diff options
217 files changed, 5730 insertions, 8684 deletions
diff --git a/.circleci/config.yml b/.circleci/config.yml index 352ec5a51..00db64f26 100644 --- a/.circleci/config.yml +++ b/.circleci/config.yml @@ -31,11 +31,11 @@ before_script: &before_script source ~/.profile printenv if [ -n "${EXTRA_PACKAGES}" ]; then sudo apt-get update -yq && sudo apt-get install -yq --no-install-recommends ${EXTRA_PACKAGES}; fi + echo . ~/.profile >> $BASH_ENV opam-switch: &opam-switch name: Select opam switch command: | - source ~/.profile opam switch ${COMPILER} opam config list opam list @@ -48,7 +48,6 @@ opam-switch: &opam-switch - run: name: Cache selection command: | - source ~/.profile # We can't use environment variables in cache names # So put it in a file and use the checksum echo "$COMPILER" > COMPILER @@ -59,19 +58,16 @@ opam-switch: &opam-switch - run: name: Update opam lists command: | - source ~/.profile opam repository set-url default https://opam.ocaml.org opam update - run: name: Install opam packages command: | - source ~/.profile opam switch -j ${NJOBS} ${COMPILER} opam install -j ${NJOBS} -y camlp5.${CAMLP5_VER} ocamlfind ${EXTRA_OPAM} - run: name: Clean cache command: | - source ~/.profile rm -rf ~/.opam/log/ - save_cache: key: coq-opam-cache-v1-{{ arch }}-{{ checksum "COMPILER" }}-{{ checksum ".circleci/config.yml" }}- @@ -93,13 +89,10 @@ opam-switch: &opam-switch - run: &build-configure name: Configure command: | - source ~/.profile - ./configure -local -native-compiler ${NATIVE_COMP} -coqide no - run: &build-build name: Build command: | - source ~/.profile make -j ${NJOBS} byte make -j ${NJOBS} make test-suite/misc/universes/all_stdlib.v @@ -118,7 +111,6 @@ opam-switch: &opam-switch - run: name: Test command: | - source ~/.profile dev/ci/ci-wrapper.sh ${CIRCLE_JOB} - persist_to_workspace: root: *workspace diff --git a/.github/CODEOWNERS b/.github/CODEOWNERS index 2d8fc791b..029b55b9a 100644 --- a/.github/CODEOWNERS +++ b/.github/CODEOWNERS @@ -11,6 +11,9 @@ /dev/ci/*.sh @ejgallego # Secondary maintainer @SkySkimmer +/.circleci/ @SkySkimmer +# Secondary maintainer @ejgallego + /.travis.yml @ejgallego # Secondary maintainer @SkySkimmer diff --git a/.gitignore b/.gitignore index 267534365..25c0996cb 100644 --- a/.gitignore +++ b/.gitignore @@ -96,21 +96,6 @@ doc/faq/axioms.eps doc/faq/axioms.eps_t doc/faq/axioms.pdf_t doc/faq/axioms.png -doc/refman/.csdp.cache -doc/refman/trace -doc/refman/Reference-Manual.ps -doc/refman/Reference-Manual.html -doc/refman/Reference-Manual.out -doc/refman/Reference-Manual.sh -doc/refman/cover.html -doc/refman/styles.hva -doc/refman/coqide-queries.eps -doc/refman/coqide.eps -doc/refman/euclid.ml -doc/refman/euclid.mli -doc/refman/heapsort.ml -doc/refman/heapsort.mli -doc/refman/html/ doc/stdlib/Library.out doc/stdlib/Library.ps doc/stdlib/Library.coqdoc.tex @@ -177,9 +162,6 @@ dev/myinclude # coqide generated files (when testing) *.crashcoqide -/doc/refman/Reference-Manual.hoptind -/doc/refman/Reference-Manual.optidx -/doc/refman/Reference-Manual.optind user-contrib .*.sw* diff --git a/.gitlab-ci.yml b/.gitlab-ci.yml index f0d7463fc..e79ed125e 100644 --- a/.gitlab-ci.yml +++ b/.gitlab-ci.yml @@ -1,19 +1,17 @@ -image: ocaml/opam:ubuntu - -# this doesn't seem to work -cache: - paths: - - .opamcache +image: ubuntu:latest stages: + - opam-boot - build - test variables: # some default values NJOBS: "2" - COMPILER: "system" + COMPILER: "4.02.3" CAMLP5_VER: "6.14" + OPAMROOT: "$CI_PROJECT_DIR/.opamcache" + OPAMROOTISOK: "true" # some useful values COMPILER_32BIT: "4.02.3+32bit" @@ -30,32 +28,49 @@ variables: COQDOC_PACKAGES: "texlive-latex-base texlive-latex-recommended texlive-latex-extra texlive-math-extra texlive-fonts-recommended texlive-fonts-extra latex-xcolor ghostscript transfig imagemagick tipa python3-pip" COQDOC_OPAM: "hevea" SPHINX_PACKAGES: "bs4 sphinx sphinx_rtd_theme pexpect antlr4-python3-runtime sphinxcontrib-bibtex" + ELPI_OPAM: "ppx_tools_versioned ppx_deriving ocaml-migrate-parsetree" before_script: - - ls # figure out if artifacts are around + - ls -a # figure out if artifacts are around - printenv # - if [ "$COMPILER" = "$COMPILER_32BIT" ]; then sudo dpkg --add-architecture i386; fi - - if [ -n "${EXTRA_PACKAGES}" ]; then sudo apt-get update -qq && sudo apt-get install -y -qq ${EXTRA_PACKAGES}; fi - - if [ -n "${PIP_PACKAGES}" ]; then sudo pip3 install ${PIP_PACKAGES}; fi - - # setup cache - - if [ ! "(" -d .opamcache ")" ]; then mv ~/.opam .opamcache; else mv ~/.opam ~/.opam-old; fi - - ln -s $(readlink -f .opamcache) ~/.opam - - # the default repo in this docker image is a local directory - # at the time of 4aaeb8abf it lagged behind the official - # repository such that camlp5 7.01 was not available - - opam repository set-url default https://opam.ocaml.org - - opam update - - opam switch ${COMPILER} - - eval $(opam config env) - - opam config list - - opam install -j ${NJOBS} -y camlp5.${CAMLP5_VER} ocamlfind num ${EXTRA_OPAM} - - rm -rf ~/.opam/log/ - - opam list + - apt-get update -qq && apt-get install -y -qq m4 opam ${EXTRA_PACKAGES} + - if [ -n "${PIP_PACKAGES}" ]; then pip3 install ${PIP_PACKAGES}; fi + # if no cache running opam config fails! + - if [ -d .opamcache ]; then eval $(opam config env); fi + +################ OPAM SYSTEM ###################### +# - use cache between pipelines +# - use artifacts between jobs +# (in https://gitlab.com/SkySkimmer/coq/-/jobs/63255417 +# the cache wasn't available at the build step) +# every non opam-boot job must set dependencies (for ci it's in the template) +# otherwise all opam-boot artifacts are used together and we get some random switch + +# set cache key when using +.opam-boot-template: &opam-boot-template + stage: opam-boot + artifacts: + name: "opam-$COMPILER" + paths: + - .opamcache + expire_in: 1 week + script: + # the default repo in this docker image is a local directory + # at the time of 4aaeb8abf it lagged behind the official + # repository such that camlp5 7.01 was not available + - opam init -a -y -j $NJOBS --compiler=${COMPILER} default https://opam.ocaml.org + - eval $(opam config env) + - opam update + - opam config list + - opam list + - opam install -j ${NJOBS} -y camlp5.${CAMLP5_VER} ocamlfind num ${EXTRA_OPAM} + - rm -rf ~/.opam/log/ + - opam list # TODO figure out how to build doc for installed coq +# set dependencies when using .build-template: &build-template stage: build artifacts: @@ -65,8 +80,13 @@ before_script: - config/Makefile - test-suite/misc/universes/all_stdlib.v expire_in: 1 week + dependencies: + - not-a-real-job script: - set -e + - printenv + - opam config list + - opam list - echo 'start:coq.config' - ./configure -prefix "$(pwd)/_install_ci" ${EXTRA_CONF} @@ -86,10 +106,12 @@ before_script: - set +e +# set dependencies when using .warnings-template: &warnings-template # keep warnings in test stage so we can test things even when warnings occur stage: test - dependencies: [] + dependencies: + - not-a-real-job script: - set -e @@ -107,8 +129,11 @@ before_script: EXTRA_PACKAGES: "$COQIDE_PACKAGES" EXTRA_OPAM: "$COQIDE_OPAM" +# set dependencies when using .test-suite-template: &test-suite-template stage: test + dependencies: + - not-a-real-job script: - cd test-suite - make clean @@ -122,8 +147,11 @@ before_script: paths: - test-suite/logs +# set dependencies when using .validate-template: &validate-template stage: test + dependencies: + - not-a-real-job script: - cd _install_ci - find lib/coq/ -name '*.vo' -print0 > vofiles @@ -139,57 +167,90 @@ before_script: - echo 'end:coq.test' - set +e dependencies: + - opam-boot - build variables: &ci-template-vars TEST_TARGET: "$CI_JOB_NAME" EXTRA_PACKAGES: "$TIMING_PACKAGES" +opam-boot: + <<: *opam-boot-template + cache: + paths: &cache-paths + - .opamcache + key: main + variables: + EXTRA_OPAM: "$COQIDE_OPAM $COQDOC_OPAM ocamlgraph $ELPI_OPAM" + EXTRA_PACKAGES: "$COQIDE_PACKAGES" + +opam-boot:32bit: + <<: *opam-boot-template + cache: + paths: *cache-paths + key: 32bit + variables: + COMPILER: "$COMPILER_32BIT" + EXTRA_PACKAGES: "gcc-multilib" + +opam-boot:bleeding-edge: + <<: *opam-boot-template + cache: + paths: *cache-paths + key: be + variables: + COMPILER: "$COMPILER_BLEEDING_EDGE" + CAMLP5_VER: "$CAMLP5_VER_BLEEDING_EDGE" + EXTRA_PACKAGES: "$COQIDE_PACKAGES" + EXTRA_OPAM: "$COQIDE_OPAM_BE" + build: <<: *build-template + dependencies: + - opam-boot variables: EXTRA_CONF: "-native-compiler yes -coqide opt -with-doc yes" EXTRA_PACKAGES: "$COQIDE_PACKAGES $COQDOC_PACKAGES" - EXTRA_OPAM: "$COQIDE_OPAM $COQDOC_OPAM" PIP_PACKAGES: "$SPHINX_PACKAGES" # no coqide for 32bit: libgtk installation problems build:32bit: <<: *build-template + dependencies: + - opam-boot:32bit variables: EXTRA_CONF: "-native-compiler yes" EXTRA_PACKAGES: "gcc-multilib" - COMPILER: "$COMPILER_32BIT" build:bleeding-edge: <<: *build-template + dependencies: + - opam-boot:bleeding-edge variables: EXTRA_CONF: "-native-compiler yes -coqide opt" - COMPILER: "$COMPILER_BLEEDING_EDGE" - CAMLP5_VER: "$CAMLP5_VER_BLEEDING_EDGE" EXTRA_PACKAGES: "$COQIDE_PACKAGES" - EXTRA_OPAM: "$COQIDE_OPAM_BE" warnings: <<: *warnings-template + dependencies: + - opam-boot # warnings:32bit: # <<: *warnings-template # variables: # <<: *warnings-variables # EXTRA_PACKAGES: "$gcc-multilib COQIDE_PACKAGES_32BIT" -# COMPILER: "$COMPILER_32BIT" +# dependencies: +# - opam-boot:32bit warnings:bleeding-edge: <<: *warnings-template - variables: - <<: *warnings-variables - COMPILER: "$COMPILER_BLEEDING_EDGE" - CAMLP5_VER: "$CAMLP5_VER_BLEEDING_EDGE" - EXTRA_OPAM: "$COQIDE_OPAM_BE" + dependencies: + - opam-boot:bleeding-edge test-suite: <<: *test-suite-template dependencies: + - opam-boot - build variables: EXTRA_PACKAGES: "$TIMING_PACKAGES" @@ -197,31 +258,31 @@ test-suite: test-suite:32bit: <<: *test-suite-template dependencies: + - opam-boot:32bit - build:32bit variables: - COMPILER: "$COMPILER_32BIT" EXTRA_PACKAGES: "gcc-multilib $TIMING_PACKAGES" test-suite:bleeding-edge: <<: *test-suite-template dependencies: + - opam-boot:bleeding-edge - build:bleeding-edge variables: - COMPILER: "$COMPILER_BLEEDING_EDGE" - CAMLP5_VER: "$CAMLP5_VER_BLEEDING_EDGE" EXTRA_PACKAGES: "$TIMING_PACKAGES" validate: <<: *validate-template dependencies: + - opam-boot - build validate:32bit: <<: *validate-template dependencies: + - opam-boot:32bit - build:32bit variables: - COMPILER: "$COMPILER_32BIT" EXTRA_PACKAGES: "gcc-multilib" ci-bignums: @@ -240,7 +301,6 @@ ci-coq-dpdgraph: <<: *ci-template variables: <<: *ci-template-vars - EXTRA_OPAM: "ocamlgraph" EXTRA_PACKAGES: "$TIMING_PACKAGES autoconf" ci-coquelicot: @@ -251,9 +311,6 @@ ci-coquelicot: ci-elpi: <<: *ci-template - variables: - <<: *ci-template-vars - EXTRA_OPAM: "ppx_tools_versioned ppx_deriving ocaml-migrate-parsetree" ci-equations: <<: *ci-template diff --git a/.travis.yml b/.travis.yml index e56204b0e..55b4da719 100644 --- a/.travis.yml +++ b/.travis.yml @@ -76,9 +76,9 @@ matrix: - TEST_TARGET="ci-coquelicot" - if: NOT (type = pull_request) env: + - TEST_TARGET="ci-elpi" EXTRA_OPAM="ppx_tools_versioned ppx_deriving ocaml-migrate-parsetree" # ppx_tools_versioned requires a specific version findlib - FINDLIB_VER="" - - TEST_TARGET="ci-elpi" EXTRA_OPAM="ppx_tools_versioned ppx_deriving ocaml-migrate-parsetree" - if: NOT (type = pull_request) env: - TEST_TARGET="ci-equations" @@ -199,8 +199,6 @@ matrix: - MAIN_TARGET="coqocaml" - EXTRA_CONF="-byte-only -coqide byte -warn-error yes" - EXTRA_OPAM="hevea ${LABLGTK}" - # dummy target - - BUILD_TARGET="clean" addons: apt: sources: @@ -218,8 +216,6 @@ matrix: - CAMLP5_VER="${CAMLP5_VER_BE}" - EXTRA_CONF="-byte-only -coqide byte -warn-error yes" - EXTRA_OPAM="num hevea ${LABLGTK_BE}" - # dummy target - - BUILD_TARGET="clean" addons: apt: sources: @@ -5,6 +5,8 @@ Tools - Coq_makefile lets one override or extend the following variables from the command line: COQFLAGS, COQCHKFLAGS, COQDOCFLAGS. + COQFLAGS is now entirely separate from COQLIBS, so in custom Makefiles + $(COQFLAGS) should be replaced by $(COQFLAGS) $(COQLIBS). Vernacular Commands @@ -15,7 +17,7 @@ Tactic language - Support for fix/cofix added in Ltac "match" and "lazymatch". -- Ltac backtraces now contain include trace information about tactics +- Ltac backtraces now include trace information about tactics called by OCaml-defined tactics. Changes from 8.8+beta1 to 8.8.0 @@ -27,6 +29,18 @@ Tools Coq was ignoring previous runs and the -async-proofs-delegation-threshold option did not have the expected behavior. +Tactic language + +- The undocumented "nameless" forms `fix N`, `cofix N` have been + deprecated; please use `fix/cofix ident N` to explicitely name + hypothesis to be introduced. + +Documentation + +- The reference manual is now fully ported to Sphinx. + +Other small deprecations and bug fixes. + Changes from 8.7.2 to 8.8+beta1 =============================== @@ -93,6 +107,7 @@ Tactics of the execution. - `vm_compute` now supports existential variables. - Calls to `shelve` and `give_up` within calls to tactic `refine` now working. +- Deprecated tactic `appcontext` was removed. Focusing @@ -196,6 +211,7 @@ Options + `Refolding Reduction` + `Standard Proposition Elimination` + + `Dependent Propositions Elimination` + `Discriminate Introduction` + `Shrink Abstract` + `Tactic Pattern Unification` @@ -203,6 +219,7 @@ Options + `Injection L2R Pattern Order` + `Record Elimination Schemes` + `Match Strict` + + `Tactic Compat Context` + `Typeclasses Legacy Resolution` + `Typeclasses Module Eta` + `Typeclass Resolution After Apply` @@ -128,6 +128,8 @@ of the Coq Proof assistant during the indicated time: Matej Košík (INRIA, 2015-2017) Pierre Letouzey (LRI, 2000-2004, PPS, 2005-2008, INRIA-PPS then IRIF, 2009-now) + Yishuai Li (ORCID: https://orcid.org/0000-0002-5728-5903 + U. Penn, 2018) Patrick Loiseleur (Paris Sud, 1997-1999) Evgeny Makarov (INRIA, 2007) Gregory Malecha (Harvard University 2013-2015, @@ -148,6 +150,7 @@ of the Coq Proof assistant during the indicated time: Pierre-Marie Pédrot (INRIA-PPS, 2011-2015, INRIA-Ascola, 2015-2016, University of Ljubljana, 2016-2017, MPI-SWS, 2017-2018) + Clément Pit-Claudel (MIT, 2015-2018) Matthias Puech (INRIA-Bologna, 2008-2011) Yann Régis-Gianas (INRIA-PPS then IRIF, 2009-now) Clément Renard (INRIA, 2001-2004) diff --git a/INSTALL.doc b/INSTALL.doc index b71115bfa..625c36869 100644 --- a/INSTALL.doc +++ b/INSTALL.doc @@ -43,7 +43,7 @@ working set of packages for compiling the documentation for Coq is: python3 python-pip3 To install the Python packages required to build the user manual, run: - pip3 install sphinx sphinx_rtd_theme beautifulsoup4 antlr4-python3-runtime pexpect + pip3 install sphinx sphinx_rtd_theme beautifulsoup4 antlr4-python3-runtime pexpect sphinxcontrib-bibtex Compilation @@ -66,8 +66,8 @@ Alternatively, you can use some specific targets: make doc-html to produce all html documents - make refman - to produce all formats of the reference manual + make sphinx + to produce the HTML version of the reference manual make tutorial to produce all formats of the tutorial @@ -235,11 +235,8 @@ docclean: doc/stdlib/*Library.coqdoc.tex doc/stdlib/library.files \ doc/stdlib/library.files.ls doc/stdlib/FullLibrary.tex rm -f doc/*/*.ps doc/*/*.pdf doc/*/*.eps doc/*/*.pdf_t doc/*/*.eps_t - rm -rf doc/refman/html doc/stdlib/html doc/tutorial/tutorial.v.html - rm -f doc/refman/euclid.ml doc/refman/euclid.mli - rm -f doc/refman/heapsort.ml doc/refman/heapsort.mli + rm -rf doc/stdlib/html doc/tutorial/tutorial.v.html rm -f doc/common/version.tex - rm -f doc/refman/styles.hva doc/refman/cover.html doc/refman/Reference-Manual.html rm -f doc/coq.tex rm -rf doc/sphinx/_build diff --git a/Makefile.doc b/Makefile.doc index e52da403a..ce31c5fcb 100644 --- a/Makefile.doc +++ b/Makefile.doc @@ -56,54 +56,33 @@ ALLSPHINXOPTS= -d $(SPHINXBUILDDIR)/doctrees $(SPHINXOPTS) DOCCOMMON:=doc/common/version.tex doc/common/title.tex doc/common/macros.tex -REFMANCOQTEXFILES:=$(addprefix doc/refman/, \ - RefMan-gal.v.tex \ - RefMan-ltac.v.tex \ - Universes.v.tex) - -REFMANTEXFILES:=$(addprefix doc/refman/, \ - headers.sty Reference-Manual.tex) \ - $(REFMANCOQTEXFILES) \ - -REFMANEPSFILES:=doc/refman/coqide.eps doc/refman/coqide-queries.eps - -REFMANFILES:=$(REFMANTEXFILES) $(DOCCOMMON) $(REFMANEPSFILES) doc/refman/biblio.bib - -REFMANPNGFILES:=$(REFMANEPSFILES:.eps=.png) - - ###################################################################### ### General rules ###################################################################### -.PHONY: doc sphinxdoc-html doc-pdf doc-ps refman refman-quick tutorial -.PHONY: stdlib full-stdlib rectutorial refman-html-dir +.PHONY: doc sphinxdoc-html doc-pdf doc-ps tutorial +.PHONY: stdlib full-stdlib rectutorial -INDEXURLS:=doc/refman/html/index_urls.txt - -doc: sphinx refman tutorial rectutorial stdlib $(INDEXURLS) +doc: sphinx tutorial rectutorial stdlib sphinx: coq $(SHOW)'SPHINXBUILD doc/sphinx' - $(HIDE)COQBIN="$(PWD)/bin" $(SPHINXBUILD) -b html $(ALLSPHINXOPTS) doc/sphinx $(SPHINXBUILDDIR)/html + $(HIDE)COQBIN="$(PWD)/bin" $(SPHINXBUILD) -W -b html $(ALLSPHINXOPTS) doc/sphinx $(SPHINXBUILDDIR)/html @echo @echo "Build finished. The HTML pages are in $(SPHINXBUILDDIR)/html." doc-html:\ - doc/tutorial/Tutorial.v.html doc/refman/html/index.html \ + doc/tutorial/Tutorial.v.html \ doc/stdlib/html/index.html doc/RecTutorial/RecTutorial.html doc-pdf:\ - doc/tutorial/Tutorial.v.pdf doc/refman/Reference-Manual.pdf \ + doc/tutorial/Tutorial.v.pdf \ doc/stdlib/Library.pdf doc/RecTutorial/RecTutorial.pdf doc-ps:\ - doc/tutorial/Tutorial.v.ps doc/refman/Reference-Manual.ps \ + doc/tutorial/Tutorial.v.ps \ doc/stdlib/Library.ps doc/RecTutorial/RecTutorial.ps -refman: \ - doc/refman/html/index.html doc/refman/Reference-Manual.ps doc/refman/Reference-Manual.pdf - tutorial: \ doc/tutorial/Tutorial.v.html doc/tutorial/Tutorial.v.ps doc/tutorial/Tutorial.v.pdf @@ -162,82 +141,6 @@ doc/common/version.tex: config/Makefile printf '\\newcommand{\\coqversion}{$(VERSION)}' > doc/common/version.tex ###################################################################### -# Reference Manual -###################################################################### - - -### Reference Manual (printable format) - -# The second LATEX compilation is necessary otherwise the pages of the index -# are not correct (don't know why...) - BB -doc/refman/Reference-Manual.dvi: $(REFMANFILES) doc/refman/Reference-Manual.tex - @(cd doc/refman;\ - $(LATEX) -interaction=batchmode Reference-Manual;\ - $(BIBTEX) -terse Reference-Manual $(HIDEBIBTEXINFO);\ - $(LATEX) -interaction=batchmode Reference-Manual > /dev/null;\ - $(MAKEINDEX) -q Reference-Manual;\ - $(SHOWMAKEINDEXERROR) Reference-Manual.ilg;\ - $(MAKEINDEX) -q Reference-Manual.tacidx -o Reference-Manual.tacind;\ - $(SHOWMAKEINDEXERROR) Reference-Manual.ilg;\ - $(MAKEINDEX) -q Reference-Manual.comidx -o Reference-Manual.comind;\ - $(SHOWMAKEINDEXERROR) Reference-Manual.ilg;\ - $(MAKEINDEX) -q Reference-Manual.optidx -o Reference-Manual.optind;\ - $(SHOWMAKEINDEXERROR) Reference-Manual.ilg;\ - $(MAKEINDEX) -q Reference-Manual.erridx -o Reference-Manual.errind;\ - $(SHOWMAKEINDEXERROR) Reference-Manual.ilg;\ - $(LATEX) -interaction=batchmode Reference-Manual > /dev/null;\ - $(LATEX) -interaction=batchmode Reference-Manual > /dev/null;\ - ../tools/show_latex_messages -no-overfull Reference-Manual.log) - -doc/refman/Reference-Manual.pdf: doc/refman/Reference-Manual.dvi $(REFMANPNGFILES) - (cd doc/refman;\ - $(PDFLATEX) -interaction=batchmode Reference-Manual.tex;\ - ../tools/show_latex_messages -no-overfull Reference-Manual.log) - -### Reference Manual (browsable format) - -doc/refman/Reference-Manual.html: doc/refman/styles.hva doc/refman/headers.hva doc/refman/Reference-Manual.dvi # to ensure bbl file - (cd doc/refman; BIBINPUTS=.: $(HEVEA) $(HEVEAOPTS) ./styles.hva ./Reference-Manual.tex) - -doc/refman/cover.html: doc/common/styles/html/$(HTMLSTYLE)/cover.html - sed -e "s/COQVERSION/$(VERSION)/g" $< > $@ - -doc/refman/styles.hva: doc/common/styles/html/$(HTMLSTYLE)/styles.hva - $(INSTALLLIB) $< doc/refman - -INDEXES:= doc/refman/html/command-index.html doc/refman/html/tactic-index.html - -refman-html-dir $(INDEXES): doc/refman/html/index.html ; - -doc/refman/html/index.html: doc/refman/Reference-Manual.html $(REFMANPNGFILES) \ - doc/refman/cover.html doc/refman/styles.hva doc/refman/index.html - - rm -rf doc/refman/html - $(MKDIR) doc/refman/html - $(INSTALLLIB) $(REFMANPNGFILES) doc/refman/html - (cd doc/refman/html; $(HACHA) -nolinks -tocbis -o toc.html ../styles.hva ../Reference-Manual.html) - $(INSTALLLIB) doc/refman/cover.html doc/refman/html/index.html - @touch $(INDEXES) - (cd doc/common/styles/html/$(HTMLSTYLE);\ - for f in `find . -name \*.css`; do \ - $(MKDIR) $$(dirname ../../../../refman/html/$$f);\ - $(INSTALLLIB) $$f ../../../../refman/html/$$f;\ - done) - -refman-quick: - (cd doc/refman;\ - $(PDFLATEX) -interaction=batchmode Reference-Manual.tex;\ - ../tools/show_latex_messages -no-overfull Reference-Manual.log && \ - $(HEVEA) $(HEVEAOPTS) ./Reference-Manual.tex) - -###################################################################### -# Index file for CoqIDE -###################################################################### - -$(INDEXURLS): $(INDEXES) - cat $< | grep li-indexenv | grep href= | sed -e 's@.*>\([^<]*\)</span>.*, <a href="\([^"]*\)">.*@\1,\2@' > $@ - - -###################################################################### # Tutorial ###################################################################### @@ -362,30 +265,20 @@ install-doc-meta: $(INSTALLLIB) doc/LICENSE $(FULLDOCDIR)/LICENSE.doc install-doc-html: - $(MKDIR) $(addprefix $(FULLDOCDIR)/html/, refman stdlib) - (for f in `cd doc/refman/html; find . -type f`; do \ - $(MKDIR) $$(dirname $(FULLDOCDIR)/html/refman/$$f);\ - $(INSTALLLIB) doc/refman/html/$$f $(FULLDOCDIR)/html/refman/$$f;\ - done) + $(MKDIR) $(FULLDOCDIR)/html/stdlib $(INSTALLLIB) doc/stdlib/html/* $(FULLDOCDIR)/html/stdlib $(INSTALLLIB) doc/RecTutorial/RecTutorial.html $(FULLDOCDIR)/html/RecTutorial.html $(INSTALLLIB) doc/tutorial/Tutorial.v.html $(FULLDOCDIR)/html/Tutorial.html install-doc-printable: $(MKDIR) $(FULLDOCDIR)/ps $(FULLDOCDIR)/pdf - $(INSTALLLIB) doc/refman/Reference-Manual.pdf \ - doc/stdlib/Library.pdf $(FULLDOCDIR)/pdf - $(INSTALLLIB) doc/refman/Reference-Manual.ps \ - doc/stdlib/Library.ps $(FULLDOCDIR)/ps + $(INSTALLLIB) doc/stdlib/Library.pdf $(FULLDOCDIR)/pdf + $(INSTALLLIB) doc/stdlib/Library.ps $(FULLDOCDIR)/ps $(INSTALLLIB) doc/tutorial/Tutorial.v.pdf $(FULLDOCDIR)/pdf/Tutorial.pdf $(INSTALLLIB) doc/RecTutorial/RecTutorial.pdf $(FULLDOCDIR)/pdf/RecTutorial.pdf $(INSTALLLIB) doc/tutorial/Tutorial.v.ps $(FULLDOCDIR)/ps/Tutorial.ps $(INSTALLLIB) doc/RecTutorial/RecTutorial.ps $(FULLDOCDIR)/ps/RecTutorial.ps -install-doc-index-urls: - $(MKDIR) $(FULLDATADIR) - $(INSTALLLIB) $(INDEXURLS) $(FULLDATADIR) - install-doc-sphinx: $(MKDIR) $(FULLDOCDIR)/sphinx (for f in `cd doc/sphinx/_build; find . -type f`; do \ @@ -470,13 +363,6 @@ $(OCAMLDOCDIR)/%.pdf: $(OCAMLDOCDIR)/%.tex $(HIDE)(cd $(OCAMLDOCDIR) ; pdflatex -interaction=batchmode $*.tex && pdflatex -interaction=batchmode $*.tex) $(HIDE)(cd doc/tools/; ./show_latex_messages -no-overfull ../../$(OCAMLDOCDIR)/$*.log) -########################################################################### -# local web server -########################################################################### - -serve-refman-8080: refman - cd doc/refman/html; python3 -m http.server 8080 - # For emacs: # Local Variables: # mode: makefile diff --git a/checker/cic.mli b/checker/cic.mli index 42629ced2..c4b00d0dc 100644 --- a/checker/cic.mli +++ b/checker/cic.mli @@ -104,7 +104,7 @@ type constr = | Case of case_info * constr * constr * constr array | Fix of constr pfixpoint | CoFix of constr pcofixpoint - | Proj of projection * constr + | Proj of Projection.t * constr type existential = constr pexistential type rec_declaration = constr prec_declaration diff --git a/checker/closure.ml b/checker/closure.ml index 184af0e13..bfba6c161 100644 --- a/checker/closure.ml +++ b/checker/closure.ml @@ -251,7 +251,7 @@ and fterm = | FInd of pinductive | FConstruct of pconstructor | FApp of fconstr * fconstr array - | FProj of projection * fconstr + | FProj of Projection.t * fconstr | FFix of fixpoint * fconstr subs | FCoFix of cofixpoint * fconstr subs | FCaseT of case_info * constr * fconstr * constr array * fconstr subs (* predicate and branches are closures *) @@ -281,7 +281,7 @@ let update v1 (no,t) = type stack_member = | Zapp of fconstr array | ZcaseT of case_info * constr * constr array * fconstr subs - | Zproj of int * int * projection + | Zproj of int * int * Projection.t | Zfix of fconstr * stack | Zshift of int | Zupdate of fconstr diff --git a/checker/closure.mli b/checker/closure.mli index f68c0468a..4cf02ae2b 100644 --- a/checker/closure.mli +++ b/checker/closure.mli @@ -87,7 +87,7 @@ type fterm = | FInd of pinductive | FConstruct of pconstructor | FApp of fconstr * fconstr array - | FProj of projection * fconstr + | FProj of Projection.t * fconstr | FFix of fixpoint * fconstr subs | FCoFix of cofixpoint * fconstr subs | FCaseT of case_info * constr * fconstr * constr array * fconstr subs (* predicate and branches are closures *) @@ -107,7 +107,7 @@ type fterm = type stack_member = | Zapp of fconstr array | ZcaseT of case_info * constr * constr array * fconstr subs - | Zproj of int * int * projection + | Zproj of int * int * Projection.t | Zfix of fconstr * stack | Zshift of int | Zupdate of fconstr diff --git a/checker/environ.mli b/checker/environ.mli index 36e0ea027..81da83875 100644 --- a/checker/environ.mli +++ b/checker/environ.mli @@ -58,7 +58,7 @@ val constant_value : env -> Constant.t puniverses -> constr val evaluable_constant : Constant.t -> env -> bool val is_projection : Constant.t -> env -> bool -val lookup_projection : projection -> env -> projection_body +val lookup_projection : Projection.t -> env -> projection_body (* Inductives *) val mind_equiv : env -> inductive -> inductive -> bool diff --git a/checker/reduction.ml b/checker/reduction.ml index 97255dd49..072dec63f 100644 --- a/checker/reduction.ml +++ b/checker/reduction.ml @@ -54,7 +54,7 @@ let compare_stack_shape stk1 stk2 = type lft_constr_stack_elt = Zlapp of (lift * fconstr) array - | Zlproj of Names.projection * lift + | Zlproj of Names.Projection.t * lift | Zlfix of (lift * fconstr) * lft_constr_stack | Zlcase of case_info * lift * fconstr * fconstr array and lft_constr_stack = lft_constr_stack_elt list @@ -142,7 +142,7 @@ let compare_stacks f fmind lft1 stk1 lft2 stk2 = | (Zlfix(fx1,a1),Zlfix(fx2,a2)) -> f fx1 fx2; cmp_rec a1 a2 | (Zlproj (c1,l1),Zlproj (c2,l2)) -> - if not (Names.eq_con_chk + if not (Names.Constant.UserOrd.equal (Names.Projection.constant c1) (Names.Projection.constant c2)) then raise NotConvertible diff --git a/checker/subtyping.ml b/checker/subtyping.ml index ee73eb1ab..5cb38cb81 100644 --- a/checker/subtyping.ml +++ b/checker/subtyping.ml @@ -224,7 +224,7 @@ let check_inductive env mp1 l info1 mib2 spec2 subst1 subst2= | Some None, Some None -> true | Some (Some (id1,p1,pb1)), Some (Some (id2,p2,pb2)) -> Id.equal id1 id2 && - Array.for_all2 eq_con_chk p1 p2 && + Array.for_all2 Constant.UserOrd.equal p1 p2 && Array.for_all2 eq_projection_body pb1 pb2 | _, _ -> false in diff --git a/checker/term.ml b/checker/term.ml index 19034a57d..0236f7867 100644 --- a/checker/term.ml +++ b/checker/term.ml @@ -390,7 +390,7 @@ let compare_constr f t1 t2 = f h1 h2 && List.for_all2 f l1 l2 else false | Evar (e1,l1), Evar (e2,l2) -> Int.equal e1 e2 && Array.equal f l1 l2 - | Const c1, Const c2 -> eq_puniverses eq_con_chk c1 c2 + | Const c1, Const c2 -> eq_puniverses Constant.UserOrd.equal c1 c2 | Ind c1, Ind c2 -> eq_puniverses eq_ind_chk c1 c2 | Construct ((c1,i1),u1), Construct ((c2,i2),u2) -> Int.equal i1 i2 && eq_ind_chk c1 c2 && Univ.Instance.equal u1 u2 diff --git a/checker/values.ml b/checker/values.ml index 160653d9b..1ac8d7cef 100644 --- a/checker/values.ml +++ b/checker/values.ml @@ -15,7 +15,7 @@ To ensure this file is up-to-date, 'make' now compares the md5 of cic.mli with a copy we maintain here: -MD5 2c3436106636784886f122c8ab578098 checker/cic.mli +MD5 c4fdf8a846aed45c27b5acb1add7d1c6 checker/cic.mli *) diff --git a/clib/cArray.ml b/clib/cArray.ml index 5eb20bc16..071f4689b 100644 --- a/clib/cArray.ml +++ b/clib/cArray.ml @@ -62,9 +62,12 @@ sig val fold_left2_map : ('a -> 'b -> 'c -> 'a * 'd) -> 'a -> 'b array -> 'c array -> 'a * 'd array val fold_right2_map : ('a -> 'b -> 'c -> 'd * 'c) -> 'a array -> 'b array -> 'c -> 'd array * 'c val fold_map : ('a -> 'b -> 'a * 'c) -> 'a -> 'b array -> 'a * 'c array + [@@ocaml.deprecated "Same as [fold_left_map]"] val fold_map' : ('a -> 'c -> 'b * 'c) -> 'a array -> 'c -> 'b array * 'c + [@@ocaml.deprecated "Same as [fold_right_map]"] val fold_map2' : ('a -> 'b -> 'c -> 'd * 'c) -> 'a array -> 'b array -> 'c -> 'd array * 'c + [@@ocaml.deprecated "Same as [fold_right2_map]"] val distinct : 'a array -> bool val rev_of_list : 'a list -> 'a array val rev_to_list : 'a array -> 'a list diff --git a/clib/cArray.mli b/clib/cArray.mli index f4f60f8aa..9c2f521f4 100644 --- a/clib/cArray.mli +++ b/clib/cArray.mli @@ -114,14 +114,14 @@ sig (** Same with two arrays, folding on the left *) val fold_map : ('a -> 'b -> 'a * 'c) -> 'a -> 'b array -> 'a * 'c array - (** @deprecated Same as [fold_left_map] *) + [@@ocaml.deprecated "Same as [fold_left_map]"] val fold_map' : ('a -> 'c -> 'b * 'c) -> 'a array -> 'c -> 'b array * 'c - (** @deprecated Same as [fold_right_map] *) + [@@ocaml.deprecated "Same as [fold_right_map]"] val fold_map2' : ('a -> 'b -> 'c -> 'd * 'c) -> 'a array -> 'b array -> 'c -> 'd array * 'c - (** @deprecated Same as [fold_right2_map] *) + [@@ocaml.deprecated "Same as [fold_right2_map]"] val distinct : 'a array -> bool (** Return [true] if every element of the array is unique (for default diff --git a/clib/cList.ml b/clib/cList.ml index 80bb18477..8727f4696 100644 --- a/clib/cList.ml +++ b/clib/cList.ml @@ -102,7 +102,9 @@ sig val fold_left3_map : ('a -> 'b -> 'c -> 'd -> 'a * 'e) -> 'a -> 'b list -> 'c list -> 'd list -> 'a * 'e list val fold_left4_map : ('a -> 'b -> 'c -> 'd -> 'e -> 'a * 'r) -> 'a -> 'b list -> 'c list -> 'd list -> 'e list -> 'a * 'r list val fold_map : ('a -> 'b -> 'a * 'c) -> 'a -> 'b list -> 'a * 'c list + [@@ocaml.deprecated "Same as [fold_left_map]"] val fold_map' : ('b -> 'a -> 'c * 'a) -> 'b list -> 'a -> 'c list * 'a + [@@ocaml.deprecated "Same as [fold_right_map]"] val map_assoc : ('a -> 'b) -> ('c * 'a) list -> ('c * 'b) list val assoc_f : 'a eq -> 'a -> ('a * 'b) list -> 'b val remove_assoc_f : 'a eq -> 'a -> ('a * 'b) list -> ('a * 'b) list diff --git a/clib/cList.mli b/clib/cList.mli index db37050aa..fd6d6a158 100644 --- a/clib/cList.mli +++ b/clib/cList.mli @@ -228,11 +228,10 @@ sig (** Same with four lists, folding on the left *) val fold_map : ('a -> 'b -> 'a * 'c) -> 'a -> 'b list -> 'a * 'c list - (* [@@ocaml.deprecated "Same as [fold_left_map]"] *) - (** @deprecated Same as [fold_left_map] *) + [@@ocaml.deprecated "Same as [fold_left_map]"] val fold_map' : ('b -> 'a -> 'c * 'a) -> 'b list -> 'a -> 'c list * 'a - (** @deprecated Same as [fold_right_map] *) + [@@ocaml.deprecated "Same as [fold_right_map]"] val map_assoc : ('a -> 'b) -> ('c * 'a) list -> ('c * 'b) list val assoc_f : 'a eq -> 'a -> ('a * 'b) list -> 'b diff --git a/clib/option.mli b/clib/option.mli index 67b42268a..14fa9da38 100644 --- a/clib/option.mli +++ b/clib/option.mli @@ -98,6 +98,7 @@ val fold_right_map : ('b -> 'a -> 'c * 'a) -> 'b option -> 'a -> 'c option * 'a (** @deprecated Same as [fold_left_map] *) val fold_map : ('a -> 'b -> 'a * 'c) -> 'a -> 'b option -> 'a * 'c option +[@@ocaml.deprecated "Same as [fold_left_map]"] (** [cata f e x] is [e] if [x] is [None] and [f a] if [x] is [Some a] *) val cata : ('a -> 'b) -> 'b -> 'a option -> 'b diff --git a/default.nix b/default.nix index 26c6e4b90..0b4794274 100644 --- a/default.nix +++ b/default.nix @@ -32,6 +32,7 @@ }: with pkgs; +with stdenv.lib; stdenv.mkDerivation rec { @@ -61,8 +62,7 @@ stdenv.mkDerivation rec { ] else []) ++ (if doCheck then # Test-suite dependencies - let inherit (stdenv.lib) versionAtLeast optional; in - /* ncurses is required to build an OCaml REPL */ + # ncurses is required to build an OCaml REPL optional (!versionAtLeast ocaml.version "4.07") ncurses ++ [ python @@ -90,6 +90,10 @@ stdenv.mkDerivation rec { prefixKey = "-prefix "; + buildFlags = optionals buildDoc [ "world" "sphinx" ]; + + installTargets = [ "install" ] ++ optional buildDoc "install-doc-sphinx"; + inherit doCheck; } diff --git a/dev/ci/ci-basic-overlay.sh b/dev/ci/ci-basic-overlay.sh index 48e01e9e9..2adc7d8dc 100644 --- a/dev/ci/ci-basic-overlay.sh +++ b/dev/ci/ci-basic-overlay.sh @@ -142,7 +142,7 @@ ######################################################################## # Equations ######################################################################## -: "${Equations_CI_BRANCH:=8.8+alpha}" +: "${Equations_CI_BRANCH:=master}" : "${Equations_CI_GITURL:=https://github.com/mattam82/Coq-Equations.git}" ######################################################################## diff --git a/dev/ci/ci-iris-lambda-rust.sh b/dev/ci/ci-iris-lambda-rust.sh index b019fa059..1af0f634c 100755 --- a/dev/ci/ci-iris-lambda-rust.sh +++ b/dev/ci/ci-iris-lambda-rust.sh @@ -9,27 +9,20 @@ lambdaRust_CI_DIR="${CI_BUILD_DIR}/lambdaRust" install_ssreflect -# Add or update the opam repo we need for dependency resolution -opam repo add iris-dev https://gitlab.mpi-sws.org/FP/opam-dev.git -p 0 || opam update iris-dev - # Setup lambdaRust first git_checkout "${lambdaRust_CI_BRANCH}" "${lambdaRust_CI_GITURL}" "${lambdaRust_CI_DIR}" # Extract required version of Iris -Iris_VERSION=$(grep -F coq-iris < "${lambdaRust_CI_DIR}/opam" | grep -E 'dev\.([0-9.-]+)' -o) -Iris_URL=$(opam show "coq-iris.$Iris_VERSION" -f upstream-url) -read -r -a Iris_URL_PARTS <<< "$(echo "$Iris_URL" | tr '#' ' ')" +Iris_SHA=$(grep -F coq-iris < "${lambdaRust_CI_DIR}/opam" | sed 's/.*"dev\.[0-9.-]\+\.\([0-9a-z]\+\)".*/\1/') # Setup Iris -git_checkout "${Iris_CI_BRANCH}" "${Iris_URL_PARTS[0]}" "${Iris_CI_DIR}" "${Iris_URL_PARTS[1]}" +git_checkout "${Iris_CI_BRANCH}" "${Iris_CI_GITURL}" "${Iris_CI_DIR}" "${Iris_SHA}" # Extract required version of std++ -stdpp_VERSION=$(grep -F coq-stdpp < "${Iris_CI_DIR}/opam" | grep -E 'dev\.([0-9.-]+)' -o) -stdpp_URL=$(opam show "coq-stdpp.$stdpp_VERSION" -f upstream-url) -read -r -a stdpp_URL_PARTS <<< "$(echo "$stdpp_URL" | tr '#' ' ')" +stdpp_SHA=$(grep -F coq-stdpp < "${Iris_CI_DIR}/opam" | sed 's/.*"dev\.[0-9.-]\+\.\([0-9a-z]\+\)".*/\1/') # Setup std++ -git_checkout "${stdpp_CI_BRANCH}" "${stdpp_URL_PARTS[0]}" "${stdpp_CI_DIR}" "${stdpp_URL_PARTS[1]}" +git_checkout "${stdpp_CI_BRANCH}" "${stdpp_CI_GITURL}" "${stdpp_CI_DIR}" "${stdpp_SHA}" # Build std++ ( cd "${stdpp_CI_DIR}" && make && make install ) diff --git a/dev/ci/user-overlays/06454-ejgallego-evar+strict_to_constr.sh b/dev/ci/user-overlays/06454-ejgallego-evar+strict_to_constr.sh new file mode 100644 index 000000000..f4cb71cf1 --- /dev/null +++ b/dev/ci/user-overlays/06454-ejgallego-evar+strict_to_constr.sh @@ -0,0 +1,8 @@ +if [ "$CI_PULL_REQUEST" = "6454" ] || [ "$CI_BRANCH" = "evar+strict_to_constr" ]; then + + # ltac2_CI_BRANCH=econstr+more_fix + # ltac2_CI_GITURL=https://github.com/ejgallego/ltac2 + + Equations_CI_BRANCH=evar+strict_to_constr + Equations_CI_GITURL=https://github.com/ejgallego/Coq-Equations +fi diff --git a/dev/ci/user-overlays/07136-evar-map-econstr.sh b/dev/ci/user-overlays/07136-evar-map-econstr.sh new file mode 100644 index 000000000..06aa62726 --- /dev/null +++ b/dev/ci/user-overlays/07136-evar-map-econstr.sh @@ -0,0 +1,7 @@ +if [ "$CI_PULL_REQUEST" = "7136" ] || [ "$CI_BRANCH" = "evar-map-econstr" ]; then + Equations_CI_BRANCH=8.9+alpha + Equations_CI_GITURL=https://github.com/SkySkimmer/Coq-Equations.git + + Elpi_CI_BRANCH=coq-7136 + Elpi_CI_GITURL=https://github.com/SkySkimmer/coq-elpi.git +fi diff --git a/dev/doc/changes.md b/dev/doc/changes.md index ab78b0956..1a24f23e5 100644 --- a/dev/doc/changes.md +++ b/dev/doc/changes.md @@ -1,3 +1,12 @@ +## Changes between Coq 8.8 and Coq 8.9 + +### ML API + +Proof engine + + More functions have been changed to use `EConstr`, notably the + functions in `Evd`. + ## Changes between Coq 8.7 and Coq 8.8 ### Bug tracker diff --git a/dev/tools/pre-commit b/dev/tools/pre-commit index a514b8866..b56925c37 100755 --- a/dev/tools/pre-commit +++ b/dev/tools/pre-commit @@ -27,8 +27,8 @@ then # reset work tree and index # NB: untracked files which were not added are untouched - git apply --cached -R "$index" - git apply -R "$tree" + git apply --whitespace=nowarn --cached -R "$index" + git apply --whitespace=nowarn -R "$tree" # Fix index # For end of file newlines we must go through the worktree @@ -45,7 +45,7 @@ then # making git fail. Don't fail now: we fix the worktree first. if [ -s "$fixed_index" ] then - git apply -R "$fixed_index" + git apply --whitespace=nowarn -R "$fixed_index" fi # Fix worktree diff --git a/dev/top_printers.ml b/dev/top_printers.ml index ba0c54407..f9b402586 100644 --- a/dev/top_printers.ml +++ b/dev/top_printers.ml @@ -181,7 +181,7 @@ let ppproofview p = pp(pr_enum Goal.pr_goal gls ++ fnl () ++ Termops.pr_evar_map (Some 1) sigma) let ppopenconstr (x : Evd.open_constr) = - let (evd,c) = x in pp (Termops.pr_evar_map (Some 2) evd ++ envpp pr_constr_env c) + let (evd,c) = x in pp (Termops.pr_evar_map (Some 2) evd ++ envpp pr_econstr_env c) (* spiwack: deactivated until a replacement is found let pppftreestate p = pp(print_pftreestate p) *) diff --git a/doc/LICENSE b/doc/LICENSE index 7ae31b089..c223a4e16 100644 --- a/doc/LICENSE +++ b/doc/LICENSE @@ -2,15 +2,17 @@ The Coq Reference Manual is a collective work from the Coq Development Team whose members are listed in the file CREDITS of the Coq source package. All related documents (the LaTeX and BibTeX sources, the embedded png files, and the PostScript, PDF and html outputs) are -copyright (c) INRIA 1999-2006, with the exception of the Ubuntu font files -(UbuntuMono-Square.ttf and UbuntuMono-B.ttf), derived from UbuntuMono-Regular, -which is Copyright 2010,2011 Canonical Ltd and licensed under the Ubuntu font +copyright (c) INRIA 1999-2006, with the exception of the Ubuntu font +file UbuntuMono-B.ttf, which is +Copyright 2010,2011 Canonical Ltd and licensed under the Ubuntu font license, version 1.0 -(https://www.ubuntu.com/legal/terms-and-policies/font-licence). The material -connected to the Reference Manual may be distributed only subject to the terms -and conditions set forth in the Open Publication License, v1.0 or later (the -latest version is presently available at http://www.opencontent.org/openpub/). -Options A and B are *not* elected. +(https://www.ubuntu.com/legal/terms-and-policies/font-licence), and its +derivative CoqNotations.ttf distributed under the same license. The +material connected to the Reference Manual may be distributed only +subject to the terms and conditions set forth in the Open Publication +License, v1.0 or later (the latest version is presently available at +http://www.opencontent.org/openpub/). Options A and B are *not* +elected. The Coq Tutorial is a work by Gérard Huet, Gilles Kahn and Christine Paulin-Mohring. All documents (the LaTeX source and the PostScript, diff --git a/doc/RecTutorial/RecTutorial.tex b/doc/RecTutorial/RecTutorial.tex index d0884be0d..01369b900 100644 --- a/doc/RecTutorial/RecTutorial.tex +++ b/doc/RecTutorial/RecTutorial.tex @@ -2978,7 +2978,7 @@ definition of \textsl{div\_aux}: \begin{alltt} Definition div_aux (x y:nat)(H: Acc lt x):nat. - fix 3. + fix div_aux 3. intros. refine (if eq_nat_dec x 0 then 0 @@ -3010,10 +3010,10 @@ Definition div x y := div_aux x y (lt_wf x). Let us explain the proof above. In the definition of \citecoq{div\_aux}, what decreases is not $x$ but the \textsl{proof} of the accessibility -of $x$. The tactic ``~\texttt{fix 3}~'' is used to indicate that the proof +of $x$. The tactic ``~\texttt{fix div\_aux 3}~'' is used to indicate that the proof proceeds by structural induction on the third argument of the theorem --that is, on the accessibility proof. It also introduces a new -hypothesis in the context, named as the current theorem, and with the +hypothesis in the context, named ``~\texttt{div\_aux}~'', and with the same type as the goal. Then, the proof is refined with an incomplete proof term, containing a hole \texttt{\_}. This hole corresponds to the proof of accessibility for $x-y$, and is filled up with the (smaller!) diff --git a/doc/RecTutorial/RecTutorial.v b/doc/RecTutorial/RecTutorial.v index 4b0ab3125..4a17e0818 100644 --- a/doc/RecTutorial/RecTutorial.v +++ b/doc/RecTutorial/RecTutorial.v @@ -922,7 +922,7 @@ Print minus_decrease. Definition div_aux (x y:nat)(H: Acc lt x):nat. - fix 3. + fix div_aux 3. intros. refine (if eq_nat_dec x 0 then 0 diff --git a/doc/refman/AddRefMan-pre.tex b/doc/refman/AddRefMan-pre.tex deleted file mode 100644 index 856a823de..000000000 --- a/doc/refman/AddRefMan-pre.tex +++ /dev/null @@ -1,63 +0,0 @@ -%\coverpage{Addendum to the Reference Manual}{\ } -%\addcontentsline{toc}{part}{Additional documentation} -%BEGIN LATEX -\setheaders{Presentation of the Addendum} -%END LATEX -\chapter*{Presentation of the Addendum} -%HEVEA\cutname{addendum.html} - -Here you will find several pieces of additional documentation for the -\Coq\ Reference Manual. Each of this chapters is concentrated on a -particular topic, that should interest only a fraction of the \Coq\ -users: that's the reason why they are apart from the Reference -Manual. - -\begin{description} - -\item[Extended pattern-matching] This chapter details the use of - generalized pattern-matching. It is contributed by Cristina Cornes - and Hugo Herbelin. - -\item[Implicit coercions] This chapter details the use of the coercion - mechanism. It is contributed by Amokrane Saïbi. - -%\item[Proof of imperative programs] This chapter explains how to -% prove properties of annotated programs with imperative features. -% It is contributed by Jean-Christophe Filliâtre - -\item[Program extraction] This chapter explains how to extract in practice ML - files from $\FW$ terms. It is contributed by Jean-Christophe - Filliâtre and Pierre Letouzey. - -\item[Program] This chapter explains the use of the \texttt{Program} - vernacular which allows the development of certified - programs in \Coq. It is contributed by Matthieu Sozeau and replaces - the previous \texttt{Program} tactic by Catherine Parent. - -%\item[Natural] This chapter is due to Yann Coscoy. It is the user -% manual of the tools he wrote for printing proofs in natural -% language. At this time, French and English languages are supported. - -\item[omega] \texttt{omega}, written by Pierre Crégut, solves a whole - class of arithmetic problems. - -\item[The {\tt ring} tactic] This is a tactic to do AC rewriting. This - chapter explains how to use it and how it works. - The chapter is contributed by Patrick Loiseleur. - -\item[The {\tt Setoid\_replace} tactic] This is a - tactic to do rewriting on types equipped with specific (only partially - substitutive) equality. The chapter is contributed by Clément Renard. - -\item[Calling external provers] This chapter describes several tactics - which call external provers. - -\end{description} - -\atableofcontents - - -%%% Local Variables: -%%% mode: latex -%%% TeX-master: "Reference-Manual" -%%% End: diff --git a/doc/refman/RefMan-gal.tex b/doc/refman/RefMan-gal.tex deleted file mode 100644 index 41ea0a5dc..000000000 --- a/doc/refman/RefMan-gal.tex +++ /dev/null @@ -1,1737 +0,0 @@ -\chapter{The \gallina{} specification language -\label{Gallina}\index{Gallina}} -%HEVEA\cutname{gallina.html} -\label{BNF-syntax} % Used referred to as a chapter label - -This chapter describes \gallina, the specification language of {\Coq}. -It allows developing mathematical theories and proofs of specifications -of programs. The theories are built from axioms, hypotheses, -parameters, lemmas, theorems and definitions of constants, functions, -predicates and sets. The syntax of logical objects involved in -theories is described in Section~\ref{term}. The language of -commands, called {\em The Vernacular} is described in section -\ref{Vernacular}. - -In {\Coq}, logical objects are typed to ensure their logical -correctness. The rules implemented by the typing algorithm are described in -Chapter \ref{Cic}. - -\subsection*{About the grammars in the manual -\index{BNF metasyntax}} - -Grammars are presented in Backus-Naur form (BNF). Terminal symbols are -set in {\tt typewriter font}. In addition, there are special -notations for regular expressions. - -An expression enclosed in square brackets \zeroone{\ldots} means at -most one occurrence of this expression (this corresponds to an -optional component). - -The notation ``\nelist{\entry}{sep}'' stands for a non empty -sequence of expressions parsed by {\entry} and -separated by the literal ``{\tt sep}''\footnote{This is similar to the -expression ``{\entry} $\{$ {\tt sep} {\entry} $\}$'' in -standard BNF, or ``{\entry}~{$($} {\tt sep} {\entry} {$)$*}'' in -the syntax of regular expressions.}. - -Similarly, the notation ``\nelist{\entry}{}'' stands for a non -empty sequence of expressions parsed by the ``{\entry}'' entry, -without any separator between. - -Finally, the notation ``\sequence{\entry}{\tt sep}'' stands for a -possibly empty sequence of expressions parsed by the ``{\entry}'' entry, -separated by the literal ``{\tt sep}''. - -\section{Lexical conventions -\label{lexical}\index{Lexical conventions}} - -\paragraph{Blanks} -Space, newline and horizontal tabulation are considered as blanks. -Blanks are ignored but they separate tokens. - -\paragraph{Comments} - -Comments in {\Coq} are enclosed between {\tt (*} and {\tt - *)}\index{Comments}, and can be nested. They can contain any -character. However, string literals must be correctly closed. Comments -are treated as blanks. - -\paragraph{Identifiers and access identifiers} - -Identifiers, written {\ident}, are sequences of letters, digits, -\verb!_! and \verb!'!, that do not start with a digit or \verb!'!. -That is, they are recognized by the following lexical class: - -\index{ident@\ident} -\begin{center} -\begin{tabular}{rcl} -{\firstletter} & ::= & {\tt a..z} $\mid$ {\tt A..Z} $\mid$ {\tt \_} -$\mid$ {\tt unicode-letter} -\\ -{\subsequentletter} & ::= & {\tt a..z} $\mid$ {\tt A..Z} $\mid$ {\tt 0..9} -$\mid$ {\tt \_} % $\mid$ {\tt \$} -$\mid$ {\tt '} -$\mid$ {\tt unicode-letter} -$\mid$ {\tt unicode-id-part} \\ -{\ident} & ::= & {\firstletter} \sequencewithoutblank{\subsequentletter}{} -\end{tabular} -\end{center} -All characters are meaningful. In particular, identifiers are -case-sensitive. The entry {\tt unicode-letter} non-exhaustively -includes Latin, Greek, Gothic, Cyrillic, Arabic, Hebrew, Georgian, -Hangul, Hiragana and Katakana characters, CJK ideographs, mathematical -letter-like symbols, hyphens, non-breaking space, {\ldots} The entry -{\tt unicode-id-part} non-exhaustively includes symbols for prime -letters and subscripts. - -Access identifiers, written {\accessident}, are identifiers prefixed -by \verb!.! (dot) without blank. They are used in the syntax of qualified -identifiers. - -\paragraph{Natural numbers and integers} -Numerals are sequences of digits. Integers are numerals optionally preceded by a minus sign. - -\index{num@{\num}} -\index{integer@{\integer}} -\begin{center} -\begin{tabular}{r@{\quad::=\quad}l} -{\digit} & {\tt 0..9} \\ -{\num} & \nelistwithoutblank{\digit}{} \\ -{\integer} & \zeroone{\tt -}{\num} \\ -\end{tabular} -\end{center} - -\paragraph[Strings]{Strings\label{strings} -\index{string@{\qstring}}} -Strings are delimited by \verb!"! (double quote), and enclose a -sequence of any characters different from \verb!"! or the sequence -\verb!""! to denote the double quote character. In grammars, the -entry for quoted strings is {\qstring}. - -\paragraph{Keywords} -The following identifiers are reserved keywords, and cannot be -employed otherwise: -\begin{center} -\begin{tabular}{llllll} -\verb!_! & -\verb!as! & -\verb!at! & -\verb!cofix! & -\verb!else! & -\verb!end! \\ -% -\verb!exists! & -\verb!exists2! & -\verb!fix! & -\verb!for! & -\verb!forall! & -\verb!fun! \\ -% -\verb!if! & -\verb!IF! & -\verb!in! & -\verb!let! & -\verb!match! & -\verb!mod! \\ -% -\verb!Prop! & -\verb!return! & -\verb!Set! & -\verb!then! & -\verb!Type! & -\verb!using! \\ -% -\verb!where! & -\verb!with! & -\end{tabular} -\end{center} - - -\paragraph{Special tokens} -The following sequences of characters are special tokens: -\begin{center} -\begin{tabular}{lllllll} -\verb/!/ & -\verb!%! & -\verb!&! & -\verb!&&! & -\verb!(! & -\verb!()! & -\verb!)! \\ -% -\verb!*! & -\verb!+! & -\verb!++! & -\verb!,! & -\verb!-! & -\verb!->! & -\verb!.! \\ -% -\verb!.(! & -\verb!..! & -\verb!/! & -\verb!/\! & -\verb!:! & -\verb!::! & -\verb!:<! \\ -% -\verb!:=! & -\verb!:>! & -\verb!;! & -\verb!<! & -\verb!<-! & -\verb!<->! & -\verb!<:! \\ -% -\verb!<=! & -\verb!<>! & -\verb!=! & -\verb!=>! & -\verb!=_D! & -\verb!>! & -\verb!>->! \\ -% -\verb!>=! & -\verb!?! & -\verb!?=! & -\verb!@! & -\verb![! & -\verb!\/! & -\verb!]! \\ -% -\verb!^! & -\verb!{! & -\verb!|! & -\verb!|-! & -\verb!||! & -\verb!}! & -\verb!~! \\ -\end{tabular} -\end{center} - -Lexical ambiguities are resolved according to the ``longest match'' -rule: when a sequence of non alphanumerical characters can be decomposed -into several different ways, then the first token is the longest -possible one (among all tokens defined at this moment), and so on. - -\section{Terms \label{term}\index{Terms}} - -\subsection{Syntax of terms} - -Figures \ref{term-syntax} and \ref{term-syntax-aux} describe the basic syntax of -the terms of the {\em Calculus of Inductive Constructions} (also -called \CIC). The formal presentation of {\CIC} is given in Chapter -\ref{Cic}. Extensions of this syntax are given in chapter -\ref{Gallina-extension}. How to customize the syntax is described in Chapter -\ref{Addoc-syntax}. - -\begin{figure}[htbp] -\begin{centerframe} -\begin{tabular}{lcl@{\quad~}r} % warning: page width exceeded with \qquad -{\term} & ::= & - {\tt forall} {\binders} {\tt ,} {\term} &(\ref{products})\\ - & $|$ & {\tt fun} {\binders} {\tt =>} {\term} &(\ref{abstractions})\\ - & $|$ & {\tt fix} {\fixpointbodies} &(\ref{fixpoints})\\ - & $|$ & {\tt cofix} {\cofixpointbodies} &(\ref{fixpoints})\\ - & $|$ & {\tt let} {\ident} \zeroone{\binders} {\typecstr} {\tt :=} {\term} - {\tt in} {\term} &(\ref{let-in})\\ - & $|$ & {\tt let fix} {\fixpointbody} {\tt in} {\term} &(\ref{fixpoints})\\ - & $|$ & {\tt let cofix} {\cofixpointbody} - {\tt in} {\term} &(\ref{fixpoints})\\ - & $|$ & {\tt let} {\tt (} \sequence{\name}{,} {\tt )} \zeroone{\ifitem} - {\tt :=} {\term} - {\tt in} {\term} &(\ref{caseanalysis}, \ref{Mult-match})\\ - & $|$ & {\tt let '} {\pattern} \zeroone{{\tt in} {\term}} {\tt :=} {\term} - \zeroone{\returntype} {\tt in} {\term} & (\ref{caseanalysis}, \ref{Mult-match})\\ - & $|$ & {\tt if} {\term} \zeroone{\ifitem} {\tt then} {\term} - {\tt else} {\term} &(\ref{caseanalysis}, \ref{Mult-match})\\ - & $|$ & {\term} {\tt :} {\term} &(\ref{typecast})\\ - & $|$ & {\term} {\tt <:} {\term} &(\ref{typecast})\\ - & $|$ & {\term} {\tt :>} &(\ref{ProgramSyntax})\\ - & $|$ & {\term} {\tt ->} {\term} &(\ref{products})\\ - & $|$ & {\term} \nelist{\termarg}{}&(\ref{applications})\\ - & $|$ & {\tt @} {\qualid} \sequence{\term}{} - &(\ref{Implicits-explicitation})\\ - & $|$ & {\term} {\tt \%} {\ident} &(\ref{scopechange})\\ - & $|$ & {\tt match} \nelist{\caseitem}{\tt ,} - \zeroone{\returntype} {\tt with} &\\ - && ~~~\zeroone{\zeroone{\tt |} \nelist{\eqn}{|}} {\tt end} - &(\ref{caseanalysis})\\ - & $|$ & {\qualid} &(\ref{qualid})\\ - & $|$ & {\sort} &(\ref{Gallina-sorts})\\ - & $|$ & {\num} &(\ref{numerals})\\ - & $|$ & {\_} &(\ref{hole})\\ - & $|$ & {\tt (} {\term} {\tt )} & \\ - & & &\\ -{\termarg} & ::= & {\term} &\\ - & $|$ & {\tt (} {\ident} {\tt :=} {\term} {\tt )} - &(\ref{Implicits-explicitation})\\ -%% & $|$ & {\tt (} {\num} {\tt :=} {\term} {\tt )} -%% &(\ref{Implicits-explicitation})\\ -&&&\\ -{\binders} & ::= & \nelist{\binder}{} \\ -&&&\\ -{\binder} & ::= & {\name} & (\ref{Binders}) \\ - & $|$ & {\tt (} \nelist{\name}{} {\tt :} {\term} {\tt )} &\\ - & $|$ & {\tt (} {\name} {\typecstr} {\tt :=} {\term} {\tt )} &\\ - & $|$ & {\tt '} {\pattern} &\\ -& & &\\ -{\name} & ::= & {\ident} &\\ - & $|$ & {\tt \_} &\\ -&&&\\ -{\qualid} & ::= & {\ident} & \\ - & $|$ & {\qualid} {\accessident} &\\ - & & &\\ -{\sort} & ::= & {\tt Prop} ~$|$~ {\tt Set} ~$|$~ {\tt Type} & -\end{tabular} -\end{centerframe} -\caption{Syntax of terms} -\label{term-syntax} -\index{term@{\term}} -\index{sort@{\sort}} -\end{figure} - - - -\begin{figure}[htb] -\begin{centerframe} -\begin{tabular}{lcl} -{\fixpointbodies} & ::= & - {\fixpointbody} \\ - & $|$ & {\fixpointbody} {\tt with} \nelist{\fixpointbody}{{\tt with}} - {\tt for} {\ident} \\ -{\cofixpointbodies} & ::= & - {\cofixpointbody} \\ - & $|$ & {\cofixpointbody} {\tt with} \nelist{\cofixpointbody}{{\tt with}} - {\tt for} {\ident} \\ -&&\\ -{\fixpointbody} & ::= & - {\ident} {\binders} \zeroone{\annotation} {\typecstr} - {\tt :=} {\term} \\ -{\cofixpointbody} & ::= & {\ident} \zeroone{\binders} {\typecstr} {\tt :=} {\term} \\ - & &\\ -{\annotation} & ::= & {\tt \{ struct} {\ident} {\tt \}} \\ -&&\\ -{\caseitem} & ::= & {\term} \zeroone{{\tt as} \name} - \zeroone{{\tt in} \qualid \sequence{\pattern}{}} \\ -&&\\ -{\ifitem} & ::= & \zeroone{{\tt as} {\name}} {\returntype} \\ -&&\\ -{\returntype} & ::= & {\tt return} {\term} \\ -&&\\ -{\eqn} & ::= & \nelist{\multpattern}{\tt |} {\tt =>} {\term}\\ -&&\\ -{\multpattern} & ::= & \nelist{\pattern}{\tt ,}\\ -&&\\ -{\pattern} & ::= & {\qualid} \nelist{\pattern}{} \\ - & $|$ & {\tt @} {\qualid} \nelist{\pattern}{} \\ - - & $|$ & {\pattern} {\tt as} {\ident} \\ - & $|$ & {\pattern} {\tt \%} {\ident} \\ - & $|$ & {\qualid} \\ - & $|$ & {\tt \_} \\ - & $|$ & {\num} \\ - & $|$ & {\tt (} \nelist{\orpattern}{,} {\tt )} \\ -\\ -{\orpattern} & ::= & \nelist{\pattern}{\tt |}\\ -\end{tabular} -\end{centerframe} -\caption{Syntax of terms (continued)} -\label{term-syntax-aux} -\end{figure} - - -%%%%%%% - -\subsection{Types} - -{\Coq} terms are typed. {\Coq} types are recognized by the same -syntactic class as {\term}. We denote by {\type} the semantic subclass -of types inside the syntactic class {\term}. -\index{type@{\type}} - - -\subsection{Qualified identifiers and simple identifiers -\label{qualid} -\label{ident}} - -{\em Qualified identifiers} ({\qualid}) denote {\em global constants} -(definitions, lemmas, theorems, remarks or facts), {\em global -variables} (parameters or axioms), {\em inductive -types} or {\em constructors of inductive types}. -{\em Simple identifiers} (or shortly {\ident}) are a -syntactic subset of qualified identifiers. Identifiers may also -denote local {\em variables}, what qualified identifiers do not. - -\subsection{Numerals -\label{numerals}} - -Numerals have no definite semantics in the calculus. They are mere -notations that can be bound to objects through the notation mechanism -(see Chapter~\ref{Addoc-syntax} for details). Initially, numerals are -bound to Peano's representation of natural numbers -(see~\ref{libnats}). - -Note: negative integers are not at the same level as {\num}, for this -would make precedence unnatural. - -\subsection{Sorts -\index{Sorts} -\index{Type@{\Type}} -\index{Set@{\Set}} -\index{Prop@{\Prop}} -\index{Sorts} -\label{Gallina-sorts}} - -There are three sorts \Set, \Prop\ and \Type. -\begin{itemize} -\item \Prop\ is the universe of {\em logical propositions}. -The logical propositions themselves are typing the proofs. -We denote propositions by {\form}. This constitutes a semantic -subclass of the syntactic class {\term}. -\index{form@{\form}} -\item \Set\ is is the universe of {\em program -types} or {\em specifications}. -The specifications themselves are typing the programs. -We denote specifications by {\specif}. This constitutes a semantic -subclass of the syntactic class {\term}. -\index{specif@{\specif}} -\item {\Type} is the type of {\Set} and {\Prop} -\end{itemize} -\noindent More on sorts can be found in Section~\ref{Sorts}. - -\subsection{Binders -\label{Binders} -\index{binders}} - -Various constructions such as {\tt fun}, {\tt forall}, {\tt fix} and -{\tt cofix} {\em bind} variables. A binding is represented by an -identifier. If the binding variable is not used in the expression, the -identifier can be replaced by the symbol {\tt \_}. When the type of a -bound variable cannot be synthesized by the system, it can be -specified with the notation {\tt (}\,{\ident}\,{\tt :}\,{\type}\,{\tt -)}. There is also a notation for a sequence of binding variables -sharing the same type: {\tt (}\,{\ident$_1$}\ldots{\ident$_n$}\,{\tt -:}\,{\type}\,{\tt )}. A binder can also be any pattern prefixed by a quote, -e.g. {\tt '(x,y)}. - -Some constructions allow the binding of a variable to value. This is -called a ``let-binder''. The entry {\binder} of the grammar accepts -either an assumption binder as defined above or a let-binder. -The notation in the -latter case is {\tt (}\,{\ident}\,{\tt :=}\,{\term}\,{\tt )}. In a -let-binder, only one variable can be introduced at the same -time. It is also possible to give the type of the variable as follows: -{\tt (}\,{\ident}\,{\tt :}\,{\term}\,{\tt :=}\,{\term}\,{\tt )}. - -Lists of {\binder} are allowed. In the case of {\tt fun} and {\tt - forall}, it is intended that at least one binder of the list is an -assumption otherwise {\tt fun} and {\tt forall} gets identical. Moreover, -parentheses can be omitted in the case of a single sequence of -bindings sharing the same type (e.g.: {\tt fun~(x~y~z~:~A)~=>~t} can -be shortened in {\tt fun~x~y~z~:~A~=>~t}). - -\subsection{Abstractions -\label{abstractions} -\index{abstractions}} -\index{fun@{{\tt fun \ldots => \ldots}}} - -The expression ``{\tt fun} {\ident} {\tt :} {\type} {\tt =>}~{\term}'' -defines the {\em abstraction} of the variable {\ident}, of type -{\type}, over the term {\term}. It denotes a function of the variable -{\ident} that evaluates to the expression {\term} (e.g. {\tt fun x:$A$ -=> x} denotes the identity function on type $A$). -% The variable {\ident} is called the {\em parameter} of the function -% (we sometimes say the {\em formal parameter}). -The keyword {\tt fun} can be followed by several binders as given in -Section~\ref{Binders}. Functions over several variables are -equivalent to an iteration of one-variable functions. For instance the -expression ``{\tt fun}~{\ident$_{1}$}~{\ldots}~{\ident$_{n}$}~{\tt -:}~\type~{\tt =>}~{\term}'' denotes the same function as ``{\tt -fun}~{\ident$_{1}$}~{\tt :}~\type~{\tt =>}~{\ldots}~{\tt -fun}~{\ident$_{n}$}~{\tt :}~\type~{\tt =>}~{\term}''. If a let-binder -occurs in the list of binders, it is expanded to a let-in definition -(see Section~\ref{let-in}). - -\subsection{Products -\label{products} -\index{products}} -\index{forall@{{\tt forall \ldots, \ldots}}} - -The expression ``{\tt forall}~{\ident}~{\tt :}~{\type}{\tt -,}~{\term}'' denotes the {\em product} of the variable {\ident} of -type {\type}, over the term {\term}. As for abstractions, {\tt forall} -is followed by a binder list, and products over several variables are -equivalent to an iteration of one-variable products. -Note that {\term} is intended to be a type. - -If the variable {\ident} occurs in {\term}, the product is called {\em -dependent product}. The intention behind a dependent product {\tt -forall}~$x$~{\tt :}~{$A$}{\tt ,}~{$B$} is twofold. It denotes either -the universal quantification of the variable $x$ of type $A$ in the -proposition $B$ or the functional dependent product from $A$ to $B$ (a -construction usually written $\Pi_{x:A}.B$ in set theory). - -Non dependent product types have a special notation: ``$A$ {\tt ->} -$B$'' stands for ``{\tt forall \_:}$A${\tt ,}~$B$''. The {\em non dependent -product} is used both to denote the propositional implication and -function types. - -\subsection{Applications -\label{applications} -\index{applications}} - -The expression \term$_0$ \term$_1$ denotes the application of -\term$_0$ to \term$_1$. - -The expression {\tt }\term$_0$ \term$_1$ ... \term$_n${\tt} -denotes the application of the term \term$_0$ to the arguments -\term$_1$ ... then \term$_n$. It is equivalent to {\tt (} {\ldots} -{\tt (} {\term$_0$} {\term$_1$} {\tt )} {\ldots} {\tt )} {\term$_n$} {\tt }: -associativity is to the left. - -The notation {\tt (}\,{\ident}\,{\tt :=}\,{\term}\,{\tt )} for -arguments is used for making explicit the value of implicit arguments -(see Section~\ref{Implicits-explicitation}). - -\subsection{Type cast -\label{typecast} -\index{Cast}} -\index{cast@{{\tt(\ldots: \ldots)}}} - -The expression ``{\term}~{\tt :}~{\type}'' is a type cast -expression. It enforces the type of {\term} to be {\type}. - -``{\term}~{\tt <:}~{\type}'' locally sets up the virtual machine for checking -that {\term} has type {\type}. - -\subsection{Inferable subterms -\label{hole} -\index{\_}} - -Expressions often contain redundant pieces of information. Subterms that -can be automatically inferred by {\Coq} can be replaced by the -symbol ``\_'' and {\Coq} will guess the missing piece of information. - -\subsection{Let-in definitions -\label{let-in} -\index{Let-in definitions} -\index{let-in}} -\index{let@{{\tt let \ldots := \ldots in \ldots}}} - - -{\tt let}~{\ident}~{\tt :=}~{\term$_1$}~{\tt in}~{\term$_2$} denotes -the local binding of \term$_1$ to the variable $\ident$ in -\term$_2$. -There is a syntactic sugar for let-in definition of functions: {\tt -let} {\ident} {\binder$_1$} {\ldots} {\binder$_n$} {\tt :=} {\term$_1$} -{\tt in} {\term$_2$} stands for {\tt let} {\ident} {\tt := fun} -{\binder$_1$} {\ldots} {\binder$_n$} {\tt =>} {\term$_1$} {\tt in} -{\term$_2$}. - -\subsection{Definition by case analysis -\label{caseanalysis} -\index{match@{\tt match\ldots with\ldots end}}} - -Objects of inductive types can be destructurated by a case-analysis -construction called {\em pattern-matching} expression. A -pattern-matching expression is used to analyze the structure of an -inductive objects and to apply specific treatments accordingly. - -This paragraph describes the basic form of pattern-matching. See -Section~\ref{Mult-match} and Chapter~\ref{Mult-match-full} for the -description of the general form. The basic form of pattern-matching is -characterized by a single {\caseitem} expression, a {\multpattern} -restricted to a single {\pattern} and {\pattern} restricted to the -form {\qualid} \nelist{\ident}{}. - -The expression {\tt match} {\term$_0$} {\returntype} {\tt with} -{\pattern$_1$} {\tt =>} {\term$_1$} {\tt $|$} {\ldots} {\tt $|$} -{\pattern$_n$} {\tt =>} {\term$_n$} {\tt end}, denotes a {\em -pattern-matching} over the term {\term$_0$} (expected to be of an -inductive type $I$). The terms {\term$_1$}\ldots{\term$_n$} are the -{\em branches} of the pattern-matching expression. Each of -{\pattern$_i$} has a form \qualid~\nelist{\ident}{} where {\qualid} -must denote a constructor. There should be exactly one branch for -every constructor of $I$. - -The {\returntype} expresses the type returned by the whole {\tt match} -expression. There are several cases. In the {\em non dependent} case, -all branches have the same type, and the {\returntype} is the common -type of branches. In this case, {\returntype} can usually be omitted -as it can be inferred from the type of the branches\footnote{Except if -the inductive type is empty in which case there is no equation that can be -used to infer the return type.}. - -In the {\em dependent} case, there are three subcases. In the first -subcase, the type in each branch may depend on the exact value being -matched in the branch. In this case, the whole pattern-matching itself -depends on the term being matched. This dependency of the term being -matched in the return type is expressed with an ``{\tt as {\ident}}'' -clause where {\ident} is dependent in the return type. -For instance, in the following example: -\begin{coq_example*} -Inductive bool : Type := true : bool | false : bool. -Inductive eq (A:Type) (x:A) : A -> Prop := eq_refl : eq A x x. -Inductive or (A:Prop) (B:Prop) : Prop := -| or_introl : A -> or A B -| or_intror : B -> or A B. -Definition bool_case (b:bool) : or (eq bool b true) (eq bool b false) -:= match b as x return or (eq bool x true) (eq bool x false) with - | true => or_introl (eq bool true true) (eq bool true false) - (eq_refl bool true) - | false => or_intror (eq bool false true) (eq bool false false) - (eq_refl bool false) - end. -\end{coq_example*} -the branches have respective types {\tt or (eq bool true true) (eq -bool true false)} and {\tt or (eq bool false true) (eq bool false -false)} while the whole pattern-matching expression has type {\tt or -(eq bool b true) (eq bool b false)}, the identifier {\tt x} being used -to represent the dependency. Remark that when the term being matched -is a variable, the {\tt as} clause can be omitted and the term being -matched can serve itself as binding name in the return type. For -instance, the following alternative definition is accepted and has the -same meaning as the previous one. -\begin{coq_eval} -Reset bool_case. -\end{coq_eval} -\begin{coq_example*} -Definition bool_case (b:bool) : or (eq bool b true) (eq bool b false) -:= match b return or (eq bool b true) (eq bool b false) with - | true => or_introl (eq bool true true) (eq bool true false) - (eq_refl bool true) - | false => or_intror (eq bool false true) (eq bool false false) - (eq_refl bool false) - end. -\end{coq_example*} - -The second subcase is only relevant for annotated inductive types such -as the equality predicate (see Section~\ref{Equality}), the order -predicate on natural numbers % (see Section~\ref{le}) % undefined reference -or the type of -lists of a given length (see Section~\ref{listn}). In this configuration, -the type of each branch can depend on the type dependencies specific -to the branch and the whole pattern-matching expression has a type -determined by the specific dependencies in the type of the term being -matched. This dependency of the return type in the annotations of the -inductive type is expressed using a - ``in~I~\_~$\ldots$~\_~\pattern$_1$~$\ldots$~\pattern$_n$'' clause, where -\begin{itemize} -\item $I$ is the inductive type of the term being matched; - -\item the {\_}'s are matching the parameters of the inductive type: -the return type is not dependent on them. - -\item the \pattern$_i$'s are matching the annotations of the inductive - type: the return type is dependent on them - -\item in the basic case which we describe below, each \pattern$_i$ is a - name \ident$_i$; see \ref{match-in-patterns} for the general case - -\end{itemize} - -For instance, in the following example: -\begin{coq_example*} -Definition eq_sym (A:Type) (x y:A) (H:eq A x y) : eq A y x := - match H in eq _ _ z return eq A z x with - | eq_refl _ _ => eq_refl A x - end. -\end{coq_example*} -the type of the branch has type {\tt eq~A~x~x} because the third -argument of {\tt eq} is {\tt x} in the type of the pattern {\tt -refl\_equal}. On the contrary, the type of the whole pattern-matching -expression has type {\tt eq~A~y~x} because the third argument of {\tt -eq} is {\tt y} in the type of {\tt H}. This dependency of the case -analysis in the third argument of {\tt eq} is expressed by the -identifier {\tt z} in the return type. - -Finally, the third subcase is a combination of the first and second -subcase. In particular, it only applies to pattern-matching on terms -in a type with annotations. For this third subcase, both -the clauses {\tt as} and {\tt in} are available. - -There are specific notations for case analysis on types with one or -two constructors: ``{\tt if {\ldots} then {\ldots} else {\ldots}}'' -and ``{\tt let (}\nelist{\ldots}{,}{\tt ) := } {\ldots} {\tt in} -{\ldots}'' (see Sections~\ref{if-then-else} and~\ref{Letin}). - -%\SeeAlso Section~\ref{Mult-match} for convenient extensions of pattern-matching. - -\subsection{Recursive functions -\label{fixpoints} -\index{fix@{fix \ident$_i$\{\dots\}}}} - -The expression ``{\tt fix} \ident$_1$ \binder$_1$ {\tt :} {\type$_1$} -\texttt{:=} \term$_1$ {\tt with} {\ldots} {\tt with} \ident$_n$ -\binder$_n$~{\tt :} {\type$_n$} \texttt{:=} \term$_n$ {\tt for} -{\ident$_i$}'' denotes the $i$\nth component of a block of functions -defined by mutual well-founded recursion. It is the local counterpart -of the {\tt Fixpoint} command. See Section~\ref{Fixpoint} for more -details. When $n=1$, the ``{\tt for}~{\ident$_i$}'' clause is omitted. - -The expression ``{\tt cofix} \ident$_1$~\binder$_1$ {\tt :} -{\type$_1$} {\tt with} {\ldots} {\tt with} \ident$_n$ \binder$_n$ {\tt -:} {\type$_n$}~{\tt for} {\ident$_i$}'' denotes the $i$\nth component of -a block of terms defined by a mutual guarded co-recursion. It is the -local counterpart of the {\tt CoFixpoint} command. See -Section~\ref{CoFixpoint} for more details. When $n=1$, the ``{\tt -for}~{\ident$_i$}'' clause is omitted. - -The association of a single fixpoint and a local -definition have a special syntax: ``{\tt let fix}~$f$~{\ldots}~{\tt - :=}~{\ldots}~{\tt in}~{\ldots}'' stands for ``{\tt let}~$f$~{\tt := - fix}~$f$~\ldots~{\tt :=}~{\ldots}~{\tt in}~{\ldots}''. The same - applies for co-fixpoints. - - -\section{The Vernacular -\label{Vernacular}} - -\begin{figure}[tbp] -\begin{centerframe} -\begin{tabular}{lcl} -{\sentence} & ::= & {\assumption} \\ - & $|$ & {\definition} \\ - & $|$ & {\inductive} \\ - & $|$ & {\fixpoint} \\ - & $|$ & {\assertion} {\proof} \\ -&&\\ -%% Assumptions -{\assumption} & ::= & {\assumptionkeyword} {\assums} {\tt .} \\ -&&\\ -{\assumptionkeyword} & $\!\!$ ::= & {\tt Axiom} $|$ {\tt Conjecture} \\ - & $|$ & {\tt Parameter} $|$ {\tt Parameters} \\ - & $|$ & {\tt Variable} $|$ {\tt Variables} \\ - & $|$ & {\tt Hypothesis} $|$ {\tt Hypotheses}\\ -&&\\ -{\assums} & ::= & \nelist{\ident}{} {\tt :} {\term} \\ - & $|$ & \nelist{{\tt (} \nelist{\ident}{} {\tt :} {\term} {\tt )}}{} \\ -&&\\ -%% Definitions -{\definition} & ::= & - \zeroone{\tt Local} {\tt Definition} {\ident} \zeroone{\binders} {\typecstr} {\tt :=} {\term} {\tt .} \\ - & $|$ & {\tt Let} {\ident} \zeroone{\binders} {\typecstr} {\tt :=} {\term} {\tt .} \\ -&&\\ -%% Inductives -{\inductive} & ::= & - {\tt Inductive} \nelist{\inductivebody}{with} {\tt .} \\ - & $|$ & {\tt CoInductive} \nelist{\inductivebody}{with} {\tt .} \\ - & & \\ -{\inductivebody} & ::= & - {\ident} \zeroone{\binders} {\typecstr} {\tt :=} \\ - && ~~\zeroone{\zeroone{\tt |} \nelist{$\!${\ident}$\!$ \zeroone{\binders} {\typecstr}}{|}} \\ - & & \\ %% TODO: where ... -%% Fixpoints -{\fixpoint} & ::= & {\tt Fixpoint} \nelist{\fixpointbody}{with} {\tt .} \\ - & $|$ & {\tt CoFixpoint} \nelist{\cofixpointbody}{with} {\tt .} \\ -&&\\ -%% Lemmas & proofs -{\assertion} & ::= & - {\statkwd} {\ident} \zeroone{\binders} {\tt :} {\term} {\tt .} \\ -&&\\ - {\statkwd} & ::= & {\tt Theorem} $|$ {\tt Lemma} \\ - & $|$ & {\tt Remark} $|$ {\tt Fact}\\ - & $|$ & {\tt Corollary} $|$ {\tt Proposition} \\ - & $|$ & {\tt Definition} $|$ {\tt Example} \\\\ -&&\\ -{\proof} & ::= & {\tt Proof} {\tt .} {\dots} {\tt Qed} {\tt .}\\ - & $|$ & {\tt Proof} {\tt .} {\dots} {\tt Defined} {\tt .}\\ - & $|$ & {\tt Proof} {\tt .} {\dots} {\tt Admitted} {\tt .}\\ -\end{tabular} -\end{centerframe} -\caption{Syntax of sentences} -\label{sentences-syntax} -\end{figure} - -Figure \ref{sentences-syntax} describes {\em The Vernacular} which is the -language of commands of \gallina. A sentence of the vernacular -language, like in many natural languages, begins with a capital letter -and ends with a dot. - -The different kinds of command are described hereafter. They all suppose -that the terms occurring in the sentences are well-typed. - -%% -%% Axioms and Parameters -%% -\subsection{Assumptions -\index{Declarations} -\label{Declarations}} - -Assumptions extend the environment\index{Environment} with axioms, -parameters, hypotheses or variables. An assumption binds an {\ident} -to a {\type}. It is accepted by {\Coq} if and only if this {\type} is -a correct type in the environment preexisting the declaration and if -{\ident} was not previously defined in the same module. This {\type} -is considered to be the type (or specification, or statement) assumed -by {\ident} and we say that {\ident} has type {\type}. - -\subsubsection{{\tt Axiom {\ident} :{\term} .} -\comindex{Axiom} -\label{Axiom}} - -This command links {\term} to the name {\ident} as its specification -in the global context. The fact asserted by {\term} is thus assumed as -a postulate. - -\begin{ErrMsgs} -\item \errindex{{\ident} already exists} -\end{ErrMsgs} - -\begin{Variants} -\item \comindex{Parameter}\comindex{Parameters} - {\tt Parameter {\ident} :{\term}.} \\ - Is equivalent to {\tt Axiom {\ident} : {\term}} - -\item {\tt Parameter {\ident$_1$} {\ldots} {\ident$_n$} {\tt :}{\term}.}\\ - Adds $n$ parameters with specification {\term} - -\item - {\tt Parameter\,% -(\,{\ident$_{1,1}$} {\ldots} {\ident$_{1,k_1}$}\,{\tt :}\,{\term$_1$} {\tt )}\;% -\ldots\;{\tt (}\,{\ident$_{n,1}$}{\ldots}{\ident$_{n,k_n}$}\,{\tt :}\,% -{\term$_n$} {\tt )}.}\\ - Adds $n$ blocks of parameters with different specifications. - -\item {\tt Local Axiom {\ident} : {\term}.}\\ -\comindex{Local Axiom} - Such axioms are never made accessible through their unqualified name by - {\tt Import} and its variants (see \ref{Import}). You have to explicitly - give their fully qualified name to refer to them. - -\item \comindex{Conjecture} - {\tt Conjecture {\ident} :{\term}.}\\ - Is equivalent to {\tt Axiom {\ident} : {\term}}. -\end{Variants} - -\noindent {\bf Remark: } It is possible to replace {\tt Parameter} by -{\tt Parameters}. - - -\subsubsection{{\tt Variable {\ident} :{\term}}. -\comindex{Variable} -\comindex{Variables} -\label{Variable}} - -This command links {\term} to the name {\ident} in the context of the -current section (see Section~\ref{Section} for a description of the section -mechanism). When the current section is closed, name {\ident} will be -unknown and every object using this variable will be explicitly -parametrized (the variable is {\em discharged}). Using the {\tt -Variable} command out of any section is equivalent to using {\tt -Local Parameter}. - -\begin{ErrMsgs} -\item \errindex{{\ident} already exists} -\end{ErrMsgs} - -\begin{Variants} -\item {\tt Variable {\ident$_1$} {\ldots} {\ident$_n$} {\tt :}{\term}.}\\ - Links {\term} to names {\ident$_1$} {\ldots} {\ident$_n$}. -\item - {\tt Variable\,% -(\,{\ident$_{1,1}$} {\ldots} {\ident$_{1,k_1}$}\,{\tt :}\,{\term$_1$} {\tt )}\;% -\ldots\;{\tt (}\,{\ident$_{n,1}$} {\ldots}{\ident$_{n,k_n}$}\,{\tt :}\,% -{\term$_n$} {\tt )}.}\\ - Adds $n$ blocks of variables with different specifications. -\item \comindex{Hypothesis} - \comindex{Hypotheses} - {\tt Hypothesis {\ident} {\tt :}{\term}.} \\ - \texttt{Hypothesis} is a synonymous of \texttt{Variable} -\end{Variants} - -\noindent {\bf Remark: } It is possible to replace {\tt Variable} by -{\tt Variables} and {\tt Hypothesis} by {\tt Hypotheses}. - -It is advised to use the keywords \verb:Axiom: and \verb:Hypothesis: -for logical postulates (i.e. when the assertion {\term} is of sort -\verb:Prop:), and to use the keywords \verb:Parameter: and -\verb:Variable: in other cases (corresponding to the declaration of an -abstract mathematical entity). - -%% -%% Definitions -%% -\subsection{Definitions -\index{Definitions} -\label{Basic-definitions}} - -Definitions extend the environment\index{Environment} with -associations of names to terms. A definition can be seen as a way to -give a meaning to a name or as a way to abbreviate a term. In any -case, the name can later be replaced at any time by its definition. - -The operation of unfolding a name into its definition is called -$\delta$-conversion\index{delta-reduction@$\delta$-reduction} (see -Section~\ref{delta}). A definition is accepted by the system if and -only if the defined term is well-typed in the current context of the -definition and if the name is not already used. The name defined by -the definition is called a {\em constant}\index{Constant} and the term -it refers to is its {\em body}. A definition has a type which is the -type of its body. - -A formal presentation of constants and environments is given in -Section~\ref{Typed-terms}. - -\subsubsection{\tt Definition {\ident} := {\term}. -\label{Definition} -\comindex{Definition}} - -This command binds {\term} to the name {\ident} in the -environment, provided that {\term} is well-typed. - -\begin{ErrMsgs} -\item \errindex{{\ident} already exists} -\end{ErrMsgs} - -\begin{Variants} -\item {\tt Definition} {\ident} {\tt :} {\term$_1$} {\tt :=} {\term$_2$}{\tt .}\\ - It checks that the type of {\term$_2$} is definitionally equal to - {\term$_1$}, and registers {\ident} as being of type {\term$_1$}, - and bound to value {\term$_2$}. -\item {\tt Definition} {\ident} {\binder$_1$} {\ldots} {\binder$_n$} - {\tt :} \term$_1$ {\tt :=} {\term$_2$}{\tt .}\\ - This is equivalent to \\ - {\tt Definition} {\ident} {\tt : forall}% - {\binder$_1$} {\ldots} {\binder$_n$}{\tt ,}\,\term$_1$\,{\tt :=}\,% - {\tt fun}\,{\binder$_1$} {\ldots} {\binder$_n$}\,{\tt =>}\,{\term$_2$}\,% - {\tt .} - -\item {\tt Local Definition {\ident} := {\term}.}\\ -\comindex{Local Definition} - Such definitions are never made accessible through their unqualified name by - {\tt Import} and its variants (see \ref{Import}). You have to explicitly - give their fully qualified name to refer to them. -\item {\tt Example {\ident} := {\term}.}\\ -{\tt Example} {\ident} {\tt :} {\term$_1$} {\tt :=} {\term$_2$}{\tt .}\\ -{\tt Example} {\ident} {\binder$_1$} {\ldots} {\binder$_n$} - {\tt :} {\term$_1$} {\tt :=} {\term$_2$}{\tt .}\\ -\comindex{Example} -These are synonyms of the {\tt Definition} forms. -\end{Variants} - -\begin{ErrMsgs} -\item \errindex{The term {\term} has type {\type} while it is expected to have type {\type}} -\end{ErrMsgs} - -\SeeAlso Sections \ref{Opaque}, \ref{Transparent}, \ref{unfold}. - -\subsubsection{\tt Let {\ident} := {\term}. -\comindex{Let}} - -This command binds the value {\term} to the name {\ident} in the -environment of the current section. The name {\ident} disappears -when the current section is eventually closed, and, all -persistent objects (such as theorems) defined within the -section and depending on {\ident} are prefixed by the let-in definition -{\tt let {\ident} := {\term} in}. Using the {\tt -Let} command out of any section is equivalent to using {\tt -Local Definition}. - -\begin{ErrMsgs} -\item \errindex{{\ident} already exists} -\end{ErrMsgs} - -\begin{Variants} -\item {\tt Let {\ident} : {\term$_1$} := {\term$_2$}.} -\item {\tt Let Fixpoint {\ident} \nelist{\fixpointbody}{with} {\tt .}.} -\item {\tt Let CoFixpoint {\ident} \nelist{\cofixpointbody}{with} {\tt .}.} -\end{Variants} - -\SeeAlso Sections \ref{Section} (section mechanism), \ref{Opaque}, -\ref{Transparent} (opaque/transparent constants), \ref{unfold} (tactic - {\tt unfold}). - -%% -%% Inductive Types -%% -\subsection{Inductive definitions -\index{Inductive definitions} -\label{gal-Inductive-Definitions} -\comindex{Inductive} -\label{Inductive} -\comindex{Variant} -\label{Variant}} - -We gradually explain simple inductive types, simple -annotated inductive types, simple parametric inductive types, -mutually inductive types. We explain also co-inductive types. - -\subsubsection{Simple inductive types} - -The definition of a simple inductive type has the following form: - -\medskip -\begin{tabular}{l} -{\tt Inductive} {\ident} {\tt :} {\sort} {\tt :=} \\ -\begin{tabular}{clcl} - & {\ident$_1$} & {\tt :} & {\type$_1$} \\ - {\tt |} & {\ldots} && \\ - {\tt |} & {\ident$_n$} & {\tt :} & {\type$_n$} \\ -\end{tabular} -\end{tabular} -\medskip - -The name {\ident} is the name of the inductively defined type and -{\sort} is the universes where it lives. -The names {\ident$_1$}, {\ldots}, {\ident$_n$} -are the names of its constructors and {\type$_1$}, {\ldots}, -{\type$_n$} their respective types. The types of the constructors have -to satisfy a {\em positivity condition} (see Section~\ref{Positivity}) -for {\ident}. This condition ensures the soundness of the inductive -definition. If this is the case, the names {\ident}, -{\ident$_1$}, {\ldots}, {\ident$_n$} are added to the environment with -their respective types. Accordingly to the universe where -the inductive type lives ({\it e.g.} its type {\sort}), {\Coq} provides a -number of destructors for {\ident}. Destructors are named -{\ident}{\tt\_ind}, {\ident}{\tt \_rec} or {\ident}{\tt \_rect} which -respectively correspond to elimination principles on {\tt Prop}, {\tt -Set} and {\tt Type}. The type of the destructors expresses structural -induction/recursion principles over objects of {\ident}. We give below -two examples of the use of the {\tt Inductive} definitions. - -The set of natural numbers is defined as: -\begin{coq_example} -Inductive nat : Set := - | O : nat - | S : nat -> nat. -\end{coq_example} - -The type {\tt nat} is defined as the least \verb:Set: containing {\tt - O} and closed by the {\tt S} constructor. The names {\tt nat}, -{\tt O} and {\tt S} are added to the environment. - -Now let us have a look at the elimination principles. They are three -of them: -{\tt nat\_ind}, {\tt nat\_rec} and {\tt nat\_rect}. The type of {\tt - nat\_ind} is: -\begin{coq_example} -Check nat_ind. -\end{coq_example} - -This is the well known structural induction principle over natural -numbers, i.e. the second-order form of Peano's induction principle. -It allows proving some universal property of natural numbers ({\tt -forall n:nat, P n}) by induction on {\tt n}. - -The types of {\tt nat\_rec} and {\tt nat\_rect} are similar, except -that they pertain to {\tt (P:nat->Set)} and {\tt (P:nat->Type)} -respectively . They correspond to primitive induction principles -(allowing dependent types) respectively over sorts \verb:Set: and -\verb:Type:. The constant {\ident}{\tt \_ind} is always provided, -whereas {\ident}{\tt \_rec} and {\ident}{\tt \_rect} can be impossible -to derive (for example, when {\ident} is a proposition). - -\begin{coq_eval} -Reset Initial. -\end{coq_eval} -\begin{Variants} -\item -\begin{coq_example*} -Inductive nat : Set := O | S (_:nat). -\end{coq_example*} -In the case where inductive types have no annotations (next section -gives an example of such annotations), -%the positivity condition implies that -a constructor can be defined by only giving the type of -its arguments. -\end{Variants} - -\subsubsection{Simple annotated inductive types} - -In an annotated inductive types, the universe where the inductive -type is defined is no longer a simple sort, but what is called an -arity, which is a type whose conclusion is a sort. - -As an example of annotated inductive types, let us define the -$even$ predicate: - -\begin{coq_example} -Inductive even : nat -> Prop := - | even_0 : even O - | even_SS : forall n:nat, even n -> even (S (S n)). -\end{coq_example} - -The type {\tt nat->Prop} means that {\tt even} is a unary predicate -(inductively defined) over natural numbers. The type of its two -constructors are the defining clauses of the predicate {\tt even}. The -type of {\tt even\_ind} is: - -\begin{coq_example} -Check even_ind. -\end{coq_example} - -From a mathematical point of view it asserts that the natural numbers -satisfying the predicate {\tt even} are exactly in the smallest set of -naturals satisfying the clauses {\tt even\_0} or {\tt even\_SS}. This -is why, when we want to prove any predicate {\tt P} over elements of -{\tt even}, it is enough to prove it for {\tt O} and to prove that if -any natural number {\tt n} satisfies {\tt P} its double successor {\tt - (S (S n))} satisfies also {\tt P}. This is indeed analogous to the -structural induction principle we got for {\tt nat}. - -\begin{ErrMsgs} -\item \errindex{Non strictly positive occurrence of {\ident} in {\type}} -\item \errindex{The conclusion of {\type} is not valid; it must be -built from {\ident}} -\end{ErrMsgs} - -\subsubsection{Parametrized inductive types} -In the previous example, each constructor introduces a -different instance of the predicate {\tt even}. In some cases, -all the constructors introduces the same generic instance of the -inductive definition, in which case, instead of an annotation, we use -a context of parameters which are binders shared by all the -constructors of the definition. - -% Inductive types may be parameterized. Parameters differ from inductive -% type annotations in the fact that recursive invokations of inductive -% types must always be done with the same values of parameters as its -% specification. - -The general scheme is: -\begin{center} -{\tt Inductive} {\ident} {\binder$_1$}\ldots{\binder$_k$} : {\term} := - {\ident$_1$}: {\term$_1$} | {\ldots} | {\ident$_n$}: \term$_n$ -{\tt .} -\end{center} -Parameters differ from inductive type annotations in the fact that the -conclusion of each type of constructor {\term$_i$} invoke the inductive -type with the same values of parameters as its specification. - - - -A typical example is the definition of polymorphic lists: -\begin{coq_example*} -Inductive list (A:Set) : Set := - | nil : list A - | cons : A -> list A -> list A. -\end{coq_example*} - -Note that in the type of {\tt nil} and {\tt cons}, we write {\tt - (list A)} and not just {\tt list}.\\ The constructors {\tt nil} and -{\tt cons} will have respectively types: - -\begin{coq_example} -Check nil. -Check cons. -\end{coq_example} - -Types of destructors are also quantified with {\tt (A:Set)}. - -\begin{coq_eval} -Reset Initial. -\end{coq_eval} -\begin{Variants} -\item -\begin{coq_example*} -Inductive list (A:Set) : Set := nil | cons (_:A) (_:list A). -\end{coq_example*} -This is an alternative definition of lists where we specify the -arguments of the constructors rather than their full type. -\item -\begin{coq_example*} -Variant sum (A B:Set) : Set := left : A -> sum A B | right : B -> sum A B. -\end{coq_example*} -The {\tt Variant} keyword is identical to the {\tt Inductive} keyword, -except that it disallows recursive definition of types (in particular -lists cannot be defined with the {\tt Variant} keyword). No induction -scheme is generated for this variant, unless the option -{\tt Nonrecursive Elimination Schemes} is set -(see~\ref{set-nonrecursive-elimination-schemes}). -\end{Variants} - -\begin{ErrMsgs} -\item \errindex{The {\num}th argument of {\ident} must be {\ident'} in -{\type}} -\end{ErrMsgs} - -\paragraph{New from \Coq{} V8.1} The condition on parameters for -inductive definitions has been relaxed since \Coq{} V8.1. It is now -possible in the type of a constructor, to invoke recursively the -inductive definition on an argument which is not the parameter itself. - -One can define~: -\begin{coq_example} -Inductive list2 (A:Set) : Set := - | nil2 : list2 A - | cons2 : A -> list2 (A*A) -> list2 A. -\end{coq_example} -\begin{coq_eval} -Reset list2. -\end{coq_eval} -that can also be written by specifying only the type of the arguments: -\begin{coq_example*} -Inductive list2 (A:Set) : Set := nil2 | cons2 (_:A) (_:list2 (A*A)). -\end{coq_example*} -But the following definition will give an error: -\begin{coq_example} -Fail Inductive listw (A:Set) : Set := - | nilw : listw (A*A) - | consw : A -> listw (A*A) -> listw (A*A). -\end{coq_example} -Because the conclusion of the type of constructors should be {\tt - listw A} in both cases. - -A parametrized inductive definition can be defined using -annotations instead of parameters but it will sometimes give a -different (bigger) sort for the inductive definition and will produce -a less convenient rule for case elimination. - -\SeeAlso Sections~\ref{Cic-inductive-definitions} and~\ref{Tac-induction}. - - -\subsubsection{Mutually defined inductive types -\comindex{Inductive} -\label{Mutual-Inductive}} - -The definition of a block of mutually inductive types has the form: - -\medskip -{\tt -\begin{tabular}{l} -Inductive {\ident$_1$} : {\type$_1$} := \\ -\begin{tabular}{clcl} - & {\ident$_1^1$} &:& {\type$_1^1$} \\ - | & {\ldots} && \\ - | & {\ident$_{n_1}^1$} &:& {\type$_{n_1}^1$} -\end{tabular} \\ -with\\ -~{\ldots} \\ -with {\ident$_m$} : {\type$_m$} := \\ -\begin{tabular}{clcl} - & {\ident$_1^m$} &:& {\type$_1^m$} \\ - | & {\ldots} \\ - | & {\ident$_{n_m}^m$} &:& {\type$_{n_m}^m$}. -\end{tabular} -\end{tabular} -} -\medskip - -\noindent It has the same semantics as the above {\tt Inductive} -definition for each \ident$_1$, {\ldots}, \ident$_m$. All names -\ident$_1$, {\ldots}, \ident$_m$ and \ident$_1^1$, \dots, -\ident$_{n_m}^m$ are simultaneously added to the environment. Then -well-typing of constructors can be checked. Each one of the -\ident$_1$, {\ldots}, \ident$_m$ can be used on its own. - -It is also possible to parametrize these inductive definitions. -However, parameters correspond to a local -context in which the whole set of inductive declarations is done. For -this reason, the parameters must be strictly the same for each -inductive types The extended syntax is: - -\medskip -\begin{tabular}{l} -{\tt Inductive} {\ident$_1$} {\params} {\tt :} {\type$_1$} {\tt :=} \\ -\begin{tabular}{clcl} - & {\ident$_1^1$} &{\tt :}& {\type$_1^1$} \\ - {\tt |} & {\ldots} && \\ - {\tt |} & {\ident$_{n_1}^1$} &{\tt :}& {\type$_{n_1}^1$} -\end{tabular} \\ -{\tt with}\\ -~{\ldots} \\ -{\tt with} {\ident$_m$} {\params} {\tt :} {\type$_m$} {\tt :=} \\ -\begin{tabular}{clcl} - & {\ident$_1^m$} &{\tt :}& {\type$_1^m$} \\ - {\tt |} & {\ldots} \\ - {\tt |} & {\ident$_{n_m}^m$} &{\tt :}& {\type$_{n_m}^m$}. -\end{tabular} -\end{tabular} -\medskip - -\Example -The typical example of a mutual inductive data type is the one for -trees and forests. We assume given two types $A$ and $B$ as variables. -It can be declared the following way. - -\begin{coq_eval} -Reset Initial. -\end{coq_eval} -\begin{coq_example*} -Variables A B : Set. -Inductive tree : Set := - node : A -> forest -> tree -with forest : Set := - | leaf : B -> forest - | cons : tree -> forest -> forest. -\end{coq_example*} - -This declaration generates automatically six induction -principles. They are respectively -called {\tt tree\_rec}, {\tt tree\_ind}, {\tt - tree\_rect}, {\tt forest\_rec}, {\tt forest\_ind}, {\tt - forest\_rect}. These ones are not the most general ones but are -just the induction principles corresponding to each inductive part -seen as a single inductive definition. - -To illustrate this point on our example, we give the types of {\tt - tree\_rec} and {\tt forest\_rec}. - -\begin{coq_example} -Check tree_rec. -Check forest_rec. -\end{coq_example} - -Assume we want to parametrize our mutual inductive definitions with -the two type variables $A$ and $B$, the declaration should be done the -following way: - -\begin{coq_eval} -Reset tree. -\end{coq_eval} -\begin{coq_example*} -Inductive tree (A B:Set) : Set := - node : A -> forest A B -> tree A B -with forest (A B:Set) : Set := - | leaf : B -> forest A B - | cons : tree A B -> forest A B -> forest A B. -\end{coq_example*} - -Assume we define an inductive definition inside a section. When the -section is closed, the variables declared in the section and occurring -free in the declaration are added as parameters to the inductive -definition. - -\SeeAlso Section~\ref{Section}. - -\subsubsection{Co-inductive types -\label{CoInductiveTypes} -\comindex{CoInductive}} - -The objects of an inductive type are well-founded with respect to the -constructors of the type. In other words, such objects contain only a -{\it finite} number of constructors. Co-inductive types arise from -relaxing this condition, and admitting types whose objects contain an -infinity of constructors. Infinite objects are introduced by a -non-ending (but effective) process of construction, defined in terms -of the constructors of the type. - -An example of a co-inductive type is the type of infinite sequences of -natural numbers, usually called streams. It can be introduced in \Coq\ -using the \texttt{CoInductive} command: -\begin{coq_example} -CoInductive Stream : Set := - Seq : nat -> Stream -> Stream. -\end{coq_example} - -The syntax of this command is the same as the command \texttt{Inductive} -(see Section~\ref{gal-Inductive-Definitions}). Notice that no -principle of induction is derived from the definition of a -co-inductive type, since such principles only make sense for inductive -ones. For co-inductive ones, the only elimination principle is case -analysis. For example, the usual destructors on streams -\texttt{hd:Stream->nat} and \texttt{tl:Str->Str} can be defined as -follows: -\begin{coq_example} -Definition hd (x:Stream) := let (a,s) := x in a. -Definition tl (x:Stream) := let (a,s) := x in s. -\end{coq_example} - -Definition of co-inductive predicates and blocks of mutually -co-inductive definitions are also allowed. An example of a -co-inductive predicate is the extensional equality on streams: - -\begin{coq_example} -CoInductive EqSt : Stream -> Stream -> Prop := - eqst : - forall s1 s2:Stream, - hd s1 = hd s2 -> EqSt (tl s1) (tl s2) -> EqSt s1 s2. -\end{coq_example} - -In order to prove the extensionally equality of two streams $s_1$ and -$s_2$ we have to construct an infinite proof of equality, that is, -an infinite object of type $(\texttt{EqSt}\;s_1\;s_2)$. We will see -how to introduce infinite objects in Section~\ref{CoFixpoint}. - -%% -%% (Co-)Fixpoints -%% -\subsection{Definition of recursive functions} - -\subsubsection{Definition of functions by recursion over inductive objects} - -This section describes the primitive form of definition by recursion -over inductive objects. See Section~\ref{Function} for more advanced -constructions. The command: -\begin{center} - \texttt{Fixpoint {\ident} {\params} {\tt \{struct} - \ident$_0$ {\tt \}} : type$_0$ := \term$_0$ - \comindex{Fixpoint}\label{Fixpoint}} -\end{center} -allows defining functions by pattern-matching over inductive objects -using a fixed point construction. -The meaning of this declaration is to define {\it ident} a recursive -function with arguments specified by the binders in {\params} such -that {\it ident} applied to arguments corresponding to these binders -has type \type$_0$, and is equivalent to the expression \term$_0$. The -type of the {\ident} is consequently {\tt forall {\params} {\tt,} - \type$_0$} and the value is equivalent to {\tt fun {\params} {\tt - =>} \term$_0$}. - -To be accepted, a {\tt Fixpoint} definition has to satisfy some -syntactical constraints on a special argument called the decreasing -argument. They are needed to ensure that the {\tt Fixpoint} definition -always terminates. The point of the {\tt \{struct \ident {\tt \}}} -annotation is to let the user tell the system which argument decreases -along the recursive calls. For instance, one can define the addition -function as : - -\begin{coq_example} -Fixpoint add (n m:nat) {struct n} : nat := - match n with - | O => m - | S p => S (add p m) - end. -\end{coq_example} - -The {\tt \{struct \ident {\tt \}}} annotation may be left implicit, in -this case the system try successively arguments from left to right -until it finds one that satisfies the decreasing condition. Note that -some fixpoints may have several arguments that fit as decreasing -arguments, and this choice influences the reduction of the -fixpoint. Hence an explicit annotation must be used if the leftmost -decreasing argument is not the desired one. Writing explicit -annotations can also speed up type-checking of large mutual fixpoints. - -The {\tt match} operator matches a value (here \verb:n:) with the -various constructors of its (inductive) type. The remaining arguments -give the respective values to be returned, as functions of the -parameters of the corresponding constructor. Thus here when \verb:n: -equals \verb:O: we return \verb:m:, and when \verb:n: equals -\verb:(S p): we return \verb:(S (add p m)):. - -The {\tt match} operator is formally described -in detail in Section~\ref{Caseexpr}. The system recognizes that in -the inductive call {\tt (add p m)} the first argument actually -decreases because it is a {\em pattern variable} coming from {\tt match - n with}. - -\Example The following definition is not correct and generates an -error message: - -\begin{coq_eval} -Set Printing Depth 50. -\end{coq_eval} -% (********** The following is not correct and should produce **********) -% (********* Error: Recursive call to wrongplus ... **********) -\begin{coq_example} -Fail Fixpoint wrongplus (n m:nat) {struct n} : nat := - match m with - | O => n - | S p => S (wrongplus n p) - end. -\end{coq_example} - -because the declared decreasing argument {\tt n} actually does not -decrease in the recursive call. The function computing the addition -over the second argument should rather be written: - -\begin{coq_example*} -Fixpoint plus (n m:nat) {struct m} : nat := - match m with - | O => n - | S p => S (plus n p) - end. -\end{coq_example*} - -The ordinary match operation on natural numbers can be mimicked in the -following way. -\begin{coq_example*} -Fixpoint nat_match - (C:Set) (f0:C) (fS:nat -> C -> C) (n:nat) {struct n} : C := - match n with - | O => f0 - | S p => fS p (nat_match C f0 fS p) - end. -\end{coq_example*} -The recursive call may not only be on direct subterms of the recursive -variable {\tt n} but also on a deeper subterm and we can directly -write the function {\tt mod2} which gives the remainder modulo 2 of a -natural number. -\begin{coq_example*} -Fixpoint mod2 (n:nat) : nat := - match n with - | O => O - | S p => match p with - | O => S O - | S q => mod2 q - end - end. -\end{coq_example*} -In order to keep the strong normalization property, the fixed point -reduction will only be performed when the argument in position of the -decreasing argument (which type should be in an inductive definition) -starts with a constructor. - -The {\tt Fixpoint} construction enjoys also the {\tt with} extension -to define functions over mutually defined inductive types or more -generally any mutually recursive definitions. - -\begin{Variants} -\item {\tt Fixpoint} {\ident$_1$} {\params$_1$} {\tt :} {\type$_1$} {\tt :=} {\term$_1$}\\ - {\tt with} {\ldots} \\ - {\tt with} {\ident$_m$} {\params$_m$} {\tt :} {\type$_m$} {\tt :=} {\term$_m$}\\ - Allows to define simultaneously {\ident$_1$}, {\ldots}, - {\ident$_m$}. -\end{Variants} - -\Example -The size of trees and forests can be defined the following way: -\begin{coq_eval} -Reset Initial. -Variables A B : Set. -Inductive tree : Set := - node : A -> forest -> tree -with forest : Set := - | leaf : B -> forest - | cons : tree -> forest -> forest. -\end{coq_eval} -\begin{coq_example*} -Fixpoint tree_size (t:tree) : nat := - match t with - | node a f => S (forest_size f) - end - with forest_size (f:forest) : nat := - match f with - | leaf b => 1 - | cons t f' => (tree_size t + forest_size f') - end. -\end{coq_example*} -A generic command {\tt Scheme} is useful to build automatically various -mutual induction principles. It is described in Section~\ref{Scheme}. - -\subsubsection{Definitions of recursive objects in co-inductive types} - -The command: -\begin{center} - \texttt{CoFixpoint {\ident} : \type$_0$ := \term$_0$} - \comindex{CoFixpoint}\label{CoFixpoint} -\end{center} -introduces a method for constructing an infinite object of a -coinduc\-tive type. For example, the stream containing all natural -numbers can be introduced applying the following method to the number -\texttt{O} (see Section~\ref{CoInductiveTypes} for the definition of -{\tt Stream}, {\tt hd} and {\tt tl}): -\begin{coq_eval} -Reset Initial. -CoInductive Stream : Set := - Seq : nat -> Stream -> Stream. -Definition hd (x:Stream) := match x with - | Seq a s => a - end. -Definition tl (x:Stream) := match x with - | Seq a s => s - end. -\end{coq_eval} -\begin{coq_example} -CoFixpoint from (n:nat) : Stream := Seq n (from (S n)). -\end{coq_example} - -Oppositely to recursive ones, there is no decreasing argument in a -co-recursive definition. To be admissible, a method of construction -must provide at least one extra constructor of the infinite object for -each iteration. A syntactical guard condition is imposed on -co-recursive definitions in order to ensure this: each recursive call -in the definition must be protected by at least one constructor, and -only by constructors. That is the case in the former definition, where -the single recursive call of \texttt{from} is guarded by an -application of \texttt{Seq}. On the contrary, the following recursive -function does not satisfy the guard condition: - -\begin{coq_eval} -Set Printing Depth 50. -\end{coq_eval} -% (********** The following is not correct and should produce **********) -% (***************** Error: Unguarded recursive call *******************) -\begin{coq_example} -Fail CoFixpoint filter (p:nat -> bool) (s:Stream) : Stream := - if p (hd s) then Seq (hd s) (filter p (tl s)) else filter p (tl s). -\end{coq_example} - -The elimination of co-recursive definition is done lazily, i.e. the -definition is expanded only when it occurs at the head of an -application which is the argument of a case analysis expression. In -any other context, it is considered as a canonical expression which is -completely evaluated. We can test this using the command -\texttt{Eval}, which computes the normal forms of a term: - -\begin{coq_example} -Eval compute in (from 0). -Eval compute in (hd (from 0)). -Eval compute in (tl (from 0)). -\end{coq_example} - -\begin{Variants} -\item{\tt CoFixpoint {\ident$_1$} {\params} :{\type$_1$} := - {\term$_1$}}\\ As for most constructions, arguments of co-fixpoints - expressions can be introduced before the {\tt :=} sign. -\item{\tt CoFixpoint} {\ident$_1$} {\tt :} {\type$_1$} {\tt :=} {\term$_1$}\\ - {\tt with}\\ - \mbox{}\hspace{0.1cm} {\ldots} \\ - {\tt with} {\ident$_m$} {\tt :} {\type$_m$} {\tt :=} {\term$_m$}\\ -As in the \texttt{Fixpoint} command (see Section~\ref{Fixpoint}), it -is possible to introduce a block of mutually dependent methods. -\end{Variants} - -%% -%% Theorems & Lemmas -%% -\subsection{Assertions and proofs} -\label{Assertions} - -An assertion states a proposition (or a type) of which the proof (or -an inhabitant of the type) is interactively built using tactics. The -interactive proof mode is described in -Chapter~\ref{Proof-handling} and the tactics in Chapter~\ref{Tactics}. -The basic assertion command is: - -\subsubsection{\tt Theorem {\ident} \zeroone{\binders} : {\type}. -\comindex{Theorem}} - -After the statement is asserted, {\Coq} needs a proof. Once a proof of -{\type} under the assumptions represented by {\binders} is given and -validated, the proof is generalized into a proof of {\tt forall - \zeroone{\binders}, {\type}} and the theorem is bound to the name -{\ident} in the environment. - -\begin{ErrMsgs} - -\item \errindex{The term {\form} has type {\ldots} which should be Set, - Prop or Type} - -\item \errindexbis{{\ident} already exists}{already exists} - - The name you provided is already defined. You have then to choose - another name. - -\end{ErrMsgs} - -\begin{Variants} -\item {\tt Lemma {\ident} \zeroone{\binders} : {\type}.}\comindex{Lemma}\\ - {\tt Remark {\ident} \zeroone{\binders} : {\type}.}\comindex{Remark}\\ - {\tt Fact {\ident} \zeroone{\binders} : {\type}.}\comindex{Fact}\\ - {\tt Corollary {\ident} \zeroone{\binders} : {\type}.}\comindex{Corollary}\\ - {\tt Proposition {\ident} \zeroone{\binders} : {\type}.}\comindex{Proposition} - -These commands are synonyms of \texttt{Theorem {\ident} \zeroone{\binders} : {\type}}. - -\item {\tt Theorem \nelist{{\ident} \zeroone{\binders}: {\type}}{with}.} - -This command is useful for theorems that are proved by simultaneous -induction over a mutually inductive assumption, or that assert mutually -dependent statements in some mutual co-inductive type. It is equivalent -to {\tt Fixpoint} or {\tt CoFixpoint} -(see Section~\ref{CoFixpoint}) but using tactics to build the proof of -the statements (or the body of the specification, depending on the -point of view). The inductive or co-inductive types on which the -induction or coinduction has to be done is assumed to be non ambiguous -and is guessed by the system. - -Like in a {\tt Fixpoint} or {\tt CoFixpoint} definition, the induction -hypotheses have to be used on {\em structurally smaller} arguments -(for a {\tt Fixpoint}) or be {\em guarded by a constructor} (for a {\tt - CoFixpoint}). The verification that recursive proof arguments are -correct is done only at the time of registering the lemma in the -environment. To know if the use of induction hypotheses is correct at -some time of the interactive development of a proof, use the command -{\tt Guarded} (see Section~\ref{Guarded}). - -The command can be used also with {\tt Lemma}, -{\tt Remark}, etc. instead of {\tt Theorem}. - -\item {\tt Definition {\ident} \zeroone{\binders} : {\type}.} - -This allows defining a term of type {\type} using the proof editing mode. It -behaves as {\tt Theorem} but is intended to be used in conjunction with - {\tt Defined} (see \ref{Defined}) in order to define a - constant of which the computational behavior is relevant. - -The command can be used also with {\tt Example} instead -of {\tt Definition}. - -\SeeAlso Sections~\ref{Opaque} and~\ref{Transparent} ({\tt Opaque} -and {\tt Transparent}) and~\ref{unfold} (tactic {\tt unfold}). - -\item {\tt Let {\ident} \zeroone{\binders} : {\type}.} - -Like {\tt Definition {\ident} \zeroone{\binders} : {\type}.} except -that the definition is turned into a let-in definition generalized over -the declarations depending on it after closing the current section. - -\item {\tt Fixpoint \nelist{{\ident} {\binders} \zeroone{\annotation} {\typecstr} \zeroone{{\tt :=} {\term}}}{with}.} -\comindex{Fixpoint} - -This generalizes the syntax of {\tt Fixpoint} so that one or more -bodies can be defined interactively using the proof editing mode (when -a body is omitted, its type is mandatory in the syntax). When the -block of proofs is completed, it is intended to be ended by {\tt - Defined}. - -\item {\tt CoFixpoint \nelist{{\ident} \zeroone{\binders} {\typecstr} \zeroone{{\tt :=} {\term}}}{with}.} -\comindex{CoFixpoint} - -This generalizes the syntax of {\tt CoFixpoint} so that one or more bodies -can be defined interactively using the proof editing mode. - -\end{Variants} - -\subsubsection{{\tt Proof.} {\dots} {\tt Qed.} -\comindex{Proof} -\comindex{Qed}} - -A proof starts by the keyword {\tt Proof}. Then {\Coq} enters the -proof editing mode until the proof is completed. The proof editing -mode essentially contains tactics that are described in chapter -\ref{Tactics}. Besides tactics, there are commands to manage the proof -editing mode. They are described in Chapter~\ref{Proof-handling}. When -the proof is completed it should be validated and put in the -environment using the keyword {\tt Qed}. -\medskip - -\ErrMsg -\begin{enumerate} -\item \errindex{{\ident} already exists} -\end{enumerate} - -\begin{Remarks} -\item Several statements can be simultaneously asserted. -\item Not only other assertions but any vernacular command can be given -while in the process of proving a given assertion. In this case, the command is -understood as if it would have been given before the statements still to be -proved. -\item {\tt Proof} is recommended but can currently be omitted. On the -opposite side, {\tt Qed} (or {\tt Defined}, see below) is mandatory to -validate a proof. -\item Proofs ended by {\tt Qed} are declared opaque. Their content - cannot be unfolded (see \ref{Conversion-tactics}), thus realizing - some form of {\em proof-irrelevance}. To be able to unfold a proof, - the proof should be ended by {\tt Defined} (see below). -\end{Remarks} - -\begin{Variants} -\item \comindex{Defined} - {\tt Proof.} {\dots} {\tt Defined.}\\ - Same as {\tt Proof.} {\dots} {\tt Qed.} but the proof is - then declared transparent, which means that its - content can be explicitly used for type-checking and that it - can be unfolded in conversion tactics (see - \ref{Conversion-tactics}, \ref{Opaque}, \ref{Transparent}). -%Not claimed to be part of Gallina... -%\item {\tt Proof.} {\dots} {\tt Save.}\\ -% Same as {\tt Proof.} {\dots} {\tt Qed.} -%\item {\tt Goal} \type {\dots} {\tt Save} \ident \\ -% Same as {\tt Lemma} \ident {\tt :} \type \dots {\tt Save.} -% This is intended to be used in the interactive mode. -\item \comindex{Admitted} - {\tt Proof.} {\dots} {\tt Admitted.}\\ - Turns the current asserted statement into an axiom and exits the - proof mode. -\end{Variants} - -% Local Variables: -% mode: LaTeX -% TeX-master: "Reference-Manual" -% End: - diff --git a/doc/refman/RefMan-ltac.tex b/doc/refman/RefMan-ltac.tex deleted file mode 100644 index 3ed697d8b..000000000 --- a/doc/refman/RefMan-ltac.tex +++ /dev/null @@ -1,1829 +0,0 @@ -\chapter[The tactic language]{The tactic language\label{TacticLanguage}} -%HEVEA\cutname{ltac.html} - -%\geometry{a4paper,body={5in,8in}} - -This chapter gives a compact documentation of Ltac, the tactic -language available in {\Coq}. We start by giving the syntax, and next, -we present the informal semantics. If you want to know more regarding -this language and especially about its foundations, you can refer -to~\cite{Del00}. Chapter~\ref{Tactics-examples} is devoted to giving -examples of use of this language on small but also with non-trivial -problems. - - -\section{Syntax} - -\def\tacexpr{\textrm{\textsl{expr}}} -\def\tacexprlow{\textrm{\textsl{tacexpr$_1$}}} -\def\tacexprinf{\textrm{\textsl{tacexpr$_2$}}} -\def\tacexprpref{\textrm{\textsl{tacexpr$_3$}}} -\def\atom{\textrm{\textsl{atom}}} -%%\def\recclause{\textrm{\textsl{rec\_clause}}} -\def\letclause{\textrm{\textsl{let\_clause}}} -\def\matchrule{\textrm{\textsl{match\_rule}}} -\def\contextrule{\textrm{\textsl{context\_rule}}} -\def\contexthyp{\textrm{\textsl{context\_hyp}}} -\def\tacarg{\nterm{tacarg}} -\def\cpattern{\nterm{cpattern}} -\def\selector{\textrm{\textsl{selector}}} -\def\toplevelselector{\textrm{\textsl{toplevel\_selector}}} - -The syntax of the tactic language is given Figures~\ref{ltac} -and~\ref{ltac-aux}. See Chapter~\ref{BNF-syntax} for a description of -the BNF metasyntax used in these grammar rules. Various already -defined entries will be used in this chapter: entries -{\naturalnumber}, {\integer}, {\ident}, {\qualid}, {\term}, -{\cpattern} and {\atomictac} represent respectively the natural and -integer numbers, the authorized identificators and qualified names, -{\Coq}'s terms and patterns and all the atomic tactics described in -Chapter~\ref{Tactics}. The syntax of {\cpattern} is the same as that -of terms, but it is extended with pattern matching metavariables. In -{\cpattern}, a pattern-matching metavariable is represented with the -syntax {\tt ?id} where {\tt id} is an {\ident}. The notation {\tt \_} -can also be used to denote metavariable whose instance is -irrelevant. In the notation {\tt ?id}, the identifier allows us to -keep instantiations and to make constraints whereas {\tt \_} shows -that we are not interested in what will be matched. On the right hand -side of pattern-matching clauses, the named metavariable are used -without the question mark prefix. There is also a special notation for -second-order pattern-matching problems: in an applicative pattern of -the form {\tt @?id id$_1$ \ldots id$_n$}, the variable {\tt id} -matches any complex expression with (possible) dependencies in the -variables {\tt id$_1$ \ldots id$_n$} and returns a functional term of -the form {\tt fun id$_1$ \ldots id$_n$ => {\term}}. - - -The main entry of the grammar is {\tacexpr}. This language is used in -proof mode but it can also be used in toplevel definitions as shown in -Figure~\ref{ltactop}. - -\begin{Remarks} -\item The infix tacticals ``\dots\ {\tt ||} \dots'', ``\dots\ {\tt +} - \dots'', and ``\dots\ {\tt ;} \dots'' are associative. - -\item In {\tacarg}, there is an overlap between {\qualid} as a -direct tactic argument and {\qualid} as a particular case of -{\term}. The resolution is done by first looking for a reference of -the tactic language and if it fails, for a reference to a term. To -force the resolution as a reference of the tactic language, use the -form {\tt ltac :} {\qualid}. To force the resolution as a reference to -a term, use the syntax {\tt ({\qualid})}. - -\item As shown by the figure, tactical {\tt ||} binds more than the -prefix tacticals {\tt try}, {\tt repeat}, {\tt do} and -{\tt abstract} which themselves bind more than the postfix tactical -``{\tt \dots\ ;[ \dots\ ]}'' which binds more than ``\dots\ {\tt ;} -\dots''. - -For instance -\begin{quote} -{\tt try repeat \tac$_1$ || - \tac$_2$;\tac$_3$;[\tac$_{31}$|\dots|\tac$_{3n}$];\tac$_4$.} -\end{quote} -is understood as -\begin{quote} -{\tt (try (repeat (\tac$_1$ || \tac$_2$)));} \\ -{\tt ((\tac$_3$;[\tac$_{31}$|\dots|\tac$_{3n}$]);\tac$_4$).} -\end{quote} -\end{Remarks} - - -\begin{figure}[htbp] -\begin{centerframe} -\begin{tabular}{lcl} -{\tacexpr} & ::= & - {\tacexpr} {\tt ;} {\tacexpr}\\ -& | & {\tt [>} \nelist{\tacexpr}{|} {\tt ]}\\ -& | & {\tacexpr} {\tt ; [} \nelist{\tacexpr}{|} {\tt ]}\\ -& | & {\tacexprpref}\\ -\\ -{\tacexprpref} & ::= & - {\tt do} {\it (}{\naturalnumber} {\it |} {\ident}{\it )} {\tacexprpref}\\ -& | & {\tt progress} {\tacexprpref}\\ -& | & {\tt repeat} {\tacexprpref}\\ -& | & {\tt try} {\tacexprpref}\\ -& | & {\tt once} {\tacexprpref}\\ -& | & {\tt exactly\_once} {\tacexprpref}\\ -& | & {\tt timeout} {\it (}{\naturalnumber} {\it |} {\ident}{\it )} {\tacexprpref}\\ -& | & {\tt time} \zeroone{\qstring} {\tacexprpref}\\ -& | & {\tt only} {\selector} {\tt :} {\tacexprpref}\\ -& | & {\tacexprinf} \\ -\\ -{\tacexprinf} & ::= & - {\tacexprlow} {\tt ||} {\tacexprpref}\\ -& | & {\tacexprlow} {\tt +} {\tacexprpref}\\ -& | & {\tt tryif} {\tacexprlow} {\tt then} {\tacexprlow} {\tt else} {\tacexprlow}\\ -& | & {\tacexprlow}\\ -\\ -{\tacexprlow} & ::= & -{\tt fun} \nelist{\name}{} {\tt =>} {\atom}\\ -& | & -{\tt let} \zeroone{\tt rec} \nelist{\letclause}{\tt with} {\tt in} -{\atom}\\ -& | & -{\tt match goal with} \nelist{\contextrule}{\tt |} {\tt end}\\ -& | & -{\tt match reverse goal with} \nelist{\contextrule}{\tt |} {\tt end}\\ -& | & -{\tt match} {\tacexpr} {\tt with} \nelist{\matchrule}{\tt |} {\tt end}\\ -& | & -{\tt lazymatch goal with} \nelist{\contextrule}{\tt |} {\tt end}\\ -& | & -{\tt lazymatch reverse goal with} \nelist{\contextrule}{\tt |} {\tt end}\\ -& | & -{\tt lazymatch} {\tacexpr} {\tt with} \nelist{\matchrule}{\tt |} {\tt end}\\ -& | & -{\tt multimatch goal with} \nelist{\contextrule}{\tt |} {\tt end}\\ -& | & -{\tt multimatch reverse goal with} \nelist{\contextrule}{\tt |} {\tt end}\\ -& | & -{\tt multimatch} {\tacexpr} {\tt with} \nelist{\matchrule}{\tt |} {\tt end}\\ -& | & {\tt abstract} {\atom}\\ -& | & {\tt abstract} {\atom} {\tt using} {\ident} \\ -& | & {\tt first [} \nelist{\tacexpr}{\tt |} {\tt ]}\\ -& | & {\tt solve [} \nelist{\tacexpr}{\tt |} {\tt ]}\\ -& | & {\tt idtac} \sequence{\messagetoken}{}\\ -& | & {\tt fail} \zeroone{\naturalnumber} \sequence{\messagetoken}{}\\ -& | & {\tt gfail} \zeroone{\naturalnumber} \sequence{\messagetoken}{}\\ -& | & {\tt fresh} ~|~ {\tt fresh} {\qstring}|~ {\tt fresh} {\qualid}\\ -& | & {\tt context} {\ident} {\tt [} {\term} {\tt ]}\\ -& | & {\tt eval} {\nterm{redexpr}} {\tt in} {\term}\\ -& | & {\tt type of} {\term}\\ -& | & {\tt external} {\qstring} {\qstring} \nelist{\tacarg}{}\\ -& | & {\tt constr :} {\term}\\ -& | & {\tt uconstr :} {\term}\\ -& | & {\tt type\_term} {\term}\\ -& | & {\tt numgoals} \\ -& | & {\tt guard} {\it test}\\ -& | & {\tt assert\_fails} {\tacexprpref}\\ -& | & {\tt assert\_succeds} {\tacexprpref}\\ -& | & \atomictac\\ -& | & {\qualid} \nelist{\tacarg}{}\\ -& | & {\atom} -\end{tabular} -\end{centerframe} -\caption{Syntax of the tactic language} -\label{ltac} -\end{figure} - - - -\begin{figure}[htbp] -\begin{centerframe} -\begin{tabular}{lcl} -{\atom} & ::= & - {\qualid} \\ -& | & ()\\ -& | & {\integer}\\ -& | & {\tt (} {\tacexpr} {\tt )}\\ -\\ -{\messagetoken}\!\!\!\!\!\! & ::= & {\qstring} ~|~ {\ident} ~|~ {\integer} \\ -\\ -\tacarg & ::= & - {\qualid}\\ -& $|$ & {\tt ()} \\ -& $|$ & {\tt ltac :} {\atom}\\ -& $|$ & {\term}\\ -\\ -\letclause & ::= & {\ident} \sequence{\name}{} {\tt :=} {\tacexpr}\\ -\\ -\contextrule & ::= & - \nelist{\contexthyp}{\tt ,} {\tt |-}{\cpattern} {\tt =>} {\tacexpr}\\ -& $|$ & {\tt |-} {\cpattern} {\tt =>} {\tacexpr}\\ -& $|$ & {\tt \_ =>} {\tacexpr}\\ -\\ -\contexthyp & ::= & {\name} {\tt :} {\cpattern}\\ - & $|$ & {\name} {\tt :=} {\cpattern} \zeroone{{\tt :} {\cpattern}}\\ -\\ -\matchrule & ::= & - {\cpattern} {\tt =>} {\tacexpr}\\ -& $|$ & {\tt context} {\zeroone{\ident}} {\tt [} {\cpattern} {\tt ]} - {\tt =>} {\tacexpr}\\ -& $|$ & {\tt \_ =>} {\tacexpr}\\ -\\ -{\it test} & ::= & - {\integer} {\tt \,=\,} {\integer}\\ -& $|$ & {\integer} {\tt \,<\,} {\integer}\\ -& $|$ & {\integer} {\tt <=} {\integer}\\ -& $|$ & {\integer} {\tt \,>\,} {\integer}\\ -& $|$ & {\integer} {\tt >=} {\integer}\\ -\\ -\selector & ::= & - [{\ident}]\\ -& $|$ & {\integer}\\ -& $|$ & \nelist{{\it (}{\integer} {\it |} {\integer} {\tt -} {\integer}{\it )}} - {\tt ,}\\ -\\ -\toplevelselector & ::= & - \selector\\ -& $|$ & {\tt all}\\ -& $|$ & {\tt par} -\end{tabular} -\end{centerframe} -\caption{Syntax of the tactic language (continued)} -\label{ltac-aux} -\end{figure} - -\begin{figure}[ht] -\begin{centerframe} -\begin{tabular}{lcl} -\nterm{top} & ::= & \zeroone{\tt Local} {\tt Ltac} \nelist{\nterm{ltac\_def}} {\tt with} \\ -\\ -\nterm{ltac\_def} & ::= & {\ident} \sequence{\ident}{} {\tt :=} -{\tacexpr}\\ -& $|$ &{\qualid} \sequence{\ident}{} {\tt ::=}{\tacexpr} -\end{tabular} -\end{centerframe} -\caption{Tactic toplevel definitions} -\label{ltactop} -\end{figure} - - -%% -%% Semantics -%% -\section{Semantics} -%\index[tactic]{Tacticals} -\index{Tacticals} -%\label{Tacticals} - -Tactic expressions can only be applied in the context of a proof. The -evaluation yields either a term, an integer or a tactic. Intermediary -results can be terms or integers but the final result must be a tactic -which is then applied to the focused goals. - -There is a special case for {\tt match goal} expressions of which -the clauses evaluate to tactics. Such expressions can only be used as -end result of a tactic expression (never as argument of a non recursive local -definition or of an application). - -The rest of this section explains the semantics of every construction -of Ltac. - - -%% \subsection{Values} - -%% Values are given by Figure~\ref{ltacval}. All these values are tactic values, -%% i.e. to be applied to a goal, except {\tt Fun}, {\tt Rec} and $arg$ values. - -%% \begin{figure}[ht] -%% \noindent{}\framebox[6in][l] -%% {\parbox{6in} -%% {\begin{center} -%% \begin{tabular}{lp{0.1in}l} -%% $vexpr$ & ::= & $vexpr$ {\tt ;} $vexpr$\\ -%% & | & $vexpr$ {\tt ; [} {\it (}$vexpr$ {\tt |}{\it )}$^*$ $vexpr$ {\tt -%% ]}\\ -%% & | & $vatom$\\ -%% \\ -%% $vatom$ & ::= & {\tt Fun} \nelist{\inputfun}{} {\tt ->} {\tacexpr}\\ -%% %& | & {\tt Rec} \recclause\\ -%% & | & -%% {\tt Rec} \nelist{\recclause}{\tt And} {\tt In} -%% {\tacexpr}\\ -%% & | & -%% {\tt Match Context With} {\it (}$context\_rule$ {\tt |}{\it )}$^*$ -%% $context\_rule$\\ -%% & | & {\tt (} $vexpr$ {\tt )}\\ -%% & | & $vatom$ {\tt Orelse} $vatom$\\ -%% & | & {\tt Do} {\it (}{\naturalnumber} {\it |} {\ident}{\it )} $vatom$\\ -%% & | & {\tt Repeat} $vatom$\\ -%% & | & {\tt Try} $vatom$\\ -%% & | & {\tt First [} {\it (}$vexpr$ {\tt |}{\it )}$^*$ $vexpr$ {\tt ]}\\ -%% & | & {\tt Solve [} {\it (}$vexpr$ {\tt |}{\it )}$^*$ $vexpr$ {\tt ]}\\ -%% & | & {\tt Idtac}\\ -%% & | & {\tt Fail}\\ -%% & | & {\primitivetactic}\\ -%% & | & $arg$ -%% \end{tabular} -%% \end{center}}} -%% \caption{Values of ${\cal L}_{tac}$} -%% \label{ltacval} -%% \end{figure} - -%% \subsection{Evaluation} - -\subsubsection[Sequence]{Sequence\tacindex{;} -\index{Tacticals!;@{\tt {\tac$_1$};\tac$_2$}}} - -A sequence is an expression of the following form: -\begin{quote} -{\tacexpr}$_1$ {\tt ;} {\tacexpr}$_2$ -\end{quote} -The expression {\tacexpr}$_1$ is evaluated to $v_1$, which must be -a tactic value. The tactic $v_1$ is applied to the current goal, -possibly producing more goals. Then {\tacexpr}$_2$ is evaluated to -produce $v_2$, which must be a tactic value. The tactic $v_2$ is applied to -all the goals produced by the prior application. Sequence is associative. - -\subsubsection[Local application of tactics]{Local application of tactics\tacindex{[>\ldots$\mid$\ldots$\mid$\ldots]}\tacindex{;[\ldots$\mid$\ldots$\mid$\ldots]}\index{Tacticals![> \mid ]@{\tt {\tac$_0$};[{\tac$_1$}$\mid$\ldots$\mid$\tac$_n$]}}\index{Tacticals!; [ \mid ]@{\tt {\tac$_0$};[{\tac$_1$}$\mid$\ldots$\mid$\tac$_n$]}}} -%\tacindex{; [ | ]} -%\index{; [ | ]@{\tt ;[\ldots$\mid$\ldots$\mid$\ldots]}} - -Different tactics can be applied to the different goals using the following form: -\begin{quote} -{\tt [ >} {\tacexpr}$_1$ {\tt |} $...$ {\tt |} {\tacexpr}$_n$ {\tt ]} -\end{quote} -The expressions {\tacexpr}$_i$ are evaluated to $v_i$, for $i=0,...,n$ -and all have to be tactics. The $v_i$ is applied to the $i$-th goal, -for $=1,...,n$. It fails if the number of focused goals is not exactly $n$. - -\begin{Variants} - \item If no tactic is given for the $i$-th goal, it behaves as if - the tactic {\tt idtac} were given. For instance, {\tt [~> | auto - ]} is a shortcut for {\tt [ > idtac | auto ]}. - - \item {\tt [ >} {\tacexpr}$_1$ {\tt |} $...$ {\tt |} - {\tacexpr}$_i$ {\tt |} {\tacexpr} {\tt ..} {\tt |} - {\tacexpr}$_{i+1+j}$ {\tt |} $...$ {\tt |} {\tacexpr}$_n$ {\tt ]} - - In this variant, {\tt expr} is used for each goal numbered from - $i+1$ to $i+j$ (assuming $n$ is the number of goals). - - Note that {\tt ..} is part of the syntax, while $...$ is the meta-symbol used - to describe a list of {\tacexpr} of arbitrary length. - goals numbered from $i+1$ to $i+j$. - - \item {\tt [ >} {\tacexpr}$_1$ {\tt |} $...$ {\tt |} - {\tacexpr}$_i$ {\tt |} {\tt ..} {\tt |} {\tacexpr}$_{i+1+j}$ {\tt |} - $...$ {\tt |} {\tacexpr}$_n$ {\tt ]} - - In this variant, {\tt idtac} is used for the goals numbered from - $i+1$ to $i+j$. - - \item {\tt [ >} {\tacexpr} {\tt ..} {\tt ]} - - In this variant, the tactic {\tacexpr} is applied independently to - each of the goals, rather than globally. In particular, if there - are no goal, the tactic is not run at all. A tactic which - expects multiple goals, such as {\tt swap}, would act as if a single - goal is focused. - - \item {\tacexpr} {\tt ; [ } {\tacexpr}$_1$ {\tt |} $...$ {\tt |} {\tacexpr}$_n$ {\tt ]} - - This variant of local tactic application is paired with a - sequence. In this variant, $n$ must be the number of goals - generated by the application of {\tacexpr} to each of the - individual goals independently. All the above variants work in - this form too. Formally, {\tacexpr} {\tt ; [} $...$ {\tt ]} is - equivalent to - \begin{quote} - {\tt [ >} {\tacexpr} {\tt ; [ >} $...$ {\tt ]} {\tt ..} {\tt ]} - \end{quote} - -\end{Variants} - -\subsubsection[Goal selectors]{Goal selectors\label{ltac:selector} -\tacindex{\tt :}\index{Tacticals!:@{\tt :}}} - -We can restrict the application of a tactic to a subset of -the currently focused goals with: -\begin{quote} - {\toplevelselector} {\tt :} {\tacexpr} -\end{quote} -We can also use selectors as a tactical, which allows to use them nested in -a tactic expression, by using the keyword {\tt only}: -\begin{quote} - {\tt only} {\selector} {\tt :} {\tacexpr} -\end{quote} -When selecting several goals, the tactic {\tacexpr} is applied globally to -all selected goals. - -\begin{Variants} - \item{} [{\ident}] {\tt :} {\tacexpr} - - In this variant, {\tacexpr} is applied locally to a goal - previously named by the user (see~\ref{ExistentialVariables}). - - \item {\num} {\tt :} {\tacexpr} - - In this variant, {\tacexpr} is applied locally to the - {\num}-th goal. - - \item $n_1$-$m_1$, \dots, $n_k$-$m_k$ {\tt :} {\tacexpr} - - In this variant, {\tacexpr} is applied globally to the subset - of goals described by the given ranges. You can write a single - $n$ as a shortcut for $n$-$n$ when specifying multiple ranges. - - \item {\tt all:} {\tacexpr} - - In this variant, {\tacexpr} is applied to all focused goals. - {\tt all:} can only be used at the toplevel of a tactic expression. - - \item {\tt par:} {\tacexpr} - - In this variant, {\tacexpr} is applied to all focused goals - in parallel. The number of workers can be controlled via the - command line option {\tt -async-proofs-tac-j} taking as argument - the desired number of workers. Limitations: {\tt par: } only works - on goals containing no existential variables and {\tacexpr} must - either solve the goal completely or do nothing (i.e. it cannot make - some progress). - {\tt par:} can only be used at the toplevel of a tactic expression. - -\end{Variants} - -\ErrMsg \errindex{No such goal} - -\subsubsection[For loop]{For loop\tacindex{do} -\index{Tacticals!do@{\tt do}}} - -There is a for loop that repeats a tactic {\num} times: -\begin{quote} -{\tt do} {\num} {\tacexpr} -\end{quote} -{\tacexpr} is evaluated to $v$ which must be a tactic value. -This tactic value $v$ is -applied {\num} times. Supposing ${\num}>1$, after the first -application of $v$, $v$ is applied, at least once, to the generated -subgoals and so on. It fails if the application of $v$ fails before -the {\num} applications have been completed. - -\subsubsection[Repeat loop]{Repeat loop\tacindex{repeat} -\index{Tacticals!repeat@{\tt repeat}}} - -We have a repeat loop with: -\begin{quote} -{\tt repeat} {\tacexpr} -\end{quote} -{\tacexpr} is evaluated to $v$. If $v$ denotes a tactic, this tactic -is applied to each focused goal independently. If the application -succeeds, the tactic is applied recursively to all the generated subgoals -until it eventually fails. The recursion stops in a subgoal when the -tactic has failed \emph{to make progress}. The tactic {\tt repeat - {\tacexpr}} itself never fails. - -\subsubsection[Error catching]{Error catching\tacindex{try} -\index{Tacticals!try@{\tt try}}} - -We can catch the tactic errors with: -\begin{quote} -{\tt try} {\tacexpr} -\end{quote} -{\tacexpr} is evaluated to $v$ which must be a tactic value. -The tactic value $v$ is -applied to each focused goal independently. If the application of $v$ -fails in a goal, it catches the error and leaves the goal -unchanged. If the level of the exception is positive, then the -exception is re-raised with its level decremented. - -\subsubsection[Detecting progress]{Detecting progress\tacindex{progress}} - -We can check if a tactic made progress with: -\begin{quote} -{\tt progress} {\tacexpr} -\end{quote} -{\tacexpr} is evaluated to $v$ which must be a tactic value. -The tactic value $v$ is -applied to each focued subgoal independently. If the application of -$v$ to one of the focused subgoal produced subgoals equal to the -initial goals (up to syntactical equality), then an error of level 0 -is raised. - -\ErrMsg \errindex{Failed to progress} - -\subsubsection[Backtracking branching]{Backtracking branching\tacindex{$+$} -\index{Tacticals!or@{\tt $+$}}} - -We can branch with the following structure: -\begin{quote} -{\tacexpr}$_1$ {\tt +} {\tacexpr}$_2$ -\end{quote} -{\tacexpr}$_1$ and {\tacexpr}$_2$ are evaluated to $v_1$ and -$v_2$ which must be tactic values. The tactic value $v_1$ is applied to each -focused goal independently and if it fails or a later tactic fails, -then the proof backtracks to the current goal and $v_2$ is applied. - -Tactics can be seen as having several successes. When a tactic fails -it asks for more successes of the prior tactics. {\tacexpr}$_1$ {\tt - +} {\tacexpr}$_2$ has all the successes of $v_1$ followed by all the -successes of $v_2$. Algebraically, ({\tacexpr}$_1$ {\tt +} -{\tacexpr}$_2$);{\tacexpr}$_3$ $=$ ({\tacexpr}$_1$;{\tacexpr}$_3$) -{\tt +} ({\tacexpr}$_2$;{\tacexpr}$_3$). - -Branching is left-associative. - -\subsubsection[First tactic to work]{First tactic to work\tacindex{first} -\index{Tacticals!first@{\tt first}}} - -Backtracking branching may be too expensive. In this case we may -restrict to a local, left biased, branching and consider the first -tactic to work (i.e. which does not fail) among a panel of tactics: -\begin{quote} -{\tt first [} {\tacexpr}$_1$ {\tt |} $...$ {\tt |} {\tacexpr}$_n$ {\tt ]} -\end{quote} -{\tacexpr}$_i$ are evaluated to $v_i$ and $v_i$ must be tactic values, -for $i=1,...,n$. Supposing $n>1$, it applies, in each focused goal -independently, $v_1$, if it works, it stops otherwise it tries to -apply $v_2$ and so on. It fails when there is no applicable tactic. In -other words, {\tt first [} {\tacexpr}$_1$ {\tt |} $...$ {\tt |} - {\tacexpr}$_n$ {\tt ]} behaves, in each goal, as the the first $v_i$ -to have \emph{at least} one success. - -\ErrMsg \errindex{No applicable tactic} - -\variant {\tt first {\tacexpr}} - -This is an Ltac alias that gives a primitive access to the {\tt first} tactical -as a Ltac definition without going through a parsing rule. It expects to be -given a list of tactics through a {\tt Tactic Notation}, allowing to write -notations of the following form. - -\Example - -\begin{quote} -{\tt Tactic Notation "{foo}" tactic\_list(tacs) := first tacs.} -\end{quote} - -\subsubsection[Left-biased branching]{Left-biased branching\tacindex{$\mid\mid$} -\index{Tacticals!orelse@{\tt $\mid\mid$}}} - -Yet another way of branching without backtracking is the following structure: -\begin{quote} -{\tacexpr}$_1$ {\tt ||} {\tacexpr}$_2$ -\end{quote} -{\tacexpr}$_1$ and {\tacexpr}$_2$ are evaluated to $v_1$ and -$v_2$ which must be tactic values. The tactic value $v_1$ is applied in each -subgoal independently and if it fails \emph{to progress} then $v_2$ is -applied. {\tacexpr}$_1$ {\tt ||} {\tacexpr}$_2$ is equivalent to {\tt - first [} {\tt progress} {\tacexpr}$_1$ {\tt |} - {\tacexpr}$_2$ {\tt ]} (except that if it fails, it fails like -$v_2$). Branching is left-associative. - -\subsubsection[Generalized biased branching]{Generalized biased branching\tacindex{tryif} -\index{Tacticals!tryif@{\tt tryif}}} - -The tactic -\begin{quote} -{\tt tryif {\tacexpr}$_1$ then {\tacexpr}$_2$ else {\tacexpr}$_3$} -\end{quote} -is a generalization of the biased-branching tactics above. The -expression {\tacexpr}$_1$ is evaluated to $v_1$, which is then applied -to each subgoal independently. For each goal where $v_1$ succeeds at -least once, {\tacexpr}$_2$ is evaluated to $v_2$ which is then applied -collectively to the generated subgoals. The $v_2$ tactic can trigger -backtracking points in $v_1$: where $v_1$ succeeds at least once, {\tt - tryif {\tacexpr}$_1$ then {\tacexpr}$_2$ else {\tacexpr}$_3$} is -equivalent to $v_1;v_2$. In each of the goals where $v_1$ does not -succeed at least once, {\tacexpr}$_3$ is evaluated in $v_3$ which is -is then applied to the goal. - -\subsubsection[Soft cut]{Soft cut\tacindex{once}\index{Tacticals!once@{\tt once}}} - -Another way of restricting backtracking is to restrict a tactic to a -single success \emph{a posteriori}: -\begin{quote} -{\tt once} {\tacexpr} -\end{quote} -{\tacexpr} is evaluated to $v$ which must be a tactic value. -The tactic value $v$ is -applied but only its first success is used. If $v$ fails, {\tt once} -{\tacexpr} fails like $v$. If $v$ has a least one success, {\tt once} -{\tacexpr} succeeds once, but cannot produce more successes. - -\subsubsection[Checking the successes]{Checking the successes\tacindex{exactly\_once}\index{Tacticals!exactly\_once@{\tt exactly\_once}}} - -Coq provides an experimental way to check that a tactic has \emph{exactly one} success: -\begin{quote} -{\tt exactly\_once} {\tacexpr} -\end{quote} -{\tacexpr} is evaluated to $v$ which must be a tactic value. -The tactic value $v$ is -applied if it has at most one success. If $v$ fails, {\tt - exactly\_once} {\tacexpr} fails like $v$. If $v$ has a exactly one -success, {\tt exactly\_once} {\tacexpr} succeeds like $v$. If $v$ has -two or more successes, {\tt exactly\_once} {\tacexpr} fails. - -The experimental status of this tactic pertains to the fact if $v$ performs side effects, they may occur in a unpredictable way. Indeed, normally $v$ would only be executed up to the first success until backtracking is needed, however {\tt exactly\_once} needs to look ahead to see whether a second success exists, and may run further effects immediately. - -\ErrMsg \errindex{This tactic has more than one success} - -\subsubsection[Checking the failure]{Checking the failure\tacindex{assert\_fails}\index{Tacticals!assert\_fails@{\tt assert\_fails}}} - -Coq provides a derived tactic to check that a tactic \emph{fails}: -\begin{quote} -{\tt assert\_fails} {\tacexpr} -\end{quote} -This behaves like {\tt tryif {\tacexpr} then fail 0 tac "succeeds" else idtac}. - -\subsubsection[Checking the success]{Checking the success\tacindex{assert\_succeeds}\index{Tacticals!assert\_succeeds@{\tt assert\_succeeds}}} - -Coq provides a derived tactic to check that a tactic has \emph{at least one} success: -\begin{quote} -{\tt assert\_succeeds} {\tacexpr} -\end{quote} -This behaves like {\tt tryif (assert\_fails tac) then fail 0 tac "fails" else idtac}. - -\subsubsection[Solving]{Solving\tacindex{solve} -\index{Tacticals!solve@{\tt solve}}} - -We may consider the first to solve (i.e. which generates no subgoal) among a -panel of tactics: -\begin{quote} -{\tt solve [} {\tacexpr}$_1$ {\tt |} $...$ {\tt |} {\tacexpr}$_n$ {\tt ]} -\end{quote} -{\tacexpr}$_i$ are evaluated to $v_i$ and $v_i$ must be tactic values, -for $i=1,...,n$. Supposing $n>1$, it applies $v_1$ to each goal -independently, if it doesn't solve the goal then it tries to apply -$v_2$ and so on. It fails if there is no solving tactic. - -\ErrMsg \errindex{Cannot solve the goal} - -\variant {\tt solve {\tacexpr}} - -This is an Ltac alias that gives a primitive access to the {\tt solve} tactical. -See the {\tt first} tactical for more information. - -\subsubsection[Identity]{Identity\label{ltac:idtac}\tacindex{idtac} -\index{Tacticals!idtac@{\tt idtac}}} - -The constant {\tt idtac} is the identity tactic: it leaves any goal -unchanged but it appears in the proof script. - -\variant {\tt idtac \nelist{\messagetoken}{}} - -This prints the given tokens. Strings and integers are printed -literally. If a (term) variable is given, its contents are printed. - - -\subsubsection[Failing]{Failing\tacindex{fail} -\index{Tacticals!fail@{\tt fail}} -\tacindex{gfail}\index{Tacticals!gfail@{\tt gfail}}} - -The tactic {\tt fail} is the always-failing tactic: it does not solve -any goal. It is useful for defining other tacticals since it can be -caught by {\tt try}, {\tt repeat}, {\tt match goal}, or the branching -tacticals. The {\tt fail} tactic will, however, succeed if all the -goals have already been solved. - -\begin{Variants} -\item {\tt fail $n$}\\ The number $n$ is the failure level. If no - level is specified, it defaults to $0$. The level is used by {\tt - try}, {\tt repeat}, {\tt match goal} and the branching tacticals. - If $0$, it makes {\tt match goal} considering the next clause - (backtracking). If non zero, the current {\tt match goal} block, - {\tt try}, {\tt repeat}, or branching command is aborted and the - level is decremented. In the case of {\tt +}, a non-zero level skips - the first backtrack point, even if the call to {\tt fail $n$} is not - enclosed in a {\tt +} command, respecting the algebraic identity. - -\item {\tt fail \nelist{\messagetoken}{}}\\ -The given tokens are used for printing the failure message. - -\item {\tt fail $n$ \nelist{\messagetoken}{}}\\ -This is a combination of the previous variants. - -\item {\tt gfail}\\ -This variant fails even if there are no goals left. - -\item {\tt gfail \nelist{\messagetoken}{}}\\ -{\tt gfail $n$ \nelist{\messagetoken}{}}\\ -These variants fail with an error message or an error level even if -there are no goals left. Be careful however if Coq terms have to be -printed as part of the failure: term construction always forces the -tactic into the goals, meaning that if there are no goals when it is -evaluated, a tactic call like {\tt let x:=H in fail 0 x} will succeed. - -\end{Variants} - -\ErrMsg \errindex{Tactic Failure {\it message} (level $n$)}. - -\subsubsection[Timeout]{Timeout\tacindex{timeout} -\index{Tacticals!timeout@{\tt timeout}}} - -We can force a tactic to stop if it has not finished after a certain -amount of time: -\begin{quote} -{\tt timeout} {\num} {\tacexpr} -\end{quote} -{\tacexpr} is evaluated to $v$ which must be a tactic value. -The tactic value $v$ is -applied normally, except that it is interrupted after ${\num}$ seconds -if it is still running. In this case the outcome is a failure. - -Warning: For the moment, {\tt timeout} is based on elapsed time in -seconds, which is very -machine-dependent: a script that works on a quick machine may fail -on a slow one. The converse is even possible if you combine a -{\tt timeout} with some other tacticals. This tactical is hence -proposed only for convenience during debug or other development -phases, we strongly advise you to not leave any {\tt timeout} in -final scripts. Note also that this tactical isn't available on -the native Windows port of Coq. - -\subsubsection{Timing a tactic\tacindex{time} -\index{Tacticals!time@{\tt time}}} - -A tactic execution can be timed: -\begin{quote} - {\tt time} {\qstring} {\tacexpr} -\end{quote} -evaluates {\tacexpr} -and displays the time the tactic expression ran, whether it fails or -successes. In case of several successes, the time for each successive -runs is displayed. Time is in seconds and is machine-dependent. The -{\qstring} argument is optional. When provided, it is used to identify -this particular occurrence of {\tt time}. - -\subsubsection{Timing a tactic that evaluates to a term\tacindex{time\_constr}\tacindex{restart\_timer}\tacindex{finish\_timing} -\index{Tacticals!time\_constr@{\tt time\_constr}}} -\index{Tacticals!restart\_timer@{\tt restart\_timer}} -\index{Tacticals!finish\_timing@{\tt finish\_timing}} - -Tactic expressions that produce terms can be timed with the experimental tactic -\begin{quote} - {\tt time\_constr} {\tacexpr} -\end{quote} -which evaluates {\tacexpr\tt{ ()}} -and displays the time the tactic expression evaluated, assuming successful evaluation. -Time is in seconds and is machine-dependent. - -This tactic currently does not support nesting, and will report times based on the innermost execution. -This is due to the fact that it is implemented using the tactics -\begin{quote} - {\tt restart\_timer} {\qstring} -\end{quote} -and -\begin{quote} - {\tt finish\_timing} ({\qstring}) {\qstring} -\end{quote} -which (re)set and display an optionally named timer, respectively. -The parenthesized {\qstring} argument to {\tt finish\_timing} is also -optional, and determines the label associated with the timer for -printing. - -By copying the definition of {\tt time\_constr} from the standard -library, users can achive support for a fixed pattern of nesting by -passing different {\qstring} parameters to {\tt restart\_timer} and -{\tt finish\_timing} at each level of nesting. For example: - -\begin{coq_example} -Ltac time_constr1 tac := - let eval_early := match goal with _ => restart_timer "(depth 1)" end in - let ret := tac () in - let eval_early := match goal with _ => finish_timing ( "Tactic evaluation" ) "(depth 1)" end in - ret. - -Goal True. - let v := time_constr - ltac:(fun _ => - let x := time_constr1 ltac:(fun _ => constr:(10 * 10)) in - let y := time_constr1 ltac:(fun _ => eval compute in x) in - y) in - pose v. -Abort. -\end{coq_example} - -\subsubsection[Local definitions]{Local definitions\index{Ltac!let@\texttt{let}} -\index{Ltac!let rec@\texttt{let rec}} -\index{let@\texttt{let}!in Ltac} -\index{let rec@\texttt{let rec}!in Ltac}} - -Local definitions can be done as follows: -\begin{quote} -{\tt let} {\ident}$_1$ {\tt :=} {\tacexpr}$_1$\\ -{\tt with} {\ident}$_2$ {\tt :=} {\tacexpr}$_2$\\ -...\\ -{\tt with} {\ident}$_n$ {\tt :=} {\tacexpr}$_n$ {\tt in}\\ -{\tacexpr} -\end{quote} -each {\tacexpr}$_i$ is evaluated to $v_i$, then, {\tacexpr} is -evaluated by substituting $v_i$ to each occurrence of {\ident}$_i$, -for $i=1,...,n$. There is no dependencies between the {\tacexpr}$_i$ -and the {\ident}$_i$. - -Local definitions can be recursive by using {\tt let rec} instead of -{\tt let}. In this latter case, the definitions are evaluated lazily -so that the {\tt rec} keyword can be used also in non recursive cases -so as to avoid the eager evaluation of local definitions. - -\subsubsection{Application} - -An application is an expression of the following form: -\begin{quote} -{\qualid} {\tacarg}$_1$ ... {\tacarg}$_n$ -\end{quote} -The reference {\qualid} must be bound to some defined tactic -definition expecting at least $n$ arguments. The expressions -{\tacexpr}$_i$ are evaluated to $v_i$, for $i=1,...,n$. -%If {\tacexpr} is a {\tt Fun} or {\tt Rec} value then the body is evaluated by -%substituting $v_i$ to the formal parameters, for $i=1,...,n$. For recursive -%clauses, the bodies are lazily substituted (when an identifier to be evaluated -%is the name of a recursive clause). - -%\subsection{Application of tactic values} - -\subsubsection[Function construction]{Function construction\index{fun@\texttt{fun}!in Ltac} -\index{Ltac!fun@\texttt{fun}}} - -A parameterized tactic can be built anonymously (without resorting to -local definitions) with: -\begin{quote} -{\tt fun} {\ident${}_1$} ... {\ident${}_n$} {\tt =>} {\tacexpr} -\end{quote} -Indeed, local definitions of functions are a syntactic sugar for -binding a {\tt fun} tactic to an identifier. - -\subsubsection[Pattern matching on terms]{Pattern matching on terms\index{Ltac!match@\texttt{match}} -\index{match@\texttt{match}!in Ltac}} - -We can carry out pattern matching on terms with: -\begin{quote} -{\tt match} {\tacexpr} {\tt with}\\ -~~~{\cpattern}$_1$ {\tt =>} {\tacexpr}$_1$\\ -~{\tt |} {\cpattern}$_2$ {\tt =>} {\tacexpr}$_2$\\ -~...\\ -~{\tt |} {\cpattern}$_n$ {\tt =>} {\tacexpr}$_n$\\ -~{\tt |} {\tt \_} {\tt =>} {\tacexpr}$_{n+1}$\\ -{\tt end} -\end{quote} -The expression {\tacexpr} is evaluated and should yield a term which -is matched against {\cpattern}$_1$. The matching is non-linear: if a -metavariable occurs more than once, it should match the same -expression every time. It is first-order except on the -variables of the form {\tt @?id} that occur in head position of an -application. For these variables, the matching is second-order and -returns a functional term. - -Alternatively, when a metavariable of the form {\tt ?id} occurs under -binders, say $x_1$, \ldots, $x_n$ and the expression matches, the -metavariable is instantiated by a term which can then be used in any -context which also binds the variables $x_1$, \ldots, $x_n$ with -same types. This provides with a primitive form of matching -under context which does not require manipulating a functional term. - -If the matching with {\cpattern}$_1$ succeeds, then {\tacexpr}$_1$ is -evaluated into some value by substituting the pattern matching -instantiations to the metavariables. If {\tacexpr}$_1$ evaluates to a -tactic and the {\tt match} expression is in position to be applied to -a goal (e.g. it is not bound to a variable by a {\tt let in}), then -this tactic is applied. If the tactic succeeds, the list of resulting -subgoals is the result of the {\tt match} expression. If -{\tacexpr}$_1$ does not evaluate to a tactic or if the {\tt match} -expression is not in position to be applied to a goal, then the result -of the evaluation of {\tacexpr}$_1$ is the result of the {\tt match} -expression. - -If the matching with {\cpattern}$_1$ fails, or if it succeeds but the -evaluation of {\tacexpr}$_1$ fails, or if the evaluation of -{\tacexpr}$_1$ succeeds but returns a tactic in execution position -whose execution fails, then {\cpattern}$_2$ is used and so on. The -pattern {\_} matches any term and shunts all remaining patterns if -any. If all clauses fail (in particular, there is no pattern {\_}) -then a no-matching-clause error is raised. - -Failures in subsequent tactics do not cause backtracking to select new -branches or inside the right-hand side of the selected branch even if -it has backtracking points. - -\begin{ErrMsgs} - -\item \errindex{No matching clauses for match} - - No pattern can be used and, in particular, there is no {\tt \_} pattern. - -\item \errindex{Argument of match does not evaluate to a term} - - This happens when {\tacexpr} does not denote a term. - -\end{ErrMsgs} - -\begin{Variants} - -\item \index{multimatch@\texttt{multimatch}!in Ltac} -\index{Ltac!multimatch@\texttt{multimatch}} -Using {\tt multimatch} instead of {\tt match} will allow subsequent -tactics to backtrack into a right-hand side tactic which has -backtracking points left and trigger the selection of a new matching -branch when all the backtracking points of the right-hand side have -been consumed. - -The syntax {\tt match \ldots} is, in fact, a shorthand for -{\tt once multimatch \ldots}. - -\item \index{lazymatch@\texttt{lazymatch}!in Ltac} -\index{Ltac!lazymatch@\texttt{lazymatch}} -Using {\tt lazymatch} instead of {\tt match} will perform the same -pattern matching procedure but will commit to the first matching -branch rather than trying a new matching if the right-hand side -fails. If the right-hand side of the selected branch is a tactic with -backtracking points, then subsequent failures cause this tactic to -backtrack. - -\item \index{context@\texttt{context}!in pattern} -There is a special form of patterns to match a subterm against the -pattern: -\begin{quote} -{\tt context} {\ident} {\tt [} {\cpattern} {\tt ]} -\end{quote} -It matches any term with a subterm matching {\cpattern}. If there is -a match, the optional {\ident} is assigned the ``matched context'', i.e. -the initial term where the matched subterm is replaced by a -hole. The example below will show how to use such term contexts. - -If the evaluation of the right-hand-side of a valid match fails, the -next matching subterm is tried. If no further subterm matches, the -next clause is tried. Matching subterms are considered top-bottom and -from left to right (with respect to the raw printing obtained by -setting option {\tt Printing All}, see Section~\ref{SetPrintingAll}). - -\begin{coq_example} -Ltac f x := - match x with - context f [S ?X] => - idtac X; (* To display the evaluation order *) - assert (p := eq_refl 1 : X=1); (* To filter the case X=1 *) - let x:= context f[O] in assert (x=O) (* To observe the context *) - end. -Goal True. -f (3+4). -\end{coq_example} - -\end{Variants} - -\subsubsection[Pattern matching on goals]{Pattern matching on goals\index{Ltac!match goal@\texttt{match goal}}\label{ltac-match-goal} -\index{Ltac!match reverse goal@\texttt{match reverse goal}} -\index{match goal@\texttt{match goal}!in Ltac} -\index{match reverse goal@\texttt{match reverse goal}!in Ltac}} - -We can make pattern matching on goals using the following expression: -\begin{quote} -\begin{tabbing} -{\tt match goal with}\\ -~~\={\tt |} $hyp_{1,1}${\tt ,}...{\tt ,}$hyp_{1,m_1}$ - ~~{\tt |-}{\cpattern}$_1${\tt =>} {\tacexpr}$_1$\\ - \>{\tt |} $hyp_{2,1}${\tt ,}...{\tt ,}$hyp_{2,m_2}$ - ~~{\tt |-}{\cpattern}$_2${\tt =>} {\tacexpr}$_2$\\ -~~...\\ - \>{\tt |} $hyp_{n,1}${\tt ,}...{\tt ,}$hyp_{n,m_n}$ - ~~{\tt |-}{\cpattern}$_n${\tt =>} {\tacexpr}$_n$\\ - \>{\tt |\_}~~~~{\tt =>} {\tacexpr}$_{n+1}$\\ -{\tt end} -\end{tabbing} -\end{quote} - -If each hypothesis pattern $hyp_{1,i}$, with $i=1,...,m_1$ -is matched (non-linear first-order unification) by an hypothesis of -the goal and if {\cpattern}$_1$ is matched by the conclusion of the -goal, then {\tacexpr}$_1$ is evaluated to $v_1$ by substituting the -pattern matching to the metavariables and the real hypothesis names -bound to the possible hypothesis names occurring in the hypothesis -patterns. If $v_1$ is a tactic value, then it is applied to the -goal. If this application fails, then another combination of -hypotheses is tried with the same proof context pattern. If there is -no other combination of hypotheses then the second proof context -pattern is tried and so on. If the next to last proof context pattern -fails then {\tacexpr}$_{n+1}$ is evaluated to $v_{n+1}$ and $v_{n+1}$ -is applied. Note also that matching against subterms (using the {\tt -context} {\ident} {\tt [} {\cpattern} {\tt ]}) is available and is -also subject to yielding several matchings. - -Failures in subsequent tactics do not cause backtracking to select new -branches or combinations of hypotheses, or inside the right-hand side -of the selected branch even if it has backtracking points. - -\ErrMsg \errindex{No matching clauses for match goal} - -No clause succeeds, i.e. all matching patterns, if any, -fail at the application of the right-hand-side. - -\medskip - -It is important to know that each hypothesis of the goal can be -matched by at most one hypothesis pattern. The order of matching is -the following: hypothesis patterns are examined from the right to the -left (i.e. $hyp_{i,m_i}$ before $hyp_{i,1}$). For each hypothesis -pattern, the goal hypothesis are matched in order (fresher hypothesis -first), but it possible to reverse this order (older first) with -the {\tt match reverse goal with} variant. - -\variant - -\index{multimatch goal@\texttt{multimatch goal}!in Ltac} -\index{Ltac!multimatch goal@\texttt{multimatch goal}} -\index{multimatch reverse goal@\texttt{multimatch reverse goal}!in Ltac} -\index{Ltac!multimatch reverse goal@\texttt{multimatch reverse goal}} - -Using {\tt multimatch} instead of {\tt match} will allow subsequent -tactics to backtrack into a right-hand side tactic which has -backtracking points left and trigger the selection of a new matching -branch or combination of hypotheses when all the backtracking points -of the right-hand side have been consumed. - -The syntax {\tt match [reverse] goal \ldots} is, in fact, a shorthand for -{\tt once multimatch [reverse] goal \ldots}. - -\index{lazymatch goal@\texttt{lazymatch goal}!in Ltac} -\index{Ltac!lazymatch goal@\texttt{lazymatch goal}} -\index{lazymatch reverse goal@\texttt{lazymatch reverse goal}!in Ltac} -\index{Ltac!lazymatch reverse goal@\texttt{lazymatch reverse goal}} -Using {\tt lazymatch} instead of {\tt match} will perform the same -pattern matching procedure but will commit to the first matching -branch with the first matching combination of hypotheses rather than -trying a new matching if the right-hand side fails. If the right-hand -side of the selected branch is a tactic with backtracking points, then -subsequent failures cause this tactic to backtrack. - -\subsubsection[Filling a term context]{Filling a term context\index{context@\texttt{context}!in expression}} - -The following expression is not a tactic in the sense that it does not -produce subgoals but generates a term to be used in tactic -expressions: -\begin{quote} -{\tt context} {\ident} {\tt [} {\tacexpr} {\tt ]} -\end{quote} -{\ident} must denote a context variable bound by a {\tt context} -pattern of a {\tt match} expression. This expression evaluates -replaces the hole of the value of {\ident} by the value of -{\tacexpr}. - -\ErrMsg \errindex{not a context variable} - - -\subsubsection[Generating fresh hypothesis names]{Generating fresh hypothesis names\index{Ltac!fresh@\texttt{fresh}} -\index{fresh@\texttt{fresh}!in Ltac}} - -Tactics sometimes have to generate new names for hypothesis. Letting -the system decide a name with the {\tt intro} tactic is not so good -since it is very awkward to retrieve the name the system gave. -The following expression returns an identifier: -\begin{quote} -{\tt fresh} \nelist{\textrm{\textsl{component}}}{} -\end{quote} -It evaluates to an identifier unbound in the goal. This fresh -identifier is obtained by concatenating the value of the -\textrm{\textsl{component}}'s (each of them is, either an {\qualid} which -has to refer to a (unqualified) name, or directly a name denoted by a -{\qstring}). If the resulting name is already used, it is padded -with a number so that it becomes fresh. If no component is -given, the name is a fresh derivative of the name {\tt H}. - -\subsubsection[Computing in a constr]{Computing in a constr\index{Ltac!eval@\texttt{eval}} -\index{eval@\texttt{eval}!in Ltac}} - -Evaluation of a term can be performed with: -\begin{quote} -{\tt eval} {\nterm{redexpr}} {\tt in} {\term} -\end{quote} -where \nterm{redexpr} is a reduction tactic among {\tt red}, {\tt -hnf}, {\tt compute}, {\tt simpl}, {\tt cbv}, {\tt lazy}, {\tt unfold}, -{\tt fold}, {\tt pattern}. - -\subsubsection{Recovering the type of a term} -%\tacindex{type of} -\index{Ltac!type of@\texttt{type of}} -\index{type of@\texttt{type of}!in Ltac} - -The following returns the type of {\term}: - -\begin{quote} -{\tt type of} {\term} -\end{quote} - -\subsubsection[Manipulating untyped terms]{Manipulating untyped terms\index{Ltac!uconstr@\texttt{uconstr}} -\index{uconstr@\texttt{uconstr}!in Ltac} -\index{Ltac!type\_term@\texttt{type\_term}} -\index{type\_term@\texttt{type\_term}!in Ltac}} - -The terms built in Ltac are well-typed by default. It may not be -appropriate for building large terms using a recursive Ltac function: -the term has to be entirely type checked at each step, resulting in -potentially very slow behavior. It is possible to build untyped terms -using Ltac with the syntax - -\begin{quote} -{\tt uconstr :} {\term} -\end{quote} - -An untyped term, in Ltac, can contain references to hypotheses or to -Ltac variables containing typed or untyped terms. An untyped term can -be type-checked using the function {\tt type\_term} whose argument is -parsed as an untyped term and returns a well-typed term which can be -used in tactics. - -\begin{quote} -{\tt type\_term} {\term} -\end{quote} - -Untyped terms built using {\tt uconstr :} can also be used as -arguments to the {\tt refine} tactic~\ref{refine}. In that case the -untyped term is type checked against the conclusion of the goal, and -the holes which are not solved by the typing procedure are turned into -new subgoals. - -\subsubsection[Counting the goals]{Counting the goals\index{Ltac!numgoals@\texttt{numgoals}}\index{numgoals@\texttt{numgoals}!in Ltac}} - -The number of goals under focus can be recovered using the {\tt - numgoals} function. Combined with the {\tt guard} command below, it -can be used to branch over the number of goals produced by previous tactics. - -\begin{coq_example*} -Ltac pr_numgoals := let n := numgoals in idtac "There are" n "goals". - -Goal True /\ True /\ True. -split;[|split]. -\end{coq_example*} -\begin{coq_example} -all:pr_numgoals. -\end{coq_example} - -\subsubsection[Testing boolean expressions]{Testing boolean expressions\index{Ltac!guard@\texttt{guard}}\index{guard@\texttt{guard}!in Ltac}} - -The {\tt guard} tactic tests a boolean expression, and fails if the expression evaluates to false. If the expression evaluates to true, it succeeds without affecting the proof. - -\begin{quote} -{\tt guard} {\it test} -\end{quote} - -The accepted tests are simple integer comparisons. - -\begin{coq_example*} -Goal True /\ True /\ True. -split;[|split]. -\end{coq_example*} -\begin{coq_example} -all:let n:= numgoals in guard n<4. -Fail all:let n:= numgoals in guard n=2. -\end{coq_example} -\begin{ErrMsgs} - -\item \errindex{Condition not satisfied} - -\end{ErrMsgs} - -\begin{coq_eval} -Reset Initial. -\end{coq_eval} - -\subsubsection[Proving a subgoal as a separate lemma]{Proving a subgoal as a separate lemma\tacindex{abstract}\tacindex{transparent\_abstract} -\index{Tacticals!abstract@{\tt abstract}}\index{Tacticals!transparent\_abstract@{\tt transparent\_abstract}}} - -From the outside ``\texttt{abstract \tacexpr}'' is the same as -{\tt solve \tacexpr}. Internally it saves an auxiliary lemma called -{\ident}\texttt{\_subproof}\textit{n} where {\ident} is the name of the -current goal and \textit{n} is chosen so that this is a fresh name. -Such an auxiliary lemma is inlined in the final proof term. - -This tactical is useful with tactics such as \texttt{omega} or -\texttt{discriminate} that generate huge proof terms. With that tool -the user can avoid the explosion at time of the \texttt{Save} command -without having to cut manually the proof in smaller lemmas. - -It may be useful to generate lemmas minimal w.r.t. the assumptions they depend -on. This can be obtained thanks to the option below. - -\begin{Variants} -\item \texttt{abstract {\tacexpr} using {\ident}}.\\ - Give explicitly the name of the auxiliary lemma. - Use this feature at your own risk; explicitly named and reused subterms - don't play well with asynchronous proofs. -\item \texttt{transparent\_abstract {\tacexpr}}.\\ - Save the subproof in a transparent lemma rather than an opaque one. - Use this feature at your own risk; building computationally relevant terms - with tactics is fragile. -\item \texttt{transparent\_abstract {\tacexpr} using {\ident}}.\\ - Give explicitly the name of the auxiliary transparent lemma. - Use this feature at your own risk; building computationally relevant terms - with tactics is fragile, and explicitly named and reused subterms - don't play well with asynchronous proofs. -\end{Variants} - -\ErrMsg \errindex{Proof is not complete} - -\section[Tactic toplevel definitions]{Tactic toplevel definitions\comindex{Ltac}} - -\subsection{Defining {\ltac} functions} - -Basically, {\ltac} toplevel definitions are made as follows: -%{\tt Tactic Definition} {\ident} {\tt :=} {\tacexpr}\\ -% -%{\tacexpr} is evaluated to $v$ and $v$ is associated to {\ident}. Next, every -%script is evaluated by substituting $v$ to {\ident}. -% -%We can define functional definitions by:\\ -\begin{quote} -{\tt Ltac} {\ident} {\ident}$_1$ ... {\ident}$_n$ {\tt :=} -{\tacexpr} -\end{quote} -This defines a new {\ltac} function that can be used in any tactic -script or new {\ltac} toplevel definition. - -\Rem The preceding definition can equivalently be written: -\begin{quote} -{\tt Ltac} {\ident} {\tt := fun} {\ident}$_1$ ... {\ident}$_n$ -{\tt =>} {\tacexpr} -\end{quote} -Recursive and mutual recursive function definitions are also -possible with the syntax: -\begin{quote} -{\tt Ltac} {\ident}$_1$ {\ident}$_{1,1}$ ... -{\ident}$_{1,m_1}$~~{\tt :=} {\tacexpr}$_1$\\ -{\tt with} {\ident}$_2$ {\ident}$_{2,1}$ ... {\ident}$_{2,m_2}$~~{\tt :=} -{\tacexpr}$_2$\\ -...\\ -{\tt with} {\ident}$_n$ {\ident}$_{n,1}$ ... {\ident}$_{n,m_n}$~~{\tt :=} -{\tacexpr}$_n$ -\end{quote} -\medskip -It is also possible to \emph{redefine} an existing user-defined tactic -using the syntax: -\begin{quote} -{\tt Ltac} {\qualid} {\ident}$_1$ ... {\ident}$_n$ {\tt ::=} -{\tacexpr} -\end{quote} -A previous definition of {\qualid} must exist in the environment. -The new definition will always be used instead of the old one and -it goes across module boundaries. - -If preceded by the keyword {\tt Local} the tactic definition will not -be exported outside the current module. - -\subsection[Printing {\ltac} tactics]{Printing {\ltac} tactics\comindex{Print Ltac}} - -Defined {\ltac} functions can be displayed using the command - -\begin{quote} -{\tt Print Ltac {\qualid}.} -\end{quote} - -The command {\tt Print Ltac Signatures\comindex{Print Ltac Signatures}} displays a list of all user-defined tactics, with their arguments. - -\section{Debugging {\ltac} tactics} - -\subsection[Info trace]{Info trace\comindex{Info}\optindex{Info Level}} - -It is possible to print the trace of the path eventually taken by an {\ltac} script. That is, the list of executed tactics, discarding all the branches which have failed. To that end the {\tt Info} command can be used with the following syntax. - -\begin{quote} -{\tt Info} {\num} {\tacexpr}. -\end{quote} - -The number {\num} is the unfolding level of tactics in the trace. At level $0$, the trace contains a sequence of tactics in the actual script, at level $1$, the trace will be the concatenation of the traces of these tactics, etc\ldots - -\begin{coq_eval} -Reset Initial. -\end{coq_eval} -\begin{coq_example*} -Ltac t x := exists x; reflexivity. - -Goal exists n, n=0. -\end{coq_example*} -\begin{coq_example} -Info 0 t 1||t 0. -\end{coq_example} -\begin{coq_example*} -Undo. -\end{coq_example*} -\begin{coq_example} -Info 1 t 1||t 0. -\end{coq_example} - -The trace produced by {\tt Info} tries its best to be a reparsable {\ltac} script, but this goal is not achievable in all generality. So some of the output traces will contain oddities. - -As an additional help for debugging, the trace produced by {\tt Info} contains (in comments) the messages produced by the {\tt idtac} tacticals~\ref{ltac:idtac} at the right possition in the script. In particular, the calls to {\tt idtac} in branches which failed are not printed. - -An alternative to the {\tt Info} command is to use the {\tt Info Level} option as follows: - -\begin{quote} -{\tt Set Info Level} \num. -\end{quote} - -This will automatically print the same trace as {\tt Info \num} at each tactic call. The unfolding level can be overridden by a call to the {\tt Info} command. And this option can be turned off with: - -\begin{quote} -{\tt Unset Info Level} \num. -\end{quote} - -The current value for the {\tt Info Level} option can be checked using the {\tt Test Info Level} command. - -\subsection[Interactive debugger]{Interactive debugger\optindex{Ltac Debug}\optindex{Ltac Batch Debug}} - -The {\ltac} interpreter comes with a step-by-step debugger. The -debugger can be activated using the command - -\begin{quote} -{\tt Set Ltac Debug.} -\end{quote} - -\noindent and deactivated using the command - -\begin{quote} -{\tt Unset Ltac Debug.} -\end{quote} - -To know if the debugger is on, use the command \texttt{Test Ltac Debug}. -When the debugger is activated, it stops at every step of the -evaluation of the current {\ltac} expression and it prints information -on what it is doing. The debugger stops, prompting for a command which -can be one of the following: - -\medskip -\begin{tabular}{ll} -simple newline: & go to the next step\\ -h: & get help\\ -x: & exit current evaluation\\ -s: & continue current evaluation without stopping\\ -r $n$: & advance $n$ steps further\\ -r {\qstring}: & advance up to the next call to ``{\tt idtac} {\qstring}''\\ -\end{tabular} - -A non-interactive mode for the debugger is available via the command - -\begin{quote} -{\tt Set Ltac Batch Debug.} -\end{quote} - -This option has the effect of presenting a newline at every prompt, -when the debugger is on. The debug log thus created, which does not -require user input to generate when this option is set, can then be -run through external tools such as \texttt{diff}. - -\subsection[Profiling {\ltac} tactics]{Profiling {\ltac} tactics\optindex{Ltac Profiling}\comindex{Show Ltac Profile}\comindex{Reset Ltac Profile}} - -It is possible to measure the time spent in invocations of primitive tactics as well as tactics defined in {\ltac} and their inner invocations. The primary use is the development of complex tactics, which can sometimes be so slow as to impede interactive usage. The reasons for the performence degradation can be intricate, like a slowly performing {\ltac} match or a sub-tactic whose performance only degrades in certain situations. The profiler generates a call tree and indicates the time spent in a tactic depending its calling context. Thus it allows to locate the part of a tactic definition that contains the performance bug. - -\begin{quote} -{\tt Set Ltac Profiling}. -\end{quote} -Enables the profiler - -\begin{quote} -{\tt Unset Ltac Profiling}. -\end{quote} -Disables the profiler - -\begin{quote} -{\tt Show Ltac Profile}. -\end{quote} -Prints the profile - -\begin{quote} -{\tt Show Ltac Profile} {\qstring}. -\end{quote} -Prints a profile for all tactics that start with {\qstring}. Append a period (.) to the string if you only want exactly that name. - -\begin{quote} -{\tt Reset Ltac Profile}. -\end{quote} -Resets the profile, that is, deletes all accumulated information. Note that backtracking across a {\tt Reset Ltac Profile} will not restore the information. - -\begin{coq_eval} -Reset Initial. -\end{coq_eval} -\begin{coq_example*} -Require Import Coq.omega.Omega. - -Ltac mytauto := tauto. -Ltac tac := intros; repeat split; omega || mytauto. - -Notation max x y := (x + (y - x)) (only parsing). -\end{coq_example*} -\begin{coq_example*} -Goal forall x y z A B C D E F G H I J K L M N O P Q R S T U V W X Y Z, - max x (max y z) = max (max x y) z /\ max x (max y z) = max (max x y) z - /\ (A /\ B /\ C /\ D /\ E /\ F /\ G /\ H /\ I /\ J /\ K /\ L /\ M /\ N /\ O /\ P /\ Q /\ R /\ S /\ T /\ U /\ V /\ W /\ X /\ Y /\ Z - -> Z /\ Y /\ X /\ W /\ V /\ U /\ T /\ S /\ R /\ Q /\ P /\ O /\ N /\ M /\ L /\ K /\ J /\ I /\ H /\ G /\ F /\ E /\ D /\ C /\ B /\ A). -Proof. -\end{coq_example*} -\begin{coq_example} - Set Ltac Profiling. - tac. -\end{coq_example} -{\let\textit\texttt% use tt mode for the output of ltacprof -\begin{coq_example} - Show Ltac Profile. -\end{coq_example} -\begin{coq_example} - Show Ltac Profile "omega". -\end{coq_example} -} -\begin{coq_example*} -Abort. -Unset Ltac Profiling. -\end{coq_example*} - -\tacindex{start ltac profiling}\tacindex{stop ltac profiling} -The following two tactics behave like {\tt idtac} but enable and disable the profiling. They allow you to exclude parts of a proof script from profiling. - -\begin{quote} -{\tt start ltac profiling}. -\end{quote} - -\begin{quote} -{\tt stop ltac profiling}. -\end{quote} - -\tacindex{reset ltac profile}\tacindex{show ltac profile} -The following tactics behave like the corresponding vernacular commands and allow displaying and resetting the profile from tactic scripts for benchmarking purposes. - -\begin{quote} -{\tt reset ltac profile}. -\end{quote} - -\begin{quote} -{\tt show ltac profile}. -\end{quote} - -\begin{quote} -{\tt show ltac profile} {\qstring}. -\end{quote} - -You can also pass the {\tt -profile-ltac} command line option to {\tt coqc}, which performs a {\tt Set Ltac Profiling} at the beginning of each document, and a {\tt Show Ltac Profile} at the end. - -Note that the profiler currently does not handle backtracking into multi-success tactics, and issues a warning to this effect in many cases when such backtracking occurs. - -\subsection[Run-time optimization tactic]{Run-time optimization tactic\label{tactic-optimizeheap}}. - -The following tactic behaves like {\tt idtac}, and running it compacts the heap in the -OCaml run-time system. It is analogous to the Vernacular command {\tt Optimize Heap} (see~\ref{vernac-optimizeheap}). - -\tacindex{optimize\_heap} -\begin{quote} -{\tt optimize\_heap}. -\end{quote} - -\endinput - -\subsection{Permutation on closed lists} - -\begin{figure}[b] -\begin{center} -\fbox{\begin{minipage}{0.95\textwidth} -\begin{coq_eval} -Reset Initial. -\end{coq_eval} -\begin{coq_example*} -Require Import List. -Section Sort. -Variable A : Set. -Inductive permut : list A -> list A -> Prop := - | permut_refl : forall l, permut l l - | permut_cons : - forall a l0 l1, permut l0 l1 -> permut (a :: l0) (a :: l1) - | permut_append : forall a l, permut (a :: l) (l ++ a :: nil) - | permut_trans : - forall l0 l1 l2, permut l0 l1 -> permut l1 l2 -> permut l0 l2. -End Sort. -\end{coq_example*} -\end{center} -\caption{Definition of the permutation predicate} -\label{permutpred} -\end{figure} - - -Another more complex example is the problem of permutation on closed -lists. The aim is to show that a closed list is a permutation of -another one. First, we define the permutation predicate as shown on -Figure~\ref{permutpred}. - -\begin{figure}[p] -\begin{center} -\fbox{\begin{minipage}{0.95\textwidth} -\begin{coq_example} -Ltac Permut n := - match goal with - | |- (permut _ ?l ?l) => apply permut_refl - | |- (permut _ (?a :: ?l1) (?a :: ?l2)) => - let newn := eval compute in (length l1) in - (apply permut_cons; Permut newn) - | |- (permut ?A (?a :: ?l1) ?l2) => - match eval compute in n with - | 1 => fail - | _ => - let l1' := constr:(l1 ++ a :: nil) in - (apply (permut_trans A (a :: l1) l1' l2); - [ apply permut_append | compute; Permut (pred n) ]) - end - end. -Ltac PermutProve := - match goal with - | |- (permut _ ?l1 ?l2) => - match eval compute in (length l1 = length l2) with - | (?n = ?n) => Permut n - end - end. -\end{coq_example} -\end{minipage}} -\end{center} -\caption{Permutation tactic} -\label{permutltac} -\end{figure} - -\begin{figure}[p] -\begin{center} -\fbox{\begin{minipage}{0.95\textwidth} -\begin{coq_example*} -Lemma permut_ex1 : - permut nat (1 :: 2 :: 3 :: nil) (3 :: 2 :: 1 :: nil). -Proof. -PermutProve. -Qed. - -Lemma permut_ex2 : - permut nat - (0 :: 1 :: 2 :: 3 :: 4 :: 5 :: 6 :: 7 :: 8 :: 9 :: nil) - (0 :: 2 :: 4 :: 6 :: 8 :: 9 :: 7 :: 5 :: 3 :: 1 :: nil). -Proof. -PermutProve. -Qed. -\end{coq_example*} -\end{minipage}} -\end{center} -\caption{Examples of {\tt PermutProve} use} -\label{permutlem} -\end{figure} - -Next, we can write naturally the tactic and the result can be seen on -Figure~\ref{permutltac}. We can notice that we use two toplevel -definitions {\tt PermutProve} and {\tt Permut}. The function to be -called is {\tt PermutProve} which computes the lengths of the two -lists and calls {\tt Permut} with the length if the two lists have the -same length. {\tt Permut} works as expected. If the two lists are -equal, it concludes. Otherwise, if the lists have identical first -elements, it applies {\tt Permut} on the tail of the lists. Finally, -if the lists have different first elements, it puts the first element -of one of the lists (here the second one which appears in the {\tt - permut} predicate) at the end if that is possible, i.e., if the new -first element has been at this place previously. To verify that all -rotations have been done for a list, we use the length of the list as -an argument for {\tt Permut} and this length is decremented for each -rotation down to, but not including, 1 because for a list of length -$n$, we can make exactly $n-1$ rotations to generate at most $n$ -distinct lists. Here, it must be noticed that we use the natural -numbers of {\Coq} for the rotation counter. On Figure~\ref{ltac}, we -can see that it is possible to use usual natural numbers but they are -only used as arguments for primitive tactics and they cannot be -handled, in particular, we cannot make computations with them. So, a -natural choice is to use {\Coq} data structures so that {\Coq} makes -the computations (reductions) by {\tt eval compute in} and we can get -the terms back by {\tt match}. - -With {\tt PermutProve}, we can now prove lemmas such those shown on -Figure~\ref{permutlem}. - - -\subsection{Deciding intuitionistic propositional logic} - -\begin{figure}[tbp] -\begin{center} -\fbox{\begin{minipage}{0.95\textwidth} -\begin{coq_example} -Ltac Axioms := - match goal with - | |- True => trivial - | _:False |- _ => elimtype False; assumption - | _:?A |- ?A => auto - end. -Ltac DSimplif := - repeat - (intros; - match goal with - | id:(~ _) |- _ => red in id - | id:(_ /\ _) |- _ => - elim id; do 2 intro; clear id - | id:(_ \/ _) |- _ => - elim id; intro; clear id - | id:(?A /\ ?B -> ?C) |- _ => - cut (A -> B -> C); - [ intro | intros; apply id; split; assumption ] - | id:(?A \/ ?B -> ?C) |- _ => - cut (B -> C); - [ cut (A -> C); - [ intros; clear id - | intro; apply id; left; assumption ] - | intro; apply id; right; assumption ] - | id0:(?A -> ?B),id1:?A |- _ => - cut B; [ intro; clear id0 | apply id0; assumption ] - | |- (_ /\ _) => split - | |- (~ _) => red - end). -\end{coq_example} -\end{minipage}} -\end{center} -\caption{Deciding intuitionistic propositions (1)} -\label{tautoltaca} -\end{figure} - -\begin{figure} -\begin{center} -\fbox{\begin{minipage}{0.95\textwidth} -\begin{coq_example} -Ltac TautoProp := - DSimplif; - Axioms || - match goal with - | id:((?A -> ?B) -> ?C) |- _ => - cut (B -> C); - [ intro; cut (A -> B); - [ intro; cut C; - [ intro; clear id | apply id; assumption ] - | clear id ] - | intro; apply id; intro; assumption ]; TautoProp - | id:(~ ?A -> ?B) |- _ => - cut (False -> B); - [ intro; cut (A -> False); - [ intro; cut B; - [ intro; clear id | apply id; assumption ] - | clear id ] - | intro; apply id; red; intro; assumption ]; TautoProp - | |- (_ \/ _) => (left; TautoProp) || (right; TautoProp) - end. -\end{coq_example} -\end{minipage}} -\end{center} -\caption{Deciding intuitionistic propositions (2)} -\label{tautoltacb} -\end{figure} - -The pattern matching on goals allows a complete and so a powerful -backtracking when returning tactic values. An interesting application -is the problem of deciding intuitionistic propositional logic. -Considering the contraction-free sequent calculi {\tt LJT*} of -Roy~Dyckhoff (\cite{Dyc92}), it is quite natural to code such a tactic -using the tactic language. On Figure~\ref{tautoltaca}, the tactic {\tt - Axioms} tries to conclude using usual axioms. The {\tt DSimplif} -tactic applies all the reversible rules of Dyckhoff's system. -Finally, on Figure~\ref{tautoltacb}, the {\tt TautoProp} tactic (the -main tactic to be called) simplifies with {\tt DSimplif}, tries to -conclude with {\tt Axioms} and tries several paths using the -backtracking rules (one of the four Dyckhoff's rules for the left -implication to get rid of the contraction and the right or). - -\begin{figure}[tb] -\begin{center} -\fbox{\begin{minipage}{0.95\textwidth} -\begin{coq_example*} -Lemma tauto_ex1 : forall A B:Prop, A /\ B -> A \/ B. -Proof. -TautoProp. -Qed. - -Lemma tauto_ex2 : - forall A B:Prop, (~ ~ B -> B) -> (A -> B) -> ~ ~ A -> B. -Proof. -TautoProp. -Qed. -\end{coq_example*} -\end{minipage}} -\end{center} -\caption{Proofs of tautologies with {\tt TautoProp}} -\label{tautolem} -\end{figure} - -For example, with {\tt TautoProp}, we can prove tautologies like those of -Figure~\ref{tautolem}. - - -\subsection{Deciding type isomorphisms} - -A more tricky problem is to decide equalities between types and modulo -isomorphisms. Here, we choose to use the isomorphisms of the simply typed -$\lb{}$-calculus with Cartesian product and $unit$ type (see, for example, -\cite{RC95}). The axioms of this $\lb{}$-calculus are given by -Figure~\ref{isosax}. - -\begin{figure} -\begin{center} -\fbox{\begin{minipage}{0.95\textwidth} -\begin{coq_eval} -Reset Initial. -\end{coq_eval} -\begin{coq_example*} -Open Scope type_scope. -Section Iso_axioms. -Variables A B C : Set. -Axiom Com : A * B = B * A. -Axiom Ass : A * (B * C) = A * B * C. -Axiom Cur : (A * B -> C) = (A -> B -> C). -Axiom Dis : (A -> B * C) = (A -> B) * (A -> C). -Axiom P_unit : A * unit = A. -Axiom AR_unit : (A -> unit) = unit. -Axiom AL_unit : (unit -> A) = A. -Lemma Cons : B = C -> A * B = A * C. -Proof. -intro Heq; rewrite Heq; reflexivity. -Qed. -End Iso_axioms. -\end{coq_example*} -\end{minipage}} -\end{center} -\caption{Type isomorphism axioms} -\label{isosax} -\end{figure} - -The tactic to judge equalities modulo this axiomatization can be written as -shown on Figures~\ref{isosltac1} and~\ref{isosltac2}. The algorithm is quite -simple. Types are reduced using axioms that can be oriented (this done by {\tt -MainSimplif}). The normal forms are sequences of Cartesian -products without Cartesian product in the left component. These normal forms -are then compared modulo permutation of the components (this is done by {\tt -CompareStruct}). The main tactic to be called and realizing this algorithm is -{\tt IsoProve}. - -\begin{figure} -\begin{center} -\fbox{\begin{minipage}{0.95\textwidth} -\begin{coq_example} -Ltac DSimplif trm := - match trm with - | (?A * ?B * ?C) => - rewrite <- (Ass A B C); try MainSimplif - | (?A * ?B -> ?C) => - rewrite (Cur A B C); try MainSimplif - | (?A -> ?B * ?C) => - rewrite (Dis A B C); try MainSimplif - | (?A * unit) => - rewrite (P_unit A); try MainSimplif - | (unit * ?B) => - rewrite (Com unit B); try MainSimplif - | (?A -> unit) => - rewrite (AR_unit A); try MainSimplif - | (unit -> ?B) => - rewrite (AL_unit B); try MainSimplif - | (?A * ?B) => - (DSimplif A; try MainSimplif) || (DSimplif B; try MainSimplif) - | (?A -> ?B) => - (DSimplif A; try MainSimplif) || (DSimplif B; try MainSimplif) - end - with MainSimplif := - match goal with - | |- (?A = ?B) => try DSimplif A; try DSimplif B - end. -Ltac Length trm := - match trm with - | (_ * ?B) => let succ := Length B in constr:(S succ) - | _ => constr:1 - end. -Ltac assoc := repeat rewrite <- Ass. -\end{coq_example} -\end{minipage}} -\end{center} -\caption{Type isomorphism tactic (1)} -\label{isosltac1} -\end{figure} - -\begin{figure} -\begin{center} -\fbox{\begin{minipage}{0.95\textwidth} -\begin{coq_example} -Ltac DoCompare n := - match goal with - | [ |- (?A = ?A) ] => reflexivity - | [ |- (?A * ?B = ?A * ?C) ] => - apply Cons; let newn := Length B in DoCompare newn - | [ |- (?A * ?B = ?C) ] => - match eval compute in n with - | 1 => fail - | _ => - pattern (A * B) at 1; rewrite Com; assoc; DoCompare (pred n) - end - end. -Ltac CompareStruct := - match goal with - | [ |- (?A = ?B) ] => - let l1 := Length A - with l2 := Length B in - match eval compute in (l1 = l2) with - | (?n = ?n) => DoCompare n - end - end. -Ltac IsoProve := MainSimplif; CompareStruct. -\end{coq_example} -\end{minipage}} -\end{center} -\caption{Type isomorphism tactic (2)} -\label{isosltac2} -\end{figure} - -Figure~\ref{isoslem} gives examples of what can be solved by {\tt IsoProve}. - -\begin{figure} -\begin{center} -\fbox{\begin{minipage}{0.95\textwidth} -\begin{coq_example*} -Lemma isos_ex1 : - forall A B:Set, A * unit * B = B * (unit * A). -Proof. -intros; IsoProve. -Qed. - -Lemma isos_ex2 : - forall A B C:Set, - (A * unit -> B * (C * unit)) = - (A * unit -> (C -> unit) * C) * (unit -> A -> B). -Proof. -intros; IsoProve. -Qed. -\end{coq_example*} -\end{minipage}} -\end{center} -\caption{Type equalities solved by {\tt IsoProve}} -\label{isoslem} -\end{figure} - -%%% Local Variables: -%%% mode: latex -%%% TeX-master: "Reference-Manual" -%%% End: diff --git a/doc/refman/Reference-Manual.tex b/doc/refman/Reference-Manual.tex deleted file mode 100644 index 061686e12..000000000 --- a/doc/refman/Reference-Manual.tex +++ /dev/null @@ -1,136 +0,0 @@ -%\RequirePackage{ifpdf} -%\ifpdf -% \documentclass[11pt,a4paper,pdftex]{book} -%\else - \documentclass[11pt,a4paper]{book} -%\fi - -\usepackage[utf8]{inputenc} -\usepackage[T1]{fontenc} -\usepackage{textcomp} -\usepackage{times} -\usepackage{url} -\usepackage{verbatim} -\usepackage{amsmath} -\usepackage{amssymb} -\usepackage{alltt} -\usepackage{hevea} -\usepackage{ifpdf} -\usepackage[headings]{fullpage} -\usepackage{headers} % in this directory -\usepackage{multicol} -\usepackage{xspace} -\usepackage{pmboxdraw} -\usepackage{float} -\usepackage{color} - \definecolor{dkblue}{rgb}{0,0.1,0.5} - \definecolor{lightblue}{rgb}{0,0.5,0.5} - \definecolor{dkgreen}{rgb}{0,0.4,0} - \definecolor{dk2green}{rgb}{0.4,0,0} - \definecolor{dkviolet}{rgb}{0.6,0,0.8} - \definecolor{dkpink}{rgb}{0.2,0,0.6} -\usepackage{listings} - \def\lstlanguagefiles{coq-listing.tex} -\usepackage{tabularx} -\usepackage{array,longtable} - -\floatstyle{boxed} -\restylefloat{figure} - -% for coqide -\ifpdf % si on est pas en pdflatex - \usepackage[pdftex]{graphicx} -\else - \usepackage[dvips]{graphicx} -\fi - - -%\includeonly{Setoid} - -\input{../common/version.tex} -\input{../common/macros.tex}% extension .tex pour htmlgen -\input{../common/title.tex}% extension .tex pour htmlgen -%\input{headers} - -\usepackage[linktocpage,colorlinks,bookmarks=true,bookmarksnumbered=true]{hyperref} -% The manual advises to load hyperref package last to be able to redefine -% necessary commands. -% The above should work for both latex and pdflatex. Even if PDF is produced -% through DVI and PS using dvips and ps2pdf, hyperlinks should still work. -% linktocpage option makes page numbers, not section names, to be links in -% the table of contents. -% colorlinks option colors the links instead of using boxes. - -% The command \tocnumber was added to HEVEA in version 1.06-6. -% It instructs HEVEA to put chapter numbers into the table of -% content entries. The table of content is produced by HACHA using -% the options -tocbis -o toc.html. HEVEA produces a warning when -% a command is not recognized, so versions earlier than 1.06-6 can -% still be used. -%HEVEA\tocnumber - -\begin{document} -%BEGIN LATEX -\sloppy\hbadness=5000 -%END LATEX - -%BEGIN LATEX -\coverpage{Reference Manual} -{The Coq Development Team} -{This material may be distributed only subject to the terms and -conditions set forth in the Open Publication License, v1.0 or later -(the latest version is presently available at -\url{http://www.opencontent.org/openpub}). -Options A and B of the licence are {\em not} elected.} -%END LATEX - -%\defaultheaders - -%BEGIN LATEX -\tableofcontents -%END LATEX - -\part{The language} -%BEGIN LATEX -\defaultheaders -%END LATEX -\include{RefMan-gal.v}% Gallina - - -\part{The proof engine} -\include{RefMan-ltac.v}% Writing tactics - -\lstset{language=SSR} -\lstset{moredelim=[is][]{|*}{*|}} -\lstset{moredelim=*[is][\itshape\rmfamily]{/*}{*/}} - -%BEGIN LATEX -\RefManCutCommand{BEGINADDENDUM=\thepage} -%END LATEX -\part{Addendum to the Reference Manual} -\include{AddRefMan-pre}% -\include{Universes.v}% Universe polymorphes -%BEGIN LATEX -\RefManCutCommand{ENDADDENDUM=\thepage} -%END LATEX -\nocite{*} -\bibliographystyle{plain} -\bibliography{biblio} -\cutname{biblio.html} - -\printrefmanindex{default}{Global Index}{general-index.html} -\printrefmanindex{tactic}{Tactics Index}{tactic-index.html} -\printrefmanindex{command}{Vernacular Commands Index}{command-index.html} -\printrefmanindex{option}{Vernacular Options Index}{option-index.html} -\printrefmanindex{error}{Index of Error Messages}{error-index.html} - -%BEGIN LATEX -\cleardoublepage -\phantomsection -\addcontentsline{toc}{chapter}{\listfigurename} -\listoffigures -%END LATEX - -\end{document} - - diff --git a/doc/refman/Universes.tex b/doc/refman/Universes.tex deleted file mode 100644 index c7d39c0f3..000000000 --- a/doc/refman/Universes.tex +++ /dev/null @@ -1,393 +0,0 @@ -\achapter{Polymorphic Universes} -%HEVEA\cutname{universes.html} -\aauthor{Matthieu Sozeau} - -\label{Universes-full} -\index{Universes!presentation} - -\asection{General Presentation} - -\begin{flushleft} - \em The status of Universe Polymorphism is experimental. -\end{flushleft} - -This section describes the universe polymorphic extension of Coq. -Universe polymorphism makes it possible to write generic definitions making use of -universes and reuse them at different and sometimes incompatible universe levels. - -A standard example of the difference between universe \emph{polymorphic} and -\emph{monomorphic} definitions is given by the identity function: - -\begin{coq_example*} -Definition identity {A : Type} (a : A) := a. -\end{coq_example*} - -By default, constant declarations are monomorphic, hence the identity -function declares a global universe (say \texttt{Top.1}) for its -domain. Subsequently, if we try to self-apply the identity, we will get -an error: - -\begin{coq_eval} -Set Printing Universes. -\end{coq_eval} -\begin{coq_example} -Fail Definition selfid := identity (@identity). -\end{coq_example} - -Indeed, the global level \texttt{Top.1} would have to be strictly smaller than itself -for this self-application to typecheck, as the type of \texttt{(@identity)} is -\texttt{forall (A : Type@{Top.1}), A -> A} whose type is itself \texttt{Type@{Top.1+1}}. - -A universe polymorphic identity function binds its domain universe level -at the definition level instead of making it global. - -\begin{coq_example} -Polymorphic Definition pidentity {A : Type} (a : A) := a. -About pidentity. -\end{coq_example} - -It is then possible to reuse the constant at different levels, like so: - -\begin{coq_example} -Definition selfpid := pidentity (@pidentity). -\end{coq_example} - -Of course, the two instances of \texttt{pidentity} in this definition -are different. This can be seen when \texttt{Set Printing Universes} is -on: - -\begin{coq_example} -Print selfpid. -\end{coq_example} - -Now \texttt{pidentity} is used at two different levels: at the head of -the application it is instantiated at \texttt{Top.3} while in the -argument position it is instantiated at \texttt{Top.4}. This definition -is only valid as long as \texttt{Top.4} is strictly smaller than -\texttt{Top.3}, as show by the constraints. Note that this definition is -monomorphic (not universe polymorphic), so the two universes -(in this case \texttt{Top.3} and \texttt{Top.4}) are actually global levels. - -When printing \texttt{pidentity}, we can see the universes it binds in -the annotation \texttt{@\{Top.2\}}. Additionally, when \texttt{Set - Printing Universes} is on we print the ``universe context'' of -\texttt{pidentity} consisting of the bound universes and the -constraints they must verify (for \texttt{pidentity} there are no -constraints). - -Inductive types can also be declared universes polymorphic on universes -appearing in their parameters or fields. A typical example is given by -monoids: - -\begin{coq_example} -Polymorphic Record Monoid := { mon_car :> Type; mon_unit : mon_car; - mon_op : mon_car -> mon_car -> mon_car }. -Print Monoid. -\end{coq_example} - -The \texttt{Monoid}'s carrier universe is polymorphic, hence it is -possible to instantiate it for example with \texttt{Monoid} itself. -First we build the trivial unit monoid in \texttt{Set}: -\begin{coq_example} -Definition unit_monoid : Monoid := - {| mon_car := unit; mon_unit := tt; mon_op x y := tt |}. -\end{coq_example} - -From this we can build a definition for the monoid of -\texttt{Set}-monoids (where multiplication would be given by the product -of monoids). - -\begin{coq_example*} -Polymorphic Definition monoid_monoid : Monoid. - refine (@Build_Monoid Monoid unit_monoid (fun x y => x)). -Defined. -\end{coq_example*} -\begin{coq_example} -Print monoid_monoid. -\end{coq_example} - -As one can see from the constraints, this monoid is ``large'', it lives -in a universe strictly higher than \texttt{Set}. - -\asection{\tt Polymorphic, Monomorphic} -\comindex{Polymorphic} -\comindex{Monomorphic} -\optindex{Universe Polymorphism} - -As shown in the examples, polymorphic definitions and inductives can be -declared using the \texttt{Polymorphic} prefix. There also exists an -option \texttt{Set Universe Polymorphism} which will implicitly prepend -it to any definition of the user. In that case, to make a definition -producing global universe constraints, one can use the -\texttt{Monomorphic} prefix. Many other commands support the -\texttt{Polymorphic} flag, including: - -\begin{itemize} -\item \texttt{Lemma}, \texttt{Axiom}, and all the other ``definition'' - keywords support polymorphism. -\item \texttt{Variables}, \texttt{Context}, \texttt{Universe} and - \texttt{Constraint} in a section support polymorphism. This means - that the universe variables (and associated constraints) are - discharged polymorphically over definitions that use them. In other - words, two definitions in the section sharing a common variable will - both get parameterized by the universes produced by the variable - declaration. This is in contrast to a ``mononorphic'' variable which - introduces global universes and constraints, making the two - definitions depend on the \emph{same} global universes associated to - the variable. -\item \texttt{Hint \{Resolve, Rewrite\}} will use the auto/rewrite hint - polymorphically, not at a single instance. -\end{itemize} - -\asection{{\tt Cumulative, NonCumulative}} -\comindex{Cumulative} -\comindex{NonCumulative} -\optindex{Polymorphic Inductive Cumulativity} - -Polymorphic inductive types, coinductive types, variants and records can be -declared cumulative using the \texttt{Cumulative} prefix. Alternatively, -there is an option \texttt{Set Polymorphic Inductive Cumulativity} which when set, -makes all subsequent \emph{polymorphic} inductive definitions cumulative. When set, -inductive types and the like can be enforced to be -\emph{non-cumulative} using the \texttt{NonCumulative} prefix. Consider the examples below. -\begin{coq_example*} -Polymorphic Cumulative Inductive list {A : Type} := -| nil : list -| cons : A -> list -> list. -\end{coq_example*} -\begin{coq_example} -Print list. -\end{coq_example} -When printing \texttt{list}, the universe context indicates the -subtyping constraints by prefixing the level names with symbols. - -Because inductive subtypings are only produced by comparing inductives -to themselves with universes changed, they amount to variance -information: each universe is either invariant, covariant or -irrelevant (there are no contravariant subtypings in Coq), -respectively represented by the symbols \texttt{=}, \texttt{+} and -\texttt{*}. - -Here we see that \texttt{list} binds an irrelevant universe, so any -two instances of \texttt{list} are convertible: -$\WTEGCONV{\mathtt{list@\{i\}} A}{\mathtt{list@\{j\}} B}$ whenever -$\WTEGCONV{A}{B}$ and furthermore their corresponding (when fully -applied to convertible arguments) constructors. - -See Chapter~\ref{Cic} for more details on convertibility and subtyping. -The following is an example of a record with non-trivial subtyping relation: -\begin{coq_example*} -Polymorphic Cumulative Record packType := {pk : Type}. -\end{coq_example*} -\begin{coq_example} -Print packType. -\end{coq_example} -\texttt{packType} binds a covariant universe, i.e. -$\WTEGCONV{\mathtt{packType@\{i\}}}{\mathtt{packType@\{j\}}}$ whenever -\texttt{i $\leq$ j}. - -Cumulative inductive types, coninductive types, variants and records -only make sense when they are universe polymorphic. Therefore, an -error is issued whenever the user uses the \texttt{Cumulative} or -\texttt{NonCumulative} prefix in a monomorphic context. -Notice that this is not the case for the option \texttt{Set Polymorphic Inductive Cumulativity}. -That is, this option, when set, makes all subsequent \emph{polymorphic} -inductive declarations cumulative (unless, of course the \texttt{NonCumulative} prefix is used) -but has no effect on \emph{monomorphic} inductive declarations. -Consider the following examples. -\begin{coq_example} -Monomorphic Cumulative Inductive Unit := unit. -\end{coq_example} -\begin{coq_example} -Monomorphic NonCumulative Inductive Unit := unit. -\end{coq_example} -\begin{coq_example*} -Set Polymorphic Inductive Cumulativity. -Inductive Unit := unit. -\end{coq_example*} -\begin{coq_example} -Print Unit. -\end{coq_example} - -\subsection*{An example of a proof using cumulativity} - -\begin{coq_example} -Set Universe Polymorphism. -Set Polymorphic Inductive Cumulativity. - -Inductive eq@{i} {A : Type@{i}} (x : A) : A -> Type@{i} := eq_refl : eq x x. - -Definition funext_type@{a b e} (A : Type@{a}) (B : A -> Type@{b}) - := forall f g : (forall a, B a), - (forall x, eq@{e} (f x) (g x)) - -> eq@{e} f g. - -Section down. - Universes a b e e'. - Constraint e' < e. - Lemma funext_down {A B} - (H : @funext_type@{a b e} A B) : @funext_type@{a b e'} A B. - Proof. - exact H. - Defined. -\end{coq_example} - -\subsection{\tt Cumulativity Weak Constraints} -\optindex{Cumulativity Weak Constraints} - -This option, on by default, causes ``weak'' constraints to be produced -when comparing universes in an irrelevant position. Processing weak -constraints is delayed until minimization time. A weak constraint -between {\tt u} and {\tt v} when neither is smaller than the other and -one is flexible causes them to be unified. Otherwise the constraint is -silently discarded. - -This heuristic is experimental and may change in future versions. -Disabling weak constraints is more predictable but may produce -arbitrary numbers of universes. - -\asection{Global and local universes} - -Each universe is declared in a global or local environment before it can -be used. To ensure compatibility, every \emph{global} universe is set to -be strictly greater than \Set~when it is introduced, while every -\emph{local} (i.e. polymorphically quantified) universe is introduced as -greater or equal to \Set. - -\asection{Conversion and unification} - -The semantics of conversion and unification have to be modified a little -to account for the new universe instance arguments to polymorphic -references. The semantics respect the fact that definitions are -transparent, so indistinguishable from their bodies during conversion. - -This is accomplished by changing one rule of unification, the -first-order approximation rule, which applies when two applicative terms -with the same head are compared. It tries to short-cut unfolding by -comparing the arguments directly. In case the constant is universe -polymorphic, we allow this rule to fire only when unifying the universes -results in instantiating a so-called flexible universe variables (not -given by the user). Similarly for conversion, if such an equation of -applicative terms fail due to a universe comparison not being satisfied, -the terms are unfolded. This change implies that conversion and -unification can have different unfolding behaviors on the same -development with universe polymorphism switched on or off. - -\asection{Minimization} -\optindex{Universe Minimization ToSet} - -Universe polymorphism with cumulativity tends to generate many useless -inclusion constraints in general. Typically at each application of a -polymorphic constant $f$, if an argument has expected type -\verb|Type@{i}| and is given a term of type \verb|Type@{j}|, a $j \le i$ -constraint will be generated. It is however often the case that an -equation $j = i$ would be more appropriate, when $f$'s -universes are fresh for example. Consider the following example: - -\begin{coq_eval} -Set Printing Universes. -\end{coq_eval} -\begin{coq_example} -Definition id0 := @pidentity nat 0. -Print id0. -\end{coq_example} - -This definition is elaborated by minimizing the universe of id to level -\Set~while the more general definition would keep the fresh level i -generated at the application of id and a constraint that $\Set \le i$. -This minimization process is applied only to fresh universe -variables. It simply adds an equation between the variable and its lower -bound if it is an atomic universe (i.e. not an algebraic \texttt{max()} -universe). - -The option \texttt{Unset Universe Minimization ToSet} disallows -minimization to the sort $\Set$ and only collapses floating universes -between themselves. - -\asection{Explicit Universes} - -The syntax has been extended to allow users to explicitly bind names to -universes and explicitly instantiate polymorphic definitions. - -\subsection{\tt Universe {\ident}. - \comindex{Universe} - \label{UniverseCmd}} - -In the monorphic case, this command declares a new global universe named -{\ident}, which can be referred to using its qualified name as -well. Global universe names live in a separate namespace. The command -supports the polymorphic flag only in sections, meaning the universe -quantification will be discharged on each section definition -independently. One cannot mix polymorphic and monomorphic declarations -in the same section. - -\subsection{\tt Constraint {\ident} {\textit{ord}} {\ident}. - \comindex{Constraint} - \label{ConstraintCmd}} - -This command declares a new constraint between named universes. -The order relation can be one of $<$, $\le$ or $=$. If consistent, -the constraint is then enforced in the global environment. Like -\texttt{Universe}, it can be used with the \texttt{Polymorphic} prefix -in sections only to declare constraints discharged at section closing time. -One cannot declare a global constraint on polymorphic universes. - -\begin{ErrMsgs} -\item \errindex{Undeclared universe {\ident}}. -\item \errindex{Universe inconsistency} -\end{ErrMsgs} - -\subsection{Polymorphic definitions} -For polymorphic definitions, the declaration of (all) universe levels -introduced by a definition uses the following syntax: - -\begin{coq_example*} -Polymorphic Definition le@{i j} (A : Type@{i}) : Type@{j} := A. -\end{coq_example*} -\begin{coq_example} -Print le. -\end{coq_example} - -During refinement we find that $j$ must be larger or equal than $i$, as -we are using $A : Type@{i} <= Type@{j}$, hence the generated -constraint. At the end of a definition or proof, we check that the only -remaining universes are the ones declared. In the term and in general in -proof mode, introduced universe names can be referred to in -terms. Note that local universe names shadow global universe names. -During a proof, one can use \texttt{Show Universes} to display -the current context of universes. - -Definitions can also be instantiated explicitly, giving their full instance: -\begin{coq_example} -Check (pidentity@{Set}). -Universes k l. -Check (le@{k l}). -\end{coq_example} - -User-named universes and the anonymous universe implicitly attached to -an explicit $Type$ are considered rigid for unification and are never -minimized. Flexible anonymous universes can be produced with an -underscore or by omitting the annotation to a polymorphic definition. - -\begin{coq_example} - Check (fun x => x) : Type -> Type. - Check (fun x => x) : Type -> Type@{_}. - - Check le@{k _}. - Check le. -\end{coq_example} - -\subsection{\tt Unset Strict Universe Declaration. - \optindex{Strict Universe Declaration} - \label{StrictUniverseDeclaration}} - -The command \texttt{Unset Strict Universe Declaration} allows one to -freely use identifiers for universes without declaring them first, with -the semantics that the first use declares it. In this mode, the universe -names are not associated with the definition or proof once it has been -defined. This is meant mainly for debugging purposes. - -%%% Local Variables: -%%% mode: latex -%%% TeX-master: "Reference-Manual" -%%% End: diff --git a/doc/refman/biblio.bib b/doc/refman/biblio.bib deleted file mode 100644 index e69725838..000000000 --- a/doc/refman/biblio.bib +++ /dev/null @@ -1,1397 +0,0 @@ -@String{jfp = "Journal of Functional Programming"} -@String{lncs = "Lecture Notes in Computer Science"} -@String{lnai = "Lecture Notes in Artificial Intelligence"} -@String{SV = "{Sprin-ger-Verlag}"} - -@InProceedings{Aud91, - author = {Ph. Audebaud}, - booktitle = {Proceedings of the sixth Conf. on Logic in Computer Science.}, - publisher = {IEEE}, - title = {Partial {Objects} in the {Calculus of Constructions}}, - year = {1991} -} - -@PhDThesis{Aud92, - author = {Ph. Audebaud}, - school = {{Universit\'e} Bordeaux I}, - title = {Extension du Calcul des Constructions par Points fixes}, - year = {1992} -} - -@InProceedings{Audebaud92b, - author = {Ph. Audebaud}, - booktitle = {{Proceedings of the 1992 Workshop on Types for Proofs and Programs}}, - editor = {{B. Nordstr\"om and K. Petersson and G. Plotkin}}, - note = {Also Research Report LIP-ENS-Lyon}, - pages = {21--34}, - title = {{CC+ : an extension of the Calculus of Constructions with fixpoints}}, - year = {1992} -} - -@InProceedings{Augustsson85, - author = {L. Augustsson}, - title = {{Compiling Pattern Matching}}, - booktitle = {Conference Functional Programming and -Computer Architecture}, - year = {1985} -} - -@Article{BaCo85, - author = {J.L. Bates and R.L. Constable}, - journal = {ACM transactions on Programming Languages and Systems}, - title = {Proofs as {Programs}}, - volume = {7}, - year = {1985} -} - -@Book{Bar81, - author = {H.P. Barendregt}, - publisher = {North-Holland}, - title = {The Lambda Calculus its Syntax and Semantics}, - year = {1981} -} - -@TechReport{Bar91, - author = {H. Barendregt}, - institution = {Catholic University Nijmegen}, - note = {In Handbook of Logic in Computer Science, Vol II}, - number = {91-19}, - title = {Lambda {Calculi with Types}}, - year = {1991} -} - -@Article{BeKe92, - author = {G. Bellin and J. Ketonen}, - journal = {Theoretical Computer Science}, - pages = {115--142}, - title = {A decision procedure revisited : Notes on direct logic, linear logic and its implementation}, - volume = {95}, - year = {1992} -} - -@Book{Bee85, - author = {M.J. Beeson}, - publisher = SV, - title = {Foundations of Constructive Mathematics, Metamathematical Studies}, - year = {1985} -} - -@Book{Bis67, - author = {E. Bishop}, - publisher = {McGraw-Hill}, - title = {Foundations of Constructive Analysis}, - year = {1967} -} - -@Book{BoMo79, - author = {R.S. Boyer and J.S. Moore}, - key = {BoMo79}, - publisher = {Academic Press}, - series = {ACM Monograph}, - title = {A computational logic}, - year = {1979} -} - -@MastersThesis{Bou92, - author = {S. Boutin}, - month = sep, - school = {{Universit\'e Paris 7}}, - title = {Certification d'un compilateur {ML en Coq}}, - year = {1992} -} - -@InProceedings{Bou97, - title = {Using reflection to build efficient and certified decision procedure -s}, - author = {S. Boutin}, - booktitle = {TACS'97}, - editor = {Martin Abadi and Takahashi Ito}, - publisher = SV, - series = lncs, - volume = 1281, - year = {1997} -} - -@PhDThesis{Bou97These, - author = {S. Boutin}, - title = {R\'eflexions sur les quotients}, - school = {Paris 7}, - year = 1997, - type = {th\`ese d'Universit\'e}, - month = apr -} - -@Article{Bru72, - author = {N.J. de Bruijn}, - journal = {Indag. Math.}, - title = {{Lambda-Calculus Notation with Nameless Dummies, a Tool for Automatic Formula Manipulation, with Application to the Church-Rosser Theorem}}, - volume = {34}, - year = {1972} -} - - -@InCollection{Bru80, - author = {N.J. de Bruijn}, - booktitle = {to H.B. Curry : Essays on Combinatory Logic, Lambda Calculus and Formalism.}, - editor = {J.P. Seldin and J.R. Hindley}, - publisher = {Academic Press}, - title = {A survey of the project {Automath}}, - year = {1980} -} - -@TechReport{COQ93, - author = {G. Dowek and A. Felty and H. Herbelin and G. Huet and C. Murthy and C. Parent and C. Paulin-Mohring and B. Werner}, - institution = {INRIA}, - month = may, - number = {154}, - title = {{The Coq Proof Assistant User's Guide Version 5.8}}, - year = {1993} -} - -@TechReport{COQ02, - author = {The Coq Development Team}, - institution = {INRIA}, - month = Feb, - number = {255}, - title = {{The Coq Proof Assistant Reference Manual Version 7.2}}, - year = {2002} -} - -@TechReport{CPar93, - author = {C. Parent}, - institution = {Ecole {Normale} {Sup\'erieure} de {Lyon}}, - month = oct, - note = {Also in~\cite{Nijmegen93}}, - number = {93-29}, - title = {Developing certified programs in the system {Coq}- {The} {Program} tactic}, - year = {1993} -} - -@PhDThesis{CPar95, - author = {C. Parent}, - school = {Ecole {Normale} {Sup\'erieure} de {Lyon}}, - title = {{Synth\`ese de preuves de programmes dans le Calcul des Constructions Inductives}}, - year = {1995} -} - -@Book{Caml, - author = {P. Weis and X. Leroy}, - publisher = {InterEditions}, - title = {Le langage Caml}, - year = {1993} -} - -@InProceedings{ChiPotSimp03, - author = {Laurent Chicli and Lo\"{\i}c Pottier and Carlos Simpson}, - title = {Mathematical Quotients and Quotient Types in Coq}, - booktitle = {TYPES}, - crossref = {DBLP:conf/types/2002}, - year = {2002} -} - -@TechReport{CoC89, - author = {Projet Formel}, - institution = {INRIA}, - number = {110}, - title = {{The Calculus of Constructions. Documentation and user's guide, Version 4.10}}, - year = {1989} -} - -@InProceedings{CoHu85a, - author = {Th. Coquand and G. Huet}, - address = {Linz}, - booktitle = {EUROCAL'85}, - publisher = SV, - series = LNCS, - title = {{Constructions : A Higher Order Proof System for Mechanizing Mathematics}}, - volume = {203}, - year = {1985} -} - -@InProceedings{CoHu85b, - author = {Th. Coquand and G. Huet}, - booktitle = {Logic Colloquium'85}, - editor = {The Paris Logic Group}, - publisher = {North-Holland}, - title = {{Concepts Math\'ematiques et Informatiques formalis\'es dans le Calcul des Constructions}}, - year = {1987} -} - -@Article{CoHu86, - author = {Th. Coquand and G. Huet}, - journal = {Information and Computation}, - number = {2/3}, - title = {The {Calculus of Constructions}}, - volume = {76}, - year = {1988} -} - -@InProceedings{CoPa89, - author = {Th. Coquand and C. Paulin-Mohring}, - booktitle = {Proceedings of Colog'88}, - editor = {P. Martin-L\"of and G. Mints}, - publisher = SV, - series = LNCS, - title = {Inductively defined types}, - volume = {417}, - year = {1990} -} - -@Book{Con86, - author = {R.L. {Constable et al.}}, - publisher = {Prentice-Hall}, - title = {{Implementing Mathematics with the Nuprl Proof Development System}}, - year = {1986} -} - -@PhDThesis{Coq85, - author = {Th. Coquand}, - month = jan, - school = {Universit\'e Paris~7}, - title = {Une Th\'eorie des Constructions}, - year = {1985} -} - -@InProceedings{Coq86, - author = {Th. Coquand}, - address = {Cambridge, MA}, - booktitle = {Symposium on Logic in Computer Science}, - publisher = {IEEE Computer Society Press}, - title = {{An Analysis of Girard's Paradox}}, - year = {1986} -} - -@InProceedings{Coq90, - author = {Th. Coquand}, - booktitle = {Logic and Computer Science}, - editor = {P. Oddifredi}, - note = {INRIA Research Report 1088, also in~\cite{CoC89}}, - publisher = {Academic Press}, - title = {{Metamathematical Investigations of a Calculus of Constructions}}, - year = {1990} -} - -@InProceedings{Coq91, - author = {Th. Coquand}, - booktitle = {Proceedings 9th Int. Congress of Logic, Methodology and Philosophy of Science}, - title = {{A New Paradox in Type Theory}}, - month = {August}, - year = {1991} -} - -@InProceedings{Coq92, - author = {Th. Coquand}, - title = {{Pattern Matching with Dependent Types}}, - year = {1992}, - crossref = {Bastad92} -} - -@InProceedings{Coquand93, - author = {Th. Coquand}, - booktitle = {Types for Proofs and Programs}, - editor = {H. Barendregt and T. Nipokow}, - publisher = SV, - series = LNCS, - title = {{Infinite objects in Type Theory}}, - volume = {806}, - year = {1993}, - pages = {62-78} -} - -@inproceedings{Corbineau08types, - author = {P. Corbineau}, - title = {A Declarative Language for the Coq Proof Assistant}, - editor = {M. Miculan and I. Scagnetto and F. Honsell}, - booktitle = {TYPES '07, Cividale del Friuli, Revised Selected Papers}, - publisher = {Springer}, - series = LNCS, - volume = {4941}, - year = {2007}, - pages = {69-84}, - ee = {http://dx.doi.org/10.1007/978-3-540-68103-8_5}, -} - -@PhDThesis{Cor97, - author = {C. Cornes}, - month = nov, - school = {{Universit\'e Paris 7}}, - title = {Conception d'un langage de haut niveau de représentation de preuves}, - type = {Th\`ese de Doctorat}, - year = {1997} -} - -@MastersThesis{Cou94a, - author = {J. Courant}, - month = sep, - school = {DEA d'Informatique, ENS Lyon}, - title = {Explicitation de preuves par r\'ecurrence implicite}, - year = {1994} -} - -@book{Cur58, - author = {Haskell B. Curry and Robert Feys and William Craig}, - title = {Combinatory Logic}, - volume = 1, - publisher = "North-Holland", - year = 1958, - note = {{\S{9E}}}, -} - -@InProceedings{Del99, - author = {Delahaye, D.}, - title = {Information Retrieval in a Coq Proof Library using - Type Isomorphisms}, - booktitle = {Proceedings of TYPES '99, L\"okeberg}, - publisher = SV, - series = lncs, - year = {1999}, - url = - "\\{\sf ftp://ftp.inria.fr/INRIA/Projects/coq/David.Delahaye/papers/}"# - "{\sf TYPES99-SIsos.ps.gz}" -} - -@InProceedings{Del00, - author = {Delahaye, D.}, - title = {A {T}actic {L}anguage for the {S}ystem {{\sf Coq}}}, - booktitle = {Proceedings of Logic for Programming and Automated Reasoning - (LPAR), Reunion Island}, - publisher = SV, - series = LNCS, - volume = {1955}, - pages = {85--95}, - month = {November}, - year = {2000}, - url = - "{\sf ftp://ftp.inria.fr/INRIA/Projects/coq/David.Delahaye/papers/}"# - "{\sf LPAR2000-ltac.ps.gz}" -} - -@InProceedings{DelMay01, - author = {Delahaye, D. and Mayero, M.}, - title = {{\tt Field}: une proc\'edure de d\'ecision pour les nombres r\'eels en {\Coq}}, - booktitle = {Journ\'ees Francophones des Langages Applicatifs, Pontarlier}, - publisher = {INRIA}, - month = {Janvier}, - year = {2001}, - url = - "\\{\sf ftp://ftp.inria.fr/INRIA/Projects/coq/David.Delahaye/papers/}"# - "{\sf JFLA2000-Field.ps.gz}" -} - -@TechReport{Dow90, - author = {G. Dowek}, - institution = {INRIA}, - number = {1283}, - title = {Naming and Scoping in a Mathematical Vernacular}, - type = {Research Report}, - year = {1990} -} - -@Article{Dow91a, - author = {G. Dowek}, - journal = {Compte-Rendus de l'Acad\'emie des Sciences}, - note = {The undecidability of Third Order Pattern Matching in Calculi with Dependent Types or Type Constructors}, - number = {12}, - pages = {951--956}, - title = {L'Ind\'ecidabilit\'e du Filtrage du Troisi\`eme Ordre dans les Calculs avec Types D\'ependants ou Constructeurs de Types}, - volume = {I, 312}, - year = {1991} -} - -@InProceedings{Dow91b, - author = {G. Dowek}, - booktitle = {Proceedings of Mathematical Foundation of Computer Science}, - note = {Also INRIA Research Report}, - pages = {151--160}, - publisher = SV, - series = LNCS, - title = {A Second Order Pattern Matching Algorithm in the Cube of Typed $\lambda$-calculi}, - volume = {520}, - year = {1991} -} - -@PhDThesis{Dow91c, - author = {G. Dowek}, - month = dec, - school = {Universit\'e Paris 7}, - title = {D\'emonstration automatique dans le Calcul des Constructions}, - year = {1991} -} - -@Article{Dow92a, - author = {G. Dowek}, - title = {The Undecidability of Pattern Matching in Calculi where Primitive Recursive Functions are Representable}, - year = 1993, - journal = tcs, - volume = 107, - number = 2, - pages = {349-356} -} - -@Article{Dow94a, - author = {G. Dowek}, - journal = {Annals of Pure and Applied Logic}, - volume = {69}, - pages = {135--155}, - title = {Third order matching is decidable}, - year = {1994} -} - -@InProceedings{Dow94b, - author = {G. Dowek}, - booktitle = {Proceedings of the second international conference on typed lambda calculus and applications}, - title = {Lambda-calculus, Combinators and the Comprehension Schema}, - year = {1995} -} - -@InProceedings{Dyb91, - author = {P. Dybjer}, - booktitle = {Logical Frameworks}, - editor = {G. Huet and G. Plotkin}, - pages = {59--79}, - publisher = {Cambridge University Press}, - title = {Inductive sets and families in {Martin-Löf's} - Type Theory and their set-theoretic semantics: An inversion principle for {Martin-L\"of's} type theory}, - volume = {14}, - year = {1991} -} - -@Article{Dyc92, - author = {Roy Dyckhoff}, - journal = {The Journal of Symbolic Logic}, - month = sep, - number = {3}, - title = {Contraction-free sequent calculi for intuitionistic logic}, - volume = {57}, - year = {1992} -} - -@MastersThesis{Fil94, - author = {J.-C. Filli\^atre}, - month = sep, - school = {DEA d'Informatique, ENS Lyon}, - title = {Une proc\'edure de d\'ecision pour le Calcul des Pr\'edicats Direct. Étude et impl\'ementation dans le syst\`eme {\Coq}}, - year = {1994} -} - -@TechReport{Filliatre95, - author = {J.-C. Filli\^atre}, - institution = {LIP-ENS-Lyon}, - title = {A decision procedure for Direct Predicate Calculus}, - type = {Research report}, - number = {96--25}, - year = {1995} -} - -@Article{Filliatre03jfp, - author = {J.-C. Filliâtre}, - title = {Verification of Non-Functional Programs - using Interpretations in Type Theory}, - journal = jfp, - volume = 13, - number = 4, - pages = {709--745}, - month = jul, - year = 2003, - note = {[English translation of \cite{Filliatre99}]}, - url = {http://www.lri.fr/~filliatr/ftp/publis/jphd.ps.gz}, - topics = {team, lri}, - type_publi = {irevcomlec} -} - -@PhDThesis{Filliatre99, - author = {J.-C. Filli\^atre}, - title = {Preuve de programmes imp\'eratifs en th\'eorie des types}, - type = {Thèse de Doctorat}, - school = {Universit\'e Paris-Sud}, - year = 1999, - month = {July}, - url = {\url{http://www.lri.fr/~filliatr/ftp/publis/these.ps.gz}} -} - -@Unpublished{Filliatre99c, - author = {J.-C. Filli\^atre}, - title = {{Formal Proof of a Program: Find}}, - month = {January}, - year = 2000, - note = {Submitted to \emph{Science of Computer Programming}}, - url = {\url{http://www.lri.fr/~filliatr/ftp/publis/find.ps.gz}} -} - -@InProceedings{FilliatreMagaud99, - author = {J.-C. Filli\^atre and N. Magaud}, - title = {Certification of sorting algorithms in the system {\Coq}}, - booktitle = {Theorem Proving in Higher Order Logics: - Emerging Trends}, - year = 1999, - url = {\url{http://www.lri.fr/~filliatr/ftp/publis/Filliatre-Magaud.ps.gz}} -} - -@Unpublished{Fle90, - author = {E. Fleury}, - month = jul, - note = {Rapport de Stage}, - title = {Implantation des algorithmes de {Floyd et de Dijkstra} dans le {Calcul des Constructions}}, - year = {1990} -} - -@Book{Fourier, - author = {Jean-Baptiste-Joseph Fourier}, - publisher = {Gauthier-Villars}, - title = {Fourier's method to solve linear - inequations/equations systems.}, - year = {1890} -} - -@InProceedings{Gim94, - author = {E. Gim\'enez}, - booktitle = {Types'94 : Types for Proofs and Programs}, - note = {Extended version in LIP research report 95-07, ENS Lyon}, - publisher = SV, - series = LNCS, - title = {Codifying guarded definitions with recursive schemes}, - volume = {996}, - year = {1994} -} - -@PhDThesis{Gim96, - author = {E. Gim\'enez}, - title = {Un calcul des constructions infinies et son application \'a la v\'erification de syst\`emes communicants}, - school = {\'Ecole Normale Sup\'erieure de Lyon}, - year = {1996} -} - -@TechReport{Gim98, - author = {E. Gim\'enez}, - title = {A Tutorial on Recursive Types in Coq}, - institution = {INRIA}, - year = 1998, - month = mar -} - -@Unpublished{GimCas05, - author = {E. Gim\'enez and P. Cast\'eran}, - title = {A Tutorial on [Co-]Inductive Types in Coq}, - institution = {INRIA}, - year = 2005, - month = jan, - note = {available at \url{http://coq.inria.fr/doc}} -} - -@InProceedings{Gimenez95b, - author = {E. Gim\'enez}, - booktitle = {Workshop on Types for Proofs and Programs}, - series = LNCS, - number = {1158}, - pages = {135-152}, - title = {An application of co-Inductive types in Coq: - verification of the Alternating Bit Protocol}, - editorS = {S. Berardi and M. Coppo}, - publisher = SV, - year = {1995} -} - -@InProceedings{Gir70, - author = {J.-Y. Girard}, - booktitle = {Proceedings of the 2nd Scandinavian Logic Symposium}, - publisher = {North-Holland}, - title = {Une extension de l'interpr\'etation de {G\"odel} \`a l'analyse, et son application \`a l'\'elimination des coupures dans l'analyse et la th\'eorie des types}, - year = {1970} -} - -@PhDThesis{Gir72, - author = {J.-Y. Girard}, - school = {Universit\'e Paris~7}, - title = {Interpr\'etation fonctionnelle et \'elimination des coupures de l'arithm\'etique d'ordre sup\'erieur}, - year = {1972} -} - -@Book{Gir89, - author = {J.-Y. Girard and Y. Lafont and P. Taylor}, - publisher = {Cambridge University Press}, - series = {Cambridge Tracts in Theoretical Computer Science 7}, - title = {Proofs and Types}, - year = {1989} -} - -@TechReport{Har95, - author = {John Harrison}, - title = {Metatheory and Reflection in Theorem Proving: A Survey and Critique}, - institution = {SRI International Cambridge Computer Science Research Centre,}, - year = 1995, - type = {Technical Report}, - number = {CRC-053}, - abstract = {http://www.cl.cam.ac.uk/users/jrh/papers.html} -} - -@MastersThesis{Hir94, - author = {D. Hirschkoff}, - month = sep, - school = {DEA IARFA, Ecole des Ponts et Chauss\'ees, Paris}, - title = {Écriture d'une tactique arithm\'etique pour le syst\`eme {\Coq}}, - year = {1994} -} - -@InProceedings{HofStr98, - author = {Martin Hofmann and Thomas Streicher}, - title = {The groupoid interpretation of type theory}, - booktitle = {Proceedings of the meeting Twenty-five years of constructive type theory}, - publisher = {Oxford University Press}, - year = {1998} -} - -@InCollection{How80, - author = {W.A. Howard}, - booktitle = {to H.B. Curry : Essays on Combinatory Logic, Lambda Calculus and Formalism.}, - editor = {J.P. Seldin and J.R. Hindley}, - note = {Unpublished 1969 Manuscript}, - publisher = {Academic Press}, - title = {The Formulae-as-Types Notion of Constructions}, - year = {1980} -} - -@InProceedings{Hue87tapsoft, - author = {G. Huet}, - title = {Programming of Future Generation Computers}, - booktitle = {Proceedings of TAPSOFT87}, - series = LNCS, - volume = 249, - pages = {276--286}, - year = 1987, - publisher = SV -} - -@InProceedings{Hue87, - author = {G. Huet}, - booktitle = {Programming of Future Generation Computers}, - editor = {K. Fuchi and M. Nivat}, - note = {Also in \cite{Hue87tapsoft}}, - publisher = {Elsevier Science}, - title = {Induction Principles Formalized in the {Calculus of Constructions}}, - year = {1988} -} - -@InProceedings{Hue88, - author = {G. Huet}, - booktitle = {A perspective in Theoretical Computer Science. Commemorative Volume for Gift Siromoney}, - editor = {R. Narasimhan}, - note = {Also in~\cite{CoC89}}, - publisher = {World Scientific Publishing}, - title = {{The Constructive Engine}}, - year = {1989} -} - -@Unpublished{Hue88b, - author = {G. Huet}, - title = {Extending the Calculus of Constructions with Type:Type}, - year = 1988, - note = {Unpublished} -} - -@Book{Hue89, - editor = {G. Huet}, - publisher = {Addison-Wesley}, - series = {The UT Year of Programming Series}, - title = {Logical Foundations of Functional Programming}, - year = {1989} -} - -@InProceedings{Hue92, - author = {G. Huet}, - booktitle = {Proceedings of 12th FST/TCS Conference, New Delhi}, - pages = {229--240}, - publisher = SV, - series = LNCS, - title = {The Gallina Specification Language : A case study}, - volume = {652}, - year = {1992} -} - -@Article{Hue94, - author = {G. Huet}, - journal = {J. Functional Programming}, - pages = {371--394}, - publisher = {Cambridge University Press}, - title = {Residual theory in $\lambda$-calculus: a formal development}, - volume = {4,3}, - year = {1994} -} - -@InCollection{HuetLevy79, - author = {G. Huet and J.-J. L\'{e}vy}, - title = {Call by Need Computations in Non-Ambigous -Linear Term Rewriting Systems}, - note = {Also research report 359, INRIA, 1979}, - booktitle = {Computational Logic, Essays in Honor of -Alan Robinson}, - editor = {J.-L. Lassez and G. Plotkin}, - publisher = {The MIT press}, - year = {1991} -} - -@Article{KeWe84, - author = {J. Ketonen and R. Weyhrauch}, - journal = {Theoretical Computer Science}, - pages = {297--307}, - title = {A decidable fragment of {P}redicate {C}alculus}, - volume = {32}, - year = {1984} -} - -@Book{Kle52, - author = {S.C. Kleene}, - publisher = {North-Holland}, - series = {Bibliotheca Mathematica}, - title = {Introduction to Metamathematics}, - year = {1952} -} - -@Book{Kri90, - author = {J.-L. Krivine}, - publisher = {Masson}, - series = {Etudes et recherche en informatique}, - title = {Lambda-calcul {types et mod\`eles}}, - year = {1990} -} - -@Book{LE92, - editor = {G. Huet and G. Plotkin}, - publisher = {Cambridge University Press}, - title = {Logical Environments}, - year = {1992} -} - -@Book{LF91, - editor = {G. Huet and G. Plotkin}, - publisher = {Cambridge University Press}, - title = {Logical Frameworks}, - year = {1991} -} - -@Article{Laville91, - author = {A. Laville}, - title = {Comparison of Priority Rules in Pattern -Matching and Term Rewriting}, - journal = {Journal of Symbolic Computation}, - volume = {11}, - pages = {321--347}, - year = {1991} -} - -@InProceedings{LePa94, - author = {F. Leclerc and C. Paulin-Mohring}, - booktitle = {{Types for Proofs and Programs, Types' 93}}, - editor = {H. Barendregt and T. Nipkow}, - publisher = SV, - series = {LNCS}, - title = {{Programming with Streams in Coq. A case study : The Sieve of Eratosthenes}}, - volume = {806}, - year = {1994} -} - -@TechReport{Leroy90, - author = {X. Leroy}, - title = {The {ZINC} experiment: an economical implementation -of the {ML} language}, - institution = {INRIA}, - number = {117}, - year = {1990} -} - -@InProceedings{Let02, - author = {P. Letouzey}, - title = {A New Extraction for Coq}, - booktitle = {TYPES}, - year = 2002, - crossref = {DBLP:conf/types/2002}, - url = {draft at \url{http://www.pps.jussieu.fr/~letouzey/download/extraction2002.ps.gz}} -} - -@PhDThesis{Luo90, - author = {Z. Luo}, - title = {An Extended Calculus of Constructions}, - school = {University of Edinburgh}, - year = {1990} -} - -@inproceedings{Luttik97specificationof, - Author = {Sebastiaan P. Luttik and Eelco Visser}, - Booktitle = {2nd International Workshop on the Theory and Practice of Algebraic Specifications (ASF+SDF'97), Electronic Workshops in Computing}, - Publisher = {Springer-Verlag}, - Title = {Specification of Rewriting Strategies}, - Year = {1997}} - -@Book{MaL84, - author = {{P. Martin-L\"of}}, - publisher = {Bibliopolis}, - series = {Studies in Proof Theory}, - title = {Intuitionistic Type Theory}, - year = {1984} -} - -@Article{MaSi94, - author = {P. Manoury and M. Simonot}, - title = {Automatizing Termination Proofs of Recursively Defined Functions.}, - journal = {TCS}, - volume = {135}, - number = {2}, - year = {1994}, - pages = {319-343}, -} - -@InProceedings{Miquel00, - author = {A. Miquel}, - title = {A Model for Impredicative Type Systems with Universes, -Intersection Types and Subtyping}, - booktitle = {{Proceedings of the 15th Annual IEEE Symposium on Logic in Computer Science (LICS'00)}}, - publisher = {IEEE Computer Society Press}, - year = {2000} -} - -@PhDThesis{Miquel01a, - author = {A. Miquel}, - title = {Le Calcul des Constructions implicite: syntaxe et s\'emantique}, - month = {dec}, - school = {{Universit\'e Paris 7}}, - year = {2001} -} - -@InProceedings{Miquel01b, - author = {A. Miquel}, - title = {The Implicit Calculus of Constructions: Extending Pure Type Systems with an Intersection Type Binder and Subtyping}, - booktitle = {{Proceedings of the fifth International Conference on Typed Lambda Calculi and Applications (TLCA01), Krakow, Poland}}, - publisher = SV, - series = {LNCS}, - number = 2044, - year = {2001} -} - -@InProceedings{MiWer02, - author = {A. Miquel and B. Werner}, - title = {The Not So Simple Proof-Irrelevant Model of CC}, - booktitle = {TYPES}, - year = {2002}, - pages = {240-258}, - ee = {http://link.springer.de/link/service/series/0558/bibs/2646/26460240.htm}, - crossref = {DBLP:conf/types/2002}, - bibsource = {DBLP, http://dblp.uni-trier.de} -} - -@proceedings{DBLP:conf/types/2002, - editor = {H. Geuvers and F. Wiedijk}, - title = {Types for Proofs and Programs, Second International Workshop, - TYPES 2002, Berg en Dal, The Netherlands, April 24-28, 2002, - Selected Papers}, - booktitle = {TYPES}, - publisher = SV, - series = LNCS, - volume = {2646}, - year = {2003}, - isbn = {3-540-14031-X}, - bibsource = {DBLP, http://dblp.uni-trier.de} -} - -@InProceedings{Moh89a, - author = {C. Paulin-Mohring}, - address = {Austin}, - booktitle = {Sixteenth Annual ACM Symposium on Principles of Programming Languages}, - month = jan, - publisher = {ACM}, - title = {Extracting ${F}_{\omega}$'s programs from proofs in the {Calculus of Constructions}}, - year = {1989} -} - -@PhDThesis{Moh89b, - author = {C. Paulin-Mohring}, - month = jan, - school = {{Universit\'e Paris 7}}, - title = {Extraction de programmes dans le {Calcul des Constructions}}, - year = {1989} -} - -@InProceedings{Moh93, - author = {C. Paulin-Mohring}, - booktitle = {Proceedings of the conference Typed Lambda Calculi and Applications}, - editor = {M. Bezem and J.-F. Groote}, - note = {Also LIP research report 92-49, ENS Lyon}, - number = {664}, - publisher = SV, - series = {LNCS}, - title = {{Inductive Definitions in the System Coq - Rules and Properties}}, - year = {1993} -} - -@Book{Moh97, - author = {C. Paulin-Mohring}, - month = jan, - publisher = {{ENS Lyon}}, - title = {{Le syst\`eme Coq. \mbox{Th\`ese d'habilitation}}}, - year = {1997} -} - -@MastersThesis{Mun94, - author = {C. Muñoz}, - month = sep, - school = {DEA d'Informatique Fondamentale, Universit\'e Paris 7}, - title = {D\'emonstration automatique dans la logique propositionnelle intuitionniste}, - year = {1994} -} - -@PhDThesis{Mun97d, - author = {C. Mu{\~{n}}oz}, - title = {Un calcul de substitutions pour la repr\'esentation - de preuves partielles en th\'eorie de types}, - school = {Universit\'e Paris 7}, - year = {1997}, - note = {Version en anglais disponible comme rapport de - recherche INRIA RR-3309}, - type = {Th\`ese de Doctorat} -} - -@Book{NoPS90, - author = {B. {Nordstr\"om} and K. Peterson and J. Smith}, - booktitle = {Information Processing 83}, - publisher = {Oxford Science Publications}, - series = {International Series of Monographs on Computer Science}, - title = {Programming in {Martin-L\"of's} Type Theory}, - year = {1990} -} - -@Article{Nor88, - author = {B. {Nordstr\"om}}, - journal = {BIT}, - title = {Terminating General Recursion}, - volume = {28}, - year = {1988} -} - -@Book{Odi90, - editor = {P. Odifreddi}, - publisher = {Academic Press}, - title = {Logic and Computer Science}, - year = {1990} -} - -@InProceedings{PaMS92, - author = {M. Parigot and P. Manoury and M. Simonot}, - address = {St. Petersburg, Russia}, - booktitle = {Logic Programming and automated reasoning}, - editor = {A. Voronkov}, - month = jul, - number = {624}, - publisher = SV, - series = {LNCS}, - title = {{ProPre : A Programming language with proofs}}, - year = {1992} -} - -@Article{PaWe92, - author = {C. Paulin-Mohring and B. Werner}, - journal = {Journal of Symbolic Computation}, - pages = {607--640}, - title = {{Synthesis of ML programs in the system Coq}}, - volume = {15}, - year = {1993} -} - -@Article{Par92, - author = {M. Parigot}, - journal = {Theoretical Computer Science}, - number = {2}, - pages = {335--356}, - title = {{Recursive Programming with Proofs}}, - volume = {94}, - year = {1992} -} - -@InProceedings{Parent95b, - author = {C. Parent}, - booktitle = {{Mathematics of Program Construction'95}}, - publisher = SV, - series = {LNCS}, - title = {{Synthesizing proofs from programs in -the Calculus of Inductive Constructions}}, - volume = {947}, - year = {1995} -} - -@InProceedings{Prasad93, - author = {K.V. Prasad}, - booktitle = {{Proceedings of CONCUR'93}}, - publisher = SV, - series = {LNCS}, - title = {{Programming with broadcasts}}, - volume = {715}, - year = {1993} -} - -@Book{RC95, - author = {di~Cosmo, R.}, - title = {Isomorphisms of Types: from $\lambda$-calculus to information - retrieval and language design}, - series = {Progress in Theoretical Computer Science}, - publisher = {Birkhauser}, - year = {1995}, - note = {ISBN-0-8176-3763-X} -} - -@TechReport{Rou92, - author = {J. Rouyer}, - institution = {INRIA}, - month = nov, - number = {1795}, - title = {{Développement de l'Algorithme d'Unification dans le Calcul des Constructions}}, - year = {1992} -} - -@Article{Rushby98, - title = {Subtypes for Specifications: Predicate Subtyping in - {PVS}}, - author = {John Rushby and Sam Owre and N. Shankar}, - journal = {IEEE Transactions on Software Engineering}, - pages = {709--720}, - volume = 24, - number = 9, - month = sep, - year = 1998 -} - -@TechReport{Saibi94, - author = {A. Sa\"{\i}bi}, - institution = {INRIA}, - month = dec, - number = {2345}, - title = {{Axiomatization of a lambda-calculus with explicit-substitutions in the Coq System}}, - year = {1994} -} - - -@MastersThesis{Ter92, - author = {D. Terrasse}, - month = sep, - school = {IARFA}, - title = {{Traduction de TYPOL en COQ. Application \`a Mini ML}}, - year = {1992} -} - -@TechReport{ThBeKa92, - author = {L. Th\'ery and Y. Bertot and G. Kahn}, - institution = {INRIA Sophia}, - month = may, - number = {1684}, - title = {Real theorem provers deserve real user-interfaces}, - type = {Research Report}, - year = {1992} -} - -@Book{TrDa89, - author = {A.S. Troelstra and D. van Dalen}, - publisher = {North-Holland}, - series = {Studies in Logic and the foundations of Mathematics, volumes 121 and 123}, - title = {Constructivism in Mathematics, an introduction}, - year = {1988} -} - -@PhDThesis{Wer94, - author = {B. Werner}, - school = {Universit\'e Paris 7}, - title = {Une th\'eorie des constructions inductives}, - type = {Th\`ese de Doctorat}, - year = {1994} -} - -@PhDThesis{Bar99, - author = {B. Barras}, - school = {Universit\'e Paris 7}, - title = {Auto-validation d'un système de preuves avec familles inductives}, - type = {Th\`ese de Doctorat}, - year = {1999} -} - -@Unpublished{ddr98, - author = {D. de Rauglaudre}, - title = {Camlp4 version 1.07.2}, - year = {1998}, - note = {In Camlp4 distribution} -} - -@Article{dowek93, - author = {G. Dowek}, - title = {{A Complete Proof Synthesis Method for the Cube of Type Systems}}, - journal = {Journal Logic Computation}, - volume = {3}, - number = {3}, - pages = {287--315}, - month = {June}, - year = {1993} -} - -@InProceedings{manoury94, - author = {P. Manoury}, - title = {{A User's Friendly Syntax to Define -Recursive Functions as Typed $\lambda-$Terms}}, - booktitle = {{Types for Proofs and Programs, TYPES'94}}, - series = {LNCS}, - volume = {996}, - month = jun, - year = {1994} -} - -@TechReport{maranget94, - author = {L. Maranget}, - institution = {INRIA}, - number = {2385}, - title = {{Two Techniques for Compiling Lazy Pattern Matching}}, - year = {1994} -} - -@InProceedings{puel-suarez90, - author = {L.Puel and A. Su\'arez}, - booktitle = {{Conference Lisp and Functional Programming}}, - series = {ACM}, - publisher = SV, - title = {{Compiling Pattern Matching by Term -Decomposition}}, - year = {1990} -} - -@MastersThesis{saidi94, - author = {H. Saidi}, - month = sep, - school = {DEA d'Informatique Fondamentale, Universit\'e Paris 7}, - title = {R\'esolution d'\'equations dans le syst\`eme T - de G\"odel}, - year = {1994} -} - -@inproceedings{sozeau06, - author = {Matthieu Sozeau}, - title = {Subset Coercions in {C}oq}, - year = {2007}, - booktitle = {TYPES'06}, - pages = {237-252}, - volume = {4502}, - publisher = "Springer", - series = {LNCS} -} - -@inproceedings{sozeau08, - Author = {Matthieu Sozeau and Nicolas Oury}, - booktitle = {TPHOLs'08}, - Pdf = {http://www.lri.fr/~sozeau/research/publications/drafts/classes.pdf}, - Title = {{F}irst-{C}lass {T}ype {C}lasses}, - Year = {2008}, -} - -@Misc{streicher93semantical, - author = {T. Streicher}, - title = {Semantical Investigations into Intensional Type Theory}, - note = {Habilitationsschrift, LMU Munchen.}, - year = {1993} -} - -@Misc{Pcoq, - author = {Lemme Team}, - title = {Pcoq a graphical user-interface for {Coq}}, - note = {\url{http://www-sop.inria.fr/lemme/pcoq/}} -} - -@Misc{ProofGeneral, - author = {David Aspinall}, - title = {Proof General}, - note = {\url{https://proofgeneral.github.io/}} -} - -@Book{CoqArt, - title = {Interactive Theorem Proving and Program Development. - Coq'Art: The Calculus of Inductive Constructions}, - author = {Yves Bertot and Pierre Castéran}, - publisher = {Springer Verlag}, - series = {Texts in Theoretical Computer Science. An EATCS series}, - year = 2004 -} - -@InCollection{wadler87, - author = {P. Wadler}, - title = {Efficient Compilation of Pattern Matching}, - booktitle = {The Implementation of Functional Programming -Languages}, - editor = {S.L. Peyton Jones}, - publisher = {Prentice-Hall}, - year = {1987} -} - -@inproceedings{DBLP:conf/types/CornesT95, - author = {Cristina Cornes and - Delphine Terrasse}, - title = {Automating Inversion of Inductive Predicates in Coq}, - booktitle = {TYPES}, - year = {1995}, - pages = {85-104}, - crossref = {DBLP:conf/types/1995}, - bibsource = {DBLP, http://dblp.uni-trier.de} -} -@proceedings{DBLP:conf/types/1995, - editor = {Stefano Berardi and - Mario Coppo}, - title = {Types for Proofs and Programs, International Workshop TYPES'95, - Torino, Italy, June 5-8, 1995, Selected Papers}, - booktitle = {TYPES}, - publisher = {Springer}, - series = {Lecture Notes in Computer Science}, - volume = {1158}, - year = {1996}, - isbn = {3-540-61780-9}, - bibsource = {DBLP, http://dblp.uni-trier.de} -} - -@inproceedings{DBLP:conf/types/McBride00, - author = {Conor McBride}, - title = {Elimination with a Motive}, - booktitle = {TYPES}, - year = {2000}, - pages = {197-216}, - ee = {http://link.springer.de/link/service/series/0558/bibs/2277/22770197.htm}, - crossref = {DBLP:conf/types/2000}, - bibsource = {DBLP, http://dblp.uni-trier.de} -} - -@proceedings{DBLP:conf/types/2000, - editor = {Paul Callaghan and - Zhaohui Luo and - James McKinna and - Robert Pollack}, - title = {Types for Proofs and Programs, International Workshop, TYPES - 2000, Durham, UK, December 8-12, 2000, Selected Papers}, - booktitle = {TYPES}, - publisher = {Springer}, - series = {Lecture Notes in Computer Science}, - volume = {2277}, - year = {2002}, - isbn = {3-540-43287-6}, - bibsource = {DBLP, http://dblp.uni-trier.de} -} - -@INPROCEEDINGS{sugar, - author = {Alessandro Giovini and Teo Mora and Gianfranco Niesi and Lorenzo Robbiano and Carlo Traverso}, - title = {"One sugar cube, please" or Selection strategies in the Buchberger algorithm}, - booktitle = { Proceedings of the ISSAC'91, ACM Press}, - year = {1991}, - pages = {5--4}, - publisher = {} -} - -@article{LeeWerner11, - author = {Gyesik Lee and - Benjamin Werner}, - title = {Proof-irrelevant model of {CC} with predicative induction - and judgmental equality}, - journal = {Logical Methods in Computer Science}, - volume = {7}, - number = {4}, - year = {2011}, - ee = {http://dx.doi.org/10.2168/LMCS-7(4:5)2011}, - bibsource = {DBLP, http://dblp.uni-trier.de} -} - -@Comment{cross-references, must be at end} - -@Book{Bastad92, - editor = {B. Nordstr\"om and K. Petersson and G. Plotkin}, - publisher = {Available by ftp at site ftp.inria.fr}, - title = {Proceedings of the 1992 Workshop on Types for Proofs and Programs}, - year = {1992} -} - -@Book{Nijmegen93, - editor = {H. Barendregt and T. Nipkow}, - publisher = SV, - series = LNCS, - title = {Types for Proofs and Programs}, - volume = {806}, - year = {1994} -} - -@article{ TheOmegaPaper, - author = "W. Pugh", - title = "The Omega test: a fast and practical integer programming algorithm for dependence analysis", - journal = "Communication of the ACM", - pages = "102--114", - year = "1992", -} - -@inproceedings{CSwcu, - hal_id = {hal-00816703}, - url = {http://hal.inria.fr/hal-00816703}, - title = {{Canonical Structures for the working Coq user}}, - author = {Mahboubi, Assia and Tassi, Enrico}, - booktitle = {{ITP 2013, 4th Conference on Interactive Theorem Proving}}, - publisher = {Springer}, - pages = {19-34}, - address = {Rennes, France}, - volume = {7998}, - editor = {Sandrine Blazy and Christine Paulin and David Pichardie }, - series = {LNCS }, - doi = {10.1007/978-3-642-39634-2\_5 }, - year = {2013}, -} - -@article{CSlessadhoc, - author = {Gonthier, Georges and Ziliani, Beta and Nanevski, Aleksandar and Dreyer, Derek}, - title = {How to Make Ad Hoc Proof Automation Less Ad Hoc}, - journal = {SIGPLAN Not.}, - issue_date = {September 2011}, - volume = {46}, - number = {9}, - month = sep, - year = {2011}, - issn = {0362-1340}, - pages = {163--175}, - numpages = {13}, - url = {http://doi.acm.org/10.1145/2034574.2034798}, - doi = {10.1145/2034574.2034798}, - acmid = {2034798}, - publisher = {ACM}, - address = {New York, NY, USA}, - keywords = {canonical structures, coq, custom proof automation, hoare type theory, interactive theorem proving, tactics, type classes}, -} - -@inproceedings{CompiledStrongReduction, - author = {Benjamin Gr{\'{e}}goire and - Xavier Leroy}, - editor = {Mitchell Wand and - Simon L. Peyton Jones}, - title = {A compiled implementation of strong reduction}, - booktitle = {Proceedings of the Seventh {ACM} {SIGPLAN} International Conference - on Functional Programming {(ICFP} '02), Pittsburgh, Pennsylvania, - USA, October 4-6, 2002.}, - pages = {235--246}, - publisher = {{ACM}}, - year = {2002}, - url = {http://doi.acm.org/10.1145/581478.581501}, - doi = {10.1145/581478.581501}, - timestamp = {Tue, 11 Jun 2013 13:49:16 +0200}, - biburl = {http://dblp.uni-trier.de/rec/bib/conf/icfp/GregoireL02}, - bibsource = {dblp computer science bibliography, http://dblp.org} -} - -@inproceedings{FullReduction, - author = {Mathieu Boespflug and - Maxime D{\'{e}}n{\`{e}}s and - Benjamin Gr{\'{e}}goire}, - editor = {Jean{-}Pierre Jouannaud and - Zhong Shao}, - title = {Full Reduction at Full Throttle}, - booktitle = {Certified Programs and Proofs - First International Conference, {CPP} - 2011, Kenting, Taiwan, December 7-9, 2011. Proceedings}, - series = {Lecture Notes in Computer Science}, - volume = {7086}, - pages = {362--377}, - publisher = {Springer}, - year = {2011}, - url = {http://dx.doi.org/10.1007/978-3-642-25379-9_26}, - doi = {10.1007/978-3-642-25379-9_26}, - timestamp = {Thu, 17 Nov 2011 13:33:48 +0100}, - biburl = {http://dblp.uni-trier.de/rec/bib/conf/cpp/BoespflugDG11}, - bibsource = {dblp computer science bibliography, http://dblp.org} -} diff --git a/doc/refman/coq-listing.tex b/doc/refman/coq-listing.tex deleted file mode 100644 index c69c3b1b8..000000000 --- a/doc/refman/coq-listing.tex +++ /dev/null @@ -1,152 +0,0 @@ -%======================================================================= -% Listings LaTeX package style for Gallina + SSReflect (Assia Mahboubi 2007) - -\lstdefinelanguage{SSR} { - -% Anything betweeen $ becomes LaTeX math mode -mathescape=true, -% Comments may or not include Latex commands -texcl=false, - - -% Vernacular commands -morekeywords=[1]{ -From, Section, Module, End, Require, Import, Export, Defensive, Function, -Variable, Variables, Parameter, Parameters, Axiom, Hypothesis, Hypotheses, -Notation, Local, Tactic, Reserved, Scope, Open, Close, Bind, Delimit, -Definition, Let, Ltac, Fixpoint, CoFixpoint, Add, Morphism, Relation, -Implicit, Arguments, Set, Unset, Contextual, Strict, Prenex, Implicits, -Inductive, CoInductive, Record, Structure, Canonical, Coercion, -Theorem, Lemma, Corollary, Proposition, Fact, Remark, Example, -Proof, Goal, Save, Qed, Defined, Hint, Resolve, Rewrite, View, -Search, Show, Print, Printing, All, Graph, Projections, inside, -outside, Locate, Maximal}, - -% Gallina -morekeywords=[2]{forall, exists, exists2, fun, fix, cofix, struct, - match, with, end, as, in, return, let, if, is, then, else, - for, of, nosimpl}, - -% Sorts -morekeywords=[3]{Type, Prop}, - -% Various tactics, some are std Coq subsumed by ssr, for the manual purpose -morekeywords=[4]{ - pose, set, move, case, elim, apply, clear, - hnf, intro, intros, generalize, rename, pattern, after, - destruct, induction, using, refine, inversion, injection, - rewrite, congr, unlock, compute, ring, field, - replace, fold, unfold, change, cutrewrite, simpl, - have, gen, generally, suff, wlog, suffices, without, loss, nat_norm, - assert, cut, trivial, revert, bool_congr, nat_congr, abstract, - symmetry, transitivity, auto, split, left, right, autorewrite}, - -% Terminators -morekeywords=[5]{ - by, done, exact, reflexivity, tauto, romega, omega, - assumption, solve, contradiction, discriminate}, - - -% Control -morekeywords=[6]{do, last, first, try, idtac, repeat}, - -% Various symbols -% For the ssr manual we turn off the prettyprint of formulas -% literate= -% {->}{{$\rightarrow\,$}}2 -% {->}{{\tt ->}}3 -% {<-}{{$\leftarrow\,$}}2 -% {<-}{{\tt <-}}2 -% {>->}{{$\mapsto$}}3 -% {<=}{{$\leq$}}1 -% {>=}{{$\geq$}}1 -% {<>}{{$\neq$}}1 -% {/\\}{{$\wedge$}}2 -% {\\/}{{$\vee$}}2 -% {<->}{{$\leftrightarrow\;$}}3 -% {<=>}{{$\Leftrightarrow\;$}}3 -% {:nat}{{$~\in\mathbb{N}$}}3 -% {fforall\ }{{$\forall_f\,$}}1 -% {forall\ }{{$\forall\,$}}1 -% {exists\ }{{$\exists\,$}}1 -% {negb}{{$\neg$}}1 -% {spp}{{:*:\,}}1 -% {~}{{$\sim$}}1 -% {\\in}{{$\in\;$}}1 -% {/\\}{$\land\,$}1 -% {:*:}{{$*$}}2 -% {=>}{{$\,\Rightarrow\ $}}1 -% {=>}{{\tt =>}}2 -% {:=}{{{\tt:=}\,\,}}2 -% {==}{{$\equiv$}\,}2 -% {!=}{{$\neq$}\,}2 -% {^-1}{{$^{-1}$}}1 -% {elt'}{elt'}1 -% {=}{{\tt=}\,\,}2 -% {+}{{\tt+}\,\,}2, -literate= - {isn't }{{{\ttfamily\color{dkgreen} isn't }}}1, - -% Comments delimiters, we do turn this off for the manual -%comment=[s]{(*}{*)}, - -% Spaces are not displayed as a special character -showstringspaces=false, - -% String delimiters -morestring=[b]", -morestring=[d]", - -% Size of tabulations -tabsize=3, - -% Enables ASCII chars 128 to 255 -extendedchars=true, - -% Case sensitivity -sensitive=true, - -% Automatic breaking of long lines -breaklines=true, - -% Default style fors listings -basicstyle=\ttfamily, - -% Position of captions is bottom -captionpos=b, - -% Full flexible columns -columns=[l]fullflexible, - -% Style for (listings') identifiers -identifierstyle={\ttfamily\color{black}}, -% Note : highlighting of Coq identifiers is done through a new -% delimiter definition through an lstset at the begining of the -% document. Don't know how to do better. - -% Style for declaration keywords -keywordstyle=[1]{\ttfamily\color{dkviolet}}, - -% Style for gallina keywords -keywordstyle=[2]{\ttfamily\color{dkgreen}}, - -% Style for sorts keywords -keywordstyle=[3]{\ttfamily\color{lightblue}}, - -% Style for tactics keywords -keywordstyle=[4]{\ttfamily\color{dkblue}}, - -% Style for terminators keywords -keywordstyle=[5]{\ttfamily\color{red}}, - - -%Style for iterators -keywordstyle=[6]{\ttfamily\color{dkpink}}, - -% Style for strings -stringstyle=\ttfamily, - -% Style for comments -commentstyle=\rmfamily, - -} diff --git a/doc/refman/coqide-queries.png b/doc/refman/coqide-queries.png Binary files differdeleted file mode 100644 index 7a46ac4e6..000000000 --- a/doc/refman/coqide-queries.png +++ /dev/null diff --git a/doc/refman/coqide.png b/doc/refman/coqide.png Binary files differdeleted file mode 100644 index e300401c9..000000000 --- a/doc/refman/coqide.png +++ /dev/null diff --git a/doc/refman/headers.hva b/doc/refman/headers.hva deleted file mode 100644 index 9714a29be..000000000 --- a/doc/refman/headers.hva +++ /dev/null @@ -1,44 +0,0 @@ -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -% File headers.hva -% Hevea version of headers.sty -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - -%%%%%%%%%%%%%%%%%%%%%%%%%%%% -% Commands for indexes -%%%%%%%%%%%%%%%%%%%%%%%%%%%% -\usepackage{index} -\makeindex - - -\newindex{tactic}{tacidx}{tacind}{Tactics Index} -\newindex{command}{comidx}{comind}{Vernacular Commands Index} -\newindex{option}{optidx}{optind}{Vernacular Options Index} -\newindex{error}{erridx}{errind}{Index of Error Messages} -\renewindex{default}{idx}{ind}{Global Index} - -\newcommand{\printrefmanindex}[3]{% -\addcontentsline{toc}{chapter}{#2}% -\printindex[#1]% -\cutname{#3}% -} - -\newcommand{\tacindex}[1]{% -\index{#1@\texttt{#1}}\index[tactic]{#1@\texttt{#1}}} -\newcommand{\comindex}[1]{% -\index{#1@\texttt{#1}}\index[command]{#1@\texttt{#1}}} -\newcommand{\optindex}[1]{% -\index{#1@\texttt{#1}}\index[option]{#1@\texttt{#1}}} -\newcommand{\errindex}[1]{\texttt{#1}\index[error]{#1}} -\newcommand{\errindexbis}[2]{\texttt{#1}\index[error]{#2}} -\newcommand{\ttindex}[1]{\index{#1@\texttt{#1}}} - -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -% For the Addendum table of contents -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -\newcommand{\aauthor}[1]{{\LARGE \bf #1} \bigskip} % 3 \bigskip's that were here originally - % may be good for LaTeX but too much for HTML -\newcommand{\atableofcontents}{} -\newcommand{\achapter}[1]{\chapter{#1}} -\newcommand{\asection}{\section} -\newcommand{\asubsection}{\subsection} -\newcommand{\asubsubsection}{\subsubsection} diff --git a/doc/refman/headers.sty b/doc/refman/headers.sty deleted file mode 100644 index fb39f687d..000000000 --- a/doc/refman/headers.sty +++ /dev/null @@ -1,88 +0,0 @@ -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -% File headers.sty -% Commands for pretty headers, multiple indexes, and the appendix. -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -\usepackage{fancyhdr} - -\setlength{\headheight}{14pt} - -\pagestyle{fancyplain} - -\newcommand{\coqfooter}{\tiny Coq Reference Manual, V\coqversion{}, \today} - -\cfoot{} -\lfoot[{\coqfooter}]{} -\rfoot[]{{\coqfooter}} - -\newcommand{\setheaders}[1]{\rhead[\fancyplain{}{\textbf{#1}}]{\fancyplain{}{\thepage}}\lhead[\fancyplain{}{\thepage}]{\fancyplain{}{\textbf{#1}}}} -\newcommand{\defaultheaders}{\rhead[\fancyplain{}{\leftmark}]{\fancyplain{}{\thepage}}\lhead[\fancyplain{}{\thepage}]{\fancyplain{}{\rightmark}}} - -\renewcommand{\chaptermark}[1]{\markboth{{\bf \thechapter~#1}}{}} -\renewcommand{\sectionmark}[1]{\markright{\thesection~#1}} -\renewcommand{\contentsname}{% -\protect\setheaders{Table of contents}Table of contents} -\renewcommand{\bibname}{\protect\setheaders{Bibliography}% -\protect\RefManCutCommand{BEGINBIBLIO=\thepage}% -\protect\addcontentsline{toc}{chapter}{Bibliography}Bibliography} - -%%%%%%%%%%%%%%%%%%%%%%%%%%%% -% Commands for indexes -%%%%%%%%%%%%%%%%%%%%%%%%%%%% -\usepackage{index} -\makeindex - -\newindex{tactic}{tacidx}{tacind}{Tactics Index} -\newindex{command}{comidx}{comind}{Vernacular Commands Index} -\newindex{option}{optidx}{optind}{Vernacular Options Index} -\newindex{error}{erridx}{errind}{Index of Error Messages} -\renewindex{default}{idx}{ind}{Global Index} - -\newcommand{\printrefmanindex}[3]{% -\cleardoublepage% -\phantomsection% -\setheaders{#2}% -\addcontentsline{toc}{chapter}{#2}% -\printindex[#1]% -\cutname{#3}% -} - -\newcommand{\tacindex}[1]{% -\index{#1@\texttt{#1}}\index[tactic]{#1@\texttt{#1}}} -\newcommand{\comindex}[1]{% -\index{#1@\texttt{#1}}\index[command]{#1@\texttt{#1}}} -\newcommand{\optindex}[1]{% -\index{#1@\texttt{#1}}\index[option]{#1@\texttt{#1}}} -\newcommand{\errindex}[1]{\texttt{#1}\index[error]{#1}} -\newcommand{\errindexbis}[2]{\texttt{#1}\index[error]{#2}} -\newcommand{\ttindex}[1]{\index{#1@\texttt{#1}}} - -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -% For the Addendum table of contents -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -\newcommand{\aauthor}[1]{{\LARGE \bf #1} \bigskip \bigskip \bigskip} -\newcommand{\atableofcontents}{\section*{Contents}\@starttoc{atoc}} -\newcommand{\achapter}[1]{ - \chapter{#1}\addcontentsline{atoc}{chapter}{#1}} -\newcommand{\asection}[1]{ - \section{#1}\addcontentsline{atoc}{section}{#1}} -\newcommand{\asubsection}[1]{ - \subsection{#1}\addcontentsline{atoc}{subsection}{#1}} -\newcommand{\asubsubsection}[1]{ - \subsubsection{#1}\addcontentsline{atoc}{subsubsection}{#1}} - -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -% Reference-Manual.sh is generated to cut the Postscript -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -%\@starttoc{sh} -\newwrite\RefManCut@out% -\immediate\openout\RefManCut@out\jobname.sh -\newcommand{\RefManCutCommand}[1]{% -\immediate\write\RefManCut@out{#1}} -\newcommand{\RefManCutClose}{% -\immediate\closeout\RefManCut@out} - - -%%% Local Variables: -%%% mode: latex -%%% TeX-master: "Reference-Manual" -%%% End: diff --git a/doc/refman/index.html b/doc/refman/index.html deleted file mode 100644 index b937350e6..000000000 --- a/doc/refman/index.html +++ /dev/null @@ -1,14 +0,0 @@ -<HTML> - -<HEAD> - -<TITLE>The Coq Proof Assistant Reference Manual</TITLE> - -</HEAD> - -<FRAMESET ROWS=90%,*> - <FRAME SRC="cover.html" NAME="UP"> - <FRAME SRC="menu.html"> -</FRAMESET> - -</HTML> diff --git a/doc/refman/menu.html b/doc/refman/menu.html deleted file mode 100644 index 7312ad344..000000000 --- a/doc/refman/menu.html +++ /dev/null @@ -1,32 +0,0 @@ -<HTML> - -<BODY> - -<CENTER> - -<TABLE BORDER="0" CELLPADDING=10> -<TR> -<TD><CENTER><A HREF="cover.html" TARGET="UP"><FONT SIZE=2>Cover page</FONT></A></CENTER></TD> -<TD><CENTER><A HREF="toc.html" TARGET="UP"><FONT SIZE=2>Table of contents</FONT></A></CENTER></TD> -<TD><CENTER><A HREF="biblio.html" TARGET="UP"><FONT SIZE=2> -Bibliography</FONT></A></CENTER></TD> -<TD><CENTER><A HREF="general-index.html" TARGET="UP"><FONT SIZE=2> -Global Index -</FONT></A></CENTER></TD> -<TD><CENTER><A HREF="tactic-index.html" TARGET="UP"><FONT SIZE=2> -Tactics Index -</FONT></A></CENTER></TD> -<TD><CENTER><A HREF="command-index.html" TARGET="UP"><FONT SIZE=2> -Vernacular Commands Index -</FONT></A></CENTER></TD> -<TD><CENTER><A HREF="option-index.html" TARGET="UP"><FONT SIZE=2> -Vernacular Options Index -</FONT></A></CENTER></TD> -<TD><CENTER><A HREF="error-index.html" TARGET="UP"><FONT SIZE=2> -Index of Error Messages -</FONT></A></CENTER></TD> -</TABLE> - -</CENTER> - -</BODY></HTML> diff --git a/doc/sphinx/_static/CoqNotations.ttf b/doc/sphinx/_static/CoqNotations.ttf Binary files differnew file mode 100644 index 000000000..da8f2850d --- /dev/null +++ b/doc/sphinx/_static/CoqNotations.ttf diff --git a/doc/sphinx/_static/UbuntuMono-Square.ttf b/doc/sphinx/_static/UbuntuMono-Square.ttf Binary files differdeleted file mode 100644 index 12b7c6d51..000000000 --- a/doc/sphinx/_static/UbuntuMono-Square.ttf +++ /dev/null diff --git a/doc/sphinx/_static/notations.css b/doc/sphinx/_static/notations.css index 9b7b826d5..f899945a3 100644 --- a/doc/sphinx/_static/notations.css +++ b/doc/sphinx/_static/notations.css @@ -22,10 +22,10 @@ } @font-face { /* This font has been edited to center all characters */ - font-family: 'UbuntuMono-Square'; + font-family: 'CoqNotations'; font-style: normal; font-weight: 800; - src: local('UbuntuMono-Square'), url(./UbuntuMono-Square.ttf) format('truetype'); + src: local('CoqNotations'), url(./CoqNotations.ttf) format('truetype'); } .notation .notation-sup, .notation .notation-sub { @@ -34,15 +34,15 @@ color: black; /* cursor: help; */ display: inline-block; - font-size: 0.5em; + font-size: 0.45em; font-weight: bolder; - font-family: UbuntuMono-Square, monospace; - height: 2em; + font-family: CoqNotations, monospace; + height: 2.2em; line-height: 1.6em; position: absolute; right: -1em; /* half of the width */ text-align: center; - width: 2em; + width: 2.2em; } .notation .repeat { diff --git a/doc/sphinx/addendum/extended-pattern-matching.rst b/doc/sphinx/addendum/extended-pattern-matching.rst index 64d4eddf0..1d3b66173 100644 --- a/doc/sphinx/addendum/extended-pattern-matching.rst +++ b/doc/sphinx/addendum/extended-pattern-matching.rst @@ -305,6 +305,8 @@ explicitations (as for terms 2.7.11). end). +.. _matching-dependent: + Matching objects of dependent types ----------------------------------- @@ -414,6 +416,7 @@ length, by writing I have a copy of :g:`b` in type :g:`listn 0` resp :g:`listn (S n')`. +.. _match-in-patterns: Patterns in ``in`` ~~~~~~~~~~~~~~~~~~ diff --git a/doc/sphinx/addendum/extraction.rst b/doc/sphinx/addendum/extraction.rst index d7f97edab..38365e403 100644 --- a/doc/sphinx/addendum/extraction.rst +++ b/doc/sphinx/addendum/extraction.rst @@ -1,16 +1,16 @@ -.. _extraction: - .. include:: ../replaces.rst -Extraction of programs in OCaml and Haskell -============================================ +.. _extraction: + +Extraction of programs in |OCaml| and Haskell +============================================= :Authors: Jean-Christophe Filliâtre and Pierre Letouzey We present here the |Coq| extraction commands, used to build certified and relatively efficient functional programs, extracting them from either |Coq| functions or |Coq| proofs of specifications. The -functional languages available as output are currently OCaml, Haskell +functional languages available as output are currently |OCaml|, Haskell and Scheme. In the following, "ML" will be used (abusively) to refer to any of the three. @@ -89,11 +89,11 @@ in the |Coq| sources. .. cmd:: Extraction TestCompile @qualid ... @qualid. All the mentioned objects and all their dependencies are extracted - to a temporary OCaml file, just as in ``Extraction "file"``. Then + to a temporary |OCaml| file, just as in ``Extraction "file"``. Then this temporary file and its signature are compiled with the same - OCaml compiler used to built |Coq|. This command succeeds only - if the extraction and the OCaml compilation succeed. It fails - if the current target language of the extraction is not OCaml. + |OCaml| compiler used to built |Coq|. This command succeeds only + if the extraction and the |OCaml| compilation succeed. It fails + if the current target language of the extraction is not |OCaml|. Extraction Options ------------------- @@ -102,26 +102,26 @@ Setting the target language ~~~~~~~~~~~~~~~~~~~~~~~~~~~ The ability to fix target language is the first and more important -of the extraction options. Default is ``Ocaml``. +of the extraction options. Default is ``OCaml``. -.. cmd:: Extraction Language Ocaml. +.. cmd:: Extraction Language OCaml. .. cmd:: Extraction Language Haskell. .. cmd:: Extraction Language Scheme. Inlining and optimizations ~~~~~~~~~~~~~~~~~~~~~~~~~~~ -Since OCaml is a strict language, the extracted code has to +Since |OCaml| is a strict language, the extracted code has to be optimized in order to be efficient (for instance, when using induction principles we do not want to compute all the recursive calls but only the needed ones). So the extraction mechanism provides an automatic optimization routine that will be called each time the user -want to generate OCaml programs. The optimizations can be split in two +want to generate |OCaml| programs. The optimizations can be split in two groups: the type-preserving ones (essentially constant inlining and reductions) and the non type-preserving ones (some function abstractions of dummy types are removed when it is deemed safe in order to have more elegant types). Therefore some constants may not appear in the -resulting monolithic OCaml program. In the case of modular extraction, +resulting monolithic |OCaml| program. In the case of modular extraction, even if some inlining is done, the inlined constant are nevertheless printed, to ensure session-independent programs. @@ -264,10 +264,9 @@ what ML term corresponds to a given axiom. be inlined everywhere instead of being declared via a ``let``. .. note:: - - This command is sugar for an ``Extract Constant`` followed - by a ``Extraction Inline``. Hence a ``Reset Extraction Inline`` - will have an effect on the realized and inlined axiom. + This command is sugar for an ``Extract Constant`` followed + by a ``Extraction Inline``. Hence a ``Reset Extraction Inline`` + will have an effect on the realized and inlined axiom. .. caution:: It is the responsibility of the user to ensure that the ML terms given to realize the axioms do have the expected types. In @@ -336,7 +335,7 @@ native boolean type instead of |Coq| one. The syntax is the following: argument is considered to have one unit argument, in order to block early evaluation of the branch: ``| O => bar`` leads to the functional form ``(fun () -> bar)``. For instance, when extracting ``nat`` - into OCaml ``int``, the code to provide has type: + into |OCaml| ``int``, the code to provide has type: ``(unit->'a)->(int->'a)->int->'a``. .. caution:: As for ``Extract Constant``, this command should be used with care: @@ -347,15 +346,15 @@ native boolean type instead of |Coq| one. The syntax is the following: * Extracting an inductive type to a pre-existing ML inductive type is quite sound. But extracting to a general type (by providing an ad-hoc pattern-matching) will often **not** be fully rigorously - correct. For instance, when extracting ``nat`` to OCaml ``int``, + correct. For instance, when extracting ``nat`` to |OCaml| ``int``, it is theoretically possible to build ``nat`` values that are - larger than OCaml ``max_int``. It is the user's responsibility to + larger than |OCaml| ``max_int``. It is the user's responsibility to be sure that no overflow or other bad events occur in practice. * Translating an inductive type to an arbitrary ML type does **not** magically improve the asymptotic complexity of functions, even if the ML type is an efficient representation. For instance, when extracting - ``nat`` to OCaml ``int``, the function ``Nat.mul`` stays quadratic. + ``nat`` to |OCaml| ``int``, the function ``Nat.mul`` stays quadratic. It might be interesting to associate this translation with some specific ``Extract Constant`` when primitive counterparts exist. @@ -369,9 +368,9 @@ Typical examples are the following: .. note:: - When extracting to Ocaml, if an inductive constructor or type has arity 2 and + When extracting to |OCaml|, if an inductive constructor or type has arity 2 and the corresponding string is enclosed by parentheses, and the string meets - Ocaml's lexical criteria for an infix symbol, then the rest of the string is + |OCaml|'s lexical criteria for an infix symbol, then the rest of the string is used as infix constructor or type. .. coqtop:: in @@ -380,7 +379,7 @@ Typical examples are the following: Extract Inductive prod => "(*)" [ "(,)" ]. As an example of translation to a non-inductive datatype, let's turn -``nat`` into OCaml ``int`` (see caveat above): +``nat`` into |OCaml| ``int`` (see caveat above): .. coqtop:: in @@ -394,7 +393,7 @@ directly depends from the names of the |Coq| files. It may happen that these filenames are in conflict with already existing files, either in the standard library of the target language or in other code that is meant to be linked with the extracted code. -For instance the module ``List`` exists both in |Coq| and in OCaml. +For instance the module ``List`` exists both in |Coq| and in |OCaml|. It is possible to instruct the extraction not to use particular filenames. .. cmd:: Extraction Blacklist @ident ... @ident. @@ -410,7 +409,7 @@ It is possible to instruct the extraction not to use particular filenames. Allow the extraction to use any filename. -For OCaml, a typical use of these commands is +For |OCaml|, a typical use of these commands is ``Extraction Blacklist String List``. Differences between |Coq| and ML type systems @@ -418,7 +417,7 @@ Differences between |Coq| and ML type systems Due to differences between |Coq| and ML type systems, some extracted programs are not directly typable in ML. -We now solve this problem (at least in OCaml) by adding +We now solve this problem (at least in |OCaml|) by adding when needed some unsafe casting ``Obj.magic``, which give a generic type ``'a`` to any term. @@ -432,7 +431,7 @@ function: Definition dp {A B:Type}(x:A)(y:B)(f:forall C:Type, C->C) := (f A x, f B y). -In Ocaml, for instance, the direct extracted term would be:: +In |OCaml|, for instance, the direct extracted term would be:: let dp x y f = Pair((f () x),(f () y)) @@ -455,12 +454,12 @@ of a constructor; for example: Inductive anything : Type := dummy : forall A:Set, A -> anything. which corresponds to the definition of an ML dynamic type. -In OCaml, we must cast any argument of the constructor dummy +In |OCaml|, we must cast any argument of the constructor dummy (no GADT are produced yet by the extraction). Even with those unsafe castings, you should never get error like ``segmentation fault``. In fact even if your program may seem -ill-typed to the Ocaml type-checker, it can't go wrong : it comes +ill-typed to the |OCaml| type-checker, it can't go wrong : it comes from a Coq well-typed terms, so for example inductive types will always have the correct number of arguments, etc. Of course, when launching manually some extracted function, you should apply it to arguments @@ -470,14 +469,14 @@ More details about the correctness of the extracted programs can be found in :cite:`Let02`. We have to say, though, that in most "realistic" programs, these problems do not -occur. For example all the programs of Coq library are accepted by the OCaml +occur. For example all the programs of Coq library are accepted by the |OCaml| type-checker without any ``Obj.magic`` (see examples below). Some examples ------------- We present here two examples of extractions, taken from the -|Coq| Standard Library. We choose OCaml as target language, +|Coq| Standard Library. We choose |OCaml| as target language, but all can be done in the other dialects with slight modifications. We then indicate where to find other examples and tests of extraction. @@ -493,7 +492,7 @@ This module contains a theorem ``eucl_dev``, whose type is:: where ``diveucl`` is a type for the pair of the quotient and the modulo, plus some logical assertions that disappear during extraction. -We can now extract this program to OCaml: +We can now extract this program to |OCaml|: .. coqtop:: none @@ -513,7 +512,7 @@ You can then copy-paste the output to a file ``euclid.ml`` or let Extraction "euclid" eucl_dev. -Let us play the resulting program (in an OCaml toplevel):: +Let us play the resulting program (in an |OCaml| toplevel):: #use "euclid.ml";; type nat = O | S of nat @@ -527,7 +526,7 @@ Let us play the resulting program (in an OCaml toplevel):: # eucl_dev (S (S O)) (S (S (S (S (S O)))));; - : diveucl = Divex (S (S O), S O) -It is easier to test on OCaml integers:: +It is easier to test on |OCaml| integers:: # let rec nat_of_int = function 0 -> O | n -> S (nat_of_int (n-1));; val nat_of_int : int -> nat = <fun> diff --git a/doc/sphinx/addendum/generalized-rewriting.rst b/doc/sphinx/addendum/generalized-rewriting.rst index da9e97e6f..e4dea3487 100644 --- a/doc/sphinx/addendum/generalized-rewriting.rst +++ b/doc/sphinx/addendum/generalized-rewriting.rst @@ -1,14 +1,12 @@ -.. _generalizedrewriting: - ------------------------ - Generalized rewriting ------------------------ +.. include:: ../preamble.rst +.. include:: ../replaces.rst -:Author: Matthieu Sozeau +.. _generalizedrewriting: Generalized rewriting ===================== +:Author: Matthieu Sozeau This chapter presents the extension of several equality related tactics to work over user-defined structures (called setoids) that are @@ -479,7 +477,7 @@ The declaration itself amounts to the definition of an object of the record type ``Coq.Classes.RelationClasses.Equivalence`` and a hint added to the ``typeclass_instances`` hint database. Morphism declarations are also instances of a type class defined in ``Classes.Morphisms``. See the -documentation on type classes :ref:`TODO-chapter-20-type-classes` +documentation on type classes :ref:`typeclasses` and the theories files in Classes for further explanations. One can inform the rewrite tactic about morphisms and relations just @@ -539,14 +537,19 @@ Notice, however, that using the prefixed tactics it is possible to pass additional arguments such as ``using relation``. .. tacv:: setoid_reflexivity + :name: setoid_reflexivity .. tacv:: setoid_symmetry [in @ident] + :name: setoid_symmetry .. tacv:: setoid_transitivity + :name: setoid_transitivity .. tacv:: setoid_rewrite [@orientation] @term [at @occs] [in @ident] + :name: setoid_rewrite .. tacv:: setoid_replace @term with @term [in @ident] [using relation @term] [by @tactic] + :name: setoid_replace The ``using relation`` arguments cannot be passed to the unprefixed form. @@ -585,7 +588,7 @@ Deprecated syntax and backward incompatibilities Due to backward compatibility reasons, the following syntax for the declaration of setoids and morphisms is also accepted. -.. tacv:: Add Setoid @A @Aeq @ST as @ident +.. cmd:: Add Setoid @A @Aeq @ST as @ident where ``Aeq`` is a congruence relation without parameters, ``A`` is its carrier and ``ST`` is an object of type (``Setoid_Theory A Aeq``) (i.e. a record @@ -707,22 +710,20 @@ defined constants as transparent by default. This may slow down the resolution due to a lot of unifications (all the declared ``Proper`` instances are tried at each node of the search tree). To speed it up, declare your constant as rigid for proof search using the command -``Typeclasses Opaque`` (see :ref:`TODO-20.6.7-typeclasses-transparency`). - +``Typeclasses Opaque`` (see :ref:`TypeclassesTransparent`). Strategies for rewriting ------------------------ - Definitions ~~~~~~~~~~~ -The generalized rewriting tactic is based on a set of strategies that -can be combined to obtain custom rewriting procedures. Its set of -strategies is based on Elan’s rewriting strategies :ref:`TODO-102-biblio`. Rewriting +The generalized rewriting tactic is based on a set of strategies that can be +combined to obtain custom rewriting procedures. Its set of strategies is based +on Elan’s rewriting strategies :cite:`Luttik97specificationof`. Rewriting strategies are applied using the tactic ``rewrite_strat s`` where ``s`` is a -strategy expression. Strategies are defined inductively as described -by the following grammar: +strategy expression. Strategies are defined inductively as described by the +following grammar: .. productionlist:: rewriting s, t, u : `strategy` @@ -812,7 +813,7 @@ Hint databases created for ``autorewrite`` can also be used by ``rewrite_strat`` using the ``hints`` strategy that applies any of the lemmas at the current subterm. The ``terms`` strategy takes the lemma names directly as arguments. The ``eval`` strategy expects a reduction -expression (see :ref:`TODO-8.7-performing-computations`) and succeeds +expression (see :ref:`performingcomputations`) and succeeds if it reduces the subterm under consideration. The ``fold`` strategy takes a term ``c`` and tries to *unify* it to the current subterm, converting it to ``c`` on success, it is stronger than the tactic ``fold``. @@ -822,7 +823,8 @@ Usage ~~~~~ -.. tacv:: rewrite_strat @s [in @ident] +.. tacn:: rewrite_strat @s [in @ident] + :name: rewrite_strat Rewrite using the strategy s in hypothesis ident or the conclusion. diff --git a/doc/sphinx/addendum/implicit-coercions.rst b/doc/sphinx/addendum/implicit-coercions.rst index f5ca5be44..c48c2d7ce 100644 --- a/doc/sphinx/addendum/implicit-coercions.rst +++ b/doc/sphinx/addendum/implicit-coercions.rst @@ -1,7 +1,7 @@ -.. _implicitcoercions: - .. include:: ../replaces.rst +.. _implicitcoercions: + Implicit Coercions ==================== @@ -138,7 +138,7 @@ Declaration of Coercions .. exn:: @qualid does not respect the uniform inheritance condition .. exn:: Found target class ... instead of ... - .. warn:: Ambigous path: + .. warn:: Ambiguous path When the coercion `qualid` is added to the inheritance graph, non valid coercion paths are ignored; they are signaled by a warning @@ -166,7 +166,7 @@ Declaration of Coercions Assumptions can be declared as coercions at declaration time. This extends the grammar of assumptions from -Figure :ref:`TODO-1.3-sentences-syntax` as follows: +Figure :ref:`vernacular` as follows: .. FIXME: @@ -186,7 +186,7 @@ assumptions are declared as coercions. Similarly, constructors of inductive types can be declared as coercions at definition time of the inductive type. This extends and modifies the -grammar of inductive types from Figure :ref:`TODO-1.3-sentences-syntax` as follows: +grammar of inductive types from Figure :ref:`vernacular` as follows: .. FIXME: @@ -218,6 +218,7 @@ declaration, this constructor is declared as a coercion. Idem but locally to the current section. .. cmdv:: SubClass @ident := @type. + :name: SubClass If `type` is a class `ident'` applied to some arguments then `ident` is defined and an identity coercion of name @@ -255,48 +256,45 @@ Displaying Available Coercions Activating the Printing of Coercions ------------------------------------- -.. cmd:: Set Printing Coercions. +.. opt:: Printing Coercions - This command forces all the coercions to be printed. - Conversely, to skip the printing of coercions, use - ``Unset Printing Coercions``. By default, coercions are not printed. + When on, this option forces all the coercions to be printed. + By default, coercions are not printed. -.. cmd:: Add Printing Coercion @qualid. +.. cmd:: Add Printing Coercion @qualid - This command forces coercion denoted by `qualid` to be printed. - To skip the printing of coercion `qualid`, use - ``Remove Printing Coercion`` `qualid`. By default, a coercion is never printed. + This command forces coercion denoted by :n:`@qualid` to be printed. To skip + the printing of coercion :n:`@qualid`, use :cmd:`Remove Printing Coercion`. By + default, a coercion is never printed. +.. _coercions-classes-as-records: Classes as Records ------------------ -We allow the definition of *Structures with Inheritance* (or -classes as records) by extending the existing ``Record`` macro -(see Section :ref:`TODO-2.1-Record`). Its new syntax is: +We allow the definition of *Structures with Inheritance* (or classes as records) +by extending the existing :cmd:`Record` macro. Its new syntax is: -.. cmd:: Record {? >} @ident {? @binders} : @sort := {? @ident} { {+; @ident :{? >} @term } }. +.. cmdv:: Record {? >} @ident {? @binders} : @sort := {? @ident} { {+; @ident :{? >} @term } }. - The first identifier `ident` is the name of the defined record and - `sort` is its type. The optional identifier after ``:=`` is the name - of the constuctor (it will be ``Build_``\ `ident` if not given). - The other identifiers are the names of the fields, and the `term` - are their respective types. If ``:>`` is used instead of ``:`` in - the declaration of a field, then the name of this field is automatically - declared as a coercion from the record name to the class of this - field type. Remark that the fields always verify the uniform - inheritance condition. If the optional ``>`` is given before the - record name, then the constructor name is automatically declared as - a coercion from the class of the last field type to the record name - (this may fail if the uniform inheritance condition is not - satisfied). + The first identifier `ident` is the name of the defined record and + `sort` is its type. The optional identifier after ``:=`` is the name + of the constuctor (it will be ``Build_``\ `ident` if not given). + The other identifiers are the names of the fields, and the `term` + are their respective types. If ``:>`` is used instead of ``:`` in + the declaration of a field, then the name of this field is automatically + declared as a coercion from the record name to the class of this + field type. Remark that the fields always verify the uniform + inheritance condition. If the optional ``>`` is given before the + record name, then the constructor name is automatically declared as + a coercion from the class of the last field type to the record name + (this may fail if the uniform inheritance condition is not + satisfied). -.. note:: +.. cmdv:: Structure {? >} @ident {? @binders} : @sort := {? @ident} { {+; @ident :{? >} @term } }. + :name: Structure - The keyword ``Structure`` is a synonym of ``Record``. - -.. - FIXME: \comindex{Structure} + This is a synonym of :cmd:`Record`. Coercions and Sections @@ -312,20 +310,17 @@ coercions which do not verify the uniform inheritance condition any longer are also forgotten. Coercions and Modules ---------------------= - -From |Coq| version 8.3, the coercions present in a module are activated -only when the module is explicitly imported. Formerly, the coercions -were activated as soon as the module was required, whatever it was -imported or not. - -To recover the behavior of the versions of |Coq| prior to 8.3, use the -following command: +--------------------- -.. cmd:: Set Automatic Coercions Import. +.. opt:: Automatic Coercions Import -To cancel the effect of the option, use instead ``Unset Automatic Coercions Import``. + Since |Coq| version 8.3, the coercions present in a module are activated + only when the module is explicitly imported. Formerly, the coercions + were activated as soon as the module was required, whatever it was + imported or not. + This option makes it possible to recover the behavior of the versions of + |Coq| prior to 8.3. Examples -------- diff --git a/doc/sphinx/addendum/micromega.rst b/doc/sphinx/addendum/micromega.rst index e850587c8..4f8cc34d4 100644 --- a/doc/sphinx/addendum/micromega.rst +++ b/doc/sphinx/addendum/micromega.rst @@ -13,20 +13,19 @@ tactics for solving arithmetic goals over :math:`\mathbb{Z}`, :math:`\mathbb{Q}` It also possible to get the tactics for integers by a ``Require Import Lia``, rationals ``Require Import Lqa`` and reals ``Require Import Lra``. -+ ``lia`` is a decision procedure for linear integer arithmetic (see Section :ref:`lia <lia>`); -+ ``nia`` is an incomplete proof procedure for integer non-linear - arithmetic (see Section :ref:`nia <nia>`); -+ ``lra`` is a decision procedure for linear (real or rational) arithmetic - (see Section :ref:`lra <lra>`); -+ ``nra`` is an incomplete proof procedure for non-linear (real or - rational) arithmetic (see Section :ref:`nra <nra>`); -+ ``psatz D n`` where ``D`` is :math:`\mathbb{Z}` or :math:`\mathbb{Q}` or :math:`\mathbb{R}`, and ++ :tacn:`lia` is a decision procedure for linear integer arithmetic; ++ :tacn:`nia` is an incomplete proof procedure for integer non-linear + arithmetic; ++ :tacn:`lra` is a decision procedure for linear (real or rational) arithmetic; ++ :tacn:`nra` is an incomplete proof procedure for non-linear (real or + rational) arithmetic; ++ :tacn:`psatz` ``D n`` where ``D`` is :math:`\mathbb{Z}` or :math:`\mathbb{Q}` or :math:`\mathbb{R}`, and ``n`` is an optional integer limiting the proof search depth is an incomplete proof procedure for non-linear arithmetic. It is based on John Harrison’s HOL Light driver to the external prover `csdp` [#]_. Note that the `csdp` driver is generating a *proof cache* which makes it possible to rerun scripts - even without `csdp` (see Section :ref:`psatz <psatz>`). + even without `csdp`. The tactics solve propositional formulas parameterized by atomic arithmetic expressions interpreted over a domain :math:`D` ∈ {ℤ, ℚ, ℝ}. @@ -91,12 +90,13 @@ For each conjunct :math:`C_i`, the tactic calls a oracle which searches for expression* that is normalized by the ring tactic (see :ref:`theringandfieldtacticfamilies`) and checked to be :math:`-1`. -.. _lra: - `lra`: a decision procedure for linear real and rational arithmetic ------------------------------------------------------------------- -The `lra` tactic is searching for *linear* refutations using Fourier +.. tacn:: lra + :name: lra + +This tactic is searching for *linear* refutations using Fourier elimination [#]_. As a result, this tactic explores a subset of the *Cone* defined as @@ -107,16 +107,17 @@ The deductive power of `lra` is the combined deductive power of tactic *e.g.*, :math:`x = 10 * x / 10` is solved by `lra`. -.. _lia: - `lia`: a tactic for linear integer arithmetic --------------------------------------------- -The tactic lia offers an alternative to the omega and romega tactic -(see :ref:`omega`). Roughly speaking, the deductive power of lia is -the combined deductive power of `ring_simplify` and `omega`. However, it -solves linear goals that `omega` and `romega` do not solve, such as the -following so-called *omega nightmare* :cite:`TheOmegaPaper`. +.. tacn:: lia + :name: lia + +This tactic offers an alternative to the :tacn:`omega` and :tac:`romega` +tactics. Roughly speaking, the deductive power of lia is the combined deductive +power of :tacn:`ring_simplify` and :tacn:`omega`. However, it solves linear +goals that :tacn:`omega` and :tacn:`romega` do not solve, such as the following +so-called *omega nightmare* :cite:`TheOmegaPaper`. .. coqtop:: in @@ -124,8 +125,8 @@ following so-called *omega nightmare* :cite:`TheOmegaPaper`. 27 <= 11 * x + 13 * y <= 45 -> -10 <= 7 * x - 9 * y <= 4 -> False. -The estimation of the relative efficiency of `lia` *vs* `omega` and `romega` -is under evaluation. +The estimation of the relative efficiency of :tacn:`lia` *vs* :tacn:`omega` and +:tacn:`romega` is under evaluation. High level view of `lia` ~~~~~~~~~~~~~~~~~~~~~~~~ @@ -182,12 +183,13 @@ Our current oracle tries to find an expression :math:`e` with a small range with an equation :math:`e = i` for :math:`i \in [c_1,c_2]` and recursively search for a proof. -.. _nra: - `nra`: a proof procedure for non-linear arithmetic -------------------------------------------------- -The `nra` tactic is an *experimental* proof procedure for non-linear +.. tacn:: nra + :name: nra + +This tactic is an *experimental* proof procedure for non-linear arithmetic. The tactic performs a limited amount of non-linear reasoning before running the linear prover of `lra`. This pre-processing does the following: @@ -202,21 +204,23 @@ does the following: After this pre-processing, the linear prover of `lra` searches for a proof by abstracting monomials by variables. -.. _nia: - `nia`: a proof procedure for non-linear integer arithmetic ---------------------------------------------------------- -The `nia` tactic is a proof procedure for non-linear integer arithmetic. +.. tacn:: nia + :name: nia + +This tactic is a proof procedure for non-linear integer arithmetic. It performs a pre-processing similar to `nra`. The obtained goal is solved using the linear integer prover `lia`. -.. _psatz: - `psatz`: a proof procedure for non-linear arithmetic ---------------------------------------------------- -The `psatz` tactic explores the :math:`\mathit{Cone}` by increasing degrees – hence the +.. tacn:: psatz + :name: psatz + +This tactic explores the :math:`\mathit{Cone}` by increasing degrees – hence the depth parameter :math:`n`. In theory, such a proof search is complete – if the goal is provable the search eventually stops. Unfortunately, the external oracle is using numeric (approximate) optimization techniques diff --git a/doc/sphinx/addendum/miscellaneous-extensions.rst b/doc/sphinx/addendum/miscellaneous-extensions.rst index b0343a8f0..80ea8a116 100644 --- a/doc/sphinx/addendum/miscellaneous-extensions.rst +++ b/doc/sphinx/addendum/miscellaneous-extensions.rst @@ -3,18 +3,10 @@ .. _miscellaneousextensions: Miscellaneous extensions -======================= - -:Source: https://coq.inria.fr/distrib/current/refman/miscellaneous.html -:Converted by: Paul Steckler - -.. contents:: - :local: - :depth: 1 ----- +======================== Program derivation ------------------ +------------------ |Coq| comes with an extension called ``Derive``, which supports program derivation. Typically in the style of Bird and Meertens or derivations @@ -28,7 +20,7 @@ The first `ident` can appear in `term`. This command opens a new proof presenting the user with a goal for term in which the name `ident` is bound to an existential variable `?x` (formally, there are other goals standing for the existential variables but they are shelved, as -described in Section :ref:`TODO-8.17.4`). +described in :tacn:`shelve`). When the proof ends two constants are defined: diff --git a/doc/sphinx/addendum/nsatz.rst b/doc/sphinx/addendum/nsatz.rst index ef9b3505d..387d61495 100644 --- a/doc/sphinx/addendum/nsatz.rst +++ b/doc/sphinx/addendum/nsatz.rst @@ -19,7 +19,7 @@ where :math:`P, Q, P₁,Q₁,\ldots,Pₛ, Qₛ` are polynomials and :math:`A` is domain, i.e. a commutative ring with no zero divisor. For example, :math:`A` can be :math:`\mathbb{R}`, :math:`\mathbb{Z}`, or :math:`\mathbb{Q}`. Note that the equality :math:`=` used in these goals can be -any setoid equality (see :ref:`TODO-27.2.2`) , not only Leibnitz equality. +any setoid equality (see :ref:`tactics-enabled-on-user-provided-relations`) , not only Leibnitz equality. It also proves formulas diff --git a/doc/sphinx/addendum/parallel-proof-processing.rst b/doc/sphinx/addendum/parallel-proof-processing.rst index 8c1b9d152..edb8676a5 100644 --- a/doc/sphinx/addendum/parallel-proof-processing.rst +++ b/doc/sphinx/addendum/parallel-proof-processing.rst @@ -39,14 +39,14 @@ Proof annotations To process a proof asynchronously |Coq| needs to know the precise statement of the theorem without looking at the proof. This requires some annotations if the theorem is proved inside a Section (see -Section :ref:`TODO-2.4`). +Section :ref:`section-mechanism`). When a section ends, |Coq| looks at the proof object to decide which section variables are actually used and hence have to be quantified in the statement of the theorem. To avoid making the construction of proofs mandatory when ending a section, one can start each proof with -the ``Proof using`` command (Section :ref:`TODO-7.1.5`) that declares which section -variables the theorem uses. +the ``Proof using`` command (Section :ref:`proof-editing-mode`) that +declares which section variables the theorem uses. The presence of ``Proof`` using is needed to process proofs asynchronously in interactive mode. diff --git a/doc/sphinx/addendum/program.rst b/doc/sphinx/addendum/program.rst index eb50e52dc..be30d1bc4 100644 --- a/doc/sphinx/addendum/program.rst +++ b/doc/sphinx/addendum/program.rst @@ -135,7 +135,7 @@ support types, avoiding uses of proof-irrelevance that would come up when reasoning with equality on the subset types themselves. The next two commands are similar to their standard counterparts -Definition (see Section `TODO-1.3.2-Definition`_) and Fixpoint (see Section `TODO-1.3.4-Fixpoint`_) +:cmd:`Definition` and :cmd:`Fixpoint` in that they define constants. However, they may require the user to prove some goals to construct the final definitions. @@ -151,7 +151,7 @@ Program Definition obligations. Once solved using the commands shown below, it binds the final |Coq| term to the name ``ident`` in the environment. - .. exn:: ident already exists + .. exn:: @ident already exists (Program Definition) .. cmdv:: Program Definition @ident : @type := @term @@ -174,7 +174,7 @@ Program Definition .. TODO refer to production in alias -See also: Sections `TODO-6.10.1-Opaque`_, `TODO-6.10.2-Transparent`_, `TODO-8.7.5-unfold`_ +See also: Sections :ref:`vernac-controlling-the-reduction-strategies`, :tacn:`unfold` .. _program_fixpoint: @@ -196,7 +196,7 @@ The optional order annotation follows the grammar: + :g:`wf R x` which is equivalent to :g:`measure x (R)`. The structural fixpoint operator behaves just like the one of |Coq| (see -Section `TODO-1.3.4-Fixpoint`_), except it may also generate obligations. It works +:cmd:`Fixpoint`), except it may also generate obligations. It works with mutually recursive definitions too. .. coqtop:: reset none @@ -276,6 +276,7 @@ obligations (e.g. when defining mutually recursive blocks). The optional tactic is replaced by the default one if not specified. .. cmd:: {? Local|Global} Obligation Tactic := @tactic + :name: Obligation Tactic Sets the default obligation solving tactic applied to all obligations automatically, whether to solve them or when starting to prove one, diff --git a/doc/sphinx/addendum/ring.rst b/doc/sphinx/addendum/ring.rst index b861892cb..ae666a0d4 100644 --- a/doc/sphinx/addendum/ring.rst +++ b/doc/sphinx/addendum/ring.rst @@ -701,7 +701,7 @@ for |Coq|’s type-checker. Let us see why: At each step of rewriting, the whole context is duplicated in the proof term. Then, a tactic that does hundreds of rewriting generates huge proof terms. Since ``ACDSimpl`` was too slow, Samuel Boutin rewrote -it using reflection (see his article in TACS’97 [Bou97]_). Later, it +it using reflection (see :cite:`Bou97`). Later, it was rewritten by Patrick Loiseleur: the new tactic does not any more require ``ACDSimpl`` to compile and it makes use of |bdi|-reduction not only to replace the rewriting steps, but also to achieve the diff --git a/doc/sphinx/addendum/type-classes.rst b/doc/sphinx/addendum/type-classes.rst index becebb421..3e95bd8c4 100644 --- a/doc/sphinx/addendum/type-classes.rst +++ b/doc/sphinx/addendum/type-classes.rst @@ -5,9 +5,6 @@ Type Classes ============ -:Source: https://coq.inria.fr/distrib/current/refman/type-classes.html -:Author: Matthieu Sozeau - This chapter presents a quick reference of the commands related to type classes. For an actual introduction to type classes, there is a description of the system :cite:`sozeau08` and the literature on type @@ -151,11 +148,10 @@ database. Sections and contexts --------------------- -To ease the parametrization of developments by type classes, we -provide a new way to introduce variables into section contexts, -compatible with the implicit argument mechanism. The new command works -similarly to the ``Variables`` vernacular (:ref:`TODO-1.3.2-Definitions`), except it -accepts any binding context as argument. For example: +To ease the parametrization of developments by type classes, we provide a new +way to introduce variables into section contexts, compatible with the implicit +argument mechanism. The new command works similarly to the :cmd:`Variables` +vernacular, except it accepts any binding context as argument. For example: .. coqtop:: all @@ -318,28 +314,25 @@ optional priority can be declared, 0 being the highest priority as for auto hints. If the priority is not specified, it defaults to the number of non-dependent binders of the instance. -Variants: - - -.. cmd:: Instance ident {? @binders} : forall {? @binders}, Class t1 … tn [| priority] := @term +..cmdv:: Instance @ident {? @binders} : forall {? @binders}, Class t1 … tn [| priority] := @term This syntax is used for declaration of singleton class instances or for directly giving an explicit term of type ``forall binders, Class t1 … tn``. One need not even mention the unique field name for singleton classes. -.. cmd:: Global Instance +..cmdv:: Global Instance One can use the ``Global`` modifier on instances declared in a section so that their generalization is automatically redeclared after the section is closed. -.. cmd:: Program Instance +..cmdv:: Program Instance - Switches the type-checking to Program (chapter :ref:`program`) and + Switches the type-checking to Program (chapter :ref:`programs`) and uses the obligation mechanism to manage missing fields. -.. cmd:: Declare Instance +..cmdv:: Declare Instance In a Module Type, this command states that a corresponding concrete instance should exist in any implementation of thisModule Type. This @@ -374,14 +367,10 @@ Context Declares variables according to the given binding context, which might use :ref:`implicit-generalization`. +.. tacn:: typeclasses eauto -.. _typeclasses-eauto: - -``typeclasses eauto`` -~~~~~~~~~~~~~~~~~~~~~ - -The ``typeclasses eauto`` tactic uses a different resolution engine than -eauto and auto. The main differences are the following: +This tactic uses a different resolution engine than :tacn:`eauto` and +:tacn:`auto`. The main differences are the following: + Contrary to ``eauto`` and ``auto``, the resolution is done entirely in the new proof engine (as of Coq v8.6), meaning that backtracking is @@ -432,118 +421,114 @@ Variants: typeclass subgoals the same as other subgoals (no shelving of non-typeclass goals in particular). -.. _autoapply: - -``autoapply term with ident`` -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +.. tacn:: autoapply @term with @ident + :name: autoapply -The tactic autoapply applies a term using the transparency information -of the hint database ident, and does *no* typeclass resolution. This can -be used in ``Hint Extern``’s for typeclass instances (in the hint -database ``typeclass_instances``) to allow backtracking on the typeclass -subgoals created by the lemma application, rather than doing type class -resolution locally at the hint application time. + The tactic autoapply applies a term using the transparency information + of the hint database ident, and does *no* typeclass resolution. This can + be used in :cmd:`Hint Extern`’s for typeclass instances (in the hint + database ``typeclass_instances``) to allow backtracking on the typeclass + subgoals created by the lemma application, rather than doing type class + resolution locally at the hint application time. .. _TypeclassesTransparent: Typeclasses Transparent, Typclasses Opaque ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -.. cmd:: Typeclasses { Transparent | Opaque } {+ @ident} +.. cmd:: Typeclasses Transparent {+ @ident} - This commands defines the transparency of the given identifiers - during type class resolution. It is useful when some constants - prevent some unifications and make resolution fail. It is also useful - to declare constants which should never be unfolded during - proof-search, like fixpoints or anything which does not look like an - abbreviation. This can additionally speed up proof search as the - typeclass map can be indexed by such rigid constants (see - :ref:`thehintsdatabasesforautoandeauto`). By default, all constants - and local variables are considered transparent. One should take care - not to make opaque any constant that is used to abbreviate a type, - like: + This command defines makes the identifiers transparent during type class + resolution. -:: + .. cmdv:: Typeclasses Opaque {+ @ident} + :name: Typeclasses Opaque + + Make the identifiers opaque for typeclass search. It is useful when some + constants prevent some unifications and make resolution fail. It is also + useful to declare constants which should never be unfolded during + proof-search, like fixpoints or anything which does not look like an + abbreviation. This can additionally speed up proof search as the typeclass + map can be indexed by such rigid constants (see + :ref:`thehintsdatabasesforautoandeauto`). + + By default, all constants and local variables are considered transparent. One + should take care not to make opaque any constant that is used to abbreviate a + type, like: - relation A := A -> A -> Prop. + :: -This is equivalent to ``Hint Transparent, Opaque ident : typeclass_instances``. + relation A := A -> A -> Prop. + This is equivalent to ``Hint Transparent, Opaque ident : typeclass_instances``. -Set Typeclasses Dependency Order -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -This option (on by default since 8.6) respects the dependency order -between subgoals, meaning that subgoals which are depended on by other -subgoals come first, while the non-dependent subgoals were put before -the dependent ones previously (Coq v8.5 and below). This can result in -quite different performance behaviors of proof search. +.. opt:: Typeclasses Dependency Order + This option (on by default since 8.6) respects the dependency order + between subgoals, meaning that subgoals which are depended on by other + subgoals come first, while the non-dependent subgoals were put before + the dependent ones previously (Coq v8.5 and below). This can result in + quite different performance behaviors of proof search. -Set Typeclasses Filtered Unification -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -This option, available since Coq 8.6 and off by default, switches the -hint application procedure to a filter-then-unify strategy. To apply a -hint, we first check that the goal *matches* syntactically the -inferred or specified pattern of the hint, and only then try to -*unify* the goal with the conclusion of the hint. This can drastically -improve performance by calling unification less often, matching -syntactic patterns being very quick. This also provides more control -on the triggering of instances. For example, forcing a constant to -explicitely appear in the pattern will make it never apply on a goal -where there is a hole in that place. +.. opt:: Typeclasses Filtered Unification + This option, available since Coq 8.6 and off by default, switches the + hint application procedure to a filter-then-unify strategy. To apply a + hint, we first check that the goal *matches* syntactically the + inferred or specified pattern of the hint, and only then try to + *unify* the goal with the conclusion of the hint. This can drastically + improve performance by calling unification less often, matching + syntactic patterns being very quick. This also provides more control + on the triggering of instances. For example, forcing a constant to + explicitely appear in the pattern will make it never apply on a goal + where there is a hole in that place. -Set Typeclasses Limit Intros -~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +.. opt:: Typeclasses Limit Intros -This option (on by default) controls the ability to apply hints while -avoiding (functional) eta-expansions in the generated proof term. It -does so by allowing hints that conclude in a product to apply to a -goal with a matching product directly, avoiding an introduction. -*Warning:* this can be expensive as it requires rebuilding hint -clauses dynamically, and does not benefit from the invertibility -status of the product introduction rule, resulting in potentially more -expensive proof-search (i.e. more useless backtracking). + This option (on by default) controls the ability to apply hints while + avoiding (functional) eta-expansions in the generated proof term. It + does so by allowing hints that conclude in a product to apply to a + goal with a matching product directly, avoiding an introduction. + *Warning:* this can be expensive as it requires rebuilding hint + clauses dynamically, and does not benefit from the invertibility + status of the product introduction rule, resulting in potentially more + expensive proof-search (i.e. more useless backtracking). -Set Typeclass Resolution For Conversion -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +.. opt:: Typeclass Resolution For Conversion -This option (on by default) controls the use of typeclass resolution -when a unification problem cannot be solved during elaboration/type- -inference. With this option on, when a unification fails, typeclass -resolution is tried before launching unification once again. + This option (on by default) controls the use of typeclass resolution + when a unification problem cannot be solved during elaboration/type- + inference. With this option on, when a unification fails, typeclass + resolution is tried before launching unification once again. -Set Typeclasses Strict Resolution -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +.. opt:: Typeclasses Strict Resolution -Typeclass declarations introduced when this option is set have a -stricter resolution behavior (the option is off by default). When -looking for unifications of a goal with an instance of this class, we -“freeze” all the existentials appearing in the goals, meaning that -they are considered rigid during unification and cannot be -instantiated. + Typeclass declarations introduced when this option is set have a + stricter resolution behavior (the option is off by default). When + looking for unifications of a goal with an instance of this class, we + “freeze” all the existentials appearing in the goals, meaning that + they are considered rigid during unification and cannot be + instantiated. -Set Typeclasses Unique Solutions -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +.. opt:: Typeclasses Unique Solutions -When a typeclass resolution is launched we ensure that it has a single -solution or fail. This ensures that the resolution is canonical, but -can make proof search much more expensive. + When a typeclass resolution is launched we ensure that it has a single + solution or fail. This ensures that the resolution is canonical, but + can make proof search much more expensive. -Set Typeclasses Unique Instances -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +.. opt:: Typeclasses Unique Instances -Typeclass declarations introduced when this option is set have a more -efficient resolution behavior (the option is off by default). When a -solution to the typeclass goal of this class is found, we never -backtrack on it, assuming that it is canonical. + Typeclass declarations introduced when this option is set have a more + efficient resolution behavior (the option is off by default). When a + solution to the typeclass goal of this class is found, we never + backtrack on it, assuming that it is canonical. Typeclasses eauto `:=` @@ -566,7 +551,7 @@ Typeclasses eauto `:=` Set Typeclasses Debug ~~~~~~~~~~~~~~~~~~~~~ -.. cmd:: Set Typeclasses Debug {? Verbosity @num} +.. opt:: Typeclasses Debug {? Verbosity @num} These options allow to see the resolution steps of typeclasses that are performed during search. The ``Debug`` option is synonymous to ``Debug @@ -574,11 +559,10 @@ Verbosity 1``, and ``Debug Verbosity 2`` provides more information (tried tactics, shelving of goals, etc…). -Set Refine Instance Mode -~~~~~~~~~~~~~~~~~~~~~~~~ +.. opt:: Refine Instance Mode -The option Refine Instance Mode allows to switch the behavior of -instance declarations made through the Instance command. +This options allows to switch the behavior of instance declarations made through +the Instance command. + When it is on (the default), instances that have unsolved holes in their proof-term silently open the proof mode with the remaining diff --git a/doc/sphinx/addendum/universe-polymorphism.rst b/doc/sphinx/addendum/universe-polymorphism.rst new file mode 100644 index 000000000..c791fc906 --- /dev/null +++ b/doc/sphinx/addendum/universe-polymorphism.rst @@ -0,0 +1,445 @@ +.. include:: ../replaces.rst + +.. _polymorphicuniverses: + +Polymorphic Universes +====================== + +:Author: Matthieu Sozeau + +General Presentation +--------------------- + +.. warning:: + + The status of Universe Polymorphism is experimental. + +This section describes the universe polymorphic extension of |Coq|. +Universe polymorphism makes it possible to write generic definitions +making use of universes and reuse them at different and sometimes +incompatible universe levels. + +A standard example of the difference between universe *polymorphic* +and *monomorphic* definitions is given by the identity function: + +.. coqtop:: in + + Definition identity {A : Type} (a : A) := a. + +By default, constant declarations are monomorphic, hence the identity +function declares a global universe (say ``Top.1``) for its domain. +Subsequently, if we try to self-apply the identity, we will get an +error: + +.. coqtop:: all + + Fail Definition selfid := identity (@identity). + +Indeed, the global level ``Top.1`` would have to be strictly smaller than +itself for this self-application to typecheck, as the type of +:g:`(@identity)` is :g:`forall (A : Type@{Top.1}), A -> A` whose type is itself +:g:`Type@{Top.1+1}`. + +A universe polymorphic identity function binds its domain universe +level at the definition level instead of making it global. + +.. coqtop:: in + + Polymorphic Definition pidentity {A : Type} (a : A) := a. + +.. coqtop:: all + + About pidentity. + +It is then possible to reuse the constant at different levels, like +so: + +.. coqtop:: in + + Definition selfpid := pidentity (@pidentity). + +Of course, the two instances of :g:`pidentity` in this definition are +different. This can be seen when the :opt:`Printing Universes` option is on: + +.. coqtop:: none + + Set Printing Universes. + +.. coqtop:: all + + Print selfpid. + +Now :g:`pidentity` is used at two different levels: at the head of the +application it is instantiated at ``Top.3`` while in the argument position +it is instantiated at ``Top.4``. This definition is only valid as long as +``Top.4`` is strictly smaller than ``Top.3``, as show by the constraints. Note +that this definition is monomorphic (not universe polymorphic), so the +two universes (in this case ``Top.3`` and ``Top.4``) are actually global +levels. + +When printing :g:`pidentity`, we can see the universes it binds in +the annotation :g:`@{Top.2}`. Additionally, when +:g:`Set Printing Universes` is on we print the "universe context" of +:g:`pidentity` consisting of the bound universes and the +constraints they must verify (for :g:`pidentity` there are no constraints). + +Inductive types can also be declared universes polymorphic on +universes appearing in their parameters or fields. A typical example +is given by monoids: + +.. coqtop:: in + + Polymorphic Record Monoid := { mon_car :> Type; mon_unit : mon_car; + mon_op : mon_car -> mon_car -> mon_car }. + +.. coqtop:: in + + Print Monoid. + +The Monoid's carrier universe is polymorphic, hence it is possible to +instantiate it for example with :g:`Monoid` itself. First we build the +trivial unit monoid in :g:`Set`: + +.. coqtop:: in + + Definition unit_monoid : Monoid := + {| mon_car := unit; mon_unit := tt; mon_op x y := tt |}. + +From this we can build a definition for the monoid of :g:`Set`\-monoids +(where multiplication would be given by the product of monoids). + +.. coqtop:: in + + Polymorphic Definition monoid_monoid : Monoid. + refine (@Build_Monoid Monoid unit_monoid (fun x y => x)). + Defined. + +.. coqtop:: all + + Print monoid_monoid. + +As one can see from the constraints, this monoid is “large”, it lives +in a universe strictly higher than :g:`Set`. + +Polymorphic, Monomorphic +------------------------- + +.. cmd:: Polymorphic @definition + + As shown in the examples, polymorphic definitions and inductives can be + declared using the ``Polymorphic`` prefix. + +.. opt:: Universe Polymorphism + + Once enabled, this option will implicitly prepend ``Polymorphic`` to any + definition of the user. + +.. cmd:: Monomorphic @definition + + When the :opt:`Universe Polymorphism` option is set, to make a definition + producing global universe constraints, one can use the ``Monomorphic`` prefix. + +Many other commands support the ``Polymorphic`` flag, including: + +.. TODO add links on each of these? + +- ``Lemma``, ``Axiom``, and all the other “definition” keywords support + polymorphism. + +- ``Variables``, ``Context``, ``Universe`` and ``Constraint`` in a section support + polymorphism. This means that the universe variables (and associated + constraints) are discharged polymorphically over definitions that use + them. In other words, two definitions in the section sharing a common + variable will both get parameterized by the universes produced by the + variable declaration. This is in contrast to a “mononorphic” variable + which introduces global universes and constraints, making the two + definitions depend on the *same* global universes associated to the + variable. + +- :cmd:`Hint Resolve` and :cmd:`Hint Rewrite` will use the auto/rewrite hint + polymorphically, not at a single instance. + +Cumulative, NonCumulative +------------------------- + +Polymorphic inductive types, coinductive types, variants and records can be +declared cumulative using the :g:`Cumulative` prefix. + +.. cmd:: Cumulative @inductive + + Declares the inductive as cumulative + +Alternatively, there is an option :g:`Set Polymorphic Inductive +Cumulativity` which when set, makes all subsequent *polymorphic* +inductive definitions cumulative. When set, inductive types and the +like can be enforced to be non-cumulative using the :g:`NonCumulative` +prefix. + +.. cmd:: NonCumulative @inductive + + Declares the inductive as non-cumulative + +.. opt:: Polymorphic Inductive Cumulativity + + When this option is on, it sets all following polymorphic inductive + types as cumulative (it is off by default). + +Consider the examples below. + +.. coqtop:: in + + Polymorphic Cumulative Inductive list {A : Type} := + | nil : list + | cons : A -> list -> list. + +.. coqtop:: all + + Print list. + +When printing :g:`list`, the universe context indicates the subtyping +constraints by prefixing the level names with symbols. + +Because inductive subtypings are only produced by comparing inductives +to themselves with universes changed, they amount to variance +information: each universe is either invariant, covariant or +irrelevant (there are no contravariant subtypings in Coq), +respectively represented by the symbols `=`, `+` and `*`. + +Here we see that :g:`list` binds an irrelevant universe, so any two +instances of :g:`list` are convertible: :math:`E[Γ] ⊢ \mathsf{list}@\{i\}~A +=_{βδιζη} \mathsf{list}@\{j\}~B` whenever :math:`E[Γ] ⊢ A =_{βδιζη} B` and +this applies also to their corresponding constructors, when +they are comparable at the same type. + +See :ref:`Conversion-rules` for more details on convertibility and subtyping. +The following is an example of a record with non-trivial subtyping relation: + +.. coqtop:: all + + Polymorphic Cumulative Record packType := {pk : Type}. + +:g:`packType` binds a covariant universe, i.e. + +.. math:: + + E[Γ] ⊢ \mathsf{packType}@\{i\} =_{βδιζη} + \mathsf{packType}@\{j\}~\mbox{ whenever }~i ≤ j + +Cumulative inductive types, coninductive types, variants and records +only make sense when they are universe polymorphic. Therefore, an +error is issued whenever the user uses the :g:`Cumulative` or +:g:`NonCumulative` prefix in a monomorphic context. +Notice that this is not the case for the option :g:`Set Polymorphic Inductive Cumulativity`. +That is, this option, when set, makes all subsequent *polymorphic* +inductive declarations cumulative (unless, of course the :g:`NonCumulative` prefix is used) +but has no effect on *monomorphic* inductive declarations. + +Consider the following examples. + +.. coqtop:: all reset + + Monomorphic Cumulative Inductive Unit := unit. + +.. coqtop:: all reset + + Monomorphic NonCumulative Inductive Unit := unit. + +.. coqtop:: all reset + + Set Polymorphic Inductive Cumulativity. + Inductive Unit := unit. + +An example of a proof using cumulativity +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +.. coqtop:: in + + Set Universe Polymorphism. + Set Polymorphic Inductive Cumulativity. + + Inductive eq@{i} {A : Type@{i}} (x : A) : A -> Type@{i} := eq_refl : eq x x. + + Definition funext_type@{a b e} (A : Type@{a}) (B : A -> Type@{b}) + := forall f g : (forall a, B a), + (forall x, eq@{e} (f x) (g x)) + -> eq@{e} f g. + + Section down. + Universes a b e e'. + Constraint e' < e. + Lemma funext_down {A B} + (H : @funext_type@{a b e} A B) : @funext_type@{a b e'} A B. + Proof. + exact H. + Defined. + End down. + +Cumulativity Weak Constraints +----------------------------- + +.. opt:: Cumulativity Weak Constraints + +This option, on by default, causes "weak" constraints to be produced +when comparing universes in an irrelevant position. Processing weak +constraints is delayed until minimization time. A weak constraint +between `u` and `v` when neither is smaller than the other and +one is flexible causes them to be unified. Otherwise the constraint is +silently discarded. + +This heuristic is experimental and may change in future versions. +Disabling weak constraints is more predictable but may produce +arbitrary numbers of universes. + + +Global and local universes +--------------------------- + +Each universe is declared in a global or local environment before it +can be used. To ensure compatibility, every *global* universe is set +to be strictly greater than :g:`Set` when it is introduced, while every +*local* (i.e. polymorphically quantified) universe is introduced as +greater or equal to :g:`Set`. + + +Conversion and unification +--------------------------- + +The semantics of conversion and unification have to be modified a +little to account for the new universe instance arguments to +polymorphic references. The semantics respect the fact that +definitions are transparent, so indistinguishable from their bodies +during conversion. + +This is accomplished by changing one rule of unification, the first- +order approximation rule, which applies when two applicative terms +with the same head are compared. It tries to short-cut unfolding by +comparing the arguments directly. In case the constant is universe +polymorphic, we allow this rule to fire only when unifying the +universes results in instantiating a so-called flexible universe +variables (not given by the user). Similarly for conversion, if such +an equation of applicative terms fail due to a universe comparison not +being satisfied, the terms are unfolded. This change implies that +conversion and unification can have different unfolding behaviors on +the same development with universe polymorphism switched on or off. + + +Minimization +------------- + +Universe polymorphism with cumulativity tends to generate many useless +inclusion constraints in general. Typically at each application of a +polymorphic constant :g:`f`, if an argument has expected type :g:`Type@{i}` +and is given a term of type :g:`Type@{j}`, a :math:`j ≤ i` constraint will be +generated. It is however often the case that an equation :math:`j = i` would +be more appropriate, when :g:`f`\'s universes are fresh for example. +Consider the following example: + +.. coqtop:: none + + Polymorphic Definition pidentity {A : Type} (a : A) := a. + Set Printing Universes. + +.. coqtop:: in + + Definition id0 := @pidentity nat 0. + +.. coqtop:: all + + Print id0. + +This definition is elaborated by minimizing the universe of :g:`id0` to +level :g:`Set` while the more general definition would keep the fresh level +:g:`i` generated at the application of :g:`id` and a constraint that :g:`Set` :math:`≤ i`. +This minimization process is applied only to fresh universe variables. +It simply adds an equation between the variable and its lower bound if +it is an atomic universe (i.e. not an algebraic max() universe). + +.. opt:: Universe Minimization ToSet + + Turning this option off (it is on by default) disallows minimization + to the sort :g:`Set` and only collapses floating universes between + themselves. + + +Explicit Universes +------------------- + +The syntax has been extended to allow users to explicitly bind names +to universes and explicitly instantiate polymorphic definitions. + +.. cmd:: Universe @ident. + + In the monorphic case, this command declares a new global universe + named :g:`ident`, which can be referred to using its qualified name + as well. Global universe names live in a separate namespace. The + command supports the polymorphic flag only in sections, meaning the + universe quantification will be discharged on each section definition + independently. One cannot mix polymorphic and monomorphic + declarations in the same section. + + +.. cmd:: Constraint @ident @ord @ident. + + This command declares a new constraint between named universes. The + order relation :n:`@ord` can be one of :math:`<`, :math:`≤` or :math:`=`. If consistent, the constraint + is then enforced in the global environment. Like ``Universe``, it can be + used with the ``Polymorphic`` prefix in sections only to declare + constraints discharged at section closing time. One cannot declare a + global constraint on polymorphic universes. + + .. exn:: Undeclared universe @ident. + + .. exn:: Universe inconsistency. + + +Polymorphic definitions +~~~~~~~~~~~~~~~~~~~~~~~ + +For polymorphic definitions, the declaration of (all) universe levels +introduced by a definition uses the following syntax: + +.. coqtop:: in + + Polymorphic Definition le@{i j} (A : Type@{i}) : Type@{j} := A. + +.. coqtop:: all + + Print le. + +During refinement we find that :g:`j` must be larger or equal than :g:`i`, as we +are using :g:`A : Type@{i} <= Type@{j}`, hence the generated constraint. At the +end of a definition or proof, we check that the only remaining +universes are the ones declared. In the term and in general in proof +mode, introduced universe names can be referred to in terms. Note that +local universe names shadow global universe names. During a proof, one +can use :ref:`Show Universes <ShowUniverses>` to display the current context of universes. + +Definitions can also be instantiated explicitly, giving their full +instance: + +.. coqtop:: all + + Check (pidentity@{Set}). + Monomorphic Universes k l. + Check (le@{k l}). + +User-named universes and the anonymous universe implicitly attached to +an explicit :g:`Type` are considered rigid for unification and are never +minimized. Flexible anonymous universes can be produced with an +underscore or by omitting the annotation to a polymorphic definition. + +.. coqtop:: all + + Check (fun x => x) : Type -> Type. + Check (fun x => x) : Type -> Type@{_}. + + Check le@{k _}. + Check le. + +.. opt:: Strict Universe Declaration. + + The command ``Unset Strict Universe Declaration`` allows one to freely use + identifiers for universes without declaring them first, with the + semantics that the first use declares it. In this mode, the universe + names are not associated with the definition or proof once it has been + defined. This is meant mainly for debugging purposes. diff --git a/doc/sphinx/biblio.bib b/doc/sphinx/biblio.bib index 247f32103..97231c9ec 100644 --- a/doc/sphinx/biblio.bib +++ b/doc/sphinx/biblio.bib @@ -675,7 +675,6 @@ s}, author = {G. Huet}, booktitle = {A perspective in Theoretical Computer Science. Commemorative Volume for Gift Siromoney}, editor = {R. Narasimhan}, - note = {Also in~\cite{CoC89}}, publisher = {World Scientific Publishing}, title = {{The Constructive Engine}}, year = {1989} @@ -791,8 +790,7 @@ Matching and Term Rewriting}, @TechReport{Leroy90, author = {X. Leroy}, - title = {The {ZINC} experiment: an economical implementation -of the {ML} language}, + title = {The {ZINC} experiment: an economical implementation of the {ML} language}, institution = {INRIA}, number = {117}, year = {1990} @@ -815,11 +813,12 @@ of the {ML} language}, } @inproceedings{Luttik97specificationof, - Author = {Sebastiaan P. Luttik and Eelco Visser}, - Booktitle = {2nd International Workshop on the Theory and Practice of Algebraic Specifications (ASF+SDF'97), Electronic Workshops in Computing}, - Publisher = {Springer-Verlag}, - Title = {Specification of Rewriting Strategies}, - Year = {1997}} + author = {Sebastiaan P. Luttik and Eelco Visser}, + booktitle = {2nd International Workshop on the Theory and Practice of Algebraic Specifications (ASF+SDF'97), Electronic Workshops in Computing}, + publisher = {Springer-Verlag}, + title = {Specification of Rewriting Strategies}, + year = {1997} +} @Book{MaL84, author = {{P. Martin-L\"of}}, diff --git a/doc/sphinx/credits.rst b/doc/sphinx/credits.rst index fac0d0a4f..a75659798 100644 --- a/doc/sphinx/credits.rst +++ b/doc/sphinx/credits.rst @@ -1307,9 +1307,9 @@ features and deprecations, cleanups of the internals of the system along with a few new features. The main user visible changes are: - Kernel: fix a subject reduction failure due to allowing fixpoints - on non-recursive values, which allows to recover full parametricity - for CIC, by Matthieu Sozeau. Handling of evars in the VM (the kernel - still does not accept evars) by Pierre-Marie Pédrot. + on non-recursive values, by Matthieu Sozeau. + Handling of evars in the VM (the kernel still does not accept evars) + by Pierre-Marie Pédrot. - Notations: many improvements on recursive notations and support for destructuring patterns in the syntax of notations by Hugo Herbelin. @@ -1338,7 +1338,14 @@ with a few new features. The main user visible changes are: - Documentation: a large community effort resulted in the migration of the reference manual to the Sphinx documentation tool. The result - is this manual. + is this manual. The new documentation infrastructure (based on Sphinx) + is by Clément Pit-Claudel. The migration was coordinated by Maxime Dénès + and Paul Steckler, with some help of Théo Zimmermann during the + final integration phase. The 14 people who ported the manual are + Calvin Beck, Heiko Becker, Yves Bertot, Maxime Dénès, Richard Ford, + Pierre Letouzey, Assia Mahboubi, Clément Pit-Claudel, + Laurence Rideau, Matthieu Sozeau, Paul Steckler, Enrico Tassi, + Laurent Théry, Nikita Zyuzin. - Tools: experimental ``-mangle-names`` option to coqtop/coqc for linting proof scripts, by Jasper Hugunin. @@ -1366,17 +1373,16 @@ The OPAM repository for |Coq| packages has been maintained by Guillaume Melquiond, Matthieu Sozeau, Enrico Tassi with contributions from many users. A list of packages is available at https://coq.inria.fr/opam/www. -The 40 contributors for this version are Yves Bertot, Joachim -Breitner, Tej Chajed, Arthur Charguéraud, Jacques-Pascal Deplaix, Maxime -Dénès, Jim Fehrle, Yannick Forster, Gaëtan Gilbert, Jason Gross, Samuel -Gruetter, Thomas Hebb, Hugo Herbelin, Jasper Hugunin, Emilio Jesus -Gallego Arias, Ralf Jung, Johannes Kloos, Matej Košík, Robbert Krebbers, -Tony Beta Lambda, Vincent Laporte, Pierre Letouzey, Farzon Lotfi, -Cyprien Mangin, Guillaume Melquiond, Raphaël Monat, Carl Patenaude -Poulin, Pierre-Marie Pédrot, Matthew Ryan, Matt Quinn, Sigurd Schneider, -Bernhard Schommer, Matthieu Sozeau, Arnaud Spiwack, Paul Steckler, -Enrico Tassi, Anton Trunov, Martin Vassor, Vadim Zaliva and Théo -Zimmermann. +The 44 contributors for this version are Yves Bertot, Joachim Breitner, Tej +Chajed, Arthur Charguéraud, Jacques-Pascal Deplaix, Maxime Dénès, Jim Fehrle, +Julien Forest, Yannick Forster, Gaëtan Gilbert, Jason Gross, Samuel Gruetter, +Thomas Hebb, Hugo Herbelin, Jasper Hugunin, Emilio Jesus Gallego Arias, Ralf +Jung, Johannes Kloos, Matej Košík, Robbert Krebbers, Tony Beta Lambda, Vincent +Laporte, Peter LeFanu Lumsdaine, Pierre Letouzey, Farzon Lotfi, Cyprien Mangin, +Guillaume Melquiond, Raphaël Monat, Carl Patenaude Poulin, Pierre-Marie Pédrot, +Clément Pit-Claudel, Matthew Ryan, Matt Quinn, Sigurd Schneider, Bernhard +Schommer, Michael Soegtrop, Matthieu Sozeau, Arnaud Spiwack, Paul Steckler, +Enrico Tassi, Anton Trunov, Martin Vassor, Vadim Zaliva and Théo Zimmermann. Version 8.8 is the third release of |Coq| developed on a time-based development cycle. Its development spanned 6 months from the release of diff --git a/doc/sphinx/index.rst b/doc/sphinx/index.rst index 15e4ff3bc..296330607 100644 --- a/doc/sphinx/index.rst +++ b/doc/sphinx/index.rst @@ -16,6 +16,7 @@ Table of contents .. toctree:: :caption: The language + language/gallina-specification-language language/gallina-extensions language/coq-library language/cic @@ -27,6 +28,7 @@ Table of contents proof-engine/vernacular-commands proof-engine/proof-handling proof-engine/tactics + proof-engine/ltac proof-engine/detailed-tactic-examples proof-engine/ssreflect-proof-language @@ -59,6 +61,7 @@ Table of contents addendum/generalized-rewriting addendum/parallel-proof-processing addendum/miscellaneous-extensions + addendum/universe-polymorphism .. toctree:: :caption: Reference diff --git a/doc/sphinx/introduction.rst b/doc/sphinx/introduction.rst index 514745c1b..4a313df0c 100644 --- a/doc/sphinx/introduction.rst +++ b/doc/sphinx/introduction.rst @@ -2,7 +2,7 @@ Introduction ------------------------ -This document is the Reference Manual of version of the |Coq| proof +This document is the Reference Manual of the |Coq| proof assistant. A companion volume, the |Coq| Tutorial, is provided for the beginners. It is advised to read the Tutorial first. A book :cite:`CoqArt` on practical uses of the |Coq| system was @@ -60,7 +60,7 @@ continuous reading. However, it has some structure that is explained below. - The first part describes the specification language, |Gallina|. - Chapters :ref:`thegallinaspecificationlanguage` and :ref:`extensionsofgallina` describe the concrete + Chapters :ref:`gallinaspecificationlanguage` and :ref:`extensionsofgallina` describe the concrete syntax as well as the meaning of programs, theorems and proofs in the Calculus of Inductive Constructions. Chapter :ref:`thecoqlibrary` describes the standard library of |Coq|. Chapter :ref:`calculusofinductiveconstructions` is a mathematical description @@ -76,7 +76,7 @@ below. Chapter :ref:`proofhandling`. In Chapter :ref:`tactics`, all commands that realize one or more steps of the proof are presented: we call them *tactics*. The language to combine these tactics into complex proof - strategies is given in Chapter :ref:`thetacticlanguage`. Examples of tactics + strategies is given in Chapter :ref:`ltac`. Examples of tactics are described in Chapter :ref:`detailedexamplesoftactics`. - The third part describes how to extend the syntax of |Coq|. It diff --git a/doc/sphinx/language/cic.rst b/doc/sphinx/language/cic.rst index 7ed652409..5a2aa0a1f 100644 --- a/doc/sphinx/language/cic.rst +++ b/doc/sphinx/language/cic.rst @@ -97,7 +97,7 @@ ensure the existence of a mapping of the universes to the positive integers, the graph of constraints must remain acyclic. Typing expressions that violate the acyclicity of the graph of constraints results in a Universe inconsistency error (see also Section -:ref:`TODO-2.10`). +:ref:`printing-universes`). .. _Terms: @@ -373,19 +373,22 @@ following rules. -**Remark**: **Prod-Prop** and **Prod-Set** typing-rules make sense if we consider the -semantic difference between :math:`\Prop` and :math:`\Set`: +.. note:: + **Prod-Prop** and **Prod-Set** typing-rules make sense if we consider the + semantic difference between :math:`\Prop` and :math:`\Set`: -+ All values of a type that has a sort :math:`\Set` are extractable. -+ No values of a type that has a sort :math:`\Prop` are extractable. + + All values of a type that has a sort :math:`\Set` are extractable. + + No values of a type that has a sort :math:`\Prop` are extractable. -**Remark**: We may have :math:`\letin{x}{t:T}{u}` well-typed without having -:math:`((λ x:T.u) t)` well-typed (where :math:`T` is a type of -:math:`t`). This is because the value :math:`t` associated to -:math:`x` may be used in a conversion rule (see Section :ref:`Conversion-rules`). +.. note:: + We may have :math:`\letin{x}{t:T}{u}` well-typed without having + :math:`((λ x:T.u) t)` well-typed (where :math:`T` is a type of + :math:`t`). This is because the value :math:`t` associated to + :math:`x` may be used in a conversion rule + (see Section :ref:`Conversion-rules`). .. _Conversion-rules: @@ -398,9 +401,11 @@ can decide if two programs are *intentionally* equal (one says *convertible*). Convertibility is described in this section. -.. _β-reduction: +.. _beta-reduction: + +β-reduction +~~~~~~~~~~~ -**β-reduction.** We want to be able to identify some terms as we can identify the application of a function to a given argument with its result. For instance the identity function over a given type T can be written @@ -424,9 +429,11 @@ theoretically of great importance but we will not detail them here and refer the interested reader to :cite:`Coq85`. -.. _ι-reduction: +.. _iota-reduction: + +ι-reduction +~~~~~~~~~~~ -**ι-reduction.** A specific conversion rule is associated to the inductive objects in the global environment. We shall give later on (see Section :ref:`Well-formed-inductive-definitions`) the precise rules but it @@ -435,9 +442,11 @@ constructor behaves as expected. This reduction is called ι-reduction and is more precisely studied in :cite:`Moh93,Wer94`. -.. _δ-reduction: +.. _delta-reduction: + +δ-reduction +~~~~~~~~~~~ -**δ-reduction.** We may have variables defined in local contexts or constants defined in the global environment. It is legal to identify such a reference with its value, that is to expand (or unfold) it into its value. This @@ -458,9 +467,11 @@ reduction is called δ-reduction and shows as follows. E[Γ] ⊢ c~\triangleright_δ~t -.. _ζ-reduction: +.. _zeta-reduction: + +ζ-reduction +~~~~~~~~~~~ -**ζ-reduction.** |Coq| allows also to remove local definitions occurring in terms by replacing the defined variable by its value. The declaration being destroyed, this reduction differs from δ-reduction. It is called @@ -475,9 +486,11 @@ destroyed, this reduction differs from δ-reduction. It is called E[Γ] ⊢ \letin{x}{u}{t}~\triangleright_ζ~\subst{t}{x}{u} -.. _η-expansion: +.. _eta-expansion: + +η-expansion +~~~~~~~~~~~ -**η-expansion.** Another important concept is η-expansion. It is legal to identify any term :math:`t` of functional type :math:`∀ x:T, U` with its so-called η-expansion @@ -487,34 +500,38 @@ term :math:`t` of functional type :math:`∀ x:T, U` with its so-called η-expan for :math:`x` an arbitrary variable name fresh in :math:`t`. -**Remark**: We deliberately do not define η-reduction: +.. note:: -.. math:: - λ x:T. (t~x) \not\triangleright_η t + We deliberately do not define η-reduction: -This is because, in general, the type of :math:`t` need not to be convertible -to the type of :math:`λ x:T. (t~x)`. E.g., if we take :math:`f` such that: + .. math:: + λ x:T. (t~x) \not\triangleright_η t -.. math:: - f : ∀ x:\Type(2),\Type(1) + This is because, in general, the type of :math:`t` need not to be convertible + to the type of :math:`λ x:T. (t~x)`. E.g., if we take :math:`f` such that: + + .. math:: + f : ∀ x:\Type(2),\Type(1) -then + then -.. math:: - λ x:\Type(1),(f~x) : ∀ x:\Type(1),\Type(1) + .. math:: + λ x:\Type(1),(f~x) : ∀ x:\Type(1),\Type(1) -We could not allow + We could not allow -.. math:: - λ x:Type(1),(f x) \triangleright_η f + .. math:: + λ x:Type(1),(f x) \triangleright_η f -because the type of the reduced term :math:`∀ x:\Type(2),\Type(1)` would not be -convertible to the type of the original term :math:`∀ x:\Type(1),\Type(1).` + because the type of the reduced term :math:`∀ x:\Type(2),\Type(1)` would not be + convertible to the type of the original term :math:`∀ x:\Type(1),\Type(1).` -.. _Convertibility: +.. _convertibility: + +Convertibility +~~~~~~~~~~~~~~ -**Convertibility.** Let us write :math:`E[Γ] ⊢ t \triangleright u` for the contextual closure of the relation :math:`t` reduces to :math:`u` in the global environment :math:`E` and local context :math:`Γ` with one of the previous @@ -704,8 +721,6 @@ called the *context of parameters*. Furthermore, we must have that each :math:`T` in :math:`(t:T)∈Γ_I` can be written as: :math:`∀Γ_P,∀Γ_{\mathit{Arr}(t)}, S` where :math:`Γ_{\mathit{Arr}(t)}` is called the *Arity* of the inductive type t and :math:`S` is called the sort of the inductive type t (not to be confused with :math:`\Sort` which is the set of sorts). - - ** Examples** The declaration for parameterized lists is: .. math:: @@ -794,18 +809,18 @@ contains an inductive declaration. --------------------- E[Γ] ⊢ c : C -**Example.** -Provided that our environment :math:`E` contains inductive definitions we showed before, -these two inference rules above enable us to conclude that: +.. example:: + Provided that our environment :math:`E` contains inductive definitions we showed before, + these two inference rules above enable us to conclude that: -.. math:: - \begin{array}{l} + .. math:: + \begin{array}{l} E[Γ] ⊢ \even : \nat→\Prop\\ E[Γ] ⊢ \odd : \nat→\Prop\\ E[Γ] ⊢ \even\_O : \even~O\\ E[Γ] ⊢ \even\_S : \forall~n:\nat, \odd~n → \even~(S~n)\\ E[Γ] ⊢ \odd\_S : \forall~n:\nat, \even~n → \odd~(S~n) - \end{array} + \end{array} @@ -820,8 +835,9 @@ to inconsistent systems. We restrict ourselves to definitions which satisfy a syntactic criterion of positivity. Before giving the formal rules, we need a few definitions: +Arity of a given sort ++++++++++++++++++++++ -**Type is an Arity of Sort S.** A type :math:`T` is an *arity of sort s* if it converts to the sort s or to a product :math:`∀ x:T,U` with :math:`U` an arity of sort s. @@ -831,7 +847,8 @@ product :math:`∀ x:T,U` with :math:`U` an arity of sort s. :math:`\Prop`. -**Type is an Arity.** +Arity ++++++ A type :math:`T` is an *arity* if there is a :math:`s∈ \Sort` such that :math:`T` is an arity of sort s. @@ -841,32 +858,34 @@ sort s. :math:`A→ Set` and :math:`∀ A:\Prop,A→ \Prop` are arities. -**Type of Constructor of I.** +Type constructor +++++++++++++++++ We say that T is a *type of constructor of I* in one of the following two cases: - + :math:`T` is :math:`(I~t_1 … t_n )` + :math:`T` is :math:`∀ x:U,T'` where :math:`T'` is also a type of constructor of :math:`I` - - .. example:: :math:`\nat` and :math:`\nat→\nat` are types of constructor of :math:`\nat`. :math:`∀ A:Type,\List~A` and :math:`∀ A:Type,A→\List~A→\List~A` are types of constructor of :math:`\List`. -**Positivity Condition.** +.. _positivity: + +Positivity Condition +++++++++++++++++++++ + The type of constructor :math:`T` will be said to *satisfy the positivity condition* for a constant :math:`X` in the following cases: - + :math:`T=(X~t_1 … t_n )` and :math:`X` does not occur free in any :math:`t_i` + :math:`T=∀ x:U,V` and :math:`X` occurs only strictly positively in :math:`U` and the type :math:`V` satisfies the positivity condition for :math:`X`. - -**Occurs Strictly Positively.** +Strict positivity ++++++++++++++++++ + The constant :math:`X` *occurs strictly positively* in :math:`T` in the following cases: @@ -886,11 +905,12 @@ cases: any of the :math:`t_i`, and the (instantiated) types of constructor :math:`\subst{C_i}{p_j}{a_j}_{j=1… m}` of :math:`I` satisfy the nested positivity condition for :math:`X` -**Nested Positivity Condition.** +Nested Positivity ++++++++++++++++++ + The type of constructor :math:`T` of :math:`I` *satisfies the nested positivity condition* for a constant :math:`X` in the following cases: - + :math:`T=(I~b_1 … b_m~u_1 … u_p)`, :math:`I` is an inductive definition with :math:`m` parameters and :math:`X` does not occur in any :math:`u_i` + :math:`T=∀ x:U,V` and :math:`X` occurs only strictly positively in :math:`U` and the type :math:`V` @@ -937,12 +957,11 @@ For instance, if one considers the type │ ╰─ list satisfies the positivity condition for list A ... (bullet 1) - - - .. _Correctness-rules: -**Correctness rules.** +Correctness rules ++++++++++++++++++ + We shall now describe the rules allowing the introduction of a new inductive definition. @@ -1009,7 +1028,9 @@ has type :math:`\Type(k)` with :math:`k<j` and :math:`k≤ i`. .. _Template-polymorphism: -**Template polymorphism.** +Template polymorphism ++++++++++++++++++++++ + Inductive types declared in Type are polymorphic over their arguments in Type. If :math:`A` is an arity of some sort and s is a sort, we write :math:`A_{/s}` for the arity obtained from :math:`A` by replacing its sort with s. @@ -1053,7 +1074,7 @@ provided that the following side conditions hold: we have :math:`(E[Γ_{I′} ;Γ_{P′}] ⊢ C_i : s_{q_i})_{i=1… n}` ; + the sorts :math:`s_i` are such that all eliminations, to :math:`\Prop`, :math:`\Set` and :math:`\Type(j)`, are allowed - (see Section Destructors_). + (see Section :ref:`Destructors`). @@ -1083,14 +1104,14 @@ The sorts :math:`s_j` are chosen canonically so that each :math:`s_j` is minimal respect to the hierarchy :math:`\Prop ⊂ \Set_p ⊂ \Type` where :math:`\Set_p` is predicative :math:`\Set`. More precisely, an empty or small singleton inductive definition (i.e. an inductive definition of which all inductive types are -singleton – see paragraph Destructors_) is set in :math:`\Prop`, a small non-singleton +singleton – see Section :ref:`Destructors`) is set in :math:`\Prop`, a small non-singleton inductive type is set in :math:`\Set` (even in case :math:`\Set` is impredicative – see Section The-Calculus-of-Inductive-Construction-with-impredicative-Set_), and otherwise in the Type hierarchy. Note that the side-condition about allowed elimination sorts in the rule **Ind-Family** is just to avoid to recompute the allowed elimination -sorts at each instance of a pattern-matching (see section Destructors_). As +sorts at each instance of a pattern-matching (see Section :ref:`Destructors`). As an example, let us consider the following definition: .. example:: @@ -1106,7 +1127,7 @@ in the Type hierarchy. Here, the parameter :math:`A` has this property, hence, if :g:`option` is applied to a type in :math:`\Set`, the result is in :math:`\Set`. Note that if :g:`option` is applied to a type in :math:`\Prop`, then, the result is not set in :math:`\Prop` but in :math:`\Set` still. This is because :g:`option` is not a singleton type -(see section Destructors_) and it would lose the elimination to :math:`\Set` and :math:`\Type` +(see Section :ref:`Destructors`) and it would lose the elimination to :math:`\Set` and :math:`\Type` if set in :math:`\Prop`. .. example:: @@ -1135,9 +1156,10 @@ eliminations schemes are allowed. Check (fun (A:Prop) (B:Set) => prod A B). Check (fun (A:Type) (B:Prop) => prod A B). -Remark: Template polymorphism used to be called “sort-polymorphism of -inductive types” before universe polymorphism (see Chapter :ref:`polymorphicuniverses`) was -introduced. +.. note:: + Template polymorphism used to be called “sort-polymorphism of + inductive types” before universe polymorphism + (see Chapter :ref:`polymorphicuniverses`) was introduced. .. _Destructors: @@ -1213,9 +1235,11 @@ Coquand in :cite:`Coq92`. One is the definition by pattern-matching. The second one is a definition by guarded fixpoints. -.. _The-match…with-end-construction: +.. _match-construction: + +The match ... with ... end construction ++++++++++++++++++++++++++++++++++++++++ -**The match…with …end construction** The basic idea of this operator is that we have an object :math:`m` in an inductive type :math:`I` and we want to prove a property which possibly depends on :math:`m`. For this, it is enough to prove the property for @@ -1272,7 +1296,7 @@ and :math:`I:A` and :math:`λ a x . P : B` then by :math:`[I:A|B]` we mean that :math:`λ a x . P` with :math:`m` in the above match-construct. -.. _Notations: +.. _cic_notations: **Notations.** The :math:`[I:A|B]` is defined as the smallest relation satisfying the following rules: We write :math:`[I|B]` for :math:`[I:A|B]` where :math:`A` is the type of :math:`I`. @@ -1473,20 +1497,20 @@ definition :math:`\ind{r}{Γ_I}{Γ_C}` with :math:`Γ_C = [c_1 :C_1 ;…;c_n :C_ -**Example.** -Below is a typing rule for the term shown in the previous example: +.. example:: + Below is a typing rule for the term shown in the previous example: -.. inference:: list example + .. inference:: list example - \begin{array}{l} - E[Γ] ⊢ t : (\List ~\nat) \\ - E[Γ] ⊢ P : B \\ - [(\List ~\nat)|B] \\ - E[Γ] ⊢ f_1 : {(\kw{nil} ~\nat)}^P \\ - E[Γ] ⊢ f_2 : {(\kw{cons} ~\nat)}^P - \end{array} - ------------------------------------------------ - E[Γ] ⊢ \case(t,P,f_1 |f_2 ) : (P~t) + \begin{array}{l} + E[Γ] ⊢ t : (\List ~\nat) \\ + E[Γ] ⊢ P : B \\ + [(\List ~\nat)|B] \\ + E[Γ] ⊢ f_1 : {(\kw{nil} ~\nat)}^P \\ + E[Γ] ⊢ f_2 : {(\kw{cons} ~\nat)}^P + \end{array} + ------------------------------------------------ + E[Γ] ⊢ \case(t,P,f_1 |f_2 ) : (P~t) .. _Definition-of-ι-reduction: @@ -1619,9 +1643,8 @@ Given a variable :math:`y` of type an inductive definition in a declaration ones in which one of the :math:`I_l` occurs) are structurally smaller than y. -The following definitions are correct, we enter them using the ``Fixpoint`` -command as described in Section :ref:`TODO-1.3.4` and show the internal -representation. +The following definitions are correct, we enter them using the :cmd:`Fixpoint` +command and show the internal representation. .. example:: .. coqtop:: all @@ -1678,7 +1701,7 @@ possible: **Mutual induction** The principles of mutual induction can be automatically generated -using the Scheme command described in Section :ref:`TODO-13.1`. +using the Scheme command described in Section :ref:`proofschemes-induction-principles`. .. _Admissible-rules-for-global-environments: diff --git a/doc/sphinx/language/coq-library.rst b/doc/sphinx/language/coq-library.rst index 29053d6a5..6af6e7897 100644 --- a/doc/sphinx/language/coq-library.rst +++ b/doc/sphinx/language/coq-library.rst @@ -5,9 +5,6 @@ The |Coq| library ================= -:Source: https://coq.inria.fr/distrib/current/refman/stdlib.html -:Converted by: Pierre Letouzey - .. index:: single: Theories @@ -22,7 +19,7 @@ The |Coq| library is structured into two parts: developments of |Coq| axiomatizations about sets, lists, sorting, arithmetic, etc. This library comes with the system and its modules are directly accessible through the ``Require`` command (see - Section :ref:`TODO-6.5.1-Require`); + Section :ref:`compiled-files`); In addition, user-provided libraries or developments are provided by |Coq| users' community. These libraries and developments are available @@ -51,6 +48,7 @@ at the |Coq| root directory; this includes the modules ``Tactics``. Module ``Logic_Type`` also makes it in the initial state. +.. _init-notations: Notations ~~~~~~~~~ @@ -93,6 +91,8 @@ Notation Precedence Associativity ``_ ^ _`` 30 right ================ ============ =============== +.. _coq-library-logic: + Logic ~~~~~ @@ -524,7 +524,7 @@ provides a scope ``nat_scope`` gathering standard notations for common operations (``+``, ``*``) and a decimal notation for numbers, allowing for instance to write ``3`` for :g:`S (S (S O)))`. This also works on the left hand side of a ``match`` expression (see for example -section :ref:`TODO-refine-example`). This scope is opened by default. +section :tacn:`refine`). This scope is opened by default. .. example:: @@ -756,7 +756,7 @@ subdirectories: These directories belong to the initial load path of the system, and the modules they provide are compiled at installation time. So they are directly accessible with the command ``Require`` (see -Section :ref:`TODO-6.5.1-Require`). +Section :ref:`compiled-files`). The different modules of the |Coq| standard library are documented online at http://coq.inria.fr/stdlib. @@ -930,9 +930,8 @@ tactics (see Chapter :ref:`tactics`), there are also: Goal forall x y z:R, x * y * z <> 0. intros; split_Rmult. -These tactics has been written with the tactic language Ltac -described in Chapter :ref:`thetacticlanguage`. - +These tactics has been written with the tactic language |Ltac| +described in Chapter :ref:`ltac`. List library ~~~~~~~~~~~~ diff --git a/doc/sphinx/language/gallina-extensions.rst b/doc/sphinx/language/gallina-extensions.rst index 1d6c11b38..1a7628d89 100644 --- a/doc/sphinx/language/gallina-extensions.rst +++ b/doc/sphinx/language/gallina-extensions.rst @@ -41,7 +41,9 @@ Remark that the type of a particular identifier may depend on a previously-given order of the fields is important. Finally, each `param` is a parameter of the record. More generally, a record may have explicitly defined (a.k.a. manifest) -fields. For instance, we might have:: +fields. For instance, we might have: + +.. coqtop:: in Record ident param : sort := { ident₁ : type₁ ; ident₂ := term₂ ; ident₃ : type₃ }. @@ -50,6 +52,8 @@ may depend on |ident_1|. .. example:: + The set of rational numbers may be defined as: + .. coqtop:: reset all Record Rat : Set := mkRat @@ -144,7 +148,7 @@ available: It can be activated for printing with -.. cmd:: Set Printing Projections. +.. opt:: Printing Projections .. example:: @@ -169,7 +173,7 @@ and the syntax `term.(@qualid` |term_1| |term_n| `)` to `@qualid` |term_1| `…` In each case, `term` is the object projected and the other arguments are the parameters of the inductive type. -.. note::. Records defined with the ``Record`` keyword are not allowed to be +.. note:: Records defined with the ``Record`` keyword are not allowed to be recursive (references to the record's name in the type of its field raises an error). To define recursive records, one can use the ``Inductive`` and ``CoInductive`` keywords, resulting in an inductive or co-inductive record. @@ -179,9 +183,9 @@ other arguments are the parameters of the inductive type. .. note:: Induction schemes are automatically generated for inductive records. Automatic generation of induction schemes for non-recursive records defined with the ``Record`` keyword can be activated with the - ``Nonrecursive Elimination Schemes`` option (see :ref:`TODO-13.1.1-nonrecursive-elimination-schemes`). + ``Nonrecursive Elimination Schemes`` option (see :ref:`proofschemes-induction-principles`). -.. note::``Structure`` is a synonym of the keyword ``Record``. +.. note:: ``Structure`` is a synonym of the keyword ``Record``. .. warn:: @ident cannot be defined. @@ -189,9 +193,9 @@ other arguments are the parameters of the inductive type. This message is followed by an explanation of this impossibility. There may be three reasons: - #. The name `ident` already exists in the environment (see Section :ref:`TODO-1.3.1-axioms`). + #. The name `ident` already exists in the environment (see :cmd:`Axiom`). #. The body of `ident` uses an incorrect elimination for - `ident` (see Sections :ref:`TODO-1.3.4-fixpoint` and :ref:`TODO-4.5.3-case-expr`). + `ident` (see :cmd:`Fixpoint` and :ref:`Destructors`). #. The type of the projections `ident` depends on previous projections which themselves could not be defined. @@ -208,16 +212,18 @@ other arguments are the parameters of the inductive type. During the definition of the one-constructor inductive definition, all the errors of inductive definitions, as described in Section -:ref:`TODO-1.3.3-inductive-definitions`, may also occur. +:ref:`gallina-inductive-definitions`, may also occur. -**See also** Coercions and records in Section :ref:`TODO-18.9-coercions-and-records` of the chapter devoted to coercions. +**See also** Coercions and records in Section :ref:`coercions-classes-as-records` of the chapter devoted to coercions. .. _primitive_projections: Primitive Projections ~~~~~~~~~~~~~~~~~~~~~ -The option ``Set Primitive Projections`` turns on the use of primitive +.. opt:: Primitive Projections + +Turns on the use of primitive projections when defining subsequent records (even through the ``Inductive`` and ``CoInductive`` commands). Primitive projections extended the Calculus of Inductive Constructions with a new binary @@ -229,21 +235,27 @@ terms when manipulating parameterized records and typechecking time. On the user level, primitive projections can be used as a replacement for the usual defined ones, although there are a few notable differences. -The internally omitted parameters can be reconstructed at printing time -even though they are absent in the actual AST manipulated by the kernel. This -can be obtained by setting the ``Printing Primitive Projection Parameters`` -flag. Another compatibility printing can be activated thanks to the -``Printing Primitive Projection Compatibility`` option which governs the +.. opt:: Printing Primitive Projection Parameters + +This compatibility option reconstructs internally omitted parameters at +printing time (even though they are absent in the actual AST manipulated +by the kernel). + +.. opt:: Printing Primitive Projection Compatibility + +This compatibility option (on by default) governs the printing of pattern-matching over primitive records. Primitive Record Types ++++++++++++++++++++++ -When the ``Set Primitive Projections`` option is on, definitions of +When the :opt:`Primitive Projections` option is on, definitions of record types change meaning. When a type is declared with primitive projections, its :g:`match` construct is disabled (see :ref:`primitive_projections` though). To eliminate the (co-)inductive type, one must use its defined primitive projections. +.. The following paragraph is quite redundant with what is above + For compatibility, the parameters still appear to the user when printing terms even though they are absent in the actual AST manipulated by the kernel. This can be changed by unsetting the @@ -304,7 +316,7 @@ printed back as :g:`match` constructs. Variants and extensions of :g:`match` ------------------------------------- -.. _extended pattern-matching: +.. _mult-match: Multiple and nested pattern-matching ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ @@ -316,10 +328,11 @@ patterns are allowed, as in ML-like languages. The extension just acts as a macro that is expanded during parsing into a sequence of match on simple patterns. Especially, a construction defined using the extended match is generally printed -under its expanded form (see ``Set Printing Matching`` in :ref:`controlling-match-pp`). +under its expanded form (see :opt:`Printing Matching`). -See also: :ref:`extended pattern-matching`. +See also: :ref:`extendedpatternmatching`. +.. _if-then-else: Pattern-matching on boolean values: the if expression ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ @@ -462,116 +475,63 @@ of :g:`match` expressions. Printing nested patterns +++++++++++++++++++++++++ +.. opt:: Printing Matching. + The Calculus of Inductive Constructions knows pattern-matching only over simple patterns. It is however convenient to re-factorize nested pattern-matching into a single pattern-matching over a nested -pattern. |Coq|’s printer tries to do such limited re-factorization. - -.. cmd:: Set Printing Matching. - -This tells |Coq| to try to use nested patterns. This is the default -behavior. +pattern. -.. cmd:: Unset Printing Matching. +When this option is on (default), |Coq|’s printer tries to do such +limited re-factorization. +Turning it off tells |Coq| to print only simple pattern-matching problems +in the same way as the |Coq| kernel handles them. -This tells |Coq| to print only simple pattern-matching problems in the -same way as the |Coq| kernel handles them. - -.. cmd:: Test Printing Matching. - -This tells if the printing matching mode is on or off. The default is -on. Factorization of clauses with same right-hand side ++++++++++++++++++++++++++++++++++++++++++++++++++ +.. opt:: Printing Factorizable Match Patterns. + When several patterns share the same right-hand side, it is additionally possible to share the clauses using disjunctive patterns. Assuming that the -printing matching mode is on, whether |Coq|'s printer shall try to do this kind -of factorization is governed by the following commands: - -.. cmd:: Set Printing Factorizable Match Patterns. - -This tells |Coq|'s printer to try to use disjunctive patterns. This is the -default behavior. - -.. cmd:: Unset Printing Factorizable Match Patterns. - -This tells |Coq|'s printer not to try to use disjunctive patterns. - -.. cmd:: Test Printing Factorizable Match Patterns. - -This tells if the factorization of clauses with same right-hand side is on or -off. +printing matching mode is on, this option (on by default) tells |Coq|'s +printer to try to do this kind of factorization. Use of a default clause +++++++++++++++++++++++ +.. opt:: Printing Allow Default Clause. + When several patterns share the same right-hand side which do not depend on the arguments of the patterns, yet an extra factorization is possible: the disjunction of patterns can be replaced with a `_` default clause. Assuming that -the printing matching mode and the factorization mode are on, whether |Coq|'s -printer shall try to use a default clause is governed by the following commands: - -.. cmd:: Set Printing Allow Default Clause. - -This tells |Coq|'s printer to use a default clause when relevant. This is the -default behavior. - -.. cmd:: Unset Printing Allow Default Clause. - -This tells |Coq|'s printer not to use a default clause. - -.. cmd:: Test Printing Allow Default Clause. - -This tells if the use of a default clause is allowed. +the printing matching mode and the factorization mode are on, this option (on by +default) tells |Coq|'s printer to use a default clause when relevant. Printing of wildcard patterns ++++++++++++++++++++++++++++++ -Some variables in a pattern may not occur in the right-hand side of -the pattern-matching clause. There are options to control the display -of these variables. - -.. cmd:: Set Printing Wildcard. +.. opt:: Printing Wildcard. -The variables having no occurrences in the right-hand side of the +Some variables in a pattern may not occur in the right-hand side of +the pattern-matching clause. When this option is on (default), the +variables having no occurrences in the right-hand side of the pattern-matching clause are just printed using the wildcard symbol “_”. -.. cmd:: Unset Printing Wildcard. - -The variables, even useless, are printed using their usual name. But -some non-dependent variables have no name. These ones are still -printed using a “_”. - -.. cmd:: Test Printing Wildcard. - -This tells if the wildcard printing mode is on or off. The default is -to print wildcard for useless variables. - Printing of the elimination predicate +++++++++++++++++++++++++++++++++++++ +.. opt:: Printing Synth. + In most of the cases, the type of the result of a matched term is mechanically synthesizable. Especially, if the result type does not -depend of the matched term. - -.. cmd:: Set Printing Synth. - -The result type is not printed when |Coq| knows that it can re- +depend of the matched term. When this option is on (default), +the result type is not printed when |Coq| knows that it can re- synthesize it. -.. cmd:: Unset Printing Synth. - -This forces the result type to be always printed. - -.. cmd:: Test Printing Synth. - -This tells if the non-printing of synthesizable types is on or off. -The default is to not print synthesizable types. - Printing matching on irrefutable patterns ++++++++++++++++++++++++++++++++++++++++++ @@ -667,7 +627,7 @@ The following experimental command is available when the ``FunInd`` library has This command can be seen as a generalization of ``Fixpoint``. It is actually a wrapper for several ways of defining a function *and other useful related objects*, namely: an induction principle that reflects the recursive -structure of the function (see Section :ref:`TODO-8.5.5-functional-induction`) and its fixpoint equality. +structure of the function (see :tacn:`function induction`) and its fixpoint equality. The meaning of this declaration is to define a function ident, similarly to ``Fixpoint`. Like in ``Fixpoint``, the decreasing argument must be given (unless the function is not recursive), but it might not @@ -680,8 +640,8 @@ The ``Function`` construction also enjoys the ``with`` extension to define mutually recursive definitions. However, this feature does not work for non structurally recursive functions. -See the documentation of functional induction (:ref:`TODO-8.5.5-functional-induction`) -and ``Functional Scheme`` (:ref:`TODO-13.2-functional-scheme`) for how to use +See the documentation of functional induction (:tacn:`function induction`) +and ``Functional Scheme`` (:ref:`functional-scheme`) for how to use the induction principle to easily reason about the function. Remark: To obtain the right principle, it is better to put rigid @@ -752,7 +712,7 @@ terminating functions. `functional inversion` will not be available for the function. -See also: :ref:`TODO-13.2-generating-ind-principles` and ref:`TODO-8.5.5-functional-induction` +See also: :ref:`functional-scheme` and :tacn:`function induction` Depending on the ``{…}`` annotation, different definition mechanisms are used by ``Function``. A more precise description is given below. @@ -763,7 +723,7 @@ used by ``Function``. A more precise description is given below. the following are defined: + `ident_rect`, `ident_rec` and `ident_ind`, which reflect the pattern - matching structure of `term` (see the documentation of :ref:`TODO-1.3.3-Inductive`); + matching structure of `term` (see :cmd:`Inductive`); + The inductive `R_ident` corresponding to the graph of `ident` (silently); + `ident_complete` and `ident_correct` which are inversion information linking the function and its graph. @@ -812,13 +772,14 @@ used by ``Function``. A more precise description is given below. hand. Remark: Proof obligations are presented as several subgoals belonging to a Lemma `ident`\ :math:`_{\sf tcc}`. +.. _section-mechanism: Section mechanism ----------------- The sectioning mechanism can be used to to organize a proof in structured sections. Then local declarations become available (see -Section :ref:`TODO-1.3.2-Definitions`). +Section :ref:`gallina-definitions`). .. cmd:: Section @ident. @@ -888,7 +849,7 @@ together, as well as a means of massive abstraction. In the syntax of module application, the ! prefix indicates that any `Inline` directive in the type of the functor arguments will be ignored -(see :ref:`named_module_type` below). +(see the ``Module Type`` command below). .. cmd:: Module @ident. @@ -974,8 +935,6 @@ Reserved commands inside an interactive module is equivalent to an interactive module where each `module_expression` is included. -.. _named_module_type: - .. cmd:: Module Type @ident. This command is used to start an interactive module type `ident`. @@ -996,7 +955,8 @@ Reserved commands inside an interactive module type: is a shortcut for the command ``Include`` `module` for each `module`. -.. cmd:: @assumption_keyword Inline @assums. +.. cmd:: @assumption_keyword Inline @assums + :name: Inline The instance of this assumption will be automatically expanded at functor application, except when this functor application is prefixed by a ``!`` annotation. @@ -1188,24 +1148,24 @@ some of the fields and give one of its possible implementations: Notice that ``M`` is a correct body for the component ``M2`` since its ``T`` component is equal ``nat`` and hence ``M1.T`` as specified. -**Remarks:** +.. note:: -#. Modules and module types can be nested components of each other. -#. One can have sections inside a module or a module type, but not a - module or a module type inside a section. -#. Commands like ``Hint`` or ``Notation`` can also appear inside modules and - module types. Note that in case of a module definition like: + #. Modules and module types can be nested components of each other. + #. One can have sections inside a module or a module type, but not a + module or a module type inside a section. + #. Commands like ``Hint`` or ``Notation`` can also appear inside modules and + module types. Note that in case of a module definition like: -:: + :: - Module N : SIG := M. + Module N : SIG := M. -or:: + or:: - Module N : SIG. … End N. + Module N : SIG. … End N. -hints and the like valid for ``N`` are not those defined in ``M`` (or the module body) but the ones defined -in ``SIG``. + hints and the like valid for ``N`` are not those defined in ``M`` + (or the module body) but the ones defined in ``SIG``. .. _import_qualid: @@ -1236,7 +1196,7 @@ in ``SIG``. Check T. Some features defined in modules are activated only when a module is -imported. This is for instance the case of notations (see :ref:`TODO-12.1-Notations`). +imported. This is for instance the case of notations (see :ref:`Notations`). Declarations made with the Local flag are never imported by theImport command. Such declarations are only accessible through their fully @@ -1282,13 +1242,11 @@ qualified name. This option (off by default) disables the printing of the types of fields, leaving only their names, for the commands ``Print Module`` and ``Print Module Type``. -.. cmd:: Locate Module @qualid. - - Prints the full name of the module `qualid`. - Libraries and qualified names --------------------------------- +.. _names-of-libraries: + Names of libraries ~~~~~~~~~~~~~~~~~~ @@ -1296,15 +1254,16 @@ The theories developed in |Coq| are stored in *library files* which are hierarchically classified into *libraries* and *sublibraries*. To express this hierarchy, library names are represented by qualified identifiers qualid, i.e. as list of identifiers separated by dots (see -:ref:`TODO-1.2.3-identifiers`). For instance, the library file ``Mult`` of the standard +:ref:`gallina-identifiers`). For instance, the library file ``Mult`` of the standard |Coq| library ``Arith`` is named ``Coq.Arith.Mult``. The identifier that starts the name of a library is called a *library root*. All library files of the standard library of |Coq| have the reserved root |Coq| but library file names based on other roots can be obtained by using |Coq| commands -(coqc, coqtop, coqdep, …) options ``-Q`` or ``-R`` (see :ref:`TODO-14.3.3-command-line-options`). +(coqc, coqtop, coqdep, …) options ``-Q`` or ``-R`` (see :ref:`command-line-options`). Also, when an interactive |Coq| session starts, a library of root ``Top`` is -started, unless option ``-top`` or ``-notop`` is set (see :ref:`TODO-14.3.3-command-line-options`). +started, unless option ``-top`` or ``-notop`` is set (see :ref:`command-line-options`). +.. _qualified-names: Qualified names ~~~~~~~~~~~~~~~ @@ -1339,13 +1298,13 @@ names also applies to library file names. |Coq| maintains a table called the name table which maps partially qualified names of constructions to absolute names. This table is updated by the -commands ``Require`` (see :ref:`TODO-6.5.1-Require`), Import and Export (see :ref:`import_qualid`) and +commands :cmd:`Require`, :cmd:`Import` and :cmd:`Export` and also each time a new declaration is added to the context. An absolute name is called visible from a given short or partially qualified name when this latter name is enough to denote it. This means that the short or partially qualified name is mapped to the absolute name in |Coq| name table. Definitions flagged as Local are only accessible with -their fully qualified name (see :ref:`TODO-1.3.2-definitions`). +their fully qualified name (see :ref:`gallina-definitions`). It may happen that a visible name is hidden by the short name or a qualified name of another construction. In this case, the name that @@ -1367,16 +1326,15 @@ accessible, absolute names can never be hidden. Locate nat. -See also: Command Locate in :ref:`TODO-6.3.10-locate-qualid` and Locate Library in -:ref:`TODO-6.6.11-locate-library`. +See also: Commands :cmd:`Locate` and :cmd:`Locate Library`. +.. _libraries-and-filesystem: Libraries and filesystem ~~~~~~~~~~~~~~~~~~~~~~~~ -Please note that the questions described here have been subject to -redesign in |Coq| v8.5. Former versions of |Coq| use the same terminology -to describe slightly different things. +.. note:: The questions described here have been subject to redesign in |Coq| 8.5. + Former versions of |Coq| use the same terminology to describe slightly different things. Compiled files (``.vo`` and ``.vio``) store sub-libraries. In order to refer to them inside |Coq|, a translation from file-system names to |Coq| names @@ -1412,7 +1370,7 @@ translation and with an empty logical prefix. The command line option ``-R`` is a variant of ``-Q`` which has the strictly same behavior regarding loadpaths, but which also makes the corresponding ``.vo`` files available through their short names in a way -not unlike the ``Import`` command (see :ref:`import_qualid`). For instance, ``-R`` `path` ``Lib`` +not unlike the ``Import`` command (see :ref:`here <import_qualid>`). For instance, ``-R`` `path` ``Lib`` associates to the ``filepath/fOO/Bar/File.vo`` the logical name ``Lib.fOO.Bar.File``, but allows this file to be accessed through the short names ``fOO.Bar.File,Bar.File`` and ``File``. If several files with @@ -1420,7 +1378,7 @@ identical base name are present in different subdirectories of a recursive loadpath, which of these files is found first may be system- dependent and explicit qualification is recommended. The ``From`` argument of the ``Require`` command can be used to bypass the implicit shortening -by providing an absolute root to the required file (see :ref:`TODO-6.5.1-require-qualid`). +by providing an absolute root to the required file (see :ref:`compiled-files`). There also exists another independent loadpath mechanism attached to OCaml object files (``.cmo`` or ``.cmxs``) rather than |Coq| object @@ -1428,11 +1386,12 @@ files as described above. The OCaml loadpath is managed using the option ``-I`` `path` (in the OCaml world, there is neither a notion of logical name prefix nor a way to access files in subdirectories of path). See the command ``Declare`` ``ML`` ``Module`` in -:ref:`TODO-6.5-compiled-files` to understand the need of the OCaml loadpath. +:ref:`compiled-files` to understand the need of the OCaml loadpath. -See :ref:`TODO-14.3.3-command-line-options` for a more general view over the |Coq| command +See :ref:`command-line-options` for a more general view over the |Coq| command line options. +.. _ImplicitArguments: Implicit arguments ------------------ @@ -1548,10 +1507,10 @@ inserted. In the second case, the function is considered to be implicitly applied to the implicit arguments it is waiting for: one says that the implicit argument is maximally inserted. -Each implicit argument can be declared to have to be inserted -maximally or non maximally. This can be governed argument per argument -by the command ``Implicit Arguments`` (see Section :ref:`declare-implicit-args`) or globally by the -command ``Set Maximal Implicit Insertion`` (see Section :ref:`controlling-insertion-implicit-args`). +Each implicit argument can be declared to have to be inserted maximally or non +maximally. This can be governed argument per argument by the command ``Implicit +Arguments`` (see Section :ref:`declare-implicit-args`) or globally by the +:opt:`Maximal Implicit Insertion` option. See also :ref:`displaying-implicit-args`. @@ -1627,6 +1586,7 @@ Declaring Implicit Arguments To set implicit arguments *a posteriori*, one can use the command: .. cmd:: Arguments @qualid {* @possibly_bracketed_ident }. + :name: Arguments (implicits) where the list of `possibly_bracketed_ident` is a prefix of the list of arguments of `qualid` where the ones to be declared implicit are @@ -1780,14 +1740,10 @@ appear strictly in the body of the type, they are implicit. Mode for automatic declaration of implicit arguments ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -In case one wants to systematically declare implicit the arguments -detectable as such, one may switch to the automatic declaration of -implicit arguments mode by using the command: - -.. cmd:: Set Implicit Arguments. +.. opt:: Implicit Arguments. -Conversely, one may unset the mode by using ``Unset Implicit Arguments``. -The mode is off by default. Auto-detection of implicit arguments is +This option (off by default) allows to systematically declare implicit +the arguments detectable as such. Auto-detection of implicit arguments is governed by options controlling whether strict and contextual implicit arguments have to be considered or not. @@ -1796,76 +1752,55 @@ arguments have to be considered or not. Controlling strict implicit arguments ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +.. opt:: Strict Implicit. + When the mode for automatic declaration of implicit arguments is on, the default is to automatically set implicit only the strict implicit arguments plus, for historical reasons, a small subset of the non-strict implicit arguments. To relax this constraint and to set -implicit all non strict implicit arguments by default, use the command: - -.. cmd:: Unset Strict Implicit. - -Conversely, use the command ``Set Strict Implicit`` to restore the -original mode that declares implicit only the strict implicit -arguments plus a small subset of the non strict implicit arguments. - -In the other way round, to capture exactly the strict implicit -arguments and no more than the strict implicit arguments, use the -command - -.. cmd:: Set Strongly Strict Implicit. +implicit all non strict implicit arguments by default, you can turn this +option off. -Conversely, use the command ``Unset Strongly Strict Implicit`` to let the -option “Strict Implicit” decide what to do. +.. opt:: Strongly Strict Implicit. -Remark: In versions of |Coq| prior to version 8.0, the default was to -declare the strict implicit arguments as implicit. +Use this option (off by default) to capture exactly the strict implicit +arguments and no more than the strict implicit arguments. .. _controlling-contextual-implicit-args: Controlling contextual implicit arguments ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -By default, |Coq| does not automatically set implicit the contextual -implicit arguments. To tell |Coq| to infer also contextual implicit -argument, use command - -.. cmd:: Set Contextual Implicit. +.. opt:: Contextual Implicit. -Conversely, use command ``Unset Contextual Implicit`` to unset the -contextual implicit mode. +By default, |Coq| does not automatically set implicit the contextual +implicit arguments. You can turn this option on to tell |Coq| to also +infer contextual implicit argument. .. _controlling-rev-pattern-implicit-args: Controlling reversible-pattern implicit arguments ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -By default, |Coq| does not automatically set implicit the reversible-pattern -implicit arguments. To tell |Coq| to infer also reversible- -pattern implicit argument, use command - -.. cmd:: Set Reversible Pattern Implicit. +.. opt:: Reversible Pattern Implicit. -Conversely, use command ``Unset Reversible Pattern Implicit`` to unset the -reversible-pattern implicit mode. +By default, |Coq| does not automatically set implicit the reversible-pattern +implicit arguments. You can turn this option on to tell |Coq| to also infer +reversible-pattern implicit argument. .. _controlling-insertion-implicit-args: Controlling the insertion of implicit arguments not followed by explicit arguments ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -Implicit arguments can be declared to be automatically inserted when a -function is partially applied and the next argument of the function is -an implicit one. In case the implicit arguments are automatically -declared (with the command ``Set Implicit Arguments``), the command +.. opt:: Maximal Implicit Insertion. -.. cmd:: Set Maximal Implicit Insertion. - -is used to tell to declare the implicit arguments with a maximal -insertion status. By default, automatically declared implicit -arguments are not declared to be insertable maximally. To restore the -default mode for maximal insertion, use the command +Assuming the implicit argument mode is on, this option (off by default) +declares implicit arguments to be automatically inserted when a +function is partially applied and the next argument of the function is +an implicit one. -.. cmd:: Unset Maximal Implicit Insertion. +.. _explicit-applications: Explicit applications ~~~~~~~~~~~~~~~~~~~~~ @@ -1935,28 +1870,20 @@ if each of them is to be used maximally or not, use the command Explicit displaying of implicit arguments for pretty-printing ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -By default the basic pretty-printing rules hide the inferable implicit -arguments of an application. To force printing all implicit arguments, -use command +.. opt:: Printing Implicit. -.. cmd:: Set Printing Implicit. - -Conversely, to restore the hiding of implicit arguments, use command +By default, the basic pretty-printing rules hide the inferable implicit +arguments of an application. Turn this option on to force printing all +implicit arguments. -.. cmd:: Unset Printing Implicit. +.. opt:: Printing Implicit Defensive. -By default the basic pretty-printing rules display the implicit +By default, the basic pretty-printing rules display the implicit arguments that are not detected as strict implicit arguments. This “defensive” mode can quickly make the display cumbersome so this can -be deactivated by using the command - -.. cmd:: Unset Printing Implicit Defensive. - -Conversely, to force the display of non strict arguments, use command +be deactivated by turning this option off. -.. cmd:: Set Printing Implicit Defensive. - -See also: ``Set Printing All`` in :ref:`printing_constructions_full`. +See also: :opt:`Printing All`. Interaction with subtyping ~~~~~~~~~~~~~~~~~~~~~~~~~~ @@ -1981,17 +1908,14 @@ but succeeds in Deactivation of implicit arguments for parsing ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -Use of implicit arguments can be deactivated by issuing the command: +.. opt:: Parsing Explicit. -.. cmd:: Set Parsing Explicit. +Turning this option on, deactivates the use of implicit arguments. In this case, all arguments of constants, inductive types, constructors, etc, including the arguments declared as implicit, have -to be given as if none arguments were implicit. By symmetry, this also -affects printing. To restore parsing and normal printing of implicit -arguments, use: - -.. cmd:: Unset Parsing Explicit. +to be given as if no arguments were implicit. By symmetry, this also +affects printing. Canonical structures ~~~~~~~~~~~~~~~~~~~~ @@ -2177,6 +2101,7 @@ implicitly, as maximally-inserted arguments. In these binders, the binding name for the bound object is optional, whereas the type is mandatory, dually to regular binders. +.. _Coercions: Coercions --------- @@ -2201,43 +2126,38 @@ to coercions are provided in :ref:`implicitcoercions`. Printing constructions in full ------------------------------ +.. opt:: Printing All. + Coercions, implicit arguments, the type of pattern-matching, but also notations (see :ref:`syntaxextensionsandinterpretationscopes`) can obfuscate the behavior of some tactics (typically the tactics applying to occurrences of subterms are -sensitive to the implicit arguments). The command - -.. cmd:: Set Printing All. - +sensitive to the implicit arguments). Turning this option on deactivates all high-level printing features such as coercions, implicit arguments, returned type of pattern-matching, notations and various syntactic sugar for pattern-matching or record projections. -Otherwise said, ``Set Printing All`` includes the effects of the commands -``Set Printing Implicit``, ``Set Printing Coercions``, ``Set Printing Synth``, -``Unset Printing Projections``, and ``Unset Printing Notations``. To reactivate -the high-level printing features, use the command +Otherwise said, :opt:`Printing All` includes the effects of the options +:opt:`Printing Implicit`, :opt:`Printing Coercions`, :opt:`Printing Synth`, +:opt:`Printing Projections`, and :opt:`Printing Notations`. To reactivate +the high-level printing features, use the command ``Unset Printing All``. -.. cmd:: Unset Printing All. +.. _printing-universes: Printing universes ------------------ -The following command: +.. opt:: Printing Universes. -.. cmd:: Set Printing Universes. - -activates the display of the actual level of each occurrence of ``Type``. -See :ref:`TODO-4.1.1-sorts` for details. This wizard option, in combination -with ``Set Printing All`` (see :ref:`printing_constructions_full`) can help to diagnose failures -to unify terms apparently identical but internally different in the -Calculus of Inductive Constructions. To reactivate the display of the -actual level of the occurrences of Type, use - -.. cmd:: Unset Printing Universes. +Turn this option on to activate the display of the actual level of each +occurrence of :g:`Type`. See :ref:`Sorts` for details. This wizard option, in +combination with :opt:`Printing All` can help to diagnose failures to unify +terms apparently identical but internally different in the Calculus of Inductive +Constructions. The constraints on the internal level of the occurrences of Type -(see :ref:`TODO-4.1.1-sorts`) can be printed using the command +(see :ref:`Sorts`) can be printed using the command .. cmd:: Print {? Sorted} Universes. + :name: Print Universes If the optional ``Sorted`` option is given, each universe will be made equivalent to a numbered label reflecting its level (with a linear @@ -2245,12 +2165,13 @@ ordering) in the universe hierarchy. This command also accepts an optional output filename: -.. cmd:: Print {? Sorted} Universes @string. +.. cmdv:: Print {? Sorted} Universes @string. If `string` ends in ``.dot`` or ``.gv``, the constraints are printed in the DOT language, and can be processed by Graphviz tools. The format is unspecified if `string` doesn’t end in ``.dot`` or ``.gv``. +.. _existential-variables: Existential variables --------------------- @@ -2260,9 +2181,9 @@ subterms to eventually be replaced by actual subterms. Existential variables are generated in place of unsolvable implicit arguments or “_” placeholders when using commands such as ``Check`` (see -Section :ref:`TODO-6.3.1-check`) or when using tactics such as ``refine`` (see Section -:ref:`TODO-8.2.3-refine`), as well as in place of unsolvable instances when using -tactics such that ``eapply`` (see Section :ref:`TODO-8.2.4-apply`). An existential +Section :ref:`requests-to-the-environment`) or when using tactics such as +:tacn:`refine`, as well as in place of unsolvable instances when using +tactics such that :tacn:`eapply`. An existential variable is defined in a context, which is the context of variables of the placeholder which generated the existential variable, and a type, which is the expected type of the placeholder. @@ -2307,25 +2228,19 @@ existential variable used in the same context as its context of definition is wr Existential variables can be named by the user upon creation using the syntax ``?``\ `ident`. This is useful when the existential variable needs to be explicitly handled later in the script (e.g. -with a named-goal selector, see :ref:`TODO-9.2-goal-selectors`). +with a named-goal selector, see :ref:`goal-selectors`). .. _explicit-display-existentials: Explicit displaying of existential instances for pretty-printing ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -The command: - -.. cmd:: Set Printing Existential Instances. - -activates the full display of how the context of an existential -variable is instantiated at each of the occurrences of the existential -variable. +.. opt:: Printing Existential Instances. -To deactivate the full display of the instances of existential -variables, use +This option (off by default) activates the full display of how the +context of an existential variable is instantiated at each of the +occurrences of the existential variable. -.. cmd:: Unset Printing Existential Instances. Solving existential variables using tactics ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ @@ -2338,7 +2253,7 @@ is not specified and is implementation-dependent. The inner tactic may use any variable defined in its scope, including repeated alternations between variables introduced by term binding as well as those introduced by tactic binding. The expression `tacexpr` can be any tactic -expression as described in :ref:`thetacticlanguage`. +expression as described in :ref:`ltac`. .. coqtop:: all @@ -2349,5 +2264,5 @@ using highly automated tactics without resorting to writing the proof-term by means of the interactive proof engine. This mechanism is comparable to the ``Declare Implicit Tactic`` command -defined at :ref:`TODO-8.9.7-implicit-automation`, except that the used +defined at :ref:`tactics-implicit-automation`, except that the used tactic is local to each hole instead of being declared globally. diff --git a/doc/sphinx/language/gallina-specification-language.rst b/doc/sphinx/language/gallina-specification-language.rst new file mode 100644 index 000000000..a9c4dd758 --- /dev/null +++ b/doc/sphinx/language/gallina-specification-language.rst @@ -0,0 +1,1376 @@ +.. _gallinaspecificationlanguage: + +------------------------------------ + The Gallina specification language +------------------------------------ + +This chapter describes Gallina, the specification language of Coq. It allows +developing mathematical theories and to prove specifications of programs. The +theories are built from axioms, hypotheses, parameters, lemmas, theorems and +definitions of constants, functions, predicates and sets. The syntax of logical +objects involved in theories is described in Section :ref:`term`. The +language of commands, called *The Vernacular* is described in Section +:ref:`vernacular`. + +In Coq, logical objects are typed to ensure their logical correctness. The +rules implemented by the typing algorithm are described in Chapter :ref:`calculusofinductiveconstructions`. + + +About the grammars in the manual +================================ + +Grammars are presented in Backus-Naur form (BNF). Terminal symbols are +set in black ``typewriter font``. In addition, there are special notations for +regular expressions. + +An expression enclosed in square brackets ``[…]`` means at most one +occurrence of this expression (this corresponds to an optional +component). + +The notation “``entry sep … sep entry``” stands for a non empty sequence +of expressions parsed by entry and separated by the literal “``sep``” [1]_. + +Similarly, the notation “``entry … entry``” stands for a non empty +sequence of expressions parsed by the “``entry``” entry, without any +separator between. + +At the end, the notation “``[entry sep … sep entry]``” stands for a +possibly empty sequence of expressions parsed by the “``entry``” entry, +separated by the literal “``sep``”. + + +Lexical conventions +=================== + +Blanks + Space, newline and horizontal tabulation are considered as blanks. + Blanks are ignored but they separate tokens. + +Comments + Comments in Coq are enclosed between ``(*`` and ``*)``, and can be nested. + They can contain any character. However, string literals must be + correctly closed. Comments are treated as blanks. + +Identifiers and access identifiers + Identifiers, written ident, are sequences of letters, digits, ``_`` and + ``'``, that do not start with a digit or ``'``. That is, they are + recognized by the following lexical class: + + .. productionlist:: coq + first_letter : a..z ∣ A..Z ∣ _ ∣ unicode-letter + subsequent_letter : a..z ∣ A..Z ∣ 0..9 ∣ _ ∣ ' ∣ unicode-letter ∣ unicode-id-part + ident : `first_letter` [`subsequent_letter` … `subsequent_letter`] + access_ident : . `ident` + + All characters are meaningful. In particular, identifiers are case- + sensitive. The entry ``unicode-letter`` non-exhaustively includes Latin, + Greek, Gothic, Cyrillic, Arabic, Hebrew, Georgian, Hangul, Hiragana + and Katakana characters, CJK ideographs, mathematical letter-like + symbols, hyphens, non-breaking space, … The entry ``unicode-id-part`` non- + exhaustively includes symbols for prime letters and subscripts. + + Access identifiers, written :token:`access_ident`, are identifiers prefixed by + `.` (dot) without blank. They are used in the syntax of qualified + identifiers. + +Natural numbers and integers + Numerals are sequences of digits. Integers are numerals optionally + preceded by a minus sign. + + .. productionlist:: coq + digit : 0..9 + num : `digit` … `digit` + integer : [-] `num` + +Strings + Strings are delimited by ``"`` (double quote), and enclose a sequence of + any characters different from ``"`` or the sequence ``""`` to denote the + double quote character. In grammars, the entry for quoted strings is + :production:`string`. + +Keywords + The following identifiers are reserved keywords, and cannot be + employed otherwise:: + + _ as at cofix else end exists exists2 fix for + forall fun if IF in let match mod Prop return + Set then Type using where with + +Special tokens + The following sequences of characters are special tokens:: + + ! % & && ( () ) * + ++ , - -> . .( .. + / /\ : :: :< := :> ; < <- <-> <: <= <> = + => =_D > >-> >= ? ?= @ [ \/ ] ^ { | |- + || } ~ + + Lexical ambiguities are resolved according to the “longest match” + rule: when a sequence of non alphanumerical characters can be + decomposed into several different ways, then the first token is the + longest possible one (among all tokens defined at this moment), and so + on. + +.. _term: + +Terms +===== + +Syntax of terms +--------------- + +The following grammars describe the basic syntax of the terms of the +*Calculus of Inductive Constructions* (also called Cic). The formal +presentation of Cic is given in Chapter :ref:`calculusofinductiveconstructions`. Extensions of this syntax +are given in Chapter :ref:`extensionsofgallina`. How to customize the syntax +is described in Chapter :ref:`syntaxextensionsandinterpretationscopes`. + +.. productionlist:: coq + term : forall `binders` , `term` + : | fun `binders` => `term` + : | fix `fix_bodies` + : | cofix `cofix_bodies` + : | let `ident` [`binders`] [: `term`] := `term` in `term` + : | let fix `fix_body` in `term` + : | let cofix `cofix_body` in `term` + : | let ( [`name` , … , `name`] ) [`dep_ret_type`] := `term` in `term` + : | let ' `pattern` [in `term`] := `term` [`return_type`] in `term` + : | if `term` [`dep_ret_type`] then `term` else `term` + : | `term` : `term` + : | `term` <: `term` + : | `term` :> + : | `term` -> `term` + : | `term` arg … arg + : | @ `qualid` [`term` … `term`] + : | `term` % `ident` + : | match `match_item` , … , `match_item` [`return_type`] with + : [[|] `equation` | … | `equation`] end + : | `qualid` + : | `sort` + : | num + : | _ + : | ( `term` ) + arg : `term` + : | ( `ident` := `term` ) + binders : `binder` … `binder` + binder : `name` + : | ( `name` … `name` : `term` ) + : | ( `name` [: `term`] := `term` ) + name : `ident` | _ + qualid : `ident` | `qualid` `access_ident` + sort : Prop | Set | Type + fix_bodies : `fix_body` + : | `fix_body` with `fix_body` with … with `fix_body` for `ident` + cofix_bodies : `cofix_body` + : | `cofix_body` with `cofix_body` with … with `cofix_body` for `ident` + fix_body : `ident` `binders` [annotation] [: `term`] := `term` + cofix_body : `ident` [`binders`] [: `term`] := `term` + annotation : { struct `ident` } + match_item : `term` [as `name`] [in `qualid` [`pattern` … `pattern`]] + dep_ret_type : [as `name`] `return_type` + return_type : return `term` + equation : `mult_pattern` | … | `mult_pattern` => `term` + mult_pattern : `pattern` , … , `pattern` + pattern : `qualid` `pattern` … `pattern` + : | @ `qualid` `pattern` … `pattern` + : | `pattern` as `ident` + : | `pattern` % `ident` + : | `qualid` + : | _ + : | num + : | ( `or_pattern` , … , `or_pattern` ) + or_pattern : `pattern` | … | `pattern` + + +Types +----- + +Coq terms are typed. Coq types are recognized by the same syntactic +class as :token`term`. We denote by :token:`type` the semantic subclass +of types inside the syntactic class :token:`term`. + +.. _gallina-identifiers: + +Qualified identifiers and simple identifiers +-------------------------------------------- + +*Qualified identifiers* (:token:`qualid`) denote *global constants* +(definitions, lemmas, theorems, remarks or facts), *global variables* +(parameters or axioms), *inductive types* or *constructors of inductive +types*. *Simple identifiers* (or shortly :token:`ident`) are a syntactic subset +of qualified identifiers. Identifiers may also denote local *variables*, +what qualified identifiers do not. + +Numerals +-------- + +Numerals have no definite semantics in the calculus. They are mere +notations that can be bound to objects through the notation mechanism +(see Chapter :ref:`syntaxextensionsandinterpretationscopes` for details). +Initially, numerals are bound to Peano’s representation of natural +numbers (see :ref:`datatypes`). + +.. note:: + + negative integers are not at the same level as :token:`num`, for this + would make precedence unnatural. + +Sorts +----- + +There are three sorts :g:`Set`, :g:`Prop` and :g:`Type`. + +- :g:`Prop` is the universe of *logical propositions*. The logical propositions + themselves are typing the proofs. We denote propositions by *form*. + This constitutes a semantic subclass of the syntactic class :token:`term`. + +- :g:`Set` is is the universe of *program types* or *specifications*. The + specifications themselves are typing the programs. We denote + specifications by *specif*. This constitutes a semantic subclass of + the syntactic class :token:`term`. + +- :g:`Type` is the type of :g:`Prop` and :g:`Set` + +More on sorts can be found in Section :ref:`sorts`. + +.. _binders: + +Binders +------- + +Various constructions such as :g:`fun`, :g:`forall`, :g:`fix` and :g:`cofix` +*bind* variables. A binding is represented by an identifier. If the binding +variable is not used in the expression, the identifier can be replaced by the +symbol :g:`_`. When the type of a bound variable cannot be synthesized by the +system, it can be specified with the notation ``(ident : type)``. There is also +a notation for a sequence of binding variables sharing the same type: +``(``:token:`ident`:math:`_1`…:token:`ident`:math:`_n` : :token:`type```)``. A +binder can also be any pattern prefixed by a quote, e.g. :g:`'(x,y)`. + +Some constructions allow the binding of a variable to value. This is +called a “let-binder”. The entry :token:`binder` of the grammar accepts +either an assumption binder as defined above or a let-binder. The notation in +the latter case is ``(ident := term)``. In a let-binder, only one +variable can be introduced at the same time. It is also possible to give +the type of the variable as follows: +``(ident : term := term)``. + +Lists of :token:`binder` are allowed. In the case of :g:`fun` and :g:`forall`, +it is intended that at least one binder of the list is an assumption otherwise +fun and forall gets identical. Moreover, parentheses can be omitted in +the case of a single sequence of bindings sharing the same type (e.g.: +:g:`fun (x y z : A) => t` can be shortened in :g:`fun x y z : A => t`). + +Abstractions +------------ + +The expression ``fun ident : type => term`` defines the +*abstraction* of the variable :token:`ident`, of type :token:`type`, over the term +:token:`term`. It denotes a function of the variable :token:`ident` that evaluates to +the expression :token:`term` (e.g. :g:`fun x : A => x` denotes the identity +function on type :g:`A`). The keyword :g:`fun` can be followed by several +binders as given in Section :ref:`binders`. Functions over +several variables are equivalent to an iteration of one-variable +functions. For instance the expression +“fun :token:`ident`\ :math:`_{1}` … :token:`ident`\ :math:`_{n}` +: :token:`type` => :token:`term`” +denotes the same function as “ fun :token:`ident`\ +:math:`_{1}` : :token:`type` => … +fun :token:`ident`\ :math:`_{n}` : :token:`type` => :token:`term`”. If +a let-binder occurs in +the list of binders, it is expanded to a let-in definition (see +Section :ref:`let-in`). + +Products +-------- + +The expression :g:`forall ident : type, term` denotes the +*product* of the variable :token:`ident` of type :token:`type`, over the term :token:`term`. +As for abstractions, :g:`forall` is followed by a binder list, and products +over several variables are equivalent to an iteration of one-variable +products. Note that :token:`term` is intended to be a type. + +If the variable :token:`ident` occurs in :token:`term`, the product is called +*dependent product*. The intention behind a dependent product +:g:`forall x : A, B` is twofold. It denotes either +the universal quantification of the variable :g:`x` of type :g:`A` +in the proposition :g:`B` or the functional dependent product from +:g:`A` to :g:`B` (a construction usually written +:math:`\Pi_{x:A}.B` in set theory). + +Non dependent product types have a special notation: :g:`A -> B` stands for +:g:`forall _ : A, B`. The *non dependent product* is used both to denote +the propositional implication and function types. + +Applications +------------ + +The expression :token:`term`\ :math:`_0` :token:`term`\ :math:`_1` denotes the +application of :token:`term`\ :math:`_0` to :token:`term`\ :math:`_1`. + +The expression :token:`term`\ :math:`_0` :token:`term`\ :math:`_1` ... +:token:`term`\ :math:`_n` denotes the application of the term +:token:`term`\ :math:`_0` to the arguments :token:`term`\ :math:`_1` ... then +:token:`term`\ :math:`_n`. It is equivalent to ( … ( :token:`term`\ :math:`_0` +:token:`term`\ :math:`_1` ) … ) :token:`term`\ :math:`_n` : associativity is to the +left. + +The notation ``(ident := term)`` for arguments is used for making +explicit the value of implicit arguments (see +Section :ref:`explicit-applications`). + +Type cast +--------- + +The expression ``term : type`` is a type cast expression. It enforces +the type of :token:`term` to be :token:`type`. + +``term <: type`` locally sets up the virtual machine for checking that +:token:`term` has type :token:`type`. + +Inferable subterms +------------------ + +Expressions often contain redundant pieces of information. Subterms that can be +automatically inferred by Coq can be replaced by the symbol ``_`` and Coq will +guess the missing piece of information. + +.. _let-in: + +Let-in definitions +------------------ + +``let`` :token:`ident` := :token:`term`:math:`_1` in :token:`term`:math:`_2` +denotes the local binding of :token:`term`:math:`_1` to the variable +:token:`ident` in :token:`term`:math:`_2`. There is a syntactic sugar for let-in +definition of functions: ``let`` :token:`ident` :token:`binder`:math:`_1` … +:token:`binder`:math:`_n` := :token:`term`:math:`_1` in :token:`term`:math:`_2` +stands for ``let`` :token:`ident` := ``fun`` :token:`binder`:math:`_1` … +:token:`binder`:math:`_n` => :token:`term`:math:`_1` in :token:`term`:math:`_2`. + +Definition by case analysis +--------------------------- + +Objects of inductive types can be destructurated by a case-analysis +construction called *pattern-matching* expression. A pattern-matching +expression is used to analyze the structure of an inductive objects and +to apply specific treatments accordingly. + +This paragraph describes the basic form of pattern-matching. See +Section :ref:`Mult-match` and Chapter :ref:`extendedpatternmatching` for the description +of the general form. The basic form of pattern-matching is characterized +by a single :token:`match_item` expression, a :token:`mult_pattern` restricted to a +single :token:`pattern` and :token:`pattern` restricted to the form +:token:`qualid` :token:`ident`. + +The expression match :token:`term`:math:`_0` :token:`return_type` with +:token:`pattern`:math:`_1` => :token:`term`:math:`_1` :math:`|` … :math:`|` +:token:`pattern`:math:`_n` => :token:`term`:math:`_n` end, denotes a +:token:`pattern-matching` over the term :token:`term`:math:`_0` (expected to be +of an inductive type :math:`I`). The terms :token:`term`:math:`_1`\ …\ +:token:`term`:math:`_n` are the :token:`branches` of the pattern-matching +expression. Each of :token:`pattern`:math:`_i` has a form :token:`qualid` +:token:`ident` where :token:`qualid` must denote a constructor. There should be +exactly one branch for every constructor of :math:`I`. + +The :token:`return_type` expresses the type returned by the whole match +expression. There are several cases. In the *non dependent* case, all +branches have the same type, and the :token:`return_type` is the common type of +branches. In this case, :token:`return_type` can usually be omitted as it can be +inferred from the type of the branches [2]_. + +In the *dependent* case, there are three subcases. In the first subcase, +the type in each branch may depend on the exact value being matched in +the branch. In this case, the whole pattern-matching itself depends on +the term being matched. This dependency of the term being matched in the +return type is expressed with an “as :token:`ident`” clause where :token:`ident` +is dependent in the return type. For instance, in the following example: + +.. coqtop:: in + + Inductive bool : Type := true : bool | false : bool. + Inductive eq (A:Type) (x:A) : A -> Prop := eq_refl : eq A x x. + Inductive or (A:Prop) (B:Prop) : Prop := + | or_introl : A -> or A B + | or_intror : B -> or A B. + + Definition bool_case (b:bool) : or (eq bool b true) (eq bool b false) := + match b as x return or (eq bool x true) (eq bool x false) with + | true => or_introl (eq bool true true) (eq bool true false) + (eq_refl bool true) + | false => or_intror (eq bool false true) (eq bool false false) + (eq_refl bool false) + end. + +the branches have respective types or :g:`eq bool true true :g:`eq bool true +false` and or :g:`eq bool false true` :g:`eq bool false false` while the whole +pattern-matching expression has type or :g:`eq bool b true` :g:`eq bool b +false`, the identifier :g:`x` being used to represent the dependency. Remark +that when the term being matched is a variable, the as clause can be +omitted and the term being matched can serve itself as binding name in +the return type. For instance, the following alternative definition is +accepted and has the same meaning as the previous one. + +.. coqtop:: in + + Definition bool_case (b:bool) : or (eq bool b true) (eq bool b false) := + match b return or (eq bool b true) (eq bool b false) with + | true => or_introl (eq bool true true) (eq bool true false) + (eq_refl bool true) + | false => or_intror (eq bool false true) (eq bool false false) + (eq_refl bool false) + end. + +The second subcase is only relevant for annotated inductive types such +as the equality predicate (see Section :ref:`Equality`), +the order predicate on natural numbers or the type of lists of a given +length (see Section :ref:`matching-dependent`). In this configuration, the +type of each branch can depend on the type dependencies specific to the +branch and the whole pattern-matching expression has a type determined +by the specific dependencies in the type of the term being matched. This +dependency of the return type in the annotations of the inductive type +is expressed using a “in I _ ... _ :token:`pattern`:math:`_1` ... +:token:`pattern`:math:`_n`” clause, where + +- :math:`I` is the inductive type of the term being matched; + +- the :g:`_` are matching the parameters of the inductive type: the + return type is not dependent on them. + +- the :token:`pattern`:math:`_i` are matching the annotations of the + inductive type: the return type is dependent on them + +- in the basic case which we describe below, each :token:`pattern`:math:`_i` + is a name :token:`ident`:math:`_i`; see :ref:`match-in-patterns` for the + general case + +For instance, in the following example: + +.. coqtop:: in + + Definition eq_sym (A:Type) (x y:A) (H:eq A x y) : eq A y x := + match H in eq _ _ z return eq A z x with + | eq_refl _ => eq_refl A x + end. + +the type of the branch has type :g:`eq A x x` because the third argument of +g:`eq` is g:`x` in the type of the pattern :g:`refl_equal`. On the contrary, the +type of the whole pattern-matching expression has type :g:`eq A y x` because the +third argument of eq is y in the type of H. This dependency of the case analysis +in the third argument of :g:`eq` is expressed by the identifier g:`z` in the +return type. + +Finally, the third subcase is a combination of the first and second +subcase. In particular, it only applies to pattern-matching on terms in +a type with annotations. For this third subcase, both the clauses as and +in are available. + +There are specific notations for case analysis on types with one or two +constructors: “if … then … else …” and “let (…, ” (see +Sections :ref:`if-then-else` and :ref:`let-in`). + +Recursive functions +------------------- + +The expression “fix :token:`ident`:math:`_1` :token:`binder`:math:`_1` : +:token:`type`:math:`_1` ``:=`` :token:`term`:math:`_1` with … with +:token:`ident`:math:`_n` :token:`binder`:math:`_n` : :token:`type`:math:`_n` +``:=`` :token:`term`:math:`_n` for :token:`ident`:math:`_i`” denotes the +:math:`i`\ component of a block of functions defined by mutual well-founded +recursion. It is the local counterpart of the :cmd:`Fixpoint` command. When +:math:`n=1`, the “for :token:`ident`:math:`_i`” clause is omitted. + +The expression “cofix :token:`ident`:math:`_1` :token:`binder`:math:`_1` : +:token:`type`:math:`_1` with … with :token:`ident`:math:`_n` :token:`binder`:math:`_n` +: :token:`type`:math:`_n` for :token:`ident`:math:`_i`” denotes the +:math:`i`\ component of a block of terms defined by a mutual guarded +co-recursion. It is the local counterpart of the ``CoFixpoint`` command. See +Section :ref:`CoFixpoint` for more details. When +:math:`n=1`, the “ for :token:`ident`:math:`_i`” clause is omitted. + +The association of a single fixpoint and a local definition have a special +syntax: “let fix f … := … in …” stands for “let f := fix f … := … in …”. The +same applies for co-fixpoints. + +.. _vernacular: + +The Vernacular +============== + +.. productionlist:: coq + sentence : `assumption` + : | `definition` + : | `inductive` + : | `fixpoint` + : | `assertion` `proof` + assumption : `assumption_keyword` `assums`. + assumption_keyword : Axiom | Conjecture + : | Parameter | Parameters + : | Variable | Variables + : | Hypothesis | Hypotheses + assums : `ident` … `ident` : `term` + : | ( `ident` … `ident` : `term` ) … ( `ident` … `ident` : `term` ) + definition : [Local] Definition `ident` [`binders`] [: `term`] := `term` . + : | Let `ident` [`binders`] [: `term`] := `term` . + inductive : Inductive `ind_body` with … with `ind_body` . + : | CoInductive `ind_body` with … with `ind_body` . + ind_body : `ident` [`binders`] : `term` := + : [[|] `ident` [`binders`] [:`term`] | … | `ident` [`binders`] [:`term`]] + fixpoint : Fixpoint `fix_body` with … with `fix_body` . + : | CoFixpoint `cofix_body` with … with `cofix_body` . + assertion : `assertion_keyword` `ident` [`binders`] : `term` . + assertion_keyword : Theorem | Lemma + : | Remark | Fact + : | Corollary | Proposition + : | Definition | Example + proof : Proof . … Qed . + : | Proof . … Defined . + : | Proof . … Admitted . + +.. todo:: This use of … in this grammar is inconsistent + +This grammar describes *The Vernacular* which is the language of +commands of Gallina. A sentence of the vernacular language, like in +many natural languages, begins with a capital letter and ends with a +dot. + +The different kinds of command are described hereafter. They all suppose +that the terms occurring in the sentences are well-typed. + +.. _gallina-assumptions: + +Assumptions +----------- + +Assumptions extend the environment with axioms, parameters, hypotheses +or variables. An assumption binds an :token:`ident` to a :token:`type`. It is accepted +by Coq if and only if this :token:`type` is a correct type in the environment +preexisting the declaration and if :token:`ident` was not previously defined in +the same module. This :token:`type` is considered to be the type (or +specification, or statement) assumed by :token:`ident` and we say that :token:`ident` +has type :token:`type`. + +.. _Axiom: + +.. cmd:: Axiom @ident : @term. + + This command links *term* to the name *ident* as its specification in + the global context. The fact asserted by *term* is thus assumed as a + postulate. + +.. exn:: @ident already exists (Axiom) + +.. cmdv:: Parameter @ident : @term. + :name: Parameter + + Is equivalent to ``Axiom`` :token:`ident` : :token:`term` + +.. cmdv:: Parameter {+ @ident } : @term. + + Adds parameters with specification :token:`term` + +.. cmdv:: Parameter {+ ( {+ @ident } : @term ) }. + + Adds blocks of parameters with different specifications. + +.. cmdv:: Parameters {+ ( {+ @ident } : @term ) }. + + Synonym of ``Parameter``. + +.. cmdv:: Local Axiom @ident : @term. + + Such axioms are never made accessible through their unqualified name by + :cmd:`Import` and its variants. You have to explicitly give their fully + qualified name to refer to them. + +.. cmdv:: Conjecture @ident : @term + :name: Conjecture + + Is equivalent to ``Axiom`` :token:`ident` : :token:`term`. + +.. cmd:: Variable @ident : @term. + +This command links :token:`term` to the name :token:`ident` in the context of +the current section (see Section :ref:`section-mechanism` for a description of +the section mechanism). When the current section is closed, name :token:`ident` +will be unknown and every object using this variable will be explicitly +parametrized (the variable is *discharged*). Using the ``Variable`` command out +of any section is equivalent to using ``Local Parameter``. + +.. exn:: @ident already exists (Variable) + +.. cmdv:: Variable {+ @ident } : @term. + + Links :token:`term` to each :token:`ident`. + +.. cmdv:: Variable {+ ( {+ @ident } : @term) }. + + Adds blocks of variables with different specifications. + +.. cmdv:: Variables {+ ( {+ @ident } : @term) }. + +.. cmdv:: Hypothesis {+ ( {+ @ident } : @term) }. + :name: Hypothesis + +.. cmdv:: Hypotheses {+ ( {+ @ident } : @term) }. + +Synonyms of ``Variable``. + +It is advised to use the keywords ``Axiom`` and ``Hypothesis`` for +logical postulates (i.e. when the assertion *term* is of sort ``Prop``), +and to use the keywords ``Parameter`` and ``Variable`` in other cases +(corresponding to the declaration of an abstract mathematical entity). + +.. _gallina-definitions: + +Definitions +----------- + +Definitions extend the environment with associations of names to terms. +A definition can be seen as a way to give a meaning to a name or as a +way to abbreviate a term. In any case, the name can later be replaced at +any time by its definition. + +The operation of unfolding a name into its definition is called +:math:`\delta`-conversion (see Section :ref:`delta-reduction`). A +definition is accepted by the system if and only if the defined term is +well-typed in the current context of the definition and if the name is +not already used. The name defined by the definition is called a +*constant* and the term it refers to is its *body*. A definition has a +type which is the type of its body. + +A formal presentation of constants and environments is given in +Section :ref:`typing-rules`. + +.. cmd:: Definition @ident := @term. + + This command binds :token:`term` to the name :token:`ident` in the environment, + provided that :token:`term` is well-typed. + +.. exn:: @ident already exists (Definition) + +.. cmdv:: Definition @ident : @term := @term. + + It checks that the type of :token:`term`:math:`_2` is definitionally equal to + :token:`term`:math:`_1`, and registers :token:`ident` as being of type + :token:`term`:math:`_1`, and bound to value :token:`term`:math:`_2`. + + +.. cmdv:: Definition @ident {* @binder } : @term := @term. + + This is equivalent to ``Definition`` :token:`ident` : :g:`forall` + :token:`binder`:math:`_1` … :token:`binder`:math:`_n`, :token:`term`:math:`_1` := + fun :token:`binder`:math:`_1` … + :token:`binder`:math:`_n` => :token:`term`:math:`_2`. + +.. cmdv:: Local Definition @ident := @term. + + Such definitions are never made accessible through their + unqualified name by :cmd:`Import` and its variants. + You have to explicitly give their fully qualified name to refer to them. + +.. cmdv:: Example @ident := @term. + +.. cmdv:: Example @ident : @term := @term. + +.. cmdv:: Example @ident {* @binder } : @term := @term. + +These are synonyms of the Definition forms. + +.. exn:: The term @term has type @type while it is expected to have type @type + +See also :cmd:`Opaque`, :cmd:`Transparent`, :tac:`unfold`. + +.. cmd:: Let @ident := @term. + +This command binds the value :token:`term` to the name :token:`ident` in the +environment of the current section. The name :token:`ident` disappears when the +current section is eventually closed, and, all persistent objects (such +as theorems) defined within the section and depending on :token:`ident` are +prefixed by the let-in definition ``let`` :token:`ident` ``:=`` :token:`term` +``in``. Using the ``Let`` command out of any section is equivalent to using +``Local Definition``. + +.. exn:: @ident already exists (Let) + +.. cmdv:: Let @ident : @term := @term. + +.. cmdv:: Let Fixpoint @ident @fix_body {* with @fix_body}. + +.. cmdv:: Let CoFixpoint @ident @cofix_body {* with @cofix_body}. + +See also Sections :ref:`section-mechanism`, commands :cmd:`Opaque`, +:cmd:`Transparent`, and tactic :tacn:`unfold`. + +.. _gallina-inductive-definitions: + +Inductive definitions +--------------------- + +We gradually explain simple inductive types, simple annotated inductive +types, simple parametric inductive types, mutually inductive types. We +explain also co-inductive types. + +Simple inductive types +~~~~~~~~~~~~~~~~~~~~~~ + +The definition of a simple inductive type has the following form: + +.. cmd:: Inductive @ident : @sort := {? | } @ident : @type {* | @ident : @type } + +The name :token:`ident` is the name of the inductively defined type and +:token:`sort` is the universes where it lives. The :token:`ident` are the names +of its constructors and :token:`type` their respective types. The types of the +constructors have to satisfy a *positivity condition* (see Section +:ref:`positivity`) for :token:`ident`. This condition ensures the soundness of +the inductive definition. If this is the case, the :token:`ident` are added to +the environment with their respective types. Accordingly to the universe where +the inductive type lives (e.g. its type :token:`sort`), Coq provides a number of +destructors for :token:`ident`. Destructors are named ``ident_ind``, +``ident_rec`` or ``ident_rect`` which respectively correspond to +elimination principles on :g:`Prop`, :g:`Set` and :g:`Type`. The type of the +destructors expresses structural induction/recursion principles over objects of +:token:`ident`. We give below two examples of the use of the Inductive +definitions. + +The set of natural numbers is defined as: + +.. coqtop:: all + + Inductive nat : Set := + | O : nat + | S : nat -> nat. + +The type nat is defined as the least :g:`Set` containing :g:`O` and closed by +the :g:`S` constructor. The names :g:`nat`, :g:`O` and :g:`S` are added to the +environment. + +Now let us have a look at the elimination principles. They are three of them: +:g:`nat_ind`, :g:`nat_rec` and :g:`nat_rect`. The type of :g:`nat_ind` is: + +.. coqtop:: all + + Check nat_ind. + +This is the well known structural induction principle over natural +numbers, i.e. the second-order form of Peano’s induction principle. It +allows proving some universal property of natural numbers (:g:`forall +n:nat, P n`) by induction on :g:`n`. + +The types of :g:`nat_rec` and :g:`nat_rect` are similar, except that they pertain +to :g:`(P:nat->Set)` and :g:`(P:nat->Type)` respectively. They correspond to +primitive induction principles (allowing dependent types) respectively +over sorts ``Set`` and ``Type``. The constant ``ident_ind`` is always +provided, whereas ``ident_rec`` and ``ident_rect`` can be impossible +to derive (for example, when :token:`ident` is a proposition). + +.. coqtop:: in + + Inductive nat : Set := O | S (_:nat). + +In the case where inductive types have no annotations (next section +gives an example of such annotations), a constructor can be defined +by only giving the type of its arguments. + +Simple annotated inductive types +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +In an annotated inductive types, the universe where the inductive type +is defined is no longer a simple sort, but what is called an arity, +which is a type whose conclusion is a sort. + +As an example of annotated inductive types, let us define the +:g:`even` predicate: + +.. coqtop:: all + + Inductive even : nat -> Prop := + | even_0 : even O + | even_SS : forall n:nat, even n -> even (S (S n)). + +The type :g:`nat->Prop` means that even is a unary predicate (inductively +defined) over natural numbers. The type of its two constructors are the +defining clauses of the predicate even. The type of :g:`even_ind` is: + +.. coqtop:: all + + Check even_ind. + +From a mathematical point of view it asserts that the natural numbers satisfying +the predicate even are exactly in the smallest set of naturals satisfying the +clauses :g:`even_0` or :g:`even_SS`. This is why, when we want to prove any +predicate :g:`P` over elements of :g:`even`, it is enough to prove it for :g:`O` +and to prove that if any natural number :g:`n` satisfies :g:`P` its double +successor :g:`(S (S n))` satisfies also :g:`P`. This is indeed analogous to the +structural induction principle we got for :g:`nat`. + +.. exn:: Non strictly positive occurrence of @ident in @type + +.. exn:: The conclusion of @type is not valid; it must be built from @ident + +Parametrized inductive types +~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +In the previous example, each constructor introduces a different +instance of the predicate even. In some cases, all the constructors +introduces the same generic instance of the inductive definition, in +which case, instead of an annotation, we use a context of parameters +which are binders shared by all the constructors of the definition. + +The general scheme is: + +.. cmdv:: Inductive @ident {+ @binder} : @term := {? | } @ident : @type {* | @ident : @type} + +Parameters differ from inductive type annotations in the fact that the +conclusion of each type of constructor :g:`term` invoke the inductive type with +the same values of parameters as its specification. + +A typical example is the definition of polymorphic lists: + +.. coqtop:: in + + Inductive list (A:Set) : Set := + | nil : list A + | cons : A -> list A -> list A. + +.. note:: + + In the type of :g:`nil` and :g:`cons`, we write :g:`(list A)` and not + just :g:`list`. The constructors :g:`nil` and :g:`cons` will have respectively + types: + + .. coqtop:: all + + Check nil. + Check cons. + + Types of destructors are also quantified with :g:`(A:Set)`. + +Variants +++++++++ + +.. coqtop:: in + + Inductive list (A:Set) : Set := nil | cons (_:A) (_:list A). + +This is an alternative definition of lists where we specify the +arguments of the constructors rather than their full type. + +.. coqtop:: in + + Variant sum (A B:Set) : Set := left : A -> sum A B | right : B -> sum A B. + +The ``Variant`` keyword is identical to the ``Inductive`` keyword, except +that it disallows recursive definition of types (in particular lists cannot +be defined with the Variant keyword). No induction scheme is generated for +this variant, unless :opt:`Nonrecursive Elimination Schemes` is set. + +.. exn:: The @num th argument of @ident must be @ident in @type + +New from Coq V8.1 ++++++++++++++++++ + +The condition on parameters for inductive definitions has been relaxed +since Coq V8.1. It is now possible in the type of a constructor, to +invoke recursively the inductive definition on an argument which is not +the parameter itself. + +One can define : + +.. coqtop:: all + + Inductive list2 (A:Set) : Set := + | nil2 : list2 A + | cons2 : A -> list2 (A*A) -> list2 A. + +that can also be written by specifying only the type of the arguments: + +.. coqtop:: all reset + + Inductive list2 (A:Set) : Set := nil2 | cons2 (_:A) (_:list2 (A*A)). + +But the following definition will give an error: + +.. coqtop:: all + + Fail Inductive listw (A:Set) : Set := + | nilw : listw (A*A) + | consw : A -> listw (A*A) -> listw (A*A). + +Because the conclusion of the type of constructors should be :g:`listw A` in +both cases. + +A parametrized inductive definition can be defined using annotations +instead of parameters but it will sometimes give a different (bigger) +sort for the inductive definition and will produce a less convenient +rule for case elimination. + +See also Section :ref:`inductive-definitions` and the :tacn:`induction` +tactic. + +Mutually defined inductive types +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +The definition of a block of mutually inductive types has the form: + +.. cmdv:: Inductive @ident : @term := {? | } @ident : @type {* | @ident : @type } {* with @ident : @term := {? | } @ident : @type {* | @ident : @type }}. + +It has the same semantics as the above ``Inductive`` definition for each +:token:`ident` All :token:`ident` are simultaneously added to the environment. +Then well-typing of constructors can be checked. Each one of the :token:`ident` +can be used on its own. + +It is also possible to parametrize these inductive definitions. However, +parameters correspond to a local context in which the whole set of +inductive declarations is done. For this reason, the parameters must be +strictly the same for each inductive types The extended syntax is: + +.. cmdv:: Inductive @ident {+ @binder} : @term := {? | } @ident : @type {* | @ident : @type } {* with @ident {+ @binder} : @term := {? | } @ident : @type {* | @ident : @type }}. + +The typical example of a mutual inductive data type is the one for trees and +forests. We assume given two types :g:`A` and :g:`B` as variables. It can +be declared the following way. + +.. coqtop:: in + + Variables A B : Set. + + Inductive tree : Set := + node : A -> forest -> tree + + with forest : Set := + | leaf : B -> forest + | cons : tree -> forest -> forest. + +This declaration generates automatically six induction principles. They are +respectively called :g:`tree_rec`, :g:`tree_ind`, :g:`tree_rect`, +:g:`forest_rec`, :g:`forest_ind`, :g:`forest_rect`. These ones are not the most +general ones but are just the induction principles corresponding to each +inductive part seen as a single inductive definition. + +To illustrate this point on our example, we give the types of :g:`tree_rec` +and :g:`forest_rec`. + +.. coqtop:: all + + Check tree_rec. + + Check forest_rec. + +Assume we want to parametrize our mutual inductive definitions with the +two type variables :g:`A` and :g:`B`, the declaration should be +done the following way: + +.. coqtop:: in + + Inductive tree (A B:Set) : Set := + node : A -> forest A B -> tree A B + + with forest (A B:Set) : Set := + | leaf : B -> forest A B + | cons : tree A B -> forest A B -> forest A B. + +Assume we define an inductive definition inside a section. When the +section is closed, the variables declared in the section and occurring +free in the declaration are added as parameters to the inductive +definition. + +See also Section :ref:`section-mechanism`. + +.. _coinductive-types: + +Co-inductive types +~~~~~~~~~~~~~~~~~~ + +The objects of an inductive type are well-founded with respect to the +constructors of the type. In other words, such objects contain only a +*finite* number of constructors. Co-inductive types arise from relaxing +this condition, and admitting types whose objects contain an infinity of +constructors. Infinite objects are introduced by a non-ending (but +effective) process of construction, defined in terms of the constructors +of the type. + +An example of a co-inductive type is the type of infinite sequences of +natural numbers, usually called streams. It can be introduced in +Coq using the ``CoInductive`` command: + +.. coqtop:: all + + CoInductive Stream : Set := + Seq : nat -> Stream -> Stream. + +The syntax of this command is the same as the command :cmd:`Inductive`. Notice +that no principle of induction is derived from the definition of a co-inductive +type, since such principles only make sense for inductive ones. For co-inductive +ones, the only elimination principle is case analysis. For example, the usual +destructors on streams :g:`hd:Stream->nat` and :g:`tl:Str->Str` can be defined +as follows: + +.. coqtop:: all + + Definition hd (x:Stream) := let (a,s) := x in a. + Definition tl (x:Stream) := let (a,s) := x in s. + +Definition of co-inductive predicates and blocks of mutually +co-inductive definitions are also allowed. An example of a co-inductive +predicate is the extensional equality on streams: + +.. coqtop:: all + + CoInductive EqSt : Stream -> Stream -> Prop := + eqst : forall s1 s2:Stream, + hd s1 = hd s2 -> EqSt (tl s1) (tl s2) -> EqSt s1 s2. + +In order to prove the extensionally equality of two streams :g:`s1` and :g:`s2` +we have to construct an infinite proof of equality, that is, an infinite object +of type :g:`(EqSt s1 s2)`. We will see how to introduce infinite objects in +Section :ref:`cofixpoint`. + +Definition of recursive functions +--------------------------------- + +Definition of functions by recursion over inductive objects +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +This section describes the primitive form of definition by recursion over +inductive objects. See the :cmd:`Function` command for more advanced +constructions. + +.. _Fixpoint: + +.. cmd:: Fixpoint @ident @params {struct @ident} : @type := @term. + +This command allows defining functions by pattern-matching over inductive objects +using a fixed point construction. The meaning of this declaration is to +define :token:`ident` a recursive function with arguments specified by the +binders in :token:`params` such that :token:`ident` applied to arguments corresponding +to these binders has type :token:`type`:math:`_0`, and is equivalent to the +expression :token:`term`:math:`_0`. The type of the :token:`ident` is consequently +:g:`forall` :token:`params`, :token:`type`:math:`_0` and the value is equivalent to +:g:`fun` :token:`params` :g:`=>` :token:`term`:math:`_0`. + +To be accepted, a ``Fixpoint`` definition has to satisfy some syntactical +constraints on a special argument called the decreasing argument. They +are needed to ensure that the Fixpoint definition always terminates. The +point of the {struct :token:`ident`} annotation is to let the user tell the +system which argument decreases along the recursive calls. For instance, +one can define the addition function as : + +.. coqtop:: all + + Fixpoint add (n m:nat) {struct n} : nat := + match n with + | O => m + | S p => S (add p m) + end. + +The ``{struct`` :token:`ident```}`` annotation may be left implicit, in this case the +system try successively arguments from left to right until it finds one that +satisfies the decreasing condition. + +.. note:: + + Some fixpoints may have several arguments that fit as decreasing + arguments, and this choice influences the reduction of the fixpoint. Hence an + explicit annotation must be used if the leftmost decreasing argument is not the + desired one. Writing explicit annotations can also speed up type-checking of + large mutual fixpoints. + +The match operator matches a value (here :g:`n`) with the various +constructors of its (inductive) type. The remaining arguments give the +respective values to be returned, as functions of the parameters of the +corresponding constructor. Thus here when :g:`n` equals :g:`O` we return +:g:`m`, and when :g:`n` equals :g:`(S p)` we return :g:`(S (add p m))`. + +The match operator is formally described in detail in Section +:ref:`match-construction`. +The system recognizes that in the inductive call :g:`(add p m)` the first +argument actually decreases because it is a *pattern variable* coming from +:g:`match n with`. + +.. example:: + + The following definition is not correct and generates an error message: + + .. coqtop:: all + + Fail Fixpoint wrongplus (n m:nat) {struct n} : nat := + match m with + | O => n + | S p => S (wrongplus n p) + end. + + because the declared decreasing argument n actually does not decrease in + the recursive call. The function computing the addition over the second + argument should rather be written: + + .. coqtop:: all + + Fixpoint plus (n m:nat) {struct m} : nat := + match m with + | O => n + | S p => S (plus n p) + end. + +.. example:: + + The ordinary match operation on natural numbers can be mimicked in the + following way. + + .. coqtop:: all + + Fixpoint nat_match + (C:Set) (f0:C) (fS:nat -> C -> C) (n:nat) {struct n} : C := + match n with + | O => f0 + | S p => fS p (nat_match C f0 fS p) + end. + +.. example:: + + The recursive call may not only be on direct subterms of the recursive + variable n but also on a deeper subterm and we can directly write the + function mod2 which gives the remainder modulo 2 of a natural number. + + .. coqtop:: all + + Fixpoint mod2 (n:nat) : nat := + match n with + | O => O + | S p => match p with + | O => S O + | S q => mod2 q + end + end. + +In order to keep the strong normalization property, the fixed point +reduction will only be performed when the argument in position of the +decreasing argument (which type should be in an inductive definition) +starts with a constructor. + +The ``Fixpoint`` construction enjoys also the with extension to define functions +over mutually defined inductive types or more generally any mutually recursive +definitions. + +.. cmdv:: Fixpoint @ident @params {struct @ident} : @type := @term {* with @ident {+ @params} : @type := @term}. + +allows to define simultaneously fixpoints. + +The size of trees and forests can be defined the following way: + +.. coqtop:: all + + Fixpoint tree_size (t:tree) : nat := + match t with + | node a f => S (forest_size f) + end + with forest_size (f:forest) : nat := + match f with + | leaf b => 1 + | cons t f' => (tree_size t + forest_size f') + end. + +A generic command Scheme is useful to build automatically various mutual +induction principles. It is described in Section +:ref:`proofschemes-induction-principles`. + +.. _cofixpoint: + +Definitions of recursive objects in co-inductive types +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +.. cmd:: CoFixpoint @ident : @type := @term. + +introduces a method for constructing an infinite object of a coinductive +type. For example, the stream containing all natural numbers can be +introduced applying the following method to the number :g:`O` (see +Section :ref:`coinductive-types` for the definition of :g:`Stream`, :g:`hd` and +:g:`tl`): + +.. coqtop:: all + + CoFixpoint from (n:nat) : Stream := Seq n (from (S n)). + +Oppositely to recursive ones, there is no decreasing argument in a +co-recursive definition. To be admissible, a method of construction must +provide at least one extra constructor of the infinite object for each +iteration. A syntactical guard condition is imposed on co-recursive +definitions in order to ensure this: each recursive call in the +definition must be protected by at least one constructor, and only by +constructors. That is the case in the former definition, where the +single recursive call of :g:`from` is guarded by an application of +:g:`Seq`. On the contrary, the following recursive function does not +satisfy the guard condition: + +.. coqtop:: all + + Fail CoFixpoint filter (p:nat -> bool) (s:Stream) : Stream := + if p (hd s) then Seq (hd s) (filter p (tl s)) else filter p (tl s). + +The elimination of co-recursive definition is done lazily, i.e. the +definition is expanded only when it occurs at the head of an application +which is the argument of a case analysis expression. In any other +context, it is considered as a canonical expression which is completely +evaluated. We can test this using the command ``Eval``, which computes +the normal forms of a term: + +.. coqtop:: all + + Eval compute in (from 0). + Eval compute in (hd (from 0)). + Eval compute in (tl (from 0)). + +.. cmdv:: CoFixpoint @ident @params : @type := @term + + As for most constructions, arguments of co-fixpoints expressions + can be introduced before the :g:`:=` sign. + +.. cmdv:: CoFixpoint @ident : @type := @term {+ with @ident : @type := @term } + + As in the :cmd:`Fixpoint` command, it is possible to introduce a block of + mutually dependent methods. + +.. _Assertions: + +Assertions and proofs +--------------------- + +An assertion states a proposition (or a type) of which the proof (or an +inhabitant of the type) is interactively built using tactics. The interactive +proof mode is described in Chapter :ref:`proofhandling` and the tactics in +Chapter :ref:`Tactics`. The basic assertion command is: + +.. cmd:: Theorem @ident : @type. + +After the statement is asserted, Coq needs a proof. Once a proof of +:token:`type` under the assumptions represented by :token:`binders` is given and +validated, the proof is generalized into a proof of forall , :token:`type` and +the theorem is bound to the name :token:`ident` in the environment. + +.. exn:: The term @term has type @type which should be Set, Prop or Type + +.. exn:: @ident already exists (Theorem) + + The name you provided is already defined. You have then to choose + another name. + +.. cmdv:: Lemma @ident : @type. + :name: Lemma + +.. cmdv:: Remark @ident : @type. + :name: Remark + +.. cmdv:: Fact @ident : @type. + :name: Fact + +.. cmdv:: Corollary @ident : @type. + :name: Corollary + +.. cmdv:: Proposition @ident : @type. + :name: Proposition + + These commands are synonyms of ``Theorem`` :token:`ident` : :token:`type`. + +.. cmdv:: Theorem @ident : @type {* with @ident : @type}. + + This command is useful for theorems that are proved by simultaneous induction + over a mutually inductive assumption, or that assert mutually dependent + statements in some mutual co-inductive type. It is equivalent to + :cmd:`Fixpoint` or :cmd:`CoFixpoint` but using tactics to build the proof of + the statements (or the body of the specification, depending on the point of + view). The inductive or co-inductive types on which the induction or + coinduction has to be done is assumed to be non ambiguous and is guessed by + the system. + + Like in a :cmd:`Fixpoint` or :cmd:`CoFixpoint` definition, the induction hypotheses + have to be used on *structurally smaller* arguments (for a :cmd:`Fixpoint`) or + be *guarded by a constructor* (for a :cmd:`CoFixpoint`). The verification that + recursive proof arguments are correct is done only at the time of registering + the lemma in the environment. To know if the use of induction hypotheses is + correct at some time of the interactive development of a proof, use the + command :cmd:`Guarded`. + + The command can be used also with :cmd:`Lemma`, :cmd:`Remark`, etc. instead of + :cmd:`Theorem`. + +.. cmdv:: Definition @ident : @type. + + This allows defining a term of type :token:`type` using the proof editing + mode. It behaves as Theorem but is intended to be used in conjunction with + :cmd:`Defined` in order to define a constant of which the computational + behavior is relevant. + + The command can be used also with :cmd:`Example` instead of :cmd:`Definition`. + + See also :cmd:`Opaque`, :cmd:`Transparent`, :tacn:`unfold`. + +.. cmdv:: Let @ident : @type. + + Like Definition :token:`ident` : :token:`type`. except that the definition is + turned into a let-in definition generalized over the declarations depending + on it after closing the current section. + +.. cmdv:: Fixpoint @ident @binders with . + + This generalizes the syntax of Fixpoint so that one or more bodies + can be defined interactively using the proof editing mode (when a + body is omitted, its type is mandatory in the syntax). When the block + of proofs is completed, it is intended to be ended by Defined. + +.. cmdv:: CoFixpoint @ident with. + + This generalizes the syntax of CoFixpoint so that one or more bodies + can be defined interactively using the proof editing mode. + +.. cmd:: Proof + + A proof starts by the keyword Proof. Then Coq enters the proof editing mode + until the proof is completed. The proof editing mode essentially contains + tactics that are described in chapter :ref:`Tactics`. Besides tactics, there + are commands to manage the proof editing mode. They are described in Chapter + :ref:`proofhandling`. + +.. cmd:: Qed + + When the proof is completed it should be validated and put in the environment + using the keyword Qed. + +.. exn:: @ident already exists (Qed) + +.. note:: + + #. Several statements can be simultaneously asserted. + + #. Not only other assertions but any vernacular command can be given + while in the process of proving a given assertion. In this case, the + command is understood as if it would have been given before the + statements still to be proved. + + #. Proof is recommended but can currently be omitted. On the opposite + side, Qed (or Defined, see below) is mandatory to validate a proof. + + #. Proofs ended by Qed are declared opaque. Their content cannot be + unfolded (see :ref:`performingcomputations`), thus + realizing some form of *proof-irrelevance*. To be able to unfold a + proof, the proof should be ended by Defined (see below). + +.. cmdv:: Defined + :name: Defined + + Same as :cmd:`Qed` but the proof is then declared transparent, which means + that its content can be explicitly used for type-checking and that it can be + unfolded in conversion tactics (see :ref:`performingcomputations`, + :cmd:`Opaque`, :cmd:`Transparent`). + +.. cmdv:: Admitted. + :name: Admitted + + Turns the current asserted statement into an axiom and exits the proof mode. + +.. [1] + This is similar to the expression “*entry* :math:`\{` sep *entry* + :math:`\}`” in standard BNF, or “*entry* :math:`(` sep *entry* + :math:`)`\ \*” in the syntax of regular expressions. + +.. [2] + Except if the inductive type is empty in which case there is no + equation that can be used to infer the return type. diff --git a/doc/sphinx/practical-tools/coq-commands.rst b/doc/sphinx/practical-tools/coq-commands.rst index 1ff808894..93dcfca4b 100644 --- a/doc/sphinx/practical-tools/coq-commands.rst +++ b/doc/sphinx/practical-tools/coq-commands.rst @@ -16,6 +16,8 @@ The options are (basically) the same for the first two commands, and roughly described below. You can also look at the ``man`` pages of ``coqtop`` and ``coqc`` for more details. +.. _interactive-use: + Interactive use (coqtop) ------------------------ @@ -39,10 +41,12 @@ Batch compilation (coqc) The ``coqc`` command takes a name *file* as argument. Then it looks for a vernacular file named *file*.v, and tries to compile it into a -*file*.vo file (See :ref:`TODO-6.5`). Warning: The name *file* should be a -regular |Coq| identifier, as defined in Section :ref:'TODO-1.1'. It should contain -only letters, digits or underscores (_). For instance, ``/bar/foo/toto.v`` is valid, but -``/bar/foo/to-to.v`` is invalid. +*file*.vo file (See :ref:`compiled-files`). + +.. caution:: The name *file* should be a + regular |Coq| identifier, as defined in Section :ref:'TODO-1.1'. It should contain + only letters, digits or underscores (_). For instance, ``/bar/foo/toto.v`` is valid, but + ``/bar/foo/to-to.v`` is invalid. Customization at launch time @@ -63,6 +67,7 @@ This file may contain, for instance, ``Add LoadPath`` commands to add directories to the load path of |Coq|. It is possible to skip the loading of the resource file with the option ``-q``. +.. _customization-by-environment-variables: By environment variables ~~~~~~~~~~~~~~~~~~~~~~~~~ @@ -70,7 +75,7 @@ By environment variables Load path can be specified to the |Coq| system by setting up ``$COQPATH`` environment variable. It is a list of directories separated by ``:`` (``;`` on Windows). |Coq| will also honor ``$XDG_DATA_HOME`` and -``$XDG_DATA_DIRS`` (see Section :ref:`TODO-2.6.3`). +``$XDG_DATA_DIRS`` (see Section :ref:`libraries-and-filesystem`). Some |Coq| commands call other |Coq| commands. In this case, they look for the commands in directory specified by ``$COQBIN``. If this variable is @@ -84,6 +89,8 @@ list of assignments of the form ``name=``:n:``{*; attr}`` where ANSI escape code. The list of highlight tags can be retrieved with the ``-list-tags`` command-line option of ``coqtop``. +.. _command-line-options: + By command line options ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ @@ -91,25 +98,25 @@ The following command-line options are recognized by the commands ``coqc`` and ``coqtop``, unless stated otherwise: :-I *directory*, -include *directory*: Add physical path *directory* - to the OCaml loadpath. See also: :ref:`TODO-2.6.1` and the - command Declare ML Module Section :ref:`TODO-6.5`. + to the OCaml loadpath. See also: :ref:`names-of-libraries` and the + command Declare ML Module Section :ref:`compiled-files`. :-Q *directory* dirpath: Add physical path *directory* to the list of directories where |Coq| looks for a file and bind it to the the logical directory *dirpath*. The subdirectory structure of *directory* is recursively available from |Coq| using absolute names (extending the - dirpath prefix) (see Section :ref:`TODO-2.6.2`).Note that only those + dirpath prefix) (see Section :ref:`qualified-names`).Note that only those subdirectories and files which obey the lexical conventions of what is - an ident (see Section :ref:`TODO-1.1`) are taken into account. Conversely, the + an :n:`@ident` are taken into account. Conversely, the underlying file systems or operating systems may be more restrictive than |Coq|. While Linux’s ext4 file system supports any |Coq| recursive layout (within the limit of 255 bytes per file name), the default on NTFS (Windows) or HFS+ (MacOS X) file systems is on the contrary to disallow two files differing only in the case in the same directory. - See also: Section :ref:`TODO-2.6.1`. + See also: Section :ref:`names-of-libraries`. :-R *directory* dirpath: Do as -Q *directory* dirpath but make the subdirectory structure of *directory* recursively visible so that the recursive contents of physical *directory* is available from |Coq| using - short or partially qualified names. See also: Section :ref:`TODO-2.6.1`. + short or partially qualified names. See also: Section :ref:`names-of-libraries`. :-top dirpath: Set the toplevel module name to dirpath instead of Top. Not valid for `coqc` as the toplevel module name is inferred from the name of the output file. @@ -145,7 +152,7 @@ and ``coqtop``, unless stated otherwise: -compile-verbose. :-w (all|none|w₁,…,wₙ): Configure the display of warnings. This option expects all, none or a comma-separated list of warning names or - categories (see Section :ref:`TODO-6.9.3`). + categories (see Section :ref:`controlling-display`). :-color (on|off|auto): Enable or not the coloring of output of `coqtop`. Default is auto, meaning that `coqtop` dynamically decides, depending on whether the output channel supports ANSI escape sequences. @@ -170,7 +177,7 @@ and ``coqtop``, unless stated otherwise: :-compat *version*: Attempt to maintain some backward-compatibility with a previous version. :-dump-glob *file*: Dump references for global names in file *file* - (to be used by coqdoc, see :ref:`TODO-15.4`). By default, if *file.v* is being + (to be used by coqdoc, see :ref:`coqdoc`). By default, if *file.v* is being compiled, *file.glob* is used. :-no-glob: Disable the dumping of references for global names. :-image *file*: Set the binary image to be used by `coqc` to be *file* diff --git a/doc/sphinx/practical-tools/coqide.rst b/doc/sphinx/practical-tools/coqide.rst index 1fcfc665b..f9903e610 100644 --- a/doc/sphinx/practical-tools/coqide.rst +++ b/doc/sphinx/practical-tools/coqide.rst @@ -10,7 +10,7 @@ used as a user-friendly replacement to `coqtop`. Its main purpose is to allow the user to navigate forward and backward into a Coq vernacular file, executing corresponding commands or undoing them respectively. -CoqIDE is run by typing the command `coqide` on the command line. +|CoqIDE| is run by typing the command `coqide` on the command line. Without argument, the main screen is displayed with an “unnamed buffer”, and with a file name as argument, another buffer displaying the contents of that file. Additionally, `coqide` accepts the same @@ -43,7 +43,7 @@ is the one where Coq commands are currently executed. Buffers may be edited as in any text editor, and classical basic editing commands (Copy/Paste, …) are available in the *Edit* menu. -CoqIDE offers only basic editing commands, so if you need more complex +|CoqIDE| offers only basic editing commands, so if you need more complex editing commands, you may launch your favorite text editor on the current buffer, using the *Edit/External Editor* menu. @@ -75,7 +75,7 @@ There are two additional buttons for navigation within the running buffer. The "down" button with a line goes directly to the end; the "up" button with a line goes back to the beginning. The handling of errors when using the go-to-the-end button depends on whether |Coq| is running in asynchronous mode or not (see -Chapter :ref:`Asyncprocessing`). If it is not running in that mode, execution +Chapter :ref:`asynchronousandparallelproofprocessing`). If it is not running in that mode, execution stops as soon as an error is found. Otherwise, execution continues, and the error is marked with an underline in the error foreground color, with a background in the error background color (pink by default). The same @@ -86,14 +86,14 @@ If you ever try to execute a command which happens to run during a long time, and would like to abort it before its termination, you may use the interrupt button (the white cross on a red circle). -There are other buttons on the CoqIDE toolbar: a button to save the running +There are other buttons on the |CoqIDE| toolbar: a button to save the running buffer; a button to close the current buffer (an "X"); buttons to switch among buffers (left and right arrows); an "information" button; and a "gears" button. -The "information" button is described in Section :ref:`sec:trytactics`. +The "information" button is described in Section :ref:`try-tactics-automatically`. The "gears" button submits proof terms to the |Coq| kernel for type-checking. -When |Coq| uses asynchronous processing (see Chapter :ref:`Asyncprocessing`), +When |Coq| uses asynchronous processing (see Chapter :ref:`asynchronousandparallelproofprocessing`), proofs may have been completed without kernel-checking of generated proof terms. The presence of unchecked proof terms is indicated by ``Qed`` statements that have a subdued *being-processed* color (light blue by default), rather than the @@ -150,18 +150,16 @@ arguments. Queries ------------ -.. _coqide_queryselected: - .. image:: ../_static/coqide-queries.png :alt: |CoqIDE| queries We call *query* any vernacular command that does not change the current state, such as ``Check``, ``Search``, etc. To run such commands interactively, without -writing them in scripts, CoqIDE offers a *query pane*. The query pane can be +writing them in scripts, |CoqIDE| offers a *query pane*. The query pane can be displayed on demand by using the ``View`` menu, or using the shortcut ``F1``. Queries can also be performed by selecting a particular phrase, then choosing an item from the ``Queries`` menu. The response then appears in the message window. -Figure :ref:`fig:queryselected` shows the result after selecting of the phrase +The image above shows the result after selecting of the phrase ``Nat.mul`` in the script window, and choosing ``Print`` from the ``Queries`` menu. @@ -221,7 +219,7 @@ still edit this configuration file by hand, but this is more involved. Using Unicode symbols -------------------------- -CoqIDE is based on GTK+ and inherits from it support for Unicode in +|CoqIDE| is based on GTK+ and inherits from it support for Unicode in its text windows. Consequently a large set of symbols is available for notations. diff --git a/doc/sphinx/practical-tools/utilities.rst b/doc/sphinx/practical-tools/utilities.rst index 620c002ff..59867988a 100644 --- a/doc/sphinx/practical-tools/utilities.rst +++ b/doc/sphinx/practical-tools/utilities.rst @@ -33,6 +33,7 @@ For example, to statically link |L_tac|, you can just do: % ocamlfind ocamlopt -thread -rectypes -linkall -linkpkg \ -package coq.toplevel -package coq.ltac \ toplevel/coqtop\_bin.ml -o my\_toplevel.native + and similarly for other plugins. @@ -43,7 +44,7 @@ The majority of |Coq| projects are very similar: a collection of ``.v`` files and eventually some ``.ml`` ones (a |Coq| plugin). The main piece of metadata needed in order to build the project are the command line options to ``coqc`` (e.g. ``-R``, ``-I``, see also: Section -:ref:`bycommandline`). Collecting the list of files and options is the job +:ref:`command-line-options`). Collecting the list of files and options is the job of the ``_CoqProject`` file. A simple example of a ``_CoqProject`` file follows: @@ -59,7 +60,7 @@ A simple example of a ``_CoqProject`` file follows: src/qux_plugin.mlpack -Currently, both |CoqIDE| and |ProofGeneral| (version ≥ ``4.3pre``) +Currently, both |CoqIDE| and Proof-General (version ≥ ``4.3pre``) understand ``_CoqProject`` files and invoke |Coq| with the desired options. The ``coq_makefile`` utility can be used to set up a build infrastructure @@ -77,7 +78,7 @@ CoqMakefile is a generic makefile for ``GNU Make`` that provides targets to build the project (both ``.v`` and ``.ml*`` files), to install it system-wide in the ``coq-contrib`` directory (i.e. where |Coq| is installed) - as well as to invoke |coqdoc| to generate |HTML| documentation. + as well as to invoke coqdoc to generate HTML documentation. CoqMakefile.conf contains make variables assignments that reflect @@ -89,7 +90,7 @@ An optional file ``CoqMakefile.local`` can be provided by the user in order to extend ``CoqMakefile``. In particular one can declare custom actions to be performed before or after the build process. Similarly one can customize the install target or even provide new targets. Extension points are documented in -paragraph :ref:`coqmakefile:local`. +paragraph :ref:`coqmakefilelocal`. The extensions of the files listed in ``_CoqProject`` is used in order to decide how to build them. In particular: @@ -113,32 +114,38 @@ distinct plugins because of a clash in their auxiliary module names. .. _coqmakefilelocal: CoqMakefile.local -+++++++++++++++++ - - +~~~~~~~~~~~~~~~~~ The optional file ``CoqMakefile.local`` is included by the generated file ``CoqMakefile``. It can contain two kinds of directives. -Variable assignment - The variable must belong to the variables listed in the ``Parameters`` section of the generated makefile. - Here we describe only few of them. - :CAMLPKGS: - can be used to specify third party findlib packages, and is - passed to the OCaml compiler on building or linking of modules. Eg: - ``-package yojson``. - :CAMLFLAGS: - can be used to specify additional flags to the |OCaml| - compiler, like ``-bin-annot`` or ``-w``.... - :COQC, COQDEP, COQDOC: - can be set in order to use alternative binaries - (e.g. wrappers) - :COQ_SRC_SUBDIRS: can be extended by including other paths in which ``*.cm*`` files are searched. For example ``COQ\_SRC\_SUBDIRS+=user-contrib/Unicoq`` lets you build a plugin containing OCaml code that depends on the OCaml code of ``Unicoq``. - -Rule extension - The following makefile rules can be extended. - - .. example :: +**Variable assignment** + +The variable must belong to the variables listed in the ``Parameters`` +section of the generated makefile. +Here we describe only few of them. + +:CAMLPKGS: + can be used to specify third party findlib packages, and is + passed to the OCaml compiler on building or linking of modules. Eg: + ``-package yojson``. +:CAMLFLAGS: + can be used to specify additional flags to the |OCaml| + compiler, like ``-bin-annot`` or ``-w``.... +:COQC, COQDEP, COQDOC: + can be set in order to use alternative binaries + (e.g. wrappers) +:COQ_SRC_SUBDIRS: + can be extended by including other paths in which ``*.cm*`` files + are searched. For example ``COQ\_SRC\_SUBDIRS+=user-contrib/Unicoq`` + lets you build a plugin containing OCaml code that depends on the + OCaml code of ``Unicoq``. + +**Rule extension** + +The following makefile rules can be extended. + +.. example:: :: @@ -147,42 +154,41 @@ Rule extension install-extra:: cp ThisExtraFile /there/it/goes - ``pre-all::`` - run before the all target. One can use this to configure - the project, or initialize sub modules or check dependencies are met. +``pre-all::`` + run before the ``all`` target. One can use this to configure + the project, or initialize sub modules or check dependencies are met. - ``post-all::`` - run after the all target. One can use this to run a test - suite, or compile extracted code. +``post-all::`` + run after the ``all`` target. One can use this to run a test + suite, or compile extracted code. +``install-extra::`` + run after ``install``. One can use this to install extra files. - ``install-extra::`` - run after install. One can use this to install extra files. +``install-doc::`` + One can use this to install extra doc. - ``install-doc::`` - One can use this to install extra doc. +``uninstall::`` + \ - ``uninstall::`` - \ +``uninstall-doc::`` + \ - ``uninstall-doc::`` - \ +``clean::`` + \ - ``clean::`` - \ +``cleanall::`` + \ - ``cleanall::`` - \ +``archclean::`` + \ - ``archclean::`` - \ - - ``merlin-hook::`` - One can append lines to the generated .merlin file extending this - target. +``merlin-hook::`` + One can append lines to the generated ``.merlin`` file extending this + target. Timing targets and performance testing -++++++++++++++++++++++++++++++++++++++ +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The generated ``Makefile`` supports the generation of two kinds of timing data: per-file build-times, and per-line times for an individual file. @@ -311,8 +317,8 @@ line timing data: + ``print-pretty-single-time-diff`` :: - print-pretty-single-time-diff BEFORE=path/to/file.v.before-timing AFTER=path/to/file.v.after-timing + this target will make a sorted table of the per-line timing differences between the timing logs in the ``BEFORE`` and ``AFTER`` files, display it, and save it to the file specified by the ``TIME_OF_PRETTY_BUILD_FILE`` variable, @@ -357,7 +363,7 @@ line timing data: Reusing/extending the generated Makefile -++++++++++++++++++++++++++++++++++++++++ +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Including the generated makefile with an include directive is discouraged. The contents of this file, including variable names and @@ -400,8 +406,8 @@ have a generic target for invoking unknown targets. -Building a subset of the targets with -j -++++++++++++++++++++++++++++++++++++++++ +Building a subset of the targets with ``-j`` +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ To build, say, two targets foo.vo and bar.vo in parallel one can use ``make only TGTS="foo.vo bar.vo" -j``. @@ -451,14 +457,16 @@ automatically compute the dependencies among the files part of the project. +.. _coqdoc: + Documenting |Coq| files with coqdoc ----------------------------------- -|coqdoc| is a documentation tool for the proof assistant |Coq|, similar to -``javadoc`` or ``ocamldoc``. The task of |coqdoc| is +coqdoc is a documentation tool for the proof assistant |Coq|, similar to +``javadoc`` or ``ocamldoc``. The task of coqdoc is -#. to produce a nice |Latex| and/or |HTML| document from the |Coq| +#. to produce a nice |Latex| and/or HTML document from the |Coq| sources, readable for a human and not only for the proof assistant; #. to help the user navigating in his own (or third-party) sources. @@ -468,18 +476,18 @@ Principles ~~~~~~~~~~ Documentation is inserted into |Coq| files as *special comments*. Thus -your files will compile as usual, whether you use |coqdoc| or not. |coqdoc| +your files will compile as usual, whether you use coqdoc or not. coqdoc presupposes that the given |Coq| files are well-formed (at least lexically). Documentation starts with ``(**``, followed by a space, and ends with the pending ``*)``. The documentation format is inspired by Todd A. Coram’s *Almost Free Text (AFT)* tool: it is mainly ``ASCII`` text with -some syntax-light controls, described below. |coqdoc| is robust: it +some syntax-light controls, described below. coqdoc is robust: it shouldn’t fail, whatever the input is. But remember: “garbage in, garbage out”. |Coq| material inside documentation. -++++++++++++++++++++++++++++++++++ +++++++++++++++++++++++++++++++++++++ |Coq| material is quoted between the delimiters ``[`` and ``]``. Square brackets may be nested, the inner ones being understood as being part of the @@ -494,7 +502,7 @@ followed by a newline and the latter must follow a newline. Pretty-printing. ++++++++++++++++ -|coqdoc| uses different faces for identifiers and keywords. The pretty- +coqdoc uses different faces for identifiers and keywords. The pretty- printing of |Coq| tokens (identifiers or symbols) can be controlled using one of the following commands: @@ -512,8 +520,8 @@ or (** printing *token* $...LATEX math...$ #...html...# *) -It gives the |Latex| and |HTML| texts to be produced for the given |Coq| -token. One of the |Latex| or |HTML| text may be omitted, causing the +It gives the |Latex| and HTML texts to be produced for the given |Coq| +token. One of the |Latex| or HTML text may be omitted, causing the default pretty-printing to be used for this token. The printing for one token can be removed with @@ -530,27 +538,28 @@ Initially, the pretty-printing table contains the following mapping: `->` → `<-` ← `*` × `<=` ≤ `>=` ≥ `=>` ⇒ `<>` ≠ `<->` ↔ `|-` ⊢ -`\/` ∨ `/\` ∧ `~` ¬ +`\/` ∨ `/\\` ∧ `~` ¬ ==== === ==== ===== === ==== ==== === Any of these can be overwritten or suppressed using the printing commands. -.. note :: - The recognition of tokens is done by a (``ocaml``) lex - automaton and thus applies the longest-match rule. For instance, `->~` - is recognized as a single token, where |Coq| sees two tokens. It is the - responsibility of the user to insert space between tokens *or* to give - pretty-printing rules for the possible combinations, e.g. +.. note:: + + The recognition of tokens is done by a (``ocaml``) lex + automaton and thus applies the longest-match rule. For instance, `->~` + is recognized as a single token, where |Coq| sees two tokens. It is the + responsibility of the user to insert space between tokens *or* to give + pretty-printing rules for the possible combinations, e.g. - :: + :: (** printing ->~ %\ensuremath{\rightarrow\lnot}% *) -Sections. -+++++++++ +Sections +++++++++ Sections are introduced by 1 to 4 leading stars (i.e. at the beginning of the line) followed by a space. One star is a section, two stars a @@ -559,7 +568,7 @@ line. .. example:: - :: + :: (** * Well-founded relations @@ -614,18 +623,18 @@ emphasis. Usually, these are spaces or punctuation. -Escaping to |Latex| and |HTML|. +Escaping to |Latex| and HTML. +++++++++++++++++++++++++++++++ -Pure |Latex| or |HTML| material can be inserted using the following +Pure |Latex| or HTML material can be inserted using the following escape sequences: + ``$...LATEX stuff...$`` inserts some |Latex| material in math mode. - Simply discarded in |HTML| output. + Simply discarded in HTML output. + ``%...LATEX stuff...%`` inserts some |Latex| material. Simply - discarded in |HTML| output. -+ ``#...HTML stuff...#`` inserts some |HTML| material. Simply discarded in + discarded in HTML output. ++ ``#...HTML stuff...#`` inserts some HTML material. Simply discarded in |Latex| output. .. note:: @@ -654,7 +663,7 @@ at the beginning of a line. Hyperlinks ++++++++++ -Hyperlinks can be inserted into the |HTML| output, so that any +Hyperlinks can be inserted into the HTML output, so that any identifier is linked to the place of its definition. ``coqc file.v`` automatically dumps localization information in @@ -662,7 +671,7 @@ identifier is linked to the place of its definition. file``. Take care of erasing this global file, if any, when starting the whole compilation process. -Then invoke |coqdoc| or ``coqdoc --glob-from file`` to tell |coqdoc| to look +Then invoke coqdoc or ``coqdoc --glob-from file`` to tell coqdoc to look for name resolutions into the file ``file`` (it will look in ``file.glob`` by default). @@ -703,17 +712,17 @@ be used around a whole proof. Usage ~~~~~ -|coqdoc| is invoked on a shell command line as follows: +coqdoc is invoked on a shell command line as follows: ``coqdoc <options and files>``. Any command line argument which is not an option is considered to be a file (even if it starts with a ``-``). |Coq| files are identified by the suffixes ``.v`` and ``.g`` and |Latex| files by the suffix ``.tex``. -:|HTML| output: This is the default output. One |HTML| file is created for +:HTML output: This is the default output. One HTML file is created for each |Coq| file given on the command line, together with a file - ``index.html`` (unless ``option-no-index is passed``). The |HTML| pages use a - style sheet named ``style.css``. Such a file is distributed with |coqdoc|. + ``index.html`` (unless ``option-no-index is passed``). The HTML pages use a + style sheet named ``style.css``. Such a file is distributed with coqdoc. :|Latex| output: A single |Latex| file is created, on standard output. It can be redirected to a file with option ``-o``. The order of files on the command line is kept in the final document. |Latex| @@ -732,7 +741,7 @@ Command line options **Overall options** - :--|HTML|: Select a |HTML| output. + :--HTML: Select a HTML output. :--|Latex|: Select a |Latex| output. :--dvi: Select a DVI output. :--ps: Select a PostScript output. @@ -760,7 +769,7 @@ Command line options **Index options** - Default behavior is to build an index, for the |HTML| output only, + Default behavior is to build an index, for the HTML output only, into ``index.html``. :--no-index: Do not output the index. @@ -775,7 +784,7 @@ Command line options :-toc, --table-of-contents: Insert a table of contents. For a |Latex| output, it inserts a ``\tableofcontents`` at the beginning of the - document. For a |HTML| output, it builds a table of contents into + document. For a HTML output, it builds a table of contents into ``toc.html``. :--toc-depth int: Only include headers up to depth ``int`` in the table of contents. @@ -795,28 +804,28 @@ Command line options directory ``coqdir`` (similarly to |Coq| option ``-R``). .. note:: - option ``-R`` only has - effect on the files *following* it on the command line, so you will - probably need to put this option first. + + option ``-R`` only has + effect on the files *following* it on the command line, so you will + probably need to put this option first. **Title options** :-s , --short: Do not insert titles for the files. The default - behavior is to insert a title like “Library Foo” for each file. + behavior is to insert a title like “Library Foo” for each file. :--lib-name string: Print “string Foo” instead of “Library Foo” in - titles. For example “Chapter” and “Module” are reasonable choices. + titles. For example “Chapter” and “Module” are reasonable choices. :--no-lib-name: Print just “Foo” instead of “Library Foo” in titles. :--lib-subtitles: Look for library subtitles. When enabled, the - beginning of each file is checked for a comment of the form: - - :: + beginning of each file is checked for a comment of the form: + :: - (** * ModuleName : text *) + (** * ModuleName : text *) - where ``ModuleName`` must be the name of the file. If it is present, the - text is used as a subtitle for the module in appropriate places. + where ``ModuleName`` must be the name of the file. If it is present, the + text is used as a subtitle for the module in appropriate places. :-t string, --title string: Set the document title. @@ -854,11 +863,11 @@ Command line options :-latin1, --latin1: Select ISO-8859-1 input files. It is equivalent to --inputenc latin1 --charset iso-8859-1. :-utf8, --utf8: Set --inputenc utf8x for |Latex| output and--charset - utf-8 for |HTML| output. Also use Unicode replacements for a couple of + utf-8 for HTML output. Also use Unicode replacements for a couple of standard plain ASCII notations such as → for ``->`` and ∀ for ``forall``. |Latex| UTF-8 support can be found at `<http://www.ctan.org/pkg/unicode>`_. For the interpretation of Unicode - characters by |Latex|, extra packages which |coqdoc| does not provide + characters by |Latex|, extra packages which coqdoc does not provide by default might be required, such as textgreek for some Greek letters or ``stmaryrd`` for some mathematical symbols. If a Unicode character is missing an interpretation in the utf8x input encoding, add @@ -866,13 +875,13 @@ Command line options and declarations can be added with option ``-p``. :--inputenc string: Give a |Latex| input encoding, as an option to |Latex| package ``inputenc``. - :--charset string: Specify the |HTML| character set, to be inserted in - the |HTML| header. + :--charset string: Specify the HTML character set, to be inserted in + the HTML header. The coqdoc |Latex| style file -~~~~~~~~~~~~~~~~~~~~~~~~~~~ +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ In case you choose to produce a document without the default |Latex| preamble (by using option ``--no-preamble``), then you must insert into @@ -929,16 +938,16 @@ There are options to produce the |Coq| parts in smaller font, italic, between horizontal rules, etc. See the man page of ``coq-tex`` for more details. -|Coq| and |GNU| |Emacs| +|Coq| and GNU Emacs ----------------------- -The |Coq| |Emacs| mode +The |Coq| Emacs mode ~~~~~~~~~~~~~~~~~~~~~~~~~ -|Coq| comes with a Major mode for |GNU| |Emacs|, ``gallina.el``. This mode +|Coq| comes with a Major mode for GNU Emacs, ``gallina.el``. This mode provides syntax highlighting and also a rudimentary indentation -facility in the style of the ``Caml`` |GNU| |Emacs| mode. +facility in the style of the ``Caml`` GNU Emacs mode. Add the following lines to your ``.emacs`` file: @@ -956,26 +965,26 @@ facility: + pressing ``Tab`` at the beginning of a line indents the line like the line above; -+ extra ``Tab``s increase the indentation level (by 2 spaces by default); ++ extra tabulations increase the indentation level (by 2 spaces by default); + ``M-Tab`` decreases the indentation level. -An inferior mode to run |Coq| under |Emacs|, by Marco Maggesi, is also +An inferior mode to run |Coq| under Emacs, by Marco Maggesi, is also included in the distribution, in file ``inferior-coq.el``. Instructions to use it are contained in this file. -Proof General +Proof-General ~~~~~~~~~~~~~ -|ProofGeneral| is a generic interface for proof assistants based on -|Emacs|. The main idea is that the |Coq| commands you are editing are sent -to a |Coq| toplevel running behind |Emacs| and the answers of the system -automatically inserted into other |Emacs| buffers. Thus you don’t need +Proof-General is a generic interface for proof assistants based on +Emacs. The main idea is that the |Coq| commands you are editing are sent +to a |Coq| toplevel running behind Emacs and the answers of the system +automatically inserted into other Emacs buffers. Thus you don’t need to copy-paste the |Coq| material from your files to the |Coq| toplevel or conversely from the |Coq| toplevel to some files. -|ProofGeneral| is developed and distributed independently of the system +Proof-General is developed and distributed independently of the system |Coq|. It is freely available at `<https://proofgeneral.github.io/>`_. diff --git a/doc/sphinx/proof-engine/detailed-tactic-examples.rst b/doc/sphinx/proof-engine/detailed-tactic-examples.rst index 932f96788..84810ddba 100644 --- a/doc/sphinx/proof-engine/detailed-tactic-examples.rst +++ b/doc/sphinx/proof-engine/detailed-tactic-examples.rst @@ -6,6 +6,8 @@ Detailed examples of tactics This chapter presents detailed examples of certain tactics, to illustrate their behavior. +.. _dependent-induction: + dependent induction ------------------- @@ -316,7 +318,7 @@ explicit proof terms: This concludes our example. -See also: The ``induction`` :ref:`TODO-9-induction`, ``case`` :ref:`TODO-9-induction` and ``inversion`` :ref:`TODO-8.14-inversion` tactics. +See also: The :tacn:`induction`, :tacn:`case`, and :tacn:`inversion` tactics. autorewrite @@ -403,6 +405,8 @@ Example 2: Mac Carthy function autorewrite with base1 using reflexivity || simpl. +.. _quote: + quote ----- @@ -544,8 +548,7 @@ Combining variables and constants ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ One can have both variables and constants in abstracts terms; for -example, this is the case for the ``ring`` tactic -:ref:`TODO-25-ringandfieldtacticfamilies`. Then one must provide to +example, this is the case for the :tacn:`ring` tactic. Then one must provide to ``quote`` a list of *constructors of constants*. For example, if the list is ``[O S]`` then closed natural numbers will be considered as constants and other terms as variables. @@ -606,7 +609,7 @@ don’t expect miracles from it! See also: comments of source file ``plugins/quote/quote.ml`` -See also: the ``ring`` tactic :ref:`TODO-25-ringandfieldtacticfamilies` +See also: the :tacn:`ring` tactic. Using the tactical language @@ -733,7 +736,7 @@ and this length is decremented for each rotation down to, but not including, 1 because for a list of length ``n``, we can make exactly ``n−1`` rotations to generate at most ``n`` distinct lists. Here, it must be noticed that we use the natural numbers of Coq for the -rotation counter. On Figure :ref:`TODO-9.1-tactic-language`, we can +rotation counter. In :ref:`ltac-syntax`, we can see that it is possible to use usual natural numbers but they are only used as arguments for primitive tactics and they cannot be handled, in particular, we cannot make computations with them. So, a natural @@ -830,7 +833,7 @@ The pattern matching on goals allows a complete and so a powerful backtracking when returning tactic values. An interesting application is the problem of deciding intuitionistic propositional logic. Considering the contraction-free sequent calculi LJT* of Roy Dyckhoff -:ref:`TODO-56-biblio`, it is quite natural to code such a tactic +:cite:`Dyc92`, it is quite natural to code such a tactic using the tactic language as shown on figures: :ref:`Deciding intuitionistic propositions (1) <decidingintuitionistic1>` and :ref:`Deciding intuitionistic propositions (2) @@ -868,7 +871,7 @@ Deciding type isomorphisms A more tricky problem is to decide equalities between types and modulo isomorphisms. Here, we choose to use the isomorphisms of the simply typed λ-calculus with Cartesian product and unit type (see, for -example, [:ref:`TODO-45`]). The axioms of this λ-calculus are given below. +example, :cite:`RC95`). The axioms of this λ-calculus are given below. .. coqtop:: in reset diff --git a/doc/sphinx/proof-engine/ltac.rst b/doc/sphinx/proof-engine/ltac.rst new file mode 100644 index 000000000..009758319 --- /dev/null +++ b/doc/sphinx/proof-engine/ltac.rst @@ -0,0 +1,1300 @@ +.. include:: ../preamble.rst +.. include:: ../replaces.rst + +.. _ltac: + +The tactic language +=================== + +This chapter gives a compact documentation of |Ltac|, the tactic language +available in |Coq|. We start by giving the syntax, and next, we present the +informal semantics. If you want to know more regarding this language and +especially about its foundations, you can refer to :cite:`Del00`. Chapter +:ref:`detailedexamplesoftactics` is devoted to giving examples of use of this +language on small but also with non-trivial problems. + +.. _ltac-syntax: + +Syntax +------ + +The syntax of the tactic language is given below. See Chapter +:ref:`gallinaspecificationlanguage` for a description of the BNF metasyntax used +in these grammar rules. Various already defined entries will be used in this +chapter: entries :token:`natural`, :token:`integer`, :token:`ident`, +:token:`qualid`, :token:`term`, :token:`cpattern` and :token:`atomic_tactic` +represent respectively the natural and integer numbers, the authorized +identificators and qualified names, Coq terms and patterns and all the atomic +tactics described in Chapter :ref:`tactics`. The syntax of :token:`cpattern` is +the same as that of terms, but it is extended with pattern matching +metavariables. In :token:`cpattern`, a pattern-matching metavariable is +represented with the syntax :g:`?id` where :g:`id` is an :token:`ident`. The +notation :g:`_` can also be used to denote metavariable whose instance is +irrelevant. In the notation :g:`?id`, the identifier allows us to keep +instantiations and to make constraints whereas :g:`_` shows that we are not +interested in what will be matched. On the right hand side of pattern-matching +clauses, the named metavariable are used without the question mark prefix. There +is also a special notation for second-order pattern-matching problems: in an +applicative pattern of the form :g:`@?id id1 … idn`, the variable id matches any +complex expression with (possible) dependencies in the variables :g:`id1 … idn` +and returns a functional term of the form :g:`fun id1 … idn => term`. + +The main entry of the grammar is :n:`@expr`. This language is used in proof +mode but it can also be used in toplevel definitions as shown below. + +.. note:: + + - The infix tacticals “… \|\| …”, “… + …”, and “… ; …” are associative. + + - In :token:`tacarg`, there is an overlap between qualid as a direct tactic + argument and :token:`qualid` as a particular case of term. The resolution is + done by first looking for a reference of the tactic language and if + it fails, for a reference to a term. To force the resolution as a + reference of the tactic language, use the form :g:`ltac:(@qualid)`. To + force the resolution as a reference to a term, use the syntax + :g:`(@qualid)`. + + - As shown by the figure, tactical ``\|\|`` binds more than the prefix + tacticals try, repeat, do and abstract which themselves bind more + than the postfix tactical “… ;[ … ]” which binds more than “… ; …”. + + For instance + + .. coqtop:: in + + try repeat tac1 || tac2; tac3; [tac31 | ... | tac3n]; tac4. + + is understood as + + .. coqtop:: in + + try (repeat (tac1 || tac2)); + ((tac3; [tac31 | ... | tac3n]); tac4). + +.. productionlist:: coq + expr : `expr` ; `expr` + : | [> `expr` | ... | `expr` ] + : | `expr` ; [ `expr` | ... | `expr` ] + : | `tacexpr3` + tacexpr3 : do (`natural` | `ident`) tacexpr3 + : | progress `tacexpr3` + : | repeat `tacexpr3` + : | try `tacexpr3` + : | once `tacexpr3` + : | exactly_once `tacexpr3` + : | timeout (`natural` | `ident`) `tacexpr3` + : | time [`string`] `tacexpr3` + : | only `selector`: `tacexpr3` + : | `tacexpr2` + tacexpr2 : `tacexpr1` || `tacexpr3` + : | `tacexpr1` + `tacexpr3` + : | tryif `tacexpr1` then `tacexpr1` else `tacexpr1` + : | `tacexpr1` + tacexpr1 : fun `name` ... `name` => `atom` + : | let [rec] `let_clause` with ... with `let_clause` in `atom` + : | match goal with `context_rule` | ... | `context_rule` end + : | match reverse goal with `context_rule` | ... | `context_rule` end + : | match `expr` with `match_rule` | ... | `match_rule` end + : | lazymatch goal with `context_rule` | ... | `context_rule` end + : | lazymatch reverse goal with `context_rule` | ... | `context_rule` end + : | lazymatch `expr` with `match_rule` | ... | `match_rule` end + : | multimatch goal with `context_rule` | ... | `context_rule` end + : | multimatch reverse goal with `context_rule` | ... | `context_rule` end + : | multimatch `expr` with `match_rule` | ... | `match_rule` end + : | abstract `atom` + : | abstract `atom` using `ident` + : | first [ `expr` | ... | `expr` ] + : | solve [ `expr` | ... | `expr` ] + : | idtac [ `message_token` ... `message_token`] + : | fail [`natural`] [`message_token` ... `message_token`] + : | fresh | fresh `string` | fresh `qualid` + : | context `ident` [`term`] + : | eval `redexpr` in `term` + : | type of `term` + : | constr : `term` + : | uconstr : `term` + : | type_term `term` + : | numgoals + : | guard `test` + : | assert_fails `tacexpr3` + : | assert_suceeds `tacexpr3` + : | `atomic_tactic` + : | `qualid` `tacarg` ... `tacarg` + : | `atom` + atom : `qualid` + : | () + : | `integer` + : | ( `expr` ) + message_token : `string` | `ident` | `integer` + tacarg : `qualid` + : | () + : | ltac : `atom` + : | `term` + let_clause : `ident` [`name` ... `name`] := `expr` + context_rule : `context_hyp`, ..., `context_hyp` |- `cpattern` => `expr` + : | `cpattern` => `expr` + : | |- `cpattern` => `expr` + : | _ => `expr` + context_hyp : `name` : `cpattern` + : | `name` := `cpattern` [: `cpattern`] + match_rule : `cpattern` => `expr` + : | context [ident] [ `cpattern` ] => `expr` + : | _ => `expr` + test : `integer` = `integer` + : | `integer` (< | <= | > | >=) `integer` + selector : [`ident`] + : | `integer` + : (`integer` | `integer` - `integer`), ..., (`integer` | `integer` - `integer`) + toplevel_selector : `selector` + : | `all` + : | `par` + +.. productionlist:: coq + top : [Local] Ltac `ltac_def` with ... with `ltac_def` + ltac_def : `ident` [`ident` ... `ident`] := `expr` + : | `qualid` [`ident` ... `ident`] ::= `expr` + +.. _ltac-semantics: + +Semantics +--------- + +Tactic expressions can only be applied in the context of a proof. The +evaluation yields either a term, an integer or a tactic. Intermediary +results can be terms or integers but the final result must be a tactic +which is then applied to the focused goals. + +There is a special case for ``match goal`` expressions of which the clauses +evaluate to tactics. Such expressions can only be used as end result of +a tactic expression (never as argument of a non recursive local +definition or of an application). + +The rest of this section explains the semantics of every construction of +|Ltac|. + +Sequence +~~~~~~~~ + +A sequence is an expression of the following form: + +.. tacn:: @expr ; @expr + :name: ; + + The expression :n:`@expr__1` is evaluated to :n:`v__1`, which must be + a tactic value. The tactic :n:`v__1` is applied to the current goal, + possibly producing more goals. Then :n:`@expr__2` is evaluated to + produce :n:`v__2`, which must be a tactic value. The tactic + :n:`v__2` is applied to all the goals produced by the prior + application. Sequence is associative. + +Local application of tactics +~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +Different tactics can be applied to the different goals using the +following form: + +.. tacn:: [> {*| @expr }] + :name: [> ... | ... | ... ] (dispatch) + + The expressions :n:`@expr__i` are evaluated to :n:`v__i`, for + i=0,...,n and all have to be tactics. The :n:`v__i` is applied to the + i-th goal, for =1,...,n. It fails if the number of focused goals is not + exactly n. + + .. note:: + + If no tactic is given for the i-th goal, it behaves as if the tactic idtac + were given. For instance, ``[> | auto]`` is a shortcut for ``[> idtac | auto + ]``. + + .. tacv:: [> {*| @expr} | @expr .. | {*| @expr}] + + In this variant, token:`expr` is used for each goal coming after those + covered by the first list of :n:`@expr` but before those coevered by the + last list of :n:`@expr`. + + .. tacv:: [> {*| @expr} | .. | {*| @expr}] + + In this variant, idtac is used for the goals not covered by the two lists of + :n:`@expr`. + + .. tacv:: [> @expr .. ] + + In this variant, the tactic :n:`@expr` is applied independently to each of + the goals, rather than globally. In particular, if there are no goal, the + tactic is not run at all. A tactic which expects multiple goals, such as + ``swap``, would act as if a single goal is focused. + + .. tacv:: expr ; [{*| @expr}] + + This variant of local tactic application is paired with a sequence. In this + variant, there must be as many :n:`@expr` in the list as goals generated + by the application of the first :n:`@expr` to each of the individual goals + independently. All the above variants work in this form too. + Formally, :n:`@expr ; [ ... ]` is equivalent to :n:`[> @expr ; [> ... ] .. ]`. + +.. _goal-selectors: + +Goal selectors +~~~~~~~~~~~~~~ + +We can restrict the application of a tactic to a subset of the currently +focused goals with: + +.. tacn:: @toplevel_selector : @expr + :name: ... : ... (goal selector) + + We can also use selectors as a tactical, which allows to use them nested + in a tactic expression, by using the keyword ``only``: + + .. tacv:: only selector : expr + + When selecting several goals, the tactic expr is applied globally to all + selected goals. + + .. tacv:: [@ident] : @expr + + In this variant, :n:`@expr` is applied locally to a goal previously named + by the user (see :ref:`existential-variables`). + + .. tacv:: @num : @expr + + In this variant, :n:`@expr` is applied locally to the :token:`num`-th goal. + + .. tacv:: {+, @num-@num} : @expr + + In this variant, :n:`@expr` is applied globally to the subset of goals + described by the given ranges. You can write a single ``n`` as a shortcut + for ``n-n`` when specifying multiple ranges. + + .. tacv:: all: @expr + + In this variant, :n:`@expr` is applied to all focused goals. ``all:`` can only + be used at the toplevel of a tactic expression. + + .. tacv:: par: @expr + + In this variant, :n:`@expr` is applied to all focused goals in parallel. + The number of workers can be controlled via the command line option + ``-async-proofs-tac-j`` taking as argument the desired number of workers. + Limitations: ``par:`` only works on goals containing no existential + variables and :n:`@expr` must either solve the goal completely or do + nothing (i.e. it cannot make some progress). ``par:`` can only be used at + the toplevel of a tactic expression. + + .. exn:: No such goal + :name: No such goal (goal selector) + + .. TODO change error message index entry + +For loop +~~~~~~~~ + +There is a for loop that repeats a tactic :token:`num` times: + +.. tacn:: do @num @expr + :name: do + + :n:`@expr` is evaluated to ``v`` which must be a tactic value. This tactic + value ``v`` is applied :token:`num` times. Supposing :token:`num` > 1, after the + first application of ``v``, ``v`` is applied, at least once, to the generated + subgoals and so on. It fails if the application of ``v`` fails before the num + applications have been completed. + +Repeat loop +~~~~~~~~~~~ + +We have a repeat loop with: + +.. tacn:: repeat @expr + :name: repeat + + :n:`@expr` is evaluated to ``v``. If ``v`` denotes a tactic, this tactic is + applied to each focused goal independently. If the application succeeds, the + tactic is applied recursively to all the generated subgoals until it eventually + fails. The recursion stops in a subgoal when the tactic has failed *to make + progress*. The tactic :n:`repeat @expr` itself never fails. + +Error catching +~~~~~~~~~~~~~~ + +We can catch the tactic errors with: + +.. tacn:: try @expr + :name: try + + :n:`@expr` is evaluated to ``v`` which must be a tactic value. The tactic + value ``v`` is applied to each focused goal independently. If the application of + ``v`` fails in a goal, it catches the error and leaves the goal unchanged. If the + level of the exception is positive, then the exception is re-raised with its + level decremented. + +Detecting progress +~~~~~~~~~~~~~~~~~~ + +We can check if a tactic made progress with: + +.. tacn:: progress expr + :name: progress + + :n:`@expr` is evaluated to v which must be a tactic value. The tactic value ``v`` + is applied to each focued subgoal independently. If the application of ``v`` + to one of the focused subgoal produced subgoals equal to the initial + goals (up to syntactical equality), then an error of level 0 is raised. + + .. exn:: Failed to progress + +Backtracking branching +~~~~~~~~~~~~~~~~~~~~~~ + +We can branch with the following structure: + +.. tacn:: @expr__1 + @expr__2 + :name: + (backtracking branching) + + :n:`@expr__1` and :n:`@expr__2` are evaluated respectively to :n:`v__1` and + :n:`v__2` which must be tactic values. The tactic value :n:`v__1` is applied to + each focused goal independently and if it fails or a later tactic fails, then + the proof backtracks to the current goal and :n:`v__2` is applied. + + Tactics can be seen as having several successes. When a tactic fails it + asks for more successes of the prior tactics. + :n:`@expr__1 + @expr__2` has all the successes of :n:`v__1` followed by all the + successes of :n:`v__2`. Algebraically, + :n:`(@expr__1 + @expr__2); @expr__3 = (@expr__1; @expr__3) + (@expr__2; @expr__3)`. + + Branching is left-associative. + +First tactic to work +~~~~~~~~~~~~~~~~~~~~ + +Backtracking branching may be too expensive. In this case we may +restrict to a local, left biased, branching and consider the first +tactic to work (i.e. which does not fail) among a panel of tactics: + +.. tacn:: first [{*| @expr}] + :name: first + + The :n:`@expr__i` are evaluated to :n:`v__i` and :n:`v__i` must be + tactic values, for i=1,...,n. Supposing n>1, it applies, in each focused + goal independently, :n:`v__1`, if it works, it stops otherwise it + tries to apply :n:`v__2` and so on. It fails when there is no + applicable tactic. In other words, + :n:`first [:@expr__1 | ... | @expr__n]` behaves, in each goal, as the the first + :n:`v__i` to have *at least* one success. + + .. exn:: Error message: No applicable tactic + + .. tacv:: first @expr + + This is an |Ltac| alias that gives a primitive access to the first + tactical as a |Ltac| definition without going through a parsing rule. It + expects to be given a list of tactics through a ``Tactic Notation``, + allowing to write notations of the following form: + + .. example:: + + .. coqtop:: in + + Tactic Notation "foo" tactic_list(tacs) := first tacs. + +Left-biased branching +~~~~~~~~~~~~~~~~~~~~~ + +Yet another way of branching without backtracking is the following +structure: + +.. tacn:: @expr__1 || @expr__2 + :name: || (left-biased branching) + + :n:`@expr__1` and :n:`@expr__2` are evaluated respectively to :n:`v__1` and + :n:`v__2` which must be tactic values. The tactic value :n:`v__1` is + applied in each subgoal independently and if it fails *to progress* then + :n:`v__2` is applied. :n:`@expr__1 || @expr__2` is + equivalent to :n:`first [ progress @expr__1 | @expr__2 ]` (except that + if it fails, it fails like :n:`v__2`). Branching is left-associative. + +Generalized biased branching +~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +The tactic + +.. tacn:: tryif @expr__1 then @expr__2 else @expr__3 + :name: tryif + + is a generalization of the biased-branching tactics above. The + expression :n:`@expr__1` is evaluated to :n:`v__1`, which is then + applied to each subgoal independently. For each goal where :n:`v__1` + succeeds at least once, :n:`@expr__2` is evaluated to :n:`v__2` which + is then applied collectively to the generated subgoals. The :n:`v__2` + tactic can trigger backtracking points in :n:`v__1`: where :n:`v__1` + succeeds at least once, + :n:`tryif @expr__1 then @expr__2 else @expr__3` is equivalent to + :n:`v__1; v__2`. In each of the goals where :n:`v__1` does not succeed at least + once, :n:`@expr__3` is evaluated in :n:`v__3` which is is then applied to the + goal. + +Soft cut +~~~~~~~~ + +Another way of restricting backtracking is to restrict a tactic to a +single success *a posteriori*: + +.. tacn:: once @expr + :name: once + + :n:`@expr` is evaluated to ``v`` which must be a tactic value. The tactic value + ``v`` is applied but only its first success is used. If ``v`` fails, + :n:`once @expr` fails like ``v``. If ``v`` has a least one success, + :n:`once @expr` succeeds once, but cannot produce more successes. + +Checking the successes +~~~~~~~~~~~~~~~~~~~~~~ + +Coq provides an experimental way to check that a tactic has *exactly +one* success: + +.. tacn:: exactly_once @expr + :name: exactly_once + + :n:`@expr` is evaluated to ``v`` which must be a tactic value. The tactic value + ``v`` is applied if it has at most one success. If ``v`` fails, + :n:`exactly_once @expr` fails like ``v``. If ``v`` has a exactly one success, + :n:`exactly_once @expr` succeeds like ``v``. If ``v`` has two or more + successes, exactly_once expr fails. + + .. warning:: + + The experimental status of this tactic pertains to the fact if ``v`` + performs side effects, they may occur in a unpredictable way. Indeed, + normally ``v`` would only be executed up to the first success until + backtracking is needed, however exactly_once needs to look ahead to see + whether a second success exists, and may run further effects + immediately. + + .. exn:: This tactic has more than one success + +Checking the failure +~~~~~~~~~~~~~~~~~~~~ + +Coq provides a derived tactic to check that a tactic *fails*: + +.. tacn:: assert_fails @expr + :name: assert_fails + + This behaves like :n:`tryif @expr then fail 0 tac "succeeds" else idtac`. + +Checking the success +~~~~~~~~~~~~~~~~~~~~ + +Coq provides a derived tactic to check that a tactic has *at least one* +success: + +.. tacn:: assert_succeeds @expr + :name: assert_suceeds + + This behaves like + :n:`tryif (assert_fails tac) then fail 0 tac "fails" else idtac`. + +Solving +~~~~~~~ + +We may consider the first to solve (i.e. which generates no subgoal) +among a panel of tactics: + +.. tacn:: solve [{*| @expr}] + :name: solve + + The :n:`@expr__i` are evaluated to :n:`v__i` and :n:`v__i` must be + tactic values, for i=1,...,n. Supposing n>1, it applies :n:`v__1` to + each goal independently, if it doesn’t solve the goal then it tries to + apply :n:`v__2` and so on. It fails if there is no solving tactic. + + .. exn:: Cannot solve the goal + + .. tacv:: solve @expr + + This is an |Ltac| alias that gives a primitive access to the :n:`solve:` + tactical. See the :n:`first` tactical for more information. + +Identity +~~~~~~~~ + +The constant :n:`idtac` is the identity tactic: it leaves any goal unchanged but +it appears in the proof script. + +.. tacn:: idtac {* message_token} + :name: idtac + + This prints the given tokens. Strings and integers are printed + literally. If a (term) variable is given, its contents are printed. + +Failing +~~~~~~~ + +.. tacn:: fail + :name: fail + + This is the always-failing tactic: it does not solve any + goal. It is useful for defining other tacticals since it can be caught by + :tacn:`try`, :tacn:`repeat`, :tacn:`match goal`, or the branching tacticals. The + :tacn:`fail` tactic will, however, succeed if all the goals have already been + solved. + + .. tacv:: fail @natural + + The number is the failure level. If no level is specified, it defaults to 0. + The level is used by :tacn:`try`, :tacn:`repeat`, :tacn:`match goal` and the branching + tacticals. If 0, it makes :tacn:`match goal` considering the next clause + (backtracking). If non zero, the current :tacn:`match goal` block, :tacn:`try`, + :tacn:`repeat`, or branching command is aborted and the level is decremented. In + the case of :n:`+`, a non-zero level skips the first backtrack point, even if + the call to :n:`fail @natural` is not enclosed in a :n:`+` command, + respecting the algebraic identity. + + .. tacv:: fail {* message_token} + + The given tokens are used for printing the failure message. + + .. tacv:: fail @natural {* message_token} + + This is a combination of the previous variants. + + .. tacv:: gfail + :name: gfail + + This variant fails even if there are no goals left. + + .. tacv:: gfail {* message_token} + + .. tacv:: gfail @natural {* message_token} + + These variants fail with an error message or an error level even if + there are no goals left. Be careful however if Coq terms have to be + printed as part of the failure: term construction always forces the + tactic into the goals, meaning that if there are no goals when it is + evaluated, a tactic call like :n:`let x:=H in fail 0 x` will succeed. + + .. exn:: Tactic Failure message (level @natural). + +Timeout +~~~~~~~ + +We can force a tactic to stop if it has not finished after a certain +amount of time: + +.. tacn:: timeout @num @expr + :name: timeout + + :n:`@expr` is evaluated to ``v`` which must be a tactic value. The tactic value + ``v`` is applied normally, except that it is interrupted after :n:`@num` seconds + if it is still running. In this case the outcome is a failure. + + .. warning:: + + For the moment, timeout is based on elapsed time in seconds, + which is very machine-dependent: a script that works on a quick machine + may fail on a slow one. The converse is even possible if you combine a + timeout with some other tacticals. This tactical is hence proposed only + for convenience during debug or other development phases, we strongly + advise you to not leave any timeout in final scripts. Note also that + this tactical isn’t available on the native Windows port of Coq. + +Timing a tactic +~~~~~~~~~~~~~~~ + +A tactic execution can be timed: + +.. tacn:: time @string @expr + :name: time + + evaluates :n:`@expr` and displays the time the tactic expression ran, whether it + fails or successes. In case of several successes, the time for each successive + runs is displayed. Time is in seconds and is machine-dependent. The :n:`@string` + argument is optional. When provided, it is used to identify this particular + occurrence of time. + +Timing a tactic that evaluates to a term +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +Tactic expressions that produce terms can be timed with the experimental +tactic + +.. tacn:: time_constr expr + :name: time_constr + + which evaluates :n:`@expr ()` and displays the time the tactic expression + evaluated, assuming successful evaluation. Time is in seconds and is + machine-dependent. + + This tactic currently does not support nesting, and will report times + based on the innermost execution. This is due to the fact that it is + implemented using the tactics + + .. tacn:: restart_timer @string + :name: restart_timer + + and + + .. tacn:: finish_timing {? @string} @string + :name: finish_timing + + which (re)set and display an optionally named timer, respectively. The + parenthesized string argument to :n:`finish_timing` is also optional, and + determines the label associated with the timer for printing. + + By copying the definition of :n:`time_constr` from the standard library, + users can achive support for a fixed pattern of nesting by passing + different :n:`@string` parameters to :n:`restart_timer` and :n:`finish_timing` + at each level of nesting. + + .. example:: + + .. coqtop:: all + + Ltac time_constr1 tac := + let eval_early := match goal with _ => restart_timer "(depth 1)" end in + let ret := tac () in + let eval_early := match goal with _ => finish_timing ( "Tactic evaluation" ) "(depth 1)" end in + ret. + + Goal True. + let v := time_constr + ltac:(fun _ => + let x := time_constr1 ltac:(fun _ => constr:(10 * 10)) in + let y := time_constr1 ltac:(fun _ => eval compute in x) in + y) in + pose v. + Abort. + +Local definitions +~~~~~~~~~~~~~~~~~ + +Local definitions can be done as follows: + +.. tacn:: let @ident__1 := @expr__1 {* with @ident__i := @expr__i} in @expr + + each :n:`@expr__i` is evaluated to :n:`v__i`, then, :n:`@expr` is evaluated + by substituting :n:`v__i` to each occurrence of :n:`@ident__i`, for + i=1,...,n. There is no dependencies between the :n:`@expr__i` and the + :n:`@ident__i`. + + Local definitions can be recursive by using :n:`let rec` instead of :n:`let`. + In this latter case, the definitions are evaluated lazily so that the rec + keyword can be used also in non recursive cases so as to avoid the eager + evaluation of local definitions. + + .. but rec changes the binding!! + +Application +~~~~~~~~~~~ + +An application is an expression of the following form: + +.. tacn:: @qualid {+ @tacarg} + + The reference :n:`@qualid` must be bound to some defined tactic definition + expecting at least as many arguments as the provided :n:`tacarg`. The + expressions :n:`@expr__i` are evaluated to :n:`v__i`, for i=1,...,n. + + .. what expressions ?? + +Function construction +~~~~~~~~~~~~~~~~~~~~~ + +A parameterized tactic can be built anonymously (without resorting to +local definitions) with: + +.. tacn:: fun {+ @ident} => @expr + + Indeed, local definitions of functions are a syntactic sugar for binding + a :n:`fun` tactic to an identifier. + +Pattern matching on terms +~~~~~~~~~~~~~~~~~~~~~~~~~ + +We can carry out pattern matching on terms with: + +.. tacn:: match @expr with {+| @cpattern__i => @expr__i} end + + The expression :n:`@expr` is evaluated and should yield a term which is + matched against :n:`cpattern__1`. The matching is non-linear: if a + metavariable occurs more than once, it should match the same expression + every time. It is first-order except on the variables of the form :n:`@?id` + that occur in head position of an application. For these variables, the + matching is second-order and returns a functional term. + + Alternatively, when a metavariable of the form :n:`?id` occurs under binders, + say :n:`x__1, …, x__n` and the expression matches, the + metavariable is instantiated by a term which can then be used in any + context which also binds the variables :n:`x__1, …, x__n` with + same types. This provides with a primitive form of matching under + context which does not require manipulating a functional term. + + If the matching with :n:`@cpattern__1` succeeds, then :n:`@expr__1` is + evaluated into some value by substituting the pattern matching + instantiations to the metavariables. If :n:`@expr__1` evaluates to a + tactic and the match expression is in position to be applied to a goal + (e.g. it is not bound to a variable by a :n:`let in`), then this tactic is + applied. If the tactic succeeds, the list of resulting subgoals is the + result of the match expression. If :n:`@expr__1` does not evaluate to a + tactic or if the match expression is not in position to be applied to a + goal, then the result of the evaluation of :n:`@expr__1` is the result + of the match expression. + + If the matching with :n:`@cpattern__1` fails, or if it succeeds but the + evaluation of :n:`@expr__1` fails, or if the evaluation of + :n:`@expr__1` succeeds but returns a tactic in execution position whose + execution fails, then :n:`cpattern__2` is used and so on. The pattern + :n:`_` matches any term and shunts all remaining patterns if any. If all + clauses fail (in particular, there is no pattern :n:`_`) then a + no-matching-clause error is raised. + + Failures in subsequent tactics do not cause backtracking to select new + branches or inside the right-hand side of the selected branch even if it + has backtracking points. + + .. exn:: No matching clauses for match + + No pattern can be used and, in particular, there is no :n:`_` pattern. + + .. exn:: Argument of match does not evaluate to a term + + This happens when :n:`@expr` does not denote a term. + + .. tacv:: multimatch @expr with {+| @cpattern__i => @expr__i} end + + Using multimatch instead of match will allow subsequent tactics to + backtrack into a right-hand side tactic which has backtracking points + left and trigger the selection of a new matching branch when all the + backtracking points of the right-hand side have been consumed. + + The syntax :n:`match …` is, in fact, a shorthand for :n:`once multimatch …`. + + .. tacv:: lazymatch @expr with {+| @cpattern__i => @expr__i} end + + Using lazymatch instead of match will perform the same pattern + matching procedure but will commit to the first matching branch + rather than trying a new matching if the right-hand side fails. If + the right-hand side of the selected branch is a tactic with + backtracking points, then subsequent failures cause this tactic to + backtrack. + + .. tacv:: context @ident [@cpattern] + + This special form of patterns matches any term with a subterm matching + cpattern. If there is a match, the optional :n:`@ident` is assigned the "matched + context", i.e. the initial term where the matched subterm is replaced by a + hole. The example below will show how to use such term contexts. + + If the evaluation of the right-hand-side of a valid match fails, the next + matching subterm is tried. If no further subterm matches, the next clause + is tried. Matching subterms are considered top-bottom and from left to + right (with respect to the raw printing obtained by setting option + :opt:`Printing All`). + + .. example:: + + .. coqtop:: all + + Ltac f x := + match x with + context f [S ?X] => + idtac X; (* To display the evaluation order *) + assert (p := eq_refl 1 : X=1); (* To filter the case X=1 *) + let x:= context f[O] in assert (x=O) (* To observe the context *) + end. + Goal True. + f (3+4). + +.. _ltac-match-goal: + +Pattern matching on goals +~~~~~~~~~~~~~~~~~~~~~~~~~ + +We can make pattern matching on goals using the following expression: + +.. we should provide the full grammar here + +.. tacn:: match goal with {+| {+ hyp} |- @cpattern => @expr } | _ => @expr end + + If each hypothesis pattern :n:`hyp`\ :sub:`1,i`, with i=1,...,m\ :sub:`1` is + matched (non-linear first-order unification) by an hypothesis of the + goal and if :n:`cpattern_1` is matched by the conclusion of the goal, + then :n:`@expr__1` is evaluated to :n:`v__1` by substituting the + pattern matching to the metavariables and the real hypothesis names + bound to the possible hypothesis names occurring in the hypothesis + patterns. If :n:`v__1` is a tactic value, then it is applied to the + goal. If this application fails, then another combination of hypotheses + is tried with the same proof context pattern. If there is no other + combination of hypotheses then the second proof context pattern is tried + and so on. If the next to last proof context pattern fails then + the last :n:`@expr` is evaluated to :n:`v` and :n:`v` is + applied. Note also that matching against subterms (using the :n:`context + @ident [ @cpattern ]`) is available and is also subject to yielding several + matchings. + + Failures in subsequent tactics do not cause backtracking to select new + branches or combinations of hypotheses, or inside the right-hand side of + the selected branch even if it has backtracking points. + + .. exn:: No matching clauses for match goal + + No clause succeeds, i.e. all matching patterns, if any, fail at the + application of the right-hand-side. + + .. note:: + + It is important to know that each hypothesis of the goal can be matched + by at most one hypothesis pattern. The order of matching is the + following: hypothesis patterns are examined from the right to the left + (i.e. hyp\ :sub:`i,m`\ :sub:`i`` before hyp\ :sub:`i,1`). For each + hypothesis pattern, the goal hypothesis are matched in order (fresher + hypothesis first), but it possible to reverse this order (older first) + with the :n:`match reverse goal with` variant. + + .. tacv:: multimatch goal with {+| {+ hyp} |- @cpattern => @expr } | _ => @expr end + + Using :n:`multimatch` instead of :n:`match` will allow subsequent tactics + to backtrack into a right-hand side tactic which has backtracking points + left and trigger the selection of a new matching branch or combination of + hypotheses when all the backtracking points of the right-hand side have + been consumed. + + The syntax :n:`match [reverse] goal …` is, in fact, a shorthand for + :n:`once multimatch [reverse] goal …`. + + .. tacv:: lazymatch goal with {+| {+ hyp} |- @cpattern => @expr } | _ => @expr end + + Using lazymatch instead of match will perform the same pattern matching + procedure but will commit to the first matching branch with the first + matching combination of hypotheses rather than trying a new matching if + the right-hand side fails. If the right-hand side of the selected branch + is a tactic with backtracking points, then subsequent failures cause + this tactic to backtrack. + +Filling a term context +~~~~~~~~~~~~~~~~~~~~~~ + +The following expression is not a tactic in the sense that it does not +produce subgoals but generates a term to be used in tactic expressions: + +.. tacn:: context @ident [@expr] + + :n:`@ident` must denote a context variable bound by a context pattern of a + match expression. This expression evaluates replaces the hole of the + value of :n:`@ident` by the value of :n:`@expr`. + + .. exn:: not a context variable + +Generating fresh hypothesis names +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +Tactics sometimes have to generate new names for hypothesis. Letting the +system decide a name with the intro tactic is not so good since it is +very awkward to retrieve the name the system gave. The following +expression returns an identifier: + +.. tacn:: fresh {* component} + + It evaluates to an identifier unbound in the goal. This fresh identifier + is obtained by concatenating the value of the :n:`@component`s (each of them + is, either a :n:`@qualid` which has to refer to a (unqualified) name, or + directly a name denoted by a :n:`@string`). + + .. I don't understand this component thing. Couldn't we give the grammar? + + If the resulting name is already used, it is padded with a number so that it + becomes fresh. If no component is given, the name is a fresh derivative of + the name ``H``. + +Computing in a constr +~~~~~~~~~~~~~~~~~~~~~ + +Evaluation of a term can be performed with: + +.. tacn:: eval @redexpr in @term + + where :n:`@redexpr` is a reduction tactic among :tacn:`red`, :tacn:`hnf`, + :tacn:`compute`, :tacn:`simpl`, :tacn:`cbv`, :tacn:`lazy`, :tacn:`unfold`, + :tacn:`fold`, :tacn:`pattern`. + +Recovering the type of a term +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +The following returns the type of term: + +.. tacn:: type of @term + +Manipulating untyped terms +~~~~~~~~~~~~~~~~~~~~~~~~~~ + +.. tacn:: uconstr : @term + + The terms built in |Ltac| are well-typed by default. It may not be + appropriate for building large terms using a recursive |Ltac| function: the + term has to be entirely type checked at each step, resulting in potentially + very slow behavior. It is possible to build untyped terms using |Ltac| with + the :n:`uconstr : @term` syntax. + +.. tacn:: type_term @term + + An untyped term, in |Ltac|, can contain references to hypotheses or to + |Ltac| variables containing typed or untyped terms. An untyped term can be + type-checked using the function type_term whose argument is parsed as an + untyped term and returns a well-typed term which can be used in tactics. + +Untyped terms built using :n:`uconstr :` can also be used as arguments to the +:tacn:`refine` tactic. In that case the untyped term is type +checked against the conclusion of the goal, and the holes which are not solved +by the typing procedure are turned into new subgoals. + +Counting the goals +~~~~~~~~~~~~~~~~~~ + +.. tacn:: numgoals + + The number of goals under focus can be recovered using the :n:`numgoals` + function. Combined with the guard command below, it can be used to + branch over the number of goals produced by previous tactics. + + .. example:: + + .. coqtop:: in + + Ltac pr_numgoals := let n := numgoals in idtac "There are" n "goals". + + Goal True /\ True /\ True. + split;[|split]. + + .. coqtop:: all + + all:pr_numgoals. + +Testing boolean expressions +~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +.. tacn:: guard @test + :name: guard + + The :tacn:`guard` tactic tests a boolean expression, and fails if the expression + evaluates to false. If the expression evaluates to true, it succeeds + without affecting the proof. + + The accepted tests are simple integer comparisons. + + .. example:: + + .. coqtop:: in + + Goal True /\ True /\ True. + split;[|split]. + + .. coqtop:: all + + all:let n:= numgoals in guard n<4. + Fail all:let n:= numgoals in guard n=2. + + .. exn:: Condition not satisfied + +Proving a subgoal as a separate lemma +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +.. tacn:: abstract @expr + :name: abstract + + From the outside, :n:`abstract @expr` is the same as :n:`solve @expr`. + Internally it saves an auxiliary lemma called ``ident_subproofn`` where + ``ident`` is the name of the current goal and ``n`` is chosen so that this is + a fresh name. Such an auxiliary lemma is inlined in the final proof term. + + This tactical is useful with tactics such as :tacn:`omega` or + :tacn:`discriminate` that generate huge proof terms. With that tool the user + can avoid the explosion at time of the Save command without having to cut + manually the proof in smaller lemmas. + + It may be useful to generate lemmas minimal w.r.t. the assumptions they + depend on. This can be obtained thanks to the option below. + + .. tacv:: abstract @expr using @ident + + Give explicitly the name of the auxiliary lemma. + + .. warning:: + + Use this feature at your own risk; explicitly named and reused subterms + don’t play well with asynchronous proofs. + + .. tacv:: transparent_abstract @expr + :name: transparent_abstract + + Save the subproof in a transparent lemma rather than an opaque one. + + .. warning:: + + Use this feature at your own risk; building computationally relevant + terms with tactics is fragile. + + .. tacv:: transparent_abstract @expr using @ident + + Give explicitly the name of the auxiliary transparent lemma. + + .. warning:: + + Use this feature at your own risk; building computationally relevant terms + with tactics is fragile, and explicitly named and reused subterms + don’t play well with asynchronous proofs. + + .. exn:: Proof is not complete + :name: Proof is not complete (abstract) + +Tactic toplevel definitions +--------------------------- + +Defining |Ltac| functions +~~~~~~~~~~~~~~~~~~~~~~~~~ + +Basically, |Ltac| toplevel definitions are made as follows: + +.. cmd:: Ltac @ident {* @ident} := @expr + + This defines a new |Ltac| function that can be used in any tactic + script or new |Ltac| toplevel definition. + + .. note:: + + The preceding definition can equivalently be written: + + :n:`Ltac @ident := fun {+ @ident} => @expr` + + Recursive and mutual recursive function definitions are also possible + with the syntax: + + .. cmdv:: Ltac @ident {* @ident} {* with @ident {* @ident}} := @expr + + It is also possible to *redefine* an existing user-defined tactic using the syntax: + + .. cmdv:: Ltac @qualid {* @ident} ::= @expr + + A previous definition of qualid must exist in the environment. The new + definition will always be used instead of the old one and it goes across + module boundaries. + + If preceded by the keyword Local the tactic definition will not be + exported outside the current module. + +Printing |Ltac| tactics +~~~~~~~~~~~~~~~~~~~~~~~ + +.. cmd:: Print Ltac @qualid. + + Defined |Ltac| functions can be displayed using this command. + +.. cmd:: Print Ltac Signatures + + This command displays a list of all user-defined tactics, with their arguments. + +Debugging |Ltac| tactics +------------------------ + +Info trace +~~~~~~~~~~ + +.. cmd:: Info @num @expr + + This command can be used to print the trace of the path eventually taken by an + |Ltac| script. That is, the list of executed tactics, discarding + all the branches which have failed. To that end the Info command can be + used with the following syntax. + + + The number :n:`@num` is the unfolding level of tactics in the trace. At level + 0, the trace contains a sequence of tactics in the actual script, at level 1, + the trace will be the concatenation of the traces of these tactics, etc… + + .. example:: + + .. coqtop:: in reset + + Ltac t x := exists x; reflexivity. + Goal exists n, n=0. + + .. coqtop:: all + + Info 0 t 1||t 0. + + .. coqtop:: in + + Undo. + + .. coqtop:: all + + Info 1 t 1||t 0. + + The trace produced by ``Info`` tries its best to be a reparsable + |Ltac| script, but this goal is not achievable in all generality. + So some of the output traces will contain oddities. + + As an additional help for debugging, the trace produced by ``Info`` contains + (in comments) the messages produced by the idtac + tacticals \ `4.2 <#ltac%3Aidtac>`__ at the right possition in the + script. In particular, the calls to idtac in branches which failed are + not printed. + + .. opt:: Info Level @num. + + This option is an alternative to the ``Info`` command. + + This will automatically print the same trace as :n:`Info @num` at each + tactic call. The unfolding level can be overridden by a call to the + ``Info`` command. + +Interactive debugger +~~~~~~~~~~~~~~~~~~~~ + +.. opt:: Ltac Debug + + This option governs the step-by-step debugger that comes with the |Ltac| interpreter + +When the debugger is activated, it stops at every step of the evaluation of +the current |Ltac| expression and it prints information on what it is doing. +The debugger stops, prompting for a command which can be one of the +following: + ++-----------------+-----------------------------------------------+ +| simple newline: | go to the next step | ++-----------------+-----------------------------------------------+ +| h: | get help | ++-----------------+-----------------------------------------------+ +| x: | exit current evaluation | ++-----------------+-----------------------------------------------+ +| s: | continue current evaluation without stopping | ++-----------------+-----------------------------------------------+ +| r n: | advance n steps further | ++-----------------+-----------------------------------------------+ +| r string: | advance up to the next call to “idtac string” | ++-----------------+-----------------------------------------------+ + +A non-interactive mode for the debugger is available via the option: + +.. opt:: Ltac Batch Debug + + This option has the effect of presenting a newline at every prompt, when + the debugger is on. The debug log thus created, which does not require + user input to generate when this option is set, can then be run through + external tools such as diff. + +Profiling |Ltac| tactics +~~~~~~~~~~~~~~~~~~~~~~~~ + +It is possible to measure the time spent in invocations of primitive +tactics as well as tactics defined in |Ltac| and their inner +invocations. The primary use is the development of complex tactics, +which can sometimes be so slow as to impede interactive usage. The +reasons for the performence degradation can be intricate, like a slowly +performing |Ltac| match or a sub-tactic whose performance only +degrades in certain situations. The profiler generates a call tree and +indicates the time spent in a tactic depending its calling context. Thus +it allows to locate the part of a tactic definition that contains the +performance bug. + +.. opt:: Ltac Profiling + + This option enables and disables the profiler. + +.. cmd:: Show Ltac Profile + + Prints the profile + + .. cmdv:: Show Ltac Profile @string + + Prints a profile for all tactics that start with :n:`@string`. Append a period + (.) to the string if you only want exactly that name. + +.. cmd:: Reset Ltac Profile + + Resets the profile, that is, deletes all accumulated information. + + .. warning:: + + Backtracking across a Reset Ltac Profile will not restore the information. + +.. coqtop:: reset in + + Require Import Coq.omega.Omega. + + Ltac mytauto := tauto. + Ltac tac := intros; repeat split; omega || mytauto. + + Notation max x y := (x + (y - x)) (only parsing). + + Goal forall x y z A B C D E F G H I J K L M N O P Q R S T U V W X Y Z, + max x (max y z) = max (max x y) z /\ max x (max y z) = max (max x y) z + /\ (A /\ B /\ C /\ D /\ E /\ F /\ G /\ H /\ I /\ J /\ K /\ L /\ M /\ N /\ O /\ P /\ Q /\ R /\ S /\ T /\ U /\ V /\ W /\ X /\ Y /\ Z + -> Z /\ Y /\ X /\ W /\ V /\ U /\ T /\ S /\ R /\ Q /\ P /\ O /\ N /\ M /\ L /\ K /\ J /\ I /\ H /\ G /\ F /\ E /\ D /\ C /\ B /\ A). + Proof. + +.. coqtop:: all + + Set Ltac Profiling. + tac. + Show Ltac Profile. + Show Ltac Profile "omega". + +.. coqtop:: in + + Abort. + Unset Ltac Profiling. + +.. tacn:: start ltac profiling + :name: start ltac profiling + + This tactic behaves like :tacn:`idtac` but enables the profiler. + +.. tacn:: stop ltac profiling + :name: stop ltac profiling + + Similarly to :tacn:`start ltac profiling`, this tactic behaves like + :tacn:`idtac`. Together, they allow you to exclude parts of a proof script + from profiling. + +.. tacn:: reset ltac profile + :name: reset ltac profile + + This tactic behaves like the corresponding vernacular command + and allow displaying and resetting the profile from tactic scripts for + benchmarking purposes. + +.. tacn:: show ltac profile + :name: show ltac profile + + This tactic behaves like the corresponding vernacular command + and allow displaying and resetting the profile from tactic scripts for + benchmarking purposes. + +.. tacn:: show ltac profile @string + :name: show ltac profile + + This tactic behaves like the corresponding vernacular command + and allow displaying and resetting the profile from tactic scripts for + benchmarking purposes. + +You can also pass the ``-profile-ltac`` command line option to ``coqc``, which +performs a ``Set Ltac Profiling`` at the beginning of each document, and a +``Show Ltac Profile`` at the end. + +.. warning:: + + Note that the profiler currently does not handle backtracking into + multi-success tactics, and issues a warning to this effect in many cases + when such backtracking occurs. + +Run-time optimization tactic +~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +.. tacn:: optimize_heap + :name: optimize_heap + +This tactic behaves like :n:`idtac`, except that running it compacts the +heap in the OCaml run-time system. It is analogous to the Vernacular +command :cmd:`Optimize Heap`. diff --git a/doc/sphinx/proof-engine/proof-handling.rst b/doc/sphinx/proof-engine/proof-handling.rst index 52cde52c6..86c94bab3 100644 --- a/doc/sphinx/proof-engine/proof-handling.rst +++ b/doc/sphinx/proof-engine/proof-handling.rst @@ -20,20 +20,18 @@ prove. Initially, the list consists only in the theorem itself. After having applied some tactics, the list of goals contains the subgoals generated by the tactics. -To each subgoal is associated a number of hypotheses called the *local -context* of the goal. Initially, the local context contains the local -variables and hypotheses of the current section (see Section :ref:`TODO_gallina_assumptions`) -and the local variables and hypotheses of the theorem statement. It is -enriched by the use of certain tactics (see e.g. ``intro`` in Section -:ref:`managingthelocalcontext`). +To each subgoal is associated a number of hypotheses called the *local context* +of the goal. Initially, the local context contains the local variables and +hypotheses of the current section (see Section :ref:`gallina-assumptions`) and +the local variables and hypotheses of the theorem statement. It is enriched by +the use of certain tactics (see e.g. :tacn:`intro`). When a proof is completed, the message ``Proof completed`` is displayed. One can then register this proof as a defined constant in the environment. Because there exists a correspondence between proofs and -terms of λ-calculus, known as the *Curry-Howard isomorphism* [[How80]_, -[Bar81]_, [Gir89]_, [Hue88]_ ], |Coq| -stores proofs as terms of |Cic|. Those terms -are called *proof terms*. +terms of λ-calculus, known as the *Curry-Howard isomorphism* +:cite:`How80,Bar81,Gir89,Hue88`, |Coq| stores proofs as terms of |Cic|. Those +terms are called *proof terms*. .. exn:: No focused proof @@ -41,16 +39,15 @@ are called *proof terms*. Coq raises this error message when one attempts to use a proof editing command out of the proof editing mode. +.. _proof-editing-mode: + Switching on/off the proof editing mode ------------------------------------------- -The proof editing mode is entered by asserting a statement, which -typically is the assertion of a theorem: - -.. cmd:: Theorem @ident [@binders] : @form. - -The list of assertion commands is given in Section :ref:TODO-assertions_and_proof`. The -command ``Goal`` can also be used. +The proof editing mode is entered by asserting a statement, which typically is +the assertion of a theorem using an assertion command like :cmd:`Theorem`. The +list of assertion commands is given in Section :ref:`Assertions`. The command +:cmd:`Goal` can also be used. .. cmd:: Goal @form. @@ -61,13 +58,14 @@ statement is eventually completed and validated, the statement is then bound to the name ``Unnamed_thm`` (or a variant of this name not already used for another statement). -.. cmd:: Qed. +.. cmd:: Qed + :name: Qed (interactive proof) This command is available in interactive editing proof mode when the proof is completed. Then ``Qed`` extracts a proof term from the proof script, switches back to Coq top-level and attaches the extracted proof term to the declared name of the original goal. This name is -added to the environment as an ``Opaque`` constant. +added to the environment as an opaque constant. .. exn:: Attempt to save an incomplete proof @@ -84,6 +82,7 @@ a while when the proof is large. In some exceptional cases one may even incur a memory overflow. .. cmdv:: Defined. + :name: Defined (interactive proof) Defines the proved term as a transparent constant. @@ -93,14 +92,14 @@ Forces the name of the original goal to be :n:`@ident`. This command (and the following ones) can only be used if the original goal has been opened using the ``Goal`` command. - .. cmd:: Admitted. + :name: Admitted (interactive proof) This command is available in interactive editing proof mode to give up the current proof and declare the initial goal as an axiom. - .. cmd:: Proof @term. + :name: Proof `term` This command applies in proof editing mode. It is equivalent to @@ -109,8 +108,8 @@ This command applies in proof editing mode. It is equivalent to That is, you have to give the full proof in one gulp, as a proof term (see Section :ref:`applyingtheorems`). - .. cmdv:: Proof. + :name: Proof (interactive proof) Is a noop which is useful to delimit the sequence of tactic commands which start a proof, after a ``Theorem`` command. It is a good practice to @@ -119,13 +118,13 @@ closing ``Qed``. See also: ``Proof with tactic.`` in Section -:ref:`setimpautotactics`. +:ref:`tactics-implicit-automation`. .. cmd:: Proof using @ident1 ... @identn. This command applies in proof editing mode. It declares the set of -section variables (see :ref:`TODO-gallina-assumptions`) used by the proof. At ``Qed`` time, the +section variables (see :ref:`gallina-assumptions`) used by the proof. At ``Qed`` time, the system will assert that the set of section variables actually used in the proof is a subset of the declared one. @@ -136,7 +135,7 @@ example if ``T`` is variable and a is a variable of type ``T``, the commands .. cmdv:: Proof using @ident1 ... @identn with @tactic. -in Section :ref:`setimpautotactics`. +in Section :ref:`tactics-implicit-automation`. .. cmdv:: Proof using All. @@ -186,49 +185,51 @@ Proof using options The following options modify the behavior of ``Proof using``. -.. cmdv:: Set Default Proof Using "@expression". +.. opt:: Default Proof Using "@expression". -Use :n:`@expression` as the default ``Proof``` using value. E.g. ``Set Default -Proof Using "a b"``. will complete all ``Proof`` commands not followed by a -using part with using ``a`` ``b``. + Use :n:`@expression` as the default ``Proof``` using value. E.g. ``Set Default + Proof Using "a b"``. will complete all ``Proof`` commands not followed by a + using part with using ``a`` ``b``. -.. cmdv:: Set Suggest Proof Using. +.. opt:: Suggest Proof Using. -When ``Qed`` is performed, suggest a using annotation if the user did not -provide one. + When ``Qed`` is performed, suggest a using annotation if the user did not + provide one. .. _`nameaset`: Name a set of section hypotheses for ``Proof using`` ```````````````````````````````````````````````````` +.. cmd:: Collection @ident := @section_subset_expr + The command ``Collection`` can be used to name a set of section hypotheses, with the purpose of making ``Proof using`` annotations more compact. -.. cmdv:: Collection Some := x y z. +.. cmdv:: Collection Some := x y z Define the collection named "Some" containing ``x``, ``y`` and ``z``. -.. cmdv:: Collection Fewer := Some - z. +.. cmdv:: Collection Fewer := Some - z Define the collection named "Fewer" containing only ``x`` and ``y``. -.. cmdv:: Collection Many := Fewer + Some. -.. cmdv:: Collection Many := Fewer - Some. +.. cmdv:: Collection Many := Fewer + Some +.. cmdv:: Collection Many := Fewer - Some Define the collection named "Many" containing the set union or set difference of "Fewer" and "Some". -.. cmdv:: Collection Many := Fewer - (x y). +.. cmdv:: Collection Many := Fewer - (x y) Define the collection named "Many" containing the set difference of -"Fewer" and the unnamed collection ``x`` ``y``. +"Fewer" and the unnamed collection ``x`` ``y`` .. cmd:: Abort. @@ -262,11 +263,11 @@ Existentials`` (described in Section :ref:`requestinginformation`). This command is intended to be used to instantiate existential variables when the proof is completed but some uninstantiated existential variables remain. To instantiate existential variables -during proof edition, you should use the tactic instantiate. +during proof edition, you should use the tactic :tacn:`instantiate`. See also: ``instantiate (num:= term).`` in Section -:ref:`TODO-controllingtheproofflow`. +:ref:`controllingtheproofflow`. See also: ``Grab Existential Variables.`` below. @@ -292,6 +293,7 @@ backtracks one step. Repeats Undo :n:`@num` times. .. cmdv:: Restart. + :name: Restart This command restores the proof editing process to the original goal. @@ -327,6 +329,7 @@ last ``Focus`` command. Succeeds if the proof is fully unfocused, fails is there are some goals out of focus. +.. _curly-braces: .. cmd:: %{ %| %} @@ -351,12 +354,14 @@ Error messages: You are trying to use ``}`` but the current subproof has not been fully solved. .. exn:: No such goal + :name: No such goal (focusing) .. exn:: Brackets only support the single numbered goal selector - See also error messages about bullets below. +.. _bullets: + Bullets ``````` @@ -425,15 +430,16 @@ Set Bullet Behavior The bullet behavior can be controlled by the following commands. -.. opt:: Bullet Behavior "None". +.. opt:: Bullet Behavior "None" This makes bullets inactive. -.. opt:: Bullet Behavior "Strict Subproofs". +.. opt:: Bullet Behavior "Strict Subproofs" This makes bullets active (this is the default behavior). +.. _requestinginformation: Requesting information ---------------------- @@ -456,7 +462,7 @@ Displays only the :n:`@num`-th subgoal. Displays the named goal :n:`@ident`. This is useful in particular to display a shelved goal but only works if the corresponding existential variable has been named by the user -(see :ref:`exvariables`) as in the following example. +(see :ref:`existential-variables`) as in the following example. .. example:: @@ -525,7 +531,9 @@ This variant displays a template of the Gallina .. exn:: Unknown inductive type -.. exn:: Show Universes. +.. _ShowUniverses: + +.. cmdv:: Show Universes. It displays the set of all universe constraints and its normalized form at the current stage of the proof, useful for @@ -534,7 +542,7 @@ debugging universe inconsistencies. .. cmd:: Guarded. -Some tactics (e.g. refine :ref:`applyingtheorems`) allow to build proofs using +Some tactics (e.g. :tacn:`refine` :ref:`applyingtheorems`) allow to build proofs using fixpoint or co-fixpoint constructions. Due to the incremental nature of interactive proof construction, the check of the termination (or guardedness) of the recursive calls in the fixpoint or cofixpoint @@ -549,7 +557,7 @@ Controlling the effect of proof editing commands ------------------------------------------------ -.. opt:: Hyps Limit @num. +.. opt:: Hyps Limit @num This option controls the maximum number of hypotheses displayed in goals after the application of a tactic. All the hypotheses remain usable @@ -558,7 +566,7 @@ When unset, it goes back to the default mode which is to print all available hypotheses. -.. opt:: Automatic Introduction. +.. opt:: Automatic Introduction This option controls the way binders are handled in assertion commands such as ``Theorem ident [binders] : form``. When the @@ -589,4 +597,4 @@ the ongoing proof. This command forces the |OCaml| runtime to perform a heap compaction. This is in general an expensive operation. See: `OCaml Gc <http://caml.inria.fr/pub/docs/manual-ocaml/libref/Gc.html#VALcompact>`_ -There is also an analogous tactic ``optimize_heap`` (see~:ref:`tactic-optimizeheap`) +There is also an analogous tactic :tac:`optimize_heap`. diff --git a/doc/sphinx/proof-engine/ssreflect-proof-language.rst b/doc/sphinx/proof-engine/ssreflect-proof-language.rst index bd71e5ed8..977a5b8fa 100644 --- a/doc/sphinx/proof-engine/ssreflect-proof-language.rst +++ b/doc/sphinx/proof-engine/ssreflect-proof-language.rst @@ -6,10 +6,7 @@ The |SSR| proof language ------------------------------ -:Source: https://coq.inria.fr/distrib/current/refman/ssreflect.html -:Converted by: Enrico Tassi - -Author: Georges Gonthier, Assia Mahboubi, Enrico Tassi +:Authors: Georges Gonthier, Assia Mahboubi, Enrico Tassi Introduction @@ -496,7 +493,10 @@ inferred from the whole context of the goal (see for example section Definitions ~~~~~~~~~~~ -The pose tactic allows to add a defined constant to a proof context. +.. tacn:: pose + :name: pose (ssreflect) + +This tactic allows to add a defined constant to a proof context. |SSR| generalizes this tactic in several ways. In particular, the |SSR| pose tactic supports *open syntax*: the body of the definition does not need surrounding parentheses. For instance: @@ -1352,6 +1352,7 @@ Discharge The general syntax of the discharging tactical ``:`` is: .. tacn:: @tactic {? @ident } : {+ @d_item } {? @clear_switch } + :name: ... : ... (ssreflect) .. prodn:: d_item ::= {? @occ_switch %| @clear_switch } @term @@ -1503,9 +1504,11 @@ side of an equation. The abstract tactic ``````````````````` -The ``abstract`` tactic assigns an ``abstract`` constant previously -introduced with the ``[: name ]`` intro pattern -(see section :ref:`introduction_ssr`). +.. tacn:: abstract: {+ d_item} + :name abstract (ssreflect) + +This tactic assigns an abstract constant previously introduced with the ``[: +name ]`` intro pattern (see section :ref:`introduction_ssr`). In a goal like the following:: @@ -1812,6 +1815,8 @@ of a :token:`d_item` immediately following this ``/`` switch, using the syntax: .. tacv:: case: {+ @d_item } / {+ @d_item } + :name: case (ssreflect) + .. tacv:: elim: {+ @d_item } / {+ @d_item } The :token:`d_item` on the right side of the ``/`` switch are discharged as @@ -2135,7 +2140,7 @@ tactic using the given second tactic, and fails if it does not succeed. Its analogue .. tacn:: @tactic ; first by @tactic - :name: first + :name: first (ssreflect) tries to solve the first subgoal generated by the first tactic using the second given tactic, and fails if it does not succeed. @@ -2215,7 +2220,7 @@ Iteration thanks to the do tactical, whose general syntax is: .. tacn:: do {? @mult } ( @tactic | [ {+| @tactic } ] ) - :name: do + :name: do (ssreflect) where :token:`mult` is a *multiplier*. @@ -2752,12 +2757,9 @@ type classes inference. No inference for ``t``. Unresolved instances are quantified in the (inferred) type of ``t`` and abstracted in ``t``. +.. opt:: SsrHave NoTCResolution -The behavior of |SSR| 1.4 and below (never resolve type classes) -can be restored with the option - -.. cmd:: Set SsrHave NoTCResolution. - + This option restores the behavior of |SSR| 1.4 and below (never resolve type classes). Variants: the suff and wlog tactics ``````````````````````````````````` @@ -3730,6 +3732,7 @@ We provide a special tactic unlock for unfolding such definitions while removing “locks”, e.g., the tactic: .. tacn:: unlock {? @occ_switch } @ident + :name: unlock replaces the occurrence(s) of :token:`ident` coded by the :token:`occ_switch` with the corresponding body. @@ -5188,6 +5191,7 @@ equivalences are indeed taken into account, otherwise only single |SSR| proposes an extension of the Search command. Its syntax is: .. cmd:: Search {? @pattern } {* {? - } %( @string %| @pattern %) {? % @ident} } {? in {+ {? - } @qualid } } + :name: Search (ssreflect) where :token:`qualid` is the name of an open module. This command returns the list of lemmas: diff --git a/doc/sphinx/proof-engine/tactics.rst b/doc/sphinx/proof-engine/tactics.rst index 2af73c28e..7a45272f2 100644 --- a/doc/sphinx/proof-engine/tactics.rst +++ b/doc/sphinx/proof-engine/tactics.rst @@ -24,7 +24,7 @@ Each (sub)goal is denoted with a number. The current goal is numbered 1. By default, a tactic is applied to the current goal, but one can address a particular goal in the list by writing n:tactic which means “apply tactic tactic to goal number n”. We can show the list of -subgoals by typing Show (see Section :ref:`TODO-7.3.1-Show`). +subgoals by typing Show (see Section :ref:`requestinginformation`). Since not every rule applies to a given statement, every tactic cannot be used to reduce any goal. In other words, before applying a tactic @@ -34,15 +34,16 @@ satisfied. If it is not the case, the tactic raises an error message. Tactics are built from atomic tactics and tactic expressions (which extends the folklore notion of tactical) to combine those atomic tactics. This chapter is devoted to atomic tactics. The tactic -language will be described in Chapter :ref:`TODO-9-Thetacticlanguage`. +language will be described in Chapter :ref:`ltac`. + +.. _invocation-of-tactics: Invocation of tactics ------------------------- A tactic is applied as an ordinary command. It may be preceded by a -goal selector (see Section :ref:`TODO-9.2-Semantics`). If no selector is -specified, the default selector (see Section -:ref:`TODO-8.1.1-Setdefaultgoalselector`) is used. +goal selector (see Section :ref:`ltac-semantics`). If no selector is +specified, the default selector is used. .. _tactic_invocation_grammar: @@ -50,20 +51,15 @@ specified, the default selector (see Section tactic_invocation : toplevel_selector : tactic. : |tactic . -.. cmd:: Set Default Goal Selector @toplevel_selector. - -After using this command, the default selector – used when no selector -is specified when applying a tactic – is set to the chosen value. The -initial value is 1, hence the tactics are, by default, applied to the -first goal. Using Set Default Goal Selector ‘‘all’’ will make is so -that tactics are, by default, applied to every goal simultaneously. -Then, to apply a tactic tac to the first goal only, you can write -1:tac. Although more selectors are available, only ‘‘all’’ or a single -natural number are valid default goal selectors. - -.. cmd:: Test Default Goal Selector. +.. opt:: Default Goal Selector @toplevel_selector -This command displays the current default selector. + This option controls the default selector – used when no selector is + specified when applying a tactic – is set to the chosen value. The initial + value is 1, hence the tactics are, by default, applied to the first goal. + Using value ``all`` will make is so that tactics are, by default, applied to + every goal simultaneously. Then, to apply a tactic tac to the first goal + only, you can write ``1:tac``. Although more selectors are available, only + ``all`` or a single natural number are valid default goal selectors. .. _bindingslist: @@ -94,7 +90,7 @@ bindings_list`` where ``bindings_list`` may be of two different forms: + A bindings list can also be a simple list of terms :n:`{* term}`. In that case the references to which these terms correspond are determined by the tactic. In case of ``induction``, ``destruct``, ``elim`` - and ``case`` (see :ref:`TODO-9-Thetacticlanguage`) the terms have to + and ``case`` (see :ref:`ltac`) the terms have to provide instances for all the dependent products in the type of term while in the case of ``apply``, or of ``constructor`` and its variants, only instances for the dependent products that are not bound in the conclusion of the type @@ -122,14 +118,12 @@ following syntax: The role of an occurrence clause is to select a set of occurrences of a term in a goal. In the first case, the :n:`@ident {? at {* num}}` parts indicate that -occurrences have to be selected in the hypotheses named :n:`@ident`. If no numbers -are given for hypothesis :n:`@ident`, then all the occurrences of `term` in the -hypothesis are selected. If numbers are given, they refer to occurrences of -`term` when the term is printed using option ``Set Printing All`` (see -:ref:`TODO-2.9-Printingconstructionsinfull`), counting from left to right. In -particular, occurrences of `term` in implicit arguments (see -:ref:`TODO-2.7-Implicitarguments`) or coercions (see :ref:`TODO-2.8-Coercions`) -are counted. +occurrences have to be selected in the hypotheses named :n:`@ident`. If no +numbers are given for hypothesis :n:`@ident`, then all the occurrences of `term` +in the hypothesis are selected. If numbers are given, they refer to occurrences +of `term` when the term is printed using option :opt:`Printing All`, counting +from left to right. In particular, occurrences of `term` in implicit arguments +(see :ref:`ImplicitArguments`) or coercions (see :ref:`Coercions`) are counted. If a minus sign is given between at and the list of occurrences, it negates the condition so that the clause denotes all the occurrences @@ -154,10 +148,11 @@ Here are some tactics that understand occurrences clauses: ``set``, ``remember`` , ``induction``, ``destruct``. -See also: :ref:`TODO-8.3.7-Managingthelocalcontext`, -:ref:`TODO-8.5.2-Caseanalysisandinduction`, -:ref:`TODO-2.9-Printingconstructionsinfull`. +See also: :ref:`Managingthelocalcontext`, +:ref:`caseanalysisandinduction`, +:ref:`printing_constructions_full`. +.. _applyingtheorems: Applying theorems --------------------- @@ -168,11 +163,12 @@ Applying theorems This tactic applies to any goal. It gives directly the exact proof term of the goal. Let ``T`` be our goal, let ``p`` be a term of type ``U`` then ``exact p`` succeeds iff ``T`` and ``U`` are convertible (see -:ref:`TODO-4.3-Conversionrules`). +:ref:`Conversion-rules`). .. exn:: Not an exact proof. .. tacv:: eexact @term. + :name: eexact This tactic behaves like exact but is able to handle terms and goals with meta-variables. @@ -186,6 +182,7 @@ the goal. If it is the case, the subgoal is proved. Otherwise, it fails. .. exn:: No such assumption. .. tacv:: eassumption + :name: eassumption This tactic behaves like assumption but is able to handle goals with meta-variables. @@ -238,6 +235,7 @@ useful to advanced users. cast around it. .. tacv:: simple refine @term + :name: simple refine This tactic behaves like refine, but it does not shelve any subgoal. It does not perform any beta-reduction either. @@ -248,6 +246,7 @@ useful to advanced users. resolution of typeclasses. .. tacv:: simple notypeclasses refine @term + :name: simple notypeclasses refine This tactic behaves like ``simple refine`` except it performs typechecking without resolution of typeclasses. @@ -277,7 +276,7 @@ gets the form :g:`(fun x => Q) u`:sub:`1` :g:`...` :g:`u`:sub:`n`. The apply tactic failed to match the conclusion of term and the current goal. You can help the apply tactic by transforming your goal with the -:ref:`change <change_term>` or :tacn:`pattern` tactics. +:tacn:`change` or :tacn:`pattern` tactics. .. exn:: Unable to find an instance for the variables {+ @ident}. @@ -285,7 +284,7 @@ This occurs when some instantiations of the premises of term are not deducible from the unification. This is the case, for instance, when you want to apply a transitivity property. In this case, you have to use one of the variants below: -.. cmd:: apply @term with {+ @term} +.. tacv:: apply @term with {+ @term} Provides apply with explicit instantiations for all dependent premises of the type of term that do not occur in the conclusion and consequently cannot be @@ -314,10 +313,11 @@ generated by ``apply term``:sub:`i` , starting from the application of The tactic ``eapply`` behaves like ``apply`` but it does not fail when no instantiations are deducible for some variables in the premises. Rather, it turns these variables into existential variables which are variables still to -instantiate (see :ref:`TODO-2.11-ExistentialVariables`). The instantiation is +instantiate (see :ref:`Existential-Variables`). The instantiation is intended to be found later in the proof. .. tacv:: simple apply @term. + :name: simple apply This behaves like ``apply`` but it reasons modulo conversion only on subterms that contain no variables to instantiate. For instance, the following example @@ -340,11 +340,12 @@ does. .. tacv:: {? simple} apply {+, @term {? with @bindings_list}} .. tacv:: {? simple} eapply {+, @term {? with @bindings_list}} + :name: simple eapply This summarizes the different syntaxes for ``apply`` and ``eapply``. .. tacv:: lapply @term - :name: `lapply + :name: lapply This tactic applies to any goal, say :g:`G`. The argument term has to be well-formed in the current context, its type being reducible to a non-dependent @@ -435,7 +436,7 @@ sequence ``cut B. 2:apply H.`` where ``cut`` is described below. ``forall A, ... -> A``. Excluding this kind of lemma can be avoided by setting the following option: -.. opt:: Set Universal Lemma Under Conjunction. +.. opt:: Universal Lemma Under Conjunction This option, which preserves compatibility with versions of Coq prior to 8.4 is also available for :n:`apply @term in @ident` (see :tacn:`apply ... in`). @@ -520,8 +521,8 @@ sequence ``cut B. 2:apply H.`` where ``cut`` is described below. constructor of :g:`I`, then ``constructor i`` is equivalent to ``intros; apply c``:sub:`i`. -.. exn:: Not an inductive product. -.. exn:: Not enough constructors. +.. exn:: Not an inductive product +.. exn:: Not enough constructors .. tacv:: constructor @@ -539,34 +540,39 @@ sequence ``cut B. 2:apply H.`` where ``cut`` is described below. The terms in the @bindings_list are checked in the context where constructor is executed and not in the context where @apply is executed (the introductions are not taken into account). .. tacv:: split + :name: split This applies only if :g:`I` has a single constructor. It is then equivalent to :n:`constructor 1.`. It is typically used in the case of a conjunction :g:`A` :math:`\wedge` :g:`B`. -.. exn:: Not an inductive goal with 1 constructor. +.. exn:: Not an inductive goal with 1 constructor .. tacv:: exists @val + :name: exists This applies only if :g:`I` has a single constructor. It is then equivalent to :n:`intros; constructor 1 with @bindings_list.` It is typically used in the case of an existential quantification :math:`\exists`:g:`x, P(x).` -.. exn:: Not an inductive goal with 1 constructor. +.. exn:: Not an inductive goal with 1 constructor .. tacv:: exists @bindings_list This iteratively applies :n:`exists @bindings_list`. .. tacv:: left + :name: left + .. tacv:: right + :name: right These tactics apply only if :g:`I` has two constructors, for instance in the case of a disjunction :g:`A` :math:`\vee` :g:`B`. Then, they are respectively equivalent to ``constructor 1`` and ``constructor 2``. -.. exn:: Not an inductive goal with 2 constructors. +.. exn:: Not an inductive goal with 2 constructors .. tacv:: left with @bindings_list .. tacv:: right with @bindings_list @@ -577,15 +583,25 @@ sequence ``cut B. 2:apply H.`` where ``cut`` is described below. for the appropriate ``i``. .. tacv:: econstructor + :name: econstructor + .. tacv:: eexists + :name: eexists + .. tacv:: esplit + :name: esplit + .. tacv:: eleft + :name: eleft + .. tacv:: eright + :name: eright - These tactics and their variants behave like ``constructor``, ``exists``, - ``split``, ``left``, ``right`` and their variants but they introduce - existential variables instead of failing when the instantiation of a - variable cannot be found (cf. :tacn:`eapply` and :tacn:`apply`). + These tactics and their variants behave like :tacn:`constructor`, + :tacn:`exists`, :tacn:`split`, :tacn:`left`, :tacn:`right` and their variants + but they introduce existential variables instead of failing when the + instantiation of a variable cannot be found (cf. :tacn:`eapply` and + :tacn:`apply`). .. _managingthelocalcontext: @@ -598,7 +614,7 @@ Managing the local context This tactic applies to a goal that is either a product or starts with a let binder. If the goal is a product, the tactic implements the "Lam" rule given in -:ref:`TODO-4.2-Typing-rules` [1]_. If the goal starts with a let binder, then the +:ref:`Typing-rules` [1]_. If the goal starts with a let binder, then the tactic implements a mix of the "Let" and "Conv". If the current goal is a dependent product :math:`\forall` :g:`x:T, U` (resp @@ -616,7 +632,7 @@ the tactic ``intro`` applies the tactic ``hnf`` until the tactic ``intro`` can be applied or the goal is not head-reducible. .. exn:: No product even after head-reduction. -.. exn:: ident is already used. +.. exn:: @ident is already used. .. tacv:: intros @@ -632,14 +648,14 @@ be applied or the goal is not head-reducible. .. note:: If a name used by intro hides the base name of a global constant then the latter can still be referred to by a qualified name - (see :ref:`TODO-2.6.2-Qualified-names`). + (see :ref:`Qualified-names`). .. tacv:: intros {+ @ident}. This is equivalent to the composed tactic :n:`intro @ident; ... ; intro @ident`. More generally, the ``intros`` tactic takes a pattern as argument in order to introduce names for components of an inductive definition or to clear introduced hypotheses. This is - explained in :ref:`TODO-8.3.2`. + explained in :ref:`Managingthelocalcontext`. .. tacv:: intros until @ident @@ -827,15 +843,10 @@ quantification or an implication. so that all the arguments of the i-th constructors of the corresponding inductive type are introduced can be controlled with the following option: - .. cmd:: Set Bracketing Last Introduction Pattern. + .. opt:: Bracketing Last Introduction Pattern - Force completion, if needed, when the last introduction pattern is a - disjunctive or conjunctive pattern (this is the default). - - .. cmd:: Unset Bracketing Last Introduction Pattern. - - Deactivate completion when the last introduction pattern is a disjunctive or - conjunctive pattern. + Force completion, if needed, when the last introduction pattern is a + disjunctive or conjunctive pattern (on by default). .. tacn:: clear @ident :name: clear @@ -855,6 +866,7 @@ quantification or an implication. This is equivalent to :n:`clear @ident. ... clear @ident.` .. tacv:: clearbody @ident + :name: clearbody This tactic expects :n:`@ident` to be a local definition then clears its body. Otherwise said, this tactic turns a definition into an assumption. @@ -876,7 +888,7 @@ quantification or an implication. it. .. tacn:: revert {+ @ident} - :name: revert ... + :name: revert This applies to any goal with variables :n:`{+ @ident}`. It moves the hypotheses (possibly defined) to the goal, if this respects dependencies. This tactic is @@ -992,6 +1004,7 @@ The name of the hypothesis in the proof-term, however, is left unchanged. .. tacv:: eset (@ident {+ @binder} := @term ) in @goal_occurrences .. tacv:: eset @term in @goal_occurrences + :name: eset While the different variants of :tacn:`set` expect that no existential variables are generated by the tactic, :n:`eset` removes this constraint. In @@ -999,6 +1012,7 @@ The name of the hypothesis in the proof-term, however, is left unchanged. :tacn:`epose`, i.e. when the :`@term` does not occur in the goal. .. tacv:: remember @term as @ident + :name: remember This behaves as :n:`set (@ident:= @term ) in *` and using a logical (Leibniz’s) equality instead of a local definition. @@ -1016,6 +1030,8 @@ The name of the hypothesis in the proof-term, however, is left unchanged. .. tacv:: eremember @term as @ident .. tacv:: eremember @term as @ident in @goal_occurrences .. tacv:: eremember @term as @ident eqn:@ident + :name: eremember + While the different variants of :n:`remember` expect that no existential variables are generated by the tactic, :n:`eremember` removes this constraint. @@ -1067,7 +1083,7 @@ The name of the hypothesis in the proof-term, however, is left unchanged. This decomposes record types (inductive types with one constructor, like "and" and "exists" and those defined with the Record macro, see - :ref:`TODO-2.1`). + :ref:`record-types`). .. _controllingtheproofflow: @@ -1089,7 +1105,7 @@ Controlling the proof flow .. tacv:: assert form - This behaves as :n:`assert (@ident : form ) but :n:`@ident` is generated by + This behaves as :n:`assert (@ident : form)` but :n:`@ident` is generated by Coq. .. tacv:: assert form by tactic @@ -1098,6 +1114,7 @@ Controlling the proof flow generated by assert. .. exn:: Proof is not complete + :name: Proof is not complete (assert) .. tacv:: assert form as intro_pattern @@ -1121,6 +1138,7 @@ Controlling the proof flow .. exn:: Variable @ident is already declared .. tacv:: eassert form as intro_pattern by tactic + :name: eassert .. tacv:: assert (@ident := @term) @@ -1130,6 +1148,7 @@ Controlling the proof flow to prove it. .. tacv:: pose proof @term {? as intro_pattern} + :name: pose proof This tactic behaves like :n:`assert T {? as intro_pattern} by exact @term` where :g:`T` is the type of :g:`term`. In particular, @@ -1143,6 +1162,7 @@ Controlling the proof flow the tactic, :n:`epose proof` removes this constraint. .. tacv:: enough (@ident : form) + :name: enough This adds a new hypothesis of name :n:`@ident` asserting :n:`form` to the goal the tactic :n:`enough` is applied to. A new subgoal stating :n:`form` is @@ -1168,22 +1188,27 @@ Controlling the proof flow applied to all of them. .. tacv:: eenough (@ident : form) by tactic + :name: eenough + .. tacv:: eenough form by tactic + .. tacv:: eenough form as intro_pattern by tactic While the different variants of :n:`enough` expect that no existential variables are generated by the tactic, :n:`eenough` removes this constraint. -.. tacv:: cut form +.. tacv:: cut @form + :name: cut This tactic applies to any goal. It implements the non-dependent case of - the “App” rule given in :ref:`TODO-4.2`. (This is Modus Ponens inference + the “App” rule given in :ref:`typing-rules`. (This is Modus Ponens inference rule.) :n:`cut U` transforms the current goal :g:`T` into the two following subgoals: :g:`U -> T` and :g:`U`. The subgoal :g:`U -> T` comes first in the list of remaining subgoal to prove. .. tacv:: specialize (ident {* @term}) {? as intro_pattern} .. tacv:: specialize ident with @bindings_list {? as intro_pattern} + :name: specialize The tactic :n:`specialize` works on local hypothesis :n:`@ident`. The premises of this hypothesis (either universal quantifications or @@ -1236,7 +1261,7 @@ name of the variable (here :g:`n`) is chosen based on :g:`T`. This is equivalent to :n:`generalize @term` but it generalizes only over the specified occurrences of :n:`@term` (counting from left to right on the - expression printed using option :g:`Set Printing All`). + expression printed using option :opt:`Printing All`). .. tacv:: generalize @term as @ident @@ -1268,7 +1293,7 @@ name of the variable (here :g:`n`) is chosen based on :g:`T`. :n:`refine @term` (preferred alternative). .. note:: To be able to refer to an existential variable by name, the user - must have given the name explicitly (see :ref:`TODO-2.11`). + must have given the name explicitly (see :ref:`Existential-Variables`). .. note:: When you are referring to hypotheses which you did not name explicitly, be aware that Coq may make a different decision on how to @@ -1353,11 +1378,13 @@ goals cannot be closed with :g:`Qed` but only with :g:`Admitted`. then required to prove that False is indeed provable in the current context. This tactic is a macro for :n:`elimtype False`. +.. _CaseAnalysisAndInduction: + Case analysis and induction ------------------------------- The tactics presented in this section implement induction or case -analysis on inductive or co-inductive objects (see :ref:`TODO-4.5`). +analysis on inductive or co-inductive objects (see :ref:`inductive-definitions`). .. tacn:: destruct @term :name: destruct @@ -1423,6 +1450,7 @@ analysis on inductive or co-inductive objects (see :ref:`TODO-4.5`). dependent premises of the type of :n:`@term` (see :ref:`syntax of bindings <bindingslist>`). .. tacv:: edestruct @term + :name: edestruct This tactic behaves like :n:`destruct @term` except that it does not fail if the instance of a dependent premises of the type of :n:`@term` is not @@ -1449,6 +1477,7 @@ analysis on inductive or co-inductive objects (see :ref:`TODO-4.5`). the effects of the `with`, `as`, `eqn:`, `using`, and `in` clauses. .. tacv:: case term + :name: case The tactic :n:`case` is a more basic tactic to perform case analysis without recursion. It behaves as :n:`elim @term` but using a case-analysis @@ -1458,14 +1487,15 @@ analysis on inductive or co-inductive objects (see :ref:`TODO-4.5`). Analogous to :n:`elim @term with @bindings_list` above. -.. tacv:: ecase @term -.. tacv:: ecase @term with @bindings_list +.. tacv:: ecase @term {? with @bindings_list } + :name: ecase In case the type of :n:`@term` has dependent premises, or dependent premises whose values are not inferable from the :n:`with @bindings_list` clause, :n:`ecase` turns them into existential variables to be resolved later on. .. tacv:: simple destruct @ident + :name: simple destruct This tactic behaves as :n:`intros until @ident; case @ident` when :n:`@ident` is a quantified variable of the goal. @@ -1556,6 +1586,7 @@ analysis on inductive or co-inductive objects (see :ref:`TODO-4.5`). premises of the type of :n:`term` (see :ref:`bindings list <bindingslist>`). .. tacv:: einduction @term + :name: einduction This tactic behaves like :tacn:`induction` except that it does not fail if some dependent premise of the type of :n:`@term` is not inferable. Instead, @@ -1628,6 +1659,7 @@ analysis on inductive or co-inductive objects (see :ref:`TODO-4.5`). (see :ref:`bindings list <bindingslist>`). .. tacv:: eelim @term + :name: eelim In case the type of :n:`@term` has dependent premises, this turns them into existential variables to be resolved later on. @@ -1646,7 +1678,8 @@ analysis on inductive or co-inductive objects (see :ref:`TODO-4.5`). These are the most general forms of ``elim`` and ``eelim``. It combines the effects of the ``using`` clause and of the two uses of the ``with`` clause. -.. tacv:: elimtype form +.. tacv:: elimtype @form + :name: elimtype The argument :n:`form` must be inductively defined. :n:`elimtype I` is equivalent to :n:`cut I. intro Hn; elim Hn; clear Hn.` Therefore the @@ -1656,6 +1689,7 @@ analysis on inductive or co-inductive objects (see :ref:`TODO-4.5`). :n:`elimtype I; 2:exact t.` .. tacv:: simple induction @ident + :name: simple induction This tactic behaves as :n:`intros until @ident; elim @ident` when :n:`@ident` is a quantified variable of the goal. @@ -1740,13 +1774,14 @@ analysis on inductive or co-inductive objects (see :ref:`TODO-4.5`). other ones need not be further generalized. .. tacv:: dependent destruction @ident + :name: dependent destruction This performs the generalization of the instance :n:`@ident` but uses ``destruct`` instead of induction on the generalized hypothesis. This gives results equivalent to ``inversion`` or ``dependent inversion`` if the hypothesis is dependent. -See also :ref:`TODO-10.1-dependentinduction` for a larger example of ``dependent induction`` +See also the larger example of :tacn:`dependent induction` and an explanation of the underlying technique. .. tacn:: function induction (@qualid {+ @term}) @@ -1754,8 +1789,8 @@ and an explanation of the underlying technique. The tactic functional induction performs case analysis and induction following the definition of a function. It makes use of a principle - generated by ``Function`` (see :ref:`TODO-2.3-Advancedrecursivefunctions`) or - ``Functional Scheme`` (see :ref:`TODO-13.2-Generationofinductionschemeswithfunctionalscheme`). + generated by ``Function`` (see :ref:`advanced-recursive-functions`) or + ``Functional Scheme`` (see :ref:`functional-scheme`). Note that this tactic is only available after a .. example:: @@ -1781,22 +1816,22 @@ and an explanation of the underlying technique. :n:`functional induction (f x1 x2 x3)` is actually a wrapper for :n:`induction x1, x2, x3, (f x1 x2 x3) using @qualid` followed by a cleaning phase, where :n:`@qualid` is the induction principle registered for :g:`f` - (by the ``Function`` (see :ref:`TODO-2.3-Advancedrecursivefunctions`) or - ``Functional Scheme`` (see :ref:`TODO-13.2-Generationofinductionschemeswithfunctionalscheme`) + (by the ``Function`` (see :ref:`advanced-recursive-functions`) or + ``Functional Scheme`` (see :ref:`functional-scheme`) command) corresponding to the sort of the goal. Therefore ``functional induction`` may fail if the induction scheme :n:`@qualid` is not - defined. See also :ref:`TODO-2.3-Advancedrecursivefunctions` for the function + defined. See also :ref:`advanced-recursive-functions` for the function terms accepted by ``Function``. .. note:: There is a difference between obtaining an induction scheme - for a function by using :g:`Function` (see :ref:`TODO-2.3-Advancedrecursivefunctions`) + for a function by using :g:`Function` (see :ref:`advanced-recursive-functions`) and by using :g:`Functional Scheme` after a normal definition using - :g:`Fixpoint` or :g:`Definition`. See :ref:`TODO-2.3-Advancedrecursivefunctions` + :g:`Fixpoint` or :g:`Definition`. See :ref:`advanced-recursive-functions` for details. -See also: :ref:`TODO-2.3-Advancedrecursivefunctions` - :ref:`TODO-13.2-Generationofinductionschemeswithfunctionalscheme` +See also: :ref:`advanced-recursive-functions` + :ref:`functional-scheme` :tacn:`inversion` .. exn:: Cannot find induction information on @qualid @@ -1849,6 +1884,7 @@ See also: :ref:`TODO-2.3-Advancedrecursivefunctions` .. tacv:: ediscriminate @num .. tacv:: ediscriminate @term {? with @bindings_list} + :name: ediscriminate This works the same as ``discriminate`` but if the type of :n:`@term`, or the type of the hypothesis referred to by :n:`@num`, has uninstantiated @@ -1902,7 +1938,7 @@ injected object has a dependent type :g:`P` with its two instances in different types :g:`(P t`:sub:`1` :g:`... t`:sub:`n` :g:`)` and :g:`(P u`:sub:`1` :g:`... u`:sub:`n` :sub:`)`. If :g:`t`:sub:`1` and :g:`u`:sub:`1` are the same and have for type an inductive type for which a decidable -equality has been declared using the command ``Scheme Equality`` (see :ref:`TODO-13.1-GenerationofinductionprincipleswithScheme`), +equality has been declared using the command ``Scheme Equality`` (see :ref:`proofschemes-induction-principles`), the use of a sigma type is avoided. .. note:: @@ -1928,6 +1964,7 @@ the use of a sigma type is avoided. .. tacv:: einjection @num .. tacv:: einjection @term {? with @bindings_list} + :name: einjection This works the same as :n:`injection` but if the type of :n:`@term`, or the type of the hypothesis referred to by :n:`@num`, has uninstantiated @@ -1955,17 +1992,19 @@ the use of a sigma type is avoided. to the number of new equalities. The original equality is erased if it corresponds to an hypothesis. -It is possible to ensure that :n:`injection @term` erases the original -hypothesis and leaves the generated equalities in the context rather -than putting them as antecedents of the current goal, as if giving -:n:`injection @term as` (with an empty list of names). To obtain this -behavior, the option ``Set Structural Injection`` must be activated. This -option is off by default. +.. opt:: Structural Injection -By default, ``injection`` only creates new equalities between :n:`@terms` whose -type is in sort :g:`Type` or :g:`Set`, thus implementing a special behavior for -objects that are proofs of a statement in :g:`Prop`. This behavior can be -turned off by setting the option ``Set Keep Proof Equalities``. + This option ensure that :n:`injection @term` erases the original hypothesis + and leaves the generated equalities in the context rather than putting them + as antecedents of the current goal, as if giving :n:`injection @term as` + (with an empty list of names). This option is off by default. + +.. opt:: Keep Proof Equalities + + By default, :tacn:`injection` only creates new equalities between :n:`@terms` + whose type is in sort :g:`Type` or :g:`Set`, thus implementing a special + behavior for objects that are proofs of a statement in :g:`Prop`. This option + controls this behavior. .. tacn:: inversion @ident :name: inversion @@ -1984,15 +2023,15 @@ turned off by setting the option ``Set Keep Proof Equalities``. .. note:: As ``inversion`` proofs may be large in size, we recommend the user to stock the lemmas whenever the same instance needs to be - inverted several times. See :ref:`TODO-13.3-Generationofinversionprincipleswithderiveinversion`. + inverted several times. See :ref:`derive-inversion`. .. note:: Part of the behavior of the ``inversion`` tactic is to generate equalities between expressions that appeared in the hypothesis that is being processed. By default, no equalities are generated if they relate two proofs (i.e. equalities between :n:`@terms` whose type is in sort - :g:`Prop`). This behavior can be turned off by using the option ``Set Keep - Proof Equalities``. + :g:`Prop`). This behavior can be turned off by using the option + :opt`Keep Proof Equalities`. .. tacv:: inversion @num @@ -2117,6 +2156,7 @@ turned off by setting the option ``Set Keep Proof Equalities``. :n:`dependent inversion_clear @ident with @term`. .. tacv:: simple inversion @ident + :name: simple inversion It is a very primitive inversion tactic that derives all the necessary equalities but it does not simplify the constraints as ``inversion`` does. @@ -2300,7 +2340,7 @@ turned off by setting the option ``Set Keep Proof Equalities``. arguments are correct is done only at the time of registering the lemma in the environment. To know if the use of induction hypotheses is correct at some time of the interactive development of a proof, use - the command ``Guarded`` (see :ref:`TODO-7.3.2-Guarded`). + the command ``Guarded`` (see Section :ref:`requestinginformation`). .. tacv:: fix @ident @num with {+ (ident {+ @binder} [{struct @ident}] : @type)} @@ -2321,7 +2361,7 @@ turned off by setting the option ``Set Keep Proof Equalities``. done only at the time of registering the lemma in the environment. To know if the use of coinduction hypotheses is correct at some time of the interactive development of a proof, use the command ``Guarded`` - (see :ref:`TODO-7.3.2-Guarded`). + (see Section :ref:`requestinginformation`). .. tacv:: cofix @ident with {+ (@ident {+ @binder} : @type)} @@ -2335,7 +2375,7 @@ Rewriting expressions --------------------- These tactics use the equality :g:`eq:forall A:Type, A->A->Prop` defined in -file ``Logic.v`` (see :ref:`TODO-3.1.2-Logic`). The notation for :g:`eq T t u` is +file ``Logic.v`` (see :ref:`coq-library-logic`). The notation for :g:`eq T t u` is simply :g:`t=u` dropping the implicit type of :g:`t` and :g:`u`. .. tacn:: rewrite @term @@ -2417,6 +2457,7 @@ subgoals. leading to failure if these n rewrites are not possible. .. tacv:: erewrite @term + :name: erewrite This tactic works as :n:`rewrite @term` but turning unresolved bindings into existential variables, if any, instead of @@ -2463,6 +2504,7 @@ subgoals. clause argument must not contain any type of nor value of. .. tacv:: cutrewrite <- (@term = @term) + :cutrewrite: This tactic is deprecated. It acts like :n:`replace @term with @term`, or, equivalently as :n:`enough (@term = @term) as <-`. @@ -2506,30 +2548,30 @@ unfolded and cleared. context for which an equality of the form :n:`@ident = t` or :n:`t = @ident` or :n:`@ident := t` exists, with :n:`@ident` not occurring in `t`. - .. note:: - The behavior of subst can be controlled using option ``Set Regular Subst - Tactic.`` When this option is activated, subst also deals with the - following corner cases: + .. opt:: Regular Subst Tactic + + This option controls the behavior of :tacn:`subst`. When it is + activated, :tacn:`subst` also deals with the following corner cases: - + A context with ordered hypotheses :n:`@ident`:sub:`1` :n:`= @ident`:sub:`2` - and :n:`@ident`:sub:`1` :n:`= t`, or :n:`t′ = @ident`:sub:`1`` with `t′` not - a variable, and no other hypotheses of the form :n:`@ident`:sub:`2` :n:`= u` - or :n:`u = @ident`:sub:`2`; without the option, a second call to - subst would be necessary to replace :n:`@ident`:sub:`2` by `t` or - `t′` respectively. - + The presence of a recursive equation which without the option would - be a cause of failure of :tacn:`subst`. - + A context with cyclic dependencies as with hypotheses :n:`@ident`:sub:`1` :n:`= f @ident`:sub:`2` - and :n:`@ident`:sub:`2` :n:`= g @ident`:sub:`1` which without the - option would be a cause of failure of :tacn:`subst`. + + A context with ordered hypotheses :n:`@ident`:sub:`1` :n:`= @ident`:sub:`2` + and :n:`@ident`:sub:`1` :n:`= t`, or :n:`t′ = @ident`:sub:`1`` with `t′` not + a variable, and no other hypotheses of the form :n:`@ident`:sub:`2` :n:`= u` + or :n:`u = @ident`:sub:`2`; without the option, a second call to + subst would be necessary to replace :n:`@ident`:sub:`2` by `t` or + `t′` respectively. + + The presence of a recursive equation which without the option would + be a cause of failure of :tacn:`subst`. + + A context with cyclic dependencies as with hypotheses :n:`@ident`:sub:`1` :n:`= f @ident`:sub:`2` + and :n:`@ident`:sub:`2` :n:`= g @ident`:sub:`1` which without the + option would be a cause of failure of :tacn:`subst`. - Additionally, it prevents a local definition such as :n:`@ident := t` to be - unfolded which otherwise it would exceptionally unfold in configurations - containing hypotheses of the form :n:`@ident = u`, or :n:`u′ = @ident` - with `u′` not a variable. Finally, it preserves the initial order of - hypotheses, which without the option it may break. The option is on by - default. + Additionally, it prevents a local definition such as :n:`@ident := t` to be + unfolded which otherwise it would exceptionally unfold in configurations + containing hypotheses of the form :n:`@ident = u`, or :n:`u′ = @ident` + with `u′` not a variable. Finally, it preserves the initial order of + hypotheses, which without the option it may break. The option is on by + default. .. tacn:: stepl @term @@ -2543,30 +2585,37 @@ where `eq` is typically a setoid equality. The application of :n:`stepl @term` then replaces the goal by :n:`R @term @term` and adds a new goal stating :n:`eq @term @term`. -Lemmas are added to the database using the command ``Declare Left Step @term.`` +.. cmd:: Declare Left Step @term + + Adds :n:`@term` to the database used by :tacn:`stepl`. + The tactic is especially useful for parametric setoids which are not accepted as regular setoids for :tacn:`rewrite` and :tacn:`setoid_replace` (see -:ref:`TODO-27-Generalizedrewriting`). +:ref:`Generalizedrewriting`). .. tacv:: stepl @term by tactic - This applies :n:`stepl @term` then applies tactic to the second goal. + This applies :n:`stepl @term` then applies tactic to the second goal. .. tacv:: stepr @term stepr @term by tactic + :name: stepr + + This behaves as :tacn:`stepl` but on the right-hand-side of the binary + relation. Lemmas are expected to be of the form :g:`forall x y z, R x y -> eq + y z -> R x z`. - This behaves as :tacn:`stepl` but on the right-hand-side of the binary - relation. Lemmas are expected to be of the form :g:`forall x y z, R x y -> eq - y z -> R x z` and are registered using the command ``Declare Right Step - @term.`` + .. cmd:: Declare Right Step @term + + Adds :n:`@term` to the database used by :tacn:`stepr`. .. tacn:: change @term :name: change - This tactic applies to any goal. It implements the rule ``Conv`` given in - :ref:`TODO-4.4-Subtypingrules`. :g:`change U` replaces the current goal `T` - with `U` providing that `U` is well-formed and that `T` and `U` are - convertible. + This tactic applies to any goal. It implements the rule ``Conv`` given in + :ref:`subtyping-rules`. :g:`change U` replaces the current goal `T` + with `U` providing that `U` is well-formed and that `T` and `U` are + convertible. .. exn:: Not convertible @@ -2637,7 +2686,7 @@ the conversion in hypotheses :n:`{+ @ident}`. the normalization of the goal according to the specified flags. In correspondence with the kinds of reduction considered in Coq namely :math:`\beta` (reduction of functional application), :math:`\delta` - (unfolding of transparent constants, see :ref:`TODO-6.10.2-Transparent`), + (unfolding of transparent constants, see :ref:`vernac-controlling-the-reduction-strategies`), :math:`\iota` (reduction of pattern-matching over a constructed term, and unfolding of :g:`fix` and :g:`cofix` expressions) and :math:`\zeta` (contraction of local definitions), the @@ -2649,7 +2698,7 @@ the conversion in hypotheses :n:`{+ @ident}`. second case the constant to unfold to all but the ones explicitly mentioned. Notice that the ``delta`` flag does not apply to variables bound by a let-in construction inside the :n:`@term` itself (use here the ``zeta`` flag). In - any cases, opaque constants are not unfolded (see :ref:`TODO-6.10.1-Opaque`). + any cases, opaque constants are not unfolded (see :ref:`vernac-controlling-the-reduction-strategies`). Normalization according to the flags is done by first evaluating the head of the expression into a *weak-head* normal form, i.e. until the @@ -2704,6 +2753,7 @@ the conversion in hypotheses :n:`{+ @ident}`. and :n:`lazy beta delta -{+ @qualid} iota zeta`. .. tacv:: vm_compute + :name: vm_compute This tactic evaluates the goal using the optimized call-by-value evaluation bytecode-based virtual machine described in :cite:`CompiledStrongReduction`. @@ -2713,6 +2763,7 @@ the conversion in hypotheses :n:`{+ @ident}`. reflection-based tactics. .. tacv:: native_compute + :name: native_compute This tactic evaluates the goal by compilation to Objective Caml as described in :cite:`FullReduction`. If Coq is running in native code, it can be @@ -2768,7 +2819,7 @@ the conversion in hypotheses :n:`{+ @ident}`. :n:`hnf`. .. note:: - The :math:`\delta` rule only applies to transparent constants (see :ref:`TODO-6.10.1-Opaque` + The :math:`\delta` rule only applies to transparent constants (see :ref:`vernac-controlling-the-reduction-strategies` on transparency and opacity). .. tacn:: cbn @@ -2906,7 +2957,7 @@ the conversion in hypotheses :n:`{+ @ident}`. This tactic applies to any goal. The argument qualid must denote a defined transparent constant or local definition (see - :ref:`TODO-1.3.2-Definitions` and :ref:`TODO-6.10.2-Transparent`). The tactic + :ref:`gallina-definitions` and :ref:`vernac-controlling-the-reduction-strategies`). The tactic ``unfold`` applies the :math:`\delta` rule to each occurrence of the constant to which :n:`@qualid` refers in the current goal and then replaces it with its :math:`\beta`:math:`\iota`-normal form. @@ -2942,7 +2993,7 @@ the conversion in hypotheses :n:`{+ @ident}`. This is variant of :n:`unfold @string` where :n:`@string` gets its interpretation from the scope bound to the delimiting key :n:`key` - instead of its default interpretation (see :ref:`TODO-12.2.2-Localinterpretationrulesfornotations`). + instead of its default interpretation (see :ref:`Localinterpretationrulesfornotations`). .. tacv:: unfold {+, qualid_or_string at {+, @num}} This is the most general form, where :n:`qualid_or_string` is either a @@ -3103,7 +3154,7 @@ the :tacn:`auto` and :tacn:`trivial` tactics: .. opt:: Info Auto .. opt:: Debug Auto .. opt:: Info Trivial -.. opt:: Info Trivial +.. opt:: Debug Trivial See also: :ref:`The Hints Databases for auto and eauto <thehintsdatabasesforautoandeauto>` @@ -3258,188 +3309,203 @@ observationally different from the legacy one. The general command to add a hint to some databases :n:`{+ @ident}` is -.. cmd:: Hint hint_definition : {+ @ident} +.. cmd:: Hint @hint_definition : {+ @ident} -**Variants:** + .. cmdv:: Hint @hint_definition -.. cmd:: Hint hint_definition + No database name is given: the hint is registered in the core database. - No database name is given: the hint is registered in the core database. + .. cmdv:: Local Hint @hint_definition : {+ @ident} -.. cmd:: Local Hint hint_definition : {+ @ident} + This is used to declare hints that must not be exported to the other modules + that require and import the current module. Inside a section, the option + Local is useless since hints do not survive anyway to the closure of + sections. - This is used to declare hints that must not be exported to the other modules - that require and import the current module. Inside a section, the option - Local is useless since hints do not survive anyway to the closure of - sections. + .. cmdv:: Local Hint @hint_definition -.. cmd:: Local Hint hint_definition + Idem for the core database. - Idem for the core database. + .. cmdv:: Hint Resolve @term {? | {? @num} {? @pattern}} + :name: Hint Resolve -The ``hint_definition`` is one of the following expressions: + This command adds :n:`simple apply @term` to the hint list with the head + symbol of the type of :n:`@term`. The cost of that hint is the number of + subgoals generated by :n:`simple apply @term` or :n:`@num` if specified. The + associated :n:`@pattern` is inferred from the conclusion of the type of + :n:`@term` or the given :n:`@pattern` if specified. In case the inferred type + of :n:`@term` does not start with a product the tactic added in the hint list + is :n:`exact @term`. In case this type can however be reduced to a type + starting with a product, the tactic :n:`simple apply @term` is also stored in + the hints list. If the inferred type of :n:`@term` contains a dependent + quantification on a variable which occurs only in the premisses of the type + and not in its conclusion, no instance could be inferred for the variable by + unification with the goal. In this case, the hint is added to the hint list + of :tacn:`eauto` instead of the hint list of auto and a warning is printed. A + typical example of a hint that is used only by :tacn:`eauto` is a transitivity + lemma. -+ :n:`Resolve @term {? | {? @num} {? @pattern}}` - This command adds :n:`simple apply @term` to the hint list with the head symbol of the type of - :n:`@term`. The cost of that hint is the number of subgoals generated by - :n:`simple apply @term` or :n:`@num` if specified. The associated :n:`@pattern` - is inferred from the conclusion of the type of :n:`@term` or the given - :n:`@pattern` if specified. In case the inferred type of :n:`@term` does not - start with a product the tactic added in the hint list is :n:`exact @term`. - In case this type can however be reduced to a type starting with a product, - the tactic :n:`simple apply @term` is also stored in the hints list. If the - inferred type of :n:`@term` contains a dependent quantification on a variable - which occurs only in the premisses of the type and not in its conclusion, no - instance could be inferred for the variable by unification with the goal. In - this case, the hint is added to the hint list of :tacn:`eauto` instead of the - hint list of auto and a warning is printed. A typical example of a hint that - is used only by ``eauto`` is a transitivity lemma. + .. exn:: @term cannot be used as a hint - .. exn:: @term cannot be used as a hint + The head symbol of the type of :n:`@term` is a bound variable such that + this tactic cannot be associated to a constant. - The head symbol of the type of :n:`@term` is a bound variable such that - this tactic cannot be associated to a constant. + .. cmdv:: Hint Resolve {+ @term} - **Variants:** + Adds each :n:`Hint Resolve @term`. - + :n:`Resolve {+ @term}` - Adds each :n:`Resolve @term`. + .. cmdv:: Hint Resolve -> @term - + :n:`Resolve -> @term` - Adds the left-to-right implication of an equivalence as a hint (informally - the hint will be used as :n:`apply <- @term`, although as mentionned - before, the tactic actually used is a restricted version of ``apply``). + Adds the left-to-right implication of an equivalence as a hint (informally + the hint will be used as :n:`apply <- @term`, although as mentionned + before, the tactic actually used is a restricted version of + :tacn:`apply`). - + :n:`Resolve <- @term` - Adds the right-to-left implication of an equivalence as a hint. + .. cmdv:: Resolve <- @term -+ :n:`Immediate @term` - This command adds :n:`simple apply @term; trivial` to the hint list associated - with the head symbol of the type of :n:`@ident` in the given database. This - tactic will fail if all the subgoals generated by :n:`simple apply @term` are - not solved immediately by the ``trivial`` tactic (which only tries tactics - with cost 0).This command is useful for theorems such as the symmetry of - equality or :g:`n+1=m+1 -> n=m` that we may like to introduce with a limited - use in order to avoid useless proof-search.The cost of this tactic (which - never generates subgoals) is always 1, so that it is not used by ``trivial`` - itself. + Adds the right-to-left implication of an equivalence as a hint. - .. exn:: @term cannot be used as a hint + .. cmdv:: Hint Immediate @term + :name: Hint Immediate - **Variants:** + This command adds :n:`simple apply @term; trivial` to the hint list associated + with the head symbol of the type of :n:`@ident` in the given database. This + tactic will fail if all the subgoals generated by :n:`simple apply @term` are + not solved immediately by the ``trivial`` tactic (which only tries tactics + with cost 0).This command is useful for theorems such as the symmetry of + equality or :g:`n+1=m+1 -> n=m` that we may like to introduce with a limited + use in order to avoid useless proof-search. The cost of this tactic (which + never generates subgoals) is always 1, so that it is not used by :tacn:`trivial` + itself. - + :n:`Immediate {+ @term}` - Adds each :n:`Immediate @term`. + .. exn:: @term cannot be used as a hint -+ :n:`Constructors @ident` - If :n:`@ident` is an inductive type, this command adds all its constructors as - hints of type Resolve. Then, when the conclusion of current goal has the form - :n:`(@ident ...)`, ``auto`` will try to apply each constructor. + .. cmdv:: Immediate {+ @term} - .. exn:: @ident is not an inductive type + Adds each :n:`Hint Immediate @term`. - **Variants:** + .. cmdv:: Hint Constructors @ident + :name: Hint Constructors - + :n:`Constructors {+ @ident}` - Adds each :n:`Constructors @ident`. + If :n:`@ident` is an inductive type, this command adds all its constructors as + hints of type ``Resolve``. Then, when the conclusion of current goal has the form + :n:`(@ident ...)`, :tacn:`auto` will try to apply each constructor. -+ :n:`Unfold @qualid` - This adds the tactic :n:`unfold @qualid` to the hint list that will only be - used when the head constant of the goal is :n:`@ident`. - Its cost is 4. + .. exn:: @ident is not an inductive type - **Variants:** + .. cmdv:: Hint Constructors {+ @ident} - + :n:`Unfold {+ @ident}` - Adds each :n:`Unfold @ident`. + Adds each :n:`Hint Constructors @ident`. -+ :n:`Transparent`, :n:`Opaque @qualid` - This adds a transparency hint to the database, making :n:`@qualid` a - transparent or opaque constant during resolution. This information is used - during unification of the goal with any lemma in the database and inside the - discrimination network to relax or constrain it in the case of discriminated - databases. + .. cmdv:: Hint Unfold @qualid + :name: Hint Unfold - **Variants:** + This adds the tactic :n:`unfold @qualid` to the hint list that will only be + used when the head constant of the goal is :n:`@ident`. + Its cost is 4. - + :n:`Transparent`, :n:`Opaque {+ @ident}` - Declares each :n:`@ident` as a transparent or opaque constant. + .. cmdv:: Hint Unfold {+ @ident} -+ :n:`Extern @num {? @pattern} => tactic` - This hint type is to extend ``auto`` with tactics other than ``apply`` and - ``unfold``. For that, we must specify a cost, an optional :n:`@pattern` and a - :n:`tactic` to execute. Here is an example:: - - Hint Extern 4 (~(_ = _)) => discriminate. - - Now, when the head of the goal is a disequality, ``auto`` will try - discriminate if it does not manage to solve the goal with hints with a - cost less than 4. One can even use some sub-patterns of the pattern in - the tactic script. A sub-pattern is a question mark followed by an - identifier, like ``?X1`` or ``?X2``. Here is an example: - - .. example:: - .. coqtop:: reset all - - Require Import List. - Hint Extern 5 ({?X1 = ?X2} + {?X1 <> ?X2}) => generalize X1, X2; decide equality : eqdec. - Goal forall a b:list (nat * nat), {a = b} + {a <> b}. - Info 1 auto with eqdec. - -+ :n:`Cut @regexp` - - .. warning:: these hints currently only apply to typeclass - proof search and the ``typeclasses eauto`` tactic (:ref:`TODO-20.6.5-typeclasseseauto`). - - This command can be used to cut the proof-search tree according to a regular - expression matching paths to be cut. The grammar for regular expressions is - the following. Beware, there is no operator precedence during parsing, one can - check with ``Print HintDb`` to verify the current cut expression: - - .. productionlist:: `regexp` - e : ident hint or instance identifier - :|_ any hint - :| e\|e′ disjunction - :| e e′ sequence - :| e * Kleene star - :| emp empty - :| eps epsilon - :| ( e ) - - The `emp` regexp does not match any search path while `eps` - matches the empty path. During proof search, the path of - successive successful hints on a search branch is recorded, as a - list of identifiers for the hints (note Hint Extern’s do not have - an associated identifier). - Before applying any hint :n:`@ident` the current path `p` extended with - :n:`@ident` is matched against the current cut expression `c` associated to - the hint database. If matching succeeds, the hint is *not* applied. The - semantics of ``Hint Cut e`` is to set the cut expression to ``c | e``, the - initial cut expression being `emp`. - -+ :n:`Mode @qualid {* (+ | ! | -)}` - This sets an optional mode of use of the identifier :n:`@qualid`. When - proof-search faces a goal that ends in an application of :n:`@qualid` to - arguments :n:`@term ... @term`, the mode tells if the hints associated to - :n:`@qualid` can be applied or not. A mode specification is a list of n ``+``, - ``!`` or ``-`` items that specify if an argument of the identifier is to be - treated as an input (``+``), if its head only is an input (``!``) or an output - (``-``) of the identifier. For a mode to match a list of arguments, input - terms and input heads *must not* contain existential variables or be - existential variables respectively, while outputs can be any term. Multiple - modes can be declared for a single identifier, in that case only one mode - needs to match the arguments for the hints to be applied.The head of a term - is understood here as the applicative head, or the match or projection - scrutinee’s head, recursively, casts being ignored. ``Hint Mode`` is - especially useful for typeclasses, when one does not want to support default - instances and avoid ambiguity in general. Setting a parameter of a class as an - input forces proof-search to be driven by that index of the class, with ``!`` - giving more flexibility by allowing existentials to still appear deeper in the - index but not at its head. + Adds each :n:`Hint Unfold @ident`. -.. note:: - One can use an ``Extern`` hint with no pattern to do pattern-matching on - hypotheses using ``match goal`` with inside the tactic. + .. cmdv:: Hint %( Transparent %| Opaque %) @qualid + :name: Hint ( Transparent | Opaque ) + + This adds a transparency hint to the database, making :n:`@qualid` a + transparent or opaque constant during resolution. This information is used + during unification of the goal with any lemma in the database and inside the + discrimination network to relax or constrain it in the case of discriminated + databases. + + .. cmdv:: Hint %(Transparent | Opaque) {+ @ident} + + Declares each :n:`@ident` as a transparent or opaque constant. + + .. cmdv:: Hint Extern @num {? @pattern} => tactic + + This hint type is to extend :tacn:`auto` with tactics other than :tacn:`apply` and + :tacn:`unfold`. For that, we must specify a cost, an optional :n:`@pattern` and a + :n:`@tactic` to execute. + + .. example:: + + .. coqtop:: in + + Hint Extern 4 (~(_ = _)) => discriminate. + + Now, when the head of the goal is a disequality, ``auto`` will try + discriminate if it does not manage to solve the goal with hints with a + cost less than 4. One can even use some sub-patterns of the pattern in + the tactic script. A sub-pattern is a question mark followed by an + identifier, like ``?X1`` or ``?X2``. Here is an example: + + .. example:: + + .. coqtop:: reset all + + Require Import List. + Hint Extern 5 ({?X1 = ?X2} + {?X1 <> ?X2}) => generalize X1, X2; decide equality : eqdec. + Goal forall a b:list (nat * nat), {a = b} + {a <> b}. + Info 1 auto with eqdec. + + .. cmdv:: Hint Cut @regexp + + .. warning:: + + These hints currently only apply to typeclass proof search and the + :tacn:`typeclasses eauto` tactic. + + This command can be used to cut the proof-search tree according to a regular + expression matching paths to be cut. The grammar for regular expressions is + the following. Beware, there is no operator precedence during parsing, one can + check with :cmd:`Print HintDb` to verify the current cut expression: + + .. productionlist:: `regexp` + e : ident hint or instance identifier + :|_ any hint + :| e\|e′ disjunction + :| e e′ sequence + :| e * Kleene star + :| emp empty + :| eps epsilon + :| ( e ) + + The `emp` regexp does not match any search path while `eps` + matches the empty path. During proof search, the path of + successive successful hints on a search branch is recorded, as a + list of identifiers for the hints (note Hint Extern’s do not have + an associated identifier). + Before applying any hint :n:`@ident` the current path `p` extended with + :n:`@ident` is matched against the current cut expression `c` associated to + the hint database. If matching succeeds, the hint is *not* applied. The + semantics of ``Hint Cut e`` is to set the cut expression to ``c | e``, the + initial cut expression being `emp`. + + .. cmdv:: Hint Mode @qualid {* (+ | ! | -)} + + This sets an optional mode of use of the identifier :n:`@qualid`. When + proof-search faces a goal that ends in an application of :n:`@qualid` to + arguments :n:`@term ... @term`, the mode tells if the hints associated to + :n:`@qualid` can be applied or not. A mode specification is a list of n ``+``, + ``!`` or ``-`` items that specify if an argument of the identifier is to be + treated as an input (``+``), if its head only is an input (``!``) or an output + (``-``) of the identifier. For a mode to match a list of arguments, input + terms and input heads *must not* contain existential variables or be + existential variables respectively, while outputs can be any term. Multiple + modes can be declared for a single identifier, in that case only one mode + needs to match the arguments for the hints to be applied.The head of a term + is understood here as the applicative head, or the match or projection + scrutinee’s head, recursively, casts being ignored. ``Hint Mode`` is + especially useful for typeclasses, when one does not want to support default + instances and avoid ambiguity in general. Setting a parameter of a class as an + input forces proof-search to be driven by that index of the class, with ``!`` + giving more flexibility by allowing existentials to still appear deeper in the + index but not at its head. + + .. note:: + + One can use an ``Extern`` hint with no pattern to do pattern-matching on + hypotheses using ``match goal`` with inside the tactic. Hint databases defined in the Coq standard library @@ -3521,7 +3587,7 @@ at every moment. (left to right). Notice that the rewriting bases are distinct from the ``auto`` hint bases and thatauto does not take them into account. - This command is synchronous with the section mechanism (see :ref:`TODO-2.4-Sectionmechanism`): + This command is synchronous with the section mechanism (see :ref:`section-mechanism`): when closing a section, all aliases created by ``Hint Rewrite`` in that section are lost. Conversely, when loading a module, all ``Hint Rewrite`` declarations at the global level of that module are loaded. @@ -3573,69 +3639,65 @@ We propose a smooth transitional path by providing the ``Loose Hint Behavior`` option which accepts three flags allowing for a fine-grained handling of non-imported hints. -**Variants:** +.. opt:: Loose Hint Behavior %( "Lax" %| "Warn" %| "Strict" %) -.. cmd:: Set Loose Hint Behavior "Lax" + This option accepts three values, which control the behavior of hints w.r.t. + :cmd:`Import`: - This is the default, and corresponds to the historical behavior, that - is, hints defined outside of a section have a global scope. + - "Lax": this is the default, and corresponds to the historical behavior, + that is, hints defined outside of a section have a global scope. -.. cmd:: Set Loose Hint Behavior "Warn" + - "Warn": outputs a warning when a non-imported hint is used. Note that this + is an over-approximation, because a hint may be triggered by a run that + will eventually fail and backtrack, resulting in the hint not being + actually useful for the proof. - When set, it outputs a warning when a non-imported hint is used. Note that - this is an over-approximation, because a hint may be triggered by a run that - will eventually fail and backtrack, resulting in the hint not being actually - useful for the proof. + - "Strict": changes the behavior of an unloaded hint to a immediate fail + tactic, allowing to emulate an import-scoped hint mechanism. -.. cmd:: Set Loose Hint Behavior "Strict" - - When set, it changes the behavior of an unloaded hint to a immediate fail - tactic, allowing to emulate an import-scoped hint mechanism. +.. _tactics-implicit-automation: Setting implicit automation tactics ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -.. cmd:: Proof with tactic +.. cmd:: Proof with @tactic This command may be used to start a proof. It defines a default tactic to be used each time a tactic command ``tactic``:sub:`1` is ended by ``...``. In this case the tactic command typed by the user is equivalent to ``tactic``:sub:`1` ``;tactic``. -See also: Proof. in :ref:`TODO-7.1.4-Proofterm`. - -**Variants:** + See also: ``Proof.`` in :ref:`proof-editing-mode`. -.. cmd:: Proof with tactic using {+ @ident} - Combines in a single line ``Proof with`` and ``Proof using``, see :ref:`TODO-7.1.5-Proofusing` + .. cmdv:: Proof with tactic using {+ @ident} -.. cmd:: Proof using {+ @ident} with tactic + Combines in a single line ``Proof with`` and ``Proof using``, see :ref:`proof-editing-mode` - Combines in a single line ``Proof with`` and ``Proof using``, see :ref:`TODO-7.1.5-Proofusing` + .. cmdv:: Proof using {+ @ident} with @tactic -.. cmd:: Declare Implicit Tactic tactic + Combines in a single line ``Proof with`` and ``Proof using``, see :ref:`proof-editing-mode` - This command declares a tactic to be used to solve implicit arguments - that Coq does not know how to solve by unification. It is used every - time the term argument of a tactic has one of its holes not fully - resolved. + .. cmd:: Declare Implicit Tactic @tactic -Here is an example: + This command declares a tactic to be used to solve implicit arguments + that Coq does not know how to solve by unification. It is used every + time the term argument of a tactic has one of its holes not fully + resolved. -.. example:: + .. example:: - .. coqtop:: all + .. coqtop:: all - Parameter quo : nat -> forall n:nat, n<>0 -> nat. - Notation "x // y" := (quo x y _) (at level 40). - Declare Implicit Tactic assumption. - Goal forall n m, m<>0 -> { q:nat & { r | q * m + r = n } }. - intros. - exists (n // m). + Parameter quo : nat -> forall n:nat, n<>0 -> nat. + Notation "x // y" := (quo x y _) (at level 40). + Declare Implicit Tactic assumption. + Goal forall n m, m<>0 -> { q:nat & { r | q * m + r = n } }. + intros. + exists (n // m). - The tactic ``exists (n // m)`` did not fail. The hole was solved - by ``assumption`` so that it behaved as ``exists (quo n m H)``. + The tactic ``exists (n // m)`` did not fail. The hole was solved + by ``assumption`` so that it behaved as ``exists (quo n m H)``. .. _decisionprocedures: @@ -3680,11 +3742,12 @@ Therefore, the use of :tacn:`intros` in the previous proof is unnecessary. an instantiation of `x` is necessary. .. tacv:: dtauto + :name: dtauto - While :tacn:`tauto` recognizes inductively defined connectives isomorphic to - the standard connective ``and, prod, or, sum, False, Empty_set, unit, True``, - :tacn:`dtauto` recognizes also all inductive types with one constructors and - no indices, i.e. record-style connectives. + While :tacn:`tauto` recognizes inductively defined connectives isomorphic to + the standard connective ``and, prod, or, sum, False, Empty_set, unit, True``, + :tacn:`dtauto` recognizes also all inductive types with one constructors and + no indices, i.e. record-style connectives. .. tacn:: intuition @tactic :name: intuition @@ -3713,7 +3776,7 @@ and then uses :tacn:`auto` which completes the proof. Originally due to César Muñoz, these tactics (:tacn:`tauto` and :tacn:`intuition`) have been completely re-engineered by David Delahaye using -mainly the tactic language (see :ref:`TODO-9-thetacticlanguage`). The code is +mainly the tactic language (see :ref:`ltac`). The code is now much shorter and a significant increase in performance has been noticed. The general behavior with respect to dependent types, unfolding and introductions has slightly changed to get clearer semantics. This may lead to @@ -3730,17 +3793,10 @@ some incompatibilities. Empty_set, unit, True``, :tacn:`dintuition` recognizes also all inductive types with one constructors and no indices, i.e. record-style connectives. -Some aspects of the tactic :tacn:`intuition` can be controlled using options. -To avoid that inner negations which do not need to be unfolded are -unfolded, use: - -.. cmd:: Unset Intuition Negation Unfolding +.. opt:: Intuition Negation Unfolding - -To do that all negations of the goal are unfolded even inner ones -(this is the default), use: - -.. cmd:: Set Intuition Negation Unfolding + Controls whether :tacn:`intuition` unfolds inner negations which do not need + to be unfolded. This option is on by default. .. tacn:: rtauto :name: rtauto @@ -3764,14 +3820,15 @@ first- order reasoning, written by Pierre Corbineau. It is not restricted to usual logical connectives but instead may reason about any first-order class inductive definition. -The default tactic used by :tacn:`firstorder` when no rule applies is :g:`auto -with \*`, it can be reset locally or globally using the ``Set Firstorder -Solver`` tactic vernacular command and printed using ``Print Firstorder -Solver``. +.. opt:: Firstorder Solver + + The default tactic used by :tacn:`firstorder` when no rule applies is + :g:`auto with *`, it can be reset locally or globally using this option and + printed using :cmd:`Print Firstorder Solver`. .. tacv:: firstorder @tactic - Tries to solve the goal with :n:`@tactic` when no logical rule may apply. + Tries to solve the goal with :n:`@tactic` when no logical rule may apply. .. tacv:: firstorder using {+ @qualid} @@ -3788,8 +3845,9 @@ Solver``. This combines the effects of the different variants of :tacn:`firstorder`. -Proof-search is bounded by a depth parameter which can be set by -typing the ``Set Firstorder Depth n`` vernacular command. +.. opt:: Firstorder Depth @natural + + This option controls the proof-search depth bound. .. tacn:: congruence :name: congruence @@ -3878,7 +3936,7 @@ succeeds, and results in an error otherwise. .. tacv:: unify @term @term with @ident Unification takes the transparency information defined in the hint database - :n:`@ident` into account (see :ref:`the hints databases for auto and eauto <the-hints-databases-for-auto-and-eauto>`). + :n:`@ident` into account (see :ref:`the hints databases for auto and eauto <thehintsdatabasesforautoandeauto>`). .. tacn:: is_evar @term :name: is_evar @@ -4009,6 +4067,7 @@ symbol :g:`=`. .. tacv:: esimplify_eq @num .. tacv:: esimplify_eq @term {? with @bindings_list} + :name: esimplify_eq This works the same as ``simplify_eq`` but if the type of :n:`@term`, or the type of the hypothesis referred to by :n:`@num`, has uninstantiated @@ -4020,7 +4079,7 @@ symbol :g:`=`. :n:`intro @ident; simplify_eq @ident`. .. tacn:: dependent rewrite -> @ident - :name: dependent rewrite -> + :name: dependent rewrite This tactic applies to any goal. If :n:`@ident` has type :g:`(existT B a b)=(existT B a' b')` in the local context (i.e. each @@ -4044,7 +4103,7 @@ Inversion :tacn:`functional inversion` is a tactic that performs inversion on hypothesis :n:`@ident` of the form :n:`@qualid {+ @term} = @term` or :n:`@term = @qualid {+ @term}` where :n:`@qualid` must have been defined using Function (see -:ref:`TODO-2.3-advancedrecursivefunctions`). Note that this tactic is only +:ref:`advanced-recursive-functions`). Note that this tactic is only available after a ``Require Import FunInd``. @@ -4077,7 +4136,7 @@ This kind of inversion has nothing to do with the tactic :tacn:`inversion` above. This tactic does :g:`change (@ident t)`, where `t` is a term built in order to ensure the convertibility. In other words, it does inversion of the function :n:`@ident`. This function must be a fixpoint on a simple recursive -datatype: see :ref:`TODO-10.3-quote` for the full details. +datatype: see :ref:`quote` for the full details. .. exn:: quote: not a simple fixpoint @@ -4109,6 +4168,8 @@ using the ``Require Import`` command. Use ``classical_right`` to prove the right part of the disjunction with the assumption that the negation of left part holds. +.. _tactics-automatizing: + Automatizing ------------ @@ -4148,7 +4209,7 @@ formulas built with `~`, `\/`, `/\`, `->` on top of equalities, inequalities and disequalities on both the type :g:`nat` of natural numbers and :g:`Z` of binary integers. This tactic must be loaded by the command ``Require Import Omega``. See the additional documentation about omega -(see Chapter :ref:`TODO-21-omega`). +(see Chapter :ref:`omega`). .. tacn:: ring @@ -4168,7 +4229,7 @@ given in the conclusion of the goal by their normal forms. If no term is given, then the conclusion should be an equation and both hand sides are normalized. -See :ref:`TODO-Chapter-25-Theringandfieldtacticfamilies` for more information on +See :ref:`Theringandfieldtacticfamilies` for more information on the tactic and how to declare new ring structures. All declared field structures can be printed with the ``Print Rings`` command. @@ -4194,7 +4255,7 @@ denominators. So it produces an equation without division nor inverse. All of these 3 tactics may generate a subgoal in order to prove that denominators are different from zero. -See :ref:`TODO-Chapter-25-Theringandfieldtacticfamilies` for more information on the tactic and how to +See :ref:`Theringandfieldtacticfamilies` for more information on the tactic and how to declare new field structures. All declared field structures can be printed with the Print Fields command. @@ -4286,7 +4347,7 @@ This tactics reverses the list of the focused goals. This tactic moves all goals under focus to a shelf. While on the shelf, goals will not be focused on. They can be solved by unification, or they can be called back into focus with the command - :tacn:`Unshelve`. + :cmd:`Unshelve`. .. tacv:: shelve_unifiable @@ -4302,8 +4363,7 @@ This tactics reverses the list of the focused goals. all:shelve_unifiable. reflexivity. -.. tacn:: Unshelve - :name: Unshelve +.. cmd:: Unshelve This command moves all the goals on the shelf (see :tacn:`shelve`) from the shelf into focus, by appending them to the end of the current @@ -4334,11 +4394,11 @@ A simple example has more value than a long explanation: The tactics macros are synchronous with the Coq section mechanism: a tactic definition is deleted from the current environment when you -close the section (see also :ref:`TODO-2.4Sectionmechanism`) where it was +close the section (see also :ref:`section-mechanism`) where it was defined. If you want that a tactic macro defined in a module is usable in the modules that require it, you should put it outside of any section. -:ref:`TODO-9-Thetacticlanguage` gives examples of more complex +:ref:`ltac` gives examples of more complex user-defined tactics. .. [1] Actually, only the second subgoal will be generated since the diff --git a/doc/sphinx/proof-engine/vernacular-commands.rst b/doc/sphinx/proof-engine/vernacular-commands.rst index 0bb6eea23..692ff294a 100644 --- a/doc/sphinx/proof-engine/vernacular-commands.rst +++ b/doc/sphinx/proof-engine/vernacular-commands.rst @@ -39,6 +39,7 @@ This is a synonym to ``Print`` :n:`@qualid` when :n:`@qualid` denotes a global constant. .. cmdv:: About @qualid. + :name: About This displays various information about the object denoted by :n:`@qualid`: its kind (module, constant, assumption, inductive, @@ -61,6 +62,7 @@ Variants: .. cmdv:: Inspect @num. + :name: Inspect This command displays the :n:`@num` last objects of the current environment, including sections and modules. @@ -77,13 +79,11 @@ section. Flags, Options and Tables ----------------------------- -|Coq| configurability is based on flags (e.g. Set Printing All in -Section :ref:`TODO-2.9-printing-full`), options (e.g. ``Set Printing Widthinteger`` in Section -:ref:`TODO-6.9.6-set-printing-width`), or tables (e.g. ``Add Printing Record ident``, in Section -:ref:`TODO-2.2.4-add-printing-record`). The names of flags, options and tables are made of non-empty sequences of identifiers -(conventionally with capital initial -letter). The general commands handling flags, options and tables are -given below. +|Coq| configurability is based on flags (e.g. :opt:`Printing All`), options +(e.g. :opt:`Printing Width`), or tables (e.g. :cmd:`Add Printing Record`). The +names of flags, options and tables are made of non-empty sequences of +identifiers (conventionally with capital initial letter). The general commands +handling flags, options and tables are given below. .. TODO : flag is not a syntax entry @@ -92,10 +92,8 @@ given below. This command switches :n:`@flag` on. The original state of :n:`@flag` is restored when the current module ends. - Variants: - .. cmdv:: Local Set @flag. This command switches :n:`@flag` on. The original state @@ -107,6 +105,11 @@ This command switches :n:`@flag` on. The original state of :n:`@flag` is *not* restored at the end of the module. Additionally, if set in a file, :n:`@flag` is switched on when the file is `Require`-d. +.. cmdv:: Export Set @flag. + + This command switches :n:`@flag` on. The original state + of :n:`@flag` is restored at the end of the current module, but :n:`@flag` + is switched on when this module is imported. .. cmd:: Unset @flag. @@ -128,6 +131,11 @@ This command switches :n:`@flag` off. The original state of :n:`@flag` is *not* restored at the end of the module. Additionally, if set in a file, :n:`@flag` is switched off when the file is `Require`-d. +.. cmdv:: Export Unset @flag. + + This command switches :n:`@flag` off. The original state + of :n:`@flag` is restored at the end of the current module, but :n:`@flag` + is switched off when this module is imported. .. cmd:: Test @flag. @@ -157,11 +165,16 @@ original value of :n:`@option` is *not* restored at the end of the module. Additionally, if set in a file, :n:`@option` is set to value when the file is `Require`-d. +.. cmdv:: Export Set @option. + + This command set :n:`@option` to :n:`@value`. The original state + of :n:`@option` is restored at the end of the current module, but :n:`@option` + is set to :n:`@value` when this module is imported. .. cmd:: Unset @option. -This command resets option to its default value. + This command turns off :n:`@option`. Variants: @@ -169,17 +182,20 @@ Variants: .. cmdv:: Local Unset @option. -This command resets :n:`@option` to its default -value. The original state of :n:`@option` is restored when the current -*section* ends. + This command turns off :n:`@option`. The original state of :n:`@option` is restored when the current + *section* ends. .. cmdv:: Global Unset @option. -This command resets :n:`@option` to its default -value. The original state of :n:`@option` is *not* restored at the end of the -module. Additionally, if unset in a file, :n:`@option` is reset to its -default value when the file is `Require`-d. + This command turns off :n:`@option`. The original state of :n:`@option` is *not* restored at the end of the + module. Additionally, if unset in a file, :n:`@option` is reset to its + default value when the file is `Require`-d. + +.. cmdv:: Export Unset @option. + This command turns off :n:`@option`. The original state of :n:`@option` is restored at the end of the + current module, but :n:`@option` is set to its default value when this module + is imported. .. cmd:: Test @option. @@ -190,9 +206,17 @@ This command prints the current value of :n:`@option`. .. TODO : table is not a syntax entry .. cmd:: Add @table @value. + :name: Add `table` `value` + .. cmd:: Remove @table @value. + :name: Remove `table` `value` + .. cmd:: Test @table @value. + :name: Test `table` `value` + .. cmd:: Test @table for @value. + :name: Test `table` for `value` + .. cmd:: Print Table @table. These are general commands for tables. @@ -228,7 +252,7 @@ Variants: .. cmdv:: @selector: Check @term. specifies on which subgoal to perform typing -(see Section :ref:`TODO-8.1-invocation-of-tactics`). +(see Section :ref:`invocation-of-tactics`). .. TODO : convtactic is not a syntax entry @@ -240,7 +264,7 @@ hypothesis introduced in the first subgoal (if a proof is in progress). -See also: Section :ref:`TODO-8.7-performing-computations`. +See also: Section :ref:`performingcomputations`. .. cmd:: Compute @term. @@ -250,17 +274,16 @@ bytecode-based virtual machine. It is a shortcut for ``Eval vm_compute in`` :n:`@term`. -See also: Section :ref:`TODO-8.7-performing-computations`. +See also: Section :ref:`performingcomputations`. .. cmd::Extraction @term. This command displays the extracted term from :n:`@term`. The extraction is -processed according to the distinction between ``Set`` and ``Prop``; that is -to say, between logical and computational content (see Section -:ref:`TODO-4.1.1-sorts`). The extracted term is displayed in OCaml -syntax, -where global identifiers are still displayed as in |Coq| terms. +processed according to the distinction between :g:`Set` and :g:`Prop`; that is +to say, between logical and computational content (see Section :ref:`sorts`). +The extracted term is displayed in OCaml syntax, where global identifiers are +still displayed as in |Coq| terms. Variants: @@ -272,7 +295,7 @@ Recursively extracts all the material needed for the extraction of the qualified identifiers. -See also: Chapter ref:`TODO-23-chapter-extraction`. +See also: Chapter :ref:`extraction`. .. cmd:: Print Assumptions @qualid. @@ -326,13 +349,13 @@ displays the name and type of all objects (theorems, axioms, etc) of the current context whose name contains string. If string is a notation’s string denoting some reference :n:`@qualid` (referred to by its main symbol as in `"+"` or by its notation’s string as in `"_ + _"` or -`"_ 'U' _"`, see Section :ref:`TODO-12.1-notations`), the command works like ``Search`` :n:`@qualid`. +`"_ 'U' _"`, see Section :ref:`notations`), the command works like ``Search`` :n:`@qualid`. .. cmdv:: Search @string%@key. The string string must be a notation or the main symbol of a notation which is then interpreted in the scope bound to -the delimiting key :n:`@key` (see Section :ref:`TODO-12.2.2-local-interpretation-rules-for-notations`). +the delimiting key :n:`@key` (see Section :ref:`LocalInterpretationRulesForNotations`). .. cmdv:: Search @term_pattern. @@ -364,7 +387,7 @@ This restricts the search to constructions not defined in the modules named by t .. cmdv:: @selector: Search [-]@term_pattern_string … [-]@term_pattern_string. This specifies the goal on which to search hypothesis (see -Section :ref:`TODO-8.1-invocation-of-tactics`). +Section :ref:`invocation-of-tactics`). By default the 1st goal is searched. This variant can be combined with other variants presented here. @@ -382,11 +405,11 @@ be combined with other variants presented here. Search (?x * _ + ?x * _)%Z outside OmegaLemmas. .. note:: Up to |Coq| version 8.4, ``Search`` had the behavior of current -``SearchHead`` and the behavior of current Search was obtained with -command ``SearchAbout``. For compatibility, the deprecated name -SearchAbout can still be used as a synonym of Search. For -compatibility, the list of objects to search when using ``SearchAbout`` -may also be enclosed by optional[ ] delimiters. + ``SearchHead`` and the behavior of current Search was obtained with + command ``SearchAbout``. For compatibility, the deprecated name + SearchAbout can still be used as a synonym of Search. For + compatibility, the list of objects to search when using ``SearchAbout`` + may also be enclosed by optional ``[ ]`` delimiters. .. cmd:: SearchHead @term. @@ -420,12 +443,12 @@ Error messages: .. exn:: Module/section @qualid not found No module :n:`@qualid` has been required -(see Section :ref:`TODO-6.5.1-require`). +(see Section :ref:`compiled-files`). .. cmdv:: @selector: SearchHead @term. This specifies the goal on which to -search hypothesis (see Section :ref:`TODO-8.1-invocation-of-tactics`). +search hypothesis (see Section :ref:`invocation-of-tactics`). By default the 1st goal is searched. This variant can be combined with other variants presented here. @@ -479,7 +502,7 @@ This restricts the search to constructions not defined in the modules named by t .. cmdv:: @selector: SearchPattern @term. This specifies the goal on which to -search hypothesis (see Section :ref:`TODO-8.1-invocation-of-tactics`). By default the 1st goal is +search hypothesis (see Section :ref:`invocation-of-tactics`). By default the 1st goal is searched. This variant can be combined with other variants presented here. @@ -514,7 +537,7 @@ This restricts the search to constructions not defined in the modules named by t .. cmdv:: @selector: SearchRewrite @term. This specifies the goal on which to -search hypothesis (see Section :ref:`TODO-8.1-invocation-of-tactics`). By default the 1st goal is +search hypothesis (see Section :ref:`invocation-of-tactics`). By default the 1st goal is searched. This variant can be combined with other variants presented here. @@ -569,7 +592,7 @@ As Locate but restricted to modules. As Locate but restricted to tactics. -See also: Section :ref:`TODO-12.1.10-LocateSymbol` +See also: Section :ref:`locating-notations` .. _loading-files: @@ -589,7 +612,7 @@ toplevel. This kind of file is called a *script* for |Coq|. The standard This command loads the file named :n:`ident`.v, searching successively in each of the directories specified in the *loadpath*. (see Section -:ref:`TODO-2.6.3-libraries-and-filesystem`) +:ref:`libraries-and-filesystem`) Files loaded this way cannot leave proofs open, and the ``Load`` command cannot be used inside a proof either. @@ -610,7 +633,7 @@ will use the default extension ``.v``. Display, while loading, the answers of |Coq| to each command (including tactics) contained in -the loaded file See also: Section :ref:`TODO-6.9.1-silent`. +the loaded file See also: Section :ref:`controlling-display`. Error messages: @@ -626,7 +649,7 @@ Compiled files ------------------ This section describes the commands used to load compiled files (see -Chapter :ref:`TODO-14-coq-commands` for documentation on how to compile a file). A compiled +Chapter :ref:`thecoqcommands` for documentation on how to compile a file). A compiled file is a particular case of module called *library file*. @@ -644,7 +667,7 @@ replayed nor rechecked. To locate the file in the file system, :n:`@qualid` is decomposed under the form `dirpath.ident` and the file `ident.vo` is searched in the physical directory of the file system that is mapped in |Coq| loadpath to the -logical path dirpath (see Section :ref:`TODO-2.6.3-libraries-and-filesystem`). The mapping between +logical path dirpath (see Section :ref:`libraries-and-filesystem`). The mapping between physical directories and logical names at the time of requiring the file must be consistent with the mapping used to compile the file. If several files match, one of them is picked in an unspecified fashion. @@ -656,7 +679,7 @@ Variants: This loads and declares the module :n:`@qualid` and its dependencies then imports the contents of :n:`@qualid` as described -in Section :ref:`TODO-2.5.8-import`.It does not import the modules on which +:ref:`here <import_qualid>`. It does not import the modules on which qualid depends unless these modules were themselves required in module :n:`@qualid` using ``Require Export``, as described below, or recursively required @@ -696,11 +719,11 @@ Error messages: The command did not find the file foo.vo. Either foo.v exists but is not compiled or foo.vo is in a -directory which is not in your LoadPath (see Section :ref:`TODO-2.6.3-libraries-and-filesystem`). +directory which is not in your LoadPath (see Section :ref:`libraries-and-filesystem`). -.. exn:: Compiled library ident.vo makes inconsistent assumptions over library qualid +.. exn:: Compiled library @ident.vo makes inconsistent assumptions over library qualid -The command tried to load library file `ident.vo` that +The command tried to load library file :n:`@ident`.vo that depends on some specific version of library :n:`@qualid` which is not the one already loaded in the current |Coq| session. Probably `ident.v` was not properly recompiled with the last version of the file containing @@ -725,12 +748,12 @@ the time it was compiled. This command is not allowed inside a module or a module type being defined. It is meant to describe a dependency between compilation units. Note however -that the commands Import and Export alone can be used inside modules -(see Section :ref:`TODO-2.5.8-import`). +that the commands ``Import`` and ``Export`` alone can be used inside modules +(see Section :ref:`Import <import_qualid>`). -See also: Chapter :ref:`TODO-14-coq-commands` +See also: Chapter :ref:`thecoqcommands` .. cmd:: Print Libraries. @@ -746,8 +769,8 @@ This commands loads the OCaml compiled files with names given by the :n:`@string` sequence (dynamic link). It is mainly used to load tactics dynamically. The files are searched into the current OCaml loadpath (see the -command ``Add ML Path`` in Section :ref:`TODO-2.6.3-libraries-and-filesystem`). Loading of OCaml files is only possible under the bytecode version of ``coqtop`` (i.e. -``coqtop`` called with option ``-byte``, see chapter :ref:`TODO-14-coq-commands`), or when |Coq| has been compiled with a +command ``Add ML Path`` in Section :ref:`libraries-and-filesystem`). Loading of OCaml files is only possible under the bytecode version of ``coqtop`` (i.e. +``coqtop`` called with option ``-byte``, see chapter :ref:`thecoqcommands`), or when |Coq| has been compiled with a version of OCaml that supports native Dynlink (≥ 3.11). @@ -766,7 +789,7 @@ Error messages: .. exn:: File not found on loadpath : @string -.. exn:: Loading of ML object file forbidden in a native |Coq| +.. exn:: Loading of ML object file forbidden in a native Coq @@ -774,7 +797,7 @@ Error messages: This prints the name of all OCaml modules loaded with ``Declare ML Module``. To know from where these module were loaded, the user -should use the command Locate File (see Section :ref:`TODO-6.6.10-locate-file`) +should use the command ``Locate File`` (see :ref:`here <locate-file>`) .. _loadpath: @@ -783,7 +806,7 @@ Loadpath ------------ Loadpaths are preferably managed using |Coq| command line options (see -Section `2.6.3-libraries-and-filesystem`) but there remain vernacular commands to manage them +Section `libraries-and-filesystem`) but there remain vernacular commands to manage them for practical purposes. Such commands are only meant to be issued in the toplevel, and using them in source files is discouraged. @@ -862,14 +885,14 @@ the paths that extend the :n:`@dirpath` prefix. .. cmd:: Add ML Path @string. This command adds the path :n:`@string` to the current OCaml -loadpath (see the command `Declare ML Module`` in Section :ref:`TODO-6.5-compiled-files`). +loadpath (see the command `Declare ML Module`` in Section :ref:`compiled-files`). .. cmd:: Add Rec ML Path @string. This command adds the directory :n:`@string` and all its subdirectories to the current OCaml loadpath (see the command ``Declare ML Module`` -in Section :ref:`TODO-6.5-compiled-files`). +in Section :ref:`compiled-files`). .. cmd:: Print ML Path @string. @@ -877,8 +900,9 @@ in Section :ref:`TODO-6.5-compiled-files`). This command displays the current OCaml loadpath. This command makes sense only under the bytecode version of ``coqtop``, i.e. using option ``-byte`` -(see the command Declare ML Module in Section :ref:`TODO-6.5-compiled-files`). +(see the command Declare ML Module in Section :ref:`compiled-files`). +.. _locate-file: .. cmd:: Locate File @string. @@ -929,7 +953,7 @@ of the interactive session. This commands undoes all the effects of the last vernacular command. Commands read from a vernacular file via a ``Load`` are considered as a single command. Proof management commands are also handled by this -command (see Chapter :ref:`TODO-7-proof-handling`). For that, Back may have to undo more than +command (see Chapter :ref:`proofhandling`). For that, Back may have to undo more than one command in order to reach a state where the proof management information is available. For instance, when the last command is a ``Qed``, the management information about the closed proof has been @@ -978,9 +1002,9 @@ three numbers represent the following: + *first number* : State label to reach, as for BackTo. + *second number* : *Proof state number* to unbury once aborts have been done. - |Coq| will compute the number of Undo to perform (see Chapter :ref:`TODO-7-proof-handling`). + |Coq| will compute the number of Undo to perform (see Chapter :ref:`proofhandling`). + *third number* : Number of Abort to perform, i.e. the number of currently - opened nested proofs that must be canceled (see Chapter :ref:`TODO-7-proof-handling`). + opened nested proofs that must be canceled (see Chapter :ref:`proofhandling`). @@ -1029,16 +1053,13 @@ to |Coq| with the command: go();; +.. warning:: - -Warnings: - - -#. It only works with the bytecode version of |Coq| (i.e. `coqtop.byte`, - see Section `TODO-14.1-interactive-use`). -#. You must have compiled |Coq| from the source package and set the - environment variable COQTOP to the root of your copy of the sources - (see Section `14.3.2-customization-by-envionment-variables`). + #. It only works with the bytecode version of |Coq| (i.e. `coqtop.byte`, + see Section `interactive-use`). + #. You must have compiled |Coq| from the source package and set the + environment variable COQTOP to the root of your copy of the sources + (see Section `customization-by-environment-variables`). @@ -1064,20 +1085,11 @@ expressed in seconds), then it is interrupted and an error message is displayed. -.. cmd:: Set Default Timeout @num. - -After using this command, all subsequent commands behave as if they -were passed to a Timeout command. Commands already starting by a -`Timeout` are unaffected. - +.. opt:: Default Timeout @num -.. cmd:: Unset Default Timeout. - -This command turns off the use of a default timeout. - -.. cmd:: Test Default Timeout. - -This command displays whether some default timeout has been set or not. + This option controls a default timeout for subsequent commands, as if they + were passed to a :cmd:`Timeout` command. Commands already starting by a + :cmd:`Timeout` are unaffected. .. cmd:: Fail @command. @@ -1098,129 +1110,60 @@ Error messages: Controlling display ----------------------- +.. opt:: Silent -.. cmd:: Set Silent. - -This command turns off the normal displaying. - - -.. cmd:: Unset Silent. - -This command turns the normal display on. - -TODO : check that spaces are handled well - -.. cmd:: Set Warnings ‘‘(@ident {* , @ident } )’’. - -This command configures the display of warnings. It is experimental, -and expects, between quotes, a comma-separated list of warning names -or categories. Adding - in front of a warning or category disables it, -adding + makes it an error. It is possible to use the special -categories all and default, the latter containing the warnings enabled -by default. The flags are interpreted from left to right, so in case -of an overlap, the flags on the right have higher priority, meaning -that `A,-A` is equivalent to `-A`. - - -.. cmd:: Set Search Output Name Only. - -This command restricts the output of search commands to identifier -names; turning it on causes invocations of ``Search``, ``SearchHead``, -``SearchPattern``, ``SearchRewrite`` etc. to omit types from their output, -printing only identifiers. - - -.. cmd:: Unset Search Output Name Only. - -This command turns type display in search results back on. - - -.. cmd:: Set Printing Width @integer. - -This command sets which left-aligned part of the width of the screen -is used for display. - - -.. cmd:: Unset Printing Width. - -This command resets the width of the screen used for display to its -default value (which is 78 at the time of writing this documentation). - - -.. cmd:: Test Printing Width. - -This command displays the current screen width used for display. - - -.. cmd:: Set Printing Depth @integer. - -This command sets the nesting depth of the formatter used for pretty- -printing. Beyond this depth, display of subterms is replaced by dots. - - -.. cmd:: Unset Printing Depth. - -This command resets the nesting depth of the formatter used for -pretty-printing to its default value (at the time of writing this -documentation, the default value is 50). - - -.. cmd:: Test Printing Depth. - -This command displays the current nesting depth used for display. - - -.. cmd:: Unset Printing Compact Contexts. - -This command resets the displaying of goals contexts to non compact -mode (default at the time of writing this documentation). Non compact -means that consecutive variables of different types are printed on -different lines. - - -.. cmd:: Set Printing Compact Contexts. - -This command sets the displaying of goals contexts to compact mode. -The printer tries to reduce the vertical size of goals contexts by -putting several variables (even if of different types) on the same -line provided it does not exceed the printing width (See Set Printing -Width above). - - -.. cmd:: Test Printing Compact Contexts. - -This command displays the current state of compaction of goal. + This option controls the normal displaying. +.. opt:: Warnings "{+, {? %( - %| + %) } @ident }" -.. cmd:: Unset Printing Unfocused. + This option configures the display of warnings. It is experimental, and + expects, between quotes, a comma-separated list of warning names or + categories. Adding - in front of a warning or category disables it, adding + + makes it an error. It is possible to use the special categories all and + default, the latter containing the warnings enabled by default. The flags are + interpreted from left to right, so in case of an overlap, the flags on the + right have higher priority, meaning that `A,-A` is equivalent to `-A`. -This command resets the displaying of goals to focused goals only -(default). Unfocused goals are created by focusing other goals with -bullets (see :ref:`TODO-7.2.7-bullets`) or curly braces (see `7.2.6-curly-braces`). +.. opt:: Search Output Name Only + This option restricts the output of search commands to identifier names; + turning it on causes invocations of :cmd:`Search`, :cmd:`SearchHead`, + :cmd:`SearchPattern`, :cmd:`SearchRewrite` etc. to omit types from their + output, printing only identifiers. -.. cmd:: Set Printing Unfocused. +.. opt:: Printing Width @integer -This command enables the displaying of unfocused goals. The goals are -displayed after the focused ones and are distinguished by a separator. + This command sets which left-aligned part of the width of the screen is used + for display. At the time of writing this documentation, the default value + is 78. +.. opt:: Printing Depth @integer -.. cmd:: Test Printing Unfocused. + This option controls the nesting depth of the formatter used for pretty- + printing. Beyond this depth, display of subterms is replaced by dots. At the + time of writing this documentation, the default value is 50. -This command displays the current state of unfocused goals display. +.. opt:: Printing Compact Contexts + This option controls the compact display mode for goals contexts. When on, + the printer tries to reduce the vertical size of goals contexts by putting + several variables (even if of different types) on the same line provided it + does not exceed the printing width (see :opt:`Printing Width`). At the time + of writing this documentation, it is off by default. -.. cmd:: Set Printing Dependent Evars Line. +.. opt:: Printing Unfocused -This command enables the printing of the “(dependent evars: …)” line -when -emacs is passed. + This option controls whether unfocused goals are displayed. Such goals are + created by focusing other goals with bullets (see :ref:`bullets` or + :ref:`curly braces <curly-braces>`). It is off by default. +.. opt:: Printing Dependent Evars Line -.. cmd:: Unset Printing Dependent Evars Line. + This option controls the printing of the “(dependent evars: …)” line when + ``-emacs`` is passed. -This command disables the printing of the “(dependent evars: …)” line -when -emacs is passed. +.. _vernac-controlling-the-reduction-strategies: Controlling the reduction strategies and the conversion algorithm ---------------------------------------------------------------------- @@ -1232,7 +1175,7 @@ conversion algorithm lazily compares applicative terms while the other is a brute-force but efficient algorithm that first normalizes the terms before comparing them. The second algorithm is based on a bytecode representation of terms similar to the bytecode -representation used in the ZINC virtual machine [`98`]. It is +representation used in the ZINC virtual machine :cite:`Leroy90`. It is especially useful for intensive computation of algebraic values, such as numbers, and for reflection-based tactics. The commands to fine- tune the reduction strategies and the lazy conversion algorithm are @@ -1249,14 +1192,14 @@ a constant is replacing it by its definition). ``Opaque`` has also an effect on the conversion algorithm of |Coq|, telling it to delay the unfolding of a constant as much as possible when |Coq| -has to check the conversion (see Section :ref:`TODO-4.3-conversion-rules`) of two distinct +has to check the conversion (see Section :ref:`conversion-rules`) of two distinct applied constants. The scope of ``Opaque`` is limited to the current section, or current file, unless the variant ``Global Opaque`` is used. -See also: sections :ref:`TODO-8.7-performing-computations`, :ref:`TODO-8.16-automatizing`, :ref:`TODO-7.1-switching-on-off-proof-editing-mode` +See also: sections :ref:`performingcomputations`, :ref:`tactics-automatizing`, :ref:`proof-editing-mode` Error messages: @@ -1294,8 +1237,9 @@ There is no constant referred by :n:`@qualid` in the environment. -See also: sections :ref:`TODO-8.7-performing-computations`, :ref:`TODO-8.16-automatizing`, :ref:`TODO-7.1-switching-on-off-proof-editing-mode` +See also: sections :ref:`performingcomputations`, :ref:`tactics-automatizing`, :ref:`proof-editing-mode` +.. _vernac-strategy: .. cmd:: Strategy @level [ {+ @qualid } ]. @@ -1367,7 +1311,7 @@ nothing prevents the user to also perform a ``Ltac`` `ident` ``:=`` `convtactic`. -See also: sections :ref:`TODO-8.7-performing-computations` +See also: sections :ref:`performingcomputations` .. _controlling-locality-of-commands: @@ -1387,23 +1331,22 @@ scope of their effect. There are four kinds of commands: section and the module or library file they occur in. For these commands, the Local modifier limits the effect of the command to the current section or module it occurs in. As an example, the ``Coercion`` - (see Section :ref:`TODO-2.8-coercions`) and ``Strategy`` (see Section :ref:`TODO-6.10.3-strategy`) commands belong - to this category. + (see Section :ref:`coercions`) and ``Strategy`` (see :ref:`here <vernac-strategy>`) + commands belong to this category. + Commands whose default behavior is to stop their effect at the end - of the section they occur in but to extent their effect outside the - module or library file they occur in. For these commands, the Local - modifier limits the effect of the command to the current module if the - command does not occur in a section and the Global modifier extends - the effect outside the current sections and current module if the - command occurs in a section. As an example, the ``Implicit Arguments`` (see - Section :ref:`TODO-2.7-implicit-arguments`), Ltac (see Chapter :ref:`TODO-9-tactic-language`) or ``Notation`` (see Section - :ref:`TODO-12.1-notations`) commands belong to this category. Notice that a subclass of - these commands do not support extension of their scope outside - sections at all and the Global is not applicable to them. + of the section they occur in but to extent their effect outside the module or + library file they occur in. For these commands, the Local modifier limits the + effect of the command to the current module if the command does not occur in a + section and the Global modifier extends the effect outside the current + sections and current module if the command occurs in a section. As an example, + the :cmd:`Implicit Arguments`, :cmd:`Ltac` or :cmd:`Notation` commands belong + to this category. Notice that a subclass of these commands do not support + extension of their scope outside sections at all and the Global is not + applicable to them. + Commands whose default behavior is to stop their effect at the end of the section or module they occur in. For these commands, the Global modifier extends their effect outside the sections and modules they - occurs in. The ``Transparent`` and ``Opaque`` (see Section :ref:`TODO-6.10-opaque`) commands belong to this category. + occurs in. The ``Transparent`` and ``Opaque`` (see Section :ref:`vernac-controlling-the-reduction-strategies`) commands belong to this category. + Commands whose default behavior is to extend their effect outside sections but not outside modules when they occur in a section and to extend their effect outside the module or library file they occur in diff --git a/doc/sphinx/replaces.rst b/doc/sphinx/replaces.rst index 1b2e17221..28a04f90c 100644 --- a/doc/sphinx/replaces.rst +++ b/doc/sphinx/replaces.rst @@ -35,7 +35,9 @@ .. |ident_n,1| replace:: `ident`\ :math:`_{n,1}` .. |ident_n,k_n| replace:: `ident`\ :math:`_{n,k_n}` .. |ident_n| replace:: `ident`\ :math:`_{n}` +.. |Latex| replace:: :smallcaps:`LaTeX` .. |L_tac| replace:: `L`:sub:`tac` +.. |Ltac| replace:: `L`:sub:`tac` .. |ML| replace:: :smallcaps:`ML` .. |mod_0| replace:: `mod`\ :math:`_{0}` .. |mod_1| replace:: `mod`\ :math:`_{1}` @@ -54,7 +56,7 @@ .. |module_type_n| replace:: `module_type`\ :math:`_{n}` .. |N| replace:: ``N`` .. |nat| replace:: ``nat`` -.. |Ocaml| replace:: :smallcaps:`OCaml` +.. |OCaml| replace:: :smallcaps:`OCaml` .. |p_1| replace:: `p`\ :math:`_{1}` .. |p_i| replace:: `p`\ :math:`_{i}` .. |p_n| replace:: `p`\ :math:`_{n}` diff --git a/doc/sphinx/user-extensions/proof-schemes.rst b/doc/sphinx/user-extensions/proof-schemes.rst index 583b73e53..e12e4d897 100644 --- a/doc/sphinx/user-extensions/proof-schemes.rst +++ b/doc/sphinx/user-extensions/proof-schemes.rst @@ -3,6 +3,8 @@ Proof schemes =============== +.. _proofschemes-induction-principles: + Generation of induction principles with ``Scheme`` -------------------------------------------------------- @@ -10,7 +12,7 @@ The ``Scheme`` command is a high-level tool for generating automatically (possibly mutual) induction principles for given types and sorts. Its syntax follows the schema: -.. cmd:: Scheme ident := Induction for ident' Sort sort {* with ident := Induction for ident' Sort sort} +.. cmd:: Scheme @ident := Induction for @ident Sort sort {* with @ident := Induction for @ident Sort sort} where each `ident'ᵢ` is a different inductive type identifier belonging to the same package of mutual inductive definitions. This @@ -18,17 +20,17 @@ command generates the `identᵢ`s to be mutually recursive definitions. Each term `identᵢ` proves a general principle of mutual induction for objects in type `identᵢ`. -.. cmdv:: Scheme ident := Minimality for ident' Sort sort {* with ident := Minimality for ident' Sort sort} +.. cmdv:: Scheme @ident := Minimality for @ident Sort sort {* with @ident := Minimality for @ident' Sort sort} Same as before but defines a non-dependent elimination principle more natural in case of inductively defined relations. -.. cmdv:: Scheme Equality for ident +.. cmdv:: Scheme Equality for @ident Tries to generate a Boolean equality and a proof of the decidability of the usual equality. If `ident` involves some other inductive types, their equality has to be defined first. -.. cmdv:: Scheme Induction for ident Sort sort {* with Induction for ident Sort sort} +.. cmdv:: Scheme Induction for @ident Sort sort {* with Induction for @ident Sort sort} If you do not provide the name of the schemes, they will be automatically computed from the sorts involved (works also with Minimality). @@ -101,26 +103,34 @@ induction for objects in type `identᵢ`. Automatic declaration of schemes ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +.. opt:: Elimination Schemes + It is possible to deactivate the automatic declaration of the induction principles when defining a new inductive type with the ``Unset Elimination Schemes`` command. It may be reactivated at any time with ``Set Elimination Schemes``. -The types declared with the keywords ``Variant`` (see :ref:`TODO-1.3.3`) and ``Record`` -(see :ref:`Record Types <record-types>`) do not have an automatic declaration of the induction -principles. It can be activated with the command -``Set Nonrecursive Elimination Schemes``. It can be deactivated again with -``Unset Nonrecursive Elimination Schemes``. - -In addition, the ``Case Analysis Schemes`` flag governs the generation of -case analysis lemmas for inductive types, i.e. corresponding to the -pattern-matching term alone and without fixpoint. -You can also activate the automatic declaration of those Boolean -equalities (see the second variant of ``Scheme``) with respectively the -commands ``Set Boolean Equality Schemes`` and ``Set Decidable Equality -Schemes``. However you have to be careful with this option since Coq may -now reject well-defined inductive types because it cannot compute a -Boolean equality for them. +.. opt:: Nonrecursive Elimination Schemes + +This option controls whether types declared with the keywords :cmd:`Variant` and +:cmd:`Record` get an automatic declaration of the induction principles. + +.. opt:: Case Analysis Schemes + + This flag governs the generation of case analysis lemmas for inductive types, + i.e. corresponding to the pattern-matching term alone and without fixpoint. + +.. opt:: Boolean Equality Schemes + +.. opt:: Decidable Equality Schemes + +These flags control the automatic declaration of those Boolean equalities (see +the second variant of ``Scheme``). + +.. warning:: + + You have to be careful with this option since Coq may now reject well-defined + inductive types because it cannot compute a Boolean equality for them. .. opt:: Rewriting Schemes @@ -133,7 +143,7 @@ The ``Combined Scheme`` command is a tool for combining induction principles generated by the ``Scheme command``. Its syntax follows the schema : -.. cmd:: Combined Scheme ident from {+, ident} +.. cmd:: Combined Scheme @ident from {+, ident} where each identᵢ after the ``from`` is a different inductive principle that must belong to the same package of mutual inductive principle definitions. @@ -163,6 +173,8 @@ concluded by the conjunction of their conclusions. Check tree_forest_mutind. +.. _functional-scheme: + Generation of induction principles with ``Functional`` ``Scheme`` ----------------------------------------------------------------- @@ -172,7 +184,7 @@ generating automatically induction principles corresponding to available via ``Require Import FunInd``. Its syntax then follows the schema: -.. cmd:: Functional Scheme ident := Induction for ident' Sort sort {* with ident := Induction for ident' Sort sort} +.. cmd:: Functional Scheme @ident := Induction for ident' Sort sort {* with @ident := Induction for @ident Sort sort} where each `ident'ᵢ` is a different mutually defined function name (the names must be in the same order as when they were defined). This @@ -229,7 +241,7 @@ definition written by the user. simpl; auto with arith. Qed. - We can use directly the functional induction (:ref:`TODO-8.5.5`) tactic instead + We can use directly the functional induction (:tacn:`function induction`) tactic instead of the pattern/apply trick: .. coqtop:: all @@ -305,13 +317,15 @@ definition written by the user. .. coqtop:: all Check tree_size_ind2. + +.. _derive-inversion: Generation of inversion principles with ``Derive`` ``Inversion`` ----------------------------------------------------------------- The syntax of ``Derive`` ``Inversion`` follows the schema: -.. cmd:: Derive Inversion ident with forall (x : T), I t Sort sort +.. cmd:: Derive Inversion @ident with forall (x : T), I t Sort sort This command generates an inversion principle for the `inversion … using` tactic. Let `I` be an inductive predicate and `x` the variables occurring @@ -320,17 +334,17 @@ sort `sort` corresponding to the instance `∀ (x:T), I t` with the name `ident` in the global environment. When applied, it is equivalent to having inverted the instance with the tactic `inversion`. -.. cmdv:: Derive Inversion_clear ident with forall (x:T), I t Sort sort +.. cmdv:: Derive Inversion_clear @ident with forall (x:T), I t Sort sort When applied, it is equivalent to having inverted the instance with the tactic inversion replaced by the tactic `inversion_clear`. -.. cmdv:: Derive Dependent Inversion ident with forall (x:T), I t Sort sort +.. cmdv:: Derive Dependent Inversion @ident with forall (x:T), I t Sort sort When applied, it is equivalent to having inverted the instance with the tactic `dependent inversion`. -.. cmdv:: Derive Dependent Inversion_clear ident with forall(x:T), I t Sort sort +.. cmdv:: Derive Dependent Inversion_clear @ident with forall(x:T), I t Sort sort When applied, it is equivalent to having inverted the instance with the tactic `dependent inversion_clear`. diff --git a/doc/sphinx/user-extensions/syntax-extensions.rst b/doc/sphinx/user-extensions/syntax-extensions.rst index 6e6d66447..c4a7121ce 100644 --- a/doc/sphinx/user-extensions/syntax-extensions.rst +++ b/doc/sphinx/user-extensions/syntax-extensions.rst @@ -10,12 +10,12 @@ parses and prints objects, i.e. the translations between the concrete and internal representations of terms and commands. The main commands to provide custom symbolic notations for terms are -``Notation`` and ``Infix``. They are described in section 12.1. There is also a +``Notation`` and ``Infix``. They are described in section :ref:`Notations`. There is also a variant of ``Notation`` which does not modify the parser. This provides with a form of abbreviation and it is described in Section :ref:`Abbreviations`. It is sometimes expected that the same symbolic notation has different meanings in different contexts. To achieve this form of overloading, |Coq| offers a notion -of interpretation scope. This is described in Section :ref:`scopes`. +of interpretation scope. This is described in Section :ref:`Scopes`. The main command to provide custom notations for tactics is ``Tactic Notation``. It is described in Section :ref:`TacticNotation`. @@ -24,12 +24,16 @@ It is described in Section :ref:`TacticNotation`. Set Printing Depth 50. +.. _Notations: + Notations --------- Basic notations ~~~~~~~~~~~~~~~ +.. cmd:: Notation + A *notation* is a symbolic expression denoting some term or term pattern. @@ -68,7 +72,7 @@ have to be given. .. note:: The right-hand side of a notation is interpreted at the time the notation is - given. In particular, disambiguiation of constants, implicit arguments (see + given. In particular, disambiguation of constants, implicit arguments (see Section :ref:`ImplicitArguments`), coercions (see Section :ref:`Coercions`), etc. are resolved at the time of the declaration of the notation. @@ -343,13 +347,13 @@ inductive type or a recursive constant and a notation for it. Simultaneous definition of terms and notations ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -Thanks to reserved notations, the inductive, co-inductive, record, recursive -and corecursive definitions can benefit of customized notations. To do -this, insert a ``where`` notation clause after the definition of the -(co)inductive type or (co)recursive term (or after the definition of -each of them in case of mutual definitions). The exact syntax is given -on Figure 12.1 for inductive, co-inductive, recursive and corecursive -definitions and on Figure :ref:`record-syntax` for records. Here are examples: +Thanks to reserved notations, the inductive, co-inductive, record, recursive and +corecursive definitions can benefit of customized notations. To do this, insert +a ``where`` notation clause after the definition of the (co)inductive type or +(co)recursive term (or after the definition of each of them in case of mutual +definitions). The exact syntax is given by :token:`decl_notation` for inductive, +co-inductive, recursive and corecursive definitions and in :ref:`record-types` +for records. Here are examples: .. coqtop:: in @@ -379,23 +383,21 @@ Displaying informations about notations :opt:`Printing All` To disable other elements in addition to notations. +.. _locating-notations: + Locating notations ~~~~~~~~~~~~~~~~~~ -.. cmd:: Locate @symbol - - To know to which notations a given symbol belongs to, use the command - ``Locate symbol``, where symbol is any (composite) symbol surrounded by double - quotes. To locate a particular notation, use a string where the variables of the - notation are replaced by “_” and where possible single quotes inserted around - identifiers or tokens starting with a single quote are dropped. - - .. coqtop:: all +To know to which notations a given symbol belongs to, use the :cmd:`Locate` +command. You can call it on any (composite) symbol surrounded by double quotes. +To locate a particular notation, use a string where the variables of the +notation are replaced by “_” and where possible single quotes inserted around +identifiers or tokens starting with a single quote are dropped. - Locate "exists". - Locate "exists _ .. _ , _". +.. coqtop:: all - .. todo:: See also: Section 6.3.10. + Locate "exists". + Locate "exists _ .. _ , _". Notations and binders ~~~~~~~~~~~~~~~~~~~~~ @@ -433,8 +435,7 @@ Binders bound in the notation and parsed as patterns In the same way as patterns can be used as binders, as in :g:`fun '(x,y) => x+y` or :g:`fun '(existT _ x _) => x`, notations can be -defined so that any pattern (in the sense of the entry :n:`@pattern` of -Figure :ref:`term-syntax-aux`) can be used in place of the +defined so that any :n:`@pattern` can be used in place of the binder. Here is an example: .. coqtop:: in reset @@ -473,7 +474,7 @@ variable. Here is an example showing the difference: The default level for a ``pattern`` is 0. One can use a different level by using ``pattern at level`` :math:`n` where the scale is the same as the one for -terms (Figure :ref:`init-notations`). +terms (see :ref:`init-notations`). Binders bound in the notation and parsed as terms +++++++++++++++++++++++++++++++++++++++++++++++++ @@ -489,7 +490,7 @@ the following: This is so because the grammar also contains rules starting with :g:`{}` and followed by a term, such as the rule for the notation :g:`{ A } + { B }` for the -constant :g:`sumbool` (see Section :ref:`sumbool`). +constant :g:`sumbool` (see Section :ref:`specification`). Then, in the rule, ``x ident`` is replaced by ``x at level 99 as ident`` meaning that ``x`` is parsed as a term at level 99 (as done in the notation for @@ -689,8 +690,7 @@ side. E.g.: Summary ~~~~~~~ -Syntax of notations -~~~~~~~~~~~~~~~~~~~ +**Syntax of notations** The different syntactic variants of the command Notation are given on the following figure. The optional :token:`scope` is described in the Section 12.2. @@ -743,8 +743,7 @@ following figure. The optional :token:`scope` is described in the Section 12.2. given to some notation, say ``"{ y } & { z }"`` in fact applies to the underlying ``"{ x }"``\-free rule which is ``"y & z"``). -Persistence of notations -~~~~~~~~~~~~~~~~~~~~~~~~ +**Persistence of notations** Notations do not survive the end of sections. @@ -753,6 +752,8 @@ Notations do not survive the end of sections. Notations survive modules unless the command ``Local Notation`` is used instead of ``Notation``. +.. _Scopes: + Interpretation scopes ---------------------- @@ -827,6 +828,8 @@ lonely notations. These scopes, in opening order, are ``core_scope``, These variants survive sections. They behave as if Global were absent when not inside a section. +.. _LocalInterpretationRulesForNotations: + Local interpretation rules for notations ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ @@ -857,6 +860,7 @@ Binding arguments of a constant to an interpretation scope +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ .. cmd:: Arguments @qualid {+ @name%@scope} + :name: Arguments (scopes) It is possible to set in advance that some arguments of a given constant have to be interpreted in a given scope. The command is @@ -895,7 +899,7 @@ Binding arguments of a constant to an interpretation scope .. cmdv:: Arguments @qualid {+ @name%scope} : extra scopes Defines extra argument scopes, to be used in case of coercion to Funclass - (see Chapter :ref:`Coercions-full`) or with a computed type. + (see Chapter :ref:`implicitcoercions`) or with a computed type. .. cmdv:: Global Arguments @qualid {+ @name%@scope} @@ -955,7 +959,7 @@ Binding types of arguments to an interpretation scope type :g:`t` in :g:`f t a` is not recognized as an argument to be interpreted in scope ``scope``. - More generally, any coercion :n:`@class` (see Chapter :ref:`Coercions-full`) + More generally, any coercion :n:`@class` (see Chapter :ref:`implicitcoercions`) can be bound to an interpretation scope. The command to do it is :n:`Bind Scope @scope with @class` @@ -1125,6 +1129,8 @@ Displaying informations about scopes class of all the existing interpretation scopes. It also displays the lonely notations. +.. _Abbreviations: + Abbreviations -------------- @@ -1187,6 +1193,8 @@ Abbreviations denoted expression is performed at definition time. Type-checking is done only at the time of use of the abbreviation. +.. _TacticNotation: + Tactic Notations ----------------- @@ -1194,7 +1202,7 @@ Tactic notations allow to customize the syntax of the tactics of the tactic language. Tactic notations obey the following syntax: .. productionlist:: coq - tacn : [Local] Tactic Notation [`tactic_level`] [`prod_item` … `prod_item`] := `tactic`. + tacn : Tactic Notation [`tactic_level`] [`prod_item` … `prod_item`] := `tactic`. prod_item : `string` | `tactic_argument_type`(`ident`) tactic_level : (at level `natural`) tactic_argument_type : ident | simple_intropattern | reference @@ -1205,7 +1213,7 @@ tactic language. Tactic notations obey the following syntax: : | tactic | tactic0 | tactic1 | tactic2 | tactic3 : | tactic4 | tactic5 -.. cmd:: {? Local} Tactic Notation {? (at level @level)} {+ @prod_item} := @tactic. +.. cmd:: Tactic Notation {? (at level @level)} {+ @prod_item} := @tactic. A tactic notation extends the parser and pretty-printer of tactics with a new rule made of the list of production items. It then evaluates into the diff --git a/doc/tools/coqrst/coqdomain.py b/doc/tools/coqrst/coqdomain.py index 663ab9d37..f09ed4b55 100644 --- a/doc/tools/coqrst/coqdomain.py +++ b/doc/tools/coqrst/coqdomain.py @@ -108,7 +108,7 @@ class CoqObject(ObjectDescription): annotation = self.annotation + ' ' signode += addnodes.desc_annotation(annotation, annotation) self._render_signature(signature, signode) - return self._name_from_signature(signature) + return self.options.get("name") or self._name_from_signature(signature) @property def _index_suffix(self): @@ -145,14 +145,6 @@ class CoqObject(ObjectDescription): index_text = name + self._index_suffix self.indexnode['entries'].append(('single', index_text, target, '', None)) - def run(self): - """Small extension of the parent's run method, handling user-provided names.""" - [idx, node] = super().run() - custom_name = self.options.get("name") - if custom_name: - self.add_target_and_index(custom_name, "", node.children[0]) - return [idx, node] - def add_target_and_index(self, name, _, signode): """Create a target and an index entry for name""" if name: @@ -194,13 +186,18 @@ class VernacObject(NotationObject): annotation = "Command" def _name_from_signature(self, signature): - return stringify_with_ellipses(signature) + m = re.match(r"[a-zA-Z ]+", signature) + if m: + return m.group(0).strip() class VernacVariantObject(VernacObject): """An object to represent variants of Coq commands""" index_suffix = "(cmdv)" annotation = "Variant" + def _name_from_signature(self, signature): + return None + class TacticNotationObject(NotationObject): """An object to represent Coq tactic notations""" subdomain = "tacn" diff --git a/doc/tools/coqrst/notations/CoqNotations.ttf b/doc/tools/coqrst/notations/CoqNotations.ttf Binary files differnew file mode 100644 index 000000000..da8f2850d --- /dev/null +++ b/doc/tools/coqrst/notations/CoqNotations.ttf diff --git a/doc/tools/coqrst/notations/TacticNotations.g b/doc/tools/coqrst/notations/TacticNotations.g index 68658fe49..a889ebda7 100644 --- a/doc/tools/coqrst/notations/TacticNotations.g +++ b/doc/tools/coqrst/notations/TacticNotations.g @@ -20,13 +20,14 @@ repeat: LGROUP (ATOM)? WHITESPACE blocks (WHITESPACE)? RBRACE; curlies: LBRACE (whitespace)? blocks (whitespace)? RBRACE; whitespace: WHITESPACE; meta: METACHAR; -atomic: ATOM; -hole: ID; +atomic: ATOM (SUB)?; +hole: ID (SUB)?; LGROUP: '{' [+*?]; LBRACE: '{'; RBRACE: '}'; METACHAR: '%' [|(){}]; -ATOM: '@' | ~[@{} ]+; -ID: '@' [a-zA-Z0-9_]+; +ATOM: '@' | '_' | ~[@_{} ]+; +ID: '@' ('_'? [a-zA-Z0-9])+; +SUB: '_' '_' [a-zA-Z0-9]+; WHITESPACE: ' '+; diff --git a/doc/tools/coqrst/notations/TacticNotations.tokens b/doc/tools/coqrst/notations/TacticNotations.tokens index 76ed2b065..88b38f97a 100644 --- a/doc/tools/coqrst/notations/TacticNotations.tokens +++ b/doc/tools/coqrst/notations/TacticNotations.tokens @@ -4,6 +4,7 @@ RBRACE=3 METACHAR=4 ATOM=5 ID=6 -WHITESPACE=7 +SUB=7 +WHITESPACE=8 '{'=2 '}'=3 diff --git a/doc/tools/coqrst/notations/TacticNotationsLexer.py b/doc/tools/coqrst/notations/TacticNotationsLexer.py index 61d8d2f9e..27293e7e0 100644 --- a/doc/tools/coqrst/notations/TacticNotationsLexer.py +++ b/doc/tools/coqrst/notations/TacticNotationsLexer.py @@ -7,24 +7,28 @@ import sys def serializedATN(): with StringIO() as buf: - buf.write("\3\u608b\ua72a\u8133\ub9ed\u417c\u3be7\u7786\u5964\2\t") - buf.write(".\b\1\4\2\t\2\4\3\t\3\4\4\t\4\4\5\t\5\4\6\t\6\4\7\t\7") - buf.write("\4\b\t\b\3\2\3\2\3\2\3\3\3\3\3\4\3\4\3\5\3\5\3\5\3\6\3") - buf.write("\6\6\6\36\n\6\r\6\16\6\37\5\6\"\n\6\3\7\3\7\6\7&\n\7\r") - buf.write("\7\16\7\'\3\b\6\b+\n\b\r\b\16\b,\2\2\t\3\3\5\4\7\5\t\6") - buf.write("\13\7\r\b\17\t\3\2\6\4\2,-AA\4\2*+}\177\6\2\"\"BB}}\177") - buf.write("\177\6\2\62;C\\aac|\2\61\2\3\3\2\2\2\2\5\3\2\2\2\2\7\3") - buf.write("\2\2\2\2\t\3\2\2\2\2\13\3\2\2\2\2\r\3\2\2\2\2\17\3\2\2") - buf.write("\2\3\21\3\2\2\2\5\24\3\2\2\2\7\26\3\2\2\2\t\30\3\2\2\2") - buf.write("\13!\3\2\2\2\r#\3\2\2\2\17*\3\2\2\2\21\22\7}\2\2\22\23") - buf.write("\t\2\2\2\23\4\3\2\2\2\24\25\7}\2\2\25\6\3\2\2\2\26\27") - buf.write("\7\177\2\2\27\b\3\2\2\2\30\31\7\'\2\2\31\32\t\3\2\2\32") - buf.write("\n\3\2\2\2\33\"\7B\2\2\34\36\n\4\2\2\35\34\3\2\2\2\36") - buf.write("\37\3\2\2\2\37\35\3\2\2\2\37 \3\2\2\2 \"\3\2\2\2!\33\3") - buf.write("\2\2\2!\35\3\2\2\2\"\f\3\2\2\2#%\7B\2\2$&\t\5\2\2%$\3") - buf.write("\2\2\2&\'\3\2\2\2\'%\3\2\2\2\'(\3\2\2\2(\16\3\2\2\2)+") - buf.write("\7\"\2\2*)\3\2\2\2+,\3\2\2\2,*\3\2\2\2,-\3\2\2\2-\20\3") - buf.write("\2\2\2\7\2\37!\',\2") + buf.write("\3\u608b\ua72a\u8133\ub9ed\u417c\u3be7\u7786\u5964\2\n") + buf.write(":\b\1\4\2\t\2\4\3\t\3\4\4\t\4\4\5\t\5\4\6\t\6\4\7\t\7") + buf.write("\4\b\t\b\4\t\t\t\3\2\3\2\3\2\3\3\3\3\3\4\3\4\3\5\3\5\3") + buf.write("\5\3\6\3\6\6\6 \n\6\r\6\16\6!\5\6$\n\6\3\7\3\7\5\7(\n") + buf.write("\7\3\7\6\7+\n\7\r\7\16\7,\3\b\3\b\3\b\6\b\62\n\b\r\b\16") + buf.write("\b\63\3\t\6\t\67\n\t\r\t\16\t8\2\2\n\3\3\5\4\7\5\t\6\13") + buf.write("\7\r\b\17\t\21\n\3\2\7\4\2,-AA\4\2*+}\177\4\2BBaa\7\2") + buf.write("\"\"BBaa}}\177\177\5\2\62;C\\c|\2?\2\3\3\2\2\2\2\5\3\2") + buf.write("\2\2\2\7\3\2\2\2\2\t\3\2\2\2\2\13\3\2\2\2\2\r\3\2\2\2") + buf.write("\2\17\3\2\2\2\2\21\3\2\2\2\3\23\3\2\2\2\5\26\3\2\2\2\7") + buf.write("\30\3\2\2\2\t\32\3\2\2\2\13#\3\2\2\2\r%\3\2\2\2\17.\3") + buf.write("\2\2\2\21\66\3\2\2\2\23\24\7}\2\2\24\25\t\2\2\2\25\4\3") + buf.write("\2\2\2\26\27\7}\2\2\27\6\3\2\2\2\30\31\7\177\2\2\31\b") + buf.write("\3\2\2\2\32\33\7\'\2\2\33\34\t\3\2\2\34\n\3\2\2\2\35$") + buf.write("\t\4\2\2\36 \n\5\2\2\37\36\3\2\2\2 !\3\2\2\2!\37\3\2\2") + buf.write("\2!\"\3\2\2\2\"$\3\2\2\2#\35\3\2\2\2#\37\3\2\2\2$\f\3") + buf.write("\2\2\2%*\7B\2\2&(\7a\2\2\'&\3\2\2\2\'(\3\2\2\2()\3\2\2") + buf.write("\2)+\t\6\2\2*\'\3\2\2\2+,\3\2\2\2,*\3\2\2\2,-\3\2\2\2") + buf.write("-\16\3\2\2\2./\7a\2\2/\61\7a\2\2\60\62\t\6\2\2\61\60\3") + buf.write("\2\2\2\62\63\3\2\2\2\63\61\3\2\2\2\63\64\3\2\2\2\64\20") + buf.write("\3\2\2\2\65\67\7\"\2\2\66\65\3\2\2\2\678\3\2\2\28\66\3") + buf.write("\2\2\289\3\2\2\29\22\3\2\2\2\t\2!#\',\638\2") return buf.getvalue() @@ -40,7 +44,8 @@ class TacticNotationsLexer(Lexer): METACHAR = 4 ATOM = 5 ID = 6 - WHITESPACE = 7 + SUB = 7 + WHITESPACE = 8 channelNames = [ u"DEFAULT_TOKEN_CHANNEL", u"HIDDEN" ] @@ -50,10 +55,11 @@ class TacticNotationsLexer(Lexer): "'{'", "'}'" ] symbolicNames = [ "<INVALID>", - "LGROUP", "LBRACE", "RBRACE", "METACHAR", "ATOM", "ID", "WHITESPACE" ] + "LGROUP", "LBRACE", "RBRACE", "METACHAR", "ATOM", "ID", "SUB", + "WHITESPACE" ] ruleNames = [ "LGROUP", "LBRACE", "RBRACE", "METACHAR", "ATOM", "ID", - "WHITESPACE" ] + "SUB", "WHITESPACE" ] grammarFileName = "TacticNotations.g" diff --git a/doc/tools/coqrst/notations/TacticNotationsLexer.tokens b/doc/tools/coqrst/notations/TacticNotationsLexer.tokens index 76ed2b065..88b38f97a 100644 --- a/doc/tools/coqrst/notations/TacticNotationsLexer.tokens +++ b/doc/tools/coqrst/notations/TacticNotationsLexer.tokens @@ -4,6 +4,7 @@ RBRACE=3 METACHAR=4 ATOM=5 ID=6 -WHITESPACE=7 +SUB=7 +WHITESPACE=8 '{'=2 '}'=3 diff --git a/doc/tools/coqrst/notations/TacticNotationsParser.py b/doc/tools/coqrst/notations/TacticNotationsParser.py index c7e28af52..645f07897 100644 --- a/doc/tools/coqrst/notations/TacticNotationsParser.py +++ b/doc/tools/coqrst/notations/TacticNotationsParser.py @@ -7,29 +7,31 @@ import sys def serializedATN(): with StringIO() as buf: - buf.write("\3\u608b\ua72a\u8133\ub9ed\u417c\u3be7\u7786\u5964\3\t") - buf.write("F\4\2\t\2\4\3\t\3\4\4\t\4\4\5\t\5\4\6\t\6\4\7\t\7\4\b") + buf.write("\3\u608b\ua72a\u8133\ub9ed\u417c\u3be7\u7786\u5964\3\n") + buf.write("J\4\2\t\2\4\3\t\3\4\4\t\4\4\5\t\5\4\6\t\6\4\7\t\7\4\b") buf.write("\t\b\4\t\t\t\4\n\t\n\3\2\3\2\3\2\3\3\3\3\5\3\32\n\3\3") buf.write("\3\7\3\35\n\3\f\3\16\3 \13\3\3\4\3\4\3\4\3\4\3\4\5\4\'") buf.write("\n\4\3\5\3\5\5\5+\n\5\3\5\3\5\3\5\5\5\60\n\5\3\5\3\5\3") buf.write("\6\3\6\5\6\66\n\6\3\6\3\6\5\6:\n\6\3\6\3\6\3\7\3\7\3\b") - buf.write("\3\b\3\t\3\t\3\n\3\n\3\n\2\2\13\2\4\6\b\n\f\16\20\22\2") - buf.write("\2\2F\2\24\3\2\2\2\4\27\3\2\2\2\6&\3\2\2\2\b(\3\2\2\2") - buf.write("\n\63\3\2\2\2\f=\3\2\2\2\16?\3\2\2\2\20A\3\2\2\2\22C\3") - buf.write("\2\2\2\24\25\5\4\3\2\25\26\7\2\2\3\26\3\3\2\2\2\27\36") - buf.write("\5\6\4\2\30\32\5\f\7\2\31\30\3\2\2\2\31\32\3\2\2\2\32") - buf.write("\33\3\2\2\2\33\35\5\6\4\2\34\31\3\2\2\2\35 \3\2\2\2\36") - buf.write("\34\3\2\2\2\36\37\3\2\2\2\37\5\3\2\2\2 \36\3\2\2\2!\'") - buf.write("\5\20\t\2\"\'\5\16\b\2#\'\5\22\n\2$\'\5\b\5\2%\'\5\n\6") - buf.write("\2&!\3\2\2\2&\"\3\2\2\2&#\3\2\2\2&$\3\2\2\2&%\3\2\2\2") - buf.write("\'\7\3\2\2\2(*\7\3\2\2)+\7\7\2\2*)\3\2\2\2*+\3\2\2\2+") - buf.write(",\3\2\2\2,-\7\t\2\2-/\5\4\3\2.\60\7\t\2\2/.\3\2\2\2/\60") - buf.write("\3\2\2\2\60\61\3\2\2\2\61\62\7\5\2\2\62\t\3\2\2\2\63\65") - buf.write("\7\4\2\2\64\66\5\f\7\2\65\64\3\2\2\2\65\66\3\2\2\2\66") - buf.write("\67\3\2\2\2\679\5\4\3\28:\5\f\7\298\3\2\2\29:\3\2\2\2") - buf.write(":;\3\2\2\2;<\7\5\2\2<\13\3\2\2\2=>\7\t\2\2>\r\3\2\2\2") - buf.write("?@\7\6\2\2@\17\3\2\2\2AB\7\7\2\2B\21\3\2\2\2CD\7\b\2\2") - buf.write("D\23\3\2\2\2\t\31\36&*/\659") + buf.write("\3\b\3\t\3\t\5\tD\n\t\3\n\3\n\5\nH\n\n\3\n\2\2\13\2\4") + buf.write("\6\b\n\f\16\20\22\2\2\2L\2\24\3\2\2\2\4\27\3\2\2\2\6&") + buf.write("\3\2\2\2\b(\3\2\2\2\n\63\3\2\2\2\f=\3\2\2\2\16?\3\2\2") + buf.write("\2\20A\3\2\2\2\22E\3\2\2\2\24\25\5\4\3\2\25\26\7\2\2\3") + buf.write("\26\3\3\2\2\2\27\36\5\6\4\2\30\32\5\f\7\2\31\30\3\2\2") + buf.write("\2\31\32\3\2\2\2\32\33\3\2\2\2\33\35\5\6\4\2\34\31\3\2") + buf.write("\2\2\35 \3\2\2\2\36\34\3\2\2\2\36\37\3\2\2\2\37\5\3\2") + buf.write("\2\2 \36\3\2\2\2!\'\5\20\t\2\"\'\5\16\b\2#\'\5\22\n\2") + buf.write("$\'\5\b\5\2%\'\5\n\6\2&!\3\2\2\2&\"\3\2\2\2&#\3\2\2\2") + buf.write("&$\3\2\2\2&%\3\2\2\2\'\7\3\2\2\2(*\7\3\2\2)+\7\7\2\2*") + buf.write(")\3\2\2\2*+\3\2\2\2+,\3\2\2\2,-\7\n\2\2-/\5\4\3\2.\60") + buf.write("\7\n\2\2/.\3\2\2\2/\60\3\2\2\2\60\61\3\2\2\2\61\62\7\5") + buf.write("\2\2\62\t\3\2\2\2\63\65\7\4\2\2\64\66\5\f\7\2\65\64\3") + buf.write("\2\2\2\65\66\3\2\2\2\66\67\3\2\2\2\679\5\4\3\28:\5\f\7") + buf.write("\298\3\2\2\29:\3\2\2\2:;\3\2\2\2;<\7\5\2\2<\13\3\2\2\2") + buf.write("=>\7\n\2\2>\r\3\2\2\2?@\7\6\2\2@\17\3\2\2\2AC\7\7\2\2") + buf.write("BD\7\t\2\2CB\3\2\2\2CD\3\2\2\2D\21\3\2\2\2EG\7\b\2\2F") + buf.write("H\7\t\2\2GF\3\2\2\2GH\3\2\2\2H\23\3\2\2\2\13\31\36&*/") + buf.write("\659CG") return buf.getvalue() @@ -46,7 +48,7 @@ class TacticNotationsParser ( Parser ): literalNames = [ "<INVALID>", "<INVALID>", "'{'", "'}'" ] symbolicNames = [ "<INVALID>", "LGROUP", "LBRACE", "RBRACE", "METACHAR", - "ATOM", "ID", "WHITESPACE" ] + "ATOM", "ID", "SUB", "WHITESPACE" ] RULE_top = 0 RULE_blocks = 1 @@ -68,7 +70,8 @@ class TacticNotationsParser ( Parser ): METACHAR=4 ATOM=5 ID=6 - WHITESPACE=7 + SUB=7 + WHITESPACE=8 def __init__(self, input:TokenStream, output:TextIO = sys.stdout): super().__init__(input, output) @@ -502,6 +505,9 @@ class TacticNotationsParser ( Parser ): def ATOM(self): return self.getToken(TacticNotationsParser.ATOM, 0) + def SUB(self): + return self.getToken(TacticNotationsParser.SUB, 0) + def getRuleIndex(self): return TacticNotationsParser.RULE_atomic @@ -518,10 +524,19 @@ class TacticNotationsParser ( Parser ): localctx = TacticNotationsParser.AtomicContext(self, self._ctx, self.state) self.enterRule(localctx, 14, self.RULE_atomic) + self._la = 0 # Token type try: self.enterOuterAlt(localctx, 1) self.state = 63 self.match(TacticNotationsParser.ATOM) + self.state = 65 + self._errHandler.sync(self) + _la = self._input.LA(1) + if _la==TacticNotationsParser.SUB: + self.state = 64 + self.match(TacticNotationsParser.SUB) + + except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) @@ -539,6 +554,9 @@ class TacticNotationsParser ( Parser ): def ID(self): return self.getToken(TacticNotationsParser.ID, 0) + def SUB(self): + return self.getToken(TacticNotationsParser.SUB, 0) + def getRuleIndex(self): return TacticNotationsParser.RULE_hole @@ -555,10 +573,19 @@ class TacticNotationsParser ( Parser ): localctx = TacticNotationsParser.HoleContext(self, self._ctx, self.state) self.enterRule(localctx, 16, self.RULE_hole) + self._la = 0 # Token type try: self.enterOuterAlt(localctx, 1) - self.state = 65 + self.state = 67 self.match(TacticNotationsParser.ID) + self.state = 69 + self._errHandler.sync(self) + _la = self._input.LA(1) + if _la==TacticNotationsParser.SUB: + self.state = 68 + self.match(TacticNotationsParser.SUB) + + except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) diff --git a/doc/tools/coqrst/notations/UbuntuMono-Square.ttf b/doc/tools/coqrst/notations/UbuntuMono-Square.ttf Binary files differdeleted file mode 100644 index a53a9a0f0..000000000 --- a/doc/tools/coqrst/notations/UbuntuMono-Square.ttf +++ /dev/null diff --git a/doc/tools/coqrst/notations/fontsupport.py b/doc/tools/coqrst/notations/fontsupport.py index 3402ea2aa..a3efd97f5 100755 --- a/doc/tools/coqrst/notations/fontsupport.py +++ b/doc/tools/coqrst/notations/fontsupport.py @@ -63,8 +63,7 @@ def trim_font(fnt): def center_glyphs(src_font_path, dst_font_path, dst_name): fnt = trim_font(fontforge.open(src_font_path)) - size = max(max(g.width for g in fnt.glyphs()), - max(glyph_height(g) for g in fnt.glyphs())) + size = max(g.width for g in fnt.glyphs()) fnt.ascent, fnt.descent = size, 0 for glyph in fnt.glyphs(): scale_single_glyph(glyph, size, size) @@ -77,5 +76,5 @@ if __name__ == '__main__': from os.path import dirname, join, abspath curdir = dirname(abspath(__file__)) ubuntumono_path = join(curdir, "UbuntuMono-B.ttf") - ubuntumono_mod_path = join(curdir, "UbuntuMono-Square.ttf") - center_glyphs(ubuntumono_path, ubuntumono_mod_path, "UbuntuMono-Square") + ubuntumono_mod_path = join(curdir, "CoqNotations.ttf") + center_glyphs(ubuntumono_path, ubuntumono_mod_path, "CoqNotations") diff --git a/doc/tools/coqrst/notations/html.py b/doc/tools/coqrst/notations/html.py index 9c94a4b2d..87a41cf9f 100644 --- a/doc/tools/coqrst/notations/html.py +++ b/doc/tools/coqrst/notations/html.py @@ -41,6 +41,9 @@ class TacticNotationsToHTMLVisitor(TacticNotationsVisitor): def visitHole(self, ctx:TacticNotationsParser.HoleContext): tags.span(ctx.ID().getText()[1:], _class="hole") + sub = ctx.SUB() + if sub: + tags.sub(sub.getText()[1:]) def visitMeta(self, ctx:TacticNotationsParser.MetaContext): txt = ctx.METACHAR().getText()[1:] diff --git a/doc/tools/coqrst/notations/sphinx.py b/doc/tools/coqrst/notations/sphinx.py index 26a5f6968..e05b83418 100644 --- a/doc/tools/coqrst/notations/sphinx.py +++ b/doc/tools/coqrst/notations/sphinx.py @@ -56,19 +56,36 @@ class TacticNotationsToSphinxVisitor(TacticNotationsVisitor): def visitAtomic(self, ctx:TacticNotationsParser.AtomicContext): atom = ctx.ATOM().getText() - return [nodes.inline(atom, atom)] + sub = ctx.SUB() + node = nodes.inline(atom, atom) + + if sub: + sub_index = sub.getText()[2:] + node += nodes.subscript(sub_index, sub_index) + + return [node] def visitHole(self, ctx:TacticNotationsParser.HoleContext): hole = ctx.ID().getText() token_name = hole[1:] node = nodes.inline(hole, token_name, classes=["hole"]) + + sub = ctx.SUB() + if sub: + sub_index = sub.getText()[2:] + node += nodes.subscript(sub_index, sub_index) + return [addnodes.pending_xref(token_name, node, reftype='token', refdomain='std', reftarget=token_name)] def visitMeta(self, ctx:TacticNotationsParser.MetaContext): meta = ctx.METACHAR().getText() metachar = meta[1:] # remove escape char token_name = metachar - return [nodes.inline(metachar, token_name, classes=["meta"])] + if (metachar == "{") or (metachar == "}"): + classes=[] + else: + classes=["meta"] + return [nodes.inline(metachar, token_name, classes=classes)] def visitWhitespace(self, ctx:TacticNotationsParser.WhitespaceContext): return [nodes.Text(" ")] diff --git a/engine/eConstr.ml b/engine/eConstr.ml index bd47a04f1..a72bdee12 100644 --- a/engine/eConstr.ml +++ b/engine/eConstr.ml @@ -13,132 +13,8 @@ open Util open Names open Constr open Context -open Evd - -module API : -sig -module ESorts : -sig -type t -val make : Sorts.t -> t -val kind : Evd.evar_map -> t -> Sorts.t -val unsafe_to_sorts : t -> Sorts.t -end -module EInstance : -sig -type t -val make : Univ.Instance.t -> t -val kind : Evd.evar_map -> t -> Univ.Instance.t -val empty : t -val is_empty : t -> bool -val unsafe_to_instance : t -> Univ.Instance.t -end -type t -val kind : Evd.evar_map -> t -> (t, t, ESorts.t, EInstance.t) Constr.kind_of_term -val kind_upto : Evd.evar_map -> constr -> (constr, types, Sorts.t, Univ.Instance.t) Constr.kind_of_term -val kind_of_type : Evd.evar_map -> t -> (t, t) Term.kind_of_type -val whd_evar : Evd.evar_map -> t -> t -val of_kind : (t, t, ESorts.t, EInstance.t) Constr.kind_of_term -> t -val of_constr : Constr.t -> t -val to_constr : evar_map -> t -> Constr.t -val unsafe_to_constr : t -> Constr.t -val unsafe_eq : (t, Constr.t) eq -val of_named_decl : (Constr.t, Constr.types) Context.Named.Declaration.pt -> (t, t) Context.Named.Declaration.pt -val unsafe_to_named_decl : (t, t) Context.Named.Declaration.pt -> (Constr.t, Constr.types) Context.Named.Declaration.pt -val unsafe_to_rel_decl : (t, t) Context.Rel.Declaration.pt -> (Constr.t, Constr.types) Context.Rel.Declaration.pt -val of_rel_decl : (Constr.t, Constr.types) Context.Rel.Declaration.pt -> (t, t) Context.Rel.Declaration.pt -val to_rel_decl : Evd.evar_map -> (t, t) Context.Rel.Declaration.pt -> (Constr.t, Constr.types) Context.Rel.Declaration.pt -end = -struct - -module ESorts = -struct - type t = Sorts.t - let make s = s - let kind sigma = function - | Sorts.Type u -> Sorts.sort_of_univ (Evd.normalize_universe sigma u) - | s -> s - let unsafe_to_sorts s = s -end - -module EInstance = -struct - type t = Univ.Instance.t - let make i = i - let kind sigma i = - if Univ.Instance.is_empty i then i - else Evd.normalize_universe_instance sigma i - let empty = Univ.Instance.empty - let is_empty = Univ.Instance.is_empty - let unsafe_to_instance t = t -end -type t = Constr.t - -let safe_evar_value sigma ev = - try Some (Evd.existential_value sigma ev) - with NotInstantiatedEvar | Not_found -> None - -let rec whd_evar sigma c = - match Constr.kind c with - | Evar ev -> - begin match safe_evar_value sigma ev with - | Some c -> whd_evar sigma c - | None -> c - end - | App (f, args) when isEvar f -> - (** Enforce smart constructor invariant on applications *) - let ev = destEvar f in - begin match safe_evar_value sigma ev with - | None -> c - | Some f -> whd_evar sigma (mkApp (f, args)) - end - | Cast (c0, k, t) when isEvar c0 -> - (** Enforce smart constructor invariant on casts. *) - let ev = destEvar c0 in - begin match safe_evar_value sigma ev with - | None -> c - | Some c -> whd_evar sigma (mkCast (c, k, t)) - end - | _ -> c - -let kind sigma c = Constr.kind (whd_evar sigma c) -let kind_upto = kind -let kind_of_type sigma c = Term.kind_of_type (whd_evar sigma c) -let of_kind = Constr.of_kind -let of_constr c = c -let unsafe_to_constr c = c -let unsafe_eq = Refl - -let rec to_constr sigma c = match Constr.kind c with -| Evar ev -> - begin match safe_evar_value sigma ev with - | Some c -> to_constr sigma c - | None -> Constr.map (fun c -> to_constr sigma c) c - end -| Sort (Sorts.Type u) -> - let u' = Evd.normalize_universe sigma u in - if u' == u then c else mkSort (Sorts.sort_of_univ u') -| Const (c', u) when not (Univ.Instance.is_empty u) -> - let u' = Evd.normalize_universe_instance sigma u in - if u' == u then c else mkConstU (c', u') -| Ind (i, u) when not (Univ.Instance.is_empty u) -> - let u' = Evd.normalize_universe_instance sigma u in - if u' == u then c else mkIndU (i, u') -| Construct (co, u) when not (Univ.Instance.is_empty u) -> - let u' = Evd.normalize_universe_instance sigma u in - if u' == u then c else mkConstructU (co, u') -| _ -> Constr.map (fun c -> to_constr sigma c) c - -let of_named_decl d = d -let unsafe_to_named_decl d = d -let of_rel_decl d = d -let unsafe_to_rel_decl d = d -let to_rel_decl sigma d = Context.Rel.Declaration.map_constr (to_constr sigma) d - -end - -include API +include Evd.MiniEConstr type types = t type constr = t @@ -381,8 +257,7 @@ let decompose_prod_n_assum sigma n c = in prodec_rec Context.Rel.empty n c -let existential_type sigma (evk, args) = - of_constr (existential_type sigma (evk, Array.map unsafe_to_constr args)) +let existential_type = Evd.existential_type let map sigma f c = match kind sigma c with | (Rel _ | Meta _ | Var _ | Sort _ | Const _ | Ind _ @@ -743,7 +618,7 @@ let universes_of_constr env sigma c = LSet.fold LSet.add (Universe.levels u) s | Evar (k, args) -> let concl = Evd.evar_concl (Evd.find sigma k) in - fold sigma aux (aux s (of_constr concl)) c + fold sigma aux (aux s concl) c | _ -> fold sigma aux s c in aux LSet.empty c @@ -901,6 +776,10 @@ let named_context e = cast_named_context (sym unsafe_eq) (named_context e) let val_of_named_context e = val_of_named_context (cast_named_context unsafe_eq e) let named_context_of_val e = cast_named_context (sym unsafe_eq) (named_context_of_val e) +let of_existential : Constr.existential -> existential = + let gen : type a b. (a,b) eq -> 'c * b array -> 'c * a array = fun Refl x -> x in + gen unsafe_eq + let lookup_rel i e = cast_rel_decl (sym unsafe_eq) (lookup_rel i e) let lookup_named n e = cast_named_decl (sym unsafe_eq) (lookup_named n e) let lookup_named_val n e = cast_named_decl (sym unsafe_eq) (lookup_named_val n e) @@ -916,7 +795,7 @@ let map_rel_context_in_env f env sign = let fresh_global ?loc ?rigid ?names env sigma reference = let (evd,t) = Evd.fresh_global ?loc ?rigid ?names env sigma reference in - evd, of_constr t + evd, t let is_global sigma gr c = Globnames.is_global gr (to_constr sigma c) @@ -928,5 +807,10 @@ let to_instance = EInstance.unsafe_to_instance let to_constr = unsafe_to_constr let to_rel_decl = unsafe_to_rel_decl let to_named_decl = unsafe_to_named_decl +let to_named_context = + let gen : type a b. (a, b) eq -> (a,a) Context.Named.pt -> (b,b) Context.Named.pt + = fun Refl x -> x + in + gen unsafe_eq let eq = unsafe_eq end diff --git a/engine/eConstr.mli b/engine/eConstr.mli index 28c9dd3c2..9a5b5ec3a 100644 --- a/engine/eConstr.mli +++ b/engine/eConstr.mli @@ -13,7 +13,7 @@ open Names open Constr open Environ -type t +type t = Evd.econstr (** Type of incomplete terms. Essentially a wrapper around {!Constr.t} ensuring that {!Constr.kind} does not observe defined evars. *) @@ -68,11 +68,14 @@ val kind : Evd.evar_map -> t -> (t, t, ESorts.t, EInstance.t) Constr.kind_of_ter val kind_upto : Evd.evar_map -> Constr.t -> (Constr.t, Constr.t, Sorts.t, Univ.Instance.t) Constr.kind_of_term -val to_constr : Evd.evar_map -> t -> Constr.t -(** Returns the evar-normal form of the argument, and cast it as a theoretically - evar-free term. In practice this function does not check that the result - is actually evar-free, it is currently the duty of the caller to do so. - This might change in the future. *) +val to_constr : ?abort_on_undefined_evars:bool -> Evd.evar_map -> t -> Constr.t +(** Returns the evar-normal form of the argument. Note that this + function is supposed to be called when the original term has not + more free-evars anymore. If you need compatibility with the old + semantics, set [abort_on_undefined_evars] to [false]. + + For getting the evar-normal form of a term with evars see + {!Evarutil.nf_evar}. *) val kind_of_type : Evd.evar_map -> t -> (t, t) Term.kind_of_type @@ -108,7 +111,7 @@ val mkLetIn : Name.t * t * t * t -> t val mkApp : t * t array -> t val mkConst : Constant.t -> t val mkConstU : Constant.t * EInstance.t -> t -val mkProj : (projection * t) -> t +val mkProj : (Projection.t * t) -> t val mkInd : inductive -> t val mkIndU : inductive * EInstance.t -> t val mkConstruct : constructor -> t @@ -173,7 +176,7 @@ val destEvar : Evd.evar_map -> t -> t pexistential val destInd : Evd.evar_map -> t -> inductive * EInstance.t val destConstruct : Evd.evar_map -> t -> constructor * EInstance.t val destCase : Evd.evar_map -> t -> case_info * t * t * t array -val destProj : Evd.evar_map -> t -> projection * t +val destProj : Evd.evar_map -> t -> Projection.t * t val destFix : Evd.evar_map -> t -> (t, t) pfixpoint val destCoFix : Evd.evar_map -> t -> (t, t) pcofixpoint @@ -287,6 +290,7 @@ val is_global : Evd.evar_map -> Globnames.global_reference -> t -> bool (** {5 Extra} *) +val of_existential : Constr.existential -> existential val of_named_decl : (Constr.t, Constr.types) Context.Named.Declaration.pt -> (t, types) Context.Named.Declaration.pt val of_rel_decl : (Constr.t, Constr.types) Context.Rel.Declaration.pt -> (t, types) Context.Rel.Declaration.pt @@ -305,6 +309,8 @@ sig val to_named_decl : (t, types) Context.Named.Declaration.pt -> (Constr.t, Constr.types) Context.Named.Declaration.pt (** Physical identity. Does not care for defined evars. *) + val to_named_context : (t, types) Context.Named.pt -> Context.Named.t + val to_sorts : ESorts.t -> Sorts.t (** Physical identity. Does not care for normalization. *) diff --git a/engine/evarutil.ml b/engine/evarutil.ml index 45760c6b4..065b42bf6 100644 --- a/engine/evarutil.ml +++ b/engine/evarutil.ml @@ -23,7 +23,8 @@ module RelDecl = Context.Rel.Declaration module NamedDecl = Context.Named.Declaration let safe_evar_value sigma ev = - try Some (Evd.existential_value sigma ev) + let ev = EConstr.of_existential ev in + try Some (EConstr.Unsafe.to_constr @@ Evd.existential_value sigma ev) with NotInstantiatedEvar | Not_found -> None (** Combinators *) @@ -44,11 +45,11 @@ let evd_comb2 f evdref x y = z let e_new_global evdref x = - EConstr.of_constr (evd_comb1 (Evd.fresh_global (Global.env())) evdref x) + evd_comb1 (Evd.fresh_global (Global.env())) evdref x let new_global evd x = let (evd, c) = Evd.fresh_global (Global.env()) evd x in - (evd, EConstr.of_constr c) + (evd, c) (****************************************************) (* Expanding/testing/exposing existential variables *) @@ -61,7 +62,7 @@ exception Uninstantiated_evar of Evar.t let rec flush_and_check_evars sigma c = match kind c with | Evar (evk,_ as ev) -> - (match existential_opt_value sigma ev with + (match existential_opt_value0 sigma ev with | None -> raise (Uninstantiated_evar evk) | Some c -> flush_and_check_evars sigma c) | _ -> Constr.map (flush_and_check_evars sigma) c @@ -72,9 +73,9 @@ let flush_and_check_evars sigma c = (** Term exploration up to instantiation. *) let kind_of_term_upto = EConstr.kind_upto -let nf_evar0 sigma t = EConstr.to_constr sigma (EConstr.of_constr t) +let nf_evar0 sigma t = EConstr.to_constr ~abort_on_undefined_evars:false sigma (EConstr.of_constr t) let whd_evar = EConstr.whd_evar -let nf_evar sigma c = EConstr.of_constr (EConstr.to_constr sigma c) +let nf_evar sigma c = EConstr.of_constr (EConstr.to_constr ~abort_on_undefined_evars:false sigma c) let j_nf_evar sigma j = { uj_val = nf_evar sigma j.uj_val; @@ -102,7 +103,8 @@ let nf_evar_map_universes evm = if Univ.LMap.is_empty subst then evm, nf_evar0 evm else let f = nf_evars_universes evm in - Evd.raw_map (fun _ -> map_evar_info f) evm, f + let f' c = EConstr.of_constr (f (EConstr.Unsafe.to_constr c)) in + Evd.raw_map (fun _ -> map_evar_info f') evm, f let nf_named_context_evar sigma ctx = Context.Named.map (nf_evar0 sigma) ctx @@ -115,7 +117,7 @@ let nf_env_evar sigma env = let rel' = nf_rel_context_evar sigma (EConstr.rel_context env) in EConstr.push_rel_context rel' (reset_with_named_context (val_of_named_context nc') env) -let nf_evar_info evc info = map_evar_info (nf_evar0 evc) info +let nf_evar_info evc info = map_evar_info (nf_evar evc) info let nf_evar_map evm = Evd.raw_map (fun _ evi -> nf_evar_info evm evi) evm @@ -414,7 +416,6 @@ let push_rel_context_to_named_context env sigma typ = let default_source = Loc.tag @@ Evar_kinds.InternalHole let restrict_evar evd evk filter ?src candidates = - let candidates = Option.map (fun l -> List.map EConstr.Unsafe.to_constr l) candidates in let evd, evk' = Evd.restrict evk filter ?candidates ?src evd in Evd.declare_future_goal evk' evd, evk' @@ -424,8 +425,6 @@ let new_pure_evar_full evd evi = (evd, evk) let new_pure_evar sign evd ?(src=default_source) ?(filter = Filter.identity) ?candidates ?(store = Store.empty) ?naming ?(principal=false) typ = - let typ = EConstr.Unsafe.to_constr typ in - let candidates = Option.map (fun l -> List.map EConstr.Unsafe.to_constr l) candidates in let default_naming = Misctypes.IntroAnonymous in let naming = Option.default default_naming naming in let name = match naming with @@ -513,7 +512,7 @@ let generalize_evar_over_rels sigma (ev,args) = List.fold_left2 (fun (c,inst as x) a d -> if isRel sigma a then (mkNamedProd_or_LetIn d c,a::inst) else x) - (EConstr.of_constr evi.evar_concl,[]) (Array.to_list args) sign + (evi.evar_concl,[]) (Array.to_list args) sign (************************************) (* Removing a dependency in an evar *) @@ -549,7 +548,8 @@ let rec check_and_clear_in_constr env evdref err ids global c = | Evar (evk,l as ev) -> if Evd.is_defined !evdref evk then (* If evk is already defined we replace it by its definition *) - let nc = Evd.existential_value !evdref ev in + let nc = Evd.existential_value !evdref (EConstr.of_existential ev) in + let nc = EConstr.Unsafe.to_constr nc in (check_and_clear_in_constr env evdref err ids global nc) else (* We check for dependencies to elements of ids in the @@ -559,8 +559,7 @@ let rec check_and_clear_in_constr env evdref err ids global c = removed *) let evi = Evd.find_undefined !evdref evk in let ctxt = Evd.evar_filtered_context evi in - let ctxt = List.map (fun d -> map_named_decl EConstr.of_constr d) ctxt in - let (rids,filter) = + let (rids,filter) = List.fold_right2 (fun h a (ri,filter) -> try @@ -586,7 +585,8 @@ let rec check_and_clear_in_constr env evdref err ids global c = try let nids = Id.Map.domain rids in let global = Id.Set.exists is_section_variable nids in - check_and_clear_in_constr env evdref (EvarTypingBreak ev) nids global (evar_concl evi) + let concl = EConstr.Unsafe.to_constr (evar_concl evi) in + check_and_clear_in_constr env evdref (EvarTypingBreak ev) nids global concl with ClearDependencyError (rid,err) -> raise (ClearDependencyError (Id.Map.find rid rids,err)) in @@ -597,7 +597,7 @@ let rec check_and_clear_in_constr env evdref err ids global c = let evd = !evdref in let (evd,_) = restrict_evar evd evk filter None in evdref := evd; - Evd.existential_value !evdref ev + Evd.existential_value0 !evdref ev | _ -> Constr.map (check_and_clear_in_constr env evdref err ids global) c @@ -643,7 +643,7 @@ let clear_hyps2_in_evi env evdref hyps t concl ids = let queue_set q is_dependent set = Evar.Set.iter (fun a -> Queue.push (is_dependent,a) q) set let queue_term q is_dependent c = - queue_set q is_dependent (evars_of_term c) + queue_set q is_dependent (evars_of_term (EConstr.Unsafe.to_constr c)) let process_dependent_evar q acc evm is_dependent e = let evi = Evd.find evm e in @@ -656,12 +656,12 @@ let process_dependent_evar q acc evm is_dependent e = match decl with | LocalAssum _ -> () | LocalDef (_,b,_) -> queue_term q true b - end (Environ.named_context_of_val evi.evar_hyps); + end (EConstr.named_context_of_val evi.evar_hyps); match evi.evar_body with | Evar_empty -> if is_dependent then Evar.Map.add e None acc else acc | Evar_defined b -> - let subevars = evars_of_term b in + let subevars = evars_of_term (EConstr.Unsafe.to_constr b) in (* evars appearing in the definition of an evar [e] are marked as dependent when [e] is dependent itself: if [e] is a non-dependent goal, then, unless they are reach from another @@ -729,11 +729,11 @@ let undefined_evars_of_named_context evd nc = ~init:Evar.Set.empty let undefined_evars_of_evar_info evd evi = - Evar.Set.union (undefined_evars_of_term evd (EConstr.of_constr evi.evar_concl)) + Evar.Set.union (undefined_evars_of_term evd evi.evar_concl) (Evar.Set.union (match evi.evar_body with | Evar_empty -> Evar.Set.empty - | Evar_defined b -> undefined_evars_of_term evd (EConstr.of_constr b)) + | Evar_defined b -> undefined_evars_of_term evd b) (undefined_evars_of_named_context evd (named_context_of_val evi.evar_hyps))) @@ -781,10 +781,11 @@ let filtered_undefined_evars_of_evar_info ?cache sigma evi = in let accu = match evi.evar_body with | Evar_empty -> Evar.Set.empty - | Evar_defined b -> evars_of_term b + | Evar_defined b -> evars_of_term (EConstr.Unsafe.to_constr b) in - let accu = Evar.Set.union (undefined_evars_of_term sigma (EConstr.of_constr evi.evar_concl)) accu in - evars_of_named_context cache accu (evar_filtered_context evi) + let accu = Evar.Set.union (undefined_evars_of_term sigma evi.evar_concl) accu in + let ctxt = EConstr.Unsafe.to_named_context (evar_filtered_context evi) in + evars_of_named_context cache accu ctxt (* spiwack: this is a more complete version of {!Termops.occur_evar}. The latter does not look recursively into an @@ -794,7 +795,7 @@ let occur_evar_upto sigma n c = let c = EConstr.Unsafe.to_constr c in let rec occur_rec c = match kind c with | Evar (sp,_) when Evar.equal sp n -> raise Occur - | Evar e -> Option.iter occur_rec (existential_opt_value sigma e) + | Evar e -> Option.iter occur_rec (existential_opt_value0 sigma e) | _ -> Constr.iter occur_rec c in try occur_rec c; false with Occur -> true @@ -849,6 +850,8 @@ let compare_constructor_instances evd u u' = let eq_constr_univs_test sigma1 sigma2 t u = (* spiwack: mild code duplication with {!Evd.eq_constr_univs}. *) let open Evd in + let t = EConstr.Unsafe.to_constr t + and u = EConstr.Unsafe.to_constr u in let fold cstr sigma = try Some (add_universe_constraints sigma cstr) with Univ.UniverseInconsistency _ | UniversesDiffer -> None diff --git a/engine/evarutil.mli b/engine/evarutil.mli index 972b0b9e1..40c1ee082 100644 --- a/engine/evarutil.mli +++ b/engine/evarutil.mli @@ -201,7 +201,7 @@ val kind_of_term_upto : evar_map -> Constr.constr -> universes. The term [t] is interpreted in [sigma1] while [u] is interpreted in [sigma2]. The universe constraints in [sigma2] are assumed to be an extention of those in [sigma1]. *) -val eq_constr_univs_test : evar_map -> evar_map -> Constr.constr -> Constr.constr -> bool +val eq_constr_univs_test : evar_map -> evar_map -> constr -> constr -> bool (** [compare_cumulative_instances cv_pb variance u1 u2 sigma] Returns [Inl sigma'] where [sigma'] is [sigma] augmented with universe diff --git a/engine/evd.ml b/engine/evd.ml index f6e13e1f4..6dcec2760 100644 --- a/engine/evd.ml +++ b/engine/evd.ml @@ -21,6 +21,9 @@ open Environ (* module RelDecl = Context.Rel.Declaration *) module NamedDecl = Context.Named.Declaration +type econstr = constr +type etypes = types + (** Generic filters *) module Filter : sig @@ -537,10 +540,14 @@ let existential_value d (n, args) = | Evar_empty -> raise NotInstantiatedEvar +let existential_value0 = existential_value + let existential_opt_value d ev = try Some (existential_value d ev) with NotInstantiatedEvar -> None +let existential_opt_value0 = existential_opt_value + let existential_type d (n, args) = let info = try find d n @@ -548,6 +555,8 @@ let existential_type d (n, args) = anomaly (str "Evar " ++ str (string_of_existential n) ++ str " was not declared.") in instantiate_evar_array info info.evar_concl args +let existential_type0 = existential_type + let add_constraints d c = { d with universes = UState.add_constraints d.universes c } @@ -1065,6 +1074,7 @@ let meta_ftype evd mv = | Clval(_,_,b) -> b let meta_type evd mv = (meta_ftype evd mv).rebus +let meta_type0 = meta_type let meta_declare mv v ?(name=Anonymous) evd = let metas = Metamap.add mv (Cltyp(name,mk_freelisted v)) evd.metas in @@ -1217,3 +1227,98 @@ let normalize_evar_universe_context_variables = UState.normalize_variables let abstract_undefined_variables = UState.abstract_undefined_variables let normalize_evar_universe_context = UState.minimize let nf_constraints = minimize_universes + +module MiniEConstr = struct + + module ESorts = + struct + type t = Sorts.t + let make s = s + let kind sigma = function + | Sorts.Type u -> Sorts.sort_of_univ (normalize_universe sigma u) + | s -> s + let unsafe_to_sorts s = s + end + + module EInstance = + struct + type t = Univ.Instance.t + let make i = i + let kind sigma i = + if Univ.Instance.is_empty i then i + else normalize_universe_instance sigma i + let empty = Univ.Instance.empty + let is_empty = Univ.Instance.is_empty + let unsafe_to_instance t = t + end + + type t = econstr + + let safe_evar_value sigma ev = + try Some (existential_value sigma ev) + with NotInstantiatedEvar | Not_found -> None + + let rec whd_evar sigma c = + match Constr.kind c with + | Evar ev -> + begin match safe_evar_value sigma ev with + | Some c -> whd_evar sigma c + | None -> c + end + | App (f, args) when isEvar f -> + (** Enforce smart constructor invariant on applications *) + let ev = destEvar f in + begin match safe_evar_value sigma ev with + | None -> c + | Some f -> whd_evar sigma (mkApp (f, args)) + end + | Cast (c0, k, t) when isEvar c0 -> + (** Enforce smart constructor invariant on casts. *) + let ev = destEvar c0 in + begin match safe_evar_value sigma ev with + | None -> c + | Some c -> whd_evar sigma (mkCast (c, k, t)) + end + | _ -> c + + let kind sigma c = Constr.kind (whd_evar sigma c) + let kind_upto = kind + let kind_of_type sigma c = Term.kind_of_type (whd_evar sigma c) + let of_kind = Constr.of_kind + let of_constr c = c + let unsafe_to_constr c = c + let unsafe_eq = Refl + + let to_constr ?(abort_on_undefined_evars=true) sigma c = + let rec to_constr c = match Constr.kind c with + | Evar ev -> + begin match safe_evar_value sigma ev with + | Some c -> to_constr c + | None -> + if abort_on_undefined_evars then + anomaly ~label:"econstr" Pp.(str "grounding a non evar-free term") + else + Constr.map (fun c -> to_constr c) c + end + | Sort (Sorts.Type u) -> + let u' = normalize_universe sigma u in + if u' == u then c else mkSort (Sorts.sort_of_univ u') + | Const (c', u) when not (Univ.Instance.is_empty u) -> + let u' = normalize_universe_instance sigma u in + if u' == u then c else mkConstU (c', u') + | Ind (i, u) when not (Univ.Instance.is_empty u) -> + let u' = normalize_universe_instance sigma u in + if u' == u then c else mkIndU (i, u') + | Construct (co, u) when not (Univ.Instance.is_empty u) -> + let u' = normalize_universe_instance sigma u in + if u' == u then c else mkConstructU (co, u') + | _ -> Constr.map (fun c -> to_constr c) c + in to_constr c + + let of_named_decl d = d + let unsafe_to_named_decl d = d + let of_rel_decl d = d + let unsafe_to_rel_decl d = d + let to_rel_decl sigma d = Context.Rel.Declaration.map_constr (to_constr sigma) d + +end diff --git a/engine/evd.mli b/engine/evd.mli index 911799c44..5ce16459c 100644 --- a/engine/evd.mli +++ b/engine/evd.mli @@ -28,6 +28,9 @@ open Environ It also contains conversion constraints, debugging information and information about meta variables. *) +type econstr +type etypes = econstr + (** {5 Existential variables and unification states} *) type evar = Evar.t @@ -86,16 +89,16 @@ end type evar_body = | Evar_empty - | Evar_defined of constr + | Evar_defined of econstr module Store : Store.S (** Datatype used to store additional information in evar maps. *) type evar_info = { - evar_concl : constr; + evar_concl : econstr; (** Type of the evar. *) - evar_hyps : named_context_val; + evar_hyps : named_context_val; (** TODO econstr? *) (** Context of the evar. *) evar_body : evar_body; (** Optional content of the evar. *) @@ -105,16 +108,16 @@ type evar_info = { in the solution *) evar_source : Evar_kinds.t located; (** Information about the evar. *) - evar_candidates : constr list option; + evar_candidates : econstr list option; (** List of possible solutions when known that it is a finite list *) evar_extra : Store.t (** Extra store, used for clever hacks. *) } -val make_evar : named_context_val -> types -> evar_info -val evar_concl : evar_info -> constr -val evar_context : evar_info -> Context.Named.t -val evar_filtered_context : evar_info -> Context.Named.t +val make_evar : named_context_val -> etypes -> evar_info +val evar_concl : evar_info -> econstr +val evar_context : evar_info -> (econstr, etypes) Context.Named.pt +val evar_filtered_context : evar_info -> (econstr, etypes) Context.Named.pt val evar_hyps : evar_info -> named_context_val val evar_filtered_hyps : evar_info -> named_context_val val evar_body : evar_info -> evar_body @@ -122,8 +125,8 @@ val evar_filter : evar_info -> Filter.t val evar_env : evar_info -> env val evar_filtered_env : evar_info -> env -val map_evar_body : (constr -> constr) -> evar_body -> evar_body -val map_evar_info : (constr -> constr) -> evar_info -> evar_info +val map_evar_body : (econstr -> econstr) -> evar_body -> evar_body +val map_evar_info : (econstr -> econstr) -> evar_info -> evar_info (** {6 Unification state} **) @@ -190,7 +193,7 @@ val raw_map_undefined : (Evar.t -> evar_info -> evar_info) -> evar_map -> evar_m (** Same as {!raw_map}, but restricted to undefined evars. For efficiency reasons. *) -val define : Evar.t-> constr -> evar_map -> evar_map +val define : Evar.t-> econstr -> evar_map -> evar_map (** Set the body of an evar to the given constr. It is expected that: {ul {- The evar is already present in the evarmap.} @@ -198,7 +201,7 @@ val define : Evar.t-> constr -> evar_map -> evar_map {- All the evars present in the constr should be present in the evar map.} } *) -val cmap : (constr -> constr) -> evar_map -> evar_map +val cmap : (econstr -> econstr) -> evar_map -> evar_map (** Map the function on all terms in the evar map. *) val is_evar : evar_map -> Evar.t-> bool @@ -222,20 +225,26 @@ val drop_all_defined : evar_map -> evar_map exception NotInstantiatedEvar -val existential_value : evar_map -> existential -> constr +val existential_value : evar_map -> econstr pexistential -> econstr (** [existential_value sigma ev] raises [NotInstantiatedEvar] if [ev] has no body and [Not_found] if it does not exist in [sigma] *) -val existential_type : evar_map -> existential -> types +val existential_value0 : evar_map -> existential -> constr + +val existential_type : evar_map -> econstr pexistential -> etypes -val existential_opt_value : evar_map -> existential -> constr option +val existential_type0 : evar_map -> existential -> types + +val existential_opt_value : evar_map -> econstr pexistential -> econstr option (** Same as {!existential_value} but returns an option instead of raising an exception. *) +val existential_opt_value0 : evar_map -> existential -> constr option + val evar_instance_array : (Context.Named.Declaration.t -> 'a -> bool) -> evar_info -> 'a array -> (Id.t * 'a) list -val instantiate_evar_array : evar_info -> constr -> constr array -> constr +val instantiate_evar_array : evar_info -> econstr -> econstr array -> econstr val evars_reset_evd : ?with_conv_pbs:bool -> ?with_univs:bool -> evar_map -> evar_map -> evar_map @@ -243,7 +252,7 @@ val evars_reset_evd : ?with_conv_pbs:bool -> ?with_univs:bool -> (** {6 Misc} *) -val restrict : Evar.t-> Filter.t -> ?candidates:constr list -> +val restrict : Evar.t-> Filter.t -> ?candidates:econstr list -> ?src:Evar_kinds.t located -> evar_map -> evar_map * Evar.t (** Restrict an undefined evar into a new evar by filtering context and possibly limiting the instances to a set of candidates *) @@ -251,7 +260,7 @@ val restrict : Evar.t-> Filter.t -> ?candidates:constr list -> val is_restricted_evar : evar_info -> Evar.t option (** Tell if an evar comes from restriction of another evar, and if yes, which *) -val downcast : Evar.t-> types -> evar_map -> evar_map +val downcast : Evar.t-> etypes -> evar_map -> evar_map (** Change the type of an undefined evar to a new type assumed to be a subtype of its current type; subtyping must be ensured by caller *) @@ -341,7 +350,7 @@ val shelve_on_future_goals : Evar.t list -> future_goals -> future_goals Evar maps also keep track of the universe constraints defined at a given point. This section defines the relevant manipulation functions. *) -val whd_sort_variable : evar_map -> constr -> constr +val whd_sort_variable : evar_map -> econstr -> econstr exception UniversesDiffer @@ -397,8 +406,8 @@ type 'a freelisted = { rebus : 'a; freemetas : Metaset.t } -val metavars_of : constr -> Metaset.t -val mk_freelisted : constr -> constr freelisted +val metavars_of : econstr -> Metaset.t +val mk_freelisted : econstr -> econstr freelisted val map_fl : ('a -> 'b) -> 'a freelisted -> 'b freelisted (** Status of an instance found by unification wrt to the meta it solves: @@ -436,12 +445,12 @@ type instance_status = instance_constraint * instance_typing_status (** Clausal environments *) type clbinding = - | Cltyp of Name.t * constr freelisted - | Clval of Name.t * (constr freelisted * instance_status) * constr freelisted + | Cltyp of Name.t * econstr freelisted + | Clval of Name.t * (econstr freelisted * instance_status) * econstr freelisted (** Unification constraints *) type conv_pb = Reduction.conv_pb -type evar_constraint = conv_pb * env * constr * constr +type evar_constraint = conv_pb * env * econstr * econstr val add_conv_pb : ?tail:bool -> evar_constraint -> evar_map -> evar_map val extract_changed_conv_pbs : evar_map -> @@ -457,7 +466,7 @@ val loc_of_conv_pb : evar_map -> evar_constraint -> Loc.t option val evars_of_term : constr -> Evar.Set.t (** including evars in instances of evars *) -val evars_of_named_context : Context.Named.t -> Evar.Set.t +val evars_of_named_context : (econstr, etypes) Context.Named.pt -> Evar.Set.t val evars_of_filtered_evar_info : evar_info -> Evar.Set.t @@ -465,19 +474,20 @@ val evars_of_filtered_evar_info : evar_info -> Evar.Set.t val meta_list : evar_map -> (metavariable * clbinding) list val meta_defined : evar_map -> metavariable -> bool -val meta_value : evar_map -> metavariable -> constr +val meta_value : evar_map -> metavariable -> econstr (** [meta_fvalue] raises [Not_found] if meta not in map or [Anomaly] if meta has no value *) -val meta_fvalue : evar_map -> metavariable -> constr freelisted * instance_status -val meta_opt_fvalue : evar_map -> metavariable -> (constr freelisted * instance_status) option -val meta_type : evar_map -> metavariable -> types -val meta_ftype : evar_map -> metavariable -> types freelisted +val meta_fvalue : evar_map -> metavariable -> econstr freelisted * instance_status +val meta_opt_fvalue : evar_map -> metavariable -> (econstr freelisted * instance_status) option +val meta_type : evar_map -> metavariable -> etypes +val meta_type0 : evar_map -> metavariable -> types +val meta_ftype : evar_map -> metavariable -> etypes freelisted val meta_name : evar_map -> metavariable -> Name.t val meta_declare : - metavariable -> types -> ?name:Name.t -> evar_map -> evar_map -val meta_assign : metavariable -> constr * instance_status -> evar_map -> evar_map -val meta_reassign : metavariable -> constr * instance_status -> evar_map -> evar_map + metavariable -> etypes -> ?name:Name.t -> evar_map -> evar_map +val meta_assign : metavariable -> econstr * instance_status -> evar_map -> evar_map +val meta_reassign : metavariable -> econstr * instance_status -> evar_map -> evar_map val clear_metas : evar_map -> evar_map @@ -485,10 +495,10 @@ val clear_metas : evar_map -> evar_map val meta_merge : ?with_univs:bool -> evar_map -> evar_map -> evar_map val undefined_metas : evar_map -> metavariable list -val map_metas_fvalue : (constr -> constr) -> evar_map -> evar_map -val map_metas : (constr -> constr) -> evar_map -> evar_map +val map_metas_fvalue : (econstr -> econstr) -> evar_map -> evar_map +val map_metas : (econstr -> econstr) -> evar_map -> evar_map -type metabinding = metavariable * constr * instance_status +type metabinding = metavariable * econstr * instance_status val retract_coercible_metas : evar_map -> metabinding list * evar_map @@ -639,13 +649,13 @@ val fresh_inductive_instance : ?loc:Loc.t -> env -> evar_map -> inductive -> eva val fresh_constructor_instance : ?loc:Loc.t -> env -> evar_map -> constructor -> evar_map * pconstructor val fresh_global : ?loc:Loc.t -> ?rigid:rigid -> ?names:Univ.Instance.t -> env -> - evar_map -> Globnames.global_reference -> evar_map * constr + evar_map -> Globnames.global_reference -> evar_map * econstr (********************************************************************) (* constr with holes and pending resolution of classes, conversion *) (* problems, candidates, etc. *) -type open_constr = evar_map * constr (* Special case when before is empty *) +type open_constr = evar_map * econstr (* Special case when before is empty *) (** Partially constructed constrs. *) @@ -665,3 +675,50 @@ val create_evar_defs : evar_map -> evar_map (** Create an [evar_map] with empty meta map: *) +(** Use this module only to bootstrap EConstr *) +module MiniEConstr : sig + module ESorts : sig + type t + val make : Sorts.t -> t + val kind : evar_map -> t -> Sorts.t + val unsafe_to_sorts : t -> Sorts.t + end + + module EInstance : sig + type t + val make : Univ.Instance.t -> t + val kind : evar_map -> t -> Univ.Instance.t + val empty : t + val is_empty : t -> bool + val unsafe_to_instance : t -> Univ.Instance.t + end + + type t = econstr + + val kind : evar_map -> t -> (t, t, ESorts.t, EInstance.t) Constr.kind_of_term + val kind_upto : evar_map -> constr -> (constr, types, Sorts.t, Univ.Instance.t) Constr.kind_of_term + val kind_of_type : evar_map -> t -> (t, t) Term.kind_of_type + + val whd_evar : evar_map -> t -> t + + val of_kind : (t, t, ESorts.t, EInstance.t) Constr.kind_of_term -> t + + val of_constr : Constr.t -> t + + val to_constr : ?abort_on_undefined_evars:bool -> evar_map -> t -> Constr.t + + val unsafe_to_constr : t -> Constr.t + + val unsafe_eq : (t, Constr.t) eq + + val of_named_decl : (Constr.t, Constr.types) Context.Named.Declaration.pt -> + (t, t) Context.Named.Declaration.pt + val unsafe_to_named_decl : (t, t) Context.Named.Declaration.pt -> + (Constr.t, Constr.types) Context.Named.Declaration.pt + val unsafe_to_rel_decl : (t, t) Context.Rel.Declaration.pt -> + (Constr.t, Constr.types) Context.Rel.Declaration.pt + val of_rel_decl : (Constr.t, Constr.types) Context.Rel.Declaration.pt -> + (t, t) Context.Rel.Declaration.pt + val to_rel_decl : evar_map -> (t, t) Context.Rel.Declaration.pt -> + (Constr.t, Constr.types) Context.Rel.Declaration.pt +end diff --git a/engine/proofview.ml b/engine/proofview.ml index 639f48e77..54237ceb4 100644 --- a/engine/proofview.ml +++ b/engine/proofview.ml @@ -45,9 +45,9 @@ let compact el ({ solution } as pv) = let pruned_solution = Evd.drop_all_defined solution in let apply_subst_einfo _ ei = Evd.({ ei with - evar_concl = nf0 ei.evar_concl; + evar_concl = nf ei.evar_concl; evar_hyps = Environ.map_named_val nf0 ei.evar_hyps; - evar_candidates = Option.map (List.map nf0) ei.evar_candidates }) in + evar_candidates = Option.map (List.map nf) ei.evar_candidates }) in let new_solution = Evd.raw_map_undefined apply_subst_einfo pruned_solution in let new_size = Evd.fold (fun _ _ i -> i+1) new_solution 0 in Feedback.msg_info (Pp.str (Printf.sprintf "Evars: %d -> %d\n" size new_size)); @@ -875,8 +875,7 @@ module Progress = struct (** equality function on hypothesis contexts *) let eq_named_context_val sigma1 sigma2 ctx1 ctx2 = - let open Environ in - let c1 = named_context_of_val ctx1 and c2 = named_context_of_val ctx2 in + let c1 = EConstr.named_context_of_val ctx1 and c2 = EConstr.named_context_of_val ctx2 in let eq_named_declaration d1 d2 = match d1, d2 with | LocalAssum (i1,t1), LocalAssum (i2,t2) -> @@ -1101,7 +1100,7 @@ module Goal = struct let gmake_with info env sigma goal state = { env = Environ.reset_with_named_context (Evd.evar_filtered_hyps info) env ; sigma = sigma ; - concl = EConstr.of_constr (Evd.evar_concl info); + concl = Evd.evar_concl info; state = state ; self = goal } diff --git a/engine/termops.ml b/engine/termops.ml index b7531f6fc..df43be28e 100644 --- a/engine/termops.ml +++ b/engine/termops.ml @@ -115,7 +115,7 @@ let pr_evar_suggested_name evk sigma = | _,Evar_kinds.GoalEvar -> Id.of_string "Goal" | _ -> let env = reset_with_named_context evi.evar_hyps (Global.env()) in - Namegen.id_of_name_using_hdchar env sigma (EConstr.of_constr evi.evar_concl) Anonymous + Namegen.id_of_name_using_hdchar env sigma evi.evar_concl Anonymous in let names = EvMap.mapi base_id (undefined_map sigma) in let id = EvMap.find evk names in @@ -154,7 +154,7 @@ let protect f x = with e -> str "EXCEPTION: " ++ str (Printexc.to_string e) let print_kconstr a = - protect (fun c -> print_constr (EConstr.of_constr c)) a + protect (fun c -> print_constr c) a let pr_meta_map evd = let open Evd in @@ -197,11 +197,11 @@ let pr_evar_source = function let print_constr = print_kconstr in let id = Option.get ido in str "parameter " ++ Id.print id ++ spc () ++ str "of" ++ - spc () ++ print_constr (printable_constr_of_global c) + spc () ++ print_constr (EConstr.of_constr @@ printable_constr_of_global c) | Evar_kinds.InternalHole -> str "internal placeholder" | Evar_kinds.TomatchTypeParameter (ind,n) -> let print_constr = print_kconstr in - pr_nth n ++ str " argument of type " ++ print_constr (mkInd ind) + pr_nth n ++ str " argument of type " ++ print_constr (EConstr.mkInd ind) | Evar_kinds.GoalEvar -> str "goal evar" | Evar_kinds.ImpossibleCase -> str "type of impossible pattern-matching clause" | Evar_kinds.MatchingVar _ -> str "matching variable" @@ -256,7 +256,7 @@ let compute_evar_dependency_graph sigma = in match evar_body evi with | Evar_empty -> acc - | Evar_defined c -> Evar.Set.fold fold_ev (evars_of_term c) acc + | Evar_defined c -> Evar.Set.fold fold_ev (evars_of_term (EConstr.Unsafe.to_constr c)) acc in Evd.fold fold sigma EvMap.empty @@ -314,7 +314,8 @@ let print_env_short env = let print_constr = print_kconstr in let pr_rel_decl = function | RelDecl.LocalAssum (n,_) -> Name.print n - | RelDecl.LocalDef (n,b,_) -> str "(" ++ Name.print n ++ str " := " ++ print_constr b ++ str ")" + | RelDecl.LocalDef (n,b,_) -> str "(" ++ Name.print n ++ str " := " + ++ print_constr (EConstr.of_constr b) ++ str ")" in let pr_named_decl = NamedDecl.to_rel_decl %> pr_rel_decl in let nc = List.rev (named_context env) in @@ -335,11 +336,11 @@ let pr_evar_constraints sigma pbs = Namegen.make_all_name_different env sigma in print_env_short env ++ spc () ++ str "|-" ++ spc () ++ - protect (print_constr_env env sigma) (EConstr.of_constr t1) ++ spc () ++ + protect (print_constr_env env sigma) t1 ++ spc () ++ str (match pbty with | Reduction.CONV -> "==" | Reduction.CUMUL -> "<=") ++ - spc () ++ protect (print_constr_env env Evd.empty) (EConstr.of_constr t2) + spc () ++ protect (print_constr_env env Evd.empty) t2 in prlist_with_sep fnl pr_evconstr pbs diff --git a/ide/coqOps.ml b/ide/coqOps.ml index 78fbce5c8..6c3438a4b 100644 --- a/ide/coqOps.ml +++ b/ide/coqOps.ml @@ -362,7 +362,12 @@ object(self) let query = Coq.query (route_id,(phrase,sid)) in Coq.bind (Coq.seq action query) next + method private still_valid { edit_id = id } = + try ignore(Doc.find_id document (fun _ { edit_id = id1 } -> id = id1)); true + with Not_found -> false + method private mark_as_needed sentence = + if self#still_valid sentence then begin Minilib.log_pp Pp.(str "Marking " ++ dbg_to_string buffer false None sentence); let start = buffer#get_iter_at_mark sentence.start in let stop = buffer#get_iter_at_mark sentence.stop in @@ -383,6 +388,7 @@ object(self) in List.iter (fun t -> buffer#remove_tag t ~start ~stop) all_tags; List.iter (fun t -> buffer#apply_tag t ~start ~stop) tags + end method private attach_tooltip ?loc sentence text = let start_sentence, stop_sentence, phrase = self#get_sentence sentence in diff --git a/interp/constrintern.ml b/interp/constrintern.ml index f2cd07c94..7eda89f4e 100644 --- a/interp/constrintern.ml +++ b/interp/constrintern.ml @@ -433,7 +433,7 @@ let glob_local_binder_of_extended = DAst.with_loc_val (fun ?loc -> function let t = DAst.make ?loc @@ GHole(Evar_kinds.BinderType na,Misctypes.IntroAnonymous,None) in (na,bk,Some c,t) | GLocalPattern (_,_,_,_) -> - Loc.raise ?loc (Stream.Error "pattern with quote not allowed here.") + Loc.raise ?loc (Stream.Error "pattern with quote not allowed here") ) let intern_cases_pattern_fwd = ref (fun _ -> failwith "intern_cases_pattern_fwd") diff --git a/interp/impargs.mli b/interp/impargs.mli index 1eeb8e41a..103a4f9e9 100644 --- a/interp/impargs.mli +++ b/interp/impargs.mli @@ -130,7 +130,7 @@ val make_implicits_list : implicit_status list -> implicits_list list val drop_first_implicits : int -> implicits_list -> implicits_list -val projection_implicits : env -> projection -> implicit_status list -> +val projection_implicits : env -> Projection.t -> implicit_status list -> implicit_status list val select_impargs_size : int -> implicits_list list -> implicit_status list diff --git a/interp/notation_ops.ml b/interp/notation_ops.ml index aa9a6ed0d..a76f82094 100644 --- a/interp/notation_ops.ml +++ b/interp/notation_ops.ml @@ -210,7 +210,7 @@ let glob_constr_of_notation_constr_with_binders ?loc g f e nc = let e',na = protect g e na in GIf (f e c,(na,Option.map (f e') po),f e b1,f e b2) | NRec (fk,idl,dll,tl,bl) -> - let e,dll = Array.fold_left_map (List.fold_map (fun e (na,oc,b) -> + let e,dll = Array.fold_left_map (List.fold_left_map (fun e (na,oc,b) -> let e,na = protect g e na in (e,(na,Explicit,Option.map (f e) oc,f e b)))) e dll in let e',idl = Array.fold_left_map (to_id (protect g)) e idl in diff --git a/kernel/cClosure.ml b/kernel/cClosure.ml index 5f683790c..08114abc4 100644 --- a/kernel/cClosure.ml +++ b/kernel/cClosure.ml @@ -96,7 +96,7 @@ module type RedFlagsSig = sig val red_transparent : reds -> transparent_state val mkflags : red_kind list -> reds val red_set : reds -> red_kind -> bool - val red_projection : reds -> projection -> bool + val red_projection : reds -> Projection.t -> bool end module RedFlags = (struct @@ -364,7 +364,7 @@ and fterm = | FInd of pinductive | FConstruct of pconstructor | FApp of fconstr * fconstr array - | FProj of projection * fconstr + | FProj of Projection.t * fconstr | FFix of fixpoint * fconstr subs | FCoFix of cofixpoint * fconstr subs | FCaseT of case_info * constr * fconstr * constr array * fconstr subs (* predicate and branches are closures *) diff --git a/kernel/cClosure.mli b/kernel/cClosure.mli index 3a7f77d52..e2f5a3b82 100644 --- a/kernel/cClosure.mli +++ b/kernel/cClosure.mli @@ -74,7 +74,7 @@ module type RedFlagsSig = sig (** This tests if the projection is in unfolded state already or is unfodable due to delta. *) - val red_projection : reds -> projection -> bool + val red_projection : reds -> Projection.t -> bool end module RedFlags : RedFlagsSig @@ -132,7 +132,7 @@ type fterm = | FInd of inductive Univ.puniverses | FConstruct of constructor Univ.puniverses | FApp of fconstr * fconstr array - | FProj of projection * fconstr + | FProj of Projection.t * fconstr | FFix of fixpoint * fconstr subs | FCoFix of cofixpoint * fconstr subs | FCaseT of case_info * constr * fconstr * constr array * fconstr subs (* predicate and branches are closures *) diff --git a/kernel/constr.ml b/kernel/constr.ml index ba7fecadf..4f062d72f 100644 --- a/kernel/constr.ml +++ b/kernel/constr.ml @@ -100,7 +100,7 @@ type ('constr, 'types, 'sort, 'univs) kind_of_term = | Case of case_info * 'constr * 'constr * 'constr array | Fix of ('constr, 'types) pfixpoint | CoFix of ('constr, 'types) pcofixpoint - | Proj of projection * 'constr + | Proj of Projection.t * 'constr (* constr is the fixpoint of the previous type. Requires option -rectypes of the Caml compiler to be set *) type t = (t, t, Sorts.t, Instance.t) kind_of_term diff --git a/kernel/constr.mli b/kernel/constr.mli index 98c0eaa28..0d464840c 100644 --- a/kernel/constr.mli +++ b/kernel/constr.mli @@ -122,7 +122,7 @@ val mkConst : Constant.t -> constr val mkConstU : pconstant -> constr (** Constructs a projection application *) -val mkProj : (projection * constr) -> constr +val mkProj : (Projection.t * constr) -> constr (** Inductive types *) @@ -220,7 +220,7 @@ type ('constr, 'types, 'sort, 'univs) kind_of_term = | Case of case_info * 'constr * 'constr * 'constr array | Fix of ('constr, 'types) pfixpoint | CoFix of ('constr, 'types) pcofixpoint - | Proj of projection * 'constr + | Proj of Projection.t * 'constr (** User view of [constr]. For [App], it is ensured there is at least one argument and the function is not itself an applicative @@ -318,7 +318,7 @@ where [info] is pretty-printing information *) val destCase : constr -> case_info * constr * constr * constr array (** Destructs a projection *) -val destProj : constr -> projection * constr +val destProj : constr -> Projection.t * constr (** Destructs the {% $ %}i{% $ %}th function of the block [Fixpoint f{_ 1} ctx{_ 1} = b{_ 1} diff --git a/kernel/environ.mli b/kernel/environ.mli index 4e6ac1e72..fdd84b25b 100644 --- a/kernel/environ.mli +++ b/kernel/environ.mli @@ -168,7 +168,7 @@ val constant_opt_value_in : env -> Constant.t puniverses -> constr option (** {6 Primitive projections} *) -val lookup_projection : Names.projection -> env -> projection_body +val lookup_projection : Names.Projection.t -> env -> projection_body val is_projection : Constant.t -> env -> bool (** {5 Inductive types } *) diff --git a/kernel/names.mli b/kernel/names.mli index ffd96781b..96e020aed 100644 --- a/kernel/names.mli +++ b/kernel/names.mli @@ -547,6 +547,8 @@ val eq_constant_key : Constant.t -> Constant.t -> bool (** equalities on constant and inductive names (for the checker) *) val eq_con_chk : Constant.t -> Constant.t -> bool +[@@ocaml.deprecated "Same as [Constant.UserOrd.equal]."] + val eq_ind_chk : inductive -> inductive -> bool (** {6 Deprecated functions. For backward compatibility.} *) @@ -633,27 +635,27 @@ val eq_label : Label.t -> Label.t -> bool (** {5 Unique bound module names} *) type mod_bound_id = MBId.t -(** Alias type. *) +[@@ocaml.deprecated "Same as [MBId.t]."] -val mod_bound_id_ord : mod_bound_id -> mod_bound_id -> int +val mod_bound_id_ord : MBId.t -> MBId.t -> int [@@ocaml.deprecated "Same as [MBId.compare]."] -val mod_bound_id_eq : mod_bound_id -> mod_bound_id -> bool +val mod_bound_id_eq : MBId.t -> MBId.t -> bool [@@ocaml.deprecated "Same as [MBId.equal]."] -val make_mbid : DirPath.t -> Id.t -> mod_bound_id +val make_mbid : DirPath.t -> Id.t -> MBId.t [@@ocaml.deprecated "Same as [MBId.make]."] -val repr_mbid : mod_bound_id -> int * Id.t * DirPath.t +val repr_mbid : MBId.t -> int * Id.t * DirPath.t [@@ocaml.deprecated "Same as [MBId.repr]."] -val id_of_mbid : mod_bound_id -> Id.t +val id_of_mbid : MBId.t -> Id.t [@@ocaml.deprecated "Same as [MBId.to_id]."] -val string_of_mbid : mod_bound_id -> string +val string_of_mbid : MBId.t -> string [@@ocaml.deprecated "Same as [MBId.to_string]."] -val debug_string_of_mbid : mod_bound_id -> string +val debug_string_of_mbid : MBId.t -> string [@@ocaml.deprecated "Same as [MBId.debug_to_string]."] (** {5 Names} *) @@ -745,6 +747,7 @@ module Projection : sig end type projection = Projection.t +[@@ocaml.deprecated "Alias for [Projection.t]"] val constant_of_kn_equiv : KerName.t -> KerName.t -> Constant.t [@@ocaml.deprecated "Same as [Constant.make]"] diff --git a/kernel/term.ml b/kernel/term.ml index 403ed881c..e1affb1c0 100644 --- a/kernel/term.ml +++ b/kernel/term.ml @@ -92,7 +92,7 @@ type ('constr, 'types, 'sort, 'univs) kind_of_term = | Case of case_info * 'constr * 'constr * 'constr array | Fix of ('constr, 'types) pfixpoint | CoFix of ('constr, 'types) pcofixpoint - | Proj of projection * 'constr + | Proj of Projection.t * 'constr type values = Vmvalues.values diff --git a/kernel/term.mli b/kernel/term.mli index 7cb3b662d..ee84dcb2b 100644 --- a/kernel/term.mli +++ b/kernel/term.mli @@ -155,7 +155,7 @@ val destCase : constr -> case_info * constr * constr * constr array [@@ocaml.deprecated "Alias for [Constr.destCase]"] (** Destructs a projection *) -val destProj : constr -> projection * constr +val destProj : constr -> Projection.t * constr [@@ocaml.deprecated "Alias for [Constr.destProj]"] (** Destructs the {% $ %}i{% $ %}th function of the block @@ -403,7 +403,7 @@ val mkApp : constr * constr array -> constr [@@ocaml.deprecated "Alias for Constr"] val mkConst : Constant.t -> constr [@@ocaml.deprecated "Alias for Constr"] -val mkProj : projection * constr -> constr +val mkProj : Projection.t * constr -> constr [@@ocaml.deprecated "Alias for Constr"] val mkInd : inductive -> constr [@@ocaml.deprecated "Alias for Constr"] @@ -571,7 +571,7 @@ type ('constr, 'types, 'sort, 'univs) kind_of_term = | Case of Constr.case_info * 'constr * 'constr * 'constr array | Fix of ('constr, 'types) Constr.pfixpoint | CoFix of ('constr, 'types) Constr.pcofixpoint - | Proj of projection * 'constr + | Proj of Projection.t * 'constr [@@ocaml.deprecated "Alias for Constr.kind_of_term"] type values = Vmvalues.values diff --git a/kernel/typeops.mli b/kernel/typeops.mli index bff40b017..85b2cfffd 100644 --- a/kernel/typeops.mli +++ b/kernel/typeops.mli @@ -60,7 +60,7 @@ val judge_of_constant : env -> pconstant -> unsafe_judgment (** {6 type of an applied projection } *) -val judge_of_projection : env -> Names.projection -> unsafe_judgment -> unsafe_judgment +val judge_of_projection : env -> Projection.t -> unsafe_judgment -> unsafe_judgment (** {6 Type of application. } *) val judge_of_apply : @@ -100,7 +100,7 @@ val judge_of_case : env -> case_info -> unsafe_judgment -> unsafe_judgment -> unsafe_judgment array -> unsafe_judgment -val type_of_projection_constant : env -> Names.projection puniverses -> types +val type_of_projection_constant : env -> Projection.t puniverses -> types val type_of_constant_in : env -> pconstant -> types diff --git a/lib/cWarnings.ml b/lib/cWarnings.ml index 92c86eaea..fda25a0a6 100644 --- a/lib/cWarnings.ml +++ b/lib/cWarnings.ml @@ -22,11 +22,8 @@ type t = { let warnings : (string, t) Hashtbl.t = Hashtbl.create 97 let categories : (string, string list) Hashtbl.t = Hashtbl.create 97 -let current_loc = ref None let flags = ref "" -let set_current_loc loc = current_loc := loc - let get_flags () = !flags let add_warning_in_category ~name ~category = @@ -170,7 +167,6 @@ let create ~name ~category ?(default=Enabled) pp = set_flags !flags; fun ?loc x -> let w = Hashtbl.find warnings name in - let loc = Option.append loc !current_loc in match w.status with | Disabled -> () | AsError -> CErrors.user_err ?loc (pp x) diff --git a/lib/cWarnings.mli b/lib/cWarnings.mli index fa96b18c8..f97a53c4d 100644 --- a/lib/cWarnings.mli +++ b/lib/cWarnings.mli @@ -10,8 +10,6 @@ type status = Disabled | Enabled | AsError -val set_current_loc : Loc.t option -> unit - val create : name:string -> category:string -> ?default:status -> ('a -> Pp.t) -> ?loc:Loc.t -> 'a -> unit diff --git a/lib/loc.ml b/lib/loc.ml index 6f5283aab..1a09091bf 100644 --- a/lib/loc.ml +++ b/lib/loc.ml @@ -62,6 +62,11 @@ let merge_opt l1 l2 = match l1, l2 with | None, Some l -> Some l | Some l1, Some l2 -> Some (merge l1 l2) +let finer l1 l2 = match l1, l2 with + | None, _ -> false + | Some l , None -> true + | Some l1, Some l2 -> l1.fname = l2.fname && merge l1 l2 = l2 + let unloc loc = (loc.bp, loc.ep) let shift_loc kb kp loc = { loc with bp = loc.bp + kb ; ep = loc.ep + kp } diff --git a/lib/loc.mli b/lib/loc.mli index 813c45fbb..23df1ebd9 100644 --- a/lib/loc.mli +++ b/lib/loc.mli @@ -42,6 +42,10 @@ val merge : t -> t -> t val merge_opt : t option -> t option -> t option (** Merge locations, usually generating the largest possible span *) +val finer : t option -> t option -> bool +(** Answers [true] when the first location is more defined, or, when + both defined, included in the second one *) + val shift_loc : int -> int -> t -> t (** [shift_loc loc n p] shifts the beginning of location by [n] and the end by [p]; it is assumed that the shifts do not change the diff --git a/plugins/cc/ccalgo.ml b/plugins/cc/ccalgo.ml index 5a4818926..8e53a044d 100644 --- a/plugins/cc/ccalgo.ml +++ b/plugins/cc/ccalgo.ml @@ -9,7 +9,7 @@ (************************************************************************) (* This file implements the basic congruence-closure algorithm by *) -(* Downey,Sethi and Tarjan. *) +(* Downey, Sethi and Tarjan. *) (* Plus some e-matching and constructor handling by P. Corbineau *) open CErrors @@ -18,7 +18,6 @@ open Names open Sorts open Constr open Vars -open Evd open Goptions open Tacmach open Util @@ -272,7 +271,8 @@ type state = mutable rew_depth:int; mutable changed:bool; by_type: Int.Set.t Typehash.t; - mutable gls:Goal.goal Evd.sigma} + mutable env:Environ.env; + sigma:Evd.evar_map} let dummy_node = { @@ -307,7 +307,8 @@ let empty depth gls:state = rew_depth=depth; by_type=Constrhash.create init_size; changed=false; - gls=gls + env=pf_env gls; + sigma=project gls } let forest state = state.uf @@ -426,7 +427,7 @@ let cc_product s1 s2 = mkLambda(_B_,mkSort(s2),_body_)) let rec constr_of_term = function - Symb s-> applist_projection s [] + Symb s-> s | Product(s1,s2) -> cc_product s1 s2 | Eps id -> mkVar id | Constructor cinfo -> mkConstructU cinfo.ci_constr @@ -434,25 +435,7 @@ let rec constr_of_term = function make_app [(constr_of_term s2)] s1 and make_app l=function Appli (s1,s2)->make_app ((constr_of_term s2)::l) s1 - | other -> - applist_proj other l -and applist_proj c l = - match c with - | Symb s -> applist_projection s l - | _ -> Term.applistc (constr_of_term c) l -and applist_projection c l = - match Constr.kind c with - | Const c when Environ.is_projection (fst c) (Global.env()) -> - let p = Projection.make (fst c) false in - (match l with - | [] -> (* Expand the projection *) - let ty = Typeops.type_of_constant_in (Global.env ()) c in (* FIXME constraints *) - let pb = Environ.lookup_projection p (Global.env()) in - let ctx,_ = Term.decompose_prod_n_assum (pb.Declarations.proj_npars + 1) ty in - Term.it_mkLambda_or_LetIn (mkProj(p,mkRel 1)) ctx - | hd :: tl -> - Term.applistc (mkProj (p, hd)) tl) - | _ -> Term.applistc c l + | other -> Term.applist (constr_of_term other,l) let rec canonize_name sigma c = let c = EConstr.Unsafe.to_constr c in @@ -511,8 +494,8 @@ let rec add_term state t= Not_found -> let b=next uf in let trm = constr_of_term t in - let typ = pf_unsafe_type_of state.gls (EConstr.of_constr trm) in - let typ = canonize_name (project state.gls) typ in + let typ = Typing.unsafe_type_of state.env state.sigma (EConstr.of_constr trm) in + let typ = canonize_name state.sigma typ in let new_node= match t with Symb _ | Product (_,_) -> @@ -820,11 +803,10 @@ let one_step state = let __eps__ = Id.of_string "_eps_" let new_state_var typ state = - let id = pf_get_new_id __eps__ state.gls in - let {it=gl ; sigma=sigma} = state.gls in - let gls = Goal.V82.new_goal_with sigma gl [Context.Named.Declaration.LocalAssum (id,typ)] in - state.gls<- gls; - id + let ids = Environ.ids_of_named_context_val (Environ.named_context_val state.env) in + let id = Namegen.next_ident_away __eps__ ids in + state.env<- EConstr.push_named (Context.Named.Declaration.LocalAssum (id,typ)) state.env; + id let complete_one_class state i= match (get_representative state.uf i).inductive_status with @@ -832,9 +814,9 @@ let complete_one_class state i= let rec app t typ n = if n<=0 then t else let _,etyp,rest= destProd typ in - let id = new_state_var etyp state in + let id = new_state_var (EConstr.of_constr etyp) state in app (Appli(t,Eps id)) (substl [mkVar id] rest) (n-1) in - let _c = pf_unsafe_type_of state.gls + let _c = Typing.unsafe_type_of state.env state.sigma (EConstr.of_constr (constr_of_term (term state.uf pac.cnode))) in let _c = EConstr.Unsafe.to_constr _c in let _args = diff --git a/plugins/cc/cctac.ml b/plugins/cc/cctac.ml index d19817e74..c4db49cd3 100644 --- a/plugins/cc/cctac.ml +++ b/plugins/cc/cctac.ml @@ -90,7 +90,7 @@ let rec decompose_term env sigma t= decompose_term env sigma c | _ -> let t = Termops.strip_outer_cast sigma t in - if closed0 sigma t then Symb (EConstr.to_constr sigma t) else raise Not_found + if closed0 sigma t then Symb (EConstr.to_constr ~abort_on_undefined_evars:false sigma t) else raise Not_found (* decompose equality in members and type *) open Termops diff --git a/plugins/firstorder/sequent.ml b/plugins/firstorder/sequent.ml index 285991797..7c612c0d8 100644 --- a/plugins/firstorder/sequent.ml +++ b/plugins/firstorder/sequent.ml @@ -77,14 +77,14 @@ module CM=Map.Make(Constr) module History=Set.Make(Hitem) let cm_add sigma typ nam cm= - let typ = EConstr.to_constr sigma typ in + let typ = EConstr.to_constr ~abort_on_undefined_evars:false sigma typ in try let l=CM.find typ cm in CM.add typ (nam::l) cm with Not_found->CM.add typ [nam] cm let cm_remove sigma typ nam cm= - let typ = EConstr.to_constr sigma typ in + let typ = EConstr.to_constr ~abort_on_undefined_evars:false sigma typ in try let l=CM.find typ cm in let l0=List.filter (fun id-> not (Globnames.eq_gr id nam)) l in @@ -152,7 +152,7 @@ let re_add_formula_list sigma lf seq= redexes=List.fold_right HP.add lf seq.redexes; context=List.fold_right do_one lf seq.context} -let find_left sigma t seq=List.hd (CM.find (EConstr.to_constr sigma t) seq.context) +let find_left sigma t seq=List.hd (CM.find (EConstr.to_constr ~abort_on_undefined_evars:false sigma t) seq.context) (*let rev_left seq= try @@ -197,7 +197,7 @@ let extend_with_ref_list env sigma l seq = let l = expand_constructor_hints l in let f gr (seq, sigma) = let sigma, c = Evd.fresh_global env sigma gr in - let sigma, typ= Typing.type_of env sigma (EConstr.of_constr c) in + let sigma, typ= Typing.type_of env sigma c in (add_formula env sigma Hyp gr typ seq, sigma) in List.fold_right f l (seq, sigma) diff --git a/plugins/funind/functional_principles_proofs.ml b/plugins/funind/functional_principles_proofs.ml index d04887a48..8da0e1c4f 100644 --- a/plugins/funind/functional_principles_proofs.ml +++ b/plugins/funind/functional_principles_proofs.ml @@ -1050,8 +1050,7 @@ let do_replace (evd:Evd.evar_map ref) params rec_arg_num rev_args_id f fun_num a (Global.env ()) !evd (Constrintern.locate_reference (qualid_of_ident equation_lemma_id)) in - let res = EConstr.of_constr res in - evd:=evd'; + evd:=evd'; let _ = Typing.e_type_of ~refresh:true (Global.env ()) evd res in res in diff --git a/plugins/funind/functional_principles_types.ml b/plugins/funind/functional_principles_types.ml index 804548ce5..04a23cdb9 100644 --- a/plugins/funind/functional_principles_types.ml +++ b/plugins/funind/functional_principles_types.ml @@ -266,7 +266,7 @@ let change_property_sort evd toSort princ princName = (Global.env ()) evd (Constrintern.locate_reference (Libnames.qualid_of_ident princName)) in let init = let nargs = (princ_info.nparams + (List.length princ_info.predicates)) in - mkApp(princName_as_constr, + mkApp(EConstr.Unsafe.to_constr princName_as_constr, Array.init nargs (fun i -> mkRel (nargs - i ))) in @@ -630,11 +630,14 @@ let build_scheme fas = in let evd',f = Evd.fresh_global (Global.env ()) !evd f_as_constant in let _ = evd := evd' in - let _ = Typing.e_type_of ~refresh:true (Global.env ()) evd (EConstr.of_constr f) in - if isConst f - then (destConst f,sort) - else user_err Pp.(pr_constr_env (Global.env ()) !evd f ++spc () ++ str "should be the named of a globally defined function") - ) + let _ = Typing.e_type_of ~refresh:true (Global.env ()) evd f in + let c, u = + try EConstr.destConst !evd f + with DestKO -> + user_err Pp.(pr_econstr_env (Global.env ()) !evd f ++spc () ++ str "should be the named of a globally defined function") + in + (c, EConstr.EInstance.kind !evd u), sort + ) fas ) in let bodies_types = diff --git a/plugins/funind/glob_termops.ml b/plugins/funind/glob_termops.ml index 40ea40b6b..845104c3c 100644 --- a/plugins/funind/glob_termops.ml +++ b/plugins/funind/glob_termops.ml @@ -564,6 +564,7 @@ let resolve_and_replace_implicits ?(flags=Pretyping.all_and_fail_flags) ?(expect If someone knows how to prevent solved existantial removal in understand, please do not hesitate to change the computation of [ctx] here *) let ctx,_,_ = Pretyping.ise_pretype_gen flags env sigma Glob_ops.empty_lvar expected_type rt in let ctx, f = Evarutil.nf_evars_and_universes ctx in + let f c = EConstr.of_constr (f (EConstr.Unsafe.to_constr c)) in (* then we map [rt] to replace the implicit holes by their values *) let rec change rt = @@ -586,8 +587,8 @@ If someone knows how to prevent solved existantial removal in understand, pleas with Found evi -> (* we found the evar corresponding to this hole *) match evi.evar_body with | Evar_defined c -> - (* we just have to lift the solution in glob_term *) - Detyping.detype Detyping.Now false Id.Set.empty env ctx (EConstr.of_constr (f c)) + (* we just have to lift the solution in glob_term *) + Detyping.detype Detyping.Now false Id.Set.empty env ctx (f c) | Evar_empty -> rt (* the hole was not solved : we do nothing *) ) | (GHole(BinderType na,_,_)) -> (* we only want to deal with implicit arguments *) @@ -609,7 +610,7 @@ If someone knows how to prevent solved existantial removal in understand, pleas match evi.evar_body with | Evar_defined c -> (* we just have to lift the solution in glob_term *) - Detyping.detype Detyping.Now false Id.Set.empty env ctx (EConstr.of_constr (f c)) + Detyping.detype Detyping.Now false Id.Set.empty env ctx (f c) | Evar_empty -> rt (* the hole was not solved : we d when falseo nothing *) in res diff --git a/plugins/funind/indfun.ml b/plugins/funind/indfun.ml index 9c350483b..748d8add2 100644 --- a/plugins/funind/indfun.ml +++ b/plugins/funind/indfun.ml @@ -77,8 +77,7 @@ let functional_induction with_clean c princl pat = user_err (str "Cannot find induction principle for " ++ Printer.pr_leconstr_env (Tacmach.pf_env g) sigma (mkConst c') ) in - let princ = EConstr.of_constr princ in - (princ,NoBindings,Tacmach.pf_unsafe_type_of g' princ,g') + (princ,NoBindings,Tacmach.pf_unsafe_type_of g' princ,g') | _ -> raise (UserError(None,str "functional induction must be used with a function" )) end | Some ((princ,binding)) -> @@ -91,10 +90,19 @@ let functional_induction with_clean c princl pat = if princ_infos.Tactics.farg_in_concl then [c] else [] in + if List.length args + List.length c_list = 0 + then user_err Pp.(str "Cannot recognize a valid functional scheme" ); let encoded_pat_as_patlist = - List.make (List.length args + List.length c_list - 1) None @ [pat] in - List.map2 (fun c pat -> ((None,Ltac_plugin.Tacexpr.ElimOnConstr (fun env sigma -> (sigma,(c,NoBindings)) )),(None,pat),None)) - (args@c_list) encoded_pat_as_patlist + List.make (List.length args + List.length c_list - 1) None @ [pat] + in + List.map2 + (fun c pat -> + ((None, + Ltac_plugin.Tacexpr.ElimOnConstr (fun env sigma -> (sigma,(c,NoBindings)))), + (None,pat), + None)) + (args@c_list) + encoded_pat_as_patlist in let princ' = Some (princ,bindings) in let princ_vars = @@ -252,7 +260,6 @@ let derive_inversion fix_names = let evd,c = Evd.fresh_global (Global.env ()) evd (Constrintern.locate_reference (Libnames.qualid_of_ident id)) in - let c = EConstr.of_constr c in let (cst, u) = destConst evd c in evd, (cst, EInstance.kind evd u) :: l ) @@ -274,8 +281,7 @@ let derive_inversion fix_names = (Global.env ()) evd (Constrintern.locate_reference (Libnames.qualid_of_ident (mk_rel_id id))) in - let id = EConstr.of_constr id in - evd,(fst (destInd evd id))::l + evd,(fst (destInd evd id))::l ) fix_names (evd',[]) @@ -379,7 +385,7 @@ let generate_principle (evd:Evd.evar_map ref) pconstants on_error let evd = ref (Evd.from_env env) in let evd',uprinc = Evd.fresh_global env !evd princ in let _ = evd := evd' in - let princ_type = Typing.e_type_of ~refresh:true env evd (EConstr.of_constr uprinc) in + let princ_type = Typing.e_type_of ~refresh:true env evd uprinc in let princ_type = EConstr.Unsafe.to_constr princ_type in Functional_principles_types.generate_functional_principle evd @@ -416,7 +422,6 @@ let register_struct is_rec (fixpoint_exprl:(Vernacexpr.fixpoint_expr * Vernacexp let evd,c = Evd.fresh_global (Global.env ()) evd (Constrintern.locate_reference (Libnames.qualid_of_ident fname)) in - let c = EConstr.of_constr c in let (cst, u) = destConst evd c in let u = EInstance.kind evd u in evd,((cst, u) :: l) @@ -433,7 +438,6 @@ let register_struct is_rec (fixpoint_exprl:(Vernacexpr.fixpoint_expr * Vernacexp let evd,c = Evd.fresh_global (Global.env ()) evd (Constrintern.locate_reference (Libnames.qualid_of_ident fname)) in - let c = EConstr.of_constr c in let (cst, u) = destConst evd c in let u = EInstance.kind evd u in evd,((cst, u) :: l) diff --git a/plugins/funind/invfun.ml b/plugins/funind/invfun.ml index ae84eaa93..28e85268a 100644 --- a/plugins/funind/invfun.ml +++ b/plugins/funind/invfun.ml @@ -102,7 +102,6 @@ let generate_type evd g_to_f f graph i = let evd',graph = Evd.fresh_global (Global.env ()) !evd (Globnames.IndRef (fst (destInd !evd graph))) in - let graph = EConstr.of_constr graph in evd:=evd'; let graph_arity = Typing.e_type_of (Global.env ()) evd graph in let ctxt,_ = decompose_prod_assum !evd graph_arity in @@ -172,7 +171,6 @@ let find_induction_principle evd f = | None -> raise Not_found | Some rect_lemma -> let evd',rect_lemma = Evd.fresh_global (Global.env ()) !evd (Globnames.ConstRef rect_lemma) in - let rect_lemma = EConstr.of_constr rect_lemma in let evd',typ = Typing.type_of ~refresh:true (Global.env ()) evd' rect_lemma in evd:=evd'; rect_lemma,typ @@ -823,8 +821,7 @@ let derive_correctness make_scheme (funs: pconstant list) (graphs:inductive list (* let lem_cst = fst (destConst (Constrintern.global_reference lem_id)) in *) let _,lem_cst_constr = Evd.fresh_global (Global.env ()) !evd (Constrintern.locate_reference (Libnames.qualid_of_ident lem_id)) in - let lem_cst_constr = EConstr.of_constr lem_cst_constr in - let (lem_cst,_) = destConst !evd lem_cst_constr in + let (lem_cst,_) = destConst !evd lem_cst_constr in update_Function {finfo with correctness_lemma = Some lem_cst}; ) @@ -884,8 +881,7 @@ let derive_correctness make_scheme (funs: pconstant list) (graphs:inductive list let finfo = find_Function_infos (fst f_as_constant) in let _,lem_cst_constr = Evd.fresh_global (Global.env ()) !evd (Constrintern.locate_reference (Libnames.qualid_of_ident lem_id)) in - let lem_cst_constr = EConstr.of_constr lem_cst_constr in - let (lem_cst,_) = destConst !evd lem_cst_constr in + let (lem_cst,_) = destConst !evd lem_cst_constr in update_Function {finfo with completeness_lemma = Some lem_cst} ) funs) diff --git a/plugins/ltac/extratactics.ml4 b/plugins/ltac/extratactics.ml4 index 2e90ce90c..a5f8060ae 100644 --- a/plugins/ltac/extratactics.ml4 +++ b/plugins/ltac/extratactics.ml4 @@ -296,7 +296,6 @@ let project_hint ~poly pri l2r r = let env = Global.env() in let sigma = Evd.from_env env in let sigma, c = Evd.fresh_global env sigma gr in - let c = EConstr.of_constr c in let t = Retyping.get_type_of env sigma c in let t = Tacred.reduce_to_quantified_ref env sigma (Lazy.force coq_iff_ref) t in @@ -307,7 +306,6 @@ let project_hint ~poly pri l2r r = let p = if l2r then build_coq_iff_left_proj () else build_coq_iff_right_proj () in let sigma, p = Evd.fresh_global env sigma p in - let p = EConstr.of_constr p in let c = Reductionops.whd_beta sigma (mkApp (c, Context.Rel.to_extended_vect mkRel 0 sign)) in let c = it_mkLambda_or_LetIn (mkApp (p,[|mkArrow a (lift 1 b);mkArrow b (lift 1 a);c|])) sign in diff --git a/plugins/ltac/rewrite.ml b/plugins/ltac/rewrite.ml index d32a2faef..9eb55aa5e 100644 --- a/plugins/ltac/rewrite.ml +++ b/plugins/ltac/rewrite.ml @@ -428,7 +428,8 @@ let split_head = function | [] -> assert(false) let eq_pb (ty, env, x, y as pb) (ty', env', x', y' as pb') = - pb == pb' || (ty == ty' && Constr.equal x x' && Constr.equal y y') + let equal x y = Constr.equal (EConstr.Unsafe.to_constr x) (EConstr.Unsafe.to_constr y) in + pb == pb' || (ty == ty' && equal x x' && equal y y') let problem_inclusion x y = List.for_all (fun pb -> List.exists (fun pb' -> eq_pb pb pb') y) x @@ -626,9 +627,9 @@ let solve_remaining_by env sigma holes by = (** Evar should not be defined, but just in case *) | Some evi -> let env = Environ.reset_with_named_context evi.evar_hyps env in - let ty = EConstr.of_constr evi.evar_concl in + let ty = evi.evar_concl in let c, sigma = Pfedit.refine_by_tactic env sigma ty solve_tac in - Evd.define evk c sigma + Evd.define evk (EConstr.of_constr c) sigma in List.fold_left solve sigma indep @@ -1862,7 +1863,6 @@ let declare_projection n instance_id r = let env = Global.env () in let sigma = Evd.from_env env in let sigma,c = Evd.fresh_global env sigma r in - let c = EConstr.of_constr c in let ty = Retyping.get_type_of env sigma c in let term = proper_projection sigma c ty in let sigma, typ = Typing.type_of env sigma term in diff --git a/plugins/ltac/tactic_debug.ml b/plugins/ltac/tactic_debug.ml index 57a11d947..105b5c59a 100644 --- a/plugins/ltac/tactic_debug.ml +++ b/plugins/ltac/tactic_debug.ml @@ -399,8 +399,6 @@ let skip_extensions trace = | [] -> [] in List.rev (aux (List.rev trace)) -let finer_loc loc1 loc2 = Loc.merge_opt loc1 loc2 = loc2 - let extract_ltac_trace ?loc trace = let trace = skip_extensions trace in let (tloc,c),tail = List.sep_last trace in @@ -408,7 +406,7 @@ let extract_ltac_trace ?loc trace = (* We entered a user-defined tactic, we display the trace with location of the call *) let msg = hov 0 (explain_ltac_call_trace c tail loc ++ fnl()) in - (if finer_loc loc tloc then loc else tloc), Some msg + (if Loc.finer loc tloc then loc else tloc), Some msg else (* We entered a primitive tactic, we don't display trace but report on the finest location *) @@ -417,7 +415,7 @@ let extract_ltac_trace ?loc trace = let rec aux best_loc = function | (loc,_)::tail -> if Option.is_empty best_loc || - not (Option.is_empty loc) && finer_loc loc best_loc + not (Option.is_empty loc) && Loc.finer loc best_loc then aux loc tail else diff --git a/plugins/setoid_ring/Algebra_syntax.v b/plugins/setoid_ring/Algebra_syntax.v index e896554ea..1204bbd2e 100644 --- a/plugins/setoid_ring/Algebra_syntax.v +++ b/plugins/setoid_ring/Algebra_syntax.v @@ -1,3 +1,12 @@ +(************************************************************************) +(* * The Coq Proof Assistant / The Coq Development Team *) +(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) +(* <O___,, * (see CREDITS file for the list of authors) *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(* * (see LICENSE file for the text of the license) *) +(************************************************************************) Class Zero (A : Type) := zero : A. Notation "0" := zero. diff --git a/plugins/setoid_ring/Integral_domain.v b/plugins/setoid_ring/Integral_domain.v index 0c16fe1a3..98407cb6d 100644 --- a/plugins/setoid_ring/Integral_domain.v +++ b/plugins/setoid_ring/Integral_domain.v @@ -1,3 +1,13 @@ +(************************************************************************) +(* * The Coq Proof Assistant / The Coq Development Team *) +(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) +(* <O___,, * (see CREDITS file for the list of authors) *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(* * (see LICENSE file for the text of the license) *) +(************************************************************************) + Require Export Cring. diff --git a/plugins/setoid_ring/RealField.v b/plugins/setoid_ring/RealField.v index facd2e062..38bc58a65 100644 --- a/plugins/setoid_ring/RealField.v +++ b/plugins/setoid_ring/RealField.v @@ -1,3 +1,13 @@ +(************************************************************************) +(* * The Coq Proof Assistant / The Coq Development Team *) +(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) +(* <O___,, * (see CREDITS file for the list of authors) *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(* * (see LICENSE file for the text of the license) *) +(************************************************************************) + Require Import Nnat. Require Import ArithRing. Require Export Ring Field. diff --git a/plugins/setoid_ring/Ring_tac.v b/plugins/setoid_ring/Ring_tac.v index 36d1e7c54..e8efb362e 100644 --- a/plugins/setoid_ring/Ring_tac.v +++ b/plugins/setoid_ring/Ring_tac.v @@ -1,3 +1,13 @@ +(************************************************************************) +(* * The Coq Proof Assistant / The Coq Development Team *) +(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) +(* <O___,, * (see CREDITS file for the list of authors) *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(* * (see LICENSE file for the text of the license) *) +(************************************************************************) + Set Implicit Arguments. Require Import Setoid. Require Import BinPos. diff --git a/plugins/setoid_ring/Rings_Q.v b/plugins/setoid_ring/Rings_Q.v index fd7654713..ae91ee166 100644 --- a/plugins/setoid_ring/Rings_Q.v +++ b/plugins/setoid_ring/Rings_Q.v @@ -1,3 +1,13 @@ +(************************************************************************) +(* * The Coq Proof Assistant / The Coq Development Team *) +(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) +(* <O___,, * (see CREDITS file for the list of authors) *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(* * (see LICENSE file for the text of the license) *) +(************************************************************************) + Require Export Cring. Require Export Integral_domain. diff --git a/plugins/setoid_ring/Rings_R.v b/plugins/setoid_ring/Rings_R.v index fd219c235..901b36ed3 100644 --- a/plugins/setoid_ring/Rings_R.v +++ b/plugins/setoid_ring/Rings_R.v @@ -1,3 +1,13 @@ +(************************************************************************) +(* * The Coq Proof Assistant / The Coq Development Team *) +(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) +(* <O___,, * (see CREDITS file for the list of authors) *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(* * (see LICENSE file for the text of the license) *) +(************************************************************************) + Require Export Cring. Require Export Integral_domain. diff --git a/plugins/setoid_ring/Rings_Z.v b/plugins/setoid_ring/Rings_Z.v index 605a23a98..75e77ab6e 100644 --- a/plugins/setoid_ring/Rings_Z.v +++ b/plugins/setoid_ring/Rings_Z.v @@ -1,3 +1,13 @@ +(************************************************************************) +(* * The Coq Proof Assistant / The Coq Development Team *) +(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) +(* <O___,, * (see CREDITS file for the list of authors) *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(* * (see LICENSE file for the text of the license) *) +(************************************************************************) + Require Export Cring. Require Export Integral_domain. Require Export Ncring_initial. diff --git a/plugins/ssr/ssrcommon.ml b/plugins/ssr/ssrcommon.ml index d5118da4c..d012fd0df 100644 --- a/plugins/ssr/ssrcommon.ml +++ b/plugins/ssr/ssrcommon.ml @@ -504,16 +504,17 @@ let nf_evar sigma t = EConstr.Unsafe.to_constr (Evarutil.nf_evar sigma (EConstr.of_constr t)) let pf_abs_evars2 gl rigid (sigma, c0) = - let c0 = EConstr.to_constr sigma c0 in + let c0 = EConstr.to_constr ~abort_on_undefined_evars:false sigma c0 in let sigma0, ucst = project gl, Evd.evar_universe_context sigma in let nenv = env_size (pf_env gl) in let abs_evar n k = let evi = Evd.find sigma k in - let dc = CList.firstn n (evar_filtered_context evi) in + let concl = EConstr.Unsafe.to_constr evi.evar_concl in + let dc = EConstr.Unsafe.to_named_context (CList.firstn n (evar_filtered_context evi)) in let abs_dc c = function | NamedDecl.LocalDef (x,b,t) -> mkNamedLetIn x b t (mkArrow t c) | NamedDecl.LocalAssum (x,t) -> mkNamedProd x t c in - let t = Context.Named.fold_inside abs_dc ~init:evi.evar_concl dc in + let t = Context.Named.fold_inside abs_dc ~init:concl dc in nf_evar sigma t in let rec put evlist c = match Constr.kind c with | Evar (k, a) -> @@ -569,11 +570,12 @@ let pf_abs_evars_pirrel gl (sigma, c0) = let nenv = env_size (pf_env gl) in let abs_evar n k = let evi = Evd.find sigma k in - let dc = CList.firstn n (evar_filtered_context evi) in + let concl = EConstr.Unsafe.to_constr evi.evar_concl in + let dc = EConstr.Unsafe.to_named_context (CList.firstn n (evar_filtered_context evi)) in let abs_dc c = function | NamedDecl.LocalDef (x,b,t) -> mkNamedLetIn x b t (mkArrow t c) | NamedDecl.LocalAssum (x,t) -> mkNamedProd x t c in - let t = Context.Named.fold_inside abs_dc ~init:evi.evar_concl dc in + let t = Context.Named.fold_inside abs_dc ~init:concl dc in nf_evar sigma0 (nf_evar sigma t) in let rec put evlist c = match Constr.kind c with | Evar (k, a) -> @@ -581,7 +583,7 @@ let pf_abs_evars_pirrel gl (sigma, c0) = let n = max 0 (Array.length a - nenv) in let k_ty = Retyping.get_sort_family_of - (pf_env gl) sigma (EConstr.of_constr (Evd.evar_concl (Evd.find sigma k))) in + (pf_env gl) sigma (Evd.evar_concl (Evd.find sigma k)) in let is_prop = k_ty = InProp in let t = abs_evar n k in (k, (n, t, is_prop)) :: put evlist t | _ -> Constr.fold put evlist c in @@ -746,7 +748,7 @@ let pf_mkSsrConst name gl = let pf_fresh_global name gl = let sigma, env, it = project gl, pf_env gl, sig_it gl in let sigma,t = Evd.fresh_global env sigma name in - t, re_sig it sigma + EConstr.Unsafe.to_constr t, re_sig it sigma let mkProt t c gl = let prot, gl = pf_mkSsrConst "protect_term" gl in @@ -800,8 +802,11 @@ let rec is_name_in_ipats name = function List.exists (function SsrHyp(_,id) -> id = name) clr || is_name_in_ipats name tl | IPatId id :: tl -> id = name || is_name_in_ipats name tl - | (IPatCase l | IPatDispatch l) :: tl -> List.exists (is_name_in_ipats name) l || is_name_in_ipats name tl - | _ :: tl -> is_name_in_ipats name tl + | IPatAbstractVars ids :: tl -> + CList.mem_f Id.equal name ids || is_name_in_ipats name tl + | (IPatCase l | IPatDispatch l | IPatInj l) :: tl -> + List.exists (is_name_in_ipats name) l || is_name_in_ipats name tl + | (IPatView _ | IPatAnon _ | IPatSimpl _ | IPatRewrite _ | IPatTac _ | IPatNoop) :: tl -> is_name_in_ipats name tl | [] -> false let view_error s gv = @@ -980,7 +985,7 @@ let applyn ~with_evars ?beta ?(with_shelve=false) n t gl = if not (EConstr.Vars.closed0 sigma ty) then raise dependent_apply_error; let m = Evarutil.new_meta () in - loop (meta_declare m (EConstr.Unsafe.to_constr ty) sigma) bo ((EConstr.mkMeta m)::args) (n-1) + loop (meta_declare m ty sigma) bo ((EConstr.mkMeta m)::args) (n-1) | _ -> assert false in loop sigma t [] n in pp(lazy(str"Refiner.refiner " ++ Printer.pr_econstr_env (pf_env gl) (project gl) t)); diff --git a/plugins/ssr/ssrelim.ml b/plugins/ssr/ssrelim.ml index 717657a24..de8ffb976 100644 --- a/plugins/ssr/ssrelim.ml +++ b/plugins/ssr/ssrelim.ml @@ -356,7 +356,7 @@ let ssrelim ?(ind=ref None) ?(is_case=false) deps what ?elim eqid elim_intro_tac let ev = List.fold_left Evar.Set.union Evar.Set.empty patterns_ev in let ty_ev = Evar.Set.fold (fun i e -> let ex = i in - let i_ty = EConstr.of_constr (Evd.evar_concl (Evd.find (project gl) ex)) in + let i_ty = Evd.evar_concl (Evd.find (project gl) ex) in Evar.Set.union e (evars_of_term i_ty)) ev Evar.Set.empty in let inter = Evar.Set.inter ev ty_ev in diff --git a/plugins/ssr/ssrequality.ml b/plugins/ssr/ssrequality.ml index 57635edac..7748ba2b0 100644 --- a/plugins/ssr/ssrequality.ml +++ b/plugins/ssr/ssrequality.ml @@ -276,7 +276,7 @@ let unfoldintac occ rdx t (kt,_) gl = let foldtac occ rdx ft gl = let sigma0, concl0, env0 = project gl, pf_concl gl, pf_env gl in let sigma, t = ft in - let t = EConstr.to_constr sigma t in + let t = EConstr.to_constr ~abort_on_undefined_evars:false sigma t in let fold, conclude = match rdx with | Some (_, (In_T _ | In_X_In_T _)) | None -> let ise = Evd.create_evar_defs sigma in @@ -359,7 +359,7 @@ let pirrel_rewrite pred rdx rdx_ty new_rdx dir (sigma, c) c_ty gl = let evs = Evar.Set.elements (Evarutil.undefined_evars_of_term sigma t) in let open_evs = List.filter (fun k -> Sorts.InProp <> Retyping.get_sort_family_of - env sigma (EConstr.of_constr (Evd.evar_concl (Evd.find sigma k)))) + env sigma (Evd.evar_concl (Evd.find sigma k))) evs in if open_evs <> [] then Some name else None) (List.combine (Array.to_list args) names) @@ -478,10 +478,10 @@ let rwprocess_rule dir rule gl = | _ -> let ra = Array.append a [|r|] in function 1 -> let sigma, pi1 = Evd.fresh_global env sigma coq_prod.Coqlib.proj1 in - EConstr.mkApp (EConstr.of_constr pi1, ra), sigma + EConstr.mkApp (pi1, ra), sigma | _ -> let sigma, pi2 = Evd.fresh_global env sigma coq_prod.Coqlib.proj2 in - EConstr.mkApp (EConstr.of_constr pi2, ra), sigma in + EConstr.mkApp (pi2, ra), sigma in if EConstr.eq_constr sigma a.(0) (EConstr.of_constr (Universes.constr_of_global @@ Coqlib.build_coq_True ())) then let s, sigma = sr sigma 2 in loop (converse_dir d) sigma s a.(1) rs 0 @@ -557,7 +557,7 @@ let rwrxtac occ rdx_pat dir rule gl = let rpat env sigma0 (sigma, pats) (d, r, lhs, rhs) = let sigma, pat = let rw_progress rhs t evd = rw_progress rhs (EConstr.of_constr t) evd in - mk_tpattern env sigma0 (sigma,EConstr.to_constr sigma r) (rw_progress rhs) d (EConstr.to_constr sigma lhs) in + mk_tpattern env sigma0 (sigma, EConstr.to_constr ~abort_on_undefined_evars:false sigma r) (rw_progress rhs) d (EConstr.to_constr ~abort_on_undefined_evars:false sigma lhs) in sigma, pats @ [pat] in let rpats = List.fold_left (rpat env0 sigma0) (r_sigma,[]) rules in let find_R, end_R = mk_tpattern_matcher sigma0 occ ~upats_origin rpats in @@ -567,7 +567,7 @@ let rwrxtac occ rdx_pat dir rule gl = let r = ref None in (fun env c _ h -> do_once r (fun () -> find_rule (EConstr.of_constr c), c); mkRel h), (fun concl -> closed0_check concl e gl; - let (d,(ev,ctx,c)) , x = assert_done r in (d,(ev,ctx, EConstr.to_constr ev c)) , x) in + let (d,(ev,ctx,c)) , x = assert_done r in (d,(ev,ctx, EConstr.to_constr ~abort_on_undefined_evars:false ev c)) , x) in let concl0 = EConstr.Unsafe.to_constr concl0 in let concl = eval_pattern env0 sigma0 concl0 rdx_pat occ find_R in let (d, r), rdx = conclude concl in @@ -589,7 +589,10 @@ let ssrinstancesofrule ist dir arg gl = let rpat env sigma0 (sigma, pats) (d, r, lhs, rhs) = let sigma, pat = let rw_progress rhs t evd = rw_progress rhs (EConstr.of_constr t) evd in - mk_tpattern env sigma0 (sigma,EConstr.to_constr sigma r) (rw_progress rhs) d (EConstr.to_constr sigma lhs) in + mk_tpattern env sigma0 + (sigma,EConstr.to_constr ~abort_on_undefined_evars:false sigma r) + (rw_progress rhs) d + (EConstr.to_constr ~abort_on_undefined_evars:false sigma lhs) in sigma, pats @ [pat] in let rpats = List.fold_left (rpat env0 sigma0) (r_sigma,[]) rules in mk_tpattern_matcher ~all_instances:true ~raise_NoMatch:true sigma0 None ~upats_origin rpats in diff --git a/plugins/ssr/ssripats.ml b/plugins/ssr/ssripats.ml index 7897cb170..b397c5531 100644 --- a/plugins/ssr/ssripats.ml +++ b/plugins/ssr/ssripats.ml @@ -218,15 +218,16 @@ let rec ipat_tac1 future_ipats ipat : unit tactic = Ssrview.tclIPAT_VIEWS ~views:l ~conclusion:(fun ~to_clear:clr -> intro_clear clr future_ipats) | IPatDispatch ipatss -> - tclEXTEND (List.map ipat_tac ipatss) (tclUNIT ()) [] + tclEXTEND (List.map (ipat_tac future_ipats) ipatss) (tclUNIT ()) [] | IPatId id -> Ssrcommon.tclINTRO_ID id | IPatCase ipatss -> - tclIORPAT (Ssrcommon.tclWITHTOP tac_case) ipatss + tclIORPAT (Ssrcommon.tclWITHTOP tac_case) future_ipats ipatss | IPatInj ipatss -> tclIORPAT (Ssrcommon.tclWITHTOP - (fun t -> V82.tactic ~nf_evars:false (Ssrelim.perform_injection t))) ipatss + (fun t -> V82.tactic ~nf_evars:false (Ssrelim.perform_injection t))) + future_ipats ipatss | IPatAnon Drop -> intro_drop | IPatAnon One -> Ssrcommon.tclINTRO_ANON @@ -254,17 +255,17 @@ let rec ipat_tac1 future_ipats ipat : unit tactic = | IPatTac t -> t -and ipat_tac pl : unit tactic = +and ipat_tac future_ipats pl : unit tactic = match pl with | [] -> tclUNIT () | pat :: pl -> - Ssrcommon.tcl0G (tclLOG pat (ipat_tac1 pl)) <*> + Ssrcommon.tcl0G (tclLOG pat (ipat_tac1 (pl @ future_ipats))) <*> isTICK pat <*> - ipat_tac pl + ipat_tac future_ipats pl -and tclIORPAT tac = function +and tclIORPAT tac future_ipats = function | [[]] -> tac - | p -> Tacticals.New.tclTHENS tac (List.map ipat_tac p) + | p -> Tacticals.New.tclTHENS tac (List.map (ipat_tac future_ipats) p) let split_at_first_case ipats = let rec loop acc = function @@ -285,7 +286,7 @@ let main ?eqtac ~first_case_is_dispatch ipats = let case = ssr_exception first_case_is_dispatch case in let case = option_to_list case in let eqtac = option_to_list (Option.map (fun x -> IPatTac x) eqtac) in - Ssrcommon.tcl0G (ipat_tac (ip_before @ case @ eqtac @ ip_after) <*> intro_end) + Ssrcommon.tcl0G (ipat_tac [] (ip_before @ case @ eqtac @ ip_after) <*> intro_end) end (* }}} *) @@ -418,7 +419,7 @@ let tclLAST_GEN ~to_ind ((oclr, occ), t) conclusion = tclINDEPENDENTL begin Goal.enter_one begin fun g -> let pat = Ssrmatching.interp_cpattern sigma0 t None in let cl0, env, sigma, hyps = Goal.(concl g, env g, sigma g, hyps g) in - let cl = EConstr.to_constr sigma cl0 in + let cl = EConstr.to_constr ~abort_on_undefined_evars:false sigma cl0 in let (c, ucst), cl = try Ssrmatching.fill_occ_pattern ~raise_NoMatch:true env sigma cl pat occ 1 with Ssrmatching.NoMatch -> Ssrmatching.redex_of_pattern env pat, cl in @@ -623,7 +624,7 @@ let tacFIND_ABSTRACT_PROOF check_lock abstract_n = Goal.enter_one ~__LOC__ begin fun g -> let sigma, env = Goal.(sigma g, env g) in let l = Evd.fold_undefined (fun e ei l -> - match EConstr.kind sigma (EConstr.of_constr ei.Evd.evar_concl) with + match EConstr.kind sigma ei.Evd.evar_concl with | Term.App(hd, [|ty; n; lock|]) when (not check_lock || (occur_existential_or_casted_meta sigma ty && diff --git a/plugins/ssr/ssrview.ml b/plugins/ssr/ssrview.ml index aa614fbc1..fc50b24a6 100644 --- a/plugins/ssr/ssrview.ml +++ b/plugins/ssr/ssrview.ml @@ -254,7 +254,7 @@ let finalize_view s0 ?(simple_types=true) p = Goal.enter_one ~__LOC__ begin fun g -> let env = Goal.env g in let sigma = Goal.sigma g in - let evars_of_p = Evd.evars_of_term (EConstr.to_constr sigma p) in + let evars_of_p = Evd.evars_of_term (EConstr.to_constr ~abort_on_undefined_evars:false sigma p) in let filter x _ = Evar.Set.mem x evars_of_p in let sigma = Typeclasses.resolve_typeclasses ~fail:false ~filter env sigma in let p = Reductionops.nf_evar sigma p in @@ -265,7 +265,7 @@ Goal.enter_one ~__LOC__ begin fun g -> List.fold_left (fun l k -> if Evd.is_defined sigma k then let bo = get_body Evd.(evar_body (find sigma k)) in - k :: l @ Evar.Set.elements (evars_of_econstr sigma bo) + k :: l @ Evar.Set.elements (evars_of_econstr sigma (EConstr.Unsafe.to_constr bo)) else l ) [] s in let und0 = (* Unassigned evars in the initial goal *) diff --git a/plugins/ssrmatching/ssrmatching.ml4 b/plugins/ssrmatching/ssrmatching.ml4 index 2ba6acc03..a10437a63 100644 --- a/plugins/ssrmatching/ssrmatching.ml4 +++ b/plugins/ssrmatching/ssrmatching.ml4 @@ -283,7 +283,7 @@ exception NoProgress (* comparison can be much faster than the HO one. *) let unif_EQ env sigma p c = - let evars = existential_opt_value sigma, Evd.universes sigma in + let evars = existential_opt_value0 sigma, Evd.universes sigma in try let _ = Reduction.conv env p ~evars c in true with _ -> false let unif_EQ_args env sigma pa a = @@ -337,7 +337,7 @@ let nf_open_term sigma0 ise c = let s = ise and s' = ref sigma0 in let rec nf c' = match kind c' with | Evar ex -> - begin try nf (existential_value s ex) with _ -> + begin try nf (existential_value0 s ex) with _ -> let k, a = ex in let a' = Array.map nf a in if not (Evd.mem !s' k) then s' := Evd.add !s' k (Evarutil.nf_evar_info s (Evd.find s k)); @@ -347,7 +347,9 @@ let nf_open_term sigma0 ise c = let copy_def k evi () = if evar_body evi != Evd.Evar_empty then () else match Evd.evar_body (Evd.find s k) with - | Evar_defined c' -> s' := Evd.define k (nf c') !s' + | Evar_defined c' -> + let c' = EConstr.of_constr (nf (EConstr.Unsafe.to_constr c')) in + s' := Evd.define k c' !s' | _ -> () in let c' = nf c in let _ = Evd.fold copy_def sigma0 () in !s', Evd.evar_universe_context s, EConstr.of_constr c' @@ -446,7 +448,7 @@ let evars_for_FO ~hack env sigma0 (ise0:evar_map) c0 = let nenv = env_size env + if hack then 1 else 0 in let rec put c = match kind c with | Evar (k, a as ex) -> - begin try put (existential_value !sigma ex) + begin try put (existential_value0 !sigma ex) with NotInstantiatedEvar -> if Evd.mem sigma0 k then map put c else let evi = Evd.find !sigma k in @@ -457,11 +459,13 @@ let evars_for_FO ~hack env sigma0 (ise0:evar_map) c0 = | Context.Named.Declaration.LocalAssum (x, t) -> mkVar x :: d, mkNamedProd x (put t) c in let a, t = - Context.Named.fold_inside abs_dc ~init:([], (put evi.evar_concl)) dc in + Context.Named.fold_inside abs_dc + ~init:([], (put @@ EConstr.Unsafe.to_constr evi.evar_concl)) + (EConstr.Unsafe.to_named_context dc) in let m = Evarutil.new_meta () in - ise := meta_declare m t !ise; - sigma := Evd.define k (applistc (mkMeta m) a) !sigma; - put (existential_value !sigma ex) + ise := meta_declare m (EConstr.of_constr t) !ise; + sigma := Evd.define k (EConstr.of_constr (applistc (mkMeta m) a)) !sigma; + put (existential_value0 !sigma ex) end | _ -> map put c in let c1 = put c0 in !ise, c1 @@ -541,7 +545,7 @@ let splay_app ise = | App (f, a') -> loop f (Array.append a' a) | Cast (c', _, _) -> loop c' a | Evar ex -> - (try loop (existential_value ise ex) a with _ -> c, a) + (try loop (existential_value0 ise ex) a with _ -> c, a) | _ -> c, a in fun c -> match kind c with | App (f, a) -> loop f a @@ -1255,7 +1259,7 @@ let eval_pattern ?raise_NoMatch env0 sigma0 concl0 pattern occ do_subst = let fs sigma x = nf_evar sigma x in let pop_evar sigma e p = let { Evd.evar_body = e_body } as e_def = Evd.find sigma e in - let e_body = match e_body with Evar_defined c -> c + let e_body = match e_body with Evar_defined c -> EConstr.Unsafe.to_constr c | _ -> errorstrm (str "Matching the pattern " ++ pr_constr_env env0 sigma0 p ++ str " did not instantiate ?" ++ int (Evar.repr e) ++ spc () ++ str "Does the variable bound by the \"in\" construct occur "++ diff --git a/pretyping/cases.ml b/pretyping/cases.ml index 73be9d6b7..4c87b4e7e 100644 --- a/pretyping/cases.ml +++ b/pretyping/cases.ml @@ -1015,7 +1015,7 @@ let adjust_impossible_cases pb pred tomatch submat = | Evar (evk,_) when snd (evar_source evk !(pb.evdref)) == Evar_kinds.ImpossibleCase -> if not (Evd.is_defined !(pb.evdref) evk) then begin let evd, default = use_unit_judge !(pb.evdref) in - pb.evdref := Evd.define evk (EConstr.Unsafe.to_constr default.uj_type) evd + pb.evdref := Evd.define evk default.uj_type evd end; add_assert_false_case pb tomatch | _ -> @@ -2581,7 +2581,8 @@ let compile_program_cases ?loc style (typing_function, evdref) tycon env lvar let body = it_mkLambda_or_LetIn (applist (j.uj_val, args)) lets in let j = { uj_val = it_mkLambda_or_LetIn body tomatchs_lets; - uj_type = EConstr.of_constr (EConstr.to_constr !evdref tycon); } + (* XXX: is this normalization needed? *) + uj_type = Evarutil.nf_evar !evdref tycon; } in j (**************************************************************************) diff --git a/pretyping/cbv.ml b/pretyping/cbv.ml index a2155697e..cb0fc3257 100644 --- a/pretyping/cbv.ml +++ b/pretyping/cbv.ml @@ -71,7 +71,7 @@ and cbv_stack = | TOP | APP of cbv_value array * cbv_stack | CASE of constr * constr array * case_info * cbv_value subs * cbv_stack - | PROJ of projection * Declarations.projection_body * cbv_stack + | PROJ of Projection.t * Declarations.projection_body * cbv_stack (* les vars pourraient etre des constr, cela permet de retarder les lift: utile ?? *) diff --git a/pretyping/cbv.mli b/pretyping/cbv.mli index 2ac59911c..cdaa39c53 100644 --- a/pretyping/cbv.mli +++ b/pretyping/cbv.mli @@ -41,7 +41,7 @@ and cbv_stack = | TOP | APP of cbv_value array * cbv_stack | CASE of constr * constr array * case_info * cbv_value subs * cbv_stack - | PROJ of projection * Declarations.projection_body * cbv_stack + | PROJ of Projection.t * Declarations.projection_body * cbv_stack val shift_value : int -> cbv_value -> cbv_value diff --git a/pretyping/coercion.ml b/pretyping/coercion.ml index 04cb6a59f..6dc3687a0 100644 --- a/pretyping/coercion.ml +++ b/pretyping/coercion.ml @@ -251,7 +251,7 @@ and coerce ?loc env evdref (x : EConstr.constr) (y : EConstr.constr) let (n, dom, rng) = destLambda !evdref t in if isEvar !evdref dom then let (domk, args) = destEvar !evdref dom in - evdref := define domk (EConstr.Unsafe.to_constr a) !evdref; + evdref := define domk a !evdref; else (); t, rng | _ -> raise NoSubtacCoercion diff --git a/pretyping/evarconv.ml b/pretyping/evarconv.ml index d37090a65..144166a34 100644 --- a/pretyping/evarconv.ml +++ b/pretyping/evarconv.ml @@ -114,9 +114,6 @@ let flex_kind_of_term ts env evd c sk = | Fix _ -> Rigid (* happens when the fixpoint is partially applied *) | Cast _ | App _ | Case _ -> assert false -let add_conv_pb (pb, env, x, y) sigma = - Evd.add_conv_pb (pb, env, EConstr.Unsafe.to_constr x, EConstr.Unsafe.to_constr y) sigma - let apprec_nohdbeta ts env evd c = let (t,sk as appr) = Reductionops.whd_nored_state evd (c, []) in if Stack.not_purely_applicative sk @@ -1045,7 +1042,7 @@ let choose_less_dependent_instance evk evd term args = let subst' = List.filter (fun (id,c) -> EConstr.eq_constr evd c term) subst in match subst' with | [] -> None - | (id, _) :: _ -> Some (Evd.define evk (Constr.mkVar id) evd) + | (id, _) :: _ -> Some (Evd.define evk (mkVar id) evd) let apply_on_subterm env evdref f c t = let rec applyrec (env,(k,c) as acc) t = @@ -1085,7 +1082,7 @@ let filter_possible_projections evd c ty ctxt args = let a = Array.unsafe_get args i in (match decl with | NamedDecl.LocalAssum _ -> false - | NamedDecl.LocalDef (_,c,_) -> not (isRel evd (EConstr.of_constr c) || isVar evd (EConstr.of_constr c))) || + | NamedDecl.LocalDef (_,c,_) -> not (isRel evd c || isVar evd c)) || a == c || (* Here we make an approximation, for instance, we could also be *) (* interested in finding a term u convertible to c such that a occurs *) @@ -1135,7 +1132,7 @@ let second_order_matching ts env_rhs evd (evk,args) argoccs rhs = end | decl'::ctxt', c::l, occs::occsl -> let id = NamedDecl.get_id decl' in - let t = EConstr.of_constr (NamedDecl.get_type decl') in + let t = NamedDecl.get_type decl' in let evs = ref [] in let ty = Retyping.get_type_of env_rhs evd c in let filter' = filter_possible_projections evd c ty ctxt args in @@ -1183,7 +1180,7 @@ let second_order_matching ts env_rhs evd (evk,args) argoccs rhs = (* We force abstraction over this unconstrained occurrence *) (* and we use typing to propagate this instantiation *) (* This is an arbitrary choice *) - let evd = Evd.define evk (Constr.mkVar id) evd in + let evd = Evd.define evk (mkVar id) evd in match evar_conv_x ts env_evar evd CUMUL idty evty with | UnifFailure _ -> user_err Pp.(str "Cannot find an instance") | Success evd -> @@ -1205,14 +1202,11 @@ let second_order_matching ts env_rhs evd (evk,args) argoccs rhs = (evar_conv_x full_transparent_state) with IllTypedInstance _ -> raise (TypingFailed evd) in - Evd.define evk (EConstr.Unsafe.to_constr rhs) evd + Evd.define evk rhs evd in abstract_free_holes evd subst, true with TypingFailed evd -> evd, false -let to_pb (pb, env, t1, t2) = - (pb, env, EConstr.Unsafe.to_constr t1, EConstr.Unsafe.to_constr t2) - let second_order_matching_with_args ts env evd pbty ev l t = (* let evd,ev = evar_absorb_arguments env evd ev l in @@ -1222,7 +1216,7 @@ let second_order_matching_with_args ts env evd pbty ev l t = else UnifFailure (evd, ConversionFailed (env,mkApp(mkEvar ev,l),t)) if b then Success evd else *) - let pb = to_pb (pbty,env,mkApp(mkEvar ev,l),t) in + let pb = (pbty,env,mkApp(mkEvar ev,l),t) in UnifFailure (evd, CannotSolveConstraint (pb,ProblemBeyondCapabilities)) let apply_conversion_problem_heuristic ts env evd pbty t1 t2 = @@ -1245,7 +1239,7 @@ let apply_conversion_problem_heuristic ts env evd pbty t1 t2 = | Some evd -> Success evd | None -> let reason = ProblemBeyondCapabilities in - UnifFailure (evd, CannotSolveConstraint (to_pb (pbty,env,t1,t2),reason))) + UnifFailure (evd, CannotSolveConstraint ((pbty,env,t1,t2),reason))) | (Rel _|Var _), Evar (evk2,args2) when app_empty && List.for_all (fun a -> EConstr.eq_constr evd a term1 || isEvar evd a) (remove_instance_local_defs evd evk2 args2) -> @@ -1255,7 +1249,7 @@ let apply_conversion_problem_heuristic ts env evd pbty t1 t2 = | Some evd -> Success evd | None -> let reason = ProblemBeyondCapabilities in - UnifFailure (evd, CannotSolveConstraint (to_pb (pbty,env,t1,t2),reason))) + UnifFailure (evd, CannotSolveConstraint ((pbty,env,t1,t2),reason))) | Evar (evk1,args1), Evar (evk2,args2) when Evar.equal evk1 evk2 -> let f env evd pbty x y = is_fconv ~reds:ts pbty env evd x y in Success (solve_refl ~can_drop:true f env evd @@ -1295,10 +1289,10 @@ let error_cannot_unify env evd pb ?reason t1 t2 = let check_problems_are_solved env evd = match snd (extract_all_conv_pbs evd) with - | (pbty,env,t1,t2) as pb::_ -> error_cannot_unify env evd pb (EConstr.of_constr t1) (EConstr.of_constr t2) + | (pbty,env,t1,t2) as pb::_ -> error_cannot_unify env evd pb t1 t2 | _ -> () -exception MaxUndefined of (Evar.t * evar_info * Constr.t list) +exception MaxUndefined of (Evar.t * evar_info * EConstr.t list) let max_undefined_with_candidates evd = let fold evk evi () = match evi.evar_candidates with @@ -1326,7 +1320,7 @@ let rec solve_unconstrained_evars_with_candidates ts evd = | a::l -> try let conv_algo = evar_conv_x ts in - let evd = check_evar_instance evd evk (EConstr.of_constr a) conv_algo in + let evd = check_evar_instance evd evk a conv_algo in let evd = Evd.define evk a evd in match reconsider_unif_constraints conv_algo evd with | Success evd -> solve_unconstrained_evars_with_candidates ts evd @@ -1348,7 +1342,7 @@ let solve_unconstrained_impossible_cases env evd = let ty = j_type j in let conv_algo = evar_conv_x full_transparent_state in let evd' = check_evar_instance evd' evk ty conv_algo in - Evd.define evk (EConstr.Unsafe.to_constr ty) evd' + Evd.define evk ty evd' | _ -> evd') evd evd let solve_unif_constraints_with_heuristics env @@ -1357,8 +1351,6 @@ let solve_unif_constraints_with_heuristics env let rec aux evd pbs progress stuck = match pbs with | (pbty,env,t1,t2 as pb) :: pbs -> - let t1 = EConstr.of_constr t1 in - let t2 = EConstr.of_constr t2 in (match apply_conversion_problem_heuristic ts env evd pbty t1 t2 with | Success evd' -> let (evd', rest) = extract_all_conv_pbs evd' in @@ -1375,9 +1367,7 @@ let solve_unif_constraints_with_heuristics env match stuck with | [] -> (* We're finished *) evd | (pbty,env,t1,t2 as pb) :: _ -> - let t1 = EConstr.of_constr t1 in - let t2 = EConstr.of_constr t2 in - (* There remains stuck problems *) + (* There remains stuck problems *) error_cannot_unify env evd pb t1 t2 in let (evd,pbs) = extract_all_conv_pbs evd in diff --git a/pretyping/evarconv.mli b/pretyping/evarconv.mli index 627430708..9270d6e3a 100644 --- a/pretyping/evarconv.mli +++ b/pretyping/evarconv.mli @@ -38,7 +38,7 @@ val e_cumul : env -> ?ts:transparent_state -> evar_map ref -> constr -> constr - val solve_unif_constraints_with_heuristics : env -> ?ts:transparent_state -> evar_map -> evar_map val consider_remaining_unif_problems : env -> ?ts:transparent_state -> evar_map -> evar_map -(** @deprecated Alias for [solve_unif_constraints_with_heuristics] *) +[@@ocaml.deprecated "Alias for [solve_unif_constraints_with_heuristics]"] (** Check all pending unification problems are solved and raise an error otherwise *) diff --git a/pretyping/evardefine.ml b/pretyping/evardefine.ml index 4cffbbb83..b452755b1 100644 --- a/pretyping/evardefine.ml +++ b/pretyping/evardefine.ml @@ -77,7 +77,7 @@ let define_pure_evar_as_product evd evk = let evi = Evd.find_undefined evd evk in let evenv = evar_env evi in let id = next_ident_away idx (Environ.ids_of_named_context_val evi.evar_hyps) in - let concl = Reductionops.whd_all evenv evd (EConstr.of_constr evi.evar_concl) in + let concl = Reductionops.whd_all evenv evd evi.evar_concl in let s = destSort evd concl in let evksrc = evar_source evk evd in let src = subterm_source evk ~where:Domain evksrc in @@ -101,7 +101,7 @@ let define_pure_evar_as_product evd evk = evd3, rng in let prod = mkProd (Name id, dom, subst_var id rng) in - let evd3 = Evd.define evk (EConstr.Unsafe.to_constr prod) evd2 in + let evd3 = Evd.define evk prod evd2 in evd3,prod (* Refine an applied evar to a product and returns its instantiation *) @@ -128,7 +128,7 @@ let define_pure_evar_as_lambda env evd evk = let open Context.Named.Declaration in let evi = Evd.find_undefined evd evk in let evenv = evar_env evi in - let typ = Reductionops.whd_all evenv evd (EConstr.of_constr (evar_concl evi)) in + let typ = Reductionops.whd_all evenv evd (evar_concl evi) in let evd1,(na,dom,rng) = match EConstr.kind evd typ with | Prod (na,dom,rng) -> (evd,(na,dom,rng)) | Evar ev' -> let evd,typ = define_evar_as_product evd ev' in evd,destProd evd typ @@ -141,7 +141,7 @@ let define_pure_evar_as_lambda env evd evk = let src = subterm_source evk ~where:Body (evar_source evk evd1) in let evd2,body = new_evar newenv evd1 ~src (subst1 (mkVar id) rng) ~filter in let lam = mkLambda (Name id, dom, subst_var id body) in - Evd.define evk (EConstr.Unsafe.to_constr lam) evd2, lam + Evd.define evk lam evd2, lam let define_evar_as_lambda env evd (evk,args) = let evd,lam = define_pure_evar_as_lambda env evd evk in @@ -166,9 +166,9 @@ let define_evar_as_sort env evd (ev,args) = let evd, u = new_univ_variable univ_rigid evd in let evi = Evd.find_undefined evd ev in let s = Type u in - let concl = Reductionops.whd_all (evar_env evi) evd (EConstr.of_constr evi.evar_concl) in + let concl = Reductionops.whd_all (evar_env evi) evd evi.evar_concl in let sort = destSort evd concl in - let evd' = Evd.define ev (Constr.mkSort s) evd in + let evd' = Evd.define ev (mkSort s) evd in Evd.set_leq_sort env evd' (Type (Univ.super u)) (ESorts.kind evd' sort), s (* Propagation of constraints through application and abstraction: diff --git a/pretyping/evarsolve.ml b/pretyping/evarsolve.ml index 96d80741a..b7eaff078 100644 --- a/pretyping/evarsolve.ml +++ b/pretyping/evarsolve.ml @@ -89,9 +89,9 @@ let refresh_universes ?(status=univ_rigid) ?(onlyalg=false) ?(refreshset=false) Array.iter (refresh_term_evars onevars false) args | Evar (ev, a) when onevars -> let evi = Evd.find !evdref ev in - let ty' = refresh ~onlyalg univ_flexible ~direction:true (EConstr.of_constr evi.evar_concl) in + let ty' = refresh ~onlyalg univ_flexible ~direction:true evi.evar_concl in if !modified then - evdref := Evd.add !evdref ev {evi with evar_concl = EConstr.Unsafe.to_constr ty'} + evdref := Evd.add !evdref ev {evi with evar_concl = ty'} else () | _ -> EConstr.iter !evdref (refresh_term_evars onevars false) t and refresh_polymorphic_positions args pos = @@ -137,8 +137,6 @@ let test_success conv_algo env evd c c' rhs = is_success (conv_algo env evd c c' rhs) let add_conv_oriented_pb ?(tail=true) (pbty,env,t1,t2) evd = - let t1 = EConstr.Unsafe.to_constr t1 in - let t2 = EConstr.Unsafe.to_constr t2 in match pbty with | Some true -> add_conv_pb ~tail (Reduction.CUMUL,env,t1,t2) evd | Some false -> add_conv_pb ~tail (Reduction.CUMUL,env,t2,t1) evd @@ -197,7 +195,7 @@ let restrict_evar_key evd evk filter candidates = | None -> evar_filter evi | Some filter -> filter in let candidates = match candidates with - | NoUpdate -> Option.map (fun l -> List.map EConstr.of_constr l) evi.evar_candidates + | NoUpdate -> evi.evar_candidates | UpdateWith c -> Some c in restrict_evar evd evk filter candidates end @@ -600,7 +598,6 @@ let solve_pattern_eqn env sigma l c = let make_projectable_subst aliases sigma evi args = let sign = evar_filtered_context evi in - let sign = List.map (fun d -> map_named_decl EConstr.of_constr d) sign in let evar_aliases = compute_var_aliases sign sigma in let (_,full_subst,cstr_subst) = List.fold_right @@ -877,7 +874,7 @@ let choose_projection evi sols = let rec do_projection_effects define_fun env ty evd = function | ProjectVar -> evd | ProjectEvar ((evk,argsv),evi,id,p) -> - let evd = Evd.define evk (Constr.mkVar id) evd in + let evd = Evd.define evk (mkVar id) evd in (* TODO: simplify constraints involving evk *) let evd = do_projection_effects define_fun env ty evd p in let ty = whd_all env evd (Lazy.force ty) in @@ -887,7 +884,7 @@ let rec do_projection_effects define_fun env ty evd = function one (however, regarding coercions, because t is obtained by unif, we know that no coercion can be inserted) *) let subst = make_pure_subst evi argsv in - let ty' = replace_vars subst (EConstr.of_constr evi.evar_concl) in + let ty' = replace_vars subst evi.evar_concl in if isEvar evd ty' then define_fun env evd (Some false) (destEvar evd ty') ty else evd else evd @@ -1004,7 +1001,7 @@ let filter_effective_candidates evd evi filter candidates = let filter_candidates evd evk filter candidates_update = let evi = Evd.find_undefined evd evk in let candidates = match candidates_update with - | NoUpdate -> Option.map (fun l -> List.map EConstr.of_constr l) evi.evar_candidates + | NoUpdate -> evi.evar_candidates | UpdateWith c -> Some c in match candidates with @@ -1023,13 +1020,12 @@ let closure_of_filter evd evk = function | None -> None | Some filter -> let evi = Evd.find_undefined evd evk in - let vars = collect_vars evd (EConstr.of_constr (evar_concl evi)) in + let vars = collect_vars evd (evar_concl evi) in let test b decl = b || Id.Set.mem (get_id decl) vars || match decl with | LocalAssum _ -> false | LocalDef (_,c,_) -> - let c = EConstr.of_constr c in not (isRel evd c || isVar evd c) in let newfilter = Filter.map_along test filter (evar_context evi) in @@ -1062,7 +1058,7 @@ let do_restrict_hyps evd (evk,args as ev) filter candidates = match candidates,filter with | UpdateWith [], _ -> user_err Pp.(str "Not solvable.") | UpdateWith [nc],_ -> - let evd = Evd.define evk (EConstr.Unsafe.to_constr nc) evd in + let evd = Evd.define evk nc evd in raise (EvarSolvedWhileRestricting (evd,mkEvar ev)) | NoUpdate, None -> evd,ev | _ -> restrict_applied_evar evd ev filter candidates @@ -1113,9 +1109,6 @@ let postpone_non_unique_projection env evd pbty (evk,argsv as ev) sols rhs = * Note: argument f is the function used to instantiate evars. *) -let instantiate_evar_array evi c args = - EConstr.of_constr (instantiate_evar_array evi (EConstr.Unsafe.to_constr c) (Array.map EConstr.Unsafe.to_constr args)) - let filter_compatible_candidates conv_algo env evd evi args rhs c = let c' = instantiate_evar_array evi c args in match conv_algo env evd Reduction.CONV rhs c' with @@ -1135,8 +1128,6 @@ let restrict_candidates conv_algo env evd filter1 (evk1,argsv1) (evk2,argsv2) = | _, None -> filter_candidates evd evk1 filter1 NoUpdate | None, Some _ -> raise DoesNotPreserveCandidateRestriction | Some l1, Some l2 -> - let l1 = List.map EConstr.of_constr l1 in - let l2 = List.map EConstr.of_constr l2 in let l1 = filter_effective_candidates evd evi1 filter1 l1 in let l1' = List.filter (fun c1 -> let c1' = instantiate_evar_array evi1 c1 argsv1 in @@ -1242,9 +1233,9 @@ let check_evar_instance evd evk1 body conv_algo = try Retyping.get_type_of ~lax:true evenv evd body with Retyping.RetypeError _ -> user_err Pp.(str "Ill-typed evar instance") in - match conv_algo evenv evd Reduction.CUMUL ty (EConstr.of_constr evi.evar_concl) with + match conv_algo evenv evd Reduction.CUMUL ty evi.evar_concl with | Success evd -> evd - | UnifFailure _ -> raise (IllTypedInstance (evenv,ty,EConstr.of_constr evi.evar_concl)) + | UnifFailure _ -> raise (IllTypedInstance (evenv,ty, evi.evar_concl)) let update_evar_source ev1 ev2 evd = let loc, evs2 = evar_source ev2 evd in @@ -1257,7 +1248,7 @@ let update_evar_source ev1 ev2 evd = let solve_evar_evar_l2r force f g env evd aliases pbty ev1 (evk2,_ as ev2) = try let evd,body = project_evar_on_evar force g env evd aliases 0 pbty ev1 ev2 in - let evd' = Evd.define evk2 (EConstr.Unsafe.to_constr body) evd in + let evd' = Evd.define evk2 body evd in let evd' = update_evar_source (fst (destEvar evd body)) evk2 evd' in check_evar_instance evd' evk2 body g with EvarSolvedOnTheFly (evd,c) -> @@ -1292,17 +1283,19 @@ let solve_evar_evar_aux force f g env evd pbty (evk1,args1 as ev1) (evk2,args2 a let solve_evar_evar ?(force=false) f g env evd pbty (evk1,args1 as ev1) (evk2,args2 as ev2) = let pbty = if force then None else pbty in let evi = Evd.find evd evk1 in - let downcast evk t evd = downcast evk (EConstr.Unsafe.to_constr t) evd in + let downcast evk t evd = downcast evk t evd in let evd = try (* ?X : Π Δ. Type i = ?Y : Π Δ'. Type j. The body of ?X and ?Y just has to be of type Π Δ. Type k for some k <= i, j. *) let evienv = Evd.evar_env evi in - let ctx1, i = Reduction.dest_arity evienv evi.evar_concl in + let concl1 = EConstr.Unsafe.to_constr evi.evar_concl in + let ctx1, i = Reduction.dest_arity evienv concl1 in let ctx1 = List.map (fun c -> map_rel_decl EConstr.of_constr c) ctx1 in let evi2 = Evd.find evd evk2 in let evi2env = Evd.evar_env evi2 in - let ctx2, j = Reduction.dest_arity evi2env evi2.evar_concl in + let concl2 = EConstr.Unsafe.to_constr evi2.evar_concl in + let ctx2, j = Reduction.dest_arity evi2env concl2 in let ctx2 = List.map (fun c -> map_rel_decl EConstr.of_constr c) ctx2 in let ui, uj = univ_of_sort i, univ_of_sort j in if i == j || Evd.check_eq evd ui uj @@ -1375,14 +1368,14 @@ let solve_candidates conv_algo env evd (evk,argsv) rhs = | Some l -> let l' = List.map_filter - (fun c -> filter_compatible_candidates conv_algo env evd evi argsv rhs (EConstr.of_constr c)) l in + (fun c -> filter_compatible_candidates conv_algo env evd evi argsv rhs c) l in match l' with | [] -> raise IncompatibleCandidates | [c,evd] -> (* solve_candidates might have been called recursively in the mean *) (* time and the evar been solved by the filtering process *) if Evd.is_undefined evd evk then - let evd' = Evd.define evk (EConstr.Unsafe.to_constr c) evd in + let evd' = Evd.define evk c evd in check_evar_instance evd' evk c conv_algo else evd | l when List.length l < List.length l' -> @@ -1401,8 +1394,8 @@ let occur_evar_upto_types sigma n c = Array.iter occur_rec args else ( seen := Evar.Set.add sp !seen; - Option.iter occur_rec (existential_opt_value sigma e); - occur_rec (Evd.existential_type sigma e)) + Option.iter occur_rec (existential_opt_value0 sigma e); + occur_rec (Evd.existential_type0 sigma e)) | _ -> Constr.iter occur_rec c in try occur_rec c; false with Occur -> true @@ -1529,7 +1522,7 @@ let rec invert_definition conv_algo choose env evd pbty (evk,argsv as ev) rhs = (* Try to project (a restriction of) the left evar ... *) try let evd,body = project_evar_on_evar false conv_algo env' evd aliases 0 None ev'' ev' in - let evd = Evd.define evk' (EConstr.Unsafe.to_constr body) evd in + let evd = Evd.define evk' body evd in check_evar_instance evd evk' body conv_algo with | EvarSolvedOnTheFly _ -> assert false (* ev has no candidates *) @@ -1592,14 +1585,14 @@ let rec invert_definition conv_algo choose env evd pbty (evk,argsv as ev) rhs = Id.Set.subset (collect_vars evd rhs) !names in let body = - if fast rhs then EConstr.of_constr (EConstr.to_constr evd rhs) (** FIXME? *) + if fast rhs then nf_evar evd rhs (** FIXME? *) else let t' = imitate (env,0) rhs in if !progress then (recheck_applications conv_algo (evar_env evi) evdref t'; t') else t' in (!evdref,body) - + (* [define] tries to solve the problem "?ev[args] = rhs" when "?ev" is * an (uninstantiated) evar such that "hyps |- ?ev : typ". Otherwise said, * [define] tries to find an instance lhs such that @@ -1644,7 +1637,7 @@ and evar_define conv_algo ?(choose=false) env evd pbty (evk,argsv as ev) rhs = print_constr body); raise e in*) let evd' = check_evar_instance evd' evk body conv_algo in - Evd.define evk (EConstr.Unsafe.to_constr body) evd' + Evd.define evk body evd' with | NotEnoughInformationToProgress sols -> postpone_non_unique_projection env evd pbty ev sols rhs @@ -1691,8 +1684,6 @@ and evar_define conv_algo ?(choose=false) env evd pbty (evk,argsv as ev) rhs = *) let status_changed evd lev (pbty,_,t1,t2) = - let t1 = EConstr.of_constr t1 in - let t2 = EConstr.of_constr t2 in (try Evar.Set.mem (head_evar evd t1) lev with NoHeadEvar -> false) || (try Evar.Set.mem (head_evar evd t2) lev with NoHeadEvar -> false) @@ -1702,7 +1693,7 @@ let reconsider_unif_constraints conv_algo evd = (fun p (pbty,env,t1,t2 as x) -> match p with | Success evd -> - (match conv_algo env evd pbty (EConstr.of_constr t1) (EConstr.of_constr t2) with + (match conv_algo env evd pbty t1 t2 with | Success _ as x -> x | UnifFailure (i,e) -> UnifFailure (i,CannotSolveConstraint (x,e))) | UnifFailure _ as x -> x) diff --git a/pretyping/evarsolve.mli b/pretyping/evarsolve.mli index 9b21599b6..3f05c58c4 100644 --- a/pretyping/evarsolve.mli +++ b/pretyping/evarsolve.mli @@ -63,7 +63,7 @@ val solve_simple_eqn : conv_fun -> ?choose:bool -> env -> evar_map -> val reconsider_unif_constraints : conv_fun -> evar_map -> unification_result val reconsider_conv_pbs : conv_fun -> evar_map -> unification_result -(** @deprecated Alias for [reconsider_unif_constraints] *) +[@@ocaml.deprecated "Alias for [reconsider_unif_constraints]"] val is_unification_pattern_evar : env -> evar_map -> existential -> constr list -> constr -> alias list option diff --git a/pretyping/inductiveops.mli b/pretyping/inductiveops.mli index 296f25d3f..b0d714b03 100644 --- a/pretyping/inductiveops.mli +++ b/pretyping/inductiveops.mli @@ -129,8 +129,8 @@ val allowed_sorts : env -> inductive -> Sorts.family list val has_dependent_elim : mutual_inductive_body -> bool (** Primitive projections *) -val projection_nparams : projection -> int -val projection_nparams_env : env -> projection -> int +val projection_nparams : Projection.t -> int +val projection_nparams_env : env -> Projection.t -> int val type_of_projection_knowing_arg : env -> evar_map -> Projection.t -> EConstr.t -> EConstr.types -> types diff --git a/pretyping/nativenorm.ml b/pretyping/nativenorm.ml index fcbf50fea..85911394f 100644 --- a/pretyping/nativenorm.ml +++ b/pretyping/nativenorm.ml @@ -401,9 +401,9 @@ and nf_evar env sigma evk ty args = mkEvar (evk, Array.of_list args), ty let evars_of_evar_map sigma = - { Nativelambda.evars_val = Evd.existential_opt_value sigma; - Nativelambda.evars_typ = Evd.existential_type sigma; - Nativelambda.evars_metas = Evd.meta_type sigma } + { Nativelambda.evars_val = Evd.existential_opt_value0 sigma; + Nativelambda.evars_typ = Evd.existential_type0 sigma; + Nativelambda.evars_metas = Evd.meta_type0 sigma } (* fork perf process, return profiler's process id *) let start_profiler_linux profile_fn = diff --git a/pretyping/patternops.ml b/pretyping/patternops.ml index e52112fda..27e457e3b 100644 --- a/pretyping/patternops.ml +++ b/pretyping/patternops.ml @@ -184,7 +184,7 @@ let pattern_of_constr env sigma t = | Evar_kinds.GoalEvar | Evar_kinds.VarInstance _ -> (* These are the two evar kinds used for existing goals *) (* see Proofview.mark_in_evm *) - if Evd.is_defined sigma evk then pattern_of_constr env (Evd.existential_value sigma ev) + if Evd.is_defined sigma evk then pattern_of_constr env (Evd.existential_value0 sigma ev) else PEvar (evk,Array.map (pattern_of_constr env) ctxt) | Evar_kinds.MatchingVar (Evar_kinds.SecondOrderPatVar ido) -> assert false | _ -> diff --git a/pretyping/pretyping.ml b/pretyping/pretyping.ml index 4962b89a0..947469ca0 100644 --- a/pretyping/pretyping.ml +++ b/pretyping/pretyping.ml @@ -117,7 +117,7 @@ open ExtraEnv exception Found of int array let nf_fix sigma (nas, cs, ts) = - let inj c = EConstr.to_constr sigma c in + let inj c = EConstr.to_constr ~abort_on_undefined_evars:false sigma c in (nas, Array.map inj cs, Array.map inj ts) let search_guard ?loc env possible_indexes fixdefs = @@ -315,7 +315,7 @@ let apply_inference_hook hook evdref frozen = match frozen with then try let sigma, c = hook sigma evk in - Evd.define evk (EConstr.Unsafe.to_constr c) sigma + Evd.define evk c sigma with Exit -> sigma else @@ -532,7 +532,7 @@ let pretype_global ?loc rigid env evd gr us = interp_instance ?loc evd ~len l in let (sigma, c) = Evd.fresh_global ?loc ~rigid ?names:instance env.ExtraEnv.env evd gr in - (sigma, EConstr.of_constr c) + (sigma, c) let pretype_ref ?loc evdref env ref us = match ref with @@ -1109,7 +1109,7 @@ let rec pretype k0 resolve_tc (tycon : type_constraint) (env : ExtraEnv.t) evdre and pretype_instance k0 resolve_tc env evdref lvar loc hyps evk update = let f decl (subst,update) = let id = NamedDecl.get_id decl in - let t = replace_vars subst (EConstr.of_constr (NamedDecl.get_type decl)) in + let t = replace_vars subst (NamedDecl.get_type decl) in let c, update = try let c = List.assoc id update in @@ -1150,7 +1150,7 @@ and pretype_type k0 resolve_tc valcon (env : ExtraEnv.t) evdref lvar c = match D (* Correction of bug #5315 : we need to define an evar for *all* holes *) let evkt = e_new_evar env evdref ~src:(loc, knd) ~naming (mkSort s) in let ev,_ = destEvar !evdref evkt in - evdref := Evd.define ev (to_constr !evdref v) !evdref; + evdref := Evd.define ev (nf_evar !evdref v) !evdref; (* End of correction of bug #5315 *) { utj_val = v; utj_type = s } diff --git a/pretyping/reductionops.ml b/pretyping/reductionops.ml index 9e3e68f05..244b8e60b 100644 --- a/pretyping/reductionops.ml +++ b/pretyping/reductionops.ml @@ -275,12 +275,12 @@ sig type cst_member = | Cst_const of pconstant - | Cst_proj of projection + | Cst_proj of Projection.t type 'a member = | App of 'a app_node | Case of case_info * 'a * 'a array * Cst_stack.t - | Proj of int * int * projection * Cst_stack.t + | Proj of int * int * Projection.t * Cst_stack.t | Fix of ('a, 'a) pfixpoint * 'a t * Cst_stack.t | Cst of cst_member * int * int list * 'a t * Cst_stack.t and 'a t = 'a member list @@ -332,12 +332,12 @@ struct type cst_member = | Cst_const of pconstant - | Cst_proj of projection + | Cst_proj of Projection.t type 'a member = | App of 'a app_node | Case of case_info * 'a * 'a array * Cst_stack.t - | Proj of int * int * projection * Cst_stack.t + | Proj of int * int * Projection.t * Cst_stack.t | Fix of ('a, 'a) pfixpoint * 'a t * Cst_stack.t | Cst of cst_member * int * int list * 'a t * Cst_stack.t and 'a t = 'a member list @@ -871,7 +871,7 @@ let rec whd_state_gen ?csts ~refold ~tactic_mode flags env sigma = | Evar ev -> fold () | Meta ev -> (match safe_meta_value sigma ev with - | Some body -> whrec cst_l (EConstr.of_constr body, stack) + | Some body -> whrec cst_l (body, stack) | None -> fold ()) | Const (c,u as const) -> reduction_effect_hook env sigma (EConstr.to_constr sigma x) @@ -1106,7 +1106,7 @@ let local_whd_state_gen flags sigma = | Evar ev -> s | Meta ev -> (match safe_meta_value sigma ev with - Some c -> whrec (EConstr.of_constr c,stack) + Some c -> whrec (c,stack) | None -> s) | Construct ((ind,c),u) -> @@ -1392,7 +1392,7 @@ let vm_infer_conv ?(pb=Reduction.CUMUL) env t1 t2 = (********************************************************************) let whd_meta sigma c = match EConstr.kind sigma c with - | Meta p -> (try EConstr.of_constr (meta_value sigma p) with Not_found -> c) + | Meta p -> (try meta_value sigma p with Not_found -> c) | _ -> c let default_plain_instance_ident = Id.of_string "H" @@ -1612,7 +1612,7 @@ let meta_value evd mv = match meta_opt_fvalue evd mv with | Some (b,_) -> let metas = Metamap.bind valrec b.freemetas in - instance evd metas (EConstr.of_constr b.rebus) + instance evd metas b.rebus | None -> mkMeta mv in valrec mv @@ -1625,9 +1625,8 @@ let meta_instance sigma b = instance sigma c_sigma b.rebus let nf_meta sigma c = - let c = EConstr.Unsafe.to_constr c in let cl = mk_freelisted c in - meta_instance sigma { cl with rebus = EConstr.of_constr cl.rebus } + meta_instance sigma { cl with rebus = cl.rebus } (* Instantiate metas that create beta/iota redexes *) @@ -1648,7 +1647,6 @@ let meta_reducible_instance evd b = (match try let g, s = Metamap.find m metas in - let g = EConstr.of_constr g in let is_coerce = match s with CoerceToType -> true | _ -> false in if isConstruct evd g || not is_coerce then Some g else None with Not_found -> None @@ -1660,7 +1658,6 @@ let meta_reducible_instance evd b = (match try let g, s = Metamap.find m metas in - let g = EConstr.of_constr g in let is_coerce = match s with CoerceToType -> true | _ -> false in if isLambda evd g || not is_coerce then Some g else None with Not_found -> None @@ -1669,7 +1666,6 @@ let meta_reducible_instance evd b = | None -> mkApp (f,Array.map irec l)) | Meta m -> (try let g, s = Metamap.find m metas in - let g = EConstr.of_constr g in let is_coerce = match s with CoerceToType -> true | _ -> false in if not is_coerce then irec g else u with Not_found -> u) @@ -1678,7 +1674,6 @@ let meta_reducible_instance evd b = (match try let g, s = Metamap.find m metas in - let g = EConstr.of_constr g in let is_coerce = match s with CoerceToType -> true | _ -> false in if isConstruct evd g || not is_coerce then Some g else None with Not_found -> None diff --git a/pretyping/reductionops.mli b/pretyping/reductionops.mli index 29dc3ed0f..b8ac085a7 100644 --- a/pretyping/reductionops.mli +++ b/pretyping/reductionops.mli @@ -70,12 +70,12 @@ module Stack : sig type cst_member = | Cst_const of pconstant - | Cst_proj of projection + | Cst_proj of Projection.t type 'a member = | App of 'a app_node | Case of case_info * 'a * 'a array * Cst_stack.t - | Proj of int * int * projection * Cst_stack.t + | Proj of int * int * Projection.t * Cst_stack.t | Fix of ('a, 'a) pfixpoint * 'a t * Cst_stack.t | Cst of cst_member * int (** current foccussed arg *) * int list (** remaining args *) * 'a t * Cst_stack.t diff --git a/pretyping/retyping.ml b/pretyping/retyping.ml index 3582b6447..746a68b21 100644 --- a/pretyping/retyping.ml +++ b/pretyping/retyping.ml @@ -57,8 +57,8 @@ let get_type_from_constraints env sigma t = if isEvar sigma (fst (decompose_app_vect sigma t)) then match List.map_filter (fun (pbty,env,t1,t2) -> - if is_fconv Reduction.CONV env sigma t (EConstr.of_constr t1) then Some t2 - else if is_fconv Reduction.CONV env sigma t (EConstr.of_constr t2) then Some t1 + if is_fconv Reduction.CONV env sigma t t1 then Some t2 + else if is_fconv Reduction.CONV env sigma t t2 then Some t1 else None) (snd (Evd.extract_all_conv_pbs sigma)) with @@ -99,7 +99,7 @@ let retype ?(polyprop=true) sigma = let rec type_of env cstr = match EConstr.kind sigma cstr with | Meta n -> - (try strip_outer_cast sigma (EConstr.of_constr (Evd.meta_ftype sigma n).Evd.rebus) + (try strip_outer_cast sigma (Evd.meta_ftype sigma n).Evd.rebus with Not_found -> retype_error (BadMeta n)) | Rel n -> let ty = RelDecl.get_type (lookup_rel n env) in @@ -115,7 +115,7 @@ let retype ?(polyprop=true) sigma = try Inductiveops.find_rectype env sigma t with Not_found -> try - let t = EConstr.of_constr (get_type_from_constraints env sigma t) in + let t = get_type_from_constraints env sigma t in Inductiveops.find_rectype env sigma t with Not_found -> retype_error BadRecursiveType in @@ -170,7 +170,7 @@ let retype ?(polyprop=true) sigma = and type_of_global_reference_knowing_parameters env c args = let argtyps = - Array.map (fun c -> lazy (EConstr.to_constr sigma (type_of env c))) args in + Array.map (fun c -> lazy (EConstr.to_constr ~abort_on_undefined_evars:false sigma (type_of env c))) args in match EConstr.kind sigma c with | Ind (ind, u) -> let u = EInstance.kind sigma u in diff --git a/pretyping/retyping.mli b/pretyping/retyping.mli index 40424ead4..2aff0c777 100644 --- a/pretyping/retyping.mli +++ b/pretyping/retyping.mli @@ -50,6 +50,6 @@ val type_of_global_reference_knowing_conclusion : val sorts_of_context : env -> evar_map -> rel_context -> Sorts.t list -val expand_projection : env -> evar_map -> Names.projection -> constr -> constr list -> constr +val expand_projection : env -> evar_map -> Names.Projection.t -> constr -> constr list -> constr val print_retype_error : retype_error -> Pp.t diff --git a/pretyping/tacred.ml b/pretyping/tacred.ml index 518d2f604..696001ab7 100644 --- a/pretyping/tacred.ml +++ b/pretyping/tacred.ml @@ -416,7 +416,7 @@ exception Partial reduction is solved by the expanded fix term. *) let solve_arity_problem env sigma fxminargs c = let evm = ref sigma in - let set_fix i = evm := Evd.define i (Constr.mkVar vfx) !evm in + let set_fix i = evm := Evd.define i (mkVar vfx) !evm in let rec check strict c = let c' = whd_betaiotazeta sigma c in let (h,rcargs) = decompose_app_vect sigma c' in @@ -558,7 +558,7 @@ let match_eval_ref_value env sigma constr stack = else None | Proj (p, c) when not (Projection.unfolded p) -> - reduction_effect_hook env sigma (EConstr.to_constr sigma constr) + reduction_effect_hook env sigma (EConstr.to_constr ~abort_on_undefined_evars:false sigma constr) (lazy (EConstr.to_constr sigma (applist (constr,stack)))); if is_evaluable env (EvalConstRef (Projection.constant p)) then Some (mkProj (Projection.unfold p, c)) @@ -641,7 +641,7 @@ let whd_nothing_for_iota env sigma s = | _ -> s) | Evar ev -> s | Meta ev -> - (try whrec (EConstr.of_constr (Evd.meta_value sigma ev), stack) + (try whrec (Evd.meta_value sigma ev, stack) with Not_found -> s) | Const (const, u) when is_transparent_constant full_transparent_state const -> let u = EInstance.kind sigma u in diff --git a/pretyping/typeclasses.ml b/pretyping/typeclasses.ml index 08051fd3a..30ddeffa6 100644 --- a/pretyping/typeclasses.ml +++ b/pretyping/typeclasses.ml @@ -158,7 +158,7 @@ let rec is_class_type evd c = | _ -> is_class_constr evd c let is_class_evar evd evi = - is_class_type evd (EConstr.of_constr evi.Evd.evar_concl) + is_class_type evd evi.Evd.evar_concl (* * classes persistent object diff --git a/pretyping/typing.ml b/pretyping/typing.ml index 4c834f2f8..aaec73f04 100644 --- a/pretyping/typing.ml +++ b/pretyping/typing.ml @@ -29,13 +29,12 @@ let meta_type evd mv = let ty = try Evd.meta_ftype evd mv with Not_found -> anomaly (str "unknown meta ?" ++ str (Nameops.string_of_meta mv) ++ str ".") in - let ty = Evd.map_fl EConstr.of_constr ty in meta_instance evd ty let inductive_type_knowing_parameters env sigma (ind,u) jl = let u = Unsafe.to_instance u in let mspec = lookup_mind_specif env ind in - let paramstyp = Array.map (fun j -> lazy (EConstr.to_constr sigma j.uj_type)) jl in + let paramstyp = Array.map (fun j -> lazy (EConstr.to_constr ~abort_on_undefined_evars:false sigma j.uj_type)) jl in Inductive.type_of_inductive_knowing_parameters env (mspec,u) paramstyp let e_type_judgment env evdref j = @@ -129,7 +128,7 @@ let e_is_correct_arity env evdref c pj ind specif params = then error () | Evar (ev,_), [] -> let evd, s = Evd.fresh_sort_in_family env !evdref (max_sort allowed_sorts) in - evdref := Evd.define ev (Constr.mkSort s) evd + evdref := Evd.define ev (mkSort s) evd | _, (LocalDef _ as d)::ar' -> srec (push_rel d env) (lift 1 pt') ar' | _ -> @@ -155,7 +154,7 @@ let e_type_case_branches env evdref (ind,largs) pj c = let p = pj.uj_val in let params = List.map EConstr.Unsafe.to_constr params in let () = e_is_correct_arity env evdref c pj ind specif params in - let lc = build_branches_type ind specif params (EConstr.to_constr !evdref p) in + let lc = build_branches_type ind specif params (EConstr.to_constr ~abort_on_undefined_evars:false !evdref p) in let lc = Array.map EConstr.of_constr lc in let n = (snd specif).Declarations.mind_nrealdecls in let ty = whd_betaiota !evdref (lambda_applist_assum !evdref (n+1) p (realargs@[c])) in @@ -207,7 +206,7 @@ let enrich_env env evdref = Environ.env_of_pre_env penv' let check_fix env sigma pfix = - let inj c = EConstr.to_constr sigma c in + let inj c = EConstr.to_constr ~abort_on_undefined_evars:false sigma c in let (idx, (ids, cs, ts)) = pfix in check_fix env (idx, (ids, Array.map inj cs, Array.map inj ts)) diff --git a/pretyping/typing.mli b/pretyping/typing.mli index fe83a2cc8..4905adf1f 100644 --- a/pretyping/typing.mli +++ b/pretyping/typing.mli @@ -55,4 +55,4 @@ val judge_of_abstraction : Environ.env -> Name.t -> unsafe_type_judgment -> unsafe_judgment -> unsafe_judgment val judge_of_product : Environ.env -> Name.t -> unsafe_type_judgment -> unsafe_type_judgment -> unsafe_judgment -val judge_of_projection : env -> evar_map -> projection -> unsafe_judgment -> unsafe_judgment +val judge_of_projection : env -> evar_map -> Projection.t -> unsafe_judgment -> unsafe_judgment diff --git a/pretyping/unification.ml b/pretyping/unification.ml index f2f922fd5..d98ce9aba 100644 --- a/pretyping/unification.ml +++ b/pretyping/unification.ml @@ -84,7 +84,7 @@ let occur_meta_or_undefined_evar evd c = | Evar (ev,args) -> (match evar_body (Evd.find evd ev) with | Evar_defined c -> - occrec c; Array.iter occrec args + occrec (EConstr.Unsafe.to_constr c); Array.iter occrec args | Evar_empty -> raise Occur) | _ -> Constr.iter occrec c in try occrec c; false with Occur | Not_found -> true @@ -189,10 +189,9 @@ let pose_all_metas_as_evars env evd t = let rec aux t = match EConstr.kind !evdref t with | Meta mv -> (match Evd.meta_opt_fvalue !evdref mv with - | Some ({rebus=c},_) -> EConstr.of_constr c + | Some ({rebus=c},_) -> c | None -> let {rebus=ty;freemetas=mvs} = Evd.meta_ftype evd mv in - let ty = EConstr.of_constr ty in let ty = if Evd.Metaset.is_empty mvs then ty else aux ty in let ty = if Flags.version_strictly_greater Flags.V8_6 @@ -200,7 +199,7 @@ let pose_all_metas_as_evars env evd t = else ty (* some beta-iota-normalization "regression" in 8.5 and 8.6 *) in let src = Evd.evar_source_of_meta mv !evdref in let ev = Evarutil.e_new_evar env evdref ~src ty in - evdref := meta_assign mv (EConstr.Unsafe.to_constr ev,(Conv,TypeNotProcessed)) !evdref; + evdref := meta_assign mv (ev,(Conv,TypeNotProcessed)) !evdref; ev) | _ -> EConstr.map !evdref aux t in @@ -466,7 +465,7 @@ let use_metas_pattern_unification sigma flags nb l = type key = | IsKey of CClosure.table_key - | IsProj of projection * EConstr.constr + | IsProj of Projection.t * EConstr.constr let expand_table_key env = function | ConstKey cst -> constant_opt_value_in env cst @@ -1060,7 +1059,7 @@ let rec unify_0_with_initial_metas (sigma,ms,es as subst : subst0) conv_at_top e (evd,t2::ks, m-1) else let mv = new_meta () in - let evd' = meta_declare mv (EConstr.Unsafe.to_constr (substl ks b)) evd in + let evd' = meta_declare mv (substl ks b) evd in (evd', mkMeta mv :: ks, m - 1)) (sigma,[],List.length bs) bs in @@ -1247,7 +1246,7 @@ let try_to_coerce env evd c cty tycon = let j = make_judge c cty in let (evd',j') = inh_conv_coerce_rigid_to true env evd j tycon in let evd' = Evarconv.solve_unif_constraints_with_heuristics env evd' in - let evd' = Evd.map_metas_fvalue (fun c -> EConstr.Unsafe.to_constr (nf_evar evd' (EConstr.of_constr c))) evd' in + let evd' = Evd.map_metas_fvalue (fun c -> nf_evar evd' c) evd' in (evd',j'.uj_val) let w_coerce_to_type env evd c cty mvty = @@ -1359,11 +1358,11 @@ let w_merge env with_types flags (evd,metas,evars : subst0) = if meta_defined evd mv then let {rebus=c'},(status',_) = meta_fvalue evd mv in let (take_left,st,(evd,metas',evars')) = - merge_instances env evd flags status' status (EConstr.of_constr c') c + merge_instances env evd flags status' status c' c in let evd' = if take_left then evd - else meta_reassign mv (EConstr.Unsafe.to_constr c,(st,TypeProcessed)) evd + else meta_reassign mv (c,(st,TypeProcessed)) evd in w_merge_rec evd' (metas'@metas@metas'') (evars'@evars'') eqns else @@ -1372,7 +1371,7 @@ let w_merge env with_types flags (evd,metas,evars : subst0) = if isMetaOf evd mv (whd_all env evd c) then evd else error_cannot_unify env evd (mkMeta mv,c) else - meta_assign mv (EConstr.Unsafe.to_constr c,(status,TypeProcessed)) evd in + meta_assign mv (c,(status,TypeProcessed)) evd in w_merge_rec evd' (metas''@metas) evars'' eqns | [] -> (* Process type eqns *) @@ -1396,17 +1395,17 @@ let w_merge env with_types flags (evd,metas,evars : subst0) = let (evd', c) = applyHead sp_env evd nargs hdc in let (evd'',mc,ec) = unify_0 sp_env evd' CUMUL flags - (get_type_of sp_env evd' c) (EConstr.of_constr ev.evar_concl) in + (get_type_of sp_env evd' c) ev.evar_concl in let evd''' = w_merge_rec evd'' mc ec [] in if evd' == evd''' - then Evd.define sp (EConstr.Unsafe.to_constr c) evd''' - else Evd.define sp (EConstr.Unsafe.to_constr (Evarutil.nf_evar evd''' c)) evd''' in + then Evd.define sp c evd''' + else Evd.define sp (Evarutil.nf_evar evd''' c) evd''' in let check_types evd = let metas = Evd.meta_list evd in let eqns = List.fold_left (fun acc (mv, b) -> match b with - | Clval (n, (t, (c, TypeNotProcessed)), v) -> (mv, c, EConstr.of_constr t.rebus) :: acc + | Clval (n, (t, (c, TypeNotProcessed)), v) -> (mv, c, t.rebus) :: acc | _ -> acc) [] metas in w_merge_rec evd [] [] eqns in @@ -1417,11 +1416,6 @@ let w_merge env with_types flags (evd,metas,evars : subst0) = in if with_types then check_types res else res -let retract_coercible_metas evd = - let (metas, evd) = retract_coercible_metas evd in - let map (mv, c, st) = (mv, EConstr.of_constr c, st) in - (List.map map metas, evd) - let w_unify_meta_types env ?(flags=default_unify_flags ()) evd = let metas,evd = retract_coercible_metas evd in w_merge env true flags.merge_unify_flags (evd,metas,[]) diff --git a/pretyping/vnorm.ml b/pretyping/vnorm.ml index 3c9b8bc33..049c3aff5 100644 --- a/pretyping/vnorm.ml +++ b/pretyping/vnorm.ml @@ -205,7 +205,7 @@ and nf_univ_args ~nb_univs mk env sigma stk = and nf_evar env sigma evk stk = let evi = try Evd.find sigma evk with Not_found -> assert false in let hyps = Environ.named_context_of_val (Evd.evar_filtered_hyps evi) in - let concl = Evd.evar_concl evi in + let concl = EConstr.Unsafe.to_constr @@ Evd.evar_concl evi in if List.is_empty hyps then nf_stk env sigma (mkEvar (evk, [||])) concl stk else match stk with @@ -381,8 +381,8 @@ let cbv_vm env sigma c t = if Termops.occur_meta sigma c then CErrors.user_err Pp.(str "vm_compute does not support metas."); (** This evar-normalizes terms beforehand *) - let c = EConstr.to_constr sigma c in - let t = EConstr.to_constr sigma t in + let c = EConstr.to_constr ~abort_on_undefined_evars:false sigma c in + let t = EConstr.to_constr ~abort_on_undefined_evars:false sigma t in let v = Vconv.val_of_constr env c in EConstr.of_constr (nf_val env sigma v t) diff --git a/printing/printer.ml b/printing/printer.ml index 199aa79c6..edcce874d 100644 --- a/printing/printer.ml +++ b/printing/printer.ml @@ -93,13 +93,13 @@ let _ = Hook.set Refine.pr_constr pr_constr_env let pr_lconstr_goal_style_env env sigma c = pr_leconstr_core true env sigma (EConstr.of_constr c) let pr_constr_goal_style_env env sigma c = pr_econstr_core true env sigma (EConstr.of_constr c) -let pr_open_lconstr_env env sigma (_,c) = pr_lconstr_env env sigma c -let pr_open_constr_env env sigma (_,c) = pr_constr_env env sigma c - let pr_econstr_n_env env sigma c = pr_econstr_n_core false env sigma c let pr_leconstr_env env sigma c = pr_leconstr_core false env sigma c let pr_econstr_env env sigma c = pr_econstr_core false env sigma c +let pr_open_lconstr_env env sigma (_,c) = pr_leconstr_env env sigma c +let pr_open_constr_env env sigma (_,c) = pr_econstr_env env sigma c + (* NB do not remove the eta-redexes! Global.env() has side-effects... *) let pr_lconstr t = let (sigma, env) = Pfedit.get_current_context () in @@ -108,12 +108,12 @@ let pr_constr t = let (sigma, env) = Pfedit.get_current_context () in pr_constr_env env sigma t -let pr_open_lconstr (_,c) = pr_lconstr c -let pr_open_constr (_,c) = pr_constr c - let pr_leconstr c = pr_lconstr (EConstr.Unsafe.to_constr c) let pr_econstr c = pr_constr (EConstr.Unsafe.to_constr c) +let pr_open_lconstr (_,c) = pr_leconstr c +let pr_open_constr (_,c) = pr_econstr c + let pr_constr_under_binders_env_gen pr env sigma (ids,c) = (* Warning: clashes can occur with variables of same name in env but *) (* we also need to preserve the actual names of the patterns *) @@ -541,12 +541,12 @@ let pr_evgl_sign sigma evi = if List.is_empty ids then mt () else (str " (" ++ prlist_with_sep pr_comma pr_id ids ++ str " cannot be used)") in - let pc = pr_lconstr_env env sigma evi.evar_concl in + let pc = pr_leconstr_env env sigma evi.evar_concl in let candidates = match evi.evar_body, evi.evar_candidates with | Evar_empty, Some l -> spc () ++ str "= {" ++ - prlist_with_sep (fun () -> str "|") (pr_lconstr_env env sigma) l ++ str "}" + prlist_with_sep (fun () -> str "|") (pr_leconstr_env env sigma) l ++ str "}" | _ -> mt () in @@ -622,8 +622,8 @@ let print_evar_constraints gl sigma = end in let pr_evconstr (pbty,env,t1,t2) = - let t1 = Evarutil.nf_evar sigma (EConstr.of_constr t1) - and t2 = Evarutil.nf_evar sigma (EConstr.of_constr t2) in + let t1 = Evarutil.nf_evar sigma t1 + and t2 = Evarutil.nf_evar sigma t2 in let env = (** We currently allow evar instances to refer to anonymous de Bruijn indices, so we protect the error printing code in this case by giving diff --git a/proofs/clenv.ml b/proofs/clenv.ml index 03ff580ad..aeaf16723 100644 --- a/proofs/clenv.ml +++ b/proofs/clenv.ml @@ -62,9 +62,6 @@ let clenv_get_type_of ce c = Retyping.get_type_of (cl_env ce) (cl_sigma ce) c exception NotExtensibleClause -let mk_freelisted c = - map_fl EConstr.of_constr (mk_freelisted (EConstr.Unsafe.to_constr c)) - let clenv_push_prod cl = let typ = whd_all (cl_env cl) (cl_sigma cl) (clenv_type cl) in let rec clrec typ = match EConstr.kind cl.evd typ with @@ -73,7 +70,7 @@ let clenv_push_prod cl = let mv = new_meta () in let dep = not (noccurn (cl_sigma cl) 1 u) in let na' = if dep then na else Anonymous in - let e' = meta_declare mv (EConstr.Unsafe.to_constr t) ~name:na' cl.evd in + let e' = meta_declare mv t ~name:na' cl.evd in let concl = if dep then subst1 (mkMeta mv) u else u in let def = applist (cl.templval.rebus,[mkMeta mv]) in { templval = mk_freelisted def; @@ -107,8 +104,7 @@ let clenv_environments evd bound t = let mv = new_meta () in let dep = not (noccurn evd 1 t2) in let na' = if dep then na else Anonymous in - let t1 = EConstr.Unsafe.to_constr t1 in - let e' = meta_declare mv t1 ~name:na' e in + let e' = meta_declare mv t1 ~name:na' e in clrec (e', (mkMeta mv)::metas) (Option.map ((+) (-1)) n) (if dep then (subst1 (mkMeta mv) t2) else t2) | (n, LetIn (na,b,_,t)) -> clrec (e,metas) n (subst1 b t) @@ -167,13 +163,13 @@ let clenv_assign mv rhs clenv = user_err Pp.(str "clenv_assign: circularity in unification"); try if meta_defined clenv.evd mv then - if not (EConstr.eq_constr clenv.evd (EConstr.of_constr (fst (meta_fvalue clenv.evd mv)).rebus) rhs) then + if not (EConstr.eq_constr clenv.evd (fst (meta_fvalue clenv.evd mv)).rebus rhs) then error_incompatible_inst clenv mv else clenv else let st = (Conv,TypeNotProcessed) in - {clenv with evd = meta_assign mv (EConstr.Unsafe.to_constr rhs_fls.rebus,st) clenv.evd} + {clenv with evd = meta_assign mv (rhs_fls.rebus,st) clenv.evd} with Not_found -> user_err Pp.(str "clenv_assign: undefined meta") @@ -218,7 +214,7 @@ let clenv_assign mv rhs clenv = *) let clenv_metas_in_type_of_meta evd mv = - (mk_freelisted (meta_instance evd (map_fl EConstr.of_constr (meta_ftype evd mv)))).freemetas + (mk_freelisted (meta_instance evd (meta_ftype evd mv))).freemetas let dependent_in_type_of_metas clenv mvs = List.fold_right @@ -288,11 +284,11 @@ let adjust_meta_source evd mv = function in situations like "ex_intro (fun x => P) ?ev p" *) let f = function (mv',(Cltyp (_,t) | Clval (_,_,t))) -> if Metaset.mem mv t.freemetas then - let f,l = decompose_app evd (EConstr.of_constr t.rebus) in + let f,l = decompose_app evd t.rebus in match EConstr.kind evd f with | Meta mv'' -> (match meta_opt_fvalue evd mv'' with - | Some (c,_) -> match_name (EConstr.of_constr c.rebus) l + | Some (c,_) -> match_name c.rebus l | None -> None) | _ -> None else None in @@ -502,7 +498,6 @@ let clenv_assign_binding clenv k c = let k_typ = clenv_hnf_constr clenv (clenv_meta_type clenv k) in let c_typ = nf_betaiota clenv.env clenv.evd (clenv_get_type_of clenv c) in let status,clenv',c = clenv_unify_binding_type clenv c c_typ k_typ in - let c = EConstr.Unsafe.to_constr c in { clenv' with evd = meta_assign k (c,(Conv,status)) clenv'.evd } let clenv_match_args bl clenv = @@ -515,7 +510,7 @@ let clenv_match_args bl clenv = (fun clenv {CAst.loc;v=(b,c)} -> let k = meta_of_binder clenv loc mvs b in if meta_defined clenv.evd k then - if EConstr.eq_constr clenv.evd (EConstr.of_constr (fst (meta_fvalue clenv.evd k)).rebus) c then clenv + if EConstr.eq_constr clenv.evd (fst (meta_fvalue clenv.evd k)).rebus c then clenv else error_already_defined b else clenv_assign_binding clenv k c) @@ -677,7 +672,7 @@ let define_with_type sigma env ev c = let j = Environ.make_judge c ty in let (sigma, j) = Coercion.inh_conv_coerce_to true env sigma j t in let (ev, _) = destEvar sigma ev in - let sigma = Evd.define ev (EConstr.Unsafe.to_constr j.Environ.uj_val) sigma in + let sigma = Evd.define ev j.Environ.uj_val sigma in sigma let solve_evar_clause env sigma hyp_only clause = function diff --git a/proofs/evar_refiner.ml b/proofs/evar_refiner.ml index 0d197c92c..c80f370fd 100644 --- a/proofs/evar_refiner.ml +++ b/proofs/evar_refiner.ml @@ -25,8 +25,6 @@ open Ltac_pretype type glob_constr_ltac_closure = ltac_var_map * glob_constr let depends_on_evar sigma evk _ (pbty,_,t1,t2) = - let t1 = EConstr.of_constr t1 in - let t2 = EConstr.of_constr t2 in try Evar.equal (head_evar sigma t1) evk with NoHeadEvar -> try Evar.equal (head_evar sigma t2) evk @@ -35,12 +33,12 @@ let depends_on_evar sigma evk _ (pbty,_,t1,t2) = let define_and_solve_constraints evk c env evd = if Termops.occur_evar evd evk c then Pretype_errors.error_occur_check env evd evk c; - let evd = define evk (EConstr.Unsafe.to_constr c) evd in + let evd = define evk c evd in let (evd,pbs) = extract_changed_conv_pbs evd (depends_on_evar evd evk) in match List.fold_left (fun p (pbty,env,t1,t2) -> match p with - | Success evd -> Evarconv.evar_conv_x full_transparent_state env evd pbty (EConstr.of_constr t1) (EConstr.of_constr t2) + | Success evd -> Evarconv.evar_conv_x full_transparent_state env evd pbty t1 t2 | UnifFailure _ as x -> x) (Success evd) pbs with @@ -59,7 +57,7 @@ let w_refine (evk,evi) (ltac_var,rawc) sigma = Pretyping.fail_evar = false; Pretyping.expand_evars = true } in try Pretyping.understand_ltac flags - env sigma ltac_var (Pretyping.OfType (EConstr.of_constr evi.evar_concl)) rawc + env sigma ltac_var (Pretyping.OfType evi.evar_concl) rawc with e when CErrors.noncritical e -> let loc = Glob_ops.loc_of_glob_constr rawc in user_err ?loc diff --git a/proofs/goal.ml b/proofs/goal.ml index ba7e458f3..1440d1636 100644 --- a/proofs/goal.ml +++ b/proofs/goal.ml @@ -48,7 +48,7 @@ module V82 = struct (* Access to ".evar_concl" *) let concl evars gl = let evi = Evd.find evars gl in - EConstr.of_constr evi.Evd.evar_concl + evi.Evd.evar_concl (* Access to ".evar_extra" *) let extra evars gl = @@ -61,7 +61,6 @@ module V82 = struct be shelved. It must not appear as a future_goal, so the future goals are restored to their initial value after the evar is created. *) - let concl = EConstr.Unsafe.to_constr concl in let prev_future_goals = Evd.save_future_goals evars in let evi = { Evd.evar_hyps = hyps; Evd.evar_concl = concl; @@ -86,7 +85,7 @@ module V82 = struct if not (Evarutil.occur_evar_upto sigma evk c) then () else Pretype_errors.error_occur_check Environ.empty_env sigma evk c in - Evd.define evk (EConstr.Unsafe.to_constr c) sigma + Evd.define evk c sigma (* Instantiates a goal with an open term, using name of goal for evk' *) let partial_solution_to sigma evk evk' c = @@ -100,7 +99,9 @@ module V82 = struct let same_goal evars1 gl1 evars2 gl2 = let evi1 = Evd.find evars1 gl1 in let evi2 = Evd.find evars2 gl2 in - Constr.equal evi1.Evd.evar_concl evi2.Evd.evar_concl && + let c1 = EConstr.Unsafe.to_constr evi1.Evd.evar_concl in + let c2 = EConstr.Unsafe.to_constr evi2.Evd.evar_concl in + Constr.equal c1 c2 && Environ.eq_named_context_val evi1.Evd.evar_hyps evi2.Evd.evar_hyps let weak_progress glss gls = @@ -117,20 +118,6 @@ module V82 = struct with a good implementation of them. *) - (* Used for congruence closure *) - let new_goal_with sigma gl extra_hyps = - let evi = Evd.find sigma gl in - let hyps = evi.Evd.evar_hyps in - let new_hyps = - List.fold_right Environ.push_named_context_val extra_hyps hyps in - let filter = evi.Evd.evar_filter in - let new_filter = Evd.Filter.extend (List.length extra_hyps) filter in - let new_evi = - { evi with Evd.evar_hyps = new_hyps; Evd.evar_filter = new_filter } in - let new_evi = Typeclasses.mark_unresolvable new_evi in - let (sigma, evk) = Evarutil.new_pure_evar_full Evd.empty new_evi in - { Evd.it = evk ; sigma = sigma; } - (* Used by the compatibility layer and typeclasses *) let nf_evar sigma gl = let evi = Evd.find sigma gl in diff --git a/proofs/goal.mli b/proofs/goal.mli index dc9863156..b8c979ad7 100644 --- a/proofs/goal.mli +++ b/proofs/goal.mli @@ -64,9 +64,6 @@ module V82 : sig (* Principal part of tclNOTSAMEGOAL *) val same_goal : Evd.evar_map -> goal -> Evd.evar_map -> goal -> bool - (* Used for congruence closure *) - val new_goal_with : Evd.evar_map -> goal -> Context.Named.t -> goal Evd.sigma - (* Used by the compatibility layer and typeclasses *) val nf_evar : Evd.evar_map -> goal -> goal * Evd.evar_map diff --git a/proofs/pfedit.ml b/proofs/pfedit.ml index 8725f51cd..abda04ff1 100644 --- a/proofs/pfedit.ml +++ b/proofs/pfedit.ml @@ -233,7 +233,7 @@ let apply_implicit_tactic tac = (); fun env sigma evk -> (Environ.named_context env) -> let tac = Proofview.tclTHEN tac (Proofview.tclEXTEND [] (Proofview.tclZERO (CErrors.UserError (None,Pp.str"Proof is not complete."))) []) in (try - let c = Evarutil.nf_evars_universes sigma evi.evar_concl in + let c = Evarutil.nf_evars_universes sigma (EConstr.Unsafe.to_constr evi.evar_concl) in let c = EConstr.of_constr c in if Evarutil.has_undefined_evars sigma c then raise Exit; let (ans, _, ctx) = diff --git a/proofs/proof_global.ml b/proofs/proof_global.ml index d6c0e3341..fc7c437e6 100644 --- a/proofs/proof_global.ml +++ b/proofs/proof_global.ml @@ -340,7 +340,7 @@ let close_proof ~keep_body_ucst_separate ?feedback_id ~now have existential variables in the initial types of goals, we need to normalise them for the kernel. *) let subst_evar k = - Proof.in_proof proof (fun m -> Evd.existential_opt_value m k) in + Proof.in_proof proof (fun m -> Evd.existential_opt_value0 m k) in let nf = Universes.nf_evars_and_universes_opt_subst subst_evar (UState.subst universes) in let make_body = diff --git a/proofs/refine.ml b/proofs/refine.ml index 909556b1e..5a2d82977 100644 --- a/proofs/refine.ml +++ b/proofs/refine.ml @@ -15,7 +15,7 @@ open Context.Named.Declaration module NamedDecl = Context.Named.Declaration let extract_prefix env info = - let ctx1 = List.rev (Environ.named_context env) in + let ctx1 = List.rev (EConstr.named_context env) in let ctx2 = List.rev (Evd.evar_context info) in let rec share l1 l2 accu = match l1, l2 with | d1 :: l1, d2 :: l2 -> @@ -29,21 +29,21 @@ let typecheck_evar ev env sigma = let info = Evd.find sigma ev in (** Typecheck the hypotheses. *) let type_hyp (sigma, env) decl = - let t = EConstr.of_constr (NamedDecl.get_type decl) in + let t = NamedDecl.get_type decl in let evdref = ref sigma in let _ = Typing.e_sort_of env evdref t in let () = match decl with | LocalAssum _ -> () - | LocalDef (_,body,_) -> Typing.e_check env evdref (EConstr.of_constr body) t + | LocalDef (_,body,_) -> Typing.e_check env evdref body t in - (!evdref, Environ.push_named decl env) + (!evdref, EConstr.push_named decl env) in let (common, changed) = extract_prefix env info in - let env = Environ.reset_with_named_context (Environ.val_of_named_context common) env in + let env = Environ.reset_with_named_context (EConstr.val_of_named_context common) env in let (sigma, env) = List.fold_left type_hyp (sigma, env) changed in (** Typecheck the conclusion *) let evdref = ref sigma in - let _ = Typing.e_sort_of env evdref (EConstr.of_constr (Evd.evar_concl info)) in + let _ = Typing.e_sort_of env evdref (Evd.evar_concl info) in !evdref let typecheck_proof c concl env sigma = @@ -106,7 +106,6 @@ let generic_refine ~typecheck f gl = let evs = Evd.map_filter_future_goals (Proofview.Unsafe.advance sigma) evs in let comb,shelf,given_up,evkmain = Evd.dispatch_future_goals evs in (** Proceed to the refinement *) - let c = EConstr.Unsafe.to_constr c in let sigma = match Proofview.Unsafe.advance sigma self with | None -> (** Nothing to do, the goal has been solved by side-effect *) @@ -124,7 +123,8 @@ let generic_refine ~typecheck f gl = (** Mark goals *) let sigma = CList.fold_left Proofview.Unsafe.mark_as_goal sigma comb in let comb = CList.map (fun x -> Proofview.goal_with_state x state) comb in - let trace () = Pp.(hov 2 (str"simple refine"++spc()++ Hook.get pr_constrv env sigma c)) in + let trace () = Pp.(hov 2 (str"simple refine"++spc()++ + Hook.get pr_constrv env sigma (EConstr.Unsafe.to_constr c))) in Proofview.Trace.name_tactic trace (Proofview.tclUNIT v) >>= fun v -> Proofview.Unsafe.tclSETENV (Environ.reset_context env) <*> Proofview.Unsafe.tclEVARS sigma <*> diff --git a/stm/proofBlockDelimiter.ml b/stm/proofBlockDelimiter.ml index 23f976120..0af766219 100644 --- a/stm/proofBlockDelimiter.ml +++ b/stm/proofBlockDelimiter.ml @@ -41,7 +41,7 @@ let simple_goal sigma g gs = let open Evd in let open Evarutil in let evi = Evd.find sigma g in - Set.is_empty (evars_of_term evi.evar_concl) && + Set.is_empty (evars_of_term (EConstr.Unsafe.to_constr evi.evar_concl)) && Set.is_empty (evars_of_filtered_evar_info (nf_evar_info sigma evi)) && not (List.exists (Proofview.depends_on sigma g) gs) diff --git a/stm/stm.ml b/stm/stm.ml index ba0a2017a..cbd324f5c 100644 --- a/stm/stm.ml +++ b/stm/stm.ml @@ -92,11 +92,11 @@ let execution_error ?loc state_id msg = module Hooks = struct let state_computed, state_computed_hook = Hook.make - ~default:(fun state_id ~in_cache -> + ~default:(fun ~doc:_ state_id ~in_cache -> feedback ~id:state_id Processed) () let state_ready, state_ready_hook = Hook.make - ~default:(fun state_id -> ()) () + ~default:(fun ~doc:_ state_id -> ()) () let forward_feedback, forward_feedback_hook = let m = Mutex.create () in @@ -106,7 +106,7 @@ let forward_feedback, forward_feedback_hook = with e -> Mutex.unlock m; raise e) () let unreachable_state, unreachable_state_hook = Hook.make - ~default:(fun _ _ -> ()) () + ~default:(fun ~doc:_ _ _ -> ()) () include Hook @@ -578,7 +578,7 @@ end = struct (* {{{ *) | None -> raise Vcs_aux.Expired let set_state id s = (get_info id).state <- s; - if async_proofs_is_master !cur_opt then Hooks.(call state_ready id) + if async_proofs_is_master !cur_opt then Hooks.(call state_ready ~doc:dummy_doc (* XXX should be taken in input *) id) let get_state id = (get_info id).state let reached id = let info = get_info id in @@ -770,6 +770,7 @@ module State : sig Warning: an optimization in installed_cached requires that state modifying functions are always executed using this wrapper. *) val define : + doc:doc -> ?safe_id:Stateid.t -> ?redefine:bool -> ?cache:Summary.marshallable -> ?feedback_processed:bool -> (unit -> unit) -> Stateid.t -> unit @@ -919,7 +920,7 @@ end = struct (* {{{ *) let e2 = Summary.project_from_summary s2 Global.global_env_summary_tag in e1 == e2 - let define ?safe_id ?(redefine=false) ?(cache=`No) ?(feedback_processed=true) + let define ~doc ?safe_id ?(redefine=false) ?(cache=`No) ?(feedback_processed=true) f id = feedback ~id:id (ProcessingIn !Flags.async_proofs_worker_id); @@ -938,7 +939,7 @@ end = struct (* {{{ *) stm_prerr_endline (fun () -> "setting cur id to "^str_id); cur_id := id; if feedback_processed then - Hooks.(call state_computed id ~in_cache:false); + Hooks.(call state_computed ~doc id ~in_cache:false); VCS.reached id; if Proof_global.there_are_pending_proofs () then VCS.goals id (Proof_global.get_open_goals ()) @@ -954,7 +955,7 @@ end = struct (* {{{ *) | Some _, None -> (e, info) | Some (_,at), Some id -> (e, Stateid.add info ~valid:id at) in if cache = `Yes || cache = `Shallow then freeze_invalid id ie; - Hooks.(call unreachable_state id ie); + Hooks.(call unreachable_state ~doc id ie); Exninfo.iraise ie let init_state = ref None @@ -1352,6 +1353,7 @@ module rec ProofTask : sig and type request := request val build_proof_here : + doc:doc -> ?loc:Loc.t -> drop_pt:bool -> Stateid.t * Stateid.t -> Stateid.t -> @@ -1466,11 +1468,12 @@ end = struct (* {{{ *) execution_error start (Pp.strbrk s); feedback (InProgress ~-1) - let build_proof_here ?loc ~drop_pt (id,valid) eop = + let build_proof_here ~doc ?loc ~drop_pt (id,valid) eop = Future.create (State.exn_on id ~valid) (fun () -> let wall_clock1 = Unix.gettimeofday () in - if VCS.is_interactive () = `No then Reach.known_state ~cache:`No eop - else Reach.known_state ~cache:`Shallow eop; + if VCS.is_interactive () = `No + then Reach.known_state ~doc ~cache:`No eop + else Reach.known_state ~doc ~cache:`Shallow eop; let wall_clock2 = Unix.gettimeofday () in Aux_file.record_in_aux_at ?loc "proof_build_time" (Printf.sprintf "%.3f" (wall_clock2 -. wall_clock1)); @@ -1484,7 +1487,7 @@ end = struct (* {{{ *) VCS.print (); let proof, future_proof, time = let wall_clock = Unix.gettimeofday () in - let fp = build_proof_here ?loc ~drop_pt:drop exn_info stop in + let fp = build_proof_here ~doc:dummy_doc (* XXX should be document *) ?loc ~drop_pt:drop exn_info stop in let proof = Future.force fp in proof, fp, Unix.gettimeofday () -. wall_clock in (* We typecheck the proof with the kernel (in the worker) to spot @@ -1577,7 +1580,7 @@ end = struct (* {{{ *) msg_warning Pp.(strbrk("Marshalling error: "^s^". "^ "The system state could not be sent to the worker process. "^ "Falling back to local, lazy, evaluation.")); - t_assign(`Comp(build_proof_here ?loc:t_loc ~drop_pt t_exn_info t_stop)); + t_assign(`Comp(build_proof_here ~doc:dummy_doc (* XXX should be stored in a closure, it is the same doc that was used to generate the task *) ?loc:t_loc ~drop_pt t_exn_info t_stop)); feedback (InProgress ~-1) end (* }}} *) @@ -1587,6 +1590,7 @@ and Slaves : sig (* (eventually) remote calls *) val build_proof : + doc:doc -> ?loc:Loc.t -> drop_pt:bool -> exn_info:(Stateid.t * Stateid.t) -> block_start:Stateid.t -> block_stop:Stateid.t -> name:string -> future_proof * AsyncTaskQueue.cancel_switch @@ -1634,7 +1638,7 @@ end = struct (* {{{ *) with VCS.Expired -> cur in aux stop in try - Reach.known_state ~cache:`No stop; + Reach.known_state ~doc:dummy_doc (* XXX should be document *) ~cache:`No stop; if drop then let _proof = Proof_global.return_proof ~allow_partial:true () in `OK_ADMITTED @@ -1647,7 +1651,7 @@ end = struct (* {{{ *) Proof_global.close_proof ~keep_body_ucst_separate:true (fun x -> x) in (* We jump at the beginning since the kernel handles side effects by also * looking at the ones that happen to be present in the current env *) - Reach.known_state ~cache:`No start; + Reach.known_state ~doc:dummy_doc (* XXX should be document *) ~cache:`No start; (* STATE SPEC: * - start: First non-expired state! [This looks very fishy] * - end : start + qed @@ -1754,7 +1758,7 @@ end = struct (* {{{ *) BuildProof { t_states = s2 } -> overlap_rel s1 s2 | _ -> 0) - let build_proof ?loc ~drop_pt ~exn_info ~block_start ~block_stop ~name:pname = + let build_proof ~doc ?loc ~drop_pt ~exn_info ~block_start ~block_stop ~name:pname = let id, valid as t_exn_info = exn_info in let cancel_switch = ref false in if TaskQueue.n_workers (Option.get !queue) = 0 then @@ -1769,7 +1773,7 @@ end = struct (* {{{ *) TaskQueue.enqueue_task (Option.get !queue) task ~cancel_switch; f, cancel_switch end else - ProofTask.build_proof_here ?loc ~drop_pt t_exn_info block_stop, cancel_switch + ProofTask.build_proof_here ~doc ?loc ~drop_pt t_exn_info block_stop, cancel_switch else let f, t_assign = Future.create_delegate ~name:pname (State.exn_on id ~valid) in let t_uuid = Future.uuid f in @@ -1892,11 +1896,11 @@ end = struct (* {{{ *) let perform { r_state = id; r_state_fb; r_document = vcs; r_ast; r_goal } = Option.iter VCS.restore vcs; try - Reach.known_state ~cache:`No id; + Reach.known_state ~doc:dummy_doc (* XXX should be vcs *) ~cache:`No id; stm_purify (fun () -> let _,_,_,_,sigma0 = Proof.proof (Proof_global.give_me_the_proof ()) in let g = Evd.find sigma0 r_goal in - let is_ground c = Evarutil.is_ground_term sigma0 (EConstr.of_constr c) in + let is_ground c = Evarutil.is_ground_term sigma0 c in if not ( is_ground Evd.(evar_concl g) && List.for_all (Context.Named.Declaration.for_all is_ground) @@ -1919,7 +1923,6 @@ end = struct (* {{{ *) match Evd.(evar_body (find sigma r_goal)) with | Evd.Evar_empty -> RespNoProgress | Evd.Evar_defined t -> - let t = EConstr.of_constr t in let t = Evarutil.nf_evar sigma t in if Evarutil.is_ground_term sigma t then let t = EConstr.Unsafe.to_constr t in @@ -2048,7 +2051,7 @@ end = struct (* {{{ *) let perform { r_where; r_doc; r_what; r_for } = VCS.restore r_doc; VCS.print (); - Reach.known_state ~cache:`No r_where; + Reach.known_state ~doc:dummy_doc (* XXX should be r_doc *) ~cache:`No r_where; (* STATE *) let st = Vernacstate.freeze_interp_state `No in try @@ -2093,7 +2096,8 @@ end (* }}} *) and Reach : sig val known_state : - ?redefine_qed:bool -> cache:Summary.marshallable -> Stateid.t -> unit + doc:doc -> ?redefine_qed:bool -> cache:Summary.marshallable -> + Stateid.t -> unit end = struct (* {{{ *) @@ -2251,7 +2255,7 @@ let log_processing_sync id name reason = log_string Printf.(sprintf let wall_clock_last_fork = ref 0.0 -let known_state ?(redefine_qed=false) ~cache id = +let known_state ~doc ?(redefine_qed=false) ~cache id = let error_absorbing_tactic id blockname exn = (* We keep the static/dynamic part of block detection separate, since @@ -2346,7 +2350,7 @@ let known_state ?(redefine_qed=false) ~cache id = and reach ?safe_id ?(redefine_qed=false) ?(cache=cache) id = stm_prerr_endline (fun () -> "reaching: " ^ Stateid.to_string id); if not redefine_qed && State.is_cached ~cache id then begin - Hooks.(call state_computed id ~in_cache:true); + Hooks.(call state_computed ~doc id ~in_cache:true); stm_prerr_endline (fun () -> "reached (cache)"); State.install_cached id end else @@ -2427,7 +2431,7 @@ let known_state ?(redefine_qed=false) ~cache id = ^" proof. Reprocess the command declaring " ^"the proof's statement to avoid that.")); let fp, cancel = - Slaves.build_proof + Slaves.build_proof ~doc ?loc ~drop_pt ~exn_info ~block_start ~block_stop ~name in Future.replace ofp fp; qed.fproof <- Some (fp, cancel); @@ -2439,10 +2443,10 @@ let known_state ?(redefine_qed=false) ~cache id = reach ~cache:`Shallow block_start; let fp, cancel = if delegate then - Slaves.build_proof + Slaves.build_proof ~doc ?loc ~drop_pt ~exn_info ~block_start ~block_stop ~name else - ProofTask.build_proof_here ?loc + ProofTask.build_proof_here ~doc ?loc ~drop_pt exn_info block_stop, ref false in qed.fproof <- Some (fp, cancel); @@ -2512,7 +2516,7 @@ let known_state ?(redefine_qed=false) ~cache id = let cache_step = if !cur_opt.async_proofs_cache = Some Force then `Yes else cache_step in - State.define ?safe_id + State.define ~doc ?safe_id ~cache:cache_step ~redefine:redefine_qed ~feedback_processed step id; stm_prerr_endline (fun () -> "reached: "^ Stateid.to_string id) in reach ~redefine_qed id @@ -2601,7 +2605,7 @@ let new_doc { doc_type ; iload_path; require_libs; stm_options } = load_objs require_libs; (* We record the state at this point! *) - State.define ~cache:`Yes ~redefine:true (fun () -> ()) Stateid.initial; + State.define ~doc ~cache:`Yes ~redefine:true (fun () -> ()) Stateid.initial; Backtrack.record (); Slaves.init (); if async_proofs_is_master !cur_opt then begin @@ -2622,7 +2626,7 @@ let new_doc { doc_type ; iload_path; require_libs; stm_options } = let observe ~doc id = let vcs = VCS.backup () in try - Reach.known_state ~cache:(VCS.is_interactive ()) id; + Reach.known_state ~doc ~cache:(VCS.is_interactive ()) id; VCS.print (); doc with e -> @@ -2715,7 +2719,7 @@ let merge_proof_branch ~valid ?id qast keep brname = VCS.rewrite_merge qed_id ~ours:(Qed (qed ofp)) ~at:master_id brname; VCS.delete_branch brname; VCS.gc (); - let _st = Reach.known_state ~redefine_qed:true ~cache:`No qed_id in + let _st : unit = Reach.known_state ~doc:dummy_doc (* XXX should be taken in input *) ~redefine_qed:true ~cache:`No qed_id in VCS.checkout VCS.Branch.master; `Unfocus qed_id | { VCS.kind = `Master } -> @@ -2767,7 +2771,7 @@ let process_back_meta_command ~newtip ~head oid aast w = VCS.commit id (Alias (oid,aast)); Backtrack.record (); if w == VtNow then ignore(finish ~doc:dummy_doc); `Ok -let process_transaction ?(newtip=Stateid.fresh ()) +let process_transaction ~doc ?(newtip=Stateid.fresh ()) ({ verbose; loc; expr } as x) c = stm_pperr_endline (fun () -> str "{{{ processing: " ++ pr_ast x); let vcs = VCS.backup () in @@ -2872,11 +2876,11 @@ let process_transaction ?(newtip=Stateid.fresh ()) let in_proof = not (VCS.Branch.equal head VCS.Branch.master) in let id = VCS.new_node ~id:newtip () in let head_id = VCS.get_branch_pos head in - let _st = Reach.known_state ~cache:`Yes head_id in (* ensure it is ok *) + let _st : unit = Reach.known_state ~doc ~cache:`Yes head_id in (* ensure it is ok *) let step () = VCS.checkout VCS.Branch.master; let mid = VCS.get_branch_pos VCS.Branch.master in - let _st' = Reach.known_state ~cache:(VCS.is_interactive ()) mid in + let _st' : unit = Reach.known_state ~doc ~cache:(VCS.is_interactive ()) mid in let st = Vernacstate.freeze_interp_state `No in ignore(stm_vernac_interp id st x); (* Vernac x may or may not start a proof *) @@ -2902,7 +2906,7 @@ let process_transaction ?(newtip=Stateid.fresh ()) end; VCS.checkout_shallowest_proof_branch (); end in - State.define ~safe_id:head_id ~cache:`Yes step id; + State.define ~doc ~safe_id:head_id ~cache:`Yes step id; Backtrack.record (); `Ok | VtUnknown, VtLater -> @@ -3013,11 +3017,10 @@ let add ~doc ~ontop ?newtip verb { CAst.loc; v=ast } = str ") than the tip: " ++ str (Stateid.to_string cur_tip) ++ str "." ++ fnl () ++ str "This is not supported yet, sorry."); let indentation, strlen = compute_indentation ?loc ontop in - CWarnings.set_current_loc loc; (* XXX: Classifiy vernac should be moved inside process transaction *) let clas = Vernac_classifier.classify_vernac ast in let aast = { verbose = verb; indentation; strlen; loc; expr = ast } in - match process_transaction ?newtip aast clas with + match process_transaction ~doc ?newtip aast clas with | `Ok -> doc, VCS.cur_tip (), `NewTip | `Unfocus qed_id -> doc, qed_id, `Unfocus (VCS.cur_tip ()) @@ -3032,12 +3035,11 @@ type focus = { let query ~doc ~at ~route s = stm_purify (fun s -> if Stateid.equal at Stateid.dummy then ignore(finish ~doc:dummy_doc) - else Reach.known_state ~cache:`Yes at; + else Reach.known_state ~doc ~cache:`Yes at; try while true do let { CAst.loc; v=ast } = parse_sentence ~doc at s in let indentation, strlen = compute_indentation ?loc at in - CWarnings.set_current_loc loc; let st = State.get_cached at in let aast = { verbose = true; indentation; strlen; loc; expr = ast } in ignore(stm_vernac_interp ~route at st aast) @@ -3095,7 +3097,7 @@ let edit_at ~doc id = VCS.edit_branch (`Edit (mode, qed_id, master_id, keep, old_branch)); VCS.delete_boxes_of id; cancel_switch := true; - Reach.known_state ~cache:(VCS.is_interactive ()) id; + Reach.known_state ~doc ~cache:(VCS.is_interactive ()) id; VCS.checkout_shallowest_proof_branch (); `Focus { stop = qed_id; start = master_id; tip } in let no_edit = function @@ -3118,7 +3120,7 @@ let edit_at ~doc id = VCS.gc (); VCS.print (); if not !cur_opt.async_proofs_full then - Reach.known_state ~cache:(VCS.is_interactive ()) id; + Reach.known_state ~doc ~cache:(VCS.is_interactive ()) id; VCS.checkout_shallowest_proof_branch (); `NewTip in try @@ -3147,7 +3149,7 @@ let edit_at ~doc id = | true, None, _ -> if on_cur_branch id then begin VCS.reset_branch (VCS.current_branch ()) id; - Reach.known_state ~cache:(VCS.is_interactive ()) id; + Reach.known_state ~doc ~cache:(VCS.is_interactive ()) id; VCS.checkout_shallowest_proof_branch (); `NewTip end else if is_ancestor_of_cur_branch id then begin @@ -3210,4 +3212,9 @@ let forward_feedback_hook = Hooks.forward_feedback_hook let unreachable_state_hook = Hooks.unreachable_state_hook let () = Hook.set Obligations.stm_get_fix_exn (fun () -> !State.fix_exn_ref) +type document = VCS.vcs +let backup () = VCS.backup () +let restore d = VCS.restore d + + (* vim:set foldmethod=marker: *) diff --git a/stm/stm.mli b/stm/stm.mli index 7a720aa72..aed7274d0 100644 --- a/stm/stm.mli +++ b/stm/stm.mli @@ -263,11 +263,12 @@ val register_proof_block_delimiter : * the alternative toploop for the worker can be selected by changing * the name of the Task(s) above) *) -val state_computed_hook : (Stateid.t -> in_cache:bool -> unit) Hook.t -val unreachable_state_hook : (Stateid.t -> Exninfo.iexn -> unit) Hook.t +val state_computed_hook : (doc:doc -> Stateid.t -> in_cache:bool -> unit) Hook.t +val unreachable_state_hook : + (doc:doc -> Stateid.t -> Exninfo.iexn -> unit) Hook.t (* ready means that master has it at hand *) -val state_ready_hook : (Stateid.t -> unit) Hook.t +val state_ready_hook : (doc:doc -> Stateid.t -> unit) Hook.t (* Messages from the workers to the master *) val forward_feedback_hook : (Feedback.feedback -> unit) Hook.t @@ -283,3 +284,7 @@ val get_all_proof_names : doc:doc -> Id.t list (** Enable STM debugging *) val stm_debug : bool ref + +type document +val backup : unit -> document +val restore : document -> unit diff --git a/tactics/auto.ml b/tactics/auto.ml index 0c0d9bcfc..15a24fb37 100644 --- a/tactics/auto.ml +++ b/tactics/auto.ml @@ -8,8 +8,6 @@ (* * (see LICENSE file for the text of the license) *) (************************************************************************) -module CVars = Vars - open Pp open Util open Names @@ -82,14 +80,13 @@ let connect_hint_clenv poly (c, _, ctx) clenv gl = if poly then (** Refresh the instance of the hint *) let (subst, ctx) = Universes.fresh_universe_context_set_instance ctx in - let map c = CVars.subst_univs_level_constr subst c in let emap c = Vars.subst_univs_level_constr subst c in let evd = Evd.merge_context_set Evd.univ_flexible evd ctx in (** Only metas are mentioning the old universes. *) let clenv = { templval = Evd.map_fl emap clenv.templval; templtyp = Evd.map_fl emap clenv.templtyp; - evd = Evd.map_metas map evd; + evd = Evd.map_metas emap evd; env = Proofview.Goal.env gl; } in clenv, emap c diff --git a/tactics/class_tactics.ml b/tactics/class_tactics.ml index 0260460e6..b11e36bce 100644 --- a/tactics/class_tactics.ml +++ b/tactics/class_tactics.ml @@ -1030,8 +1030,8 @@ module Intpart = Unionfind.Make(Evar.Set)(Evar.Map) let deps_of_constraints cstrs evm p = List.iter (fun (_, _, x, y) -> - let evx = Evarutil.undefined_evars_of_term evm (EConstr.of_constr x) in - let evy = Evarutil.undefined_evars_of_term evm (EConstr.of_constr y) in + let evx = Evarutil.undefined_evars_of_term evm x in + let evy = Evarutil.undefined_evars_of_term evm y in Intpart.union_set (Evar.Set.union evx evy) p) cstrs @@ -1076,7 +1076,7 @@ let error_unresolvable env comp evd = | Some s -> Evar.Set.mem ev s in let fold ev evi (found, accu) = - let ev_class = class_of_constr evd (EConstr.of_constr evi.evar_concl) in + let ev_class = class_of_constr evd evi.evar_concl in if not (Option.is_empty ev_class) && is_part ev then (* focus on one instance if only one was searched for *) if not found then (true, Some ev) diff --git a/tactics/equality.ml b/tactics/equality.ml index 98f627f21..b6bbd0be4 100644 --- a/tactics/equality.ml +++ b/tactics/equality.ml @@ -1108,8 +1108,6 @@ let make_tuple env sigma (rterm,rty) lind = let p = mkLambda (na, a, rty) in let sigma, exist_term = Evd.fresh_global env sigma sigdata.intro in let sigma, sig_term = Evd.fresh_global env sigma sigdata.typ in - let exist_term = EConstr.of_constr exist_term in - let sig_term = EConstr.of_constr sig_term in sigma, (applist(exist_term,[a;p;(mkRel lind);rterm]), applist(sig_term,[a;p])) @@ -1203,7 +1201,6 @@ let sig_clausal_form env sigma sort_of_ty siglen ty dflt = let w_type = unsafe_type_of env !evdref w in if Evarconv.e_cumul env evdref w_type a then let exist_term = Evarutil.evd_comb1 (Evd.fresh_global env) evdref sigdata.intro in - let exist_term = EConstr.of_constr exist_term in applist(exist_term,[a;p_i_minus_1;w;tuple_tail]) else user_err Pp.(str "Cannot solve a unification problem.") @@ -1372,7 +1369,6 @@ let inject_at_positions env sigma l2r (eq,_,(t,t1,t2)) eq_clause posns tac = let sigma, (injbody,resty) = build_injector e_env !evdref t1' (mkVar e) cpath in let injfun = mkNamedLambda e t injbody in let sigma,congr = Evd.fresh_global env sigma eq.congr in - let congr = EConstr.of_constr congr in let pf = applist(congr,[t;resty;injfun;t1;t2]) in let sigma, pf_typ = Typing.type_of env sigma pf in let inj_clause = apply_on_clause (pf,pf_typ) eq_clause in @@ -1761,8 +1757,17 @@ type subst_tactic_flags = { let default_subst_tactic_flags = { only_leibniz = false; rewrite_dependent_proof = true } +let warn_deprecated_simple_subst = + CWarnings.create ~name:"deprecated-simple-subst" ~category:"deprecated" + (fun () -> strbrk"\"simple subst\" is deprecated") + let subst_all ?(flags=default_subst_tactic_flags) () = + let () = + if flags.only_leibniz || not flags.rewrite_dependent_proof then + warn_deprecated_simple_subst () + in + if !regular_subst_tactic then (* First step: find hypotheses to treat in linear time *) diff --git a/tactics/hints.ml b/tactics/hints.ml index a285d6b93..46d162911 100644 --- a/tactics/hints.ml +++ b/tactics/hints.ml @@ -792,7 +792,7 @@ let make_exact_entry env sigma info poly ?(name=PathAny) (c, cty, ctx) = match EConstr.kind sigma cty with | Prod _ -> failwith "make_exact_entry" | _ -> - let pat = Patternops.pattern_of_constr env sigma (EConstr.to_constr sigma cty) in + let pat = Patternops.pattern_of_constr env sigma (EConstr.to_constr ~abort_on_undefined_evars:false sigma cty) in let hd = try head_pattern_bound pat with BoundPattern -> failwith "make_exact_entry" @@ -814,7 +814,7 @@ let make_apply_entry env sigma (eapply,hnf,verbose) info poly ?(name=PathAny) (c let sigma' = Evd.merge_context_set univ_flexible sigma ctx in let ce = mk_clenv_from_env env sigma' None (c,cty) in let c' = clenv_type (* ~reduce:false *) ce in - let pat = Patternops.pattern_of_constr env ce.evd (EConstr.to_constr sigma c') in + let pat = Patternops.pattern_of_constr env ce.evd (EConstr.to_constr ~abort_on_undefined_evars:false sigma c') in let hd = try head_pattern_bound pat with BoundPattern -> failwith "make_apply_entry" in diff --git a/tactics/inv.ml b/tactics/inv.ml index d76c9a697..412954989 100644 --- a/tactics/inv.ml +++ b/tactics/inv.ml @@ -124,12 +124,10 @@ let make_inv_predicate env evd indf realargs id status concl = in let eq_term = eqdata.Coqlib.eq in let eq = Evarutil.evd_comb1 (Evd.fresh_global env) evd eq_term in - let eq = EConstr.of_constr eq in let eqn = applist (eq,[eqnty;lhs;rhs]) in let eqns = (Anonymous, lift n eqn) :: eqns in let refl_term = eqdata.Coqlib.refl in let refl_term = Evarutil.evd_comb1 (Evd.fresh_global env) evd refl_term in - let refl_term = EConstr.of_constr refl_term in let refl = mkApp (refl_term, [|eqnty; rhs|]) in let _ = Evarutil.evd_comb1 (Typing.type_of env) evd refl in let args = refl :: args in diff --git a/tactics/tacticals.ml b/tactics/tacticals.ml index a97ae8f65..5e81e2d4b 100644 --- a/tactics/tacticals.ml +++ b/tactics/tacticals.ml @@ -263,7 +263,7 @@ let pf_with_evars glsev k gls = tclTHEN (Refiner.tclEVARS evd) (k a) gls let pf_constr_of_global gr k = - pf_with_evars (fun gls -> on_snd EConstr.of_constr (pf_apply Evd.fresh_global gls gr)) k + pf_with_evars (fun gls -> pf_apply Evd.fresh_global gls gr) k (** Tacticals of Ltac defined directly in term of Proofview *) module New = struct @@ -506,7 +506,7 @@ module New = struct let evi = Evd.find sigma evk in match Evd.evar_body evi with | Evd.Evar_empty -> Some (evk,evi) - | Evd.Evar_defined c -> match Constr.kind c with + | Evd.Evar_defined c -> match Constr.kind (EConstr.Unsafe.to_constr c) with | Term.Evar (evk,l) -> is_undefined_up_to_restriction sigma evk | _ -> (* We make the assumption that there is no way to refine an @@ -709,7 +709,7 @@ module New = struct let gl_make_elim ind = begin fun gl -> let gr = Indrec.lookup_eliminator (fst ind) (elimination_sort_of_goal gl) in let (sigma, c) = pf_apply Evd.fresh_global gl gr in - (sigma, EConstr.of_constr c) + (sigma, c) end let gl_make_case_dep (ind, u) = begin fun gl -> @@ -769,7 +769,6 @@ module New = struct Proofview.tclEVARMAP >>= fun sigma -> Proofview.tclENV >>= fun env -> let (sigma, c) = Evd.fresh_global env sigma ref in - let c = EConstr.of_constr c in Proofview.Unsafe.tclEVARS sigma <*> Proofview.tclUNIT c end diff --git a/tactics/tactics.ml b/tactics/tactics.ml index d0ec3358a..aae4bc088 100644 --- a/tactics/tactics.ml +++ b/tactics/tactics.ml @@ -557,8 +557,13 @@ let mutual_fix f n rest j = Proofview.Goal.enter begin fun gl -> end end +let warning_nameless_fix = + CWarnings.create ~name:"nameless-fix" ~category:"deprecated" Pp.(fun () -> + str "fix/cofix without a name are deprecated, please use the named version.") + let fix ido n = match ido with | None -> + warning_nameless_fix (); Proofview.Goal.enter begin fun gl -> let name = Proof_global.get_current_proof_name () in let id = new_fresh_id Id.Set.empty name gl in @@ -610,6 +615,7 @@ end let cofix ido = match ido with | None -> + warning_nameless_fix (); Proofview.Goal.enter begin fun gl -> let name = Proof_global.get_current_proof_name () in let id = new_fresh_id Id.Set.empty name gl in @@ -1258,7 +1264,6 @@ let cut c = end let error_uninstantiated_metas t clenv = - let t = EConstr.Unsafe.to_constr t in let na = meta_name clenv.evd (List.hd (Metaset.elements (metavars_of t))) in let id = match na with Name id -> id | _ -> anomaly (Pp.str "unnamed dependent meta.") in user_err (str "Cannot find an instance for " ++ Id.print id ++ str".") @@ -1268,7 +1273,7 @@ let check_unresolved_evars_of_metas sigma clenv = (* Refiner.pose_all_metas_as_evars are resolved *) List.iter (fun (mv,b) -> match b with | Clval (_,(c,_),_) -> - (match Constr.kind c.rebus with + (match Constr.kind (EConstr.Unsafe.to_constr c.rebus) with | Evar (evk,_) when Evd.is_undefined clenv.evd evk && not (Evd.mem sigma evk) -> error_uninstantiated_metas (mkMeta mv) clenv @@ -1445,9 +1450,7 @@ let is_nonrec mind = (Global.lookup_mind (fst mind)).mind_finite == Declarations let find_ind_eliminator ind s gl = let gr = lookup_eliminator ind s in - let evd, c = Tacmach.New.pf_apply Evd.fresh_global gl gr in - let c = EConstr.of_constr c in - evd, c + Tacmach.New.pf_apply Evd.fresh_global gl gr let find_eliminator c gl = let ((ind,u),t) = Tacmach.New.pf_reduce_to_quantified_ind gl (Tacmach.New.pf_unsafe_type_of gl c) in @@ -2612,9 +2615,7 @@ let letin_tac_gen with_eq (id,depdecls,lastlhyp,ccl,c) ty = let eqdata = build_coq_eq_data () in let args = if lr then [t;mkVar id;c] else [t;c;mkVar id]in let (sigma, eq) = Evd.fresh_global env sigma eqdata.eq in - let eq = EConstr.of_constr eq in let (sigma, refl) = Evd.fresh_global env sigma eqdata.refl in - let refl = EConstr.of_constr refl in let eq = applist (eq,args) in let refl = applist (refl, [t;mkVar id]) in let term = mkNamedLetIn id c t (mkLetIn (Name heq, refl, eq, ccl)) in @@ -2668,9 +2669,7 @@ let mkletin_goal env sigma store with_eq dep (id,lastlhyp,ccl,c) ty = let eqdata = build_coq_eq_data () in let args = if lr then [t;mkVar id;c] else [t;c;mkVar id]in let (sigma, eq) = Evd.fresh_global env sigma eqdata.eq in - let eq = EConstr.of_constr eq in let (sigma, refl) = Evd.fresh_global env sigma eqdata.refl in - let refl = EConstr.of_constr refl in let eq = applist (eq,args) in let refl = applist (refl, [t;mkVar id]) in let newenv = insert_before [LocalAssum (heq,eq); decl] lastlhyp env in diff --git a/test-suite/bugs/opened/1501.v b/test-suite/bugs/closed/1501.v index b36f21da1..e771e192d 100644 --- a/test-suite/bugs/opened/1501.v +++ b/test-suite/bugs/closed/1501.v @@ -3,6 +3,7 @@ Set Implicit Arguments. Require Export Relation_Definitions. Require Export Setoid. +Require Import Morphisms. Section Essais. @@ -40,57 +41,27 @@ Parameter Hint Resolve equiv_refl equiv_sym equiv_trans: monad. -Instance equiv_rel A: Equivalence (@equiv A). -Proof. - constructor. - intros xa; apply equiv_refl. - intros xa xb; apply equiv_sym. - intros xa xb xc; apply equiv_trans. -Defined. - -Definition fequiv (A B: Type) (f g: A -> K B) := forall (x:A), (equiv (f x) (g -x)). - -Lemma fequiv_refl : forall (A B: Type) (f : A -> K B), fequiv f f. -Proof. - unfold fequiv; auto with monad. -Qed. - -Lemma fequiv_sym : forall (A B: Type) (x y : A -> K B), fequiv x y -> fequiv y -x. -Proof. - unfold fequiv; auto with monad. -Qed. +Add Parametric Relation A : (K A) (@equiv A) + reflexivity proved by (@equiv_refl A) + symmetry proved by (@equiv_sym A) + transitivity proved by (@equiv_trans A) + as equiv_rel. -Lemma fequiv_trans : forall (A B: Type) (x y z : A -> K B), fequiv x y -> -fequiv -y z -> fequiv x z. +Add Parametric Morphism A B : (@bind A B) + with signature (@equiv A) ==> (pointwise_relation A (@equiv B)) ==> (@equiv B) + as bind_mor. Proof. - unfold fequiv; intros; eapply equiv_trans; auto with monad. -Qed. - -Instance fequiv_re A B: Equivalence (@fequiv A B). -Proof. - constructor. - intros f; apply fequiv_refl. - intros f g; apply fequiv_sym. - intros f g h; apply fequiv_trans. -Defined. - -Instance bind_mor A B: Morphisms.Proper (@equiv _ ==> @fequiv _ _ ==> @equiv _) (@bind A B). -Proof. - unfold fequiv; intros x y xy_equiv f g fg_equiv; apply bind_compat; auto. + unfold pointwise_relation; intros; apply bind_compat; auto. Qed. Lemma test: forall (A B: Type) (m1 m2 m3: K A) (f: A -> A -> K B), - (equiv m1 m2) -> (equiv m2 m3) -> - equiv (bind m1 (fun a => bind m2 (fun a' => f a a'))) - (bind m2 (fun a => bind m3 (fun a' => f a a'))). + (equiv m1 m2) -> (equiv m2 m3) -> + equiv (bind m1 (fun a => bind m2 (fun a' => f a a'))) + (bind m2 (fun a => bind m3 (fun a' => f a a'))). Proof. intros A B m1 m2 m3 f H1 H2. setoid_rewrite H1. (* this works *) - Fail setoid_rewrite H2. -Abort. -(* trivial by equiv_refl. -Qed.*) + setoid_rewrite H2. + reflexivity. +Qed. diff --git a/test-suite/bugs/closed/2001.v b/test-suite/bugs/closed/2001.v index d0b3bf173..652c65706 100644 --- a/test-suite/bugs/closed/2001.v +++ b/test-suite/bugs/closed/2001.v @@ -7,7 +7,7 @@ Inductive T : Set := | v : T. Definition f (s:nat) (t:T) : nat. -fix 2. +fix f 2. intros s t. refine match t with diff --git a/test-suite/bugs/opened/2456.v b/test-suite/bugs/closed/2456.v index 5294adefd..e5a392c4d 100644 --- a/test-suite/bugs/opened/2456.v +++ b/test-suite/bugs/closed/2456.v @@ -50,4 +50,9 @@ Fail dependent destruction commute1; dependent destruction catchCommuteDetails; dependent destruction commute2; dependent destruction catchCommuteDetails generalizing X. -Admitted. +revert X. +dependent destruction commute1; +dependent destruction catchCommuteDetails; +dependent destruction commute2; +dependent destruction catchCommuteDetails. +Abort. diff --git a/test-suite/bugs/opened/2814.v b/test-suite/bugs/closed/2814.v index a740b4384..99da1e3e4 100644 --- a/test-suite/bugs/opened/2814.v +++ b/test-suite/bugs/closed/2814.v @@ -3,3 +3,4 @@ Require Import Program. Goal forall (x : Type) (f g : Type -> Type) (H : f x ~= g x), False. intros. Fail induction H. +Abort. diff --git a/test-suite/bugs/opened/3100.v b/test-suite/bugs/closed/3100.v index 6f35a74dc..6f35a74dc 100644 --- a/test-suite/bugs/opened/3100.v +++ b/test-suite/bugs/closed/3100.v diff --git a/test-suite/bugs/opened/3230.v b/test-suite/bugs/closed/3230.v index 265310b1a..265310b1a 100644 --- a/test-suite/bugs/opened/3230.v +++ b/test-suite/bugs/closed/3230.v diff --git a/test-suite/bugs/opened/3320.v b/test-suite/bugs/closed/3320.v index 05cf73281..a5c243d8e 100644 --- a/test-suite/bugs/opened/3320.v +++ b/test-suite/bugs/closed/3320.v @@ -1,4 +1,5 @@ Goal forall x : nat, True. - fix 1. + fix goal 1. assumption. Fail Qed. +Undo. diff --git a/test-suite/bugs/closed/3350.v b/test-suite/bugs/closed/3350.v index c041c401f..c1ff292b3 100644 --- a/test-suite/bugs/closed/3350.v +++ b/test-suite/bugs/closed/3350.v @@ -55,7 +55,7 @@ Lemma lower_ind (P: forall n (p i:Fin.t (S n)), option (Fin.t n) -> Prop) P (S n) (Fin.FS p) (Fin.FS i) None) : forall n (p i:Fin.t (S n)), P n p i (lower p i). Proof. - fix 2. intros n p. + fix lower_ind 2. intros n p. refine (match p as p1 in Fin.t (S n1) return forall (i1:Fin.t (S n1)), P n1 p1 i1 (lower p1 i1) with diff --git a/test-suite/bugs/opened/3209.v b/test-suite/bugs/opened/3209.v deleted file mode 100644 index 3203afa13..000000000 --- a/test-suite/bugs/opened/3209.v +++ /dev/null @@ -1,17 +0,0 @@ -Inductive eqT {A} (x : A) : A -> Type := - reflT : eqT x x. -Definition Bi_inv (A B : Type) (f : (A -> B)) := - sigT (fun (g : B -> A) => - sigT (fun (h : B -> A) => - sigT (fun (α : forall b : B, eqT (f (g b)) b) => - forall a : A, eqT (h (f a)) a))). -Definition TEquiv (A B : Type) := sigT (fun (f : A -> B) => Bi_inv _ _ f). - -Axiom UA : forall (A B : Type), TEquiv (TEquiv A B) (eqT A B). -Definition idtoeqv {A B} (e : eqT A B) : TEquiv A B := - sigT_rect (fun _ => TEquiv A B) - (fun (f : TEquiv A B -> eqT A B) H => - sigT_rect (fun _ => TEquiv A B) - (fun g _ => g e) - H) - (UA A B). diff --git a/test-suite/bugs/opened/3263.v b/test-suite/bugs/opened/3263.v deleted file mode 100644 index f0c707bd1..000000000 --- a/test-suite/bugs/opened/3263.v +++ /dev/null @@ -1,232 +0,0 @@ -Require Import TestSuite.admit. -(* File reduced by coq-bug-finder from originally 10918 lines, then 3649 lines to 3177 lines, then from 3189 lines to 3164 lines, then from 2653 lines to 2496 lines, 2653 lines, then from 1642 lines to 651 lines, then from 736 lines to 473 lines, then from 433 lines to 275 lines, then from 258 lines to 235 lines. *) -Generalizable All Variables. -Set Implicit Arguments. - -Arguments fst {_ _} _. -Arguments snd {_ _} _. - -Axiom cheat : forall {T}, T. - -Reserved Notation "g 'o' f" (at level 40, left associativity). - -Inductive paths {A : Type} (a : A) : A -> Type := idpath : paths a a. -Arguments idpath {A a} , [A] a. -Notation "x = y" := (paths x y) : type_scope. - -Definition symmetry {A : Type} {x y : A} (p : x = y) : y = x - := match p with idpath => idpath end. - -Delimit Scope morphism_scope with morphism. -Delimit Scope category_scope with category. -Delimit Scope object_scope with object. -Record PreCategory (object : Type) := - Build_PreCategory' { - object :> Type := object; - morphism : object -> object -> Type; - identity : forall x, morphism x x; - compose : forall s d d', - morphism d d' - -> morphism s d - -> morphism s d' - where "f 'o' g" := (compose f g); - associativity : forall x1 x2 x3 x4 - (m1 : morphism x1 x2) - (m2 : morphism x2 x3) - (m3 : morphism x3 x4), - (m3 o m2) o m1 = m3 o (m2 o m1); - associativity_sym : forall x1 x2 x3 x4 - (m1 : morphism x1 x2) - (m2 : morphism x2 x3) - (m3 : morphism x3 x4), - m3 o (m2 o m1) = (m3 o m2) o m1; - left_identity : forall a b (f : morphism a b), identity b o f = f; - right_identity : forall a b (f : morphism a b), f o identity a = f; - identity_identity : forall x, identity x o identity x = identity x - }. -Bind Scope category_scope with PreCategory. -Arguments PreCategory {_}. -Arguments identity {_} [!C%category] x%object : rename. - -Arguments compose {_} [!C%category s%object d%object d'%object] m1%morphism m2%morphism : rename. - -Infix "o" := compose : morphism_scope. - -Delimit Scope functor_scope with functor. -Local Open Scope morphism_scope. -Record Functor `(C : @PreCategory objC, D : @PreCategory objD) := - { - object_of :> C -> D; - morphism_of : forall s d, morphism C s d - -> morphism D (object_of s) (object_of d); - composition_of : forall s d d' - (m1 : morphism C s d) (m2: morphism C d d'), - morphism_of _ _ (m2 o m1) - = (morphism_of _ _ m2) o (morphism_of _ _ m1); - identity_of : forall x, morphism_of _ _ (identity x) - = identity (object_of x) - }. -Bind Scope functor_scope with Functor. - -Arguments morphism_of {_} [C%category] {_} [D%category] F%functor [s%object d%object] m%morphism : rename, simpl nomatch. - -Notation "F '_1' m" := (morphism_of F m) (at level 10, no associativity) : morphism_scope. - -Class IsIsomorphism `{C : @PreCategory objC} {s d} (m : morphism C s d) := - { - morphism_inverse : morphism C d s; - left_inverse : morphism_inverse o m = identity _; - right_inverse : m o morphism_inverse = identity _ - }. - -Definition opposite `(C : @PreCategory objC) : PreCategory - := @Build_PreCategory' - C - (fun s d => morphism C d s) - (identity (C := C)) - (fun _ _ _ m1 m2 => m2 o m1) - (fun _ _ _ _ _ _ _ => @associativity_sym _ _ _ _ _ _ _ _ _) - (fun _ _ _ _ _ _ _ => @associativity _ _ _ _ _ _ _ _ _) - (fun _ _ => @right_identity _ _ _ _) - (fun _ _ => @left_identity _ _ _ _) - (@identity_identity _ C). - -Notation "C ^op" := (opposite C) (at level 3) : category_scope. - -Definition prod `(C : @PreCategory objC, D : @PreCategory objD) : @PreCategory (objC * objD). - refine (@Build_PreCategory' - (C * D)%type - (fun s d => (morphism C (fst s) (fst d) - * morphism D (snd s) (snd d))%type) - (fun x => (identity (fst x), identity (snd x))) - (fun s d d' m2 m1 => (fst m2 o fst m1, snd m2 o snd m1)) - _ - _ - _ - _ - _); admit. -Defined. -Infix "*" := prod : category_scope. - -Definition compose_functor `(C : @PreCategory objC, D : @PreCategory objD, E : @PreCategory objE) (G : Functor D E) (F : Functor C D) : Functor C E - := Build_Functor - C E - (fun c => G (F c)) - (fun _ _ m => morphism_of G (morphism_of F m)) - cheat - cheat. - -Infix "o" := compose_functor : functor_scope. - -Record NaturalTransformation `(C : @PreCategory objC, D : @PreCategory objD) (F G : Functor C D) := - Build_NaturalTransformation' { - components_of :> forall c, morphism D (F c) (G c); - commutes : forall s d (m : morphism C s d), - components_of d o F _1 m = G _1 m o components_of s; - - commutes_sym : forall s d (m : C.(morphism) s d), - G _1 m o components_of s = components_of d o F _1 m - }. -Definition functor_category `(C : @PreCategory objC, D : @PreCategory objD) : PreCategory - := @Build_PreCategory' (Functor C D) - (@NaturalTransformation _ C _ D) - cheat - cheat - cheat - cheat - cheat - cheat - cheat. - -Definition opposite_functor `(F : @Functor objC C objD D) : Functor C^op D^op - := Build_Functor (C^op) (D^op) - (object_of F) - (fun s d => morphism_of F (s := d) (d := s)) - (fun d' d s m1 m2 => composition_of F s d d' m2 m1) - (identity_of F). - -Definition opposite_invL `(F : @Functor objC C^op objD D) : Functor C D^op - := Build_Functor C (D^op) - (object_of F) - (fun s d => morphism_of F (s := d) (d := s)) - (fun d' d s m1 m2 => composition_of F s d d' m2 m1) - (identity_of F). -Notation "F ^op" := (opposite_functor F) : functor_scope. - -Notation "F ^op'L" := (opposite_invL F) (at level 3) : functor_scope. -Definition fst `{C : @PreCategory objC, D : @PreCategory objD} : Functor (C * D) C - := Build_Functor (C * D) C - (@fst _ _) - (fun _ _ => @fst _ _) - (fun _ _ _ _ _ => idpath) - (fun _ => idpath). - -Definition snd `{C : @PreCategory objC, D : @PreCategory objD} : Functor (C * D) D - := Build_Functor (C * D) D - (@snd _ _) - (fun _ _ => @snd _ _) - (fun _ _ _ _ _ => idpath) - (fun _ => idpath). -Definition prod_functor `(F : @Functor objC C objD D, F' : @Functor objC C objD' D') -: Functor C (D * D') - := Build_Functor - C (D * D') - (fun c => (F c, F' c)) - (fun s d m => (F _1 m, F' _1 m))%morphism - cheat - cheat. -Definition pair `(F : @Functor objC C objD D, F' : @Functor objC' C' objD' D') : Functor (C * C') (D * D') - := (prod_functor (F o fst) (F' o snd))%functor. -Notation cat_of obj := - (@Build_PreCategory' obj - (fun x y => forall _ : x, y) - (fun _ x => x) - (fun _ _ _ f g x => f (g x))%core - (fun _ _ _ _ _ _ _ => idpath) - (fun _ _ _ _ _ _ _ => idpath) - (fun _ _ _ => idpath) - (fun _ _ _ => idpath) - (fun _ => idpath)). - -Definition hom_functor `(C : @PreCategory objC) : Functor (C^op * C) (cat_of Type) - := Build_Functor _ _ cheat cheat cheat cheat. - -Definition induced_hom_natural_transformation `(F : @Functor objC C objD D) -: NaturalTransformation (hom_functor C) (hom_functor D o pair F^op F) - := Build_NaturalTransformation' _ _ cheat cheat cheat. - -Class IsFullyFaithful `(F : @Functor objC C objD D) - := is_fully_faithful - : forall x y : C, - IsIsomorphism (induced_hom_natural_transformation F (x, y)). - -Definition coyoneda `(A : @PreCategory objA) : Functor A^op (@functor_category _ A _ (cat_of Type)) - := cheat. - -Definition yoneda `(A : @PreCategory objA) : Functor A (@functor_category _ A^op _ (cat_of Type)) - := (((coyoneda A^op)^op'L)^op'L)%functor. -Definition coyoneda_embedding `(A : @PreCategory objA) : @IsFullyFaithful _ _ _ _ (@coyoneda _ A). -Admitted. - -Definition yoneda_embedding_fast `(A : @PreCategory objA) : @IsFullyFaithful _ _ _ _ (@yoneda _ A). -Proof. - intros a b. - pose proof (coyoneda_embedding A^op a b) as CYE. - unfold yoneda. - Time let t := (type of CYE) in - let t' := (eval simpl in t) in pose proof ((fun (x : t) => (x : t')) CYE) as CYE'. (* Finished transaction in 0. secs (0.216013u,0.004s) *) - Fail Timeout 1 let t := match goal with |- ?G => constr:(G) end in - let t' := (eval simpl in t) in exact ((fun (x : t') => (x : t)) CYE'). - Time let t := match goal with |- ?G => constr:(G) end in - let t' := (eval simpl in t) in exact ((fun (x : t') => (x : t)) CYE'). (* Finished transaction in 0. secs (0.248016u,0.s) *) -Fail Timeout 2 Defined. -Time Defined. (* Finished transaction in 1. secs (0.432027u,0.s) *) - -Definition yoneda_embedding `(A : @PreCategory objA) : @IsFullyFaithful _ _ _ _ (@yoneda _ A). -Proof. - intros a b. - pose proof (coyoneda_embedding A^op a b) as CYE. - unfold yoneda; simpl in *. - Fail Timeout 1 exact CYE. - Time exact CYE. (* Finished transaction in 0. secs (0.012001u,0.s) *) -Fail Timeout 60 Defined. (* Timeout! *) diff --git a/test-suite/bugs/opened/3916.v b/test-suite/bugs/opened/3916.v deleted file mode 100644 index fd95503e6..000000000 --- a/test-suite/bugs/opened/3916.v +++ /dev/null @@ -1,3 +0,0 @@ -Require Import List. - -Fail Hint Resolve -> in_map. (* Also happens when using <- instead of -> *) diff --git a/test-suite/bugs/opened/3948.v b/test-suite/bugs/opened/3948.v deleted file mode 100644 index 5c4b4277b..000000000 --- a/test-suite/bugs/opened/3948.v +++ /dev/null @@ -1,25 +0,0 @@ -Module Type S. -Parameter t : Type. -End S. - -Module Bar(X : S). -Proof. - Definition elt := X.t. - Axiom fold : elt. -End Bar. - -Module Make (X: S) := Bar(X). - -Declare Module X : S. - -Module Type Interface. - Parameter constant : unit. -End Interface. - -Module DepMap : Interface. - Module Dom := Make(X). - Definition constant : unit := - let _ := @Dom.fold in tt. -End DepMap. - -Print Assumptions DepMap.constant. diff --git a/test-suite/bugs/opened/4813.v b/test-suite/bugs/opened/4813.v index b75170179..2ac553593 100644 --- a/test-suite/bugs/opened/4813.v +++ b/test-suite/bugs/opened/4813.v @@ -1,5 +1,5 @@ -(* An example one would like to see succeeding *) +Require Import Program.Tactics. Record T := BT { t : Set }. Record U (x : T) := BU { u : t x -> Prop }. -Fail Definition A (H : unit -> Prop) : U (BT unit) := BU _ H. +Program Definition A (H : unit -> Prop) : U (BT unit) := BU _ H. diff --git a/test-suite/success/ShowExtraction.v b/test-suite/success/ShowExtraction.v index e34c240c5..a4a35003d 100644 --- a/test-suite/success/ShowExtraction.v +++ b/test-suite/success/ShowExtraction.v @@ -12,7 +12,7 @@ Fail Show Extraction. Lemma decListA : forall (xs ys : list A), {xs=ys}+{xs<>ys}. Proof. Show Extraction. -fix 1. +fix decListA 1. destruct xs as [|x xs], ys as [|y ys]. Show Extraction. - now left. diff --git a/test-suite/success/cc.v b/test-suite/success/cc.v index bbfe5ec42..49a8b9cf4 100644 --- a/test-suite/success/cc.v +++ b/test-suite/success/cc.v @@ -151,3 +151,17 @@ Section JLeivant. congruence. Qed. End JLeivant. + +(* An example with primitive projections *) + +Module PrimitiveProjections. +Set Primitive Projections. +Record t (A:Type) := { f : A }. +Goal forall g (a:t nat), @f nat = g -> f a = 0 -> g a = 0. +congruence. +Undo. +intros. +unfold f in H0. (* internally turn the projection to unfolded form *) +congruence. +Qed. +End PrimitiveProjections. diff --git a/test-suite/success/name_mangling.v b/test-suite/success/name_mangling.v index 571dde880..e98241420 100644 --- a/test-suite/success/name_mangling.v +++ b/test-suite/success/name_mangling.v @@ -122,8 +122,7 @@ Lemma a : forall n, n = 0. Proof. fix a 1. Check a. -fix 1. -Fail Check a0. +Fail fix a 1. Abort. (* Test stability of "induction" *) diff --git a/test-suite/success/ssr_delayed_clear_rename.v b/test-suite/success/ssr_delayed_clear_rename.v new file mode 100644 index 000000000..951e5aff7 --- /dev/null +++ b/test-suite/success/ssr_delayed_clear_rename.v @@ -0,0 +1,5 @@ +Require Import ssreflect. +Example foo (t t1 t2 : True) : True /\ True -> True -> True. +Proof. +move=>[{t1 t2 t} t1 t2] t. +Abort. diff --git a/theories/Arith/Div2.v b/theories/Arith/Div2.v index 42956c475..a5e457831 100644 --- a/theories/Arith/Div2.v +++ b/theories/Arith/Div2.v @@ -30,7 +30,7 @@ Lemma ind_0_1_SS : P 0 -> P 1 -> (forall n, P n -> P (S (S n))) -> forall n, P n. Proof. intros P H0 H1 H2. - fix 1. + fix ind_0_1_SS 1. destruct n as [|[|n]]. - exact H0. - exact H1. @@ -105,7 +105,7 @@ Hint Resolve double_S: arith. Lemma even_odd_double n : (even n <-> n = double (div2 n)) /\ (odd n <-> n = S (double (div2 n))). Proof. - revert n. fix 1. destruct n as [|[|n]]. + revert n. fix even_odd_double 1. destruct n as [|[|n]]. - (* n = 0 *) split; split; auto with arith. inversion 1. - (* n = 1 *) diff --git a/theories/Arith/Even.v b/theories/Arith/Even.v index baf119732..a1d0e9fcc 100644 --- a/theories/Arith/Even.v +++ b/theories/Arith/Even.v @@ -38,7 +38,7 @@ Hint Constructors odd: arith. Lemma even_equiv : forall n, even n <-> Nat.Even n. Proof. - fix 1. + fix even_equiv 1. destruct n as [|[|n]]; simpl. - split; [now exists 0 | constructor]. - split. @@ -52,7 +52,7 @@ Qed. Lemma odd_equiv : forall n, odd n <-> Nat.Odd n. Proof. - fix 1. + fix odd_equiv 1. destruct n as [|[|n]]; simpl. - split. + inversion_clear 1. diff --git a/theories/Arith/PeanoNat.v b/theories/Arith/PeanoNat.v index 4e4938a99..bc58995fd 100644 --- a/theories/Arith/PeanoNat.v +++ b/theories/Arith/PeanoNat.v @@ -315,7 +315,7 @@ Import Private_Parity. Lemma even_spec : forall n, even n = true <-> Even n. Proof. - fix 1. + fix even_spec 1. destruct n as [|[|n]]; simpl. - split; [ now exists 0 | trivial ]. - split; [ discriminate | intro H; elim (Even_1 H) ]. @@ -325,7 +325,7 @@ Qed. Lemma odd_spec : forall n, odd n = true <-> Odd n. Proof. unfold odd. - fix 1. + fix odd_spec 1. destruct n as [|[|n]]; simpl. - split; [ discriminate | intro H; elim (Odd_0 H) ]. - split; [ now exists 0 | trivial ]. @@ -473,7 +473,7 @@ Notation "( x | y )" := (divide x y) (at level 0) : nat_scope. Lemma gcd_divide : forall a b, (gcd a b | a) /\ (gcd a b | b). Proof. - fix 1. + fix gcd_divide 1. intros [|a] b; simpl. split. now exists 0. @@ -502,7 +502,7 @@ Qed. Lemma gcd_greatest : forall a b c, (c|a) -> (c|b) -> (c|gcd a b). Proof. - fix 1. + fix gcd_greatest 1. intros [|a] b; simpl; auto. fold (b mod (S a)). intros c H H'. apply gcd_greatest; auto. @@ -536,7 +536,7 @@ Qed. Lemma le_div2 n : div2 (S n) <= n. Proof. revert n. - fix 1. + fix le_div2 1. destruct n; simpl; trivial. apply lt_succ_r. destruct n; [simpl|]; trivial. now constructor. Qed. diff --git a/theories/Lists/Streams.v b/theories/Lists/Streams.v index 310c651e8..8a01b8fb1 100644 --- a/theories/Lists/Streams.v +++ b/theories/Lists/Streams.v @@ -196,7 +196,7 @@ Lemma ForAll_map : forall (P:Stream B -> Prop) (S:Stream A), ForAll (fun s => P (map s)) S <-> ForAll P (map S). Proof. intros P S. -split; generalize S; clear S; cofix; intros S; constructor; +split; generalize S; clear S; cofix ForAll_map; intros S; constructor; destruct H as [H0 H]; firstorder. Qed. diff --git a/theories/PArith/BinPos.v b/theories/PArith/BinPos.v index 8d0896db7..000d895e1 100644 --- a/theories/PArith/BinPos.v +++ b/theories/PArith/BinPos.v @@ -1655,7 +1655,7 @@ Qed. Lemma sqrtrem_spec p : SqrtSpec (sqrtrem p) p. Proof. -revert p. fix 1. +revert p. fix sqrtrem_spec 1. destruct p; try destruct p; try (constructor; easy); apply sqrtrem_step_spec; auto. Qed. diff --git a/theories/Sorting/Heap.v b/theories/Sorting/Heap.v index d9e5ad676..2ef162be4 100644 --- a/theories/Sorting/Heap.v +++ b/theories/Sorting/Heap.v @@ -148,10 +148,10 @@ Section defs. forall l1:list A, Sorted leA l1 -> forall l2:list A, Sorted leA l2 -> merge_lem l1 l2. Proof. - fix 1; intros; destruct l1. + fix merge 1; intros; destruct l1. apply merge_exist with l2; auto with datatypes. rename l1 into l. - revert l2 H0. fix 1. intros. + revert l2 H0. fix merge0 1. intros. destruct l2 as [|a0 l0]. apply merge_exist with (a :: l); simpl; auto with datatypes. induction (leA_dec a a0) as [Hle|Hle]. diff --git a/toplevel/coqloop.ml b/toplevel/coqloop.ml index d0989cfcc..63b8b538a 100644 --- a/toplevel/coqloop.ml +++ b/toplevel/coqloop.ml @@ -272,6 +272,15 @@ let read_sentence ~state input = (* TopErr.print_toplevel_parse_error reraise top_buffer; *) Exninfo.iraise reraise +let extract_default_loc loc doc_id sid : Loc.t option = + match loc with + | Some _ -> loc + | None -> + try + let doc = Stm.get_doc doc_id in + Option.cata fst None Stm.(get_ast ~doc sid) + with _ -> loc + (** Coqloop Console feedback handler *) let coqloop_feed (fb : Feedback.feedback) = let open Feedback in match fb.contents with @@ -290,6 +299,9 @@ let coqloop_feed (fb : Feedback.feedback) = let open Feedback in (* Re-enable when we switch back to feedback-based error printing *) | Message (Error,loc,msg) -> () (* TopErr.print_error_for_buffer ?loc lvl msg top_buffer *) + | Message (Warning,loc,msg) -> + let loc = extract_default_loc loc fb.doc_id fb.span_id in + TopErr.print_error_for_buffer ?loc Warning msg top_buffer | Message (lvl,loc,msg) -> TopErr.print_error_for_buffer ?loc lvl msg top_buffer diff --git a/vernac/class.ml b/vernac/class.ml index 59d933108..f0b01061b 100644 --- a/vernac/class.ml +++ b/vernac/class.ml @@ -181,6 +181,7 @@ let build_id_coercion idf_opt source poly = let sigma, vs = match source with | CL_CONST sp -> Evd.fresh_global env sigma (ConstRef sp) | _ -> error_not_transparent source in + let vs = EConstr.Unsafe.to_constr vs in let c = match constant_opt_value_in env (destConst vs) with | Some c -> c | None -> error_not_transparent source in diff --git a/vernac/classes.ml b/vernac/classes.ml index 76d427add..3c133f317 100644 --- a/vernac/classes.ml +++ b/vernac/classes.ml @@ -293,7 +293,7 @@ let new_instance ?(abstract=false) ?(global=false) ?(refine= !refine_instance) (* Check that the type is free of evars now. *) Pretyping.check_evars env Evd.empty sigma termtype; let termtype = to_constr sigma termtype in - let term = Option.map (to_constr sigma) term in + let term = Option.map (to_constr ~abort_on_undefined_evars:false sigma) term in if not (Evd.has_undefined sigma) && not (Option.is_empty term) then declare_instance_constant k pri global imps ?hook id decl poly sigma (Option.get term) termtype diff --git a/vernac/comDefinition.ml b/vernac/comDefinition.ml index b18a60a1f..9aa61ab46 100644 --- a/vernac/comDefinition.ml +++ b/vernac/comDefinition.ml @@ -88,8 +88,8 @@ let interp_definition pl bl poly red_option c ctypopt = let evd = Evd.minimize_universes evd in (* Substitute evars and universes, and add parameters. Note: in program mode some evars may remain. *) - let ctx = List.map (EConstr.to_rel_decl evd) ctx in - let c = Term.it_mkLambda_or_LetIn (EConstr.to_constr evd c) ctx in + let ctx = List.map Termops.(map_rel_decl (to_constr ~abort_on_undefined_evars:false evd)) ctx in + let c = Term.it_mkLambda_or_LetIn (EConstr.to_constr ~abort_on_undefined_evars:false evd c) ctx in let tyopt = Option.map (fun ty -> Term.it_mkProd_or_LetIn (EConstr.to_constr evd ty) ctx) tyopt in (* Keep only useful universes. *) let uvars_fold uvars c = diff --git a/vernac/comFixpoint.ml b/vernac/comFixpoint.ml index a794c2db0..1466fa243 100644 --- a/vernac/comFixpoint.ml +++ b/vernac/comFixpoint.ml @@ -225,7 +225,8 @@ let interp_recursive ~program_mode ~cofix fixl notations = (* Instantiate evars and check all are resolved *) let sigma = solve_unif_constraints_with_heuristics env_rec sigma in let sigma, _ = nf_evars_and_universes sigma in - let fixdefs = List.map (fun c -> Option.map EConstr.(to_constr sigma) c) fixdefs in + (* XXX: We still have evars here in Program *) + let fixdefs = List.map (fun c -> Option.map EConstr.(to_constr ~abort_on_undefined_evars:false sigma) c) fixdefs in let fixtypes = List.map EConstr.(to_constr sigma) fixtypes in let fixctxs = List.map (fun (_,ctx) -> ctx) fixctxs in diff --git a/vernac/comInductive.ml b/vernac/comInductive.ml index db2f16525..05c40dbdd 100644 --- a/vernac/comInductive.ml +++ b/vernac/comInductive.ml @@ -261,7 +261,7 @@ let check_param = function | CLocalAssum (nas, Default _, _) -> List.iter check_named nas | CLocalAssum (nas, Generalized _, _) -> () | CLocalPattern {CAst.loc} -> - Loc.raise ?loc (Stream.Error "pattern with quote not allowed here.") + Loc.raise ?loc (Stream.Error "pattern with quote not allowed here") let interp_mutual_inductive (paramsl,indl) notations cum poly prv finite = check_all_names_different indl; diff --git a/vernac/comProgramFixpoint.ml b/vernac/comProgramFixpoint.ml index b95741ca4..745f1df1d 100644 --- a/vernac/comProgramFixpoint.ml +++ b/vernac/comProgramFixpoint.ml @@ -229,7 +229,8 @@ let build_wellfounded (recname,pl,n,bl,arityc,body) poly r measure notation = in (* XXX: Capturing sigma here... bad bad *) let hook = Lemmas.mk_hook (hook sigma) in - let fullcoqc = EConstr.to_constr sigma def in + (* XXX: Grounding non-ground terms here... bad bad *) + let fullcoqc = EConstr.to_constr ~abort_on_undefined_evars:false sigma def in let fullctyp = EConstr.to_constr sigma typ in Obligations.check_evars env sigma; let evars, _, evars_def, evars_typ = @@ -261,9 +262,10 @@ let do_program_recursive local poly fixkind fixl ntns = let collect_evars id def typ imps = (* Generalize by the recursive prototypes *) let def = - EConstr.to_constr evd (Termops.it_mkNamedLambda_or_LetIn (EConstr.of_constr def) rec_sign) + EConstr.to_constr ~abort_on_undefined_evars:false evd (Termops.it_mkNamedLambda_or_LetIn (EConstr.of_constr def) rec_sign) and typ = - EConstr.to_constr evd (Termops.it_mkNamedProd_or_LetIn (EConstr.of_constr typ) rec_sign) + (* Worrying... *) + EConstr.to_constr ~abort_on_undefined_evars:false evd (Termops.it_mkNamedProd_or_LetIn (EConstr.of_constr typ) rec_sign) in let evm = collect_evars_of_term evd def typ in let evars, _, def, typ = diff --git a/vernac/himsg.ml b/vernac/himsg.ml index 698ee4703..acb461cac 100644 --- a/vernac/himsg.ml +++ b/vernac/himsg.ml @@ -75,11 +75,7 @@ let rec contract3' env sigma a b c = function | MetaOccurInBody _ | InstanceNotSameType _ | ProblemBeyondCapabilities | UnifUnivInconsistency _ as x -> contract3 env sigma a b c, x | CannotSolveConstraint ((pb,env',t,u),x) -> - let t = EConstr.of_constr t in - let u = EConstr.of_constr u in let env',t,u = contract2 env' sigma t u in - let t = EConstr.Unsafe.to_constr t in - let u = EConstr.Unsafe.to_constr u in let y,x = contract3' env sigma a b c x in y,CannotSolveConstraint ((pb,env',t,u),x) @@ -322,8 +318,6 @@ let explain_unification_error env sigma p1 p2 = function else [str "universe inconsistency"] | CannotSolveConstraint ((pb,env,t,u),e) -> - let t = EConstr.of_constr t in - let u = EConstr.of_constr u in let env = make_all_name_different env sigma in (strbrk "cannot satisfy constraint " ++ pr_leconstr_env env sigma t ++ str " == " ++ pr_leconstr_env env sigma u) @@ -562,9 +556,9 @@ let rec explain_evar_kind env sigma evk ty = function | Evar_kinds.SubEvar (where,evk') -> let evi = Evd.find sigma evk' in let pc = match evi.evar_body with - | Evar_defined c -> pr_leconstr_env env sigma (EConstr.of_constr c) + | Evar_defined c -> pr_leconstr_env env sigma c | Evar_empty -> assert false in - let ty' = EConstr.of_constr evi.evar_concl in + let ty' = evi.evar_concl in (match where with | Some Evar_kinds.Body -> str "the body of " | Some Evar_kinds.Domain -> str "the domain of " @@ -577,11 +571,11 @@ let rec explain_evar_kind env sigma evk ty = function (pr_leconstr_env env sigma ty') (snd evi.evar_source) let explain_typeclass_resolution env sigma evi k = - match Typeclasses.class_of_constr sigma (EConstr.of_constr evi.evar_concl) with + match Typeclasses.class_of_constr sigma evi.evar_concl with | Some _ -> let env = Evd.evar_filtered_env evi in fnl () ++ str "Could not find an instance for " ++ - pr_lconstr_env env sigma evi.evar_concl ++ + pr_leconstr_env env sigma evi.evar_concl ++ pr_trailing_ne_context_of env sigma | _ -> mt() @@ -590,14 +584,14 @@ let explain_placeholder_kind env sigma c e = | Some (SeveralInstancesFound n) -> strbrk " (several distinct possible type class instances found)" | None -> - match Typeclasses.class_of_constr sigma (EConstr.of_constr c) with + match Typeclasses.class_of_constr sigma c with | Some _ -> strbrk " (no type class instance found)" | _ -> mt () let explain_unsolvable_implicit env sigma evk explain = let evi = Evarutil.nf_evar_info sigma (Evd.find_undefined sigma evk) in let env = Evd.evar_filtered_env evi in - let type_of_hole = pr_lconstr_env env sigma evi.evar_concl in + let type_of_hole = pr_leconstr_env env sigma evi.evar_concl in let pe = pr_trailing_ne_context_of env sigma in strbrk "Cannot infer " ++ explain_evar_kind env sigma evk type_of_hole (snd evi.evar_source) ++ @@ -640,8 +634,7 @@ let explain_refiner_cannot_generalize env sigma ty = pr_leconstr_env env sigma ty ++ str "." let explain_no_occurrence_found env sigma c id = - let c = EConstr.to_constr sigma c in - str "Found no subterm matching " ++ pr_lconstr_env env sigma c ++ + str "Found no subterm matching " ++ pr_leconstr_env env sigma c ++ str " in " ++ (match id with | Some id -> Id.print id @@ -766,7 +759,7 @@ let pr_constraints printenv env sigma evars cstrs = let evs = prlist (fun (ev, evi) -> fnl () ++ pr_existential_key sigma ev ++ - str " : " ++ pr_lconstr_env env' sigma evi.evar_concl ++ fnl ()) l + str " : " ++ pr_leconstr_env env' sigma evi.evar_concl ++ fnl ()) l in h 0 (pe ++ evs ++ pr_evar_constraints sigma cstrs) else diff --git a/vernac/obligations.ml b/vernac/obligations.ml index 064e40b9b..3f2792518 100644 --- a/vernac/obligations.ml +++ b/vernac/obligations.ml @@ -209,8 +209,10 @@ let eterm_obligations env name evm fs ?status t ty = List.fold_right (fun (id, (n, nstr), ev) l -> let hyps = Evd.evar_filtered_context ev in - let hyps = trunc_named_context nc_len hyps in - let evtyp, deps, transp = etype_of_evar l hyps ev.evar_concl in + let hyps = trunc_named_context nc_len hyps in + let hyps = EConstr.Unsafe.to_named_context hyps in + let concl = EConstr.Unsafe.to_constr ev.evar_concl in + let evtyp, deps, transp = etype_of_evar l hyps concl in let evtyp, hyps, chop = match chop_product fs evtyp with | Some t -> t, trunc_named_context fs hyps, fs @@ -356,7 +358,7 @@ let _ = optread = get_shrink_obligations; optwrite = set_shrink_obligations; } -let evar_of_obligation o = make_evar (Global.named_context_val ()) o.obl_type +let evar_of_obligation o = make_evar (Global.named_context_val ()) (EConstr.of_constr o.obl_type) let get_obligation_body expand obl = match obl.obl_body with @@ -813,10 +815,9 @@ let rec string_of_list sep f = function let solve_by_tac name evi t poly ctx = let id = name in - let concl = EConstr.of_constr evi.evar_concl in (* spiwack: the status is dropped. *) let (entry,_,ctx') = Pfedit.build_constant_by_tactic - id ~goal_kind:(goal_kind poly) ctx evi.evar_hyps concl (Tacticals.New.tclCOMPLETE t) in + id ~goal_kind:(goal_kind poly) ctx evi.evar_hyps evi.evar_concl (Tacticals.New.tclCOMPLETE t) in let env = Global.env () in let entry = Safe_typing.inline_private_constants_in_definition_entry env entry in let body, () = Future.force entry.const_entry_body in diff --git a/vernac/record.ml b/vernac/record.ml index 6e745b2af..78e68e8a3 100644 --- a/vernac/record.ml +++ b/vernac/record.ml @@ -114,7 +114,7 @@ let typecheck_params_and_fields finite def id poly pl t ps nots fs = (function CLocalDef (b, _, _) -> error default_binder_kind b | CLocalAssum (ls, bk, ce) -> List.iter (error bk) ls | CLocalPattern {CAst.loc} -> - Loc.raise ?loc (Stream.Error "pattern with quote not allowed in record parameters.")) ps + Loc.raise ?loc (Stream.Error "pattern with quote not allowed in record parameters")) ps in let sigma, (impls_env, ((env1,newps), imps)) = interp_context_evars env0 sigma ps in let sigma, typ, sort, template = match t with diff --git a/vernac/vernacentries.ml b/vernac/vernacentries.ml index b44c7cccb..a9d1631ba 100644 --- a/vernac/vernacentries.ml +++ b/vernac/vernacentries.ml @@ -449,7 +449,7 @@ let start_proof_and_print k l hook = let evi = Evarutil.nf_evar_info sigma evi in let env = Evd.evar_filtered_env evi in try - let concl = EConstr.of_constr evi.Evd.evar_concl in + let concl = evi.Evd.evar_concl in if not (Evarutil.is_ground_env sigma env && Evarutil.is_ground_term sigma concl) then raise Exit; |