diff options
-rw-r--r-- | doc/RecTutorial/RecTutorial.v | 111 |
1 files changed, 55 insertions, 56 deletions
diff --git a/doc/RecTutorial/RecTutorial.v b/doc/RecTutorial/RecTutorial.v index 8cfeebc28..4b0ab3125 100644 --- a/doc/RecTutorial/RecTutorial.v +++ b/doc/RecTutorial/RecTutorial.v @@ -1,3 +1,5 @@ +Unset Automatic Introduction. + Check (forall A:Type, (exists x:A, forall (y:A), x <> y) -> 2 = 3). @@ -69,13 +71,13 @@ Check (Prop::Set::nil). Require Import Bvector. -Print vector. +Print Vector.t. -Check (Vnil nat). +Check (Vector.nil nat). -Check (fun (A:Type)(a:A)=> Vcons _ a _ (Vnil _)). +Check (fun (A:Type)(a:A)=> Vector.cons _ a _ (Vector.nil _)). -Check (Vcons _ 5 _ (Vcons _ 3 _ (Vnil _))). +Check (Vector.cons _ 5 _ (Vector.cons _ 3 _ (Vector.nil _))). Lemma eq_3_3 : 2 + 1 = 3. Proof. @@ -146,6 +148,7 @@ Proof. intros; absurd (p < p); eauto with arith. Qed. +Require Extraction. Extraction max. @@ -300,8 +303,8 @@ Section Le_case_analysis. (HS : forall m, n <= m -> Q (S m)). Check ( match H in (_ <= q) return (Q q) with - | le_n => H0 - | le_S m Hm => HS m Hm + | le_n _ => H0 + | le_S _ m Hm => HS m Hm end ). @@ -317,16 +320,16 @@ Proof. Qed. Definition Vtail_total - (A : Type) (n : nat) (v : vector A n) : vector A (pred n):= -match v in (vector _ n0) return (vector A (pred n0)) with -| Vnil => Vnil A -| Vcons _ n0 v0 => v0 + (A : Type) (n : nat) (v : Vector.t A n) : Vector.t A (pred n):= +match v in (Vector.t _ n0) return (Vector.t A (pred n0)) with +| Vector.nil _ => Vector.nil A +| Vector.cons _ _ n0 v0 => v0 end. -Definition Vtail' (A:Type)(n:nat)(v:vector A n) : vector A (pred n). +Definition Vtail' (A:Type)(n:nat)(v:Vector.t A n) : Vector.t A (pred n). intros A n v; case v. simpl. - exact (Vnil A). + exact (Vector.nil A). simpl. auto. Defined. @@ -498,10 +501,8 @@ Inductive typ : Type := Definition typ_inject: typ. split. -exact typ. +Fail exact typ. (* -Defined. - Error: Universe Inconsistency. *) Abort. @@ -920,7 +921,6 @@ Defined. Print minus_decrease. - Definition div_aux (x y:nat)(H: Acc lt x):nat. fix 3. intros. @@ -969,40 +969,40 @@ let rec div_aux x y = | Right -> div_aux (minus x y) y) *) -Lemma vector0_is_vnil : forall (A:Type)(v:vector A 0), v = Vnil A. +Lemma vector0_is_vnil : forall (A:Type)(v:Vector.t A 0), v = Vector.nil A. Proof. intros A v;inversion v. Abort. (* - Lemma vector0_is_vnil_aux : forall (A:Type)(n:nat)(v:vector A n), - n= 0 -> v = Vnil A. + Lemma vector0_is_vnil_aux : forall (A:Type)(n:nat)(v:Vector.t A n), + n= 0 -> v = Vector.nil A. Toplevel input, characters 40281-40287 -> Lemma vector0_is_vnil_aux : forall (A:Set)(n:nat)(v:vector A n), n= 0 -> v = Vnil A. +> Lemma vector0_is_vnil_aux : forall (A:Set)(n:nat)(v:Vector.t A n), n= 0 -> v = Vector.nil A. > ^^^^^^ Error: In environment A : Set n : nat -v : vector A n +v : Vector.t A n e : n = 0 -The term "Vnil A" has type "vector A 0" while it is expected to have type - "vector A n" +The term "Vector.nil A" has type "Vector.t A 0" while it is expected to have type + "Vector.t A n" *) Require Import JMeq. (* On devrait changer Set en Type ? *) -Lemma vector0_is_vnil_aux : forall (A:Type)(n:nat)(v:vector A n), - n= 0 -> JMeq v (Vnil A). +Lemma vector0_is_vnil_aux : forall (A:Type)(n:nat)(v:Vector.t A n), + n= 0 -> JMeq v (Vector.nil A). Proof. destruct v. auto. intro; discriminate. Qed. -Lemma vector0_is_vnil : forall (A:Type)(v:vector A 0), v = Vnil A. +Lemma vector0_is_vnil : forall (A:Type)(v:Vector.t A 0), v = Vector.nil A. Proof. intros a v;apply JMeq_eq. apply vector0_is_vnil_aux. @@ -1010,56 +1010,56 @@ Proof. Qed. -Implicit Arguments Vcons [A n]. -Implicit Arguments Vnil [A]. -Implicit Arguments Vhead [A n]. -Implicit Arguments Vtail [A n]. +Implicit Arguments Vector.cons [A n]. +Implicit Arguments Vector.nil [A]. +Implicit Arguments Vector.hd [A n]. +Implicit Arguments Vector.tl [A n]. -Definition Vid : forall (A : Type)(n:nat), vector A n -> vector A n. +Definition Vid : forall (A : Type)(n:nat), Vector.t A n -> Vector.t A n. Proof. destruct n; intro v. - exact Vnil. - exact (Vcons (Vhead v) (Vtail v)). + exact Vector.nil. + exact (Vector.cons (Vector.hd v) (Vector.tl v)). Defined. -Eval simpl in (fun (A:Type)(v:vector A 0) => (Vid _ _ v)). +Eval simpl in (fun (A:Type)(v:Vector.t A 0) => (Vid _ _ v)). -Eval simpl in (fun (A:Type)(v:vector A 0) => v). +Eval simpl in (fun (A:Type)(v:Vector.t A 0) => v). -Lemma Vid_eq : forall (n:nat) (A:Type)(v:vector A n), v=(Vid _ n v). +Lemma Vid_eq : forall (n:nat) (A:Type)(v:Vector.t A n), v=(Vid _ n v). Proof. destruct v. reflexivity. reflexivity. Defined. -Theorem zero_nil : forall A (v:vector A 0), v = Vnil. +Theorem zero_nil : forall A (v:Vector.t A 0), v = Vector.nil. Proof. intros. - change (Vnil (A:=A)) with (Vid _ 0 v). + change (Vector.nil (A:=A)) with (Vid _ 0 v). apply Vid_eq. Defined. Theorem decomp : - forall (A : Type) (n : nat) (v : vector A (S n)), - v = Vcons (Vhead v) (Vtail v). + forall (A : Type) (n : nat) (v : Vector.t A (S n)), + v = Vector.cons (Vector.hd v) (Vector.tl v). Proof. intros. - change (Vcons (Vhead v) (Vtail v)) with (Vid _ (S n) v). + change (Vector.cons (Vector.hd v) (Vector.tl v)) with (Vid _ (S n) v). apply Vid_eq. Defined. Definition vector_double_rect : - forall (A:Type) (P: forall (n:nat),(vector A n)->(vector A n) -> Type), - P 0 Vnil Vnil -> - (forall n (v1 v2 : vector A n) a b, P n v1 v2 -> - P (S n) (Vcons a v1) (Vcons b v2)) -> - forall n (v1 v2 : vector A n), P n v1 v2. + forall (A:Type) (P: forall (n:nat),(Vector.t A n)->(Vector.t A n) -> Type), + P 0 Vector.nil Vector.nil -> + (forall n (v1 v2 : Vector.t A n) a b, P n v1 v2 -> + P (S n) (Vector.cons a v1) (Vector.cons b v2)) -> + forall n (v1 v2 : Vector.t A n), P n v1 v2. induction n. intros; rewrite (zero_nil _ v1); rewrite (zero_nil _ v2). auto. @@ -1069,24 +1069,23 @@ Defined. Require Import Bool. -Definition bitwise_or n v1 v2 : vector bool n := - vector_double_rect bool (fun n v1 v2 => vector bool n) - Vnil - (fun n v1 v2 a b r => Vcons (orb a b) r) n v1 v2. - +Definition bitwise_or n v1 v2 : Vector.t bool n := + vector_double_rect bool (fun n v1 v2 => Vector.t bool n) + Vector.nil + (fun n v1 v2 a b r => Vector.cons (orb a b) r) n v1 v2. -Fixpoint vector_nth (A:Type)(n:nat)(p:nat)(v:vector A p){struct v} +Fixpoint vector_nth (A:Type)(n:nat)(p:nat)(v:Vector.t A p){struct v} : option A := match n,v with - _ , Vnil => None - | 0 , Vcons b _ _ => Some b - | S n', Vcons _ p' v' => vector_nth A n' p' v' + _ , Vector.nil => None + | 0 , Vector.cons b _ => Some b + | S n', @Vector.cons _ _ p' v' => vector_nth A n' p' v' end. Implicit Arguments vector_nth [A p]. -Lemma nth_bitwise : forall (n:nat) (v1 v2: vector bool n) i a b, +Lemma nth_bitwise : forall (n:nat) (v1 v2: Vector.t bool n) i a b, vector_nth i v1 = Some a -> vector_nth i v2 = Some b -> vector_nth i (bitwise_or _ v1 v2) = Some (orb a b). |