diff options
-rw-r--r-- | theories/Numbers/Natural/BigN/NMake.v | 8 | ||||
-rw-r--r-- | theories/Numbers/Natural/BigN/NMake_gen.ml | 6 |
2 files changed, 7 insertions, 7 deletions
diff --git a/theories/Numbers/Natural/BigN/NMake.v b/theories/Numbers/Natural/BigN/NMake.v index 3cfa55bef..93ae858d8 100644 --- a/theories/Numbers/Natural/BigN/NMake.v +++ b/theories/Numbers/Natural/BigN/NMake.v @@ -475,7 +475,7 @@ Module Make (W0:CyclicType) <: NType. DoubleDivn1.double_divn1 zd zero ww head0 add_mul_div div21 compare sub in fun m x y => let (u,v) := ddivn1 (S m) x y in (mk_t_w' n m u, mk_t n v). - Let div_gtnm n m wx wy := + Definition div_gtnm n m wx wy := let mn := Max.max n m in let d := diff n m in let op := make_op mn in @@ -522,7 +522,7 @@ Module Make (W0:CyclicType) <: NType. case (ZnZ.spec_to_Z y); auto. Qed. - Let spec_divn1 n := + Definition spec_divn1 n := DoubleDivn1.spec_double_divn1 (ZnZ.zdigits (dom_op n)) (ZnZ.zero:dom_t n) ZnZ.WW ZnZ.head0 @@ -643,7 +643,7 @@ Module Make (W0:CyclicType) <: NType. DoubleDivn1.double_modn1 zd zero head0 add_mul_div div21 compare sub in fun m x y => reduce n (dmodn1 (S m) x y). - Let mod_gtnm n m wx wy := + Definition mod_gtnm n m wx wy := let mn := Max.max n m in let d := diff n m in let op := make_op mn in @@ -671,7 +671,7 @@ Module Make (W0:CyclicType) <: NType. reflexivity. Qed. - Let spec_modn1 n := + Definition spec_modn1 n := DoubleDivn1.spec_double_modn1 (ZnZ.zdigits (dom_op n)) (ZnZ.zero:dom_t n) ZnZ.WW ZnZ.head0 diff --git a/theories/Numbers/Natural/BigN/NMake_gen.ml b/theories/Numbers/Natural/BigN/NMake_gen.ml index 278cc8bf7..b941ed48f 100644 --- a/theories/Numbers/Natural/BigN/NMake_gen.ml +++ b/theories/Numbers/Natural/BigN/NMake_gen.ml @@ -234,7 +234,7 @@ pr | S n1 => mk_zn2z_ops (nmake_op ww ww_op n1) end. - Let eval n m := ZnZ.to_Z (Ops:=nmake_op _ (dom_op n) m). + Definition eval n m := ZnZ.to_Z (Ops:=nmake_op _ (dom_op n) m). Theorem nmake_op_S: forall ww (w_op: ZnZ.Ops ww) x, nmake_op _ w_op (S x) = mk_zn2z_ops (nmake_op _ w_op x). @@ -533,7 +533,7 @@ pr " for i = 0 to size-1 do let pattern = (iter_str (size+1-i) "(S ") ^ "_" ^ (iter_str (size+1-i) ")") in pr -" Let mk_t_%iw m := Eval cbv beta zeta iota delta [ mk_t plus ] in +" Definition mk_t_%iw m := Eval cbv beta zeta iota delta [ mk_t plus ] in match m return word w%i (S m) -> t with | %s as p => mk_t_w %i (S p) | p => mk_t (%i+p) @@ -542,7 +542,7 @@ pr done; pr -" Let mk_t_w' n : forall m, word (dom_t n) (S m) -> t := +" Definition mk_t_w' n : forall m, word (dom_t n) (S m) -> t := match n return (forall m, word (dom_t n) (S m) -> t) with"; for i = 0 to size-1 do pr " | %i => mk_t_%iw" i i done; pr |