aboutsummaryrefslogtreecommitdiffhomepage
diff options
context:
space:
mode:
-rw-r--r--doc/refman/RefMan-cic.tex60
1 files changed, 32 insertions, 28 deletions
diff --git a/doc/refman/RefMan-cic.tex b/doc/refman/RefMan-cic.tex
index 0dbfe05d4..2695c5eee 100644
--- a/doc/refman/RefMan-cic.tex
+++ b/doc/refman/RefMan-cic.tex
@@ -883,56 +883,60 @@ the type $V$ satisfies the nested positivity condition for $X$
\settowidth\framecharacterwidth{\hh}
\newcommand\ws{\hbox{}\hskip\the\framecharacterwidth}
\newcommand\ruleref[1]{\hskip.25em\dots\hskip.2em{\em (bullet #1)}}
+\newcommand{\NatTree}{\mbox{\textsf{nattree}}}
+\newcommand{\NatTreeA}{\mbox{\textsf{nattree}}~\ensuremath{A}}
+\newcommand{\cnode}{\mbox{\textsf{node}}}
+\newcommand{\cleaf}{\mbox{\textsf{leaf}}}
-\noindent For instance, if one considers the type
+\noindent For instance, if one considers the following variant of a tree type branching over the natural numbers
\begin{verbatim}
-Inductive tree (A:Type) : Type :=
- | leaf : list A
- | node : A -> (nat -> tree A) -> tree A
+Inductive nattree (A:Type) : Type :=
+ | leaf : nattree A
+ | node : A -> (nat -> nattree A) -> nattree A
\end{verbatim}
\begin{latexonly}
-\noindent Then every instantiated constructor of $\ListA$ satisfies the nested positivity condition for $\List$\\
+\noindent Then every instantiated constructor of $\NatTreeA$ satisfies the nested positivity condition for $\NatTree$\\
\noindent
\ws\ws\vv\\
-\ws\ws\vh\hh\ws concerning type $\ListA$ of constructor $\Nil$:\\
-\ws\ws\vv\ws\ws\ws\ws Type $\ListA$ of constructor $\Nil$ satisfies the positivity condition for $\List$\\
-\ws\ws\vv\ws\ws\ws\ws because $\List$ does not appear in any (real) arguments of the type of that constructor\\
-\ws\ws\vv\ws\ws\ws\ws (primarily because $\List$ does not have any (real) arguments)\ruleref1\\
+\ws\ws\vh\hh\ws concerning type $\NatTreeA$ of constructor $\cleaf$:\\
+\ws\ws\vv\ws\ws\ws\ws Type $\NatTreeA$ of constructor $\cleaf$ satisfies the positivity condition for $\NatTree$\\
+\ws\ws\vv\ws\ws\ws\ws because $\NatTree$ does not appear in any (real) arguments of the type of that constructor\\
+\ws\ws\vv\ws\ws\ws\ws (primarily because $\NatTree$ does not have any (real) arguments)\ruleref1\\
\ws\ws\vv\\
-\ws\ws\hv\hh\ws concerning type $\forall~A\ra\ListA\ra\ListA$ of constructor $\cons$:\\
-\ws\ws\ws\ws\ws\ws\ws Type $\forall~A:\Type,A\ra\ListA\ra\ListA$ of constructor $\cons$\\
-\ws\ws\ws\ws\ws\ws\ws satisfies the positivity condition for $\List$ because:\\
+\ws\ws\hv\hh\ws concerning type $\forall~A\ra(\NN\ra\NatTreeA)\ra\NatTreeA$ of constructor $\cnode$:\\
+ \ws\ws\ws\ws\ws\ws\ws Type $\forall~A:\Type,A\ra(\NN\ra\NatTreeA)\ra\NatTreeA$ of constructor $\cnode$\\
+\ws\ws\ws\ws\ws\ws\ws satisfies the positivity condition for $\NatTree$ because:\\
\ws\ws\ws\ws\ws\ws\ws\vv\\
-\ws\ws\ws\ws\ws\ws\ws\vh\hh\ws $\List$ occurs only strictly positively in $\Type$\ruleref3\\
+\ws\ws\ws\ws\ws\ws\ws\vh\hh\ws $\NatTree$ occurs only strictly positively in $\Type$\ruleref1\\
\ws\ws\ws\ws\ws\ws\ws\vv\\
-\ws\ws\ws\ws\ws\ws\ws\vh\hh\ws $\List$ occurs only strictly positively in $A$\ruleref3\\
+\ws\ws\ws\ws\ws\ws\ws\vh\hh\ws $\NatTree$ occurs only strictly positively in $A$\ruleref1\\
\ws\ws\ws\ws\ws\ws\ws\vv\\
-\ws\ws\ws\ws\ws\ws\ws\vh\hh\ws $\List$ occurs only strictly positively in $\ListA$\ruleref4\\
+ \ws\ws\ws\ws\ws\ws\ws\vh\hh\ws $\NatTree$ occurs only strictly positively in $\NN\ra\NatTreeA$\ruleref{3+2}\\
\ws\ws\ws\ws\ws\ws\ws\vv\\
-\ws\ws\ws\ws\ws\ws\ws\hv\hh\ws $\List$ satisfies the positivity condition for $\ListA$\ruleref1
+\ws\ws\ws\ws\ws\ws\ws\hv\hh\ws $\NatTree$ satisfies the positivity condition for $\NatTreeA$\ruleref1
\end{latexonly}
\begin{rawhtml}
<pre>
-<span style="font-family:serif">Then every instantiated constructor of <span style="font-family:monospace">list A</span> satisfies the nested positivity condition for <span style="font-family:monospace">list</span></span>
+<span style="font-family:serif">Then every instantiated constructor of <span style="font-family:monospace">nattree A</span> satisfies the nested positivity condition for <span style="font-family:monospace">nattree</span></span>
- ├─ <span style="font-family:serif">concerning type <span style="font-family:monospace">list A</span> of constructor <span style="font-family:monospace">nil</span>:</span>
- │ <span style="font-family:serif">Type <span style="font-family:monospace">list A</span> of constructor <span style="font-family:monospace">nil</span> satisfies the positivity condition for <span style="font-family:monospace">list</span></span>
- │ <span style="font-family:serif">because <span style="font-family:monospace">list</span> does not appear in any (real) arguments of the type of that constructor</span>
- │ <span style="font-family:serif">(primarily because list does not have any (real) arguments) ... <span style="font-style:italic">(bullet 1)</span></span>
+ ├─ <span style="font-family:serif">concerning type <span style="font-family:monospace">nattree A</span> of constructor <span style="font-family:monospace">nil</span>:</span>
+ │ <span style="font-family:serif">Type <span style="font-family:monospace">nattree A</span> of constructor <span style="font-family:monospace">nil</span> satisfies the positivity condition for <span style="font-family:monospace">nattree</span></span>
+ │ <span style="font-family:serif">because <span style="font-family:monospace">nattree</span> does not appear in any (real) arguments of the type of that constructor</span>
+ │ <span style="font-family:serif">(primarily because nattree does not have any (real) arguments) ... <span style="font-style:italic">(bullet 1)</span></span>
- ╰─ <span style="font-family:serif">concerning type <span style="font-family:monospace">∀ A → list A → list A</span> of constructor <span style="font-family:monospace">cons</span>:</span>
- <span style="font-family:serif">Type <span style="font-family:monospace">∀ A : Type, A → list A → list A</span> of constructor <span style="font-family:monospace">cons</span></span>
- <span style="font-family:serif">satisfies the positivity condition for <span style="font-family:monospace">list</span> because:</span>
+ ╰─ <span style="font-family:serif">concerning type <span style="font-family:monospace">∀ A → (nat → nattree A) → nattree A</span> of constructor <span style="font-family:monospace">cons</span>:</span>
+ <span style="font-family:serif">Type <span style="font-family:monospace">∀ A : Type, A → (nat → nattree A) → nattree A</span> of constructor <span style="font-family:monospace">cons</span></span>
+ <span style="font-family:serif">satisfies the positivity condition for <span style="font-family:monospace">nattree</span> because:</span>
- ├─ <span style="font-family:serif"><span style="font-family:monospace">list</span> occurs only strictly positively in <span style="font-family:monospace">Type</span> ... <span style="font-style:italic">(bullet 3)</span></span>
+ ├─ <span style="font-family:serif"><span style="font-family:monospace">nattree</span> occurs only strictly positively in <span style="font-family:monospace">Type</span> ... <span style="font-style:italic">(bullet 1)</span></span>
- ├─ <span style="font-family:serif"><span style="font-family:monospace">list</span> occurs only strictly positively in <span style="font-family:monospace">A</span> ... <span style="font-style:italic">(bullet 3)</span></span>
+ ├─ <span style="font-family:serif"><span style="font-family:monospace">nattree</span> occurs only strictly positively in <span style="font-family:monospace">A</span> ... <span style="font-style:italic">(bullet 1)</span></span>
- ├─ <span style="font-family:serif"><span style="font-family:monospace">list</span> occurs only strictly positively in <span style="font-family:monospace">list A</span> ... <span style="font-style:italic">(bullet 4)</span></span>
+ ├─ <span style="font-family:serif"><span style="font-family:monospace">nattree</span> occurs only strictly positively in <span style="font-family:monospace">nat → nattree A</span> ... <span style="font-style:italic">(bullet 3+2)</span></span>
- ╰─ <span style="font-family:serif"><span style="font-family:monospace">list</span> satisfies the positivity condition for <span style="font-family:monospace">list A</span> ... <span style="font-style:italic">(bullet 1)</span></span>
+ ╰─ <span style="font-family:serif"><span style="font-family:monospace">nattree</span> satisfies the positivity condition for <span style="font-family:monospace">nattree A</span> ... <span style="font-style:italic">(bullet 1)</span></span>
</pre>
\end{rawhtml}