diff options
-rw-r--r-- | test-suite/micromega/square.v | 3 | ||||
-rw-r--r-- | test-suite/output/Cases.v | 2 | ||||
-rw-r--r-- | test-suite/stm/Nijmegen_QArithSternBrocot_Zaux.v | 20 |
3 files changed, 12 insertions, 13 deletions
diff --git a/test-suite/micromega/square.v b/test-suite/micromega/square.v index 8767f6874..abf8be72e 100644 --- a/test-suite/micromega/square.v +++ b/test-suite/micromega/square.v @@ -53,8 +53,7 @@ Qed. Theorem sqrt2_not_rational : ~exists x:Q, x^2==2#1. Proof. - unfold Qeq; intros [x]; simpl (Qden (2#1)); rewrite Z.mul_1_r. - intros HQeq. + unfold Qeq; intros (x,HQeq); simpl (Qden (2#1)) in HQeq; rewrite Z.mul_1_r in HQeq. assert (Heq : (Qnum x ^ 2 = 2 * ' Qden x ^ 2%Q)%Z) by (rewrite QnumZpower in HQeq ; rewrite QdenZpower in HQeq ; auto). assert (Hnx : (Qnum x <> 0)%Z) diff --git a/test-suite/output/Cases.v b/test-suite/output/Cases.v index 4116a5ebc..a95b085ac 100644 --- a/test-suite/output/Cases.v +++ b/test-suite/output/Cases.v @@ -73,7 +73,7 @@ Definition f : B -> True. Proof. intros []. -destruct b as [|] ; intros _ ; exact Logic.I. +destruct b as [|] ; exact Logic.I. Defined. Print f. diff --git a/test-suite/stm/Nijmegen_QArithSternBrocot_Zaux.v b/test-suite/stm/Nijmegen_QArithSternBrocot_Zaux.v index 0d75d52a3..06357cfc2 100644 --- a/test-suite/stm/Nijmegen_QArithSternBrocot_Zaux.v +++ b/test-suite/stm/Nijmegen_QArithSternBrocot_Zaux.v @@ -1902,14 +1902,14 @@ Qed. Lemma Zsgn_15 : forall x y : Z, Zsgn (x * y) = (Zsgn x * Zsgn y)%Z. Proof. - intros [y| p1 [| p2| p2]| p1 [| p2| p2]]; simpl in |- *; constructor. + intros [|p1|p1]; [intros y|intros [|p2|p2] ..]; simpl in |- *; constructor. Qed. Lemma Zsgn_16 : forall x y : Z, Zsgn (x * y) = 1%Z -> {(0 < x)%Z /\ (0 < y)%Z} + {(x < 0)%Z /\ (y < 0)%Z}. Proof. - intros [y| p1 [| p2| p2]| p1 [| p2| p2]]; simpl in |- *; intro H; + intros [|p1|p1]; [intros y|intros [|p2|p2] ..]; simpl in |- *; intro H; try discriminate H; [ left | right ]; repeat split. Qed. @@ -1917,13 +1917,13 @@ Lemma Zsgn_17 : forall x y : Z, Zsgn (x * y) = (-1)%Z -> {(0 < x)%Z /\ (y < 0)%Z} + {(x < 0)%Z /\ (0 < y)%Z}. Proof. - intros [y| p1 [| p2| p2]| p1 [| p2| p2]]; simpl in |- *; intro H; + intros [|p1|p1]; [intros y|intros [|p2|p2] ..]; simpl in |- *; intro H; try discriminate H; [ left | right ]; repeat split. Qed. Lemma Zsgn_18 : forall x y : Z, Zsgn (x * y) = 0%Z -> {x = 0%Z} + {y = 0%Z}. Proof. - intros [y| p1 [| p2| p2]| p1 [| p2| p2]]; simpl in |- *; intro H; + intros [|p1|p1]; [intros y|intros [|p2|p2] ..]; simpl in |- *; intro H; try discriminate H; [ left | right | right ]; constructor. Qed. @@ -1932,40 +1932,40 @@ Qed. Lemma Zsgn_19 : forall x y : Z, (0 < Zsgn x + Zsgn y)%Z -> (0 < x + y)%Z. Proof. Proof. - intros [y| p1 [| p2| p2]| p1 [| p2| p2]]; simpl in |- *; intro H; + intros [|p1|p1]; [intros y|intros [|p2|p2] ..]; simpl in |- *; intro H; discriminate H || (constructor || apply Zsgn_12; assumption). Qed. Lemma Zsgn_20 : forall x y : Z, (Zsgn x + Zsgn y < 0)%Z -> (x + y < 0)%Z. Proof. Proof. - intros [y| p1 [| p2| p2]| p1 [| p2| p2]]; simpl in |- *; intro H; + intros [|p1|p1]; [intros y|intros [|p2|p2] ..]; simpl in |- *; intro H; discriminate H || (constructor || apply Zsgn_11; assumption). Qed. Lemma Zsgn_21 : forall x y : Z, (0 < Zsgn x + Zsgn y)%Z -> (0 <= x)%Z. Proof. - intros [y| p1 [| p2| p2]| p1 [| p2| p2]]; simpl in |- *; intros H H0; + intros [|p1|p1]; [intros y|intros [|p2|p2] ..]; simpl in |- *; intros H H0; discriminate H || discriminate H0. Qed. Lemma Zsgn_22 : forall x y : Z, (Zsgn x + Zsgn y < 0)%Z -> (x <= 0)%Z. Proof. Proof. - intros [y| p1 [| p2| p2]| p1 [| p2| p2]]; simpl in |- *; intros H H0; + intros [|p1|p1]; [intros y|intros [|p2|p2] ..]; simpl in |- *; intros H H0; discriminate H || discriminate H0. Qed. Lemma Zsgn_23 : forall x y : Z, (0 < Zsgn x + Zsgn y)%Z -> (0 <= y)%Z. Proof. - intros [[| p2| p2]| p1 [| p2| p2]| p1 [| p2| p2]]; simpl in |- *; + intros [|p1|p1] [|p2|p2]; simpl in |- *; intros H H0; discriminate H || discriminate H0. Qed. Lemma Zsgn_24 : forall x y : Z, (Zsgn x + Zsgn y < 0)%Z -> (y <= 0)%Z. Proof. - intros [[| p2| p2]| p1 [| p2| p2]| p1 [| p2| p2]]; simpl in |- *; + intros [|p1|p1] [|p2|p2]; simpl in |- *; intros H H0; discriminate H || discriminate H0. Qed. |