aboutsummaryrefslogtreecommitdiffhomepage
diff options
context:
space:
mode:
-rw-r--r--theories/Reals/AltSeries.v4
-rw-r--r--theories/Reals/Cos_plus.v2
-rw-r--r--theories/Reals/Exp_prop.v6
-rw-r--r--theories/Reals/Rcomplete.v6
-rw-r--r--theories/Reals/RiemannInt.v14
-rw-r--r--theories/Reals/Rsqrt_def.v12
-rw-r--r--theories/Reals/Rtrigo_reg.v6
-rw-r--r--theories/Reals/SeqProp.v167
-rw-r--r--theories/Reals/SeqSeries.v6
9 files changed, 106 insertions, 117 deletions
diff --git a/theories/Reals/AltSeries.v b/theories/Reals/AltSeries.v
index c5e1e0ba5..d9477c50d 100644
--- a/theories/Reals/AltSeries.v
+++ b/theories/Reals/AltSeries.v
@@ -97,8 +97,8 @@ Apply CV_ALT_step2; Assumption.
Qed.
(**********)
-Lemma CV_ALT_step4 : (Un:nat->R) (Un_decreasing Un) -> (positivity_seq Un) -> (majoree [N:nat](sum_f_R0 (tg_alt Un) (S (mult (2) N)))).
-Intros; Unfold majoree; Unfold bound.
+Lemma CV_ALT_step4 : (Un:nat->R) (Un_decreasing Un) -> (positivity_seq Un) -> (has_ub [N:nat](sum_f_R0 (tg_alt Un) (S (mult (2) N)))).
+Intros; Unfold has_ub; Unfold bound.
Exists ``(Un O)``.
Unfold is_upper_bound; Intros; Elim H1; Intros.
Rewrite H2; Rewrite decomp_sum.
diff --git a/theories/Reals/Cos_plus.v b/theories/Reals/Cos_plus.v
index 15f68c1bb..9a4e04283 100644
--- a/theories/Reals/Cos_plus.v
+++ b/theories/Reals/Cos_plus.v
@@ -924,7 +924,7 @@ Intros.
Cut (Un_cv (C1 x y) ``(cos x)*(cos y)-(sin x)*(sin y)``).
Cut (Un_cv (C1 x y) ``(cos (x+y))``).
Intros.
-Apply UL_suite with (C1 x y); Assumption.
+Apply UL_sequence with (C1 x y); Assumption.
Apply C1_cvg.
Unfold Un_cv; Unfold R_dist.
Intros.
diff --git a/theories/Reals/Exp_prop.v b/theories/Reals/Exp_prop.v
index 750c0571f..61df2b49f 100644
--- a/theories/Reals/Exp_prop.v
+++ b/theories/Reals/Exp_prop.v
@@ -618,7 +618,7 @@ Lemma exp_plus : (x,y:R) ``(exp (x+y))==(exp x)*(exp y)``.
Intros; Assert H0 := (E1_cvg x).
Assert H := (E1_cvg y).
Assert H1 := (E1_cvg ``x+y``).
-EApply UL_suite.
+EApply UL_sequence.
Apply H1.
Assert H2 := (CV_mult ? ? ? ? H0 H).
Assert H3 := (CV_minus ? ? ? ? H2 (Reste_E_cv x y)).
@@ -701,7 +701,7 @@ Apply (not_sym ? ? H6).
Rewrite minus_R0; Apply H7.
Unfold SFL.
Case (cv ``0``); Intros.
-EApply UL_suite.
+EApply UL_sequence.
Apply u.
Unfold Un_cv SP.
Intros; Exists (1); Intros.
@@ -721,7 +721,7 @@ Apply lt_le_trans with (1); [Apply lt_n_Sn | Apply H9].
Unfold SFL exp.
Unfold projT1.
Case (cv h); Case (exist_exp h); Intros.
-EApply UL_suite.
+EApply UL_sequence.
Apply u.
Unfold Un_cv; Intros.
Unfold exp_in in e.
diff --git a/theories/Reals/Rcomplete.v b/theories/Reals/Rcomplete.v
index 8a653d1aa..0fff7c42a 100644
--- a/theories/Reals/Rcomplete.v
+++ b/theories/Reals/Rcomplete.v
@@ -24,8 +24,8 @@ Require Max.
Theorem R_complete : (Un:nat->R) (Cauchy_crit Un) -> (sigTT R [l:R](Un_cv Un l)).
Intros.
-Pose Vn := (suite_minorant Un (cauchy_min Un H)).
-Pose Wn := (suite_majorant Un (cauchy_maj Un H)).
+Pose Vn := (sequence_minorant Un (cauchy_min Un H)).
+Pose Wn := (sequence_majorant Un (cauchy_maj Un H)).
Assert H0 := (maj_cv Un H).
Fold Wn in H0.
Assert H1 := (min_cv Un H).
@@ -126,7 +126,7 @@ Replace ``-(x-(Wn N))`` with ``(Wn N)-x``; [Apply H4 | Ring].
Unfold ge N.
Apply le_trans with (max N1 N2); Apply le_max_l.
Unfold Wn Vn.
-Unfold suite_majorant suite_minorant.
+Unfold sequence_majorant sequence_minorant.
Assert H7 := (approx_maj [k:nat](Un (plus N k)) (maj_ss Un N (cauchy_maj Un H))).
Assert H8 := (approx_min [k:nat](Un (plus N k)) (min_ss Un N (cauchy_min Un H))).
Cut (Wn N)==(majorant ([k:nat](Un (plus N k))) (maj_ss Un N (cauchy_maj Un H))).
diff --git a/theories/Reals/RiemannInt.v b/theories/Reals/RiemannInt.v
index 116cc2e6f..aa43801a9 100644
--- a/theories/Reals/RiemannInt.v
+++ b/theories/Reals/RiemannInt.v
@@ -186,7 +186,7 @@ Definition RiemannInt [f:R->R;a,b:R;pr:(Riemann_integrable f a b)] : R := Cases
(RiemannInt_exists pr 5!RinvN RinvN_cv) of (existTT a' b') => a' end.
Lemma RiemannInt_P5 : (f:R->R;a,b:R;pr1:(Riemann_integrable f a b);pr2:(Riemann_integrable f a b)) (RiemannInt pr1)==(RiemannInt pr2).
-Intros; Unfold RiemannInt; Case (RiemannInt_exists pr1 5!RinvN RinvN_cv); Case (RiemannInt_exists pr2 5!RinvN RinvN_cv); Intros; EApply UL_suite; [Apply u0 | Apply RiemannInt_P4 with pr2 RinvN; Apply RinvN_cv Orelse Assumption].
+Intros; Unfold RiemannInt; Case (RiemannInt_exists pr1 5!RinvN RinvN_cv); Case (RiemannInt_exists pr2 5!RinvN RinvN_cv); Intros; EApply UL_sequence; [Apply u0 | Apply RiemannInt_P4 with pr2 RinvN; Apply RinvN_cv Orelse Assumption].
Qed.
(**************************************)
@@ -395,7 +395,7 @@ Intros; Case (total_order_T a b); Intro; [Elim s; Intro; [Apply RiemannInt_P6; A
Qed.
Lemma RiemannInt_P8 : (f:R->R;a,b:R;pr1:(Riemann_integrable f a b);pr2:(Riemann_integrable f b a)) ``(RiemannInt pr1)==-(RiemannInt pr2)``.
-Intros; EApply UL_suite.
+Intros; EApply UL_sequence.
Unfold RiemannInt; Case (RiemannInt_exists pr1 5!RinvN RinvN_cv); Intros; Apply u.
Unfold RiemannInt; Case (RiemannInt_exists pr2 5!RinvN RinvN_cv); Intros; Cut (EXT psi1:nat->(StepFun a b) | (n:nat) ((t:R)``(Rmin a b) <= t``/\``t <= (Rmax a b)``->``(Rabsolu ((f t)-((phi_sequence RinvN f a b pr1 n) t)))<= (psi1 n t)``)/\``(Rabsolu (RiemannInt_SF (psi1 n))) < (RinvN n)``).
Cut (EXT psi2:nat->(StepFun b a) | (n:nat) ((t:R)``(Rmin a b) <= t``/\``t <= (Rmax a b)``->``(Rabsolu ((f t)-((phi_sequence RinvN f b a pr2 n) t)))<= (psi2 n t)``)/\``(Rabsolu (RiemannInt_SF (psi2 n))) < (RinvN n)``).
@@ -595,8 +595,8 @@ Qed.
Lemma RiemannInt_P12 : (f,g:R->R;a,b,l:R;pr1:(Riemann_integrable f a b);pr2:(Riemann_integrable g a b);pr3:(Riemann_integrable [x:R]``(f x)+l*(g x)`` a b)) ``a<=b`` -> ``(RiemannInt pr3)==(RiemannInt pr1)+l*(RiemannInt pr2)``.
Intros; Case (Req_EM l R0); Intro.
-Pattern 2 l; Rewrite H0; Rewrite Rmult_Ol; Rewrite Rplus_Or; Unfold RiemannInt; Case (RiemannInt_exists pr3 5!RinvN RinvN_cv); Case (RiemannInt_exists pr1 5!RinvN RinvN_cv); Intros; EApply UL_suite; [Apply u0 | Pose psi1 := [n:nat](projT1 ? ? (phi_sequence_prop RinvN pr1 n)); Pose psi2 := [n:nat](projT1 ? ? (phi_sequence_prop RinvN pr3 n)); Apply RiemannInt_P11 with f RinvN (phi_sequence RinvN pr1) psi1 psi2; [Apply RinvN_cv | Intro; Apply (projT2 ? ? (phi_sequence_prop RinvN pr1 n)) | Intro; Assert H1 : ((t:R) ``(Rmin a b) <= t``/\``t <= (Rmax a b)`` -> (Rle (Rabsolu (Rminus ``(f t)+l*(g t)`` (phi_sequence RinvN pr3 n t))) (psi2 n t))) /\ ``(Rabsolu (RiemannInt_SF (psi2 n))) < (RinvN n)``; [Apply (projT2 ? ? (phi_sequence_prop RinvN pr3 n)) | Elim H1; Intros; Split; Try Assumption; Intros; Replace (f t) with ``(f t)+l*(g t)``; [Apply H2; Assumption | Rewrite H0; Ring]] | Assumption]].
-EApply UL_suite.
+Pattern 2 l; Rewrite H0; Rewrite Rmult_Ol; Rewrite Rplus_Or; Unfold RiemannInt; Case (RiemannInt_exists pr3 5!RinvN RinvN_cv); Case (RiemannInt_exists pr1 5!RinvN RinvN_cv); Intros; EApply UL_sequence; [Apply u0 | Pose psi1 := [n:nat](projT1 ? ? (phi_sequence_prop RinvN pr1 n)); Pose psi2 := [n:nat](projT1 ? ? (phi_sequence_prop RinvN pr3 n)); Apply RiemannInt_P11 with f RinvN (phi_sequence RinvN pr1) psi1 psi2; [Apply RinvN_cv | Intro; Apply (projT2 ? ? (phi_sequence_prop RinvN pr1 n)) | Intro; Assert H1 : ((t:R) ``(Rmin a b) <= t``/\``t <= (Rmax a b)`` -> (Rle (Rabsolu (Rminus ``(f t)+l*(g t)`` (phi_sequence RinvN pr3 n t))) (psi2 n t))) /\ ``(Rabsolu (RiemannInt_SF (psi2 n))) < (RinvN n)``; [Apply (projT2 ? ? (phi_sequence_prop RinvN pr3 n)) | Elim H1; Intros; Split; Try Assumption; Intros; Replace (f t) with ``(f t)+l*(g t)``; [Apply H2; Assumption | Rewrite H0; Ring]] | Assumption]].
+EApply UL_sequence.
Unfold RiemannInt; Case (RiemannInt_exists pr3 5!RinvN RinvN_cv); Intros; Apply u.
Unfold Un_cv; Intros; Unfold RiemannInt; Case (RiemannInt_exists pr1 5!RinvN RinvN_cv); Case (RiemannInt_exists pr2 5!RinvN RinvN_cv); Unfold Un_cv; Intros; Assert H2 : ``0<eps/5``.
Unfold Rdiv; Apply Rmult_lt_pos; [Assumption | Apply Rlt_Rinv; Sup0].
@@ -670,7 +670,7 @@ Unfold Riemann_integrable; Intros; Split with (mkStepFun (StepFun_P4 a b c)); Sp
Qed.
Lemma RiemannInt_P15 : (a,b,c:R;pr:(Riemann_integrable (fct_cte c) a b)) ``(RiemannInt pr)==c*(b-a)``.
-Intros; Unfold RiemannInt; Case (RiemannInt_exists 1!(fct_cte c) 2!a 3!b pr 5!RinvN RinvN_cv); Intros; EApply UL_suite.
+Intros; Unfold RiemannInt; Case (RiemannInt_exists 1!(fct_cte c) 2!a 3!b pr 5!RinvN RinvN_cv); Intros; EApply UL_sequence.
Apply u.
Pose phi1 := [N:nat](phi_sequence RinvN 2!(fct_cte c) 3!a 4!b pr N); Change (Un_cv [N:nat](RiemannInt_SF (phi1 N)) ``c*(b-a)``); Pose f := (fct_cte c); Assert H1 : (EXT psi1:nat->(StepFun a b) | (n:nat) ((t:R)``(Rmin a b) <= t``/\``t <= (Rmax a b)``->``(Rabsolu ((f t)-((phi_sequence RinvN f a b pr n) t)))<= (psi1 n t)``)/\``(Rabsolu (RiemannInt_SF (psi1 n))) < (RinvN n)``).
Split with [n:nat](projT1 ? ? (phi_sequence_prop RinvN pr n)); Intro; Apply (projT2 ? ? (phi_sequence_prop RinvN pr n)).
@@ -726,7 +726,7 @@ Elim H0; Clear H0; Intros psi3 H0; Elim H1; Clear H1; Intros psi2 H1; Apply Riem
Qed.
Lemma RiemannInt_P18 : (f,g:R->R;a,b:R;pr1:(Riemann_integrable f a b);pr2:(Riemann_integrable g a b)) ``a<=b`` -> ((x:R)``a<x<b``->``(f x)==(g x)``) -> ``(RiemannInt pr1)==(RiemannInt pr2)``.
-Intros; Unfold RiemannInt; Case (RiemannInt_exists 1!f 2!a 3!b pr1 5!RinvN RinvN_cv); Case (RiemannInt_exists 1!g 2!a 3!b pr2 5!RinvN RinvN_cv); Intros; EApply UL_suite.
+Intros; Unfold RiemannInt; Case (RiemannInt_exists 1!f 2!a 3!b pr1 5!RinvN RinvN_cv); Case (RiemannInt_exists 1!g 2!a 3!b pr2 5!RinvN RinvN_cv); Intros; EApply UL_sequence.
Apply u0.
Pose phi1 := [N:nat](phi_sequence RinvN 2!f 3!a 4!b pr1 N); Change (Un_cv [N:nat](RiemannInt_SF (phi1 N)) x); Assert H1 : (EXT psi1:nat->(StepFun a b) | (n:nat) ((t:R)``(Rmin a b) <= t``/\``t <= (Rmax a b)``->``(Rabsolu ((f t)-((phi1 n) t)))<= (psi1 n t)``)/\``(Rabsolu (RiemannInt_SF (psi1 n))) < (RinvN n)``).
Split with [n:nat](projT1 ? ? (phi_sequence_prop RinvN pr1 n)); Intro; Apply (projT2 ? ? (phi_sequence_prop RinvN pr1 n)).
@@ -1109,7 +1109,7 @@ Apply RiemannInt_P1; Apply RiemannInt_P21 with b; Auto with real Orelse Apply Ri
Qed.
Lemma RiemannInt_P25 : (f:R->R;a,b,c:R;pr1:(Riemann_integrable f a b);pr2:(Riemann_integrable f b c);pr3:(Riemann_integrable f a c)) ``a<=b``->``b<=c``->``(RiemannInt pr1)+(RiemannInt pr2)==(RiemannInt pr3)``.
-Intros f a b c pr1 pr2 pr3 Hyp1 Hyp2; Unfold RiemannInt; Case (RiemannInt_exists 1!f 2!a 3!b pr1 5!RinvN RinvN_cv); Case (RiemannInt_exists 1!f 2!b 3!c pr2 5!RinvN RinvN_cv); Case (RiemannInt_exists 1!f 2!a 3!c pr3 5!RinvN RinvN_cv); Intros; Symmetry; EApply UL_suite.
+Intros f a b c pr1 pr2 pr3 Hyp1 Hyp2; Unfold RiemannInt; Case (RiemannInt_exists 1!f 2!a 3!b pr1 5!RinvN RinvN_cv); Case (RiemannInt_exists 1!f 2!b 3!c pr2 5!RinvN RinvN_cv); Case (RiemannInt_exists 1!f 2!a 3!c pr3 5!RinvN RinvN_cv); Intros; Symmetry; EApply UL_sequence.
Apply u.
Unfold Un_cv; Intros; Assert H0 : ``0<eps/3``.
Unfold Rdiv; Apply Rmult_lt_pos; [Assumption | Apply Rlt_Rinv; Sup0].
diff --git a/theories/Reals/Rsqrt_def.v b/theories/Reals/Rsqrt_def.v
index ed939426f..8c63c9eb5 100644
--- a/theories/Reals/Rsqrt_def.v
+++ b/theories/Reals/Rsqrt_def.v
@@ -111,11 +111,11 @@ Assumption.
Apply le_O_n.
Qed.
-Lemma dicho_lb_maj : (x,y:R;P:R->bool) ``x<=y`` -> (majoree (dicho_lb x y P)).
+Lemma dicho_lb_maj : (x,y:R;P:R->bool) ``x<=y`` -> (has_ub (dicho_lb x y P)).
Intros.
Cut (n:nat)``(dicho_lb x y P n)<=y``.
Intro.
-Unfold majoree.
+Unfold has_ub.
Unfold bound.
Exists y.
Unfold is_upper_bound.
@@ -145,18 +145,18 @@ Assumption.
Assumption.
Qed.
-Lemma dicho_up_min : (x,y:R;P:R->bool) ``x<=y`` -> (minoree (dicho_up x y P)).
+Lemma dicho_up_min : (x,y:R;P:R->bool) ``x<=y`` -> (has_lb (dicho_up x y P)).
Intros.
Cut (n:nat)``x<=(dicho_up x y P n)``.
Intro.
-Unfold minoree.
+Unfold has_lb.
Unfold bound.
Exists ``-x``.
Unfold is_upper_bound.
Intros.
Elim H1; Intros.
Rewrite H2.
-Unfold opp_sui.
+Unfold opp_seq.
Apply Rle_Ropp1.
Apply H0.
Apply dicho_up_min_x; Assumption.
@@ -287,7 +287,7 @@ Intros.
Assert H2 := (CV_minus ? ? ? ? H0 H1).
Cut (Un_cv [i:nat]``(dicho_lb x y P i)-(dicho_up x y P i)`` R0).
Intro.
-Assert H4 := (UL_suite ? ? ? H2 H3).
+Assert H4 := (UL_sequence ? ? ? H2 H3).
Symmetry; Apply Rminus_eq_right; Assumption.
Unfold Un_cv; Unfold R_dist.
Intros.
diff --git a/theories/Reals/Rtrigo_reg.v b/theories/Reals/Rtrigo_reg.v
index 7694cf0a2..ac5c9ed20 100644
--- a/theories/Reals/Rtrigo_reg.v
+++ b/theories/Reals/Rtrigo_reg.v
@@ -114,7 +114,7 @@ Apply H4.
Intros; Rewrite (H0 x); Rewrite (H0 x1); Apply H5; Apply H6.
Intro; Unfold cos SFL.
Case (cv x); Case (exist_cos (Rsqr x)); Intros.
-Symmetry; EApply UL_suite.
+Symmetry; EApply UL_sequence.
Apply u.
Unfold cos_in in c; Unfold infinit_sum in c; Unfold Un_cv; Intros.
Elim (c ? H0); Intros N0 H1.
@@ -259,7 +259,7 @@ Unfold SFL sin.
Case (cv h); Intros.
Case (exist_sin (Rsqr h)); Intros.
Unfold Rdiv; Rewrite (Rinv_r_simpl_m h x0 H6).
-EApply UL_suite.
+EApply UL_sequence.
Apply u.
Unfold sin_in in s; Unfold sin_n infinit_sum in s; Unfold SP fn Un_cv; Intros.
Elim (s ? H10); Intros N0 H11.
@@ -270,7 +270,7 @@ Apply H11; Assumption.
Apply sum_eq; Intros; Apply Rmult_mult_r; Unfold Rsqr; Rewrite pow_sqr; Reflexivity.
Unfold SFL sin.
Case (cv R0); Intros.
-EApply UL_suite.
+EApply UL_sequence.
Apply u.
Unfold SP fn; Unfold Un_cv; Intros; Exists (S O); Intros.
Unfold R_dist; Replace (sum_f_R0 [k:nat]``(pow ( -1) k)/(INR (fact (plus (mult (S (S O)) k) (S O))))*(pow 0 (mult (S (S O)) k))`` n) with R1.
diff --git a/theories/Reals/SeqProp.v b/theories/Reals/SeqProp.v
index 6c9f709e5..6f489f37f 100644
--- a/theories/Reals/SeqProp.v
+++ b/theories/Reals/SeqProp.v
@@ -15,13 +15,12 @@ Require Classical.
Require Max.
Definition Un_decreasing [Un:nat->R] : Prop := (n:nat) (Rle (Un (S n)) (Un n)).
-Definition opp_sui [Un:nat->R] : nat->R := [n:nat]``-(Un n)``.
-Definition majoree [Un:nat->R] : Prop := (bound (EUn Un)).
-Definition minoree [Un:nat->R] : Prop := (bound (EUn (opp_sui Un))).
+Definition opp_seq [Un:nat->R] : nat->R := [n:nat]``-(Un n)``.
+Definition has_ub [Un:nat->R] : Prop := (bound (EUn Un)).
+Definition has_lb [Un:nat->R] : Prop := (bound (EUn (opp_seq Un))).
-(* Toute suite croissante et majoree converge *)
-(* Preuve inspiree de celle presente dans Rseries *)
-Lemma growing_cv : (Un:nat->R) (Un_growing Un) -> (majoree Un) -> (sigTT R [l:R](Un_cv Un l)).
+(**********)
+Lemma growing_cv : (Un:nat->R) (Un_growing Un) -> (has_ub Un) -> (sigTT R [l:R](Un_cv Un l)).
Unfold Un_growing Un_cv;Intros;
Generalize (complet (EUn Un) H0 (EUn_noempty Un));Intro H1.
Elim H1;Clear H1;Intros;Split with x;Intros.
@@ -60,19 +59,17 @@ Right;Auto.
Apply (H2 (Un n) (Un_in_EUn Un n)).
Qed.
-(* Pour toute suite decroissante, la suite "opposee" est croissante *)
-Lemma decreasing_growing : (Un:nat->R) (Un_decreasing Un) -> (Un_growing (opp_sui Un)).
+Lemma decreasing_growing : (Un:nat->R) (Un_decreasing Un) -> (Un_growing (opp_seq Un)).
Intro.
-Unfold Un_growing opp_sui Un_decreasing.
+Unfold Un_growing opp_seq Un_decreasing.
Intros.
Apply Rle_Ropp1.
Apply H.
Qed.
-(* Toute suite decroissante et minoree converge *)
-Lemma decreasing_cv : (Un:nat->R) (Un_decreasing Un) -> (minoree Un) -> (sigTT R [l:R](Un_cv Un l)).
+Lemma decreasing_cv : (Un:nat->R) (Un_decreasing Un) -> (has_lb Un) -> (sigTT R [l:R](Un_cv Un l)).
Intros.
-Cut (sigTT R [l:R](Un_cv (opp_sui Un) l)) -> (sigTT R [l:R](Un_cv Un l)).
+Cut (sigTT R [l:R](Un_cv (opp_seq Un) l)) -> (sigTT R [l:R](Un_cv Un l)).
Intro.
Apply X.
Apply growing_cv.
@@ -83,7 +80,7 @@ Elim X; Intros.
Apply existTT with ``-x``.
Unfold Un_cv in p.
Unfold R_dist in p.
-Unfold opp_sui in p.
+Unfold opp_seq in p.
Unfold Un_cv.
Unfold R_dist.
Intros.
@@ -95,9 +92,9 @@ Replace ``-((Un n)- -x)`` with ``-(Un n)-x``; [Assumption | Ring].
Qed.
(***********)
-Lemma maj_sup : (Un:nat->R) (majoree Un) -> (sigTT R [l:R](is_lub (EUn Un) l)).
+Lemma maj_sup : (Un:nat->R) (has_ub Un) -> (sigTT R [l:R](is_lub (EUn Un) l)).
Intros.
-Unfold majoree in H.
+Unfold has_ub in H.
Apply complet.
Assumption.
Exists (Un O).
@@ -106,8 +103,8 @@ Exists O; Reflexivity.
Qed.
(**********)
-Lemma min_inf : (Un:nat->R) (minoree Un) -> (sigTT R [l:R](is_lub (EUn (opp_sui Un)) l)).
-Intros; Unfold minoree in H.
+Lemma min_inf : (Un:nat->R) (has_lb Un) -> (sigTT R [l:R](is_lub (EUn (opp_seq Un)) l)).
+Intros; Unfold has_lb in H.
Apply complet.
Assumption.
Exists ``-(Un O)``.
@@ -115,18 +112,17 @@ Exists O.
Reflexivity.
Qed.
-Definition majorant [Un:nat->R;pr:(majoree Un)] : R := Cases (maj_sup Un pr) of (existTT a b) => a end.
+Definition majorant [Un:nat->R;pr:(has_ub Un)] : R := Cases (maj_sup Un pr) of (existTT a b) => a end.
-Definition minorant [Un:nat->R;pr:(minoree Un)] : R := Cases (min_inf Un pr) of (existTT a b) => ``-a`` end.
+Definition minorant [Un:nat->R;pr:(has_lb Un)] : R := Cases (min_inf Un pr) of (existTT a b) => ``-a`` end.
-(* Conservation de la propriete de majoration par extraction *)
-Lemma maj_ss : (Un:nat->R;k:nat) (majoree Un) -> (majoree [i:nat](Un (plus k i))).
+Lemma maj_ss : (Un:nat->R;k:nat) (has_ub Un) -> (has_ub [i:nat](Un (plus k i))).
Intros.
-Unfold majoree in H.
+Unfold has_ub in H.
Unfold bound in H.
Elim H; Intros.
Unfold is_upper_bound in H0.
-Unfold majoree.
+Unfold has_ub.
Exists x.
Unfold is_upper_bound.
Intros.
@@ -135,14 +131,13 @@ Elim H1; Intros.
Exists (plus k x1); Assumption.
Qed.
-(* Conservation de la propriete de minoration par extraction *)
-Lemma min_ss : (Un:nat->R;k:nat) (minoree Un) -> (minoree [i:nat](Un (plus k i))).
+Lemma min_ss : (Un:nat->R;k:nat) (has_lb Un) -> (has_lb [i:nat](Un (plus k i))).
Intros.
-Unfold minoree in H.
+Unfold has_lb in H.
Unfold bound in H.
Elim H; Intros.
Unfold is_upper_bound in H0.
-Unfold minoree.
+Unfold has_lb.
Exists x.
Unfold is_upper_bound.
Intros.
@@ -151,16 +146,15 @@ Elim H1; Intros.
Exists (plus k x1); Assumption.
Qed.
-Definition suite_majorant [Un:nat->R;pr:(majoree Un)] : nat -> R := [i:nat](majorant [k:nat](Un (plus i k)) (maj_ss Un i pr)).
+Definition sequence_majorant [Un:nat->R;pr:(has_ub Un)] : nat -> R := [i:nat](majorant [k:nat](Un (plus i k)) (maj_ss Un i pr)).
-Definition suite_minorant [Un:nat->R;pr:(minoree Un)] : nat -> R := [i:nat](minorant [k:nat](Un (plus i k)) (min_ss Un i pr)).
+Definition sequence_minorant [Un:nat->R;pr:(has_lb Un)] : nat -> R := [i:nat](minorant [k:nat](Un (plus i k)) (min_ss Un i pr)).
-(* La suite des majorants est decroissante *)
-Lemma Wn_decreasing : (Un:nat->R;pr:(majoree Un)) (Un_decreasing (suite_majorant Un pr)).
+Lemma Wn_decreasing : (Un:nat->R;pr:(has_ub Un)) (Un_decreasing (sequence_majorant Un pr)).
Intros.
Unfold Un_decreasing.
Intro.
-Unfold suite_majorant.
+Unfold sequence_majorant.
Assert H := (maj_sup [k:nat](Un (plus (S n) k)) (maj_ss Un (S n) pr)).
Assert H0 := (maj_sup [k:nat](Un (plus n k)) (maj_ss Un n pr)).
Elim H; Intros.
@@ -203,12 +197,11 @@ Case (maj_sup [k:nat](Un (plus (S n) k)) (maj_ss Un (S n) pr)).
Trivial.
Qed.
-(* La suite des minorants est croissante *)
-Lemma Vn_growing : (Un:nat->R;pr:(minoree Un)) (Un_growing (suite_minorant Un pr)).
+Lemma Vn_growing : (Un:nat->R;pr:(has_lb Un)) (Un_growing (sequence_minorant Un pr)).
Intros.
Unfold Un_growing.
Intro.
-Unfold suite_minorant.
+Unfold sequence_minorant.
Assert H := (min_inf [k:nat](Un (plus (S n) k)) (min_ss Un (S n) pr)).
Assert H0 := (min_inf [k:nat](Un (plus n k)) (min_ss Un n pr)).
Elim H; Intros.
@@ -227,12 +220,12 @@ Unfold is_upper_bound in H3.
Apply H3.
Elim H5; Intros.
Exists (plus (1) x2).
-Unfold opp_sui in H6.
-Unfold opp_sui.
+Unfold opp_seq in H6.
+Unfold opp_seq.
Replace (plus n (plus (S O) x2)) with (plus (S n) x2).
Assumption.
Replace (S n) with (plus (1) n); [Ring | Ring].
-Cut (is_lub (EUn (opp_sui [k:nat](Un (plus n k)))) (Ropp (minorant ([k:nat](Un (plus n k))) (min_ss Un n pr)))).
+Cut (is_lub (EUn (opp_seq [k:nat](Un (plus n k)))) (Ropp (minorant ([k:nat](Un (plus n k))) (min_ss Un n pr)))).
Intro.
Unfold is_lub in p0; Unfold is_lub in H1.
Elim p0; Intros; Elim H1; Intros.
@@ -244,7 +237,7 @@ Unfold minorant.
Case (min_inf [k:nat](Un (plus n k)) (min_ss Un n pr)).
Intro; Rewrite Ropp_Ropp.
Trivial.
-Cut (is_lub (EUn (opp_sui [k:nat](Un (plus (S n) k)))) (Ropp (minorant ([k:nat](Un (plus (S n) k))) (min_ss Un (S n) pr)))).
+Cut (is_lub (EUn (opp_seq [k:nat](Un (plus (S n) k)))) (Ropp (minorant ([k:nat](Un (plus (S n) k))) (min_ss Un (S n) pr)))).
Intro.
Unfold is_lub in p; Unfold is_lub in H1.
Elim p; Intros; Elim H1; Intros.
@@ -258,12 +251,12 @@ Intro; Rewrite Ropp_Ropp.
Trivial.
Qed.
-(* Encadrement Vn,Un,Wn *)
-Lemma Vn_Un_Wn_order : (Un:nat->R;pr1:(majoree Un);pr2:(minoree Un)) (n:nat) ``((suite_minorant Un pr2) n)<=(Un n)<=((suite_majorant Un pr1) n)``.
+(**********)
+Lemma Vn_Un_Wn_order : (Un:nat->R;pr1:(has_ub Un);pr2:(has_lb Un)) (n:nat) ``((sequence_minorant Un pr2) n)<=(Un n)<=((sequence_majorant Un pr1) n)``.
Intros.
Split.
-Unfold suite_minorant.
-Cut (sigTT R [l:R](is_lub (EUn (opp_sui [i:nat](Un (plus n i)))) l)).
+Unfold sequence_minorant.
+Cut (sigTT R [l:R](is_lub (EUn (opp_seq [i:nat](Un (plus n i)))) l)).
Intro.
Elim X; Intros.
Replace (minorant ([k:nat](Un (plus n k))) (min_ss Un n pr2)) with ``-x``.
@@ -274,9 +267,9 @@ Rewrite <- (Ropp_Ropp (Un n)).
Apply Rle_Ropp1.
Apply H.
Exists O.
-Unfold opp_sui.
+Unfold opp_seq.
Replace (plus n O) with n; [Reflexivity | Ring].
-Cut (is_lub (EUn (opp_sui [k:nat](Un (plus n k)))) (Ropp (minorant ([k:nat](Un (plus n k))) (min_ss Un n pr2)))).
+Cut (is_lub (EUn (opp_seq [k:nat](Un (plus n k)))) (Ropp (minorant ([k:nat](Un (plus n k))) (min_ss Un n pr2)))).
Intro.
Unfold is_lub in p; Unfold is_lub in H.
Elim p; Intros; Elim H; Intros.
@@ -290,7 +283,7 @@ Intro; Rewrite Ropp_Ropp.
Trivial.
Apply min_inf.
Apply min_ss; Assumption.
-Unfold suite_majorant.
+Unfold sequence_majorant.
Cut (sigTT R [l:R](is_lub (EUn [i:nat](Un (plus n i))) l)).
Intro.
Elim X; Intros.
@@ -315,13 +308,12 @@ Apply maj_sup.
Apply maj_ss; Assumption.
Qed.
-(* La suite des minorants est majoree *)
-Lemma min_maj : (Un:nat->R;pr1:(majoree Un);pr2:(minoree Un)) (majoree (suite_minorant Un pr2)).
+Lemma min_maj : (Un:nat->R;pr1:(has_ub Un);pr2:(has_lb Un)) (has_ub (sequence_minorant Un pr2)).
Intros.
Assert H := (Vn_Un_Wn_order Un pr1 pr2).
-Unfold majoree.
+Unfold has_ub.
Unfold bound.
-Unfold majoree in pr1.
+Unfold has_ub in pr1.
Unfold bound in pr1.
Elim pr1; Intros.
Exists x.
@@ -336,13 +328,12 @@ Apply H0.
Exists x1; Reflexivity.
Qed.
-(* La suite des majorants est minoree *)
-Lemma maj_min : (Un:nat->R;pr1:(majoree Un);pr2:(minoree Un)) (minoree (suite_majorant Un pr1)).
+Lemma maj_min : (Un:nat->R;pr1:(has_ub Un);pr2:(has_lb Un)) (has_lb (sequence_majorant Un pr1)).
Intros.
Assert H := (Vn_Un_Wn_order Un pr1 pr2).
-Unfold minoree.
+Unfold has_lb.
Unfold bound.
-Unfold minoree in pr2.
+Unfold has_lb in pr2.
Unfold bound in pr2.
Elim pr2; Intros.
Exists x.
@@ -351,46 +342,46 @@ Intros.
Unfold is_upper_bound in H0.
Elim H1; Intros.
Rewrite H2.
-Apply Rle_trans with ((opp_sui Un) x1).
+Apply Rle_trans with ((opp_seq Un) x1).
Assert H3 := (H x1); Elim H3; Intros.
-Unfold opp_sui; Apply Rle_Ropp1.
+Unfold opp_seq; Apply Rle_Ropp1.
Assumption.
Apply H0.
Exists x1; Reflexivity.
Qed.
-(* Toute suite de Cauchy est majoree *)
-Lemma cauchy_maj : (Un:nat->R) (Cauchy_crit Un) -> (majoree Un).
+(**********)
+Lemma cauchy_maj : (Un:nat->R) (Cauchy_crit Un) -> (has_ub Un).
Intros.
-Unfold majoree.
+Unfold has_ub.
Apply cauchy_bound.
Assumption.
Qed.
(**********)
-Lemma cauchy_opp : (Un:nat->R) (Cauchy_crit Un) -> (Cauchy_crit (opp_sui Un)).
+Lemma cauchy_opp : (Un:nat->R) (Cauchy_crit Un) -> (Cauchy_crit (opp_seq Un)).
Intro.
Unfold Cauchy_crit.
Unfold R_dist.
Intros.
Elim (H eps H0); Intros.
Exists x; Intros.
-Unfold opp_sui.
+Unfold opp_seq.
Rewrite <- Rabsolu_Ropp.
Replace ``-( -(Un n)- -(Un m))`` with ``(Un n)-(Un m)``; [Apply H1; Assumption | Ring].
Qed.
-(* Toute suite de Cauchy est minoree *)
-Lemma cauchy_min : (Un:nat->R) (Cauchy_crit Un) -> (minoree Un).
+(**********)
+Lemma cauchy_min : (Un:nat->R) (Cauchy_crit Un) -> (has_lb Un).
Intros.
-Unfold minoree.
+Unfold has_lb.
Assert H0 := (cauchy_opp ? H).
Apply cauchy_bound.
Assumption.
Qed.
-(* La suite des majorants converge *)
-Lemma maj_cv : (Un:nat->R;pr:(Cauchy_crit Un)) (sigTT R [l:R](Un_cv (suite_majorant Un (cauchy_maj Un pr)) l)).
+(**********)
+Lemma maj_cv : (Un:nat->R;pr:(Cauchy_crit Un)) (sigTT R [l:R](Un_cv (sequence_majorant Un (cauchy_maj Un pr)) l)).
Intros.
Apply decreasing_cv.
Apply Wn_decreasing.
@@ -399,8 +390,8 @@ Apply cauchy_min.
Assumption.
Qed.
-(* La suite des minorants converge *)
-Lemma min_cv : (Un:nat->R;pr:(Cauchy_crit Un)) (sigTT R [l:R](Un_cv (suite_minorant Un (cauchy_min Un pr)) l)).
+(**********)
+Lemma min_cv : (Un:nat->R;pr:(Cauchy_crit Un)) (sigTT R [l:R](Un_cv (sequence_minorant Un (cauchy_min Un pr)) l)).
Intros.
Apply growing_cv.
Apply Vn_growing.
@@ -409,7 +400,6 @@ Apply cauchy_maj.
Assumption.
Qed.
-(**********)
Lemma cond_eq : (x,y:R) ((eps:R)``0<eps``->``(Rabsolu (x-y))<eps``) -> x==y.
Intros.
Case (total_order_T x y); Intro.
@@ -435,14 +425,13 @@ Apply Rlt_anti_compatibility with y.
Rewrite Rplus_Or; Replace ``y+(x-y)`` with x; [Assumption | Ring].
Qed.
-(**********)
Lemma not_Rlt : (r1,r2:R)~(``r1<r2``)->``r1>=r2``.
Intros r1 r2 ; Generalize (total_order r1 r2) ; Unfold Rge.
Tauto.
Qed.
-(* On peut approcher la borne sup de toute suite majoree *)
-Lemma approx_maj : (Un:nat->R;pr:(majoree Un)) (eps:R) ``0<eps`` -> (EX k : nat | ``(Rabsolu ((majorant Un pr)-(Un k))) < eps``).
+(**********)
+Lemma approx_maj : (Un:nat->R;pr:(has_ub Un)) (eps:R) ``0<eps`` -> (EX k : nat | ``(Rabsolu ((majorant Un pr)-(Un k))) < eps``).
Intros.
Pose P := [k:nat]``(Rabsolu ((majorant Un pr)-(Un k))) < eps``.
Unfold P.
@@ -502,8 +491,8 @@ Assert H2 := (H1 n).
Apply not_Rlt; Assumption.
Qed.
-(* On peut approcher la borne inf de toute suite minoree *)
-Lemma approx_min : (Un:nat->R;pr:(minoree Un)) (eps:R) ``0<eps`` -> (EX k :nat | ``(Rabsolu ((minorant Un pr)-(Un k))) < eps``).
+(**********)
+Lemma approx_min : (Un:nat->R;pr:(has_lb Un)) (eps:R) ``0<eps`` -> (EX k :nat | ``(Rabsolu ((minorant Un pr)-(Un k))) < eps``).
Intros.
Pose P := [k:nat]``(Rabsolu ((minorant Un pr)-(Un k))) < eps``.
Unfold P.
@@ -516,16 +505,16 @@ Red; Intro.
Unfold P in H1.
Cut (n:nat)``(Rabsolu ((minorant Un pr)-(Un n))) >= eps``.
Intro.
-Cut (is_lub (EUn (opp_sui Un)) ``-(minorant Un pr)``).
+Cut (is_lub (EUn (opp_seq Un)) ``-(minorant Un pr)``).
Intro.
Unfold is_lub in H3.
Unfold is_upper_bound in H3.
Elim H3; Intros.
Cut (n:nat)``eps<=(Un n)-(minorant Un pr)``.
Intro.
-Cut (n:nat)``((opp_sui Un) n)<=-(minorant Un pr)-eps``.
+Cut (n:nat)``((opp_seq Un) n)<=-(minorant Un pr)-eps``.
Intro.
-Cut ((x:R)(EUn (opp_sui Un) x)->``x <= -(minorant Un pr)-eps``).
+Cut ((x:R)(EUn (opp_seq Un) x)->``x <= -(minorant Un pr)-eps``).
Intro.
Assert H9 := (H5 ``-(minorant Un pr)-eps`` H8).
Cut ``eps<=0``.
@@ -540,7 +529,7 @@ Elim H8; Intros.
Rewrite H9; Apply H7.
Intro.
Assert H7 := (H6 n).
-Unfold opp_sui.
+Unfold opp_seq.
Apply Rle_anti_compatibility with ``eps+(Un n)``.
Replace ``eps+(Un n)+ -(Un n)`` with ``eps``.
Replace ``eps+(Un n)+(-(minorant Un pr)-eps)`` with ``(Un n)-(minorant Un pr)``.
@@ -567,8 +556,8 @@ Assert H2 := (H1 n).
Apply not_Rlt; Assumption.
Qed.
-(* Unicité de la limite pour les suites convergentes *)
-Lemma UL_suite : (Un:nat->R;l1,l2:R) (Un_cv Un l1) -> (Un_cv Un l2) -> l1==l2.
+(* Unicity of limit for convergent sequences *)
+Lemma UL_sequence : (Un:nat->R;l1,l2:R) (Un_cv Un l1) -> (Un_cv Un l2) -> l1==l2.
Intros Un l1 l2; Unfold Un_cv; Unfold R_dist; Intros.
Apply cond_eq.
Intros; Cut ``0<eps/2``; [Intro | Unfold Rdiv; Apply Rmult_lt_pos; [Assumption | Apply Rlt_Rinv; Sup0]].
@@ -582,7 +571,7 @@ Rewrite <- Rabsolu_Ropp; Rewrite Ropp_distr2; Apply H3; Unfold ge N; Apply le_ma
Apply H4; Unfold ge N; Apply le_max_r.
Qed.
-(* La limite de la somme de deux suites convergentes est la somme des limites *)
+(**********)
Lemma CV_plus : (An,Bn:nat->R;l1,l2:R) (Un_cv An l1) -> (Un_cv Bn l2) -> (Un_cv [i:nat]``(An i)+(Bn i)`` ``l1+l2``).
Unfold Un_cv; Unfold R_dist; Intros.
Cut ``0<eps/2``; [Intro | Unfold Rdiv; Apply Rmult_lt_pos; [Assumption | Apply Rlt_Rinv; Sup0]].
@@ -598,7 +587,7 @@ Apply H3; Unfold ge; Apply le_trans with N; [Unfold N; Apply le_max_l | Assumpti
Apply H4; Unfold ge; Apply le_trans with N; [Unfold N; Apply le_max_r | Assumption].
Qed.
-(* Lien convergence / convergence absolue *)
+(**********)
Lemma cv_cvabs : (Un:nat->R;l:R) (Un_cv Un l) -> (Un_cv [i:nat](Rabsolu (Un i)) (Rabsolu l)).
Unfold Un_cv; Unfold R_dist; Intros.
Elim (H eps H0); Intros.
@@ -608,7 +597,7 @@ Apply Rabsolu_triang_inv2.
Apply H1; Assumption.
Qed.
-(* Toute suite convergente est de Cauchy *)
+(**********)
Lemma CV_Cauchy : (Un:nat->R) (sigTT R [l:R](Un_cv Un l)) -> (Cauchy_crit Un).
Intros; Elim X; Intros.
Unfold Cauchy_crit; Intros.
@@ -651,7 +640,7 @@ Apply existTT with (Rabsolu x).
Apply cv_cvabs; Assumption.
Qed.
-(* La limite du produit de deux suites convergentes est le produit des limites *)
+(**********)
Lemma CV_mult : (An,Bn:nat->R;l1,l2:R) (Un_cv An l1) -> (Un_cv Bn l2) -> (Un_cv [i:nat]``(An i)*(Bn i)`` ``l1*l2``).
Intros.
Cut (sigTT R [l:R](Un_cv An l)).
@@ -882,12 +871,12 @@ Replace ``l+((Un n)-l)`` with (Un n); [Assumption | Ring].
Qed.
(* Un->l => (-Un) -> (-l) *)
-Lemma CV_opp : (An:nat->R;l:R) (Un_cv An l) -> (Un_cv (opp_sui An) ``-l``).
+Lemma CV_opp : (An:nat->R;l:R) (Un_cv An l) -> (Un_cv (opp_seq An) ``-l``).
Intros An l.
Unfold Un_cv; Unfold R_dist; Intros.
Elim (H eps H0); Intros.
Exists x; Intros.
-Unfold opp_sui; Replace ``-(An n)- (-l)`` with ``-((An n)-l)``; [Rewrite Rabsolu_Ropp | Ring].
+Unfold opp_seq; Replace ``-(An n)- (-l)`` with ``-((An n)-l)``; [Rewrite Rabsolu_Ropp | Ring].
Apply H1; Assumption.
Qed.
@@ -898,17 +887,17 @@ Assert H1 := (decreasing_growing ? H).
Assert H2 := (CV_opp ? ? H0).
Assert H3 := (growing_ineq ? ? H1 H2).
Apply Ropp_Rle.
-Unfold opp_sui in H3; Apply H3.
+Unfold opp_seq in H3; Apply H3.
Qed.
(**********)
Lemma CV_minus : (An,Bn:nat->R;l1,l2:R) (Un_cv An l1) -> (Un_cv Bn l2) -> (Un_cv [i:nat]``(An i)-(Bn i)`` ``l1-l2``).
Intros.
-Replace [i:nat]``(An i)-(Bn i)`` with [i:nat]``(An i)+((opp_sui Bn) i)``.
+Replace [i:nat]``(An i)-(Bn i)`` with [i:nat]``(An i)+((opp_seq Bn) i)``.
Unfold Rminus; Apply CV_plus.
Assumption.
Apply CV_opp; Assumption.
-Unfold Rminus opp_sui; Reflexivity.
+Unfold Rminus opp_seq; Reflexivity.
Qed.
(* Un -> +oo *)
diff --git a/theories/Reals/SeqSeries.v b/theories/Reals/SeqSeries.v
index 421d6576e..bd818a0ba 100644
--- a/theories/Reals/SeqSeries.v
+++ b/theories/Reals/SeqSeries.v
@@ -34,7 +34,7 @@ Apply sum_cv_maj with [l:nat](An (plus (S N) l)) [l:nat][x:R](fn (plus (S N) l)
Unfold SP; Apply H2.
Apply H3.
Intros; Apply H1.
-Symmetry; EApply UL_suite.
+Symmetry; EApply UL_sequence.
Apply H3.
Unfold Un_cv in H0; Unfold Un_cv; Intros; Elim (H0 eps H5); Intros N0 H6.
Unfold R_dist in H6; Exists N0; Intros.
@@ -64,7 +64,7 @@ Apply sum_eq; Intros.
Reflexivity.
Apply le_lt_n_Sm; Apply le_plus_l.
Apply le_O_n.
-Symmetry; EApply UL_suite.
+Symmetry; EApply UL_sequence.
Apply H2.
Unfold Un_cv in H; Unfold Un_cv; Intros.
Elim (H eps H4); Intros N0 H5.
@@ -162,7 +162,7 @@ Apply le_plus_l.
Apply le_O_n.
Qed.
-(* Théorème de comparaison de convergence pour les séries *)
+(* Comparaison of convergence for series *)
Lemma Rseries_CV_comp : (An,Bn:nat->R) ((n:nat)``0<=(An n)<=(Bn n)``) -> (sigTT ? [l:R](Un_cv [N:nat](sum_f_R0 Bn N) l)) -> (sigTT ? [l:R](Un_cv [N:nat](sum_f_R0 An N) l)).
Intros; Apply cv_cauchy_2.
Assert H0 := (cv_cauchy_1 ? X).