aboutsummaryrefslogtreecommitdiffhomepage
diff options
context:
space:
mode:
-rw-r--r--theories/Numbers/Cyclic/ZModulo/ZModulo.v6
-rw-r--r--theories/Numbers/Integer/SpecViaZ/ZSigZAxioms.v8
-rw-r--r--theories/Numbers/Natural/SpecViaZ/NSigNAxioms.v8
-rw-r--r--theories/QArith/Qreduction.v16
-rw-r--r--theories/ZArith/ZArith.v2
-rw-r--r--theories/ZArith/Zgcd_alt.v1
-rw-r--r--theories/ZArith/Zgcd_def.v21
-rw-r--r--theories/ZArith/Znumtheory.v472
-rw-r--r--theories/ZArith/vo.itarget1
9 files changed, 161 insertions, 374 deletions
diff --git a/theories/Numbers/Cyclic/ZModulo/ZModulo.v b/theories/Numbers/Cyclic/ZModulo/ZModulo.v
index 2d9eb395a..3bdbca44a 100644
--- a/theories/Numbers/Cyclic/ZModulo/ZModulo.v
+++ b/theories/Numbers/Cyclic/ZModulo/ZModulo.v
@@ -465,8 +465,8 @@ Section ZModulo.
Proof.
intros.
generalize (Zgcd_is_gcd a b); inversion_clear 1.
- destruct H2; destruct H3; clear H4.
- assert (H3:=Zgcd_is_pos a b).
+ destruct H2 as (q,H2); destruct H3 as (q',H3); clear H4.
+ assert (H4:=Zgcd_is_pos a b).
destruct (Z_eq_dec (Zgcd a b) 0).
rewrite e; generalize (Zmax_spec a b); omega.
assert (0 <= q).
@@ -477,7 +477,7 @@ Section ZModulo.
generalize (Zmax_spec 0 b) (Zabs_spec b); omega.
apply Zle_trans with a.
- rewrite H1 at 2.
+ rewrite H2 at 2.
rewrite <- (Zmult_1_l (Zgcd a b)) at 1.
apply Zmult_le_compat; auto with zarith.
generalize (Zmax_spec a b); omega.
diff --git a/theories/Numbers/Integer/SpecViaZ/ZSigZAxioms.v b/theories/Numbers/Integer/SpecViaZ/ZSigZAxioms.v
index 44dd2c593..6facd3c3a 100644
--- a/theories/Numbers/Integer/SpecViaZ/ZSigZAxioms.v
+++ b/theories/Numbers/Integer/SpecViaZ/ZSigZAxioms.v
@@ -421,22 +421,22 @@ Qed.
Lemma gcd_divide_l : forall n m, (gcd n m | n).
Proof.
- intros n m. apply spec_divide. zify. apply Zgcd_divide_l.
+ intros n m. apply spec_divide. zify. apply Z.gcd_divide_l.
Qed.
Lemma gcd_divide_r : forall n m, (gcd n m | m).
Proof.
- intros n m. apply spec_divide. zify. apply Zgcd_divide_r.
+ intros n m. apply spec_divide. zify. apply Z.gcd_divide_r.
Qed.
Lemma gcd_greatest : forall n m p, (p|n) -> (p|m) -> (p|gcd n m).
Proof.
- intros n m p. rewrite !spec_divide. zify. apply Zgcd_greatest.
+ intros n m p. rewrite !spec_divide. zify. apply Z.gcd_greatest.
Qed.
Lemma gcd_nonneg : forall n m, 0 <= gcd n m.
Proof.
- intros. zify. apply Zgcd_nonneg.
+ intros. zify. apply Z.gcd_nonneg.
Qed.
(** Bitwise operations *)
diff --git a/theories/Numbers/Natural/SpecViaZ/NSigNAxioms.v b/theories/Numbers/Natural/SpecViaZ/NSigNAxioms.v
index 33181e32a..57277b489 100644
--- a/theories/Numbers/Natural/SpecViaZ/NSigNAxioms.v
+++ b/theories/Numbers/Natural/SpecViaZ/NSigNAxioms.v
@@ -347,22 +347,22 @@ Qed.
Lemma gcd_divide_l : forall n m, (gcd n m | n).
Proof.
- intros n m. apply spec_divide. zify. apply Zgcd_divide_l.
+ intros n m. apply spec_divide. zify. apply Z.gcd_divide_l.
Qed.
Lemma gcd_divide_r : forall n m, (gcd n m | m).
Proof.
- intros n m. apply spec_divide. zify. apply Zgcd_divide_r.
+ intros n m. apply spec_divide. zify. apply Z.gcd_divide_r.
Qed.
Lemma gcd_greatest : forall n m p, (p|n) -> (p|m) -> (p|gcd n m).
Proof.
- intros n m p. rewrite !spec_divide. zify. apply Zgcd_greatest.
+ intros n m p. rewrite !spec_divide. zify. apply Z.gcd_greatest.
Qed.
Lemma gcd_nonneg : forall n m, 0 <= gcd n m.
Proof.
- intros. zify. apply Zgcd_nonneg.
+ intros. zify. apply Z.gcd_nonneg.
Qed.
(** Bitwise operations *)
diff --git a/theories/QArith/Qreduction.v b/theories/QArith/Qreduction.v
index 4888ce4b1..e39eca0cb 100644
--- a/theories/QArith/Qreduction.v
+++ b/theories/QArith/Qreduction.v
@@ -9,7 +9,7 @@
(** Normalisation functions for rational numbers. *)
Require Export QArith_base.
-Require Import Zgcd_def Znumtheory.
+Require Import Znumtheory.
(** First, a function that (tries to) build a positive back from a Z. *)
@@ -83,14 +83,13 @@ Proof.
exists bb; auto with zarith.
intros.
inversion Hg1.
- destruct (H6 (g*x)).
+ destruct (H6 (g*x)) as (x',Hx).
rewrite Hg3.
destruct H2 as (xa,Hxa); exists xa; rewrite Hxa; ring.
rewrite Hg4.
destruct H3 as (xb,Hxb); exists xb; rewrite Hxb; ring.
- exists q.
- apply Zmult_reg_l with g; auto.
- pattern g at 1; rewrite H7; ring.
+ exists x'.
+ apply Zmult_reg_l with g; auto. rewrite Hx at 1; ring.
(* /rel_prime *)
unfold rel_prime in |- *.
(* rel_prime *)
@@ -99,14 +98,13 @@ Proof.
exists dd; auto with zarith.
intros.
inversion Hg'1.
- destruct (H6 (g'*x)).
+ destruct (H6 (g'*x)) as (x',Hx).
rewrite Hg'3.
destruct H2 as (xc,Hxc); exists xc; rewrite Hxc; ring.
rewrite Hg'4.
destruct H3 as (xd,Hxd); exists xd; rewrite Hxd; ring.
- exists q.
- apply Zmult_reg_l with g'; auto.
- pattern g' at 1; rewrite H7; ring.
+ exists x'.
+ apply Zmult_reg_l with g'; auto. rewrite Hx at 1; ring.
(* /rel_prime *)
assert (0<bb); [|auto with zarith].
apply Zmult_gt_0_lt_0_reg_r with g.
diff --git a/theories/ZArith/ZArith.v b/theories/ZArith/ZArith.v
index e532e4ad9..a935c7dac 100644
--- a/theories/ZArith/ZArith.v
+++ b/theories/ZArith/ZArith.v
@@ -13,7 +13,7 @@ Require Export ZArith_base.
(** Extra definitions *)
Require Export
- Zpow_def Zsqrt_def Zlog_def Zgcd_def Zdiv_def Zdigits_def.
+ Zpow_def Zsqrt_def Zlog_def Zdiv_def Zdigits_def.
(** Extra modules using [Omega] or [Ring]. *)
diff --git a/theories/ZArith/Zgcd_alt.v b/theories/ZArith/Zgcd_alt.v
index bcb9e42ae..ebf3d0246 100644
--- a/theories/ZArith/Zgcd_alt.v
+++ b/theories/ZArith/Zgcd_alt.v
@@ -22,7 +22,6 @@ Author: Pierre Letouzey
Require Import ZArith_base.
Require Import ZArithRing.
Require Import Zdiv.
-Require Import Zgcd_def.
Require Import Znumtheory.
Open Scope Z_scope.
diff --git a/theories/ZArith/Zgcd_def.v b/theories/ZArith/Zgcd_def.v
deleted file mode 100644
index 674f705e5..000000000
--- a/theories/ZArith/Zgcd_def.v
+++ /dev/null
@@ -1,21 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-Require Import BinPos BinInt.
-
-Open Local Scope Z_scope.
-
-Notation Zgcd := Z.gcd (only parsing).
-Notation Zggcd := Z.ggcd (only parsing).
-Notation Zggcd_gcd := Z.ggcd_gcd (only parsing).
-Notation Zggcd_correct_divisors := Z.ggcd_correct_divisors (only parsing).
-Notation Zgcd_divide_l := Z.gcd_divide_l (only parsing).
-Notation Zgcd_divide_r := Z.gcd_divide_r (only parsing).
-Notation Zgcd_greatest := Z.gcd_greatest (only parsing).
-Notation Zgcd_nonneg := Z.gcd_nonneg (only parsing).
-Notation Zggcd_opp := Z.ggcd_opp (only parsing).
diff --git a/theories/ZArith/Znumtheory.v b/theories/ZArith/Znumtheory.v
index bbc984af1..4371707dc 100644
--- a/theories/ZArith/Znumtheory.v
+++ b/theories/ZArith/Znumtheory.v
@@ -10,7 +10,6 @@ Require Import ZArith_base.
Require Import ZArithRing.
Require Import Zcomplements.
Require Import Zdiv.
-Require Import Zgcd_def.
Require Import Wf_nat.
(** For compatibility reasons, this Open Scope isn't local as it should *)
@@ -23,313 +22,170 @@ Open Scope Z_scope.
- Euclid algorithm [euclid]
- a relatively prime predicate [rel_prime]
- a prime predicate [prime]
- - properties of the efficient [Zgcd] function defined in [Zgcd_def]
+ - properties of the efficient [Z.gcd] function
*)
-(** * Divisibility *)
+Notation Zgcd := Z.gcd (only parsing).
+Notation Zggcd := Z.ggcd (only parsing).
+Notation Zggcd_gcd := Z.ggcd_gcd (only parsing).
+Notation Zggcd_correct_divisors := Z.ggcd_correct_divisors (only parsing).
+Notation Zgcd_divide_l := Z.gcd_divide_l (only parsing).
+Notation Zgcd_divide_r := Z.gcd_divide_r (only parsing).
+Notation Zgcd_greatest := Z.gcd_greatest (only parsing).
+Notation Zgcd_nonneg := Z.gcd_nonneg (only parsing).
+Notation Zggcd_opp := Z.ggcd_opp (only parsing).
-Inductive Zdivide (a b:Z) : Prop :=
- Zdivide_intro : forall q:Z, b = q * a -> Zdivide a b.
+(** The former specialized inductive predicate [Zdivide] is now
+ a generic existential predicate. *)
-(** Syntax for divisibility *)
-
-Notation "( a | b )" := (Zdivide a b) (at level 0) : Z_scope.
+Notation Zdivide := Z.divide (only parsing).
+Notation Zdivide_intro := ex_intro (only parsing).
(** Results concerning divisibility*)
-Lemma Zdivide_equiv : forall a b, Z.divide a b <-> Zdivide a b.
-Proof.
- intros a b; split; intros (c,H); now exists c.
-Qed.
+Notation Zdivide_refl := Z.divide_refl (only parsing).
+Notation Zone_divide := Z.divide_1_l (only parsing).
+Notation Zdivide_0 := Z.divide_0_r (only parsing).
+Notation Zmult_divide_compat_l := Z.mul_divide_mono_l (only parsing).
+Notation Zmult_divide_compat_r := Z.mul_divide_mono_r (only parsing).
+Notation Zdivide_plus_r := Z.divide_add_r (only parsing).
+Notation Zdivide_minus_l := Z.divide_sub_r (only parsing).
+Notation Zdivide_mult_l := Z.divide_mul_l (only parsing).
+Notation Zdivide_mult_r := Z.divide_mul_r (only parsing).
+Notation Zdivide_factor_r := Z.divide_factor_l (only parsing).
+Notation Zdivide_factor_l := Z.divide_factor_r (only parsing).
-Lemma Zdivide_refl : forall a:Z, (a | a).
-Proof.
- intros; apply Zdivide_intro with 1; ring.
-Qed.
+Lemma Zdivide_opp_r a b : (a | b) -> (a | - b).
+Proof. apply Z.divide_opp_r. Qed.
-Lemma Zone_divide : forall a:Z, (1 | a).
-Proof.
- intros; apply Zdivide_intro with a; ring.
-Qed.
+Lemma Zdivide_opp_r_rev a b : (a | - b) -> (a | b).
+Proof. apply Z.divide_opp_r. Qed.
-Lemma Zdivide_0 : forall a:Z, (a | 0).
-Proof.
- intros; apply Zdivide_intro with 0; ring.
-Qed.
+Lemma Zdivide_opp_l a b : (a | b) -> (- a | b).
+Proof. apply Z.divide_opp_l. Qed.
-Hint Resolve Zdivide_refl Zone_divide Zdivide_0: zarith.
+Lemma Zdivide_opp_l_rev a b : (- a | b) -> (a | b).
+Proof. apply Z.divide_opp_l. Qed.
-Lemma Zmult_divide_compat_l : forall a b c:Z, (a | b) -> (c * a | c * b).
-Proof.
- simple induction 1; intros; apply Zdivide_intro with q.
- rewrite H0; ring.
-Qed.
+Theorem Zdivide_Zabs_l a b : (Z.abs a | b) -> (a | b).
+Proof. apply Z.divide_abs_l. Qed.
-Lemma Zmult_divide_compat_r : forall a b c:Z, (a | b) -> (a * c | b * c).
-Proof.
- intros a b c; rewrite (Zmult_comm a c); rewrite (Zmult_comm b c).
- apply Zmult_divide_compat_l; trivial.
-Qed.
+Theorem Zdivide_Zabs_inv_l a b : (a | b) -> (Z.abs a | b).
+Proof. apply Z.divide_abs_l. Qed.
+Hint Resolve Zdivide_refl Zone_divide Zdivide_0: zarith.
Hint Resolve Zmult_divide_compat_l Zmult_divide_compat_r: zarith.
-
-Lemma Zdivide_plus_r : forall a b c:Z, (a | b) -> (a | c) -> (a | b + c).
-Proof.
- simple induction 1; intros q Hq; simple induction 1; intros q' Hq'.
- apply Zdivide_intro with (q + q').
- rewrite Hq; rewrite Hq'; ring.
-Qed.
-
-Lemma Zdivide_opp_r : forall a b:Z, (a | b) -> (a | - b).
-Proof.
- simple induction 1; intros; apply Zdivide_intro with (- q).
- rewrite H0; ring.
-Qed.
-
-Lemma Zdivide_opp_r_rev : forall a b:Z, (a | - b) -> (a | b).
-Proof.
- intros; replace b with (- - b). apply Zdivide_opp_r; trivial. ring.
-Qed.
-
-Lemma Zdivide_opp_l : forall a b:Z, (a | b) -> (- a | b).
-Proof.
- simple induction 1; intros; apply Zdivide_intro with (- q).
- rewrite H0; ring.
-Qed.
-
-Lemma Zdivide_opp_l_rev : forall a b:Z, (- a | b) -> (a | b).
-Proof.
- intros; replace a with (- - a). apply Zdivide_opp_l; trivial. ring.
-Qed.
-
-Lemma Zdivide_minus_l : forall a b c:Z, (a | b) -> (a | c) -> (a | b - c).
-Proof.
- simple induction 1; intros q Hq; simple induction 1; intros q' Hq'.
- apply Zdivide_intro with (q - q').
- rewrite Hq; rewrite Hq'; ring.
-Qed.
-
-Lemma Zdivide_mult_l : forall a b c:Z, (a | b) -> (a | b * c).
-Proof.
- simple induction 1; intros q Hq; apply Zdivide_intro with (q * c).
- rewrite Hq; ring.
-Qed.
-
-Lemma Zdivide_mult_r : forall a b c:Z, (a | c) -> (a | b * c).
-Proof.
- simple induction 1; intros q Hq; apply Zdivide_intro with (q * b).
- rewrite Hq; ring.
-Qed.
-
-Lemma Zdivide_factor_r : forall a b:Z, (a | a * b).
-Proof.
- intros; apply Zdivide_intro with b; ring.
-Qed.
-
-Lemma Zdivide_factor_l : forall a b:Z, (a | b * a).
-Proof.
- intros; apply Zdivide_intro with b; ring.
-Qed.
-
Hint Resolve Zdivide_plus_r Zdivide_opp_r Zdivide_opp_r_rev Zdivide_opp_l
Zdivide_opp_l_rev Zdivide_minus_l Zdivide_mult_l Zdivide_mult_r
Zdivide_factor_r Zdivide_factor_l: zarith.
(** Auxiliary result. *)
-Lemma Zmult_one : forall x y:Z, x >= 0 -> x * y = 1 -> x = 1.
+Lemma Zmult_one x y : x >= 0 -> x * y = 1 -> x = 1.
Proof.
- intros x y H H0; destruct (Zmult_1_inversion_l _ _ H0) as [Hpos| Hneg].
- assumption.
- rewrite Hneg in H; simpl in H.
- contradiction (Zle_not_lt 0 (-1)).
- apply Zge_le; assumption.
- apply Zorder.Zlt_neg_0.
+ Z.swap_greater. apply Z.eq_mul_1_nonneg.
Qed.
(** Only [1] and [-1] divide [1]. *)
-Lemma Zdivide_1 : forall x:Z, (x | 1) -> x = 1 \/ x = -1.
-Proof.
- simple induction 1; intros.
- elim (Z_lt_ge_dec 0 x); [ left | right ].
- apply Zmult_one with q; auto with zarith; rewrite H0; ring.
- assert (- x = 1); auto with zarith.
- apply Zmult_one with (- q); auto with zarith; rewrite H0; ring.
-Qed.
+Notation Zdivide_1 := Z.divide_1_r (only parsing).
(** If [a] divides [b] and [b] divides [a] then [a] is [b] or [-b]. *)
-Lemma Zdivide_antisym : forall a b:Z, (a | b) -> (b | a) -> a = b \/ a = - b.
-Proof.
- simple induction 1; intros.
- inversion H1.
- rewrite H0 in H2; clear H H1.
- case (Z_zerop a); intro.
- left; rewrite H0; rewrite e; ring.
- assert (Hqq0 : q0 * q = 1).
- apply Zmult_reg_l with a.
- assumption.
- ring_simplify.
- pattern a at 2 in |- *; rewrite H2; ring.
- assert (q | 1).
- rewrite <- Hqq0; auto with zarith.
- elim (Zdivide_1 q H); intros.
- rewrite H1 in H0; left; omega.
- rewrite H1 in H0; right; omega.
-Qed.
-
-Theorem Zdivide_trans: forall a b c, (a | b) -> (b | c) -> (a | c).
-Proof.
- intros a b c [d H1] [e H2]; exists (d * e); auto with zarith.
- rewrite H2; rewrite H1; ring.
-Qed.
+Notation Zdivide_antisym := Z.divide_antisym (only parsing).
+Notation Zdivide_trans := Z.divide_trans (only parsing).
(** If [a] divides [b] and [b<>0] then [|a| <= |b|]. *)
-Lemma Zdivide_bounds : forall a b:Z, (a | b) -> b <> 0 -> Zabs a <= Zabs b.
+Lemma Zdivide_bounds a b : (a | b) -> b <> 0 -> Z.abs a <= Z.abs b.
Proof.
- simple induction 1; intros.
- assert (Zabs b = Zabs q * Zabs a).
- subst; apply Zabs_Zmult.
- rewrite H2.
- assert (H3 := Zabs_pos q).
- assert (H4 := Zabs_pos a).
- assert (Zabs q * Zabs a >= 1 * Zabs a); auto with zarith.
- apply Zmult_ge_compat; auto with zarith.
- elim (Z_lt_ge_dec (Zabs q) 1); [ intros | auto with zarith ].
- assert (Zabs q = 0).
- omega.
- assert (q = 0).
- rewrite <- (Zabs_Zsgn q).
- rewrite H5; auto with zarith.
- subst q; omega.
+ intros H Hb.
+ rewrite <- Z.divide_abs_l, <- Z.divide_abs_r in H.
+ apply Z.abs_pos in Hb.
+ now apply Z.divide_pos_le.
Qed.
(** [Zdivide] can be expressed using [Zmod]. *)
Lemma Zmod_divide : forall a b, b<>0 -> a mod b = 0 -> (b | a).
Proof.
- intros a b NZ EQ.
- apply Zdivide_intro with (a/b).
- rewrite (Z_div_mod_eq_full a b NZ) at 1.
- rewrite EQ; ring.
+ apply Z.mod_divide.
Qed.
Lemma Zdivide_mod : forall a b, (b | a) -> a mod b = 0.
Proof.
- intros a b (c,->); apply Z_mod_mult.
+ intros a b (c,->); apply Z_mod_mult.
Qed.
(** [Zdivide] is hence decidable *)
-Lemma Zdivide_dec : forall a b:Z, {(a | b)} + {~ (a | b)}.
-Proof.
- intros a b; elim (Ztrichotomy_inf a 0).
- (* a<0 *)
- intros H; elim H; intros.
- case (Z_eq_dec (b mod - a) 0).
- left; apply Zdivide_opp_l_rev; apply Zmod_divide; auto with zarith.
- intro H1; right; intro; elim H1; apply Zdivide_mod; auto with zarith.
- (* a=0 *)
- case (Z_eq_dec b 0); intro.
- left; subst; auto with zarith.
- right; subst; intro H0; inversion H0; omega.
- (* a>0 *)
- intro H; case (Z_eq_dec (b mod a) 0).
- left; apply Zmod_divide; auto with zarith.
- intro H1; right; intro; elim H1; apply Zdivide_mod; auto with zarith.
-Qed.
-
-Theorem Zdivide_Zdiv_eq: forall a b : Z,
- 0 < a -> (a | b) -> b = a * (b / a).
+Lemma Zdivide_dec a b : {(a | b)} + {~ (a | b)}.
Proof.
- intros a b Hb Hc.
- pattern b at 1; rewrite (Z_div_mod_eq b a); auto with zarith.
- rewrite (Zdivide_mod b a); auto with zarith.
-Qed.
-
-Theorem Zdivide_Zdiv_eq_2: forall a b c : Z,
- 0 < a -> (a | b) -> (c * b)/a = c * (b / a).
-Proof.
- intros a b c H1 H2.
- inversion H2 as [z Hz].
- rewrite Hz; rewrite Zmult_assoc.
- repeat rewrite Z_div_mult; auto with zarith.
-Qed.
+ destruct (Z.eq_dec a 0) as [Ha|Ha].
+ destruct (Z.eq_dec b 0) as [Hb|Hb].
+ left; subst; apply Z.divide_0_r.
+ right. subst. contradict Hb. now apply Z.divide_0_l.
+ destruct (Z.eq_dec (b mod a) 0).
+ left. now apply Z.mod_divide.
+ right. now rewrite <- Z.mod_divide.
+Defined.
-Theorem Zdivide_Zabs_l: forall a b, (Zabs a | b) -> (a | b).
+Theorem Zdivide_Zdiv_eq a b : 0 < a -> (a | b) -> b = a * (b / a).
Proof.
- intros a b [x H]; subst b.
- pattern (Zabs a); apply Zabs_intro.
- exists (- x); ring.
- exists x; ring.
+ intros Ha H.
+ rewrite (Z.div_mod b a) at 1; auto with zarith.
+ rewrite Zdivide_mod; auto with zarith.
Qed.
-Theorem Zdivide_Zabs_inv_l: forall a b, (a | b) -> (Zabs a | b).
+Theorem Zdivide_Zdiv_eq_2 a b c :
+ 0 < a -> (a | b) -> (c * b) / a = c * (b / a).
Proof.
- intros a b [x H]; subst b.
- pattern (Zabs a); apply Zabs_intro.
- exists (- x); ring.
- exists x; ring.
+ intros. apply Z.divide_div_mul_exact; auto with zarith.
Qed.
Theorem Zdivide_le: forall a b : Z,
0 <= a -> 0 < b -> (a | b) -> a <= b.
Proof.
- intros a b H1 H2 [q H3]; subst b.
- case (Zle_lt_or_eq 0 a); auto with zarith; intros H3.
- case (Zle_lt_or_eq 0 q); auto with zarith.
- apply (Zmult_le_0_reg_r a); auto with zarith.
- intros H4; apply Zle_trans with (1 * a); auto with zarith.
- intros H4; subst q; omega.
+ intros. now apply Z.divide_pos_le.
Qed.
-Theorem Zdivide_Zdiv_lt_pos: forall a b : Z,
+Theorem Zdivide_Zdiv_lt_pos a b :
1 < a -> 0 < b -> (a | b) -> 0 < b / a < b .
Proof.
- intros a b H1 H2 H3; split.
- apply Zmult_lt_reg_r with a; auto with zarith.
- rewrite (Zmult_comm (Zdiv b a)); rewrite <- Zdivide_Zdiv_eq; auto with zarith.
- apply Zmult_lt_reg_r with a; auto with zarith.
- repeat rewrite (fun x => Zmult_comm x a); auto with zarith.
+ intros H1 H2 H3; split.
+ apply Z.mul_pos_cancel_l with a; auto with zarith.
rewrite <- Zdivide_Zdiv_eq; auto with zarith.
- pattern b at 1; replace b with (1 * b); auto with zarith.
- apply Zmult_lt_compat_r; auto with zarith.
+ now apply Z.div_lt.
Qed.
-Lemma Zmod_div_mod: forall n m a, 0 < n -> 0 < m ->
- (n | m) -> a mod n = (a mod m) mod n.
+Lemma Zmod_div_mod n m a:
+ 0 < n -> 0 < m -> (n | m) -> a mod n = (a mod m) mod n.
Proof.
- intros n m a H1 H2 H3.
- pattern a at 1; rewrite (Z_div_mod_eq a m); auto with zarith.
- case H3; intros q Hq; pattern m at 1; rewrite Hq.
- rewrite (Zmult_comm q).
- rewrite Zplus_mod; auto with zarith.
- rewrite <- Zmult_assoc; rewrite Zmult_mod; auto with zarith.
- rewrite Z_mod_same; try rewrite Zmult_0_l; auto with zarith.
- rewrite (Zmod_small 0); auto with zarith.
- rewrite Zplus_0_l; rewrite Zmod_mod; auto with zarith.
+ intros H1 H2 (p,Hp).
+ rewrite (Z.div_mod a m) at 1; auto with zarith.
+ rewrite Hp at 1.
+ rewrite Z.mul_shuffle0, Z.add_comm, Z.mod_add; auto with zarith.
Qed.
-Lemma Zmod_divide_minus: forall a b c : Z, 0 < b ->
- a mod b = c -> (b | a - c).
+Lemma Zmod_divide_minus a b c:
+ 0 < b -> a mod b = c -> (b | a - c).
Proof.
- intros a b c H H1; apply Zmod_divide; auto with zarith.
+ intros H H1. apply Z.mod_divide; auto with zarith.
rewrite Zminus_mod; auto with zarith.
- rewrite H1; pattern c at 1; rewrite <- (Zmod_small c b); auto with zarith.
- rewrite Zminus_diag; apply Zmod_small; auto with zarith.
- subst; apply Z_mod_lt; auto with zarith.
+ rewrite H1. rewrite <- (Z.mod_small c b) at 1.
+ rewrite Z.sub_diag, Z.mod_0_l; auto with zarith.
+ subst. now apply Z.mod_pos_bound.
Qed.
-Lemma Zdivide_mod_minus: forall a b c : Z, 0 <= c < b ->
- (b | a - c) -> a mod b = c.
+Lemma Zdivide_mod_minus a b c:
+ 0 <= c < b -> (b | a - c) -> a mod b = c.
Proof.
- intros a b c (H1, H2) H3; assert (0 < b); try apply Zle_lt_trans with c; auto.
+ intros (H1, H2) H3.
+ assert (0 < b) by Z.order.
replace a with ((a - c) + c); auto with zarith.
- rewrite Zplus_mod; auto with zarith.
- rewrite (Zdivide_mod (a -c) b); try rewrite Zplus_0_l; auto with zarith.
- rewrite Zmod_mod; try apply Zmod_small; auto with zarith.
+ rewrite Z.add_mod; auto with zarith.
+ rewrite (Zdivide_mod (a-c) b); try rewrite Z.add_0_l; auto with zarith.
+ rewrite Z.mod_mod; try apply Zmod_small; auto with zarith.
Qed.
(** * Greatest common divisor (gcd). *)
@@ -345,12 +201,12 @@ Inductive Zis_gcd (a b d:Z) : Prop :=
(** Trivial properties of [gcd] *)
-Lemma Zis_gcd_sym : forall a b d:Z, Zis_gcd a b d -> Zis_gcd b a d.
+Lemma Zis_gcd_sym : forall a b d, Zis_gcd a b d -> Zis_gcd b a d.
Proof.
- simple induction 1; constructor; intuition.
+ induction 1; constructor; intuition.
Qed.
-Lemma Zis_gcd_0 : forall a:Z, Zis_gcd a 0 a.
+Lemma Zis_gcd_0 : forall a, Zis_gcd a 0 a.
Proof.
constructor; auto with zarith.
Qed.
@@ -365,19 +221,18 @@ Proof.
constructor; auto with zarith.
Qed.
-Lemma Zis_gcd_minus : forall a b d:Z, Zis_gcd a (- b) d -> Zis_gcd b a d.
+Lemma Zis_gcd_minus : forall a b d, Zis_gcd a (- b) d -> Zis_gcd b a d.
Proof.
- simple induction 1; constructor; intuition.
+ induction 1; constructor; intuition.
Qed.
-Lemma Zis_gcd_opp : forall a b d:Z, Zis_gcd a b d -> Zis_gcd b a (- d).
+Lemma Zis_gcd_opp : forall a b d, Zis_gcd a b d -> Zis_gcd b a (- d).
Proof.
- simple induction 1; constructor; intuition.
+ induction 1; constructor; intuition.
Qed.
-Lemma Zis_gcd_0_abs : forall a:Z, Zis_gcd 0 a (Zabs a).
+Lemma Zis_gcd_0_abs a : Zis_gcd 0 a (Z.abs a).
Proof.
- intros a.
apply Zabs_ind.
intros; apply Zis_gcd_sym; apply Zis_gcd_0; auto.
intros; apply Zis_gcd_opp; apply Zis_gcd_0; auto.
@@ -526,14 +381,15 @@ Qed.
Lemma Zis_gcd_mult :
forall a b c d:Z, Zis_gcd a b d -> Zis_gcd (c * a) (c * b) (c * d).
Proof.
- intros a b c d; simple induction 1; constructor; intuition.
- elim (Zis_gcd_bezout a b d H). intros.
- elim H3; intros.
- elim H4; intros.
- apply Zdivide_intro with (u * q + v * q0).
- rewrite <- H5.
+ intros a b c d; simple induction 1. constructor; auto with zarith.
+ intros x Ha Hb.
+ elim (Zis_gcd_bezout a b d H). intros u v Huv.
+ elim Ha; intros a' Ha'.
+ elim Hb; intros b' Hb'.
+ apply Zdivide_intro with (u * a' + v * b').
+ rewrite <- Huv.
replace (c * (u * a + v * b)) with (u * (c * a) + v * (c * b)).
- rewrite H6; rewrite H7; ring.
+ rewrite Ha'; rewrite Hb'; ring.
ring.
Qed.
@@ -632,14 +488,14 @@ Proof.
exists a'; auto with zarith.
exists b'; auto with zarith.
intros x (xa,H5) (xb,H6).
- destruct (H4 (x*g)).
+ destruct (H4 (x*g)) as (x',Hx').
exists xa; rewrite Zmult_assoc; rewrite <- H5; auto.
exists xb; rewrite Zmult_assoc; rewrite <- H6; auto.
- replace g with (1*g) in H7; auto with zarith.
- do 2 rewrite Zmult_assoc in H7.
- generalize (Zmult_reg_r _ _ _ H2 H7); clear H7; intros.
- rewrite Zmult_1_r in H7.
- exists q; auto with zarith.
+ replace g with (1*g) in Hx'; auto with zarith.
+ do 2 rewrite Zmult_assoc in Hx'.
+ apply Zmult_reg_r in Hx'; trivial.
+ rewrite Zmult_1_r in Hx'.
+ exists x'; auto with zarith.
Qed.
Theorem rel_prime_sym: forall a b, rel_prime a b -> rel_prime b a.
@@ -882,83 +738,62 @@ Proof.
contradict Hp; auto with zarith.
Qed.
-(** we now prove that Zgcd (defined in Zgcd_def) is indeed a gcd in
- the sense of Zis_gcd. *)
+(** we now prove that [Z.gcd] is indeed a gcd in
+ the sense of [Zis_gcd]. *)
-Notation Zgcd_is_pos := Zgcd_nonneg (only parsing).
+Notation Zgcd_is_pos := Z.gcd_nonneg (only parsing).
-Lemma Zgcd_is_gcd : forall a b, Zis_gcd a b (Zgcd a b).
+Lemma Zgcd_is_gcd : forall a b, Zis_gcd a b (Z.gcd a b).
Proof.
- constructor; intros; apply Zdivide_equiv.
- apply Zgcd_divide_l.
- apply Zgcd_divide_r.
- apply Zgcd_greatest; now apply Zdivide_equiv.
+ constructor.
+ apply Z.gcd_divide_l.
+ apply Z.gcd_divide_r.
+ apply Z.gcd_greatest.
Qed.
Theorem Zgcd_spec : forall x y : Z, {z : Z | Zis_gcd x y z /\ 0 <= z}.
Proof.
- intros x y; exists (Zgcd x y).
- split; [apply Zgcd_is_gcd | apply Zgcd_is_pos].
+ intros x y; exists (Z.gcd x y).
+ split; [apply Zgcd_is_gcd | apply Z.gcd_nonneg].
Qed.
Theorem Zdivide_Zgcd: forall p q r : Z,
- (p | q) -> (p | r) -> (p | Zgcd q r).
+ (p | q) -> (p | r) -> (p | Z.gcd q r).
Proof.
- intros p q r H1 H2.
- assert (H3: (Zis_gcd q r (Zgcd q r))).
- apply Zgcd_is_gcd.
- inversion_clear H3; auto.
+ intros. now apply Z.gcd_greatest.
Qed.
Theorem Zis_gcd_gcd: forall a b c : Z,
- 0 <= c -> Zis_gcd a b c -> Zgcd a b = c.
+ 0 <= c -> Zis_gcd a b c -> Z.gcd a b = c.
Proof.
intros a b c H1 H2.
case (Zis_gcd_uniqueness_apart_sign a b c (Zgcd a b)); auto.
apply Zgcd_is_gcd; auto.
- case Zle_lt_or_eq with (1 := H1); clear H1; intros H1; subst; auto.
- intros H3; subst.
- generalize (Zgcd_is_pos a b); auto with zarith.
- case (Zgcd a b); simpl; auto; intros; discriminate.
+ Z.le_elim H1.
+ generalize (Z.gcd_nonneg a b); auto with zarith.
+ subst. now case (Z.gcd a b).
Qed.
-Theorem Zgcd_inv_0_l: forall x y, Zgcd x y = 0 -> x = 0.
-Proof.
- intros x y H.
- assert (F1: Zdivide 0 x).
- rewrite <- H.
- generalize (Zgcd_is_gcd x y); intros HH; inversion HH; auto.
- inversion F1 as [z H1].
- rewrite H1; ring.
-Qed.
-
-Theorem Zgcd_inv_0_r: forall x y, Zgcd x y = 0 -> y = 0.
-Proof.
- intros x y H.
- assert (F1: Zdivide 0 y).
- rewrite <- H.
- generalize (Zgcd_is_gcd x y); intros HH; inversion HH; auto.
- inversion F1 as [z H1].
- rewrite H1; ring.
-Qed.
+Notation Zgcd_inv_0_l := Z.gcd_eq_0_l (only parsing).
+Notation Zgcd_inv_0_r := Z.gcd_eq_0_r (only parsing).
Theorem Zgcd_div_swap0 : forall a b : Z,
- 0 < Zgcd a b ->
+ 0 < Z.gcd a b ->
0 < b ->
- (a / Zgcd a b) * b = a * (b/Zgcd a b).
+ (a / Z.gcd a b) * b = a * (b/Z.gcd a b).
Proof.
intros a b Hg Hb.
assert (F := Zgcd_is_gcd a b); inversion F as [F1 F2 F3].
- pattern b at 2; rewrite (Zdivide_Zdiv_eq (Zgcd a b) b); auto.
+ pattern b at 2; rewrite (Zdivide_Zdiv_eq (Z.gcd a b) b); auto.
repeat rewrite Zmult_assoc; f_equal.
rewrite Zmult_comm.
rewrite <- Zdivide_Zdiv_eq; auto.
Qed.
Theorem Zgcd_div_swap : forall a b c : Z,
- 0 < Zgcd a b ->
+ 0 < Z.gcd a b ->
0 < b ->
- (c * a) / Zgcd a b * b = c * a * (b/Zgcd a b).
+ (c * a) / Z.gcd a b * b = c * a * (b/Z.gcd a b).
Proof.
intros a b c Hg Hb.
assert (F := Zgcd_is_gcd a b); inversion F as [F1 F2 F3].
@@ -970,44 +805,21 @@ Proof.
rewrite <- Zdivide_Zdiv_eq; auto.
Qed.
-Lemma Zgcd_comm : forall a b, Zgcd a b = Zgcd b a.
-Proof.
- intros.
- apply Zis_gcd_gcd.
- apply Zgcd_is_pos.
- apply Zis_gcd_sym.
- apply Zgcd_is_gcd.
-Qed.
-
-Lemma Zgcd_ass : forall a b c, Zgcd (Zgcd a b) c = Zgcd a (Zgcd b c).
-Proof.
- intros.
- apply Zis_gcd_gcd.
- apply Zgcd_is_pos.
- destruct (Zgcd_is_gcd a b).
- destruct (Zgcd_is_gcd b c).
- destruct (Zgcd_is_gcd a (Zgcd b c)).
- constructor; eauto using Zdivide_trans.
-Qed.
+Notation Zgcd_comm := Z.gcd_comm (only parsing).
-Lemma Zgcd_Zabs : forall a b, Zgcd (Zabs a) b = Zgcd a b.
+Lemma Zgcd_ass a b c : Zgcd (Zgcd a b) c = Zgcd a (Zgcd b c).
Proof.
- destruct a; simpl; auto.
+ symmetry. apply Z.gcd_assoc.
Qed.
-Lemma Zgcd_0 : forall a, Zgcd a 0 = Zabs a.
-Proof.
- destruct a; simpl; auto.
-Qed.
+Notation Zgcd_Zabs := Z.gcd_abs_l (only parsing).
+Notation Zgcd_0 := Z.gcd_0_r (only parsing).
+Notation Zgcd_1 := Z.gcd_1_r (only parsing).
-Lemma Zgcd_1 : forall a, Zgcd a 1 = 1.
-Proof.
- intros; apply Zis_gcd_gcd; auto with zarith; apply Zis_gcd_1.
-Qed.
Hint Resolve Zgcd_0 Zgcd_1 : zarith.
Theorem Zgcd_1_rel_prime : forall a b,
- Zgcd a b = 1 <-> rel_prime a b.
+ Z.gcd a b = 1 <-> rel_prime a b.
Proof.
unfold rel_prime; split; intro H.
rewrite <- H; apply Zgcd_is_gcd.
diff --git a/theories/ZArith/vo.itarget b/theories/ZArith/vo.itarget
index cf0cdd7c7..7592d2fae 100644
--- a/theories/ZArith/vo.itarget
+++ b/theories/ZArith/vo.itarget
@@ -32,6 +32,5 @@ Zsqrt_compat.vo
Zwf.vo
Zsqrt_def.vo
Zlog_def.vo
-Zgcd_def.vo
Zeuclid.vo
Zdigits_def.vo \ No newline at end of file