (p2, k, (p0 cO))) p') i' q' + | Zneg k -> mkPX cO ceqb (psubX cO copp ceqb pop p' k p2) i q') + +(** val padd : + 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 pol -> 'a1 pol + -> 'a1 pol **) + +let rec padd cO cadd ceqb p = function +| Pc c' -> paddC cadd p c' +| Pinj (j', q') -> paddI cadd (padd cO cadd ceqb) q' j' p +| PX (p'0, i', q') -> + (match p with + | Pc c -> PX (p'0, i', (paddC cadd q' c)) + | Pinj (j, q0) -> + (match j with + | XI j0 -> PX (p'0, i', (padd cO cadd ceqb (Pinj ((XO j0), q0)) q')) + | XO j0 -> + PX (p'0, i', + (padd cO cadd ceqb (Pinj ((Coq_Pos.pred_double j0), q0)) q')) + | XH -> PX (p'0, i', (padd cO cadd ceqb q0 q'))) + | PX (p2, i, q0) -> + (match Z.pos_sub i i' with + | Z0 -> + mkPX cO ceqb (padd cO cadd ceqb p2 p'0) i (padd cO cadd ceqb q0 q') + | Zpos k -> + mkPX cO ceqb (padd cO cadd ceqb (PX (p2, k, (p0 cO))) p'0) i' + (padd cO cadd ceqb q0 q') + | Zneg k -> + mkPX cO ceqb (paddX cO ceqb (padd cO cadd ceqb) p'0 k p2) i + (padd cO cadd ceqb q0 q'))) + +(** val psub : + 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1) -> ('a1 + -> 'a1 -> bool) -> 'a1 pol -> 'a1 pol -> 'a1 pol **) + +let rec psub cO cadd csub copp ceqb p = function +| Pc c' -> psubC csub p c' +| Pinj (j', q') -> psubI cadd copp (psub cO cadd csub copp ceqb) q' j' p +| PX (p'0, i', q') -> + (match p with + | Pc c -> PX ((popp copp p'0), i', (paddC cadd (popp copp q') c)) + | Pinj (j, q0) -> + (match j with + | XI j0 -> + PX ((popp copp p'0), i', + (psub cO cadd csub copp ceqb (Pinj ((XO j0), q0)) q')) + | XO j0 -> + PX ((popp copp p'0), i', + (psub cO cadd csub copp ceqb (Pinj ((Coq_Pos.pred_double j0), q0)) + q')) + | XH -> PX ((popp copp p'0), i', (psub cO cadd csub copp ceqb q0 q'))) + | PX (p2, i, q0) -> + (match Z.pos_sub i i' with + | Z0 -> + mkPX cO ceqb (psub cO cadd csub copp ceqb p2 p'0) i + (psub cO cadd csub copp ceqb q0 q') + | Zpos k -> + mkPX cO ceqb (psub cO cadd csub copp ceqb (PX (p2, k, (p0 cO))) p'0) + i' (psub cO cadd csub copp ceqb q0 q') + | Zneg k -> + mkPX cO ceqb + (psubX cO copp ceqb (psub cO cadd csub copp ceqb) p'0 k p2) i + (psub cO cadd csub copp ceqb q0 q'))) + +(** val pmulC_aux : + 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 pol -> 'a1 -> + 'a1 pol **) + +let rec pmulC_aux cO cmul ceqb p c = + match p with + | Pc c' -> Pc (cmul c' c) + | Pinj (j, q0) -> mkPinj j (pmulC_aux cO cmul ceqb q0 c) + | PX (p2, i, q0) -> + mkPX cO ceqb (pmulC_aux cO cmul ceqb p2 c) i (pmulC_aux cO cmul ceqb q0 c) + +(** val pmulC : + 'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 pol -> + 'a1 -> 'a1 pol **) + +let pmulC cO cI cmul ceqb p c = + if ceqb c cO + then p0 cO + else if ceqb c cI then p else pmulC_aux cO cmul ceqb p c + +(** val pmulI : + 'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> ('a1 pol -> + 'a1 pol -> 'a1 pol) -> 'a1 pol -> positive -> 'a1 pol -> 'a1 pol **) + +let rec pmulI cO cI cmul ceqb pmul0 q0 j = function +| Pc c -> mkPinj j (pmulC cO cI cmul ceqb q0 c) +| Pinj (j', q') -> + (match Z.pos_sub j' j with + | Z0 -> mkPinj j (pmul0 q' q0) + | Zpos k -> mkPinj j (pmul0 (Pinj (k, q')) q0) + | Zneg k -> mkPinj j' (pmulI cO cI cmul ceqb pmul0 q0 k q')) +| PX (p', i', q') -> + (match j with + | XI j' -> + mkPX cO ceqb (pmulI cO cI cmul ceqb pmul0 q0 j p') i' + (pmulI cO cI cmul ceqb pmul0 q0 (XO j') q') + | XO j' -> + mkPX cO ceqb (pmulI cO cI cmul ceqb pmul0 q0 j p') i' + (pmulI cO cI cmul ceqb pmul0 q0 (Coq_Pos.pred_double j') q') + | XH -> + mkPX cO ceqb (pmulI cO cI cmul ceqb pmul0 q0 XH p') i' (pmul0 q' q0)) + +(** val pmul : + 'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 + -> bool) -> 'a1 pol -> 'a1 pol -> 'a1 pol **) + +let rec pmul cO cI cadd cmul ceqb p p'' = match p'' with +| Pc c -> pmulC cO cI cmul ceqb p c +| Pinj (j', q') -> pmulI cO cI cmul ceqb (pmul cO cI cadd cmul ceqb) q' j' p +| PX (p', i', q') -> + (match p with + | Pc c -> pmulC cO cI cmul ceqb p'' c + | Pinj (j, q0) -> + let qQ' = + match j with + | XI j0 -> pmul cO cI cadd cmul ceqb (Pinj ((XO j0), q0)) q' + | XO j0 -> + pmul cO cI cadd cmul ceqb (Pinj ((Coq_Pos.pred_double j0), q0)) q' + | XH -> pmul cO cI cadd cmul ceqb q0 q' + in + mkPX cO ceqb (pmul cO cI cadd cmul ceqb p p') i' qQ' + | PX (p2, i, q0) -> + let qQ' = pmul cO cI cadd cmul ceqb q0 q' in + let pQ' = pmulI cO cI cmul ceqb (pmul cO cI cadd cmul ceqb) q' XH p2 in + let qP' = pmul cO cI cadd cmul ceqb (mkPinj XH q0) p' in + let pP' = pmul cO cI cadd cmul ceqb p2 p' in + padd cO cadd ceqb + (mkPX cO ceqb (padd cO cadd ceqb (mkPX cO ceqb pP' i (p0 cO)) qP') i' + (p0 cO)) (mkPX cO ceqb pQ' i qQ')) + +(** val psquare : + 'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 + -> bool) -> 'a1 pol -> 'a1 pol **) + +let rec psquare cO cI cadd cmul ceqb = function +| Pc c -> Pc (cmul c c) +| Pinj (j, q0) -> Pinj (j, (psquare cO cI cadd cmul ceqb q0)) +| PX (p2, i, q0) -> + let twoPQ = + pmul cO cI cadd cmul ceqb p2 + (mkPinj XH (pmulC cO cI cmul ceqb q0 (cadd cI cI))) + in + let q2 = psquare cO cI cadd cmul ceqb q0 in + let p3 = psquare cO cI cadd cmul ceqb p2 in + mkPX cO ceqb (padd cO cadd ceqb (mkPX cO ceqb p3 i (p0 cO)) twoPQ) i q2 + +type 'c pExpr = +| PEc of 'c +| PEX of positive +| PEadd of 'c pExpr * 'c pExpr +| PEsub of 'c pExpr * 'c pExpr +| PEmul of 'c pExpr * 'c pExpr +| PEopp of 'c pExpr +| PEpow of 'c pExpr * n + +(** val mk_X : 'a1 -> 'a1 -> positive -> 'a1 pol **) + +let mk_X cO cI j = + mkPinj_pred j (mkX cO cI) + +(** val ppow_pos : + 'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 + -> bool) -> ('a1 pol -> 'a1 pol) -> 'a1 pol -> 'a1 pol -> positive -> 'a1 + pol **) + +let rec ppow_pos cO cI cadd cmul ceqb subst_l res p = function +| XI p3 -> + subst_l + (pmul cO cI cadd cmul ceqb + (ppow_pos cO cI cadd cmul ceqb subst_l + (ppow_pos cO cI cadd cmul ceqb subst_l res p p3) p p3) p) +| XO p3 -> + ppow_pos cO cI cadd cmul ceqb subst_l + (ppow_pos cO cI cadd cmul ceqb subst_l res p p3) p p3 +| XH -> subst_l (pmul cO cI cadd cmul ceqb res p) + +(** val ppow_N : + 'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 + -> bool) -> ('a1 pol -> 'a1 pol) -> 'a1 pol -> n -> 'a1 pol **) + +let ppow_N cO cI cadd cmul ceqb subst_l p = function +| N0 -> p1 cI +| Npos p2 -> ppow_pos cO cI cadd cmul ceqb subst_l (p1 cI) p p2 + +(** val norm_aux : + 'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 + -> 'a1) -> ('a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 pExpr -> 'a1 pol **) + +let rec norm_aux cO cI cadd cmul csub copp ceqb = function +| PEc c -> Pc c +| PEX j -> mk_X cO cI j +| PEadd (pe1, pe2) -> + (match pe1 with + | PEopp pe3 -> + psub cO cadd csub copp ceqb + (norm_aux cO cI cadd cmul csub copp ceqb pe2) + (norm_aux cO cI cadd cmul csub copp ceqb pe3) + | _ -> + (match pe2 with + | PEopp pe3 -> + psub cO cadd csub copp ceqb + (norm_aux cO cI cadd cmul csub copp ceqb pe1) + (norm_aux cO cI cadd cmul csub copp ceqb pe3) + | _ -> + padd cO cadd ceqb (norm_aux cO cI cadd cmul csub copp ceqb pe1) + (norm_aux cO cI cadd cmul csub copp ceqb pe2))) +| PEsub (pe1, pe2) -> + psub cO cadd csub copp ceqb (norm_aux cO cI cadd cmul csub copp ceqb pe1) + (norm_aux cO cI cadd cmul csub copp ceqb pe2) +| PEmul (pe1, pe2) -> + pmul cO cI cadd cmul ceqb (norm_aux cO cI cadd cmul csub copp ceqb pe1) + (norm_aux cO cI cadd cmul csub copp ceqb pe2) +| PEopp pe1 -> popp copp (norm_aux cO cI cadd cmul csub copp ceqb pe1) +| PEpow (pe1, n0) -> + ppow_N cO cI cadd cmul ceqb (fun p -> p) + (norm_aux cO cI cadd cmul csub copp ceqb pe1) n0 + +type 'a bFormula = +| TT +| FF +| X +| A of 'a +| Cj of 'a bFormula * 'a bFormula +| D of 'a bFormula * 'a bFormula +| N of 'a bFormula +| I of 'a bFormula * 'a bFormula + +(** val map_bformula : ('a1 -> 'a2) -> 'a1 bFormula -> 'a2 bFormula **) + +let rec map_bformula fct = function +| TT -> TT +| FF -> FF +| X -> X +| A a -> A (fct a) +| Cj (f1, f2) -> Cj ((map_bformula fct f1), (map_bformula fct f2)) +| D (f1, f2) -> D ((map_bformula fct f1), (map_bformula fct f2)) +| N f0 -> N (map_bformula fct f0) +| I (f1, f2) -> I ((map_bformula fct f1), (map_bformula fct f2)) + +type 'x clause = 'x list + +type 'x cnf = 'x clause list + +(** val tt : 'a1 cnf **) + +let tt = + [] + +(** val ff : 'a1 cnf **) + +let ff = + []::[] + +(** val add_term : + ('a1 -> bool) -> ('a1 -> 'a1 -> 'a1 option) -> 'a1 -> 'a1 clause -> 'a1 + clause option **) + +let rec add_term unsat deduce t0 = function +| [] -> + (match deduce t0 t0 with + | Some u -> if unsat u then None else Some (t0::[]) + | None -> Some (t0::[])) +| t'::cl0 -> + (match deduce t0 t' with + | Some u -> + if unsat u + then None + else (match add_term unsat deduce t0 cl0 with + | Some cl' -> Some (t'::cl') + | None -> None) + | None -> + (match add_term unsat deduce t0 cl0 with + | Some cl' -> Some (t'::cl') + | None -> None)) + +(** val or_clause : + ('a1 -> bool) -> ('a1 -> 'a1 -> 'a1 option) -> 'a1 clause -> 'a1 clause + -> 'a1 clause option **) + +let rec or_clause unsat deduce cl1 cl2 = + match cl1 with + | [] -> Some cl2 + | t0::cl -> + (match add_term unsat deduce t0 cl2 with + | Some cl' -> or_clause unsat deduce cl cl' + | None -> None) + +(** val or_clause_cnf : + ('a1 -> bool) -> ('a1 -> 'a1 -> 'a1 option) -> 'a1 clause -> 'a1 cnf -> + 'a1 cnf **) + +let or_clause_cnf unsat deduce t0 f = + fold_right (fun e acc -> + match or_clause unsat deduce t0 e with + | Some cl -> cl::acc + | None -> acc) [] f + +(** val or_cnf : + ('a1 -> bool) -> ('a1 -> 'a1 -> 'a1 option) -> 'a1 cnf -> 'a1 cnf -> 'a1 + cnf **) + +let rec or_cnf unsat deduce f f' = + match f with + | [] -> tt + | e::rst -> + app (or_cnf unsat deduce rst f') (or_clause_cnf unsat deduce e f') + +(** val and_cnf : 'a1 cnf -> 'a1 cnf -> 'a1 cnf **) + +let and_cnf f1 f2 = + app f1 f2 + +(** val xcnf : + ('a2 -> bool) -> ('a2 -> 'a2 -> 'a2 option) -> ('a1 -> 'a2 cnf) -> ('a1 + -> 'a2 cnf) -> bool -> 'a1 bFormula -> 'a2 cnf **) + +let rec xcnf unsat deduce normalise0 negate0 pol0 = function +| TT -> if pol0 then tt else ff +| FF -> if pol0 then ff else tt +| X -> ff +| A x -> if pol0 then normalise0 x else negate0 x +| Cj (e1, e2) -> + if pol0 + then and_cnf (xcnf unsat deduce normalise0 negate0 pol0 e1) + (xcnf unsat deduce normalise0 negate0 pol0 e2) + else or_cnf unsat deduce (xcnf unsat deduce normalise0 negate0 pol0 e1) + (xcnf unsat deduce normalise0 negate0 pol0 e2) +| D (e1, e2) -> + if pol0 + then or_cnf unsat deduce (xcnf unsat deduce normalise0 negate0 pol0 e1) + (xcnf unsat deduce normalise0 negate0 pol0 e2) + else and_cnf (xcnf unsat deduce normalise0 negate0 pol0 e1) + (xcnf unsat deduce normalise0 negate0 pol0 e2) +| N e -> xcnf unsat deduce normalise0 negate0 (negb pol0) e +| I (e1, e2) -> + if pol0 + then or_cnf unsat deduce + (xcnf unsat deduce normalise0 negate0 (negb pol0) e1) + (xcnf unsat deduce normalise0 negate0 pol0 e2) + else and_cnf (xcnf unsat deduce normalise0 negate0 (negb pol0) e1) + (xcnf unsat deduce normalise0 negate0 pol0 e2) + +(** val cnf_checker : + ('a1 list -> 'a2 -> bool) -> 'a1 cnf -> 'a2 list -> bool **) + +let rec cnf_checker checker f l = + match f with + | [] -> true + | e::f0 -> + (match l with + | [] -> false + | c::l0 -> if checker e c then cnf_checker checker f0 l0 else false) + +(** val tauto_checker : + ('a2 -> bool) -> ('a2 -> 'a2 -> 'a2 option) -> ('a1 -> 'a2 cnf) -> ('a1 + -> 'a2 cnf) -> ('a2 list -> 'a3 -> bool) -> 'a1 bFormula -> 'a3 list -> + bool **) + +let tauto_checker unsat deduce normalise0 negate0 checker f w = + cnf_checker checker (xcnf unsat deduce normalise0 negate0 true f) w + +(** val cneqb : ('a1 -> 'a1 -> bool) -> 'a1 -> 'a1 -> bool **) + +let cneqb ceqb x y = + negb (ceqb x y) + +(** val cltb : + ('a1 -> 'a1 -> bool) -> ('a1 -> 'a1 -> bool) -> 'a1 -> 'a1 -> bool **) + +let cltb ceqb cleb x y = + (&&) (cleb x y) (cneqb ceqb x y) + +type 'c polC = 'c pol + +type op1 = +| Equal +| NonEqual +| Strict +| NonStrict + +type 'c nFormula = 'c polC * op1 + +(** val opMult : op1 -> op1 -> op1 option **) + +let opMult o o' = + match o with + | Equal -> Some Equal + | NonEqual -> + (match o' with + | Equal -> Some Equal + | NonEqual -> Some NonEqual + | _ -> None) + | Strict -> (match o' with + | NonEqual -> None + | _ -> Some o') + | NonStrict -> + (match o' with + | Equal -> Some Equal + | NonEqual -> None + | _ -> Some NonStrict) + +(** val opAdd : op1 -> op1 -> op1 option **) + +let opAdd o o' = + match o with + | Equal -> Some o' + | NonEqual -> (match o' with + | Equal -> Some NonEqual + | _ -> None) + | Strict -> (match o' with + | NonEqual -> None + | _ -> Some Strict) + | NonStrict -> + (match o' with + | Equal -> Some NonStrict + | NonEqual -> None + | x -> Some x) + +type 'c psatz = +| PsatzIn of nat +| PsatzSquare of 'c polC +| PsatzMulC of 'c polC * 'c psatz +| PsatzMulE of 'c psatz * 'c psatz +| PsatzAdd of 'c psatz * 'c psatz +| PsatzC of 'c +| PsatzZ + +(** val map_option : ('a1 -> 'a2 option) -> 'a1 option -> 'a2 option **) + +let map_option f = function +| Some x -> f x +| None -> None + +(** val map_option2 : + ('a1 -> 'a2 -> 'a3 option) -> 'a1 option -> 'a2 option -> 'a3 option **) + +let map_option2 f o o' = + match o with + | Some x -> (match o' with + | Some x' -> f x x' + | None -> None) + | None -> None + +(** val pexpr_times_nformula : + 'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 + -> bool) -> 'a1 polC -> 'a1 nFormula -> 'a1 nFormula option **) + +let pexpr_times_nformula cO cI cplus ctimes ceqb e = function +| ef,o -> + (match o with + | Equal -> Some ((pmul cO cI cplus ctimes ceqb e ef),Equal) + | _ -> None) + +(** val nformula_times_nformula : + 'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 + -> bool) -> 'a1 nFormula -> 'a1 nFormula -> 'a1 nFormula option **) + +let nformula_times_nformula cO cI cplus ctimes ceqb f1 f2 = + let e1,o1 = f1 in + let e2,o2 = f2 in + map_option (fun x -> Some ((pmul cO cI cplus ctimes ceqb e1 e2),x)) + (opMult o1 o2) + +(** val nformula_plus_nformula : + 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 nFormula -> 'a1 + nFormula -> 'a1 nFormula option **) + +let nformula_plus_nformula cO cplus ceqb f1 f2 = + let e1,o1 = f1 in + let e2,o2 = f2 in + map_option (fun x -> Some ((padd cO cplus ceqb e1 e2),x)) (opAdd o1 o2) + +(** val eval_Psatz : + 'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 + -> bool) -> ('a1 -> 'a1 -> bool) -> 'a1 nFormula list -> 'a1 psatz -> 'a1 + nFormula option **) + +let rec eval_Psatz cO cI cplus ctimes ceqb cleb l = function +| PsatzIn n0 -> Some (nth n0 l ((Pc cO),Equal)) +| PsatzSquare e0 -> Some ((psquare cO cI cplus ctimes ceqb e0),NonStrict) +| PsatzMulC (re, e0) -> + map_option (pexpr_times_nformula cO cI cplus ctimes ceqb re) + (eval_Psatz cO cI cplus ctimes ceqb cleb l e0) +| PsatzMulE (f1, f2) -> + map_option2 (nformula_times_nformula cO cI cplus ctimes ceqb) + (eval_Psatz cO cI cplus ctimes ceqb cleb l f1) + (eval_Psatz cO cI cplus ctimes ceqb cleb l f2) +| PsatzAdd (f1, f2) -> + map_option2 (nformula_plus_nformula cO cplus ceqb) + (eval_Psatz cO cI cplus ctimes ceqb cleb l f1) + (eval_Psatz cO cI cplus ctimes ceqb cleb l f2) +| PsatzC c -> if cltb ceqb cleb cO c then Some ((Pc c),Strict) else None +| PsatzZ -> Some ((Pc cO),Equal) + +(** val check_inconsistent : + 'a1 -> ('a1 -> 'a1 -> bool) -> ('a1 -> 'a1 -> bool) -> 'a1 nFormula -> + bool **) + +let check_inconsistent cO ceqb cleb = function +| e,op -> + (match e with + | Pc c -> + (match op with + | Equal -> cneqb ceqb c cO + | NonEqual -> ceqb c cO + | Strict -> cleb c cO + | NonStrict -> cltb ceqb cleb c cO) + | _ -> false) + +(** val check_normalised_formulas : + 'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 + -> bool) -> ('a1 -> 'a1 -> bool) -> 'a1 nFormula list -> 'a1 psatz -> bool **) + +let check_normalised_formulas cO cI cplus ctimes ceqb cleb l cm = + match eval_Psatz cO cI cplus ctimes ceqb cleb l cm with + | Some f -> check_inconsistent cO ceqb cleb f + | None -> false + +type op2 = +| OpEq +| OpNEq +| OpLe +| OpGe +| OpLt +| OpGt + +type 't formula = { flhs : 't pExpr; fop : op2; frhs : 't pExpr } + +(** val norm : + 'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 + -> 'a1) -> ('a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 pExpr -> 'a1 pol **) + +let norm cO cI cplus ctimes cminus copp ceqb = + norm_aux cO cI cplus ctimes cminus copp ceqb + +(** val psub0 : + 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1) -> ('a1 + -> 'a1 -> bool) -> 'a1 pol -> 'a1 pol -> 'a1 pol **) + +let psub0 cO cplus cminus copp ceqb = + psub cO cplus cminus copp ceqb + +(** val padd0 : + 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 pol -> 'a1 pol + -> 'a1 pol **) + +let padd0 cO cplus ceqb = + padd cO cplus ceqb + +(** val xnormalise : + 'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 + -> 'a1) -> ('a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 formula -> 'a1 + nFormula list **) + +let xnormalise cO cI cplus ctimes cminus copp ceqb t0 = + let { flhs = lhs; fop = o; frhs = rhs } = t0 in + let lhs0 = norm cO cI cplus ctimes cminus copp ceqb lhs in + let rhs0 = norm cO cI cplus ctimes cminus copp ceqb rhs in + (match o with + | OpEq -> + ((psub0 cO cplus cminus copp ceqb lhs0 rhs0),Strict)::(((psub0 cO cplus + cminus copp + ceqb rhs0 lhs0),Strict)::[]) + | OpNEq -> ((psub0 cO cplus cminus copp ceqb lhs0 rhs0),Equal)::[] + | OpLe -> ((psub0 cO cplus cminus copp ceqb lhs0 rhs0),Strict)::[] + | OpGe -> ((psub0 cO cplus cminus copp ceqb rhs0 lhs0),Strict)::[] + | OpLt -> ((psub0 cO cplus cminus copp ceqb lhs0 rhs0),NonStrict)::[] + | OpGt -> ((psub0 cO cplus cminus copp ceqb rhs0 lhs0),NonStrict)::[]) + +(** val cnf_normalise : + 'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 + -> 'a1) -> ('a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 formula -> 'a1 + nFormula cnf **) + +let cnf_normalise cO cI cplus ctimes cminus copp ceqb t0 = + map (fun x -> x::[]) (xnormalise cO cI cplus ctimes cminus copp ceqb t0) + +(** val xnegate : + 'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 + -> 'a1) -> ('a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 formula -> 'a1 + nFormula list **) + +let xnegate cO cI cplus ctimes cminus copp ceqb t0 = + let { flhs = lhs; fop = o; frhs = rhs } = t0 in + let lhs0 = norm cO cI cplus ctimes cminus copp ceqb lhs in + let rhs0 = norm cO cI cplus ctimes cminus copp ceqb rhs in + (match o with + | OpEq -> ((psub0 cO cplus cminus copp ceqb lhs0 rhs0),Equal)::[] + | OpNEq -> + ((psub0 cO cplus cminus copp ceqb lhs0 rhs0),Strict)::(((psub0 cO cplus + cminus copp + ceqb rhs0 lhs0),Strict)::[]) + | OpLe -> ((psub0 cO cplus cminus copp ceqb rhs0 lhs0),NonStrict)::[] + | OpGe -> ((psub0 cO cplus cminus copp ceqb lhs0 rhs0),NonStrict)::[] + | OpLt -> ((psub0 cO cplus cminus copp ceqb rhs0 lhs0),Strict)::[] + | OpGt -> ((psub0 cO cplus cminus copp ceqb lhs0 rhs0),Strict)::[]) + +(** val cnf_negate : + 'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 + -> 'a1) -> ('a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 formula -> 'a1 + nFormula cnf **) + +let cnf_negate cO cI cplus ctimes cminus copp ceqb t0 = + map (fun x -> x::[]) (xnegate cO cI cplus ctimes cminus copp ceqb t0) + +(** val xdenorm : positive -> 'a1 pol -> 'a1 pExpr **) + +let rec xdenorm jmp = function +| Pc c -> PEc c +| Pinj (j, p2) -> xdenorm (Coq_Pos.add j jmp) p2 +| PX (p2, j, q0) -> + PEadd ((PEmul ((xdenorm jmp p2), (PEpow ((PEX jmp), (Npos j))))), + (xdenorm (Coq_Pos.succ jmp) q0)) + +(** val denorm : 'a1 pol -> 'a1 pExpr **) + +let denorm p = + xdenorm XH p + +(** val map_PExpr : ('a2 -> 'a1) -> 'a2 pExpr -> 'a1 pExpr **) + +let rec map_PExpr c_of_S = function +| PEc c -> PEc (c_of_S c) +| PEX p -> PEX p +| PEadd (e1, e2) -> PEadd ((map_PExpr c_of_S e1), (map_PExpr c_of_S e2)) +| PEsub (e1, e2) -> PEsub ((map_PExpr c_of_S e1), (map_PExpr c_of_S e2)) +| PEmul (e1, e2) -> PEmul ((map_PExpr c_of_S e1), (map_PExpr c_of_S e2)) +| PEopp e0 -> PEopp (map_PExpr c_of_S e0) +| PEpow (e0, n0) -> PEpow ((map_PExpr c_of_S e0), n0) + +(** val map_Formula : ('a2 -> 'a1) -> 'a2 formula -> 'a1 formula **) + +let map_Formula c_of_S f = + let { flhs = l; fop = o; frhs = r } = f in + { flhs = (map_PExpr c_of_S l); fop = o; frhs = (map_PExpr c_of_S r) } + +(** val simpl_cone : + 'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 psatz -> + 'a1 psatz **) + +let simpl_cone cO cI ctimes ceqb e = match e with +| PsatzSquare t0 -> + (match t0 with + | Pc c -> if ceqb cO c then PsatzZ else PsatzC (ctimes c c) + | _ -> PsatzSquare t0) +| PsatzMulE (t1, t2) -> + (match t1 with + | PsatzMulE (x, x0) -> + (match x with + | PsatzC p2 -> + (match t2 with + | PsatzC c -> PsatzMulE ((PsatzC (ctimes c p2)), x0) + | PsatzZ -> PsatzZ + | _ -> e) + | _ -> + (match x0 with + | PsatzC p2 -> + (match t2 with + | PsatzC c -> PsatzMulE ((PsatzC (ctimes c p2)), x) + | PsatzZ -> PsatzZ + | _ -> e) + | _ -> + (match t2 with + | PsatzC c -> if ceqb cI c then t1 else PsatzMulE (t1, t2) + | PsatzZ -> PsatzZ + | _ -> e))) + | PsatzC c -> + (match t2 with + | PsatzMulE (x, x0) -> + (match x with + | PsatzC p2 -> PsatzMulE ((PsatzC (ctimes c p2)), x0) + | _ -> + (match x0 with + | PsatzC p2 -> PsatzMulE ((PsatzC (ctimes c p2)), x) + | _ -> if ceqb cI c then t2 else PsatzMulE (t1, t2))) + | PsatzAdd (y, z0) -> + PsatzAdd ((PsatzMulE ((PsatzC c), y)), (PsatzMulE ((PsatzC c), z0))) + | PsatzC c0 -> PsatzC (ctimes c c0) + | PsatzZ -> PsatzZ + | _ -> if ceqb cI c then t2 else PsatzMulE (t1, t2)) + | PsatzZ -> PsatzZ + | _ -> + (match t2 with + | PsatzC c -> if ceqb cI c then t1 else PsatzMulE (t1, t2) + | PsatzZ -> PsatzZ + | _ -> e)) +| PsatzAdd (t1, t2) -> + (match t1 with + | PsatzZ -> t2 + | _ -> (match t2 with + | PsatzZ -> t1 + | _ -> PsatzAdd (t1, t2))) +| _ -> e + +type q = { qnum : z; qden : positive } + +(** val qnum : q -> z **) + +let qnum x = x.qnum + +(** val qden : q -> positive **) + +let qden x = x.qden + +(** val qeq_bool : q -> q -> bool **) + +let qeq_bool x y = + zeq_bool (Z.mul x.qnum (Zpos y.qden)) (Z.mul y.qnum (Zpos x.qden)) + +(** val qle_bool : q -> q -> bool **) + +let qle_bool x y = + Z.leb (Z.mul x.qnum (Zpos y.qden)) (Z.mul y.qnum (Zpos x.qden)) + +(** val qplus : q -> q -> q **) + +let qplus x y = + { qnum = (Z.add (Z.mul x.qnum (Zpos y.qden)) (Z.mul y.qnum (Zpos x.qden))); + qden = (Coq_Pos.mul x.qden y.qden) } + +(** val qmult : q -> q -> q **) + +let qmult x y = + { qnum = (Z.mul x.qnum y.qnum); qden = (Coq_Pos.mul x.qden y.qden) } + +(** val qopp : q -> q **) + +let qopp x = + { qnum = (Z.opp x.qnum); qden = x.qden } + +(** val qminus : q -> q -> q **) + +let qminus x y = + qplus x (qopp y) + +(** val qinv : q -> q **) + +let qinv x = + match x.qnum with + | Z0 -> { qnum = Z0; qden = XH } + | Zpos p -> { qnum = (Zpos x.qden); qden = p } + | Zneg p -> { qnum = (Zneg x.qden); qden = p } + +(** val qpower_positive : q -> positive -> q **) + +let qpower_positive = + pow_pos qmult + +(** val qpower : q -> z -> q **) + +let qpower q0 = function +| Z0 -> { qnum = (Zpos XH); qden = XH } +| Zpos p -> qpower_positive q0 p +| Zneg p -> qinv (qpower_positive q0 p) + +type 'a t = +| Empty +| Leaf of 'a +| Node of 'a t * 'a * 'a t + +(** val find : 'a1 -> 'a1 t -> positive -> 'a1 **) + +let rec find default vm p = + match vm with + | Empty -> default + | Leaf i -> i + | Node (l, e, r) -> + (match p with + | XI p2 -> find default r p2 + | XO p2 -> find default l p2 + | XH -> e) + +(** val singleton : 'a1 -> positive -> 'a1 -> 'a1 t **) + +let rec singleton default x v = + match x with + | XI p -> Node (Empty, default, (singleton default p v)) + | XO p -> Node ((singleton default p v), default, Empty) + | XH -> Leaf v + +(** val vm_add : 'a1 -> positive -> 'a1 -> 'a1 t -> 'a1 t **) + +let rec vm_add default x v = function +| Empty -> singleton default x v +| Leaf vl -> + (match x with + | XI p -> Node (Empty, vl, (singleton default p v)) + | XO p -> Node ((singleton default p v), vl, Empty) + | XH -> Leaf v) +| Node (l, o, r) -> + (match x with + | XI p -> Node (l, o, (vm_add default p v r)) + | XO p -> Node ((vm_add default p v l), o, r) + | XH -> Node (l, v, r)) + +type zWitness = z psatz + +(** val zWeakChecker : z nFormula list -> z psatz -> bool **) + +let zWeakChecker = + check_normalised_formulas Z0 (Zpos XH) Z.add Z.mul zeq_bool Z.leb + +(** val psub1 : z pol -> z pol -> z pol **) + +let psub1 = + psub0 Z0 Z.add Z.sub Z.opp zeq_bool + +(** val padd1 : z pol -> z pol -> z pol **) + +let padd1 = + padd0 Z0 Z.add zeq_bool + +(** val norm0 : z pExpr -> z pol **) + +let norm0 = + norm Z0 (Zpos XH) Z.add Z.mul Z.sub Z.opp zeq_bool + +(** val xnormalise0 : z formula -> z nFormula list **) + +let xnormalise0 t0 = + let { flhs = lhs; fop = o; frhs = rhs } = t0 in + let lhs0 = norm0 lhs in + let rhs0 = norm0 rhs in + (match o with + | OpEq -> + ((psub1 lhs0 (padd1 rhs0 (Pc (Zpos XH)))),NonStrict)::(((psub1 rhs0 + (padd1 lhs0 + (Pc (Zpos + XH)))),NonStrict)::[]) + | OpNEq -> ((psub1 lhs0 rhs0),Equal)::[] + | OpLe -> ((psub1 lhs0 (padd1 rhs0 (Pc (Zpos XH)))),NonStrict)::[] + | OpGe -> ((psub1 rhs0 (padd1 lhs0 (Pc (Zpos XH)))),NonStrict)::[] + | OpLt -> ((psub1 lhs0 rhs0),NonStrict)::[] + | OpGt -> ((psub1 rhs0 lhs0),NonStrict)::[]) + +(** val normalise : z formula -> z nFormula cnf **) + +let normalise t0 = + map (fun x -> x::[]) (xnormalise0 t0) + +(** val xnegate0 : z formula -> z nFormula list **) + +let xnegate0 t0 = + let { flhs = lhs; fop = o; frhs = rhs } = t0 in + let lhs0 = norm0 lhs in + let rhs0 = norm0 rhs in + (match o with + | OpEq -> ((psub1 lhs0 rhs0),Equal)::[] + | OpNEq -> + ((psub1 lhs0 (padd1 rhs0 (Pc (Zpos XH)))),NonStrict)::(((psub1 rhs0 + (padd1 lhs0 + (Pc (Zpos + XH)))),NonStrict)::[]) + | OpLe -> ((psub1 rhs0 lhs0),NonStrict)::[] + | OpGe -> ((psub1 lhs0 rhs0),NonStrict)::[] + | OpLt -> ((psub1 rhs0 (padd1 lhs0 (Pc (Zpos XH)))),NonStrict)::[] + | OpGt -> ((psub1 lhs0 (padd1 rhs0 (Pc (Zpos XH)))),NonStrict)::[]) + +(** val negate : z formula -> z nFormula cnf **) + +let negate t0 = + map (fun x -> x::[]) (xnegate0 t0) + +(** val zunsat : z nFormula -> bool **) + +let zunsat = + check_inconsistent Z0 zeq_bool Z.leb + +(** val zdeduce : z nFormula -> z nFormula -> z nFormula option **) + +let zdeduce = + nformula_plus_nformula Z0 Z.add zeq_bool + +(** val ceiling : z -> z -> z **) + +let ceiling a b = + let q0,r = Z.div_eucl a b in + (match r with + | Z0 -> q0 + | _ -> Z.add q0 (Zpos XH)) + +type zArithProof = +| DoneProof +| RatProof of zWitness * zArithProof +| CutProof of zWitness * zArithProof +| EnumProof of zWitness * zWitness * zArithProof list + +(** val zgcdM : z -> z -> z **) + +let zgcdM x y = + Z.max (Z.gcd x y) (Zpos XH) + +(** val zgcd_pol : z polC -> z * z **) + +let rec zgcd_pol = function +| Pc c -> Z0,c +| Pinj (_, p2) -> zgcd_pol p2 +| PX (p2, _, q0) -> + let g1,c1 = zgcd_pol p2 in + let g2,c2 = zgcd_pol q0 in (zgcdM (zgcdM g1 c1) g2),c2 + +(** val zdiv_pol : z polC -> z -> z polC **) + +let rec zdiv_pol p x = + match p with + | Pc c -> Pc (Z.div c x) + | Pinj (j, p2) -> Pinj (j, (zdiv_pol p2 x)) + | PX (p2, j, q0) -> PX ((zdiv_pol p2 x), j, (zdiv_pol q0 x)) + +(** val makeCuttingPlane : z polC -> z polC * z **) + +let makeCuttingPlane p = + let g,c = zgcd_pol p in + if Z.gtb g Z0 + then (zdiv_pol (psubC Z.sub p c) g),(Z.opp (ceiling (Z.opp c) g)) + else p,Z0 + +(** val genCuttingPlane : z nFormula -> ((z polC * z) * op1) option **) + +let genCuttingPlane = function +| e,op -> + (match op with + | Equal -> + let g,c = zgcd_pol e in + if (&&) (Z.gtb g Z0) + ((&&) (negb (zeq_bool c Z0)) (negb (zeq_bool (Z.gcd g c) g))) + then None + else Some ((makeCuttingPlane e),Equal) + | NonEqual -> Some ((e,Z0),op) + | Strict -> Some ((makeCuttingPlane (psubC Z.sub e (Zpos XH))),NonStrict) + | NonStrict -> Some ((makeCuttingPlane e),NonStrict)) + +(** val nformula_of_cutting_plane : ((z polC * z) * op1) -> z nFormula **) + +let nformula_of_cutting_plane = function +| e_z,o -> let e,z0 = e_z in (padd1 e (Pc z0)),o + +(** val is_pol_Z0 : z polC -> bool **) + +let is_pol_Z0 = function +| Pc z0 -> (match z0 with + | Z0 -> true + | _ -> false) +| _ -> false + +(** val eval_Psatz0 : z nFormula list -> zWitness -> z nFormula option **) + +let eval_Psatz0 = + eval_Psatz Z0 (Zpos XH) Z.add Z.mul zeq_bool Z.leb + +(** val valid_cut_sign : op1 -> bool **) + +let valid_cut_sign = function +| Equal -> true +| NonStrict -> true +| _ -> false + +(** val zChecker : z nFormula list -> zArithProof -> bool **) + +let rec zChecker l = function +| DoneProof -> false +| RatProof (w, pf0) -> + (match eval_Psatz0 l w with + | Some f -> if zunsat f then true else zChecker (f::l) pf0 + | None -> false) +| CutProof (w, pf0) -> + (match eval_Psatz0 l w with + | Some f -> + (match genCuttingPlane f with + | Some cp -> zChecker ((nformula_of_cutting_plane cp)::l) pf0 + | None -> true) + | None -> false) +| EnumProof (w1, w2, pf0) -> + (match eval_Psatz0 l w1 with + | Some f1 -> + (match eval_Psatz0 l w2 with + | Some f2 -> + (match genCuttingPlane f1 with + | Some p -> + let p2,op3 = p in + let e1,z1 = p2 in + (match genCuttingPlane f2 with + | Some p3 -> + let p4,op4 = p3 in + let e2,z2 = p4 in + if (&&) ((&&) (valid_cut_sign op3) (valid_cut_sign op4)) + (is_pol_Z0 (padd1 e1 e2)) + then let rec label pfs lb ub = + match pfs with + | [] -> Z.gtb lb ub + | pf1::rsr -> + (&&) (zChecker (((psub1 e1 (Pc lb)),Equal)::l) pf1) + (label rsr (Z.add lb (Zpos XH)) ub) + in label pf0 (Z.opp z1) z2 + else false + | None -> true) + | None -> true) + | None -> false) + | None -> false) + +(** val zTautoChecker : z formula bFormula -> zArithProof list -> bool **) + +let zTautoChecker f w = + tauto_checker zunsat zdeduce normalise negate zChecker f w + +type qWitness = q psatz + +(** val qWeakChecker : q nFormula list -> q psatz -> bool **) + +let qWeakChecker = + check_normalised_formulas { qnum = Z0; qden = XH } { qnum = (Zpos XH); + qden = XH } qplus qmult qeq_bool qle_bool + +(** val qnormalise : q formula -> q nFormula cnf **) + +let qnormalise = + cnf_normalise { qnum = Z0; qden = XH } { qnum = (Zpos XH); qden = XH } + qplus qmult qminus qopp qeq_bool + +(** val qnegate : q formula -> q nFormula cnf **) + +let qnegate = + cnf_negate { qnum = Z0; qden = XH } { qnum = (Zpos XH); qden = XH } qplus + qmult qminus qopp qeq_bool + +(** val qunsat : q nFormula -> bool **) + +let qunsat = + check_inconsistent { qnum = Z0; qden = XH } qeq_bool qle_bool + +(** val qdeduce : q nFormula -> q nFormula -> q nFormula option **) + +let qdeduce = + nformula_plus_nformula { qnum = Z0; qden = XH } qplus qeq_bool + +(** val qTautoChecker : q formula bFormula -> qWitness list -> bool **) + +let qTautoChecker f w = + tauto_checker qunsat qdeduce qnormalise qnegate qWeakChecker f w + +type rcst = +| C0 +| C1 +| CQ of q +| CZ of z +| CPlus of rcst * rcst +| CMinus of rcst * rcst +| CMult of rcst * rcst +| CInv of rcst +| COpp of rcst + +(** val q_of_Rcst : rcst -> q **) + +let rec q_of_Rcst = function +| C0 -> { qnum = Z0; qden = XH } +| C1 -> { qnum = (Zpos XH); qden = XH } +| CQ q0 -> q0 +| CZ z0 -> { qnum = z0; qden = XH } +| CPlus (r1, r2) -> qplus (q_of_Rcst r1) (q_of_Rcst r2) +| CMinus (r1, r2) -> qminus (q_of_Rcst r1) (q_of_Rcst r2) +| CMult (r1, r2) -> qmult (q_of_Rcst r1) (q_of_Rcst r2) +| CInv r0 -> qinv (q_of_Rcst r0) +| COpp r0 -> qopp (q_of_Rcst r0) + +type rWitness = q psatz + +(** val rWeakChecker : q nFormula list -> q psatz -> bool **) + +let rWeakChecker = + check_normalised_formulas { qnum = Z0; qden = XH } { qnum = (Zpos XH); + qden = XH } qplus qmult qeq_bool qle_bool + +(** val rnormalise : q formula -> q nFormula cnf **) + +let rnormalise = + cnf_normalise { qnum = Z0; qden = XH } { qnum = (Zpos XH); qden = XH } + qplus qmult qminus qopp qeq_bool + +(** val rnegate : q formula -> q nFormula cnf **) + +let rnegate = + cnf_negate { qnum = Z0; qden = XH } { qnum = (Zpos XH); qden = XH } qplus + qmult qminus qopp qeq_bool + +(** val runsat : q nFormula -> bool **) + +let runsat = + check_inconsistent { qnum = Z0; qden = XH } qeq_bool qle_bool + +(** val rdeduce : q nFormula -> q nFormula -> q nFormula option **) + +let rdeduce = + nformula_plus_nformula { qnum = Z0; qden = XH } qplus qeq_bool + +(** val rTautoChecker : rcst formula bFormula -> rWitness list -> bool **) + +let rTautoChecker f w = + tauto_checker runsat rdeduce rnormalise rnegate rWeakChecker + (map_bformula (map_Formula q_of_Rcst) f) w diff --git a/plugins/micromega/micromega.mli b/plugins/micromega/micromega.mli new file mode 100644 index 000000000..961978178 --- /dev/null +++ b/plugins/micromega/micromega.mli @@ -0,0 +1,517 @@ + +val negb : bool -> bool + +type nat = +| O +| S of nat + +val app : 'a1 list -> 'a1 list -> 'a1 list + +type comparison = +| Eq +| Lt +| Gt + +val compOpp : comparison -> comparison + +val add : nat -> nat -> nat + +type positive = +| XI of positive +| XO of positive +| XH + +type n = +| N0 +| Npos of positive + +type z = +| Z0 +| Zpos of positive +| Zneg of positive + +module Pos : + sig + type mask = + | IsNul + | IsPos of positive + | IsNeg + end + +module Coq_Pos : + sig + val succ : positive -> positive + + val add : positive -> positive -> positive + + val add_carry : positive -> positive -> positive + + val pred_double : positive -> positive + + type mask = Pos.mask = + | IsNul + | IsPos of positive + | IsNeg + + val succ_double_mask : mask -> mask + + val double_mask : mask -> mask + + val double_pred_mask : positive -> mask + + val sub_mask : positive -> positive -> mask + + val sub_mask_carry : positive -> positive -> mask + + val sub : positive -> positive -> positive + + val mul : positive -> positive -> positive + + val size_nat : positive -> nat + + val compare_cont : comparison -> positive -> positive -> comparison + + val compare : positive -> positive -> comparison + + val gcdn : nat -> positive -> positive -> positive + + val gcd : positive -> positive -> positive + + val of_succ_nat : nat -> positive + end + +module N : + sig + val of_nat : nat -> n + end + +val pow_pos : ('a1 -> 'a1 -> 'a1) -> 'a1 -> positive -> 'a1 + +val nth : nat -> 'a1 list -> 'a1 -> 'a1 + +val map : ('a1 -> 'a2) -> 'a1 list -> 'a2 list + +val fold_right : ('a2 -> 'a1 -> 'a1) -> 'a1 -> 'a2 list -> 'a1 + +module Z : + sig + val double : z -> z + + val succ_double : z -> z + + val pred_double : z -> z + + val pos_sub : positive -> positive -> z + + val add : z -> z -> z + + val opp : z -> z + + val sub : z -> z -> z + + val mul : z -> z -> z + + val compare : z -> z -> comparison + + val leb : z -> z -> bool + + val ltb : z -> z -> bool + + val gtb : z -> z -> bool + + val max : z -> z -> z + + val abs : z -> z + + val to_N : z -> n + + val pos_div_eucl : positive -> z -> z * z + + val div_eucl : z -> z -> z * z + + val div : z -> z -> z + + val gcd : z -> z -> z + end + +val zeq_bool : z -> z -> bool + +type 'c pol = +| Pc of 'c +| Pinj of positive * 'c pol +| PX of 'c pol * positive * 'c pol + +val p0 : 'a1 -> 'a1 pol + +val p1 : 'a1 -> 'a1 pol + +val peq : ('a1 -> 'a1 -> bool) -> 'a1 pol -> 'a1 pol -> bool + +val mkPinj : positive -> 'a1 pol -> 'a1 pol + +val mkPinj_pred : positive -> 'a1 pol -> 'a1 pol + +val mkPX : + 'a1 -> ('a1 -> 'a1 -> bool) -> 'a1 pol -> positive -> 'a1 pol -> 'a1 pol + +val mkXi : 'a1 -> 'a1 -> positive -> 'a1 pol + +val mkX : 'a1 -> 'a1 -> 'a1 pol + +val popp : ('a1 -> 'a1) -> 'a1 pol -> 'a1 pol + +val paddC : ('a1 -> 'a1 -> 'a1) -> 'a1 pol -> 'a1 -> 'a1 pol + +val psubC : ('a1 -> 'a1 -> 'a1) -> 'a1 pol -> 'a1 -> 'a1 pol + +val paddI : + ('a1 -> 'a1 -> 'a1) -> ('a1 pol -> 'a1 pol -> 'a1 pol) -> 'a1 pol -> + positive -> 'a1 pol -> 'a1 pol + +val psubI : + ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1) -> ('a1 pol -> 'a1 pol -> 'a1 pol) -> + 'a1 pol -> positive -> 'a1 pol -> 'a1 pol + +val paddX : + 'a1 -> ('a1 -> 'a1 -> bool) -> ('a1 pol -> 'a1 pol -> 'a1 pol) -> 'a1 pol + -> positive -> 'a1 pol -> 'a1 pol + +val psubX : + 'a1 -> ('a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> ('a1 pol -> 'a1 pol -> 'a1 + pol) -> 'a1 pol -> positive -> 'a1 pol -> 'a1 pol + +val padd : + 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 pol -> 'a1 pol -> + 'a1 pol + +val psub : + 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1) -> ('a1 + -> 'a1 -> bool) -> 'a1 pol -> 'a1 pol -> 'a1 pol + +val pmulC_aux : + 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 pol -> 'a1 -> 'a1 + pol + +val pmulC : + 'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 pol -> 'a1 + -> 'a1 pol + +val pmulI : + 'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> ('a1 pol -> + 'a1 pol -> 'a1 pol) -> 'a1 pol -> positive -> 'a1 pol -> 'a1 pol + +val pmul : + 'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> + bool) -> 'a1 pol -> 'a1 pol -> 'a1 pol + +val psquare : + 'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> + bool) -> 'a1 pol -> 'a1 pol + +type 'c pExpr = +| PEc of 'c +| PEX of positive +| PEadd of 'c pExpr * 'c pExpr +| PEsub of 'c pExpr * 'c pExpr +| PEmul of 'c pExpr * 'c pExpr +| PEopp of 'c pExpr +| PEpow of 'c pExpr * n + +val mk_X : 'a1 -> 'a1 -> positive -> 'a1 pol + +val ppow_pos : + 'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> + bool) -> ('a1 pol -> 'a1 pol) -> 'a1 pol -> 'a1 pol -> positive -> 'a1 pol + +val ppow_N : + 'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> + bool) -> ('a1 pol -> 'a1 pol) -> 'a1 pol -> n -> 'a1 pol + +val norm_aux : + 'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> + 'a1) -> ('a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 pExpr -> 'a1 pol + +type 'a bFormula = +| TT +| FF +| X +| A of 'a +| Cj of 'a bFormula * 'a bFormula +| D of 'a bFormula * 'a bFormula +| N of 'a bFormula +| I of 'a bFormula * 'a bFormula + +val map_bformula : ('a1 -> 'a2) -> 'a1 bFormula -> 'a2 bFormula + +type 'x clause = 'x list + +type 'x cnf = 'x clause list + +val tt : 'a1 cnf + +val ff : 'a1 cnf + +val add_term : + ('a1 -> bool) -> ('a1 -> 'a1 -> 'a1 option) -> 'a1 -> 'a1 clause -> 'a1 + clause option + +val or_clause : + ('a1 -> bool) -> ('a1 -> 'a1 -> 'a1 option) -> 'a1 clause -> 'a1 clause -> + 'a1 clause option + +val or_clause_cnf : + ('a1 -> bool) -> ('a1 -> 'a1 -> 'a1 option) -> 'a1 clause -> 'a1 cnf -> 'a1 + cnf + +val or_cnf : + ('a1 -> bool) -> ('a1 -> 'a1 -> 'a1 option) -> 'a1 cnf -> 'a1 cnf -> 'a1 cnf + +val and_cnf : 'a1 cnf -> 'a1 cnf -> 'a1 cnf + +val xcnf : + ('a2 -> bool) -> ('a2 -> 'a2 -> 'a2 option) -> ('a1 -> 'a2 cnf) -> ('a1 -> + 'a2 cnf) -> bool -> 'a1 bFormula -> 'a2 cnf + +val cnf_checker : ('a1 list -> 'a2 -> bool) -> 'a1 cnf -> 'a2 list -> bool + +val tauto_checker : + ('a2 -> bool) -> ('a2 -> 'a2 -> 'a2 option) -> ('a1 -> 'a2 cnf) -> ('a1 -> + 'a2 cnf) -> ('a2 list -> 'a3 -> bool) -> 'a1 bFormula -> 'a3 list -> bool + +val cneqb : ('a1 -> 'a1 -> bool) -> 'a1 -> 'a1 -> bool + +val cltb : ('a1 -> 'a1 -> bool) -> ('a1 -> 'a1 -> bool) -> 'a1 -> 'a1 -> bool + +type 'c polC = 'c pol + +type op1 = +| Equal +| NonEqual +| Strict +| NonStrict + +type 'c nFormula = 'c polC * op1 + +val opMult : op1 -> op1 -> op1 option + +val opAdd : op1 -> op1 -> op1 option + +type 'c psatz = +| PsatzIn of nat +| PsatzSquare of 'c polC +| PsatzMulC of 'c polC * 'c psatz +| PsatzMulE of 'c psatz * 'c psatz +| PsatzAdd of 'c psatz * 'c psatz +| PsatzC of 'c +| PsatzZ + +val map_option : ('a1 -> 'a2 option) -> 'a1 option -> 'a2 option + +val map_option2 : + ('a1 -> 'a2 -> 'a3 option) -> 'a1 option -> 'a2 option -> 'a3 option + +val pexpr_times_nformula : + 'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> + bool) -> 'a1 polC -> 'a1 nFormula -> 'a1 nFormula option + +val nformula_times_nformula : + 'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> + bool) -> 'a1 nFormula -> 'a1 nFormula -> 'a1 nFormula option + +val nformula_plus_nformula : + 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 nFormula -> 'a1 + nFormula -> 'a1 nFormula option + +val eval_Psatz : + 'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> + bool) -> ('a1 -> 'a1 -> bool) -> 'a1 nFormula list -> 'a1 psatz -> 'a1 + nFormula option + +val check_inconsistent : + 'a1 -> ('a1 -> 'a1 -> bool) -> ('a1 -> 'a1 -> bool) -> 'a1 nFormula -> bool + +val check_normalised_formulas : + 'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> + bool) -> ('a1 -> 'a1 -> bool) -> 'a1 nFormula list -> 'a1 psatz -> bool + +type op2 = +| OpEq +| OpNEq +| OpLe +| OpGe +| OpLt +| OpGt + +type 't formula = { flhs : 't pExpr; fop : op2; frhs : 't pExpr } + +val norm : + 'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> + 'a1) -> ('a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 pExpr -> 'a1 pol + +val psub0 : + 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1) -> ('a1 + -> 'a1 -> bool) -> 'a1 pol -> 'a1 pol -> 'a1 pol + +val padd0 : + 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 pol -> 'a1 pol -> + 'a1 pol + +val xnormalise : + 'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> + 'a1) -> ('a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 formula -> 'a1 nFormula + list + +val cnf_normalise : + 'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> + 'a1) -> ('a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 formula -> 'a1 nFormula + cnf + +val xnegate : + 'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> + 'a1) -> ('a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 formula -> 'a1 nFormula + list + +val cnf_negate : + 'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> + 'a1) -> ('a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 formula -> 'a1 nFormula + cnf + +val xdenorm : positive -> 'a1 pol -> 'a1 pExpr + +val denorm : 'a1 pol -> 'a1 pExpr + +val map_PExpr : ('a2 -> 'a1) -> 'a2 pExpr -> 'a1 pExpr + +val map_Formula : ('a2 -> 'a1) -> 'a2 formula -> 'a1 formula + +val simpl_cone : + 'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 psatz -> + 'a1 psatz + +type q = { qnum : z; qden : positive } + +val qnum : q -> z + +val qden : q -> positive + +val qeq_bool : q -> q -> bool + +val qle_bool : q -> q -> bool + +val qplus : q -> q -> q + +val qmult : q -> q -> q + +val qopp : q -> q + +val qminus : q -> q -> q + +val qinv : q -> q + +val qpower_positive : q -> positive -> q + +val qpower : q -> z -> q + +type 'a t = +| Empty +| Leaf of 'a +| Node of 'a t * 'a * 'a t + +val find : 'a1 -> 'a1 t -> positive -> 'a1 + +val singleton : 'a1 -> positive -> 'a1 -> 'a1 t + +val vm_add : 'a1 -> positive -> 'a1 -> 'a1 t -> 'a1 t + +type zWitness = z psatz + +val zWeakChecker : z nFormula list -> z psatz -> bool + +val psub1 : z pol -> z pol -> z pol + +val padd1 : z pol -> z pol -> z pol + +val norm0 : z pExpr -> z pol + +val xnormalise0 : z formula -> z nFormula list + +val normalise : z formula -> z nFormula cnf + +val xnegate0 : z formula -> z nFormula list + +val negate : z formula -> z nFormula cnf + +val zunsat : z nFormula -> bool + +val zdeduce : z nFormula -> z nFormula -> z nFormula option + +val ceiling : z -> z -> z + +type zArithProof = +| DoneProof +| RatProof of zWitness * zArithProof +| CutProof of zWitness * zArithProof +| EnumProof of zWitness * zWitness * zArithProof list + +val zgcdM : z -> z -> z + +val zgcd_pol : z polC -> z * z + +val zdiv_pol : z polC -> z -> z polC + +val makeCuttingPlane : z polC -> z polC * z + +val genCuttingPlane : z nFormula -> ((z polC * z) * op1) option + +val nformula_of_cutting_plane : ((z polC * z) * op1) -> z nFormula + +val is_pol_Z0 : z polC -> bool + +val eval_Psatz0 : z nFormula list -> zWitness -> z nFormula option + +val valid_cut_sign : op1 -> bool + +val zChecker : z nFormula list -> zArithProof -> bool + +val zTautoChecker : z formula bFormula -> zArithProof list -> bool + +type qWitness = q psatz + +val qWeakChecker : q nFormula list -> q psatz -> bool + +val qnormalise : q formula -> q nFormula cnf + +val qnegate : q formula -> q nFormula cnf + +val qunsat : q nFormula -> bool + +val qdeduce : q nFormula -> q nFormula -> q nFormula option + +val qTautoChecker : q formula bFormula -> qWitness list -> bool + +type rcst = +| C0 +| C1 +| CQ of q +| CZ of z +| CPlus of rcst * rcst +| CMinus of rcst * rcst +| CMult of rcst * rcst +| CInv of rcst +| COpp of rcst + +val q_of_Rcst : rcst -> q + +type rWitness = q psatz + +val rWeakChecker : q nFormula list -> q psatz -> bool + +val rnormalise : q formula -> q nFormula cnf + +val rnegate : q formula -> q nFormula cnf + +val runsat : q nFormula -> bool + +val rdeduce : q nFormula -> q nFormula -> q nFormula option + +val rTautoChecker : rcst formula bFormula -> rWitness list -> bool |