diff options
-rw-r--r-- | theories/Arith/Compare_dec.v | 12 | ||||
-rw-r--r-- | theories/Arith/Lt.v | 7 | ||||
-rw-r--r-- | theories/Arith/NatOrderedType.v | 19 | ||||
-rw-r--r-- | theories/FSets/FSetCompat.v | 2 | ||||
-rw-r--r-- | theories/Init/Datatypes.v | 11 | ||||
-rw-r--r-- | theories/MSets/MSetAVL.v | 18 | ||||
-rw-r--r-- | theories/MSets/MSetInterface.v | 12 | ||||
-rw-r--r-- | theories/MSets/MSetList.v | 8 | ||||
-rw-r--r-- | theories/NArith/BinNat.v | 15 | ||||
-rw-r--r-- | theories/NArith/BinPos.v | 17 | ||||
-rw-r--r-- | theories/NArith/NOrderedType.v | 17 | ||||
-rw-r--r-- | theories/NArith/POrderedType.v | 19 | ||||
-rw-r--r-- | theories/QArith/QArith_base.v | 13 | ||||
-rw-r--r-- | theories/QArith/QOrderedType.v | 14 | ||||
-rw-r--r-- | theories/Structures/OrderedType2.v | 16 | ||||
-rw-r--r-- | theories/Structures/OrderedType2Alt.v | 6 | ||||
-rw-r--r-- | theories/Structures/OrderedType2Ex.v | 2 | ||||
-rw-r--r-- | theories/Structures/OrderedType2Facts.v | 2 | ||||
-rw-r--r-- | theories/ZArith/ZOrderedType.v | 18 | ||||
-rw-r--r-- | theories/ZArith/Zcompare.v | 9 | ||||
-rw-r--r-- | theories/ZArith/Zorder.v | 7 |
21 files changed, 134 insertions, 110 deletions
diff --git a/theories/Arith/Compare_dec.v b/theories/Arith/Compare_dec.v index a684d5a10..1dc74af73 100644 --- a/theories/Arith/Compare_dec.v +++ b/theories/Arith/Compare_dec.v @@ -171,7 +171,17 @@ Proof. apply -> nat_compare_lt; auto. Qed. -(** Some projections of the above equivalences, used in OrderedTypeEx. *) +Lemma nat_compare_spec : forall x y, CompSpec eq lt x y (nat_compare x y). +Proof. + intros. + destruct (nat_compare x y) as [ ]_eqn; constructor. + apply nat_compare_eq; auto. + apply <- nat_compare_lt; auto. + apply <- nat_compare_gt; auto. +Qed. + + +(** Some projections of the above equivalences. *) Lemma nat_compare_Lt_lt : forall n m, nat_compare n m = Lt -> n<m. Proof. diff --git a/theories/Arith/Lt.v b/theories/Arith/Lt.v index 1fb5b3e55..bdd7ce092 100644 --- a/theories/Arith/Lt.v +++ b/theories/Arith/Lt.v @@ -144,6 +144,13 @@ Proof. induction 1; auto with arith. Qed. +Theorem le_lt_or_eq_iff : forall n m, n <= m <-> n < m \/ n = m. +Proof. + split. + intros; apply le_lt_or_eq; auto. + destruct 1; subst; auto with arith. +Qed. + Theorem lt_le_weak : forall n m, n < m -> n <= m. Proof. auto with arith. diff --git a/theories/Arith/NatOrderedType.v b/theories/Arith/NatOrderedType.v index c4e71632c..dda2fca6c 100644 --- a/theories/Arith/NatOrderedType.v +++ b/theories/Arith/NatOrderedType.v @@ -6,7 +6,7 @@ (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) -Require Import Peano_dec Compare_dec +Require Import Lt Peano_dec Compare_dec DecidableType2 OrderedType2 OrderedType2Facts. @@ -33,26 +33,17 @@ Module Nat_as_OT <: OrderedTypeFull. Definition compare := nat_compare. Instance lt_strorder : StrictOrder lt. - Proof. split; [ exact Lt.lt_irrefl | exact Lt.lt_trans ]. Qed. + Proof. split; [ exact lt_irrefl | exact lt_trans ]. Qed. Instance lt_compat : Proper (Logic.eq==>Logic.eq==>iff) lt. Proof. repeat red; intros; subst; auto. Qed. - Lemma le_lteq : forall x y, x <= y <-> x < y \/ x=y. - Proof. intuition; subst; auto using Lt.le_lt_or_eq. Qed. - - Lemma compare_spec : forall x y, Cmp eq lt x y (compare x y). - Proof. - intros; unfold compare. - destruct (nat_compare x y) as [ ]_eqn; constructor. - apply nat_compare_eq; auto. - apply nat_compare_Lt_lt; auto. - apply nat_compare_Gt_gt; auto. - Qed. + Definition le_lteq := le_lt_or_eq_iff. + Definition compare_spec := nat_compare_spec. End Nat_as_OT. -(* Note that [Nat_as_OT] can also be seen as a [UsualOrderedType] +(** Note that [Nat_as_OT] can also be seen as a [UsualOrderedType] and a [OrderedType] (and also as a [DecidableType]). *) diff --git a/theories/FSets/FSetCompat.v b/theories/FSets/FSetCompat.v index f6d5ae1ac..4a341328e 100644 --- a/theories/FSets/FSetCompat.v +++ b/theories/FSets/FSetCompat.v @@ -406,7 +406,7 @@ Module Update_Sets | GT _ => Gt end. - Lemma compare_spec : forall s s', Cmp eq lt s s' (compare s s'). + Lemma compare_spec : forall s s', CompSpec eq lt s s' (compare s s'). Proof. intros; unfold compare; destruct M.compare; auto. Qed. End Update_Sets. diff --git a/theories/Init/Datatypes.v b/theories/Init/Datatypes.v index 75bf27702..78d0110ae 100644 --- a/theories/Init/Datatypes.v +++ b/theories/Init/Datatypes.v @@ -221,6 +221,17 @@ Proof. split; intros; apply CompOpp_inj; rewrite CompOpp_involutive; auto. Qed. +(** The [CompSpec] inductive will be used to relate a [compare] function + (returning a comparison answer) and some equality and order predicates. + Interest: [CompSpec] behave nicely with [destruct]. *) + +Inductive CompSpec {A} (eq lt : A->A->Prop)(x y:A) : comparison -> Prop := + | CompEq : eq x y -> CompSpec eq lt x y Eq + | CompLt : lt x y -> CompSpec eq lt x y Lt + | CompGt : lt y x -> CompSpec eq lt x y Gt. +Hint Constructors CompSpec. + + (** Identity *) Definition ID := forall A:Type, A -> A. diff --git a/theories/MSets/MSetAVL.v b/theories/MSets/MSetAVL.v index 408461a25..477c431c4 100644 --- a/theories/MSets/MSetAVL.v +++ b/theories/MSets/MSetAVL.v @@ -1752,27 +1752,27 @@ Hint Unfold flip. (** Correctness of this comparison *) -Definition LCmp c x y := Cmp L.eq L.lt x y c. +Definition Cmp c x y := CompSpec L.eq L.lt x y c. -Hint Unfold LCmp. +Hint Unfold Cmp. Lemma compare_end_Cmp : - forall e2, LCmp (compare_end e2) nil (flatten_e e2). + forall e2, Cmp (compare_end e2) nil (flatten_e e2). Proof. destruct e2; simpl; constructor; auto. reflexivity. Qed. Lemma compare_more_Cmp : forall x1 cont x2 r2 e2 l, - LCmp (cont (cons r2 e2)) l (elements r2 ++ flatten_e e2) -> - LCmp (compare_more x1 cont (More x2 r2 e2)) (x1::l) + Cmp (cont (cons r2 e2)) l (elements r2 ++ flatten_e e2) -> + Cmp (compare_more x1 cont (More x2 r2 e2)) (x1::l) (flatten_e (More x2 r2 e2)). Proof. simpl; intros; elim_compare x1 x2; simpl; auto. Qed. Lemma compare_cont_Cmp : forall s1 cont e2 l, - (forall e, LCmp (cont e) l (flatten_e e)) -> - LCmp (compare_cont s1 cont e2) (elements s1 ++ l) (flatten_e e2). + (forall e, Cmp (cont e) l (flatten_e e)) -> + Cmp (compare_cont s1 cont e2) (elements s1 ++ l) (flatten_e e2). Proof. induction s1 as [|l1 Hl1 x1 r1 Hr1 h1]; simpl; intros; auto. rewrite <- elements_node; simpl. @@ -1783,7 +1783,7 @@ Proof. Qed. Lemma compare_Cmp : forall s1 s2, - LCmp (compare s1 s2) (elements s1) (elements s2). + Cmp (compare s1 s2) (elements s1) (elements s2). Proof. intros; unfold compare. rewrite (app_nil_end (elements s1)). @@ -1795,7 +1795,7 @@ Proof. Qed. Lemma compare_spec : forall s1 s2 `{Ok s1, Ok s2}, - Cmp eq lt s1 s2 (compare s1 s2). + CompSpec eq lt s1 s2 (compare s1 s2). Proof. intros. destruct (compare_Cmp s1 s2); constructor. diff --git a/theories/MSets/MSetInterface.v b/theories/MSets/MSetInterface.v index a011eb32e..ef32c114b 100644 --- a/theories/MSets/MSetInterface.v +++ b/theories/MSets/MSetInterface.v @@ -227,7 +227,7 @@ Module Type SetsOn (E : OrderedType). Variable s s': t. Variable x y : elt. - Parameter compare_spec : Cmp eq lt s s' (compare s s'). + Parameter compare_spec : CompSpec eq lt s s' (compare s s'). (** Additional specification of [elements] *) Parameter elements_spec2 : sort E.lt (elements s). @@ -570,7 +570,7 @@ Module Type RawSets (E : OrderedType). Variable x y : elt. (** Specification of [compare] *) - Parameter compare_spec : forall `{Ok s, Ok s'}, Cmp eq lt s s' (compare s s'). + Parameter compare_spec : forall `{Ok s, Ok s'}, CompSpec eq lt s s' (compare s s'). (** Additional specification of [elements] *) Parameter elements_spec2 : forall `{Ok s}, sort E.lt (elements s). @@ -619,7 +619,7 @@ Module Raw2SetsOn (O:OrderedType)(M:RawSets O) <: SetsOn O. Variable s s' s'' : t. Variable x y : elt. - Lemma compare_spec : Cmp eq lt s s' (compare s s'). + Lemma compare_spec : CompSpec eq lt s s' (compare s s'). Proof. assert (H:=@M.compare_spec s s' _ _). unfold compare; destruct M.compare; inversion_clear H; auto. @@ -940,11 +940,11 @@ Module MakeListOrdering (O:OrderedType). Qed. Hint Resolve eq_cons. - Lemma cons_Cmp : forall c x1 x2 l1 l2, O.eq x1 x2 -> - Cmp eq lt l1 l2 c -> Cmp eq lt (x1::l1) (x2::l2) c. + Lemma cons_CompSpec : forall c x1 x2 l1 l2, O.eq x1 x2 -> + CompSpec eq lt l1 l2 c -> CompSpec eq lt (x1::l1) (x2::l2) c. Proof. destruct c; simpl; inversion_clear 2; auto. Qed. - Hint Resolve cons_Cmp. + Hint Resolve cons_CompSpec. End MakeListOrdering. diff --git a/theories/MSets/MSetList.v b/theories/MSets/MSetList.v index 28205e3f6..8b0a16c11 100644 --- a/theories/MSets/MSetList.v +++ b/theories/MSets/MSetList.v @@ -790,20 +790,20 @@ Module MakeRaw (X: OrderedType) <: RawSets X. split; auto. transitivity s4; auto. Qed. - Lemma compare_spec_aux : forall s s', Cmp eq L.lt s s' (compare s s'). + Lemma compare_spec_aux : forall s s', CompSpec eq L.lt s s' (compare s s'). Proof. induction s as [|x s IH]; intros [|x' s']; simpl; intuition. elim_compare x x'; auto. Qed. Lemma compare_spec : forall s s', Ok s -> Ok s' -> - Cmp eq lt s s' (compare s s'). + CompSpec eq lt s s' (compare s s'). Proof. intros s s' Hs Hs'. generalize (compare_spec_aux s s'). destruct (compare s s'); inversion_clear 1; auto. - apply Cmp_lt. exists s, s'; repeat split; auto using @ok. - apply Cmp_gt. exists s', s; repeat split; auto using @ok. + apply CompLt. exists s, s'; repeat split; auto using @ok. + apply CompGt. exists s', s; repeat split; auto using @ok. Qed. End MakeRaw. diff --git a/theories/NArith/BinNat.v b/theories/NArith/BinNat.v index 813956332..8d589f053 100644 --- a/theories/NArith/BinNat.v +++ b/theories/NArith/BinNat.v @@ -427,6 +427,21 @@ pose proof (Pcompare_p_Sq p q) as (_,?); assert (p = q <-> Npos p = Npos q); [split; congruence | tauto]. Qed. +Lemma Nle_lteq : forall x y, x <= y <-> x < y \/ x=y. +Proof. +unfold Nle, Nlt; intros. +generalize (Ncompare_eq_correct x y). +destruct (x ?= y); intuition; discriminate. +Qed. + +Lemma Ncompare_spec : forall x y, CompSpec eq Nlt x y (Ncompare x y). +Proof. +intros. +destruct (Ncompare x y) as [ ]_eqn; constructor; auto. +apply Ncompare_Eq_eq; auto. +apply Ngt_Nlt; auto. +Qed. + (** 0 is the least natural number *) Theorem Ncompare_0 : forall n : N, Ncompare n N0 <> Lt. diff --git a/theories/NArith/BinPos.v b/theories/NArith/BinPos.v index 20cfb43a3..7e3523a8c 100644 --- a/theories/NArith/BinPos.v +++ b/theories/NArith/BinPos.v @@ -857,6 +857,15 @@ Proof. symmetry; apply Pcompare_antisym. Qed. +Lemma Pcompare_spec : forall p q, CompSpec eq Plt p q ((p ?= q) Eq). +Proof. + intros. destruct ((p ?= q) Eq) as [ ]_eqn; constructor. + apply Pcompare_Eq_eq; auto. + auto. + apply ZC1; auto. +Qed. + + (** Comparison and the successor *) Lemma Pcompare_p_Sp : forall p : positive, (p ?= Psucc p) Eq = Lt. @@ -932,6 +941,14 @@ Proof. destruct (Pcompare_p_Sq n m) as (H',_); destruct (H' H); subst; auto. Qed. +Lemma Ple_lteq : forall p q, p <= q <-> p < q \/ p = q. +Proof. + unfold Ple, Plt. intros. + generalize (Pcompare_eq_iff p q). + destruct ((p ?= q) Eq); intuition; discriminate. +Qed. + + (**********************************************************************) (** Properties of subtraction on binary positive numbers *) diff --git a/theories/NArith/NOrderedType.v b/theories/NArith/NOrderedType.v index 8f69cd656..bd701cbea 100644 --- a/theories/NArith/NOrderedType.v +++ b/theories/NArith/NOrderedType.v @@ -39,23 +39,12 @@ Module N_as_OT <: OrderedTypeFull. Instance lt_compat : Proper (Logic.eq==>Logic.eq==>iff) Nlt. Proof. repeat red; intros; subst; auto. Qed. - Lemma le_lteq : forall x y, x <= y <-> x < y \/ x=y. - Proof. - unfold Nle, Nlt; intros. rewrite <- Ncompare_eq_correct. - destruct (x ?= y); intuition; discriminate. - Qed. - - Lemma compare_spec : forall x y, Cmp eq lt x y (Ncompare x y). - Proof. - intros. - destruct (Ncompare x y) as [ ]_eqn; constructor; auto. - apply Ncompare_Eq_eq; auto. - apply Ngt_Nlt; auto. - Qed. + Definition le_lteq := Nle_lteq. + Definition compare_spec := Ncompare_spec. End N_as_OT. -(* Note that [N_as_OT] can also be seen as a [UsualOrderedType] +(** Note that [N_as_OT] can also be seen as a [UsualOrderedType] and a [OrderedType] (and also as a [DecidableType]). *) diff --git a/theories/NArith/POrderedType.v b/theories/NArith/POrderedType.v index 2f89b0e68..a4eeb9b97 100644 --- a/theories/NArith/POrderedType.v +++ b/theories/NArith/POrderedType.v @@ -39,25 +39,12 @@ Module Positive_as_OT <: OrderedTypeFull. Instance lt_compat : Proper (Logic.eq==>Logic.eq==>iff) Plt. Proof. repeat red; intros; subst; auto. Qed. - Lemma le_lteq : forall x y, x <= y <-> x < y \/ x=y. - Proof. - unfold Ple, Plt. intros. - rewrite <- Pcompare_eq_iff. - destruct (Pcompare x y Eq); intuition; discriminate. - Qed. - - Lemma compare_spec : forall x y, Cmp eq lt x y (compare x y). - Proof. - intros; unfold compare. - destruct (Pcompare x y Eq) as [ ]_eqn; constructor. - apply Pcompare_Eq_eq; auto. - auto. - apply ZC1; auto. - Qed. + Definition le_lteq := Ple_lteq. + Definition compare_spec := Pcompare_spec. End Positive_as_OT. -(* Note that [Positive_as_OT] can also be seen as a [UsualOrderedType] +(** Note that [Positive_as_OT] can also be seen as a [UsualOrderedType] and a [OrderedType] (and also as a [DecidableType]). *) diff --git a/theories/QArith/QArith_base.v b/theories/QArith/QArith_base.v index 70830ad80..609241d5e 100644 --- a/theories/QArith/QArith_base.v +++ b/theories/QArith/QArith_base.v @@ -87,6 +87,19 @@ Qed. Hint Unfold Qeq Qlt Qle : qarith. Hint Extern 5 (?X1 <> ?X2) => intro; discriminate: qarith. +Lemma Qcompare_antisym : forall x y, CompOpp (x ?= y) = (y ?= x). +Proof. + unfold "?=". intros. apply Zcompare_antisym. +Qed. + +Lemma Qcompare_spec : forall x y, CompSpec Qeq Qlt x y (x ?= y). +Proof. + intros. + destruct (x ?= y) as [ ]_eqn:H; constructor; auto. + rewrite Qeq_alt; auto. + rewrite Qlt_alt, <- Qcompare_antisym, H; auto. +Qed. + (** * Properties of equality. *) Theorem Qeq_refl : forall x, x == x. diff --git a/theories/QArith/QOrderedType.v b/theories/QArith/QOrderedType.v index 3d83eac38..f6f457f65 100644 --- a/theories/QArith/QOrderedType.v +++ b/theories/QArith/QOrderedType.v @@ -42,19 +42,7 @@ Module Q_as_OT <: OrderedTypeFull. Proof. auto with *. Qed. Definition le_lteq := Qle_lteq. - - Lemma Qcompare_antisym : forall x y, CompOpp (x ?= y) = (y ?= x). - Proof. - unfold "?=". intros. apply Zcompare_antisym. - Qed. - - Lemma compare_spec : forall x y, Cmp Qeq Qlt x y (Qcompare x y). - Proof. - intros. - destruct (x ?= y) as [ ]_eqn:H; constructor; auto. - rewrite Qeq_alt; auto. - rewrite Qlt_alt, <- Qcompare_antisym, H; auto. - Qed. + Definition compare_spec := Qcompare_spec. End Q_as_OT. diff --git a/theories/Structures/OrderedType2.v b/theories/Structures/OrderedType2.v index 4d62c2716..310f99a4a 100644 --- a/theories/Structures/OrderedType2.v +++ b/theories/Structures/OrderedType2.v @@ -14,14 +14,6 @@ Unset Strict Implicit. (** * Ordered types *) -Inductive Cmp {A} (eq lt:relation A)(x y : A) : comparison -> Prop := -| Cmp_eq : eq x y -> Cmp eq lt x y Eq -| Cmp_lt : lt x y -> Cmp eq lt x y Lt -| Cmp_gt : lt y x -> Cmp eq lt x y Gt. - -Hint Constructors Cmp. - - Module Type MiniOrderedType. Include Type EqualityType. @@ -29,8 +21,8 @@ Module Type MiniOrderedType. Instance lt_strorder : StrictOrder lt. Instance lt_compat : Proper (eq==>eq==>iff) lt. - Parameter compare : t -> t -> comparison. - Axiom compare_spec : forall x y, Cmp eq lt x y (compare x y). + Parameter Inline compare : t -> t -> comparison. + Axiom compare_spec : forall x y, CompSpec eq lt x y (compare x y). End MiniOrderedType. @@ -76,8 +68,8 @@ Module Type UsualOrderedType. for subtyping... *) Instance lt_compat : Proper (eq==>eq==>iff) lt. - Parameter compare : t -> t -> comparison. - Axiom compare_spec : forall x y, Cmp eq lt x y (compare x y). + Parameter Inline compare : t -> t -> comparison. + Axiom compare_spec : forall x y, CompSpec eq lt x y (compare x y). End UsualOrderedType. diff --git a/theories/Structures/OrderedType2Alt.v b/theories/Structures/OrderedType2Alt.v index 4e14f5128..43b27553f 100644 --- a/theories/Structures/OrderedType2Alt.v +++ b/theories/Structures/OrderedType2Alt.v @@ -76,7 +76,7 @@ Module Update_OT (O:OrderedTypeOrig) <: OrderedType. | GT _ => Gt end. - Lemma compare_spec : forall x y, Cmp eq lt x y (compare x y). + Lemma compare_spec : forall x y, CompSpec eq lt x y (compare x y). Proof. intros; unfold compare; destruct O.compare; auto. Qed. @@ -169,11 +169,11 @@ Module OT_from_Alt (Import O:OrderedTypeAlt) <: OrderedType. Definition compare := O.compare. - Lemma compare_spec : forall x y, Cmp eq lt x y (compare x y). + Lemma compare_spec : forall x y, CompSpec eq lt x y (compare x y). Proof. unfold eq, lt, compare; intros. destruct (O.compare x y) as [ ]_eqn:H; auto. - apply Cmp_gt. + apply CompGt. rewrite compare_sym, H; auto. Qed. diff --git a/theories/Structures/OrderedType2Ex.v b/theories/Structures/OrderedType2Ex.v index 801c18723..6a0231973 100644 --- a/theories/Structures/OrderedType2Ex.v +++ b/theories/Structures/OrderedType2Ex.v @@ -77,7 +77,7 @@ Module PairOrderedType(O1 O2:OrderedType) <: OrderedType. | Gt => Gt end. - Lemma compare_spec : forall x y, Cmp eq lt x y (compare x y). + Lemma compare_spec : forall x y, CompSpec eq lt x y (compare x y). Proof. intros (x1,x2) (y1,y2); unfold compare; simpl. destruct (O1.compare_spec x1 y1); try (constructor; compute; auto). diff --git a/theories/Structures/OrderedType2Facts.v b/theories/Structures/OrderedType2Facts.v index 382b6366d..a7bb661ea 100644 --- a/theories/Structures/OrderedType2Facts.v +++ b/theories/Structures/OrderedType2Facts.v @@ -254,7 +254,7 @@ Proof. intros; unfold le, lt, flip. rewrite O.le_lteq; intuition. Qed. Definition compare := flip O.compare. -Lemma compare_spec : forall x y, Cmp eq lt x y (compare x y). +Lemma compare_spec : forall x y, CompSpec eq lt x y (compare x y). Proof. intros; unfold compare, eq, lt, flip. destruct (O.compare_spec y x); auto. diff --git a/theories/ZArith/ZOrderedType.v b/theories/ZArith/ZOrderedType.v index 6e30e0bf8..34456dcf9 100644 --- a/theories/ZArith/ZOrderedType.v +++ b/theories/ZArith/ZOrderedType.v @@ -39,24 +39,12 @@ Module Z_as_OT <: OrderedTypeFull. Instance lt_compat : Proper (Logic.eq==>Logic.eq==>iff) Zlt. Proof. repeat red; intros; subst; auto. Qed. - Lemma le_lteq : forall x y, x <= y <-> x < y \/ x=y. - Proof. - unfold le, lt, Zle, Zlt. intros. - rewrite <- Zcompare_Eq_iff_eq. - destruct (x ?= y); intuition; discriminate. - Qed. - - Lemma compare_spec : forall x y, Cmp eq lt x y (Zcompare x y). - Proof. - intros; unfold compare. - destruct (Zcompare x y) as [ ]_eqn; constructor; auto. - apply Zcompare_Eq_eq; auto. - apply Zgt_lt; auto. - Qed. + Definition le_lteq := Zle_lt_or_eq_iff. + Definition compare_spec := Zcompare_spec. End Z_as_OT. -(* Note that [Z_as_OT] can also be seen as a [UsualOrderedType] +(** Note that [Z_as_OT] can also be seen as a [UsualOrderedType] and a [OrderedType] (and also as a [DecidableType]). *) diff --git a/theories/ZArith/Zcompare.v b/theories/ZArith/Zcompare.v index 2515b7f7b..3e611d543 100644 --- a/theories/ZArith/Zcompare.v +++ b/theories/ZArith/Zcompare.v @@ -72,6 +72,15 @@ Proof. intros; f_equal; auto. Qed. +Lemma Zcompare_spec : forall n m, CompSpec eq Zlt n m (n ?= m). +Proof. + intros. + destruct (n?=m) as [ ]_eqn:H; constructor; auto. + apply Zcompare_Eq_eq; auto. + red; rewrite <- Zcompare_antisym, H; auto. +Qed. + + (** * Transitivity of comparison *) Lemma Zcompare_Lt_trans : diff --git a/theories/ZArith/Zorder.v b/theories/ZArith/Zorder.v index 70cbe0f28..0db71e68d 100644 --- a/theories/ZArith/Zorder.v +++ b/theories/ZArith/Zorder.v @@ -257,6 +257,13 @@ Proof. | absurd (n > m); [ apply Zle_not_gt | idtac ]; assumption ]. Qed. +Lemma Zle_lt_or_eq_iff : forall n m, n <= m <-> n < m \/ n = m. +Proof. + unfold Zle, Zlt. intros. + generalize (Zcompare_Eq_iff_eq n m). + destruct (n ?= m); intuition; discriminate. +Qed. + (** Dichotomy *) Lemma Zle_or_lt : forall n m:Z, n <= m \/ m < n. |