aboutsummaryrefslogtreecommitdiffhomepage
diff options
context:
space:
mode:
-rw-r--r--CHANGES9
-rw-r--r--Makefile.doc4
-rw-r--r--clib/cArray.ml12
-rw-r--r--clib/cArray.mli2
-rw-r--r--doc/refman/Coercion.tex563
-rw-r--r--doc/refman/Extraction.tex620
-rw-r--r--doc/refman/Nsatz.tex102
-rw-r--r--doc/refman/Polynom.tex736
-rw-r--r--doc/refman/Program.tex329
-rw-r--r--doc/refman/Reference-Manual.tex6
-rw-r--r--doc/refman/Setoid.tex842
-rw-r--r--doc/sphinx/addendum/extraction.rst586
-rw-r--r--doc/sphinx/addendum/generalized-rewriting.rst845
-rw-r--r--doc/sphinx/addendum/implicit-coercions.rst469
-rw-r--r--doc/sphinx/addendum/nsatz.rst101
-rw-r--r--doc/sphinx/addendum/program.rst381
-rw-r--r--doc/sphinx/addendum/ring.rst770
-rw-r--r--doc/sphinx/index.rst6
-rw-r--r--doc/sphinx/language/gallina-extensions.rst7
-rw-r--r--engine/proofview.ml12
-rw-r--r--engine/proofview.mli9
-rw-r--r--interp/constrextern.ml33
-rw-r--r--intf/pattern.ml5
-rw-r--r--intf/vernacexpr.ml4
-rw-r--r--parsing/g_vernac.ml428
-rw-r--r--pretyping/constr_matching.ml49
-rw-r--r--pretyping/detyping.ml163
-rw-r--r--pretyping/detyping.mli7
-rw-r--r--pretyping/glob_ops.ml2
-rw-r--r--pretyping/patternops.ml132
-rw-r--r--printing/ppvernac.ml29
-rw-r--r--stm/stm.mli36
-rw-r--r--stm/vernac_classifier.ml2
-rw-r--r--tactics/tacticals.ml27
-rw-r--r--tactics/tacticals.mli2
-rw-r--r--test-suite/bugs/closed/1341.v2
-rw-r--r--test-suite/bugs/closed/1844.v2
-rw-r--r--test-suite/bugs/closed/1891.v2
-rw-r--r--test-suite/bugs/closed/1951.v2
-rw-r--r--test-suite/bugs/closed/1981.v2
-rw-r--r--test-suite/bugs/closed/2362.v2
-rw-r--r--test-suite/bugs/closed/2378.v6
-rw-r--r--test-suite/bugs/closed/2404.v4
-rw-r--r--test-suite/bugs/closed/2584.v2
-rw-r--r--test-suite/bugs/closed/2667.v4
-rw-r--r--test-suite/bugs/closed/2729.v4
-rw-r--r--test-suite/bugs/closed/2830.v10
-rw-r--r--test-suite/bugs/closed/3068.v2
-rw-r--r--test-suite/bugs/closed/3513.v2
-rw-r--r--test-suite/bugs/closed/3647.v6
-rw-r--r--test-suite/bugs/closed/3732.v2
-rw-r--r--test-suite/bugs/closed/4095.v2
-rw-r--r--test-suite/bugs/closed/4865.v2
-rw-r--r--test-suite/bugs/closed/7092.v70
-rw-r--r--test-suite/bugs/opened/2456.v2
-rw-r--r--test-suite/bugs/opened/3295.v4
-rw-r--r--test-suite/complexity/injection.v2
-rwxr-xr-xtest-suite/coq-makefile/timing/run.sh2
-rw-r--r--test-suite/failure/check.v2
-rw-r--r--test-suite/modules/PO.v4
-rw-r--r--test-suite/modules/Przyklad.v2
-rw-r--r--test-suite/prerequisite/make_local.v3
-rw-r--r--test-suite/success/AdvancedTypeClasses.v4
-rw-r--r--test-suite/success/ImplicitArguments.v2
-rw-r--r--test-suite/success/Inductive.v2
-rw-r--r--test-suite/success/Inversion.v2
-rw-r--r--test-suite/success/RecTutorial.v12
-rw-r--r--test-suite/success/Record.v2
-rw-r--r--test-suite/success/Scopes.v2
-rw-r--r--test-suite/success/Typeclasses.v4
-rw-r--r--test-suite/success/apply.v2
-rw-r--r--test-suite/success/dependentind.v2
-rw-r--r--test-suite/success/evars.v2
-rw-r--r--test-suite/success/implicit.v12
-rw-r--r--tools/gallina-syntax.el1
-rw-r--r--vernac/vernacentries.ml5
76 files changed, 3658 insertions, 3475 deletions
diff --git a/CHANGES b/CHANGES
index 24c4cfec0..37d9d3680 100644
--- a/CHANGES
+++ b/CHANGES
@@ -6,6 +6,15 @@ Tools
- Coq_makefile lets one override or extend the following variables from
the command line: COQFLAGS, COQCHKFLAGS, COQDOCFLAGS.
+Vernacular Commands
+
+- Removed deprecated commands Arguments Scope and Implicit Arguments
+ (not the option). Use the Arguments command instead.
+
+Tactic language
+
+- Support for fix/cofix added in Ltac "match" and "lazymatch".
+
Changes from 8.7.2 to 8.8+beta1
===============================
diff --git a/Makefile.doc b/Makefile.doc
index 2d2b21ad8..ecc68979e 100644
--- a/Makefile.doc
+++ b/Makefile.doc
@@ -60,9 +60,7 @@ REFMANCOQTEXFILES:=$(addprefix doc/refman/, \
RefMan-gal.v.tex \
RefMan-oth.v.tex RefMan-ltac.v.tex \
RefMan-pro.v.tex \
- Coercion.v.tex Extraction.v.tex \
- Program.v.tex Polynom.v.tex Nsatz.v.tex \
- Setoid.v.tex Universes.v.tex \
+ Universes.v.tex \
Misc.v.tex)
REFMANTEXFILES:=$(addprefix doc/refman/, \
diff --git a/clib/cArray.ml b/clib/cArray.ml
index b6c033f6d..5eb20bc16 100644
--- a/clib/cArray.ml
+++ b/clib/cArray.ml
@@ -41,6 +41,8 @@ sig
('a -> 'b -> 'c -> 'a) -> 'a -> 'b array -> 'c array -> 'a
val fold_left3 :
('a -> 'b -> 'c -> 'd -> 'a) -> 'a -> 'b array -> 'c array -> 'd array -> 'a
+ val fold_left4 :
+ ('a -> 'b -> 'c -> 'd -> 'e -> 'a) -> 'a -> 'b array -> 'c array -> 'd array -> 'e array -> 'a
val fold_left2_i :
(int -> 'a -> 'b -> 'c -> 'a) -> 'a -> 'b array -> 'c array -> 'a
val fold_left_from : int -> ('a -> 'b -> 'a) -> 'a -> 'b array -> 'a
@@ -267,6 +269,16 @@ let fold_left3 f a v1 v2 v3 =
invalid_arg "Array.fold_left2";
fold a 0
+let fold_left4 f a v1 v2 v3 v4 =
+ let lv1 = Array.length v1 in
+ let rec fold a n =
+ if n >= lv1 then a
+ else fold (f a (uget v1 n) (uget v2 n) (uget v3 n) (uget v4 n)) (succ n)
+ in
+ if Array.length v2 <> lv1 || Array.length v3 <> lv1 || Array.length v4 <> lv1 then
+ invalid_arg "Array.fold_left4";
+ fold a 0
+
let fold_left_from n f a v =
let len = Array.length v in
let () = if n < 0 then invalid_arg "Array.fold_left_from" in
diff --git a/clib/cArray.mli b/clib/cArray.mli
index 97038b0ac..f4f60f8aa 100644
--- a/clib/cArray.mli
+++ b/clib/cArray.mli
@@ -66,6 +66,8 @@ sig
('a -> 'b -> 'c -> 'a) -> 'a -> 'b array -> 'c array -> 'a
val fold_left3 :
('a -> 'b -> 'c -> 'd -> 'a) -> 'a -> 'b array -> 'c array -> 'd array -> 'a
+ val fold_left4 :
+ ('a -> 'b -> 'c -> 'd -> 'e -> 'a) -> 'a -> 'b array -> 'c array -> 'd array -> 'e array -> 'a
val fold_left2_i :
(int -> 'a -> 'b -> 'c -> 'a) -> 'a -> 'b array -> 'c array -> 'a
val fold_left_from : int -> ('a -> 'b -> 'a) -> 'a -> 'b array -> 'a
diff --git a/doc/refman/Coercion.tex b/doc/refman/Coercion.tex
deleted file mode 100644
index 9862a9b30..000000000
--- a/doc/refman/Coercion.tex
+++ /dev/null
@@ -1,563 +0,0 @@
-\achapter{Implicit Coercions}
-%HEVEA\cutname{coercions.html}
-\aauthor{Amokrane Saïbi}
-
-\label{Coercions-full}
-\index{Coercions!presentation}
-
-\asection{General Presentation}
-
-This section describes the inheritance mechanism of {\Coq}. In {\Coq} with
-inheritance, we are not interested in adding any expressive power to
-our theory, but only convenience. Given a term, possibly not typable,
-we are interested in the problem of determining if it can be well
-typed modulo insertion of appropriate coercions. We allow to write:
-
-\begin{itemize}
-\item $f~a$ where $f:forall~ x:A, B$ and $a:A'$ when $A'$ can
- be seen in some sense as a subtype of $A$.
-\item $x:A$ when $A$ is not a type, but can be seen in
- a certain sense as a type: set, group, category etc.
-\item $f~a$ when $f$ is not a function, but can be seen in a certain sense
- as a function: bijection, functor, any structure morphism etc.
-\end{itemize}
-
-\asection{Classes}
-\index{Coercions!classes}
- A class with $n$ parameters is any defined name with a type
-$forall~ (x_1:A_1)..(x_n:A_n), s$ where $s$ is a sort. Thus a class with
-parameters is considered as a single class and not as a family of
-classes. An object of a class $C$ is any term of type $C~t_1
-.. t_n$. In addition to these user-classes, we have two abstract
-classes:
-
-\begin{itemize}
-\item {\tt Sortclass}, the class of sorts;
- its objects are the terms whose type is a sort (e.g., \texttt{Prop}
- or \texttt{Type}).
-\item {\tt Funclass}, the class of functions;
- its objects are all the terms with a functional
- type, i.e. of form $forall~ x:A, B$.
-\end{itemize}
-
-Formally, the syntax of a classes is defined on Figure~\ref{fig:classes}.
-\begin{figure}
-\begin{centerframe}
-\begin{tabular}{lcl}
-{\class} & ::= & {\qualid} \\
- & $|$ & {\tt Sortclass} \\
- & $|$ & {\tt Funclass}
-\end{tabular}
-\end{centerframe}
-\caption{Syntax of classes}
-\label{fig:classes}
-\end{figure}
-
-\asection{Coercions}
-\index{Coercions!Funclass}
-\index{Coercions!Sortclass}
- A name $f$ can be declared as a coercion between a source user-class
-$C$ with $n$ parameters and a target class $D$ if one of these
-conditions holds:
-
-\newcommand{\oftype}{\!:\!}
-
-\begin{itemize}
-\item $D$ is a user-class, then the type of $f$ must have the form
- $forall~ (x_1 \oftype A_1)..(x_n \oftype A_n)(y\oftype C~x_1..x_n), D~u_1..u_m$ where $m$
- is the number of parameters of $D$.
-\item $D$ is {\tt Funclass}, then the type of $f$ must have the form
- $forall~ (x_1\oftype A_1)..(x_n\oftype A_n)(y\oftype C~x_1..x_n)(x:A), B$.
-\item $D$ is {\tt Sortclass}, then the type of $f$ must have the form
- $forall~ (x_1\oftype A_1)..(x_n\oftype A_n)(y\oftype C~x_1..x_n), s$ with $s$ a sort.
-\end{itemize}
-
-We then write $f:C \mbox{\texttt{>->}} D$. The restriction on the type
-of coercions is called {\em the uniform inheritance condition}.
-Remark: the abstract class {\tt Sortclass} can be used as source class,
-but the abstract class {\tt Funclass} cannot.
-
-To coerce an object $t:C~t_1..t_n$ of $C$ towards $D$, we have to
-apply the coercion $f$ to it; the obtained term $f~t_1..t_n~t$ is
-then an object of $D$.
-
-\asection{Identity Coercions}
-\index{Coercions!identity}
-
- Identity coercions are special cases of coercions used to go around
-the uniform inheritance condition. Let $C$ and $D$ be two classes
-with respectively $n$ and $m$ parameters and
-$f:forall~(x_1:T_1)..(x_k:T_k)(y:C~u_1..u_n), D~v_1..v_m$ a function which
-does not verify the uniform inheritance condition. To declare $f$ as
-coercion, one has first to declare a subclass $C'$ of $C$:
-
-$$C' := fun~ (x_1:T_1)..(x_k:T_k) => C~u_1..u_n$$
-
-\noindent We then define an {\em identity coercion} between $C'$ and $C$:
-\begin{eqnarray*}
-Id\_C'\_C & := & fun~ (x_1:T_1)..(x_k:T_k)(y:C'~x_1..x_k) => (y:C~u_1..u_n)\\
-\end{eqnarray*}
-
-We can now declare $f$ as coercion from $C'$ to $D$, since we can
-``cast'' its type as
-$forall~ (x_1:T_1)..(x_k:T_k)(y:C'~x_1..x_k),D~v_1..v_m$.\\ The identity
-coercions have a special status: to coerce an object $t:C'~t_1..t_k$
-of $C'$ towards $C$, we does not have to insert explicitly $Id\_C'\_C$
-since $Id\_C'\_C~t_1..t_k~t$ is convertible with $t$. However we
-``rewrite'' the type of $t$ to become an object of $C$; in this case,
-it becomes $C~u_1^*..u_k^*$ where each $u_i^*$ is the result of the
-substitution in $u_i$ of the variables $x_j$ by $t_j$.
-
-
-\asection{Inheritance Graph}
-\index{Coercions!inheritance graph}
-Coercions form an inheritance graph with classes as nodes. We call
-{\em coercion path} an ordered list of coercions between two nodes of
-the graph. A class $C$ is said to be a subclass of $D$ if there is a
-coercion path in the graph from $C$ to $D$; we also say that $C$
-inherits from $D$. Our mechanism supports multiple inheritance since a
-class may inherit from several classes, contrary to simple inheritance
-where a class inherits from at most one class. However there must be
-at most one path between two classes. If this is not the case, only
-the {\em oldest} one is valid and the others are ignored. So the order
-of declaration of coercions is important.
-
-We extend notations for coercions to coercion paths. For instance
-$[f_1;..;f_k]:C \mbox{\texttt{>->}} D$ is the coercion path composed
-by the coercions $f_1..f_k$. The application of a coercion path to a
-term consists of the successive application of its coercions.
-
-\asection{Declaration of Coercions}
-
-%%%%% "Class" is useless, since classes are implicitely defined via coercions.
-
-% \asubsection{\tt Class {\qualid}.}\comindex{Class}
-% Declares {\qualid} as a new class.
-
-% \begin{ErrMsgs}
-% \item {\qualid} \errindex{not declared}
-% \item {\qualid} \errindex{is already a class}
-% \item \errindex{Type of {\qualid} does not end with a sort}
-% \end{ErrMsgs}
-
-% \begin{Variant}
-% \item {\tt Class Local {\qualid}.} \\
-% Declares the construction denoted by {\qualid} as a new local class to
-% the current section.
-% \end{Variant}
-
-% END "Class" is useless
-
-\asubsection{\tt Coercion {\qualid} : {\class$_1$} >-> {\class$_2$}.}
-\comindex{Coercion}
-
-Declares the construction denoted by {\qualid} as a coercion between
-{\class$_1$} and {\class$_2$}.
-
-% Useless information
-% The classes {\class$_1$} and {\class$_2$} are first declared if necessary.
-
-\begin{ErrMsgs}
-\item {\qualid} \errindex{not declared}
-\item {\qualid} \errindex{is already a coercion}
-\item \errindex{Funclass cannot be a source class}
-\item {\qualid} \errindex{is not a function}
-\item \errindex{Cannot find the source class of {\qualid}}
-\item \errindex{Cannot recognize {\class$_1$} as a source class of {\qualid}}
-\item {\qualid} \errindex{does not respect the uniform inheritance condition}
-\item \errindex{Found target class {\class} instead of {\class$_2$}}
-
-\end{ErrMsgs}
-
-When the coercion {\qualid} is added to the inheritance graph, non
-valid coercion paths are ignored; they are signaled by a warning.
-\\[0.3cm]
-\noindent {\bf Warning :}
-\begin{enumerate}
-\item \begin{tabbing}
-{\tt Ambiguous paths: }\= $[f_1^1;..;f_{n_1}^1] : C_1\mbox{\tt >->}D_1$\\
- \> {\ldots} \\
- \>$[f_1^m;..;f_{n_m}^m] : C_m\mbox{\tt >->}D_m$
- \end{tabbing}
-\end{enumerate}
-
-\begin{Variants}
-\item {\tt Local Coercion {\qualid} : {\class$_1$} >-> {\class$_2$}.}
-\comindex{Local Coercion}\\
- Declares the construction denoted by {\qualid} as a coercion local to
- the current section.
-
-\item {\tt Coercion {\ident} := {\term}}\comindex{Coercion}\\
- This defines {\ident} just like \texttt{Definition {\ident} :=
- {\term}}, and then declares {\ident} as a coercion between it
- source and its target.
-
-\item {\tt Coercion {\ident} := {\term} : {\type}}\\
- This defines {\ident} just like
- \texttt{Definition {\ident} : {\type} := {\term}}, and then
- declares {\ident} as a coercion between it source and its target.
-
-\item {\tt Local Coercion {\ident} := {\term}}\comindex{Local Coercion}\\
- This defines {\ident} just like \texttt{Let {\ident} :=
- {\term}}, and then declares {\ident} as a coercion between it
- source and its target.
-
-\item Assumptions can be declared as coercions at declaration
-time. This extends the grammar of assumptions from
-Figure~\ref{sentences-syntax} as follows:
-\comindex{Variable \mbox{\rm (and coercions)}}
-\comindex{Axiom \mbox{\rm (and coercions)}}
-\comindex{Parameter \mbox{\rm (and coercions)}}
-\comindex{Hypothesis \mbox{\rm (and coercions)}}
-
-\begin{tabular}{lcl}
-%% Declarations
-{\assumption} & ::= & {\assumptionkeyword} {\assums} {\tt .} \\
-&&\\
-{\assums} & ::= & {\simpleassums} \\
- & $|$ & \nelist{{\tt (} \simpleassums {\tt )}}{} \\
-&&\\
-{\simpleassums} & ::= & \nelist{\ident}{} {\tt :}\zeroone{{\tt >}} {\term}\\
-\end{tabular}
-
-If the extra {\tt >} is present before the type of some assumptions, these
-assumptions are declared as coercions.
-
-\item Constructors of inductive types can be declared as coercions at
-definition time of the inductive type. This extends and modifies the
-grammar of inductive types from Figure \ref{sentences-syntax} as follows:
-\comindex{Inductive \mbox{\rm (and coercions)}}
-\comindex{CoInductive \mbox{\rm (and coercions)}}
-
-\begin{center}
-\begin{tabular}{lcl}
-%% Inductives
-{\inductive} & ::= &
- {\tt Inductive} \nelist{\inductivebody}{with} {\tt .} \\
- & $|$ & {\tt CoInductive} \nelist{\inductivebody}{with} {\tt .} \\
- & & \\
-{\inductivebody} & ::= &
- {\ident} \zeroone{\binders} {\tt :} {\term} {\tt :=} \\
- && ~~~\zeroone{\zeroone{\tt |} \nelist{\constructor}{|}} \\
- & & \\
-{\constructor} & ::= & {\ident} \zeroone{\binders} \zeroone{{\tt :}\zeroone{\tt >} {\term}} \\
-\end{tabular}
-\end{center}
-
-Especially, if the extra {\tt >} is present in a constructor
-declaration, this constructor is declared as a coercion.
-\end{Variants}
-
-\asubsection{\tt Identity Coercion {\ident}:{\class$_1$} >-> {\class$_2$}.}
-\comindex{Identity Coercion}
-
-We check that {\class$_1$} is a constant with a value of the form
-$fun~ (x_1:T_1)..(x_n:T_n) => (\mbox{\class}_2~t_1..t_m)$ where $m$ is the
-number of parameters of \class$_2$. Then we define an identity
-function with the type
-$forall~ (x_1:T_1)..(x_n:T_n)(y:\mbox{\class}_1~x_1..x_n),
-{\mbox{\class}_2}~t_1..t_m$, and we declare it as an identity
-coercion between {\class$_1$} and {\class$_2$}.
-
-\begin{ErrMsgs}
-\item {\class$_1$} \errindex{must be a transparent constant}
-\end{ErrMsgs}
-
-\begin{Variants}
-\item {\tt Local Identity Coercion {\ident}:{\ident$_1$} >-> {\ident$_2$}.} \\
-Idem but locally to the current section.
-
-\item {\tt SubClass {\ident} := {\type}.} \\
-\comindex{SubClass}
- If {\type} is a class
-{\ident'} applied to some arguments then {\ident} is defined and an
-identity coercion of name {\tt Id\_{\ident}\_{\ident'}} is
-declared. Otherwise said, this is an abbreviation for
-
-{\tt Definition {\ident} := {\type}.}
-
- followed by
-
-{\tt Identity Coercion Id\_{\ident}\_{\ident'}:{\ident} >-> {\ident'}}.
-
-\item {\tt Local SubClass {\ident} := {\type}.} \\
-Same as before but locally to the current section.
-
-\end{Variants}
-
-\asection{Displaying Available Coercions}
-
-\asubsection{\tt Print Classes.}
-\comindex{Print Classes}
-Print the list of declared classes in the current context.
-
-\asubsection{\tt Print Coercions.}
-\comindex{Print Coercions}
-Print the list of declared coercions in the current context.
-
-\asubsection{\tt Print Graph.}
-\comindex{Print Graph}
-Print the list of valid coercion paths in the current context.
-
-\asubsection{\tt Print Coercion Paths {\class$_1$} {\class$_2$}.}
-\comindex{Print Coercion Paths}
-Print the list of valid coercion paths from {\class$_1$} to {\class$_2$}.
-
-\asection{Activating the Printing of Coercions}
-
-\asubsection{\tt Set Printing Coercions.}
-\optindex{Printing Coercions}
-
-This command forces all the coercions to be printed.
-Conversely, to skip the printing of coercions, use
- {\tt Unset Printing Coercions}.
-By default, coercions are not printed.
-
-\asubsection{\tt Add Printing Coercion {\qualid}.}
-\comindex{Add Printing Coercion}
-\comindex{Remove Printing Coercion}
-
-This command forces coercion denoted by {\qualid} to be printed.
-To skip the printing of coercion {\qualid}, use
- {\tt Remove Printing Coercion {\qualid}}.
-By default, a coercion is never printed.
-
-\asection{Classes as Records}
-\label{Coercions-and-records}
-\index{Coercions!and records}
-We allow the definition of {\em Structures with Inheritance} (or
-classes as records) by extending the existing {\tt Record} macro
-(see Section~\ref{Record}). Its new syntax is:
-
-\begin{center}
-\begin{tabular}{l}
-{\tt Record \zeroone{>}~{\ident} \zeroone{\binders} : {\sort} := \zeroone{\ident$_0$} \verb+{+} \\
-~~~~\begin{tabular}{l}
- {\tt \ident$_1$ $[$:$|$:>$]$ \term$_1$ ;} \\
- ... \\
- {\tt \ident$_n$ $[$:$|$:>$]$ \term$_n$ \verb+}+. }
- \end{tabular}
-\end{tabular}
-\end{center}
-The identifier {\ident} is the name of the defined record and {\sort}
-is its type. The identifier {\ident$_0$} is the name of its
-constructor. The identifiers {\ident$_1$}, .., {\ident$_n$} are the
-names of its fields and {\term$_1$}, .., {\term$_n$} their respective
-types. The alternative {\tt $[$:$|$:>$]$} is ``{\tt :}'' or ``{\tt
-:>}''. If {\tt {\ident$_i$}:>{\term$_i$}}, then {\ident$_i$} is
-automatically declared as coercion from {\ident} to the class of
-{\term$_i$}. Remark that {\ident$_i$} always verifies the uniform
-inheritance condition. If the optional ``{\tt >}'' before {\ident} is
-present, then {\ident$_0$} (or the default name {\tt Build\_{\ident}}
-if {\ident$_0$} is omitted) is automatically declared as a coercion
-from the class of {\term$_n$} to {\ident} (this may fail if the
-uniform inheritance condition is not satisfied).
-
-\Rem The keyword {\tt Structure}\comindex{Structure} is a synonym of {\tt
-Record}.
-
-\asection{Coercions and Sections}
-\index{Coercions!and sections}
- The inheritance mechanism is compatible with the section
-mechanism. The global classes and coercions defined inside a section
-are redefined after its closing, using their new value and new
-type. The classes and coercions which are local to the section are
-simply forgotten.
-Coercions with a local source class or a local target class, and
-coercions which do not verify the uniform inheritance condition any longer
-are also forgotten.
-
-\asection{Coercions and Modules}
-\index{Coercions!and modules}
-
-From Coq version 8.3, the coercions present in a module are activated
-only when the module is explicitly imported. Formerly, the coercions
-were activated as soon as the module was required, whatever it was
-imported or not.
-
-To recover the behavior of the versions of Coq prior to 8.3, use the
-following command:
-
-\optindex{Automatic Coercions Import}
-\begin{verbatim}
-Set Automatic Coercions Import.
-\end{verbatim}
-
-To cancel the effect of the option, use instead:
-
-\begin{verbatim}
-Unset Automatic Coercions Import.
-\end{verbatim}
-
-\asection{Examples}
-
- There are three situations:
-
-\begin{itemize}
-\item $f~a$ is ill-typed where $f:forall~x:A,B$ and $a:A'$. If there is a
- coercion path between $A'$ and $A$, $f~a$ is transformed into
- $f~a'$ where $a'$ is the result of the application of this
- coercion path to $a$.
-
-We first give an example of coercion between atomic inductive types
-
-%\begin{\small}
-\begin{coq_example}
-Definition bool_in_nat (b:bool) := if b then 0 else 1.
-Coercion bool_in_nat : bool >-> nat.
-Check (0 = true).
-Set Printing Coercions.
-Check (0 = true).
-\end{coq_example}
-%\end{small}
-
-\begin{coq_eval}
-Unset Printing Coercions.
-\end{coq_eval}
-
-\Warning ``\verb|Check true=O.|'' fails. This is ``normal'' behaviour of
-coercions. To validate \verb|true=O|, the coercion is searched from
-\verb=nat= to \verb=bool=. There is none.
-
-We give an example of coercion between classes with parameters.
-
-%\begin{\small}
-\begin{coq_example}
-Parameters
- (C : nat -> Set) (D : nat -> bool -> Set) (E : bool -> Set).
-Parameter f : forall n:nat, C n -> D (S n) true.
-Coercion f : C >-> D.
-Parameter g : forall (n:nat) (b:bool), D n b -> E b.
-Coercion g : D >-> E.
-Parameter c : C 0.
-Parameter T : E true -> nat.
-Check (T c).
-Set Printing Coercions.
-Check (T c).
-\end{coq_example}
-%\end{small}
-
-\begin{coq_eval}
-Unset Printing Coercions.
-\end{coq_eval}
-
-We give now an example using identity coercions.
-
-%\begin{small}
-\begin{coq_example}
-Definition D' (b:bool) := D 1 b.
-Identity Coercion IdD'D : D' >-> D.
-Print IdD'D.
-Parameter d' : D' true.
-Check (T d').
-Set Printing Coercions.
-Check (T d').
-\end{coq_example}
-%\end{small}
-
-\begin{coq_eval}
-Unset Printing Coercions.
-\end{coq_eval}
-
-
- In the case of functional arguments, we use the monotonic rule of
-sub-typing. Approximatively, to coerce $t:forall~x:A, B$ towards
-$forall~x:A',B'$, one have to coerce $A'$ towards $A$ and $B$ towards
-$B'$. An example is given below:
-
-%\begin{small}
-\begin{coq_example}
-Parameters (A B : Set) (h : A -> B).
-Coercion h : A >-> B.
-Parameter U : (A -> E true) -> nat.
-Parameter t : B -> C 0.
-Check (U t).
-Set Printing Coercions.
-Check (U t).
-\end{coq_example}
-%\end{small}
-
-\begin{coq_eval}
-Unset Printing Coercions.
-\end{coq_eval}
-
- Remark the changes in the result following the modification of the
-previous example.
-
-%\begin{small}
-\begin{coq_example}
-Parameter U' : (C 0 -> B) -> nat.
-Parameter t' : E true -> A.
-Check (U' t').
-Set Printing Coercions.
-Check (U' t').
-\end{coq_example}
-%\end{small}
-
-\begin{coq_eval}
-Unset Printing Coercions.
-\end{coq_eval}
-
-\item An assumption $x:A$ when $A$ is not a type, is ill-typed. It is
- replaced by $x:A'$ where $A'$ is the result of the application
- to $A$ of the coercion path between the class of $A$ and {\tt
- Sortclass} if it exists. This case occurs in the abstraction
- $fun~ x:A => t$, universal quantification $forall~x:A, B$,
- global variables and parameters of (co-)inductive definitions
- and functions. In $forall~x:A, B$, such a coercion path may be
- applied to $B$ also if necessary.
-
-%\begin{small}
-\begin{coq_example}
-Parameter Graph : Type.
-Parameter Node : Graph -> Type.
-Coercion Node : Graph >-> Sortclass.
-Parameter G : Graph.
-Parameter Arrows : G -> G -> Type.
-Check Arrows.
-Parameter fg : G -> G.
-Check fg.
-Set Printing Coercions.
-Check fg.
-\end{coq_example}
-%\end{small}
-
-\begin{coq_eval}
-Unset Printing Coercions.
-\end{coq_eval}
-
-\item $f~a$ is ill-typed because $f:A$ is not a function. The term
- $f$ is replaced by the term obtained by applying to $f$ the
- coercion path between $A$ and {\tt Funclass} if it exists.
-
-%\begin{small}
-\begin{coq_example}
-Parameter bij : Set -> Set -> Set.
-Parameter ap : forall A B:Set, bij A B -> A -> B.
-Coercion ap : bij >-> Funclass.
-Parameter b : bij nat nat.
-Check (b 0).
-Set Printing Coercions.
-Check (b 0).
-\end{coq_example}
-%\end{small}
-
-\begin{coq_eval}
-Unset Printing Coercions.
-\end{coq_eval}
-
-Let us see the resulting graph of this session.
-
-%\begin{small}
-\begin{coq_example}
-Print Graph.
-\end{coq_example}
-%\end{small}
-
-\end{itemize}
-
-
-%%% Local Variables:
-%%% mode: latex
-%%% TeX-master: "Reference-Manual"
-%%% End:
diff --git a/doc/refman/Extraction.tex b/doc/refman/Extraction.tex
deleted file mode 100644
index cff7be3e9..000000000
--- a/doc/refman/Extraction.tex
+++ /dev/null
@@ -1,620 +0,0 @@
-\achapter{Extraction of programs in OCaml and Haskell}
-%HEVEA\cutname{extraction.html}
-\label{Extraction}
-\aauthor{Jean-Christophe Filliâtre and Pierre Letouzey}
-\index{Extraction}
-
-\noindent We present here the \Coq\ extraction commands, used to build certified
-and relatively efficient functional programs, extracting them from
-either \Coq\ functions or \Coq\ proofs of specifications. The
-functional languages available as output are currently \ocaml{},
-\textsc{Haskell} and \textsc{Scheme}. In the following, ``ML'' will
-be used (abusively) to refer to any of the three.
-
-%% \paragraph{Differences with old versions.}
-%% The current extraction mechanism is new for version 7.0 of {\Coq}.
-%% In particular, the \FW\ toplevel used as an intermediate step between
-%% \Coq\ and ML has been withdrawn. It is also not possible
-%% any more to import ML objects in this \FW\ toplevel.
-%% The current mechanism also differs from
-%% the one in previous versions of \Coq: there is no more
-%% an explicit toplevel for the language (formerly called \textsc{Fml}).
-
-Before using any of the commands or options described in this chapter,
-the extraction framework should first be loaded explicitly
-via {\tt Require Extraction}, or via the more robust
-{\tt From Coq Require Extraction}.
-Note that in earlier versions of Coq, these commands and options were
-directly available without any preliminary {\tt Require}.
-
-\begin{coq_example}
-Require Extraction.
-\end{coq_example}
-
-\asection{Generating ML code}
-\comindex{Extraction}
-\comindex{Recursive Extraction}
-\comindex{Separate Extraction}
-\comindex{Extraction Library}
-\comindex{Recursive Extraction Library}
-
-The next two commands are meant to be used for rapid preview of
-extraction. They both display extracted term(s) inside \Coq.
-
-\begin{description}
-\item {\tt Extraction \qualid{}.} ~\par
- Extraction of a constant or module in the \Coq\ toplevel.
-
-\item {\tt Recursive Extraction} \qualid$_1$ \dots\ \qualid$_n$. ~\par
- Recursive extraction of all the globals (or modules) \qualid$_1$ \dots\
- \qualid$_n$ and all their dependencies in the \Coq\ toplevel.
-\end{description}
-
-%% TODO error messages
-
-\noindent All the following commands produce real ML files. User can choose to produce
-one monolithic file or one file per \Coq\ library.
-
-\begin{description}
-\item {\tt Extraction "{\em file}"}
- \qualid$_1$ \dots\ \qualid$_n$. ~\par
- Recursive extraction of all the globals (or modules) \qualid$_1$ \dots\
- \qualid$_n$ and all their dependencies in one monolithic file {\em file}.
- Global and local identifiers are renamed according to the chosen ML
- language to fulfill its syntactic conventions, keeping original
- names as much as possible.
-
-\item {\tt Extraction Library} \ident. ~\par
- Extraction of the whole \Coq\ library {\tt\ident.v} to an ML module
- {\tt\ident.ml}. In case of name clash, identifiers are here renamed
- using prefixes \verb!coq_! or \verb!Coq_! to ensure a
- session-independent renaming.
-
-\item {\tt Recursive Extraction Library} \ident. ~\par
- Extraction of the \Coq\ library {\tt\ident.v} and all other modules
- {\tt\ident.v} depends on.
-
-\item {\tt Separate Extraction}
- \qualid$_1$ \dots\ \qualid$_n$. ~\par
- Recursive extraction of all the globals (or modules) \qualid$_1$ \dots\
- \qualid$_n$ and all their dependencies, just as {\tt
- Extraction "{\em file}"}, but instead of producing one monolithic
- file, this command splits the produced code in separate ML files, one per
- corresponding Coq {\tt .v} file. This command is hence quite similar
- to {\tt Recursive Extraction Library}, except that only the needed
- parts of Coq libraries are extracted instead of the whole. The
- naming convention in case of name clash is the same one as
- {\tt Extraction Library}: identifiers are here renamed
- using prefixes \verb!coq_! or \verb!Coq_!.
-\end{description}
-
-\noindent The following command is meant to help automatic testing of
- the extraction, see for instance the {\tt test-suite} directory
- in the \Coq\ sources.
-
-\begin{description}
-\item {\tt Extraction TestCompile} \qualid$_1$ \dots\ \qualid$_n$. ~\par
- All the globals (or modules) \qualid$_1$ \dots\ \qualid$_n$ and all
- their dependencies are extracted to a temporary {\ocaml} file, just as in
- {\tt Extraction "{\em file}"}. Then this temporary file and its
- signature are compiled with the same {\ocaml} compiler used to built
- \Coq. This command succeeds only if the extraction and the {\ocaml}
- compilation succeed (and it fails if the current target language
- of the extraction is not {\ocaml}).
-\end{description}
-
-\asection{Extraction options}
-
-\asubsection{Setting the target language}
-\comindex{Extraction Language}
-
-The ability to fix target language is the first and more important
-of the extraction options. Default is {\ocaml}.
-\begin{description}
-\item {\tt Extraction Language OCaml}.
-\item {\tt Extraction Language Haskell}.
-\item {\tt Extraction Language Scheme}.
-\end{description}
-
-\asubsection{Inlining and optimizations}
-
-Since {\ocaml} is a strict language, the extracted code has to
-be optimized in order to be efficient (for instance, when using
-induction principles we do not want to compute all the recursive calls
-but only the needed ones). So the extraction mechanism provides an
-automatic optimization routine that will be called each time the user
-want to generate {\ocaml} programs. The optimizations can be split in two
-groups: the type-preserving ones -- essentially constant inlining and
-reductions -- and the non type-preserving ones -- some function
-abstractions of dummy types are removed when it is deemed safe in order
-to have more elegant types. Therefore some constants may not appear in the
-resulting monolithic {\ocaml} program. In the case of modular extraction,
-even if some inlining is done, the inlined constant are nevertheless
-printed, to ensure session-independent programs.
-
-Concerning Haskell, type-preserving optimizations are less useful
-because of laziness. We still make some optimizations, for example in
-order to produce more readable code.
-
-The type-preserving optimizations are controlled by the following \Coq\ options:
-
-\begin{description}
-
-\item \optindex{Extraction Optimize} {\tt Unset Extraction Optimize.}
-
-Default is Set. This controls all type-preserving optimizations made on
-the ML terms (mostly reduction of dummy beta/iota redexes, but also
-simplifications on Cases, etc). Put this option to Unset if you want a
-ML term as close as possible to the Coq term.
-
-\item \optindex{Extraction Conservative Types}
-{\tt Set Extraction Conservative Types.}
-
-Default is Unset. This controls the non type-preserving optimizations
-made on ML terms (which try to avoid function abstraction of dummy
-types). Turn this option to Set to make sure that {\tt e:t}
-implies that {\tt e':t'} where {\tt e'} and {\tt t'} are the extracted
-code of {\tt e} and {\tt t} respectively.
-
-\item \optindex{Extraction KeepSingleton}
-{\tt Set Extraction KeepSingleton.}
-
-Default is Unset. Normally, when the extraction of an inductive type
-produces a singleton type (i.e. a type with only one constructor, and
-only one argument to this constructor), the inductive structure is
-removed and this type is seen as an alias to the inner type.
-The typical example is {\tt sig}. This option allows disabling this
-optimization when one wishes to preserve the inductive structure of types.
-
-\item \optindex{Extraction AutoInline} {\tt Unset Extraction AutoInline.}
-
-Default is Set. The extraction mechanism
-inlines the bodies of some defined constants, according to some heuristics
-like size of bodies, uselessness of some arguments, etc. Those heuristics are
-not always perfect; if you want to disable this feature, do it by Unset.
-
-\item \comindex{Extraction Inline} \comindex{Extraction NoInline}
-{\tt Extraction [Inline|NoInline] \qualid$_1$ \dots\ \qualid$_n$}.
-
-In addition to the automatic inline feature, you can tell to
-inline some more constants by the {\tt Extraction Inline} command. Conversely,
-you can forbid the automatic inlining of some specific constants by
-the {\tt Extraction NoInline} command.
-Those two commands enable a precise control of what is inlined and what is not.
-
-\item \comindex{Print Extraction Inline}
-{\tt Print Extraction Inline}.
-
-Prints the current state of the table recording the custom inlinings
-declared by the two previous commands.
-
-\item \comindex{Reset Extraction Inline}
-{\tt Reset Extraction Inline}.
-
-Puts the table recording the custom inlinings back to empty.
-
-\end{description}
-
-
-\paragraph{Inlining and printing of a constant declaration.}
-
-A user can explicitly ask for a constant to be extracted by two means:
-\begin{itemize}
-\item by mentioning it on the extraction command line
-\item by extracting the whole \Coq\ module of this constant.
-\end{itemize}
-In both cases, the declaration of this constant will be present in the
-produced file.
-But this same constant may or may not be inlined in the following
-terms, depending on the automatic/custom inlining mechanism.
-
-
-For the constants non-explicitly required but needed for dependency
-reasons, there are two cases:
-\begin{itemize}
-\item If an inlining decision is taken, whether automatically or not,
-all occurrences of this constant are replaced by its extracted body, and
-this constant is not declared in the generated file.
-\item If no inlining decision is taken, the constant is normally
- declared in the produced file.
-\end{itemize}
-
-\asubsection{Extra elimination of useless arguments}
-
-The following command provides some extra manual control on the
-code elimination performed during extraction, in a way which
-is independent but complementary to the main elimination
-principles of extraction (logical parts and types).
-
-\begin{description}
-\item \comindex{Extraction Implicit}
- {\tt Extraction Implicit} \qualid\ [ \ident$_1$ \dots\ \ident$_n$ ].
-
-This experimental command allows declaring some arguments of
-\qualid\ as implicit, i.e. useless in extracted code and hence to
-be removed by extraction. Here \qualid\ can be any function or
-inductive constructor, and \ident$_i$ are the names of the concerned
-arguments. In fact, an argument can also be referred by a number
-indicating its position, starting from 1.
-\end{description}
-
-\noindent When an actual extraction takes place, an error is normally raised if the
-{\tt Extraction Implicit}
-declarations cannot be honored, that is if any of the implicited
-variables still occurs in the final code. This behavior can be relaxed
-via the following option:
-
-\begin{description}
-\item \optindex{Extraction SafeImplicits} {\tt Unset Extraction SafeImplicits.}
-
-Default is Set. When this option is Unset, a warning is emitted
-instead of an error if some implicited variables still occur in the
-final code of an extraction. This way, the extracted code may be
-obtained nonetheless and reviewed manually to locate the source of the issue
-(in the code, some comments mark the location of these remaining
-implicited variables).
-Note that this extracted code might not compile or run properly,
-depending of the use of these remaining implicited variables.
-
-\end{description}
-
-\asubsection{Realizing axioms}\label{extraction:axioms}
-
-Extraction will fail if it encounters an informative
-axiom not realized (see Section~\ref{extraction:axioms}).
-A warning will be issued if it encounters a logical axiom, to remind the
-user that inconsistent logical axioms may lead to incorrect or
-non-terminating extracted terms.
-
-It is possible to assume some axioms while developing a proof. Since
-these axioms can be any kind of proposition or object or type, they may
-perfectly well have some computational content. But a program must be
-a closed term, and of course the system cannot guess the program which
-realizes an axiom. Therefore, it is possible to tell the system
-what ML term corresponds to a given axiom.
-
-\comindex{Extract Constant}
-\begin{description}
-\item{\tt Extract Constant \qualid\ => \str.} ~\par
- Give an ML extraction for the given constant.
- The \str\ may be an identifier or a quoted string.
-\item{\tt Extract Inlined Constant \qualid\ => \str.} ~\par
- Same as the previous one, except that the given ML terms will
- be inlined everywhere instead of being declared via a let.
-\end{description}
-
-\noindent Note that the {\tt Extract Inlined Constant} command is sugar
-for an {\tt Extract Constant} followed by a {\tt Extraction Inline}.
-Hence a {\tt Reset Extraction Inline} will have an effect on the
-realized and inlined axiom.
-
-Of course, it is the responsibility of the user to ensure that the ML
-terms given to realize the axioms do have the expected types. In
-fact, the strings containing realizing code are just copied to the
-extracted files. The extraction recognizes whether the realized axiom
-should become a ML type constant or a ML object declaration.
-
-\Example
-\begin{coq_example*}
-Axiom X:Set.
-Axiom x:X.
-Extract Constant X => "int".
-Extract Constant x => "0".
-\end{coq_example*}
-
-\noindent Notice that in the case of type scheme axiom (i.e. whose type is an
-arity, that is a sequence of product finished by a sort), then some type
-variables have to be given. The syntax is then:
-
-\begin{description}
-\item{\tt Extract Constant \qualid\ \str$_1$ \dots\ \str$_n$ => \str.}
-\end{description}
-
-\noindent The number of type variables is checked by the system.
-
-\Example
-\begin{coq_example*}
-Axiom Y : Set -> Set -> Set.
-Extract Constant Y "'a" "'b" => " 'a*'b ".
-\end{coq_example*}
-
-\noindent Realizing an axiom via {\tt Extract Constant} is only useful in the
-case of an informative axiom (of sort Type or Set). A logical axiom
-have no computational content and hence will not appears in extracted
-terms. But a warning is nonetheless issued if extraction encounters a
-logical axiom. This warning reminds user that inconsistent logical
-axioms may lead to incorrect or non-terminating extracted terms.
-
-If an informative axiom has not been realized before an extraction, a
-warning is also issued and the definition of the axiom is filled with
-an exception labeled {\tt AXIOM TO BE REALIZED}. The user must then
-search these exceptions inside the extracted file and replace them by
-real code.
-
-\comindex{Extract Inductive}
-
-The system also provides a mechanism to specify ML terms for inductive
-types and constructors. For instance, the user may want to use the ML
-native boolean type instead of \Coq\ one. The syntax is the following:
-
-\begin{description}
-\item{\tt Extract Inductive \qualid\ => \str\ [ \str\ \dots\ \str\ ] {\it optstring}.}\par
- Give an ML extraction for the given inductive type. You must specify
- extractions for the type itself (first \str) and all its
- constructors (between square brackets). If given, the final optional
- string should contain a function emulating pattern-matching over this
- inductive type. If this optional string is not given, the ML
- extraction must be an ML inductive datatype, and the native
- pattern-matching of the language will be used.
-\end{description}
-
-\noindent For an inductive type with $k$ constructor, the function used to
-emulate the match should expect $(k+1)$ arguments, first the $k$
-branches in functional form, and then the inductive element to
-destruct. For instance, the match branch \verb$| S n => foo$ gives the
-functional form \verb$(fun n -> foo)$. Note that a constructor with no
-argument is considered to have one unit argument, in order to block
-early evaluation of the branch: \verb$| O => bar$ leads to the functional
-form \verb$(fun () -> bar)$. For instance, when extracting {\tt nat}
-into {\tt int}, the code to provide has type:
-{\tt (unit->'a)->(int->'a)->int->'a}.
-
-As for {\tt Extract Inductive}, this command should be used with care:
-\begin{itemize}
-\item The ML code provided by the user is currently \emph{not} checked at all by
- extraction, even for syntax errors.
-
-\item Extracting an inductive type to a pre-existing ML inductive type
-is quite sound. But extracting to a general type (by providing an
-ad-hoc pattern-matching) will often \emph{not} be fully rigorously
-correct. For instance, when extracting {\tt nat} to {\ocaml}'s {\tt
-int}, it is theoretically possible to build {\tt nat} values that are
-larger than {\ocaml}'s {\tt max\_int}. It is the user's responsibility to
-be sure that no overflow or other bad events occur in practice.
-
-\item Translating an inductive type to an ML type does \emph{not}
-magically improve the asymptotic complexity of functions, even if the
-ML type is an efficient representation. For instance, when extracting
-{\tt nat} to {\ocaml}'s {\tt int}, the function {\tt mult} stays
-quadratic. It might be interesting to associate this translation with
-some specific {\tt Extract Constant} when primitive counterparts exist.
-\end{itemize}
-
-\Example
-Typical examples are the following:
-\begin{coq_eval}
-Require Extraction.
-\end{coq_eval}
-\begin{coq_example}
-Extract Inductive unit => "unit" [ "()" ].
-Extract Inductive bool => "bool" [ "true" "false" ].
-Extract Inductive sumbool => "bool" [ "true" "false" ].
-\end{coq_example}
-
-\noindent When extracting to {\ocaml}, if an inductive constructor or type
-has arity 2 and the corresponding string is enclosed by parentheses,
-and the string meets {\ocaml}'s lexical criteria for an infix symbol,
-then the rest of the string is used as infix constructor or type.
-
-\begin{coq_example}
-Extract Inductive list => "list" [ "[]" "(::)" ].
-Extract Inductive prod => "(*)" [ "(,)" ].
-\end{coq_example}
-
-\noindent As an example of translation to a non-inductive datatype, let's turn
-{\tt nat} into {\ocaml}'s {\tt int} (see caveat above):
-\begin{coq_example}
-Extract Inductive nat => int [ "0" "succ" ]
- "(fun fO fS n -> if n=0 then fO () else fS (n-1))".
-\end{coq_example}
-
-\asubsection{Avoiding conflicts with existing filenames}
-
-\comindex{Extraction Blacklist}
-
-When using {\tt Extraction Library}, the names of the extracted files
-directly depends from the names of the \Coq\ files. It may happen that
-these filenames are in conflict with already existing files,
-either in the standard library of the target language or in other
-code that is meant to be linked with the extracted code.
-For instance the module {\tt List} exists both in \Coq\ and in {\ocaml}.
-It is possible to instruct the extraction not to use particular filenames.
-
-\begin{description}
-\item{\tt Extraction Blacklist} \ident\ \dots\ \ident. ~\par
- Instruct the extraction to avoid using these names as filenames
- for extracted code.
-\item{\tt Print Extraction Blacklist.} ~\par
- Show the current list of filenames the extraction should avoid.
-\item{\tt Reset Extraction Blacklist.} ~\par
- Allow the extraction to use any filename.
-\end{description}
-
-\noindent For {\ocaml}, a typical use of these commands is
-{\tt Extraction Blacklist String List}.
-
-\asection{Differences between \Coq\ and ML type systems}
-
-
-Due to differences between \Coq\ and ML type systems,
-some extracted programs are not directly typable in ML.
-We now solve this problem (at least in {\ocaml}) by adding
-when needed some unsafe casting {\tt Obj.magic}, which give
-a generic type {\tt 'a} to any term.
-
-For example, here are two kinds of problem that can occur:
-
-\begin{itemize}
- \item If some part of the program is {\em very} polymorphic, there
- may be no ML type for it. In that case the extraction to ML works
- alright but the generated code may be refused by the ML
- type-checker. A very well known example is the {\em distr-pair}
- function:
-\begin{verbatim}
-Definition dp :=
- fun (A B:Set)(x:A)(y:B)(f:forall C:Set, C->C) => (f A x, f B y).
-\end{verbatim}
-
-In {\ocaml}, for instance, the direct extracted term would be
-\begin{verbatim}
-let dp x y f = Pair((f () x),(f () y))
-\end{verbatim}
-
-and would have type
-\begin{verbatim}
-dp : 'a -> 'a -> (unit -> 'a -> 'b) -> ('b,'b) prod
-\end{verbatim}
-
-which is not its original type, but a restriction.
-
-We now produce the following correct version:
-\begin{verbatim}
-let dp x y f = Pair ((Obj.magic f () x), (Obj.magic f () y))
-\end{verbatim}
-
- \item Some definitions of \Coq\ may have no counterpart in ML. This
- happens when there is a quantification over types inside the type
- of a constructor; for example:
-\begin{verbatim}
-Inductive anything : Type := dummy : forall A:Set, A -> anything.
-\end{verbatim}
-
-which corresponds to the definition of an ML dynamic type.
-In {\ocaml}, we must cast any argument of the constructor dummy.
-
-\end{itemize}
-
-\noindent Even with those unsafe castings, you should never get error like
-``segmentation fault''. In fact even if your program may seem
-ill-typed to the {\ocaml} type-checker, it can't go wrong: it comes
-from a Coq well-typed terms, so for example inductives will always
-have the correct number of arguments, etc.
-
-More details about the correctness of the extracted programs can be
-found in \cite{Let02}.
-
-We have to say, though, that in most ``realistic'' programs, these
-problems do not occur. For example all the programs of Coq library are
-accepted by Caml type-checker without any {\tt Obj.magic} (see examples below).
-
-
-
-\asection{Some examples}
-
-We present here two examples of extractions, taken from the
-\Coq\ Standard Library. We choose \ocaml\ as target language,
-but all can be done in the other dialects with slight modifications.
-We then indicate where to find other examples and tests of Extraction.
-
-\asubsection{A detailed example: Euclidean division}
-
-The file {\tt Euclid} contains the proof of Euclidean division
-(theorem {\tt eucl\_dev}). The natural numbers defined in the example
-files are unary integers defined by two constructors $O$ and $S$:
-\begin{coq_example*}
-Inductive nat : Set :=
- | O : nat
- | S : nat -> nat.
-\end{coq_example*}
-
-\noindent This module contains a theorem {\tt eucl\_dev}, whose type is
-\begin{verbatim}
-forall b:nat, b > 0 -> forall a:nat, diveucl a b
-\end{verbatim}
-where {\tt diveucl} is a type for the pair of the quotient and the
-modulo, plus some logical assertions that disappear during extraction.
-We can now extract this program to \ocaml:
-
-\begin{coq_eval}
-Reset Initial.
-\end{coq_eval}
-\begin{coq_example}
-Require Extraction.
-Require Import Euclid Wf_nat.
-Extraction Inline gt_wf_rec lt_wf_rec induction_ltof2.
-Recursive Extraction eucl_dev.
-\end{coq_example}
-
-\noindent The inlining of {\tt gt\_wf\_rec} and others is not
-mandatory. It only enhances readability of extracted code.
-You can then copy-paste the output to a file {\tt euclid.ml} or let
-\Coq\ do it for you with the following command:
-
-\begin{verbatim}
-Extraction "euclid" eucl_dev.
-\end{verbatim}
-
-\noindent Let us play the resulting program:
-
-\begin{verbatim}
-# #use "euclid.ml";;
-type nat = O | S of nat
-type sumbool = Left | Right
-val minus : nat -> nat -> nat = <fun>
-val le_lt_dec : nat -> nat -> sumbool = <fun>
-val le_gt_dec : nat -> nat -> sumbool = <fun>
-type diveucl = Divex of nat * nat
-val eucl_dev : nat -> nat -> diveucl = <fun>
-# eucl_dev (S (S O)) (S (S (S (S (S O)))));;
-- : diveucl = Divex (S (S O), S O)
-\end{verbatim}
-It is easier to test on \ocaml\ integers:
-\begin{verbatim}
-# let rec nat_of_int = function 0 -> O | n -> S (nat_of_int (n-1));;
-val nat_of_int : int -> nat = <fun>
-# let rec int_of_nat = function O -> 0 | S p -> 1+(int_of_nat p);;
-val int_of_nat : nat -> int = <fun>
-# let div a b =
- let Divex (q,r) = eucl_dev (nat_of_int b) (nat_of_int a)
- in (int_of_nat q, int_of_nat r);;
-val div : int -> int -> int * int = <fun>
-# div 173 15;;
-- : int * int = (11, 8)
-\end{verbatim}
-
-\noindent Note that these {\tt nat\_of\_int} and {\tt int\_of\_nat} are now
-available via a mere {\tt Require Import ExtrOcamlIntConv} and then
-adding these functions to the list of functions to extract. This file
-{\tt ExtrOcamlIntConv.v} and some others in {\tt plugins/extraction/}
-are meant to help building concrete program via extraction.
-
-\asubsection{Extraction's horror museum}
-
-Some pathological examples of extraction are grouped in the file\\
-{\tt test-suite/success/extraction.v} of the sources of \Coq.
-
-\asubsection{Users' Contributions}
-
-Several of the \Coq\ Users' Contributions use extraction to produce
-certified programs. In particular the following ones have an automatic
-extraction test:
-
-\begin{itemize}
-\item {\tt additions}
-\item {\tt bdds}
-\item {\tt canon-bdds}
-\item {\tt chinese}
-\item {\tt continuations}
-\item {\tt coq-in-coq}
-\item {\tt exceptions}
-\item {\tt firing-squad}
-\item {\tt founify}
-\item {\tt graphs}
-\item {\tt higman-cf}
-\item {\tt higman-nw}
-\item {\tt hardware}
-\item {\tt multiplier}
-\item {\tt search-trees}
-\item {\tt stalmarck}
-\end{itemize}
-
-\noindent {\tt continuations} and {\tt multiplier} are a bit particular. They are
-examples of developments where {\tt Obj.magic} are needed. This is
-probably due to an heavy use of impredicativity. After compilation, those
-two examples run nonetheless, thanks to the correction of the
-extraction~\cite{Let02}.
-
-%%% Local Variables:
-%%% mode: latex
-%%% TeX-master: "Reference-Manual"
-%%% End:
diff --git a/doc/refman/Nsatz.tex b/doc/refman/Nsatz.tex
deleted file mode 100644
index 1401af10f..000000000
--- a/doc/refman/Nsatz.tex
+++ /dev/null
@@ -1,102 +0,0 @@
-\achapter{Nsatz: tactics for proving equalities in integral domains}
-%HEVEA\cutname{nsatz.html}
-\aauthor{Loïc Pottier}
-
-The tactic \texttt{nsatz} proves goals of the form
-
-\[ \begin{array}{l}
- \forall X_1,\ldots,X_n \in A,\\
- P_1(X_1,\ldots,X_n) = Q_1(X_1,\ldots,X_n) , \ldots , P_s(X_1,\ldots,X_n) =Q_s(X_1,\ldots,X_n)\\
- \vdash P(X_1,\ldots,X_n) = Q(X_1,\ldots,X_n)\\
- \end{array}
-\]
-where $P,Q, P_1,Q_1,\ldots,P_s,Q_s$ are polynomials and A is an integral
-domain, i.e. a commutative ring with no zero divisor. For example, A can be
-$\mathbb{R}$, $\mathbb{Z}$, of $\mathbb{Q}$. Note that the equality $=$ used in these
-goals can be any setoid equality
-(see \ref{setoidtactics})
-, not only Leibnitz equality.
-
-It also proves formulas
-\[ \begin{array}{l}
- \forall X_1,\ldots,X_n \in A,\\
- P_1(X_1,\ldots,X_n) = Q_1(X_1,\ldots,X_n) \wedge \ldots \wedge P_s(X_1,\ldots,X_n) =Q_s(X_1,\ldots,X_n)\\
- \rightarrow P(X_1,\ldots,X_n) = Q(X_1,\ldots,X_n)\\
- \end{array}
-\] doing automatic introductions.
-
-\asection{Using the basic tactic \texttt{nsatz}}
-\tacindex{nsatz}
-
-Load the
-\texttt{Nsatz} module: \texttt{Require Import Nsatz}.\\
- and use the tactic \texttt{nsatz}.
-
-\asection{More about \texttt{nsatz}}
-
-Hilbert's Nullstellensatz theorem shows how to reduce proofs of equalities on
-polynomials on a commutative ring A with no zero divisor to algebraic computations: it is easy to see that if a polynomial
-$P$ in $A[X_1,\ldots,X_n]$ verifies $c P^r = \sum_{i=1}^{s} S_i P_i$, with $c
-\in A$, $c \not = 0$, $r$ a positive integer, and the $S_i$s in
-$A[X_1,\ldots,X_n]$, then $P$ is zero whenever polynomials $P_1,...,P_s$ are
-zero (the converse is also true when A is an algebraic closed field:
-the method is complete).
-
-So, proving our initial problem can reduce into finding $S_1,\ldots,S_s$, $c$
-and $r$ such that $c (P-Q)^r = \sum_{i} S_i (P_i-Q_i)$, which will be proved by the
-tactic \texttt{ring}.
-
-This is achieved by the computation of a Groebner basis of the
-ideal generated by $P_1-Q_1,...,P_s-Q_s$, with an adapted version of the Buchberger
-algorithm.
-
-This computation is done after a step of {\em reification}, which is
-performed using {\em Type Classes}
-(see \ref{typeclasses})
-.
-
-The \texttt{Nsatz} module defines the tactic
-\texttt{nsatz}, which can be used without arguments: \\
-\vspace*{3mm}
-\texttt{nsatz}\\
-or with the syntax: \\
-\vspace*{3mm}
-\texttt{nsatz with radicalmax:={\em number}\%N strategy:={\em number}\%Z parameters:={\em list of variables} variables:={\em list of variables}}\\
-where:
-
-\begin{itemize}
- \item \texttt{radicalmax} is a bound when for searching r s.t.$c (P-Q)^r =
-\sum_{i=1..s} S_i (P_i - Q_i)$
-
- \item \texttt{strategy} gives the order on variables $X_1,...X_n$ and
-the strategy used in Buchberger algorithm (see
-\cite{sugar} for details):
-
- \begin{itemize}
- \item strategy = 0: reverse lexicographic order and newest s-polynomial.
- \item strategy = 1: reverse lexicographic order and sugar strategy.
- \item strategy = 2: pure lexicographic order and newest s-polynomial.
- \item strategy = 3: pure lexicographic order and sugar strategy.
- \end{itemize}
-
- \item \texttt{parameters} is the list of variables
-$X_{i_1},\ldots,X_{i_k}$ among $X_1,...,X_n$ which are considered as
- parameters: computation will be performed with rational fractions in these
- variables, i.e. polynomials are considered with coefficients in
-$R(X_{i_1},\ldots,X_{i_k})$. In this case, the coefficient $c$ can be a non
-constant polynomial in $X_{i_1},\ldots,X_{i_k}$, and the tactic produces a goal
-which states that $c$ is not zero.
-
- \item \texttt{variables} is the list of the variables
-in the decreasing order in which they will be used in Buchberger algorithm. If \texttt{variables} = {(@nil
-R)}, then \texttt{lvar} is replaced by all the variables which are not in
-parameters.
-
-\end{itemize}
-
-See file \texttt{Nsatz.v} for many examples, specially in geometry.
-
-%%% Local Variables:
-%%% mode: latex
-%%% TeX-master: "Reference-Manual"
-%%% End:
diff --git a/doc/refman/Polynom.tex b/doc/refman/Polynom.tex
deleted file mode 100644
index d9b8b8c52..000000000
--- a/doc/refman/Polynom.tex
+++ /dev/null
@@ -1,736 +0,0 @@
-\achapter{The \texttt{ring} and \texttt{field} tactic families}
-%HEVEA\cutname{ring.html}
-\aauthor{Bruno Barras, Benjamin Gr\'egoire, Assia
- Mahboubi, Laurent Th\'ery\footnote{based on previous work from
- Patrick Loiseleur and Samuel Boutin}}
-\label{ring}
-\tacindex{ring}
-
-This chapter presents the tactics dedicated to deal with ring and
-field equations.
-
-\asection{What does this tactic do?}
-
-\texttt{ring} does associative-commutative rewriting in ring and semi-ring
-structures. Assume you have two binary functions $\oplus$ and $\otimes$
-that are associative and commutative, with $\oplus$ distributive on
-$\otimes$, and two constants 0 and 1 that are unities for $\oplus$ and
-$\otimes$. A \textit{polynomial} is an expression built on variables $V_0, V_1,
-\dots$ and constants by application of $\oplus$ and $\otimes$.
-
-Let an {\it ordered product} be a product of variables $V_{i_1}
-\otimes \ldots \otimes V_{i_n}$ verifying $i_1 \le i_2 \le \dots \le
-i_n$. Let a \textit{monomial} be the product of a constant and an
-ordered product. We can order the monomials by the lexicographic
-order on products of variables. Let a \textit{canonical sum} be an
-ordered sum of monomials that are all different, i.e. each monomial in
-the sum is strictly less than the following monomial according to the
-lexicographic order. It is an easy theorem to show that every
-polynomial is equivalent (modulo the ring properties) to exactly one
-canonical sum. This canonical sum is called the \textit{normal form}
-of the polynomial. In fact, the actual representation shares monomials
-with same prefixes. So what does \texttt{ring}? It normalizes
-polynomials over any ring or semi-ring structure. The basic use of
-\texttt{ring} is to simplify ring expressions, so that the user does
-not have to deal manually with the theorems of associativity and
-commutativity.
-
-\begin{Examples}
-\item In the ring of integers, the normal form of
-$x (3 + yx + 25(1 - z)) + zx$ is $28x + (-24)xz + xxy$.
-\end{Examples}
-
-\texttt{ring} is also able to compute a normal form modulo monomial
-equalities. For example, under the hypothesis that $2x^2 = yz+1$,
- the normal form of $2(x + 1)x - x - zy$ is $x+1$.
-
-\asection{The variables map}
-
-It is frequent to have an expression built with + and
- $\times$, but rarely on variables only.
-Let us associate a number to each subterm of a ring
-expression in the \gallina\ language. For example in the ring
-\texttt{nat}, consider the expression:
-
-\begin{quotation}
-\begin{verbatim}
-(plus (mult (plus (f (5)) x) x)
- (mult (if b then (4) else (f (3))) (2)))
-\end{verbatim}
-\end{quotation}
-
-\noindent As a ring expression, it has 3 subterms. Give each subterm a
-number in an arbitrary order:
-
-\begin{tabular}{ccl}
-0 & $\mapsto$ & \verb|if b then (4) else (f (3))| \\
-1 & $\mapsto$ & \verb|(f (5))| \\
-2 & $\mapsto$ & \verb|x| \\
-\end{tabular}
-
-\noindent Then normalize the ``abstract'' polynomial
-
-$$((V_1 \otimes V_2) \oplus V_2) \oplus (V_0 \otimes 2) $$
-
-\noindent In our example the normal form is:
-
-$$(2 \otimes V_0) \oplus (V_1 \otimes V_2) \oplus (V_2 \otimes V_2)$$
-
-\noindent Then substitute the variables by their values in the variables map to
-get the concrete normal polynomial:
-
-\begin{quotation}
-\begin{verbatim}
-(plus (mult (2) (if b then (4) else (f (3))))
- (plus (mult (f (5)) x) (mult x x)))
-\end{verbatim}
-\end{quotation}
-
-\asection{Is it automatic?}
-
-Yes, building the variables map and doing the substitution after
-normalizing is automatically done by the tactic. So you can just forget
-this paragraph and use the tactic according to your intuition.
-
-\asection{Concrete usage in \Coq
-\tacindex{ring}
-\tacindex{ring\_simplify}}
-
-The {\tt ring} tactic solves equations upon polynomial expressions of
-a ring (or semi-ring) structure. It proceeds by normalizing both hand
-sides of the equation (w.r.t. associativity, commutativity and
-distributivity, constant propagation, rewriting of monomials)
-and comparing syntactically the results.
-
-{\tt ring\_simplify} applies the normalization procedure described
-above to the terms given. The tactic then replaces all occurrences of
-the terms given in the conclusion of the goal by their normal
-forms. If no term is given, then the conclusion should be an equation
-and both hand sides are normalized.
-The tactic can also be applied in a hypothesis.
-
-The tactic must be loaded by \texttt{Require Import Ring}. The ring
-structures must be declared with the \texttt{Add Ring} command (see
-below). The ring of booleans is predefined; if one wants to use the
-tactic on \texttt{nat} one must first require the module
-\texttt{ArithRing} (exported by \texttt{Arith});
-for \texttt{Z}, do \texttt{Require Import
-ZArithRing} or simply \texttt{Require Import ZArith};
-for \texttt{N}, do \texttt{Require Import NArithRing} or
-\texttt{Require Import NArith}.
-
-\Example
-\begin{coq_eval}
-Reset Initial.
-\end{coq_eval}
-\begin{coq_example*}
-Require Import ZArith.
-\end{coq_example*}
-\begin{coq_example}
-Open Scope Z_scope.
-Goal forall a b c:Z,
- (a + b + c)^2 =
- a * a + b^2 + c * c + 2 * a * b + 2 * a * c + 2 * b * c.
-\end{coq_example}
-\begin{coq_example}
-intros; ring.
-\end{coq_example}
-\begin{coq_eval}
-Abort.
-\end{coq_eval}
-\begin{coq_example}
-Goal forall a b:Z, 2*a*b = 30 ->
- (a+b)^2 = a^2 + b^2 + 30.
-\end{coq_example}
-\begin{coq_example}
-intros a b H; ring [H].
-\end{coq_example}
-\begin{coq_eval}
-Reset Initial.
-\end{coq_eval}
-
-\begin{Variants}
- \item {\tt ring [\term$_1$ {\ldots} \term$_n$]} decides the equality of two
- terms modulo ring operations and rewriting of the equalities
- defined by \term$_1$ {\ldots} \term$_n$. Each of \term$_1$
- {\ldots} \term$_n$ has to be a proof of some equality $m = p$,
- where $m$ is a monomial (after ``abstraction''),
- $p$ a polynomial and $=$ the corresponding equality of the ring structure.
-
- \item {\tt ring\_simplify [\term$_1$ {\ldots} \term$_n$] $t_1 \ldots t_m$ in
-{\ident}}
- performs the simplification in the hypothesis named {\tt ident}.
-\end{Variants}
-
-\Warning \texttt{ring\_simplify \term$_1$; ring\_simplify \term$_2$} is
-not equivalent to \texttt{ring\_simplify \term$_1$ \term$_2$}. In the
-latter case the variables map is shared between the two terms, and
-common subterm $t$ of \term$_1$ and \term$_2$ will have the same
-associated variable number. So the first alternative should be
-avoided for terms belonging to the same ring theory.
-
-
-\begin{ErrMsgs}
-\item \errindex{not a valid ring equation}
- The conclusion of the goal is not provable in the corresponding ring
- theory.
-\item \errindex{arguments of ring\_simplify do not have all the same type}
- {\tt ring\_simplify} cannot simplify terms of several rings at the
- same time. Invoke the tactic once per ring structure.
-\item \errindex{cannot find a declared ring structure over {\tt term}}
- No ring has been declared for the type of the terms to be
- simplified. Use {\tt Add Ring} first.
-\item \errindex{cannot find a declared ring structure for equality
- {\tt term}}
- Same as above is the case of the {\tt ring} tactic.
-\end{ErrMsgs}
-
-\asection{Adding a ring structure
-\comindex{Add Ring}}
-
-Declaring a new ring consists in proving that a ring signature (a
-carrier set, an equality, and ring operations: {\tt
-Ring\_theory.ring\_theory} and {\tt Ring\_theory.semi\_ring\_theory})
-satisfies the ring axioms. Semi-rings (rings without $+$ inverse) are
-also supported. The equality can be either Leibniz equality, or any
-relation declared as a setoid (see~\ref{setoidtactics}). The definition
-of ring and semi-rings (see module {\tt Ring\_theory}) is:
-\begin{verbatim}
-Record ring_theory : Prop := mk_rt {
- Radd_0_l : forall x, 0 + x == x;
- Radd_sym : forall x y, x + y == y + x;
- Radd_assoc : forall x y z, x + (y + z) == (x + y) + z;
- Rmul_1_l : forall x, 1 * x == x;
- Rmul_sym : forall x y, x * y == y * x;
- Rmul_assoc : forall x y z, x * (y * z) == (x * y) * z;
- Rdistr_l : forall x y z, (x + y) * z == (x * z) + (y * z);
- Rsub_def : forall x y, x - y == x + -y;
- Ropp_def : forall x, x + (- x) == 0
-}.
-
-Record semi_ring_theory : Prop := mk_srt {
- SRadd_0_l : forall n, 0 + n == n;
- SRadd_sym : forall n m, n + m == m + n ;
- SRadd_assoc : forall n m p, n + (m + p) == (n + m) + p;
- SRmul_1_l : forall n, 1*n == n;
- SRmul_0_l : forall n, 0*n == 0;
- SRmul_sym : forall n m, n*m == m*n;
- SRmul_assoc : forall n m p, n*(m*p) == (n*m)*p;
- SRdistr_l : forall n m p, (n + m)*p == n*p + m*p
-}.
-\end{verbatim}
-
-This implementation of {\tt ring} also features a notion of constant
-that can be parameterized. This can be used to improve the handling of
-closed expressions when operations are effective. It consists in
-introducing a type of \emph{coefficients} and an implementation of the
-ring operations, and a morphism from the coefficient type to the ring
-carrier type. The morphism needs not be injective, nor surjective.
-
-As
-an example, one can consider the real numbers. The set of coefficients
-could be the rational numbers, upon which the ring operations can be
-implemented. The fact that there exists a morphism is defined by the
-following properties:
-\begin{verbatim}
-Record ring_morph : Prop := mkmorph {
- morph0 : [cO] == 0;
- morph1 : [cI] == 1;
- morph_add : forall x y, [x +! y] == [x]+[y];
- morph_sub : forall x y, [x -! y] == [x]-[y];
- morph_mul : forall x y, [x *! y] == [x]*[y];
- morph_opp : forall x, [-!x] == -[x];
- morph_eq : forall x y, x?=!y = true -> [x] == [y]
-}.
-
-Record semi_morph : Prop := mkRmorph {
- Smorph0 : [cO] == 0;
- Smorph1 : [cI] == 1;
- Smorph_add : forall x y, [x +! y] == [x]+[y];
- Smorph_mul : forall x y, [x *! y] == [x]*[y];
- Smorph_eq : forall x y, x?=!y = true -> [x] == [y]
-}.
-\end{verbatim}
-where {\tt c0} and {\tt cI} denote the 0 and 1 of the coefficient set,
-{\tt +!}, {\tt *!}, {\tt -!} are the implementations of the ring
-operations, {\tt ==} is the equality of the coefficients, {\tt ?+!} is
-an implementation of this equality, and {\tt [x]} is a notation for
-the image of {\tt x} by the ring morphism.
-
-
-
-Since {\tt Z} is an initial ring (and {\tt N} is an initial
-semi-ring), it can always be considered as a set of
-coefficients. There are basically three kinds of (semi-)rings:
-\begin{description}
-\item[abstract rings] to be used when operations are not
- effective. The set of coefficients is {\tt Z} (or {\tt N} for
- semi-rings).
-\item[computational rings] to be used when operations are
- effective. The set of coefficients is the ring itself. The user only
- has to provide an implementation for the equality.
-\item[customized ring] for other cases. The user has to provide the
- coefficient set and the morphism.
-\end{description}
-
-This implementation of ring can also recognize simple
-power expressions as ring expressions. A power function is specified by
-the following property:
-\begin{verbatim}
-Section POWER.
- Variable Cpow : Set.
- Variable Cp_phi : N -> Cpow.
- Variable rpow : R -> Cpow -> R.
-
- Record power_theory : Prop := mkpow_th {
- rpow_pow_N : forall r n, req (rpow r (Cp_phi n)) (pow_N rI rmul r n)
- }.
-
-End POWER.
-\end{verbatim}
-
-
-The syntax for adding a new ring is {\tt Add Ring $name$ : $ring$
-($mod_1$,\dots,$mod_2$)}. The name is not relevant. It is just used
-for error messages. The term $ring$ is a proof that the ring signature
-satisfies the (semi-)ring axioms. The optional list of modifiers is
-used to tailor the behavior of the tactic. The following list
-describes their syntax and effects:
-\begin{description}
-\item[abstract] declares the ring as abstract. This is the default.
-\item[decidable \term] declares the ring as computational. The expression
- \term{} is
- the correctness proof of an equality test {\tt ?=!} (which should be
- evaluable). Its type should be of
- the form {\tt forall x y, x?=!y = true $\rightarrow$ x == y}.
-\item[morphism \term] declares the ring as a customized one. The expression
- \term{} is
- a proof that there exists a morphism between a set of coefficient
- and the ring carrier (see {\tt Ring\_theory.ring\_morph} and {\tt
- Ring\_theory.semi\_morph}).
-\item[setoid \term$_1$ \term$_2$] forces the use of given setoid. The
- expression \term$_1$ is a proof that the equality is indeed a setoid
- (see {\tt Setoid.Setoid\_Theory}), and \term$_2$ a proof that the
- ring operations are morphisms (see {\tt Ring\_theory.ring\_eq\_ext} and
- {\tt Ring\_theory.sring\_eq\_ext}). This modifier needs not be used if the
- setoid and morphisms have been declared.
-\item[constants [\ltac]] specifies a tactic expression that, given a term,
- returns either an object of the coefficient set that is mapped to
- the expression via the morphism, or returns {\tt
- InitialRing.NotConstant}. The default behavior is to map only 0 and
- 1 to their counterpart in the coefficient set. This is generally not
- desirable for non trivial computational rings.
-\item[preprocess [\ltac]]
- specifies a tactic that is applied as a preliminary step for {\tt
- ring} and {\tt ring\_simplify}. It can be used to transform a goal
- so that it is better recognized. For instance, {\tt S n} can be
- changed to {\tt plus 1 n}.
-\item[postprocess [\ltac]] specifies a tactic that is applied as a final step
- for {\tt ring\_simplify}. For instance, it can be used to undo
- modifications of the preprocessor.
-\item[power\_tac {\term} [\ltac]] allows {\tt ring} and {\tt ring\_simplify} to
- recognize power expressions with a constant positive integer exponent
- (example: $x^2$). The term {\term} is a proof that a given power function
- satisfies the specification of a power function ({\term} has to be a
- proof of {\tt Ring\_theory.power\_theory}) and {\ltac} specifies a
- tactic expression that, given a term, ``abstracts'' it into an
- object of type {\tt N} whose interpretation via {\tt Cp\_phi} (the
- evaluation function of power coefficient) is the original term, or
- returns {\tt InitialRing.NotConstant} if not a constant coefficient
- (i.e. {\ltac} is the inverse function of {\tt Cp\_phi}).
- See files {\tt plugins/setoid\_ring/ZArithRing.v} and
- {\tt plugins/setoid\_ring/RealField.v} for examples.
- By default the tactic does not recognize power expressions as ring
- expressions.
-\item[sign {\term}] allows {\tt ring\_simplify} to use a minus operation
- when outputting its normal form, i.e writing $x - y$ instead of $x + (-y)$.
- The term {\term} is a proof that a given sign function indicates expressions
- that are signed ({\term} has to be a
- proof of {\tt Ring\_theory.get\_sign}). See {\tt plugins/setoid\_ring/InitialRing.v} for examples of sign function.
-\item[div {\term}] allows {\tt ring} and {\tt ring\_simplify} to use monomials
-with coefficient other than 1 in the rewriting. The term {\term} is a proof that a given division function satisfies the specification of an euclidean
- division function ({\term} has to be a
- proof of {\tt Ring\_theory.div\_theory}). For example, this function is
- called when trying to rewrite $7x$ by $2x = z$ to tell that $7 = 3 * 2 + 1$.
- See {\tt plugins/setoid\_ring/InitialRing.v} for examples of div function.
-
-\end{description}
-
-
-\begin{ErrMsgs}
-\item \errindex{bad ring structure}
- The proof of the ring structure provided is not of the expected type.
-\item \errindex{bad lemma for decidability of equality}
- The equality function provided in the case of a computational ring
- has not the expected type.
-\item \errindex{ring {\it operation} should be declared as a morphism}
- A setoid associated to the carrier of the ring structure as been
- found, but the ring operation should be declared as
- morphism. See~\ref{setoidtactics}.
-\end{ErrMsgs}
-
-\asection{How does it work?}
-
-The code of \texttt{ring} is a good example of tactic written using
-\textit{reflection}. What is reflection? Basically, it is writing
-\Coq{} tactics in \Coq, rather than in \ocaml. From the philosophical
-point of view, it is using the ability of the Calculus of
-Constructions to speak and reason about itself. For the \texttt{ring}
-tactic we used \Coq\ as a programming language and also as a proof
-environment to build a tactic and to prove it correctness.
-
-The interested reader is strongly advised to have a look at the file
-\texttt{Ring\_polynom.v}. Here a type for polynomials is defined:
-
-\begin{small}
-\begin{flushleft}
-\begin{verbatim}
-Inductive PExpr : Type :=
- | PEc : C -> PExpr
- | PEX : positive -> PExpr
- | PEadd : PExpr -> PExpr -> PExpr
- | PEsub : PExpr -> PExpr -> PExpr
- | PEmul : PExpr -> PExpr -> PExpr
- | PEopp : PExpr -> PExpr
- | PEpow : PExpr -> N -> PExpr.
-\end{verbatim}
-\end{flushleft}
-\end{small}
-
-Polynomials in normal form are defined as:
-\begin{small}
-\begin{flushleft}
-\begin{verbatim}
-Inductive Pol : Type :=
- | Pc : C -> Pol
- | Pinj : positive -> Pol -> Pol
- | PX : Pol -> positive -> Pol -> Pol.
-\end{verbatim}
-\end{flushleft}
-\end{small}
-where {\tt Pinj n P} denotes $P$ in which $V_i$ is replaced by
-$V_{i+n}$, and {\tt PX P n Q} denotes $P \otimes V_1^{n} \oplus Q'$,
-$Q'$ being $Q$ where $V_i$ is replaced by $V_{i+1}$.
-
-
-Variables maps are represented by list of ring elements, and two
-interpretation functions, one that maps a variables map and a
-polynomial to an element of the concrete ring, and the second one that
-does the same for normal forms:
-\begin{small}
-\begin{flushleft}
-\begin{verbatim}
-Definition PEeval : list R -> PExpr -> R := [...].
-Definition Pphi_dev : list R -> Pol -> R := [...].
-\end{verbatim}
-\end{flushleft}
-\end{small}
-
-A function to normalize polynomials is defined, and the big theorem is
-its correctness w.r.t interpretation, that is:
-
-\begin{small}
-\begin{flushleft}
-\begin{verbatim}
-Definition norm : PExpr -> Pol := [...].
-Lemma Pphi_dev_ok :
- forall l pe npe, norm pe = npe -> PEeval l pe == Pphi_dev l npe.
-\end{verbatim}
-\end{flushleft}
-\end{small}
-
-So now, what is the scheme for a normalization proof? Let \texttt{p}
-be the polynomial expression that the user wants to normalize. First a
-little piece of ML code guesses the type of \texttt{p}, the ring
-theory \texttt{T} to use, an abstract polynomial \texttt{ap} and a
-variables map \texttt{v} such that \texttt{p} is
-$\beta\delta\iota$-equivalent to \verb|(PEeval v ap)|. Then we
-replace it by \verb|(Pphi_dev v (norm ap))|, using the
-main correctness theorem and we reduce it to a concrete expression
-\texttt{p'}, which is the concrete normal form of
-\texttt{p}. This is summarized in this diagram:
-\begin{center}
-\begin{tabular}{rcl}
-\texttt{p} & $\rightarrow_{\beta\delta\iota}$
- & \texttt{(PEeval v ap)} \\
- & & $=_{\mathrm{(by\ the\ main\ correctness\ theorem)}}$ \\
-\texttt{p'}
- & $\leftarrow_{\beta\delta\iota}$
- & \texttt{(Pphi\_dev v (norm ap))}
-\end{tabular}
-\end{center}
-The user do not see the right part of the diagram.
-From outside, the tactic behaves like a
-$\beta\delta\iota$ simplification extended with AC rewriting rules.
-Basically, the proof is only the application of the main
-correctness theorem to well-chosen arguments.
-
-
-\asection{Dealing with fields
-\tacindex{field}
-\tacindex{field\_simplify}
-\tacindex{field\_simplify\_eq}}
-
-
-The {\tt field} tactic is an extension of the {\tt ring} to deal with
-rational expression. Given a rational expression $F=0$. It first reduces the
-expression $F$ to a common denominator $N/D= 0$ where $N$ and $D$ are two ring
-expressions.
-For example, if we take $F = (1 - 1/x) x - x + 1$, this gives
-$ N= (x -1) x - x^2 + x$ and $D= x$. It then calls {\tt ring}
-to solve $N=0$. Note that {\tt field} also generates non-zero conditions
-for all the denominators it encounters in the reduction.
-In our example, it generates the condition $x \neq 0$. These
-conditions appear as one subgoal which is a conjunction if there are
-several denominators.
-Non-zero conditions are {\it always} polynomial expressions. For example
-when reducing the expression $1/(1 + 1/x)$, two side conditions are
-generated: $x\neq 0$ and $x + 1 \neq 0$. Factorized expressions are
-broken since a field is an integral domain, and when the equality test
-on coefficients is complete w.r.t. the equality of the target field,
-constants can be proven different from zero automatically.
-
-The tactic must be loaded by \texttt{Require Import Field}. New field
-structures can be declared to the system with the \texttt{Add Field}
-command (see below). The field of real numbers is defined in module
-\texttt{RealField} (in texttt{plugins/setoid\_ring}). It is exported
-by module \texttt{Rbase}, so that requiring \texttt{Rbase} or
-\texttt{Reals} is enough to use the field tactics on real
-numbers. Rational numbers in canonical form are also declared as a
-field in module \texttt{Qcanon}.
-
-
-\Example
-\begin{coq_eval}
-Reset Initial.
-\end{coq_eval}
-\begin{coq_example*}
-Require Import Reals.
-\end{coq_example*}
-\begin{coq_example}
-Open Scope R_scope.
-Goal forall x, x <> 0 ->
- (1 - 1/x) * x - x + 1 = 0.
-\end{coq_example}
-\begin{coq_example}
-intros; field; auto.
-\end{coq_example}
-\begin{coq_eval}
-Abort.
-\end{coq_eval}
-\begin{coq_example}
-Goal forall x y, y <> 0 -> y = x -> x/y = 1.
-\end{coq_example}
-\begin{coq_example}
-intros x y H H1; field [H1]; auto.
-\end{coq_example}
-\begin{coq_eval}
-Reset Initial.
-\end{coq_eval}
-
-\begin{Variants}
- \item {\tt field [\term$_1$ {\ldots} \term$_n$]} decides the equality of two
- terms modulo field operations and rewriting of the equalities
- defined by \term$_1$ {\ldots} \term$_n$. Each of \term$_1$
- {\ldots} \term$_n$ has to be a proof of some equality $m = p$,
- where $m$ is a monomial (after ``abstraction''),
- $p$ a polynomial and $=$ the corresponding equality of the field structure.
- Beware that rewriting works with the equality $m=p$ only if $p$ is a
- polynomial since rewriting is handled by the underlying {\tt ring}
- tactic.
- \item {\tt field\_simplify}
- performs the simplification in the conclusion of the goal, $F_1 = F_2$
- becomes $N_1/D_1 = N_2/D_2$. A normalization step (the same as the
- one for rings) is then applied to $N_1$, $D_1$, $N_2$ and
- $D_2$. This way, polynomials remain in factorized form during the
- fraction simplifications. This yields smaller expressions when
- reducing to the same denominator since common factors can be
- canceled.
-
- \item {\tt field\_simplify [\term$_1$ {\ldots} \term$_n$]}
- performs the simplification in the conclusion of the goal using
- the equalities
- defined by \term$_1$ {\ldots} \term$_n$.
-
- \item {\tt field\_simplify [\term$_1$ {\ldots} \term$_n$] $t_1$ \ldots
-$t_m$}
- performs the simplification in the terms $t_1$ \ldots $t_m$
- of the conclusion of the goal using
- the equalities
- defined by \term$_1$ {\ldots} \term$_n$.
-
- \item {\tt field\_simplify in $H$}
- performs the simplification in the assumption $H$.
-
- \item {\tt field\_simplify [\term$_1$ {\ldots} \term$_n$] in $H$}
- performs the simplification in the assumption $H$ using
- the equalities
- defined by \term$_1$ {\ldots} \term$_n$.
-
- \item {\tt field\_simplify [\term$_1$ {\ldots} \term$_n$] $t_1$ \ldots
-$t_m$ in $H$}
- performs the simplification in the terms $t_1$ \ldots $t_n$
- of the assumption $H$ using
- the equalities
- defined by \term$_1$ {\ldots} \term$_m$.
-
- \item {\tt field\_simplify\_eq}
- performs the simplification in the conclusion of the goal removing
- the denominator. $F_1 = F_2$
- becomes $N_1 D_2 = N_2 D_1$.
-
- \item {\tt field\_simplify\_eq [\term$_1$ {\ldots} \term$_n$]}
- performs the simplification in the conclusion of the goal using
- the equalities
- defined by \term$_1$ {\ldots} \term$_n$.
-
- \item {\tt field\_simplify\_eq} in $H$
- performs the simplification in the assumption $H$.
-
- \item {\tt field\_simplify\_eq [\term$_1$ {\ldots} \term$_n$] in $H$}
- performs the simplification in the assumption $H$ using
- the equalities
- defined by \term$_1$ {\ldots} \term$_n$.
-\end{Variants}
-
-\asection{Adding a new field structure
-\comindex{Add Field}}
-
-Declaring a new field consists in proving that a field signature (a
-carrier set, an equality, and field operations: {\tt
-Field\_theory.field\_theory} and {\tt Field\_theory.semi\_field\_theory})
-satisfies the field axioms. Semi-fields (fields without $+$ inverse) are
-also supported. The equality can be either Leibniz equality, or any
-relation declared as a setoid (see~\ref{setoidtactics}). The definition
-of fields and semi-fields is:
-\begin{verbatim}
-Record field_theory : Prop := mk_field {
- F_R : ring_theory rO rI radd rmul rsub ropp req;
- F_1_neq_0 : ~ 1 == 0;
- Fdiv_def : forall p q, p / q == p * / q;
- Finv_l : forall p, ~ p == 0 -> / p * p == 1
-}.
-
-Record semi_field_theory : Prop := mk_sfield {
- SF_SR : semi_ring_theory rO rI radd rmul req;
- SF_1_neq_0 : ~ 1 == 0;
- SFdiv_def : forall p q, p / q == p * / q;
- SFinv_l : forall p, ~ p == 0 -> / p * p == 1
-}.
-\end{verbatim}
-
-The result of the normalization process is a fraction represented by
-the following type:
-\begin{verbatim}
-Record linear : Type := mk_linear {
- num : PExpr C;
- denum : PExpr C;
- condition : list (PExpr C)
-}.
-\end{verbatim}
-where {\tt num} and {\tt denum} are the numerator and denominator;
-{\tt condition} is a list of expressions that have appeared as a
-denominator during the normalization process. These expressions must
-be proven different from zero for the correctness of the algorithm.
-
-The syntax for adding a new field is {\tt Add Field $name$ : $field$
-($mod_1$,\dots,$mod_2$)}. The name is not relevant. It is just used
-for error messages. $field$ is a proof that the field signature
-satisfies the (semi-)field axioms. The optional list of modifiers is
-used to tailor the behavior of the tactic. Since field tactics are
-built upon ring tactics, all modifiers of the {\tt Add Ring}
-apply. There is only one specific modifier:
-\begin{description}
-\item[completeness \term] allows the field tactic to prove
- automatically that the image of non-zero coefficients are mapped to
- non-zero elements of the field. \term is a proof of {\tt forall x y,
- [x] == [y] -> x?=!y = true}, which is the completeness of equality
- on coefficients w.r.t. the field equality.
-\end{description}
-
-\asection{History of \texttt{ring}}
-
-First Samuel Boutin designed the tactic \texttt{ACDSimpl}.
-This tactic did lot of rewriting. But the proofs
-terms generated by rewriting were too big for \Coq's type-checker.
-Let us see why:
-
-\begin{coq_eval}
-Require Import ZArith.
-Open Scope Z_scope.
-\end{coq_eval}
-\begin{coq_example}
-Goal forall x y z:Z, x + 3 + y + y * z = x + 3 + y + z * y.
-\end{coq_example}
-\begin{coq_example*}
-intros; rewrite (Z.mul_comm y z); reflexivity.
-Save toto.
-\end{coq_example*}
-\begin{coq_example}
-Print toto.
-\end{coq_example}
-
-At each step of rewriting, the whole context is duplicated in the proof
-term. Then, a tactic that does hundreds of rewriting generates huge proof
-terms. Since \texttt{ACDSimpl} was too slow, Samuel Boutin rewrote it
-using reflection (see his article in TACS'97 \cite{Bou97}). Later, the
-stuff was rewritten by Patrick
-Loiseleur: the new tactic does not any more require \texttt{ACDSimpl}
-to compile and it makes use of $\beta\delta\iota$-reduction
-not only to replace the rewriting steps, but also to achieve the
-interleaving of computation and
-reasoning (see \ref{DiscussReflection}). He also wrote a
-few ML code for the \texttt{Add Ring} command, that allow to register
-new rings dynamically.
-
-Proofs terms generated by \texttt{ring} are quite small, they are
-linear in the number of $\oplus$ and $\otimes$ operations in the
-normalized terms. Type-checking those terms requires some time because it
-makes a large use of the conversion rule, but
-memory requirements are much smaller.
-
-\asection{Discussion}
-\label{DiscussReflection}
-
-Efficiency is not the only motivation to use reflection
-here. \texttt{ring} also deals with constants, it rewrites for example the
-expression $34 + 2*x -x + 12$ to the expected result $x + 46$. For the
-tactic \texttt{ACDSimpl}, the only constants were 0 and 1. So the
-expression $34 + 2*(x - 1) + 12$ is interpreted as
-$V_0 \oplus V_1 \otimes (V_2 \ominus 1) \oplus V_3$,
-with the variables mapping
-$\{V_0 \mt 34; V_1 \mt 2; V_2 \mt x; V_3 \mt 12 \}$. Then it is
-rewritten to $34 - x + 2*x + 12$, very far from the expected
-result. Here rewriting is not sufficient: you have to do some kind of
-reduction (some kind of \textit{computation}) to achieve the
-normalization.
-
-The tactic \texttt{ring} is not only faster than a classical one:
-using reflection, we get for free integration of computation and
-reasoning that would be very complex to implement in the classic fashion.
-
-Is it the ultimate way to write tactics? The answer is: yes and
-no. The \texttt{ring} tactic uses intensively the conversion rule of
-\CIC, that is replaces proof by computation the most as it is
-possible. It can be useful in all situations where a classical tactic
-generates huge proof terms. Symbolic Processing and Tautologies are in
-that case. But there are also tactics like \texttt{auto} or
-\texttt{linear} that do many complex computations, using side-effects
-and backtracking, and generate a small proof term. Clearly, it would
-be significantly less efficient to replace them by tactics using
-reflection.
-
-Another idea suggested by Benjamin Werner: reflection could be used to
-couple an external tool (a rewriting program or a model checker) with
-\Coq. We define (in \Coq) a type of terms, a type of \emph{traces},
-and prove a correction theorem that states that \emph{replaying
-traces} is safe w.r.t some interpretation. Then we let the external
-tool do every computation (using side-effects, backtracking,
-exception, or others features that are not available in pure lambda
-calculus) to produce the trace: now we can check in Coq{} that the
-trace has the expected semantic by applying the correction lemma.
-
-%%% Local Variables:
-%%% mode: latex
-%%% TeX-master: "Reference-Manual"
-%%% End:
diff --git a/doc/refman/Program.tex b/doc/refman/Program.tex
deleted file mode 100644
index 1e204dc83..000000000
--- a/doc/refman/Program.tex
+++ /dev/null
@@ -1,329 +0,0 @@
-\achapter{\Program{}}
-%HEVEA\cutname{program.html}
-\label{Program}
-\aauthor{Matthieu Sozeau}
-\index{Program}
-
-We present here the \Program\ tactic commands, used to build certified
-\Coq\ programs, elaborating them from their algorithmic skeleton and a
-rich specification \cite{Sozeau06}. It can be thought of as a dual of extraction
-(see Chapter~\ref{Extraction}). The goal of \Program~is to program as in a regular
-functional programming language whilst using as rich a specification as
-desired and proving that the code meets the specification using the whole \Coq{} proof
-apparatus. This is done using a technique originating from the
-``Predicate subtyping'' mechanism of \PVS \cite{Rushby98}, which generates type-checking
-conditions while typing a term constrained to a particular type.
-Here we insert existential variables in the term, which must be filled
-with proofs to get a complete \Coq\ term. \Program\ replaces the
-\Program\ tactic by Catherine Parent \cite{Parent95b} which had a similar goal but is no longer
-maintained.
-
-The languages available as input are currently restricted to \Coq's term
-language, but may be extended to \ocaml{}, \textsc{Haskell} and others
-in the future. We use the same syntax as \Coq\ and permit to use implicit
-arguments and the existing coercion mechanism.
-Input terms and types are typed in an extended system (\Russell) and
-interpreted into \Coq\ terms. The interpretation process may produce
-some proof obligations which need to be resolved to create the final term.
-
-\asection{Elaborating programs}
-The main difference from \Coq\ is that an object in a type $T : \Set$
-can be considered as an object of type $\{ x : T~|~P\}$ for any
-wellformed $P : \Prop$.
-If we go from $T$ to the subset of $T$ verifying property $P$, we must
-prove that the object under consideration verifies it. \Russell\ will
-generate an obligation for every such coercion. In the other direction,
-\Russell\ will automatically insert a projection.
-
-Another distinction is the treatment of pattern-matching. Apart from the
-following differences, it is equivalent to the standard {\tt match}
-operation (see Section~\ref{Caseexpr}).
-\begin{itemize}
-\item Generation of equalities. A {\tt match} expression is always
- generalized by the corresponding equality. As an example,
- the expression:
-
-\begin{verbatim}
- match x with
- | 0 => t
- | S n => u
- end.
-\end{verbatim}
-will be first rewritten to:
-\begin{verbatim}
- (match x as y return (x = y -> _) with
- | 0 => fun H : x = 0 -> t
- | S n => fun H : x = S n -> u
- end) (eq_refl n).
-\end{verbatim}
-
- This permits to get the proper equalities in the context of proof
- obligations inside clauses, without which reasoning is very limited.
-
-\item Generation of inequalities. If a pattern intersects with a
- previous one, an inequality is added in the context of the second
- branch. See for example the definition of {\tt div2} below, where the second
- branch is typed in a context where $\forall p, \_ <> S (S p)$.
-
-\item Coercion. If the object being matched is coercible to an inductive
- type, the corresponding coercion will be automatically inserted. This also
- works with the previous mechanism.
-
-\end{itemize}
-
-There are options to control the generation of equalities
-and coercions.
-
-\begin{itemize}
-\item {\tt Unset Program Cases}\optindex{Program Cases} This deactivates
- the special treatment of pattern-matching generating equalities and
- inequalities when using \Program\ (it is on by default). All
- pattern-matchings and let-patterns are handled using the standard
- algorithm of Coq (see Section~\ref{Mult-match-full}) when this option is
- deactivated.
-\item {\tt Unset Program Generalized Coercion}\optindex{Program
- Generalized Coercion} This deactivates the coercion of general
- inductive types when using \Program\ (the option is on by default).
- Coercion of subset types and pairs is still active in this case.
-\end{itemize}
-
-\subsection{Syntactic control over equalities}
-\label{ProgramSyntax}
-To give more control over the generation of equalities, the typechecker will
-fall back directly to \Coq's usual typing of dependent pattern-matching
-if a {\tt return} or {\tt in} clause is specified. Likewise,
-the {\tt if} construct is not treated specially by \Program{} so boolean
-tests in the code are not automatically reflected in the obligations.
-One can use the {\tt dec} combinator to get the correct hypotheses as in:
-
-\begin{coq_eval}
-Require Import Program Arith.
-\end{coq_eval}
-\begin{coq_example}
-Program Definition id (n : nat) : { x : nat | x = n } :=
- if dec (leb n 0) then 0
- else S (pred n).
-\end{coq_example}
-
-The let tupling construct {\tt let (x1, ..., xn) := t in b}
-does not produce an equality, contrary to the let pattern construct
-{\tt let '(x1, ..., xn) := t in b}.
-Also, {\tt {\term}:>} explicitly asks the system to coerce {\tt \term} to its
-support type. It can be useful in notations, for example:
-\begin{coq_example}
-Notation " x `= y " := (@eq _ (x :>) (y :>)) (only parsing).
-\end{coq_example}
-
-This notation denotes equality on subset types using equality on their
-support types, avoiding uses of proof-irrelevance that would come up
-when reasoning with equality on the subset types themselves.
-
-The next two commands are similar to their standard counterparts
-Definition (see Section~\ref{Basic-definitions}) and Fixpoint (see Section~\ref{Fixpoint}) in that
-they define constants. However, they may require the user to prove some
-goals to construct the final definitions.
-
-\subsection{\tt Program Definition {\ident} := {\term}.
- \comindex{Program Definition}\label{ProgramDefinition}}
-
-This command types the value {\term} in \Russell\ and generates proof
-obligations. Once solved using the commands shown below, it binds the final
-\Coq\ term to the name {\ident} in the environment.
-
-\begin{ErrMsgs}
-\item \errindex{{\ident} already exists}
-\end{ErrMsgs}
-
-\begin{Variants}
-\item {\tt Program Definition {\ident} {\tt :}{\term$_1$} :=
- {\term$_2$}.}\\
- It interprets the type {\term$_1$}, potentially generating proof
- obligations to be resolved. Once done with them, we have a \Coq\ type
- {\term$_1'$}. It then checks that the type of the interpretation of
- {\term$_2$} is coercible to {\term$_1'$}, and registers {\ident} as
- being of type {\term$_1'$} once the set of obligations generated
- during the interpretation of {\term$_2$} and the aforementioned
- coercion derivation are solved.
-\item {\tt Program Definition {\ident} {\binder$_1$}\ldots{\binder$_n$}
- {\tt :}\term$_1$ {\tt :=} {\term$_2$}.}\\
- This is equivalent to \\
- {\tt Program Definition\,{\ident}\,{\tt :\,forall} %
- {\binder$_1$}\ldots{\binder$_n$}{\tt ,}\,\term$_1$\,{\tt :=}} \\
- \qquad {\tt fun}\,{\binder$_1$}\ldots{\binder$_n$}\,{\tt =>}\,{\term$_2$}\,%
- {\tt .}
-\end{Variants}
-
-\begin{ErrMsgs}
-\item \errindex{In environment {\dots} the term: {\term$_2$} does not have type
- {\term$_1$}}.\\
- \texttt{Actually, it has type {\term$_3$}}.
-\end{ErrMsgs}
-
-\SeeAlso Sections \ref{Opaque}, \ref{Transparent}, \ref{unfold}
-
-\subsection{\tt Program Fixpoint {\ident} {\params} {\tt \{order\}} : type := \term
- \comindex{Program Fixpoint}
- \label{ProgramFixpoint}}
-
-The structural fixpoint operator behaves just like the one of Coq
-(see Section~\ref{Fixpoint}), except it may also generate obligations.
-It works with mutually recursive definitions too.
-
-\begin{coq_eval}
-Admit Obligations.
-\end{coq_eval}
-\begin{coq_example}
-Program Fixpoint div2 (n : nat) : { x : nat | n = 2 * x \/ n = 2 * x + 1 } :=
- match n with
- | S (S p) => S (div2 p)
- | _ => O
- end.
-\end{coq_example}
-
-Here we have one obligation for each branch (branches for \verb:0: and \verb:(S 0): are
-automatically generated by the pattern-matching compilation algorithm).
-\begin{coq_example}
- Obligation 1.
-\end{coq_example}
-
-One can use a well-founded order or a measure as termination orders using the syntax:
-\begin{coq_eval}
-Reset Initial.
-Require Import Arith.
-Require Import Program.
-\end{coq_eval}
-\begin{coq_example*}
-Program Fixpoint div2 (n : nat) {measure n} :
- { x : nat | n = 2 * x \/ n = 2 * x + 1 } :=
- match n with
- | S (S p) => S (div2 p)
- | _ => O
- end.
-\end{coq_example*}
-
-The order annotation can be either:
-\begin{itemize}
-\item {\tt measure f (R)?} where {\tt f} is a value of type {\tt X}
- computed on any subset of the arguments and the optional
- (parenthesised) term {\tt (R)} is a relation
- on {\tt X}. By default {\tt X} defaults to {\tt nat} and {\tt R} to
- {\tt lt}.
-\item {\tt wf R x} which is equivalent to {\tt measure x (R)}.
-\end{itemize}
-
-\paragraph{Caution}
-When defining structurally recursive functions, the
-generated obligations should have the prototype of the currently defined functional
-in their context. In this case, the obligations should be transparent
-(e.g. defined using {\tt Defined}) so that the guardedness condition on
-recursive calls can be checked by the
-kernel's type-checker. There is an optimization in the generation of
-obligations which gets rid of the hypothesis corresponding to the
-functional when it is not necessary, so that the obligation can be
-declared opaque (e.g. using {\tt Qed}). However, as soon as it appears in the
-context, the proof of the obligation is \emph{required} to be declared transparent.
-
-No such problems arise when using measures or well-founded recursion.
-
-\subsection{\tt Program Lemma {\ident} : type.
- \comindex{Program Lemma}
- \label{ProgramLemma}}
-
-The \Russell\ language can also be used to type statements of logical
-properties. It will generate obligations, try to solve them
-automatically and fail if some unsolved obligations remain.
-In this case, one can first define the lemma's
-statement using {\tt Program Definition} and use it as the goal afterwards.
-Otherwise the proof will be started with the elaborated version as a goal.
-The {\tt Program} prefix can similarly be used as a prefix for {\tt Variable}, {\tt
- Hypothesis}, {\tt Axiom} etc...
-
-\section{Solving obligations}
-The following commands are available to manipulate obligations. The
-optional identifier is used when multiple functions have unsolved
-obligations (e.g. when defining mutually recursive blocks). The optional
-tactic is replaced by the default one if not specified.
-
-\begin{itemize}
-\item {\tt [Local|Global] Obligation Tactic := \tacexpr}\comindex{Obligation Tactic}
- Sets the default obligation
- solving tactic applied to all obligations automatically, whether to
- solve them or when starting to prove one, e.g. using {\tt Next}.
- Local makes the setting last only for the current module. Inside
- sections, local is the default.
-\item {\tt Show Obligation Tactic}\comindex{Show Obligation Tactic}
- Displays the current default tactic.
-\item {\tt Obligations [of \ident]}\comindex{Obligations} Displays all remaining
- obligations.
-\item {\tt Obligation num [of \ident]}\comindex{Obligation} Start the proof of
- obligation {\tt num}.
-\item {\tt Next Obligation [of \ident]}\comindex{Next Obligation} Start the proof of the next
- unsolved obligation.
-\item {\tt Solve Obligations [of \ident] [with
- \tacexpr]}\comindex{Solve Obligations}
- Tries to solve
- each obligation of \ident using the given tactic or the default one.
-\item {\tt Solve All Obligations [with \tacexpr]} Tries to solve
- each obligation of every program using the given tactic or the default
- one (useful for mutually recursive definitions).
-\item {\tt Admit Obligations [of \ident]}\comindex{Admit Obligations}
- Admits all obligations (does not work with structurally recursive programs).
-\item {\tt Preterm [of \ident]}\comindex{Preterm}
- Shows the term that will be fed to
- the kernel once the obligations are solved. Useful for debugging.
-\item {\tt Set Transparent Obligations}\optindex{Transparent Obligations}
- Control whether all obligations should be declared as transparent (the
- default), or if the system should infer which obligations can be declared opaque.
-\item {\tt Set Hide Obligations}\optindex{Hide Obligations}
- Control whether obligations appearing in the term should be hidden
- as implicit arguments of the special constant
- \texttt{Program.Tactics.obligation}.
-\item {\tt Set Shrink Obligations}\optindex{Shrink Obligations}
-\emph{Deprecated since 8.7}
- This option (on by default) controls whether obligations should have their
- context minimized to the set of variables used in the proof of the
- obligation, to avoid unnecessary dependencies.
-\end{itemize}
-
-The module {\tt Coq.Program.Tactics} defines the default tactic for solving
-obligations called {\tt program\_simpl}. Importing
-{\tt Coq.Program.Program} also adds some useful notations, as documented in the file itself.
-
-\section{Frequently Asked Questions
- \label{ProgramFAQ}}
-
-\begin{itemize}
-\item {Ill-formed recursive definitions}
- This error can happen when one tries to define a
- function by structural recursion on a subset object, which means the Coq
- function looks like:
-
- \verb$Program Fixpoint f (x : A | P) := match x with A b => f b end.$
-
- Supposing $b : A$, the argument at the recursive call to f is not a
- direct subterm of x as b is wrapped inside an {\tt exist} constructor to build
- an object of type \verb${x : A | P}$. Hence the definition is rejected
- by the guardedness condition checker. However one can use
- wellfounded recursion on subset objects like this:
-
-\begin{verbatim}
-Program Fixpoint f (x : A | P) { measure (size x) } :=
- match x with A b => f b end.
-\end{verbatim}
-
- One will then just have to prove that the measure decreases at each recursive
- call. There are three drawbacks though:
- \begin{enumerate}
- \item A measure function has to be defined;
- \item The reduction is a little more involved, although it works well
- using lazy evaluation;
- \item Mutual recursion on the underlying inductive type isn't possible
- anymore, but nested mutual recursion is always possible.
- \end{enumerate}
-\end{itemize}
-
-%%% Local Variables:
-%%% mode: latex
-%%% TeX-master: "Reference-Manual"
-%%% compile-command: "BIBINPUTS=\".\" make QUICK=1 -C ../.. doc/refman/Reference-Manual.pdf"
-%%% End:
diff --git a/doc/refman/Reference-Manual.tex b/doc/refman/Reference-Manual.tex
index 7ce28ccf8..cfb3c625b 100644
--- a/doc/refman/Reference-Manual.tex
+++ b/doc/refman/Reference-Manual.tex
@@ -117,12 +117,6 @@ Options A and B of the licence are {\em not} elected.}
%END LATEX
\part{Addendum to the Reference Manual}
\include{AddRefMan-pre}%
-\include{Coercion.v}%
-\include{Extraction.v}%
-\include{Program.v}%
-\include{Polynom.v}% = Ring
-\include{Nsatz.v}%
-\include{Setoid.v}% Tactique pour les setoides
\include{AsyncProofs}% Paral-ITP
\include{Universes.v}% Universe polymorphes
\include{Misc.v}
diff --git a/doc/refman/Setoid.tex b/doc/refman/Setoid.tex
deleted file mode 100644
index b7b343112..000000000
--- a/doc/refman/Setoid.tex
+++ /dev/null
@@ -1,842 +0,0 @@
-\newtheorem{cscexample}{Example}
-
-\achapter{\protect{Generalized rewriting}}
-%HEVEA\cutname{setoid.html}
-\aauthor{Matthieu Sozeau}
-\label{setoids}
-
-This chapter presents the extension of several equality related tactics
-to work over user-defined structures (called setoids) that are equipped
-with ad-hoc equivalence relations meant to behave as equalities.
-Actually, the tactics have also been generalized to relations weaker
-then equivalences (e.g. rewriting systems). The toolbox also extends the
-automatic rewriting capabilities of the system, allowing the specification of
-custom strategies for rewriting.
-
-This documentation is adapted from the previous setoid documentation by
-Claudio Sacerdoti Coen (based on previous work by Cl\'ement Renard).
-The new implementation is a drop-in replacement for the old one,\footnote{Nicolas
-Tabareau helped with the gluing.} hence most of the documentation still applies.
-
-The work is a complete rewrite of the previous implementation, based on
-the type class infrastructure. It also improves on and generalizes
-the previous implementation in several ways:
-\begin{itemize}
-\item User-extensible algorithm. The algorithm is separated in two
- parts: generations of the rewriting constraints (done in ML) and
- solving of these constraints using type class resolution. As type
- class resolution is extensible using tactics, this allows users to define
- general ways to solve morphism constraints.
-\item Sub-relations. An example extension to the base algorithm is the
- ability to define one relation as a subrelation of another so that
- morphism declarations on one relation can be used automatically for
- the other. This is done purely using tactics and type class search.
-\item Rewriting under binders. It is possible to rewrite under binders
- in the new implementation, if one provides the proper
- morphisms. Again, most of the work is handled in the tactics.
-\item First-class morphisms and signatures. Signatures and morphisms are
- ordinary Coq terms, hence they can be manipulated inside Coq, put
- inside structures and lemmas about them can be proved inside the
- system. Higher-order morphisms are also allowed.
-\item Performance. The implementation is based on a depth-first search for the first
- solution to a set of constraints which can be as fast as linear in the
- size of the term, and the size of the proof term is linear
- in the size of the original term. Besides, the extensibility allows the
- user to customize the proof search if necessary.
-\end{itemize}
-
-\asection{Introduction to generalized rewriting}
-
-\subsection{Relations and morphisms}
-
-A parametric \emph{relation} \texttt{R} is any term of type
-\texttt{forall ($x_1$:$T_1$) \ldots ($x_n$:$T_n$), relation $A$}. The
-expression $A$, which depends on $x_1$ \ldots $x_n$, is called the
-\emph{carrier} of the relation and \texttt{R} is
-said to be a relation over \texttt{A}; the list $x_1,\ldots,x_n$
-is the (possibly empty) list of parameters of the relation.
-
-\firstexample
-\begin{cscexample}[Parametric relation]
-It is possible to implement finite sets of elements of type \texttt{A}
-as unordered list of elements of type \texttt{A}. The function
-\texttt{set\_eq: forall (A: Type), relation (list A)} satisfied by two lists
-with the same elements is a parametric relation over \texttt{(list A)} with
-one parameter \texttt{A}. The type of \texttt{set\_eq} is convertible with
-\texttt{forall (A: Type), list A -> list A -> Prop}.
-\end{cscexample}
-
-An \emph{instance} of a parametric relation \texttt{R} with $n$ parameters
-is any term \texttt{(R $t_1$ \ldots $t_n$)}.
-
-Let \texttt{R} be a relation over \texttt{A} with $n$ parameters.
-A term is a parametric proof of reflexivity for \texttt{R} if it has type
-\texttt{forall ($x_1$:$T_1$) \ldots ($x_n$:$T_n$),
- reflexive (R $x_1$ \ldots $x_n$)}. Similar definitions are given for
-parametric proofs of symmetry and transitivity.
-
-\begin{cscexample}[Parametric relation (cont.)]
-The \texttt{set\_eq} relation of the previous example can be proved to be
-reflexive, symmetric and transitive.
-\end{cscexample}
-
-A parametric unary function $f$ of type
-\texttt{forall ($x_1$:$T_1$) \ldots ($x_n$:$T_n$), $A_1$ -> $A_2$}
-covariantly respects two parametric relation instances $R_1$ and $R_2$ if,
-whenever $x, y$ satisfy $R_1~x~y$, their images $(f~x)$ and $(f~y)$
-satisfy $R_2~(f~x)~(f~y)$ . An $f$ that respects its input and output relations
-will be called a unary covariant \emph{morphism}. We can also say that $f$ is
-a monotone function with respect to $R_1$ and $R_2$.
-The sequence $x_1,\ldots x_n$ represents the parameters of the morphism.
-
-Let $R_1$ and $R_2$ be two parametric relations.
-The \emph{signature} of a parametric morphism of type
-\texttt{forall ($x_1$:$T_1$) \ldots ($x_n$:$T_n$), $A_1$ -> $A_2$} that
-covariantly respects two instances $I_{R_1}$ and $I_{R_2}$ of $R_1$ and $R_2$ is written $I_{R_1} \texttt{++>} I_{R_2}$.
-Notice that the special arrow \texttt{++>}, which reminds the reader
-of covariance, is placed between the two relation instances, not
-between the two carriers. The signature relation instances and morphism will
-be typed in a context introducing variables for the parameters.
-
-The previous definitions are extended straightforwardly to $n$-ary morphisms,
-that are required to be simultaneously monotone on every argument.
-
-Morphisms can also be contravariant in one or more of their arguments.
-A morphism is contravariant on an argument associated to the relation instance
-$R$ if it is covariant on the same argument when the inverse relation
-$R^{-1}$ (\texttt{inverse R} in Coq) is considered.
-The special arrow \texttt{-{}->} is used in signatures
-for contravariant morphisms.
-
-Functions having arguments related by symmetric relations instances are both
-covariant and contravariant in those arguments. The special arrow
-\texttt{==>} is used in signatures for morphisms that are both covariant
-and contravariant.
-
-An instance of a parametric morphism $f$ with $n$ parameters is any term
-\texttt{f $t_1$ \ldots $t_n$}.
-
-\begin{cscexample}[Morphisms]
-Continuing the previous example, let
-\texttt{union: forall (A: Type), list A -> list A -> list A} perform the union
-of two sets by appending one list to the other. \texttt{union} is a binary
-morphism parametric over \texttt{A} that respects the relation instance
-\texttt{(set\_eq A)}. The latter condition is proved by showing
-\texttt{forall (A: Type) (S1 S1' S2 S2': list A), set\_eq A S1 S1' ->
- set\_eq A S2 S2' -> set\_eq A (union A S1 S2) (union A S1' S2')}.
-
-The signature of the function \texttt{union A} is
-\texttt{set\_eq A ==> set\_eq A ==> set\_eq A} for all \texttt{A}.
-\end{cscexample}
-
-\begin{cscexample}[Contravariant morphism]
-The division function \texttt{Rdiv: R -> R -> R} is a morphism of
-signature \texttt{le ++> le -{}-> le} where \texttt{le} is
-the usual order relation over real numbers. Notice that division is
-covariant in its first argument and contravariant in its second
-argument.
-\end{cscexample}
-
-Leibniz equality is a relation and every function is a
-morphism that respects Leibniz equality. Unfortunately, Leibniz equality
-is not always the intended equality for a given structure.
-
-In the next section we will describe the commands to register terms as
-parametric relations and morphisms. Several tactics that deal with equality
-in \Coq\ can also work with the registered relations.
-The exact list of tactic will be given in Sect.~\ref{setoidtactics}.
-For instance, the
-tactic \texttt{reflexivity} can be used to close a goal $R~n~n$ whenever
-$R$ is an instance of a registered reflexive relation. However, the tactics
-that replace in a context $C[]$ one term with another one related by $R$
-must verify that $C[]$ is a morphism that respects the intended relation.
-Currently the verification consists in checking whether $C[]$ is a syntactic
-composition of morphism instances that respects some obvious
-compatibility constraints.
-
-\begin{cscexample}[Rewriting]
-Continuing the previous examples, suppose that the user must prove
-\texttt{set\_eq int (union int (union int S1 S2) S2) (f S1 S2)} under the
-hypothesis \texttt{H: set\_eq int S2 (@nil int)}. It is possible to
-use the \texttt{rewrite} tactic to replace the first two occurrences of
-\texttt{S2} with \texttt{@nil int} in the goal since the context
-\texttt{set\_eq int (union int (union int S1 nil) nil) (f S1 S2)}, being
-a composition of morphisms instances, is a morphism. However the tactic
-will fail replacing the third occurrence of \texttt{S2} unless \texttt{f}
-has also been declared as a morphism.
-\end{cscexample}
-
-\subsection{Adding new relations and morphisms}
-A parametric relation
-\textit{Aeq}\texttt{: forall ($y_1 : \beta_!$ \ldots $y_m : \beta_m$), relation (A $t_1$ \ldots $t_n$)} over
-\textit{(A : $\alpha_i$ -> \ldots $\alpha_n$ -> }\texttt{Type})
-can be declared with the following command:
-
-\comindex{Add Parametric Relation}
-\begin{quote}
- \texttt{Add Parametric Relation} ($x_1 : T_1$) \ldots ($x_n : T_k$) :
- \textit{(A $t_1$ \ldots $t_n$) (Aeq $t'_1$ \ldots $t'_m$)}\\
- ~\zeroone{\texttt{reflexivity proved by} \textit{refl}}\\
- ~\zeroone{\texttt{symmetry proved by} \textit{sym}}\\
- ~\zeroone{\texttt{transitivity proved by} \textit{trans}}\\
- \texttt{~as} \textit{id}.
-\end{quote}
-after having required the \texttt{Setoid} module with the
-\texttt{Require Setoid} command.
-
-The identifier \textit{id} gives a unique name to the morphism and it is
-used by the command to generate fresh names for automatically provided lemmas
-used internally.
-
-Notice that the carrier and relation parameters may refer to the context
-of variables introduced at the beginning of the declaration, but the
-instances need not be made only of variables.
-Also notice that \textit{A} is \emph{not} required to be a term
-having the same parameters as \textit{Aeq}, although that is often the
-case in practice (this departs from the previous implementation).
-
-\comindex{Add Relation}
-In case the carrier and relations are not parametric, one can use the
-command \texttt{Add Relation} instead, whose syntax is the same except
-there is no local context.
-
-The proofs of reflexivity, symmetry and transitivity can be omitted if the
-relation is not an equivalence relation. The proofs must be instances of the
-corresponding relation definitions: e.g. the proof of reflexivity must
-have a type convertible to \texttt{reflexive (A $t_1$ \ldots $t_n$) (Aeq $t'_1$ \ldots
- $t'_n$)}. Each proof may refer to the introduced variables as well.
-
-\begin{cscexample}[Parametric relation]
-For Leibniz equality, we may declare:
-\texttt{Add Parametric Relation (A : Type) :} \texttt{A (@eq A)}\\
-~\zeroone{\texttt{reflexivity proved by} \texttt{@refl\_equal A}}\\
-\ldots
-\end{cscexample}
-
-Some tactics
-(\texttt{reflexivity}, \texttt{symmetry}, \texttt{transitivity}) work only
-on relations that respect the expected properties. The remaining tactics
-(\texttt{replace}, \texttt{rewrite} and derived tactics such as
-\texttt{autorewrite}) do not require any properties over the relation.
-However, they are able to replace terms with related ones only in contexts
-that are syntactic compositions of parametric morphism instances declared with
-the following command.
-
-\comindex{Add Parametric Morphism}
-\begin{quote}
- \texttt{Add Parametric Morphism} ($x_1 : \T_1$) \ldots ($x_k : \T_k$) :
- (\textit{f $t_1$ \ldots $t_n$})\\
- \texttt{~with signature} \textit{sig}\\
- \texttt{~as id}.\\
- \texttt{Proof}\\
- ~\ldots\\
- \texttt{Qed}
-\end{quote}
-
-The command declares \textit{f} as a parametric morphism of signature
-\textit{sig}. The identifier \textit{id} gives a unique name to the morphism
-and it is used as the base name of the type class instance definition
-and as the name of the lemma that proves the well-definedness of the morphism.
-The parameters of the morphism as well as the signature may refer to the
-context of variables.
-The command asks the user to prove interactively that \textit{f} respects
-the relations identified from the signature.
-
-\begin{cscexample}
-We start the example by assuming a small theory over homogeneous sets and
-we declare set equality as a parametric equivalence relation and
-union of two sets as a parametric morphism.
-\begin{coq_example*}
-Require Export Setoid.
-Require Export Relation_Definitions.
-Set Implicit Arguments.
-Parameter set: Type -> Type.
-Parameter empty: forall A, set A.
-Parameter eq_set: forall A, set A -> set A -> Prop.
-Parameter union: forall A, set A -> set A -> set A.
-Axiom eq_set_refl: forall A, reflexive _ (eq_set (A:=A)).
-Axiom eq_set_sym: forall A, symmetric _ (eq_set (A:=A)).
-Axiom eq_set_trans: forall A, transitive _ (eq_set (A:=A)).
-Axiom empty_neutral: forall A (S: set A), eq_set (union S (empty A)) S.
-Axiom union_compat:
- forall (A : Type),
- forall x x' : set A, eq_set x x' ->
- forall y y' : set A, eq_set y y' ->
- eq_set (union x y) (union x' y').
-Add Parametric Relation A : (set A) (@eq_set A)
- reflexivity proved by (eq_set_refl (A:=A))
- symmetry proved by (eq_set_sym (A:=A))
- transitivity proved by (eq_set_trans (A:=A))
- as eq_set_rel.
-Add Parametric Morphism A : (@union A) with
-signature (@eq_set A) ==> (@eq_set A) ==> (@eq_set A) as union_mor.
-Proof. exact (@union_compat A). Qed.
-\end{coq_example*}
-
-\end{cscexample}
-
-It is possible to reduce the burden of specifying parameters using
-(maximally inserted) implicit arguments. If \texttt{A} is always set as
-maximally implicit in the previous example, one can write:
-
-\begin{coq_eval}
-Reset Initial.
-Require Export Setoid.
-Require Export Relation_Definitions.
-Parameter set: Type -> Type.
-Parameter empty: forall {A}, set A.
-Parameter eq_set: forall {A}, set A -> set A -> Prop.
-Parameter union: forall {A}, set A -> set A -> set A.
-Axiom eq_set_refl: forall {A}, reflexive (set A) eq_set.
-Axiom eq_set_sym: forall {A}, symmetric (set A) eq_set.
-Axiom eq_set_trans: forall {A}, transitive (set A) eq_set.
-Axiom empty_neutral: forall A (S: set A), eq_set (union S empty) S.
-Axiom union_compat:
- forall (A : Type),
- forall x x' : set A, eq_set x x' ->
- forall y y' : set A, eq_set y y' ->
- eq_set (union x y) (union x' y').
-\end{coq_eval}
-
-\begin{coq_example*}
-Add Parametric Relation A : (set A) eq_set
- reflexivity proved by eq_set_refl
- symmetry proved by eq_set_sym
- transitivity proved by eq_set_trans
- as eq_set_rel.
-Add Parametric Morphism A : (@union A) with
- signature eq_set ==> eq_set ==> eq_set as union_mor.
-Proof. exact (@union_compat A). Qed.
-\end{coq_example*}
-
-We proceed now by proving a simple lemma performing a rewrite step
-and then applying reflexivity, as we would do working with Leibniz
-equality. Both tactic applications are accepted
-since the required properties over \texttt{eq\_set} and
-\texttt{union} can be established from the two declarations above.
-
-\begin{coq_example*}
-Goal forall (S: set nat),
- eq_set (union (union S empty) S) (union S S).
-Proof. intros. rewrite empty_neutral. reflexivity. Qed.
-\end{coq_example*}
-
-The tables of relations and morphisms are managed by the type class
-instance mechanism. The behavior on section close is to generalize
-the instances by the variables of the section (and possibly hypotheses
-used in the proofs of instance declarations) but not to export them in
-the rest of the development for proof search. One can use the
-\texttt{Existing Instance} command to do so outside the section,
-using the name of the declared morphism suffixed by \texttt{\_Morphism},
-or use the \texttt{Global} modifier for the corresponding class instance
-declaration (see \S\ref{setoid:first-class}) at definition time.
-When loading a compiled file or importing a module,
-all the declarations of this module will be loaded.
-
-\subsection{Rewriting and non reflexive relations}
-To replace only one argument of an n-ary morphism it is necessary to prove
-that all the other arguments are related to themselves by the respective
-relation instances.
-
-\begin{cscexample}
-To replace \texttt{(union S empty)} with \texttt{S} in
-\texttt{(union (union S empty) S) (union S S)} the rewrite tactic must
-exploit the monotony of \texttt{union} (axiom \texttt{union\_compat} in
-the previous example). Applying \texttt{union\_compat} by hand we are left
-with the goal \texttt{eq\_set (union S S) (union S S)}.
-\end{cscexample}
-
-When the relations associated to some arguments are not reflexive, the tactic
-cannot automatically prove the reflexivity goals, that are left to the user.
-
-Setoids whose relation are partial equivalence relations (PER)
-are useful to deal with partial functions. Let \texttt{R} be a PER. We say
-that an element \texttt{x} is defined if \texttt{R x x}. A partial function
-whose domain comprises all the defined elements only is declared as a
-morphism that respects \texttt{R}. Every time a rewriting step is performed
-the user must prove that the argument of the morphism is defined.
-
-\begin{cscexample}
-Let \texttt{eqO} be \texttt{fun x y => x = y $\land$ ~x$\neq$ 0} (the smaller PER over
-non zero elements). Division can be declared as a morphism of signature
-\texttt{eq ==> eq0 ==> eq}. Replace \texttt{x} with \texttt{y} in
-\texttt{div x n = div y n} opens the additional goal \texttt{eq0 n n} that
-is equivalent to \texttt{n=n $\land$ n$\neq$0}.
-\end{cscexample}
-
-\subsection{Rewriting and non symmetric relations}
-When the user works up to relations that are not symmetric, it is no longer
-the case that any covariant morphism argument is also contravariant. As a
-result it is no longer possible to replace a term with a related one in
-every context, since the obtained goal implies the previous one if and
-only if the replacement has been performed in a contravariant position.
-In a similar way, replacement in an hypothesis can be performed only if
-the replaced term occurs in a covariant position.
-
-\begin{cscexample}[Covariance and contravariance]
-Suppose that division over real numbers has been defined as a
-morphism of signature \texttt{Z.div: Z.lt ++> Z.lt -{}-> Z.lt} (i.e.
-\texttt{Z.div} is increasing in its first argument, but decreasing on the
-second one). Let \texttt{<} denotes \texttt{Z.lt}.
-Under the hypothesis \texttt{H: x < y} we have
-\texttt{k < x / y -> k < x / x}, but not
-\texttt{k < y / x -> k < x / x}.
-Dually, under the same hypothesis \texttt{k < x / y -> k < y / y} holds,
-but \texttt{k < y / x -> k < y / y} does not.
-Thus, if the current goal is \texttt{k < x / x}, it is possible to replace
-only the second occurrence of \texttt{x} (in contravariant position)
-with \texttt{y} since the obtained goal must imply the current one.
-On the contrary, if \texttt{k < x / x} is
-an hypothesis, it is possible to replace only the first occurrence of
-\texttt{x} (in covariant position) with \texttt{y} since
-the current hypothesis must imply the obtained one.
-\end{cscexample}
-
-Contrary to the previous implementation, no specific error message will
-be raised when trying to replace a term that occurs in the wrong
-position. It will only fail because the rewriting constraints are not
-satisfiable. However it is possible to use the \texttt{at} modifier to
-specify which occurrences should be rewritten.
-
-As expected, composing morphisms together propagates the variance annotations by
-switching the variance every time a contravariant position is traversed.
-\begin{cscexample}
-Let us continue the previous example and let us consider the goal
-\texttt{x / (x / x) < k}. The first and third occurrences of \texttt{x} are
-in a contravariant position, while the second one is in covariant position.
-More in detail, the second occurrence of \texttt{x} occurs
-covariantly in \texttt{(x / x)} (since division is covariant in its first
-argument), and thus contravariantly in \texttt{x / (x / x)} (since division
-is contravariant in its second argument), and finally covariantly in
-\texttt{x / (x / x) < k} (since \texttt{<}, as every transitive relation,
-is contravariant in its first argument with respect to the relation itself).
-\end{cscexample}
-
-\subsection{Rewriting in ambiguous setoid contexts}
-One function can respect several different relations and thus it can be
-declared as a morphism having multiple signatures.
-
-\begin{cscexample}
-Union over homogeneous lists can be given all the following signatures:
-\texttt{eq ==> eq ==> eq} (\texttt{eq} being the equality over ordered lists)
-\texttt{set\_eq ==> set\_eq ==> set\_eq} (\texttt{set\_eq} being the equality
-over unordered lists up to duplicates),
-\texttt{multiset\_eq ==> multiset\_eq ==> multiset\_eq} (\texttt{multiset\_eq}
-being the equality over unordered lists).
-\end{cscexample}
-
-To declare multiple signatures for a morphism, repeat the \texttt{Add Morphism}
-command.
-
-When morphisms have multiple signatures it can be the case that a rewrite
-request is ambiguous, since it is unclear what relations should be used to
-perform the rewriting. Contrary to the previous implementation, the
-tactic will always choose the first possible solution to the set of
-constraints generated by a rewrite and will not try to find \emph{all}
-possible solutions to warn the user about.
-
-\asection{Commands and tactics}
-\subsection{First class setoids and morphisms}
-\label{setoid:first-class}
-
-The implementation is based on a first-class representation of
-properties of relations and morphisms as type classes. That is,
-the various combinations of properties on relations and morphisms
-are represented as records and instances of theses classes are put
-in a hint database.
-For example, the declaration:
-
-\begin{quote}
- \texttt{Add Parametric Relation} ($x_1 : T_1$) \ldots ($x_n : T_k$) :
- \textit{(A $t_1$ \ldots $t_n$) (Aeq $t'_1$ \ldots $t'_m$)}\\
- ~\zeroone{\texttt{reflexivity proved by} \textit{refl}}\\
- ~\zeroone{\texttt{symmetry proved by} \textit{sym}}\\
- ~\zeroone{\texttt{transitivity proved by} \textit{trans}}\\
- \texttt{~as} \textit{id}.
-\end{quote}
-
-is equivalent to an instance declaration:
-
-\begin{quote}
- \texttt{Instance} ($x_1 : T_1$) \ldots ($x_n : T_k$) \texttt{=>}
- \textit{id} : \texttt{@Equivalence} \textit{(A $t_1$ \ldots $t_n$) (Aeq
- $t'_1$ \ldots $t'_m$)} :=\\
- ~\zeroone{\texttt{Equivalence\_Reflexive :=} \textit{refl}}\\
- ~\zeroone{\texttt{Equivalence\_Symmetric :=} \textit{sym}}\\
- ~\zeroone{\texttt{Equivalence\_Transitive :=} \textit{trans}}.
-\end{quote}
-
-The declaration itself amounts to the definition of an object of the
-record type \texttt{Coq.Classes.RelationClasses.Equivalence} and a
-hint added to the \texttt{typeclass\_instances} hint database.
-Morphism declarations are also instances of a type class defined in
-\texttt{Classes.Morphisms}.
-See the documentation on type classes \ref{typeclasses} and
-the theories files in \texttt{Classes} for further explanations.
-
-One can inform the rewrite tactic about morphisms and relations just by
-using the typeclass mechanism to declare them using \texttt{Instance}
-and \texttt{Context} vernacular commands.
-Any object of type \texttt{Proper} (the type of morphism declarations)
-in the local context will also be automatically used by the rewriting
-tactic to solve constraints.
-
-Other representations of first class setoids and morphisms can also
-be handled by encoding them as records. In the following example,
-the projections of the setoid relation and of the morphism function
-can be registered as parametric relations and morphisms.
-\begin{cscexample}[First class setoids]
-
-\begin{coq_example*}
-Require Import Relation_Definitions Setoid.
-Record Setoid: Type :=
-{ car:Type;
- eq:car->car->Prop;
- refl: reflexive _ eq;
- sym: symmetric _ eq;
- trans: transitive _ eq
-}.
-Add Parametric Relation (s : Setoid) : (@car s) (@eq s)
- reflexivity proved by (refl s)
- symmetry proved by (sym s)
- transitivity proved by (trans s) as eq_rel.
-Record Morphism (S1 S2:Setoid): Type :=
-{ f:car S1 ->car S2;
- compat: forall (x1 x2: car S1), eq S1 x1 x2 -> eq S2 (f x1) (f x2) }.
-Add Parametric Morphism (S1 S2 : Setoid) (M : Morphism S1 S2) :
- (@f S1 S2 M) with signature (@eq S1 ==> @eq S2) as apply_mor.
-Proof. apply (compat S1 S2 M). Qed.
-Lemma test: forall (S1 S2:Setoid) (m: Morphism S1 S2)
- (x y: car S1), eq S1 x y -> eq S2 (f _ _ m x) (f _ _ m y).
-Proof. intros. rewrite H. reflexivity. Qed.
-\end{coq_example*}
-\end{cscexample}
-
-\subsection{Tactics enabled on user provided relations}
-\label{setoidtactics}
-The following tactics, all prefixed by \texttt{setoid\_},
-deal with arbitrary
-registered relations and morphisms. Moreover, all the corresponding unprefixed
-tactics (i.e. \texttt{reflexivity}, \texttt{symmetry}, \texttt{transitivity},
-\texttt{replace}, \texttt{rewrite})
-have been extended to fall back to their prefixed counterparts when
-the relation involved is not Leibniz equality. Notice, however, that using
-the prefixed tactics it is possible to pass additional arguments such as
-\texttt{using relation}.
-\medskip
-
-\tacindex{setoid\_reflexivity}
-\texttt{setoid\_reflexivity}
-
-\tacindex{setoid\_symmetry}
-\texttt{setoid\_symmetry} \zeroone{\texttt{in} \textit{ident}}
-
-\tacindex{setoid\_transitivity}
-\texttt{setoid\_transitivity}
-
-\tacindex{setoid\_rewrite}
-\texttt{setoid\_rewrite} \zeroone{\textit{orientation}} \textit{term}
-~\zeroone{\texttt{at} \textit{occs}} ~\zeroone{\texttt{in} \textit{ident}}
-
-\tacindex{setoid\_replace}
-\texttt{setoid\_replace} \textit{term} \texttt{with} \textit{term}
-~\zeroone{\texttt{in} \textit{ident}}
-~\zeroone{\texttt{using relation} \textit{term}}
-~\zeroone{\texttt{by} \textit{tactic}}
-\medskip
-
-The \texttt{using relation}
-arguments cannot be passed to the unprefixed form. The latter argument
-tells the tactic what parametric relation should be used to replace
-the first tactic argument with the second one. If omitted, it defaults
-to the \texttt{DefaultRelation} instance on the type of the objects.
-By default, it means the most recent \texttt{Equivalence} instance in
-the environment, but it can be customized by declaring new
-\texttt{DefaultRelation} instances. As Leibniz equality is a declared
-equivalence, it will fall back to it if no other relation is declared on
-a given type.
-
-Every derived tactic that is based on the unprefixed forms of the tactics
-considered above will also work up to user defined relations. For instance,
-it is possible to register hints for \texttt{autorewrite} that are
-not proof of Leibniz equalities. In particular it is possible to exploit
-\texttt{autorewrite} to simulate normalization in a term rewriting system
-up to user defined equalities.
-
-\subsection{Printing relations and morphisms}
-The \texttt{Print Instances} command can be used to show the list of
-currently registered \texttt{Reflexive} (using \texttt{Print Instances Reflexive}),
-\texttt{Symmetric} or \texttt{Transitive} relations,
-\texttt{Equivalence}s, \texttt{PreOrder}s, \texttt{PER}s, and
-Morphisms (implemented as \texttt{Proper} instances). When
- the rewriting tactics refuse to replace a term in a context
-because the latter is not a composition of morphisms, the \texttt{Print Instances}
-commands can be useful to understand what additional morphisms should be
-registered.
-
-\subsection{Deprecated syntax and backward incompatibilities}
-Due to backward compatibility reasons, the following syntax for the
-declaration of setoids and morphisms is also accepted.
-
-\comindex{Add Setoid}
-\begin{quote}
- \texttt{Add Setoid} \textit{A Aeq ST} \texttt{as} \textit{ident}
-\end{quote}
-where \textit{Aeq} is a congruence relation without parameters,
-\textit{A} is its carrier and \textit{ST} is an object of type
-\texttt{(Setoid\_Theory A Aeq)} (i.e. a record packing together the reflexivity,
-symmetry and transitivity lemmas). Notice that the syntax is not completely
-backward compatible since the identifier was not required.
-
-\comindex{Add Morphism}
-\begin{quote}
- \texttt{Add Morphism} \textit{f}:\textit{ident}.\\
- Proof.\\
- \ldots\\
- Qed.
-\end{quote}
-
-The latter command also is restricted to the declaration of morphisms without
-parameters. It is not fully backward compatible since the property the user
-is asked to prove is slightly different: for $n$-ary morphisms the hypotheses
-of the property are permuted; moreover, when the morphism returns a
-proposition, the property is now stated using a bi-implication in place of
-a simple implication. In practice, porting an old development to the new
-semantics is usually quite simple.
-
-Notice that several limitations of the old implementation have been lifted.
-In particular, it is now possible to declare several relations with the
-same carrier and several signatures for the same morphism. Moreover, it is
-now also possible to declare several morphisms having the same signature.
-Finally, the replace and rewrite tactics can be used to replace terms in
-contexts that were refused by the old implementation. As discussed in
-the next section, the semantics of the new \texttt{setoid\_rewrite}
-command differs slightly from the old one and \texttt{rewrite}.
-
-\asection{Extensions}
-\subsection{Rewriting under binders}
-
-\textbf{Warning}: Due to compatibility issues, this feature is enabled only when calling
-the \texttt{setoid\_rewrite} tactics directly and not \texttt{rewrite}.
-
-To be able to rewrite under binding constructs, one must declare
-morphisms with respect to pointwise (setoid) equivalence of functions.
-Example of such morphisms are the standard \texttt{all} and \texttt{ex}
-combinators for universal and existential quantification respectively.
-They are declared as morphisms in the \texttt{Classes.Morphisms\_Prop}
-module. For example, to declare that universal quantification is a
-morphism for logical equivalence:
-
-\begin{coq_eval}
-Reset Initial.
-Require Import Setoid Morphisms.
-\end{coq_eval}
-\begin{coq_example}
-Instance all_iff_morphism (A : Type) :
- Proper (pointwise_relation A iff ==> iff) (@all A).
-Proof. simpl_relation.
-\end{coq_example}
-\begin{coq_eval}
-Admitted.
-\end{coq_eval}
-
-One then has to show that if two predicates are equivalent at every
-point, their universal quantifications are equivalent. Once we have
-declared such a morphism, it will be used by the setoid rewriting tactic
-each time we try to rewrite under an \texttt{all} application (products
-in \Prop{} are implicitly translated to such applications).
-
-Indeed, when rewriting under a lambda, binding variable $x$, say from
-$P~x$ to $Q~x$ using the relation \texttt{iff}, the tactic will generate
-a proof of \texttt{pointwise\_relation A iff (fun x => P x) (fun x => Q
-x)} from the proof of \texttt{iff (P x) (Q x)} and a constraint of the
-form \texttt{Proper (pointwise\_relation A iff ==> ?) m} will be
-generated for the surrounding morphism \texttt{m}.
-
-Hence, one can add higher-order combinators as morphisms by providing
-signatures using pointwise extension for the relations on the functional
-arguments (or whatever subrelation of the pointwise extension).
-For example, one could declare the \texttt{map} combinator on lists as
-a morphism:
-\begin{coq_eval}
-Require Import List Setoid Morphisms.
-Set Implicit Arguments.
-Inductive list_equiv {A:Type} (eqA : relation A) : relation (list A) :=
-| eq_nil : list_equiv eqA nil nil
-| eq_cons : forall x y, eqA x y ->
- forall l l', list_equiv eqA l l' -> list_equiv eqA (x :: l) (y :: l').
-Generalizable All Variables.
-\end{coq_eval}
-\begin{coq_example*}
-Instance map_morphism `{Equivalence A eqA, Equivalence B eqB} :
- Proper ((eqA ==> eqB) ==> list_equiv eqA ==> list_equiv eqB) (@map A B).
-\end{coq_example*}
-
-where \texttt{list\_equiv} implements an equivalence on lists
-parameterized by an equivalence on the elements.
-
-Note that when one does rewriting with a lemma under a binder
-using \texttt{setoid\_rewrite}, the application of the lemma may capture
-the bound variable, as the semantics are different from rewrite where
-the lemma is first matched on the whole term. With the new
-\texttt{setoid\_rewrite}, matching is done on each subterm separately
-and in its local environment, and all matches are rewritten
-\emph{simultaneously} by default. The semantics of the previous
-\texttt{setoid\_rewrite} implementation can almost be recovered using
-the \texttt{at 1} modifier.
-
-\subsection{Sub-relations}
-
-Sub-relations can be used to specify that one relation is included in
-another, so that morphisms signatures for one can be used for the other.
-If a signature mentions a relation $R$ on the left of an arrow
-\texttt{==>}, then the signature also applies for any relation $S$ that
-is smaller than $R$, and the inverse applies on the right of an arrow.
-One can then declare only a few morphisms instances that generate the complete set
-of signatures for a particular constant. By default, the only declared
-subrelation is \texttt{iff}, which is a subrelation of \texttt{impl}
-and \texttt{inverse impl} (the dual of implication). That's why we can
-declare only two morphisms for conjunction:
-\texttt{Proper (impl ==> impl ==> impl) and} and
-\texttt{Proper (iff ==> iff ==> iff) and}. This is sufficient to satisfy
-any rewriting constraints arising from a rewrite using \texttt{iff},
-\texttt{impl} or \texttt{inverse impl} through \texttt{and}.
-
-Sub-relations are implemented in \texttt{Classes.Morphisms} and are a
-prime example of a mostly user-space extension of the algorithm.
-
-\subsection{Constant unfolding}
-
-The resolution tactic is based on type classes and hence regards user-defined
-constants as transparent by default. This may slow down the resolution
-due to a lot of unifications (all the declared \texttt{Proper}
-instances are tried at each node of the search tree).
-To speed it up, declare your constant as rigid for proof search
-using the command \texttt{Typeclasses Opaque} (see \S
-\ref{TypeclassesTransparency}).
-
-\asection{Strategies for rewriting}
-
-\subsection{Definitions}
-The generalized rewriting tactic is based on a set of strategies that
-can be combined to obtain custom rewriting procedures. Its set of
-strategies is based on Elan's rewriting strategies
-\cite{Luttik97specificationof}. Rewriting strategies are applied using
-the tactic \texttt{rewrite\_strat $s$} where $s$ is a strategy
-expression. Strategies are defined inductively as described by the
-following grammar:
-
-\def\str#1{\texttt{#1}}
-
-\def\strline#1#2{& \vert & #1 & \text{#2}}
-\def\strlinea#1#2#3{& \vert & \str{#1}~#2 & \text{#3}}
-
-\[\begin{array}{lcll}
- s, t, u & ::= & ( s ) & \text{strategy} \\
- \strline{c}{lemma} \\
- \strline{\str{<-}~c}{lemma, right-to-left} \\
-
- \strline{\str{fail}}{failure} \\
- \strline{\str{id}}{identity} \\
- \strline{\str{refl}}{reflexivity} \\
- \strlinea{progress}{s}{progress} \\
- \strlinea{try}{s}{failure catch} \\
-
- \strline{s~\str{;}~u}{composition} \\
- \strline{\str{choice}~s~t}{left-biased choice} \\
-
- \strlinea{repeat}{s}{iteration (+)} \\
- \strlinea{any}{s}{iteration (*)} \\
-
- \strlinea{subterm}{s}{one subterm} \\
- \strlinea{subterms}{s}{all subterms} \\
- \strlinea{innermost}{s}{innermost first} \\
- \strlinea{outermost}{s}{outermost first}\\
- \strlinea{bottomup}{s}{bottom-up} \\
- \strlinea{topdown}{s}{top-down} \\
-
- \strlinea{hints}{hintdb}{apply hint} \\
- \strlinea{terms}{c \ldots c}{any of the terms}\\
- \strlinea{eval}{redexpr}{apply reduction}\\
- \strlinea{fold}{c}{fold expression}
-\end{array}\]
-
-Actually a few of these are defined in term of the others using
-a primitive fixpoint operator:
-
-\[\begin{array}{lcl}
- \str{try}~s & = & \str{choice}~s~\str{id} \\
- \str{any}~s & = & \str{fix}~u. \str{try}~(s~\str{;}~u) \\
- \str{repeat}~s & = & s~\str{;}~\str{any}~s \\
- \str{bottomup}~s & = &
- \str{fix}~bu. (\str{choice}~(\str{progress}~(\str{subterms}~bu))~s)~\str{;}~\str{try}~bu \\
- \str{topdown}~s & = &
- \str{fix}~td. (\str{choice}~s~(\str{progress}~(\str{subterms}~td)))~\str{;}~\str{try}~td \\
- \str{innermost}~s & = & \str{fix}~i. (\str{choice}~(\str{subterm}~i)~s) \\
- \str{outermost}~s & = &
- \str{fix}~o. (\str{choice}~s~(\str{subterm}~o))
-\end{array}\]
-
-The basic control strategy semantics are straightforward: strategies are
-applied to subterms of the term to rewrite, starting from the root of
-the term. The lemma strategies unify the left-hand-side of the
-lemma with the current subterm and on success rewrite it to the
-right-hand-side. Composition can be used to continue rewriting on the
-current subterm. The fail strategy always fails while the identity
-strategy succeeds without making progress. The reflexivity strategy
-succeeds, making progress using a reflexivity proof of
-rewriting. Progress tests progress of the argument strategy and fails if
-no progress was made, while \str{try} always succeeds, catching
-failures. Choice is left-biased: it will launch the first strategy and
-fall back on the second one in case of failure. One can iterate a
-strategy at least 1 time using \str{repeat} and at least 0 times using
-\str{any}.
-
-The \str{subterm} and \str{subterms} strategies apply their argument
-strategy $s$ to respectively one or all subterms of the current term
-under consideration, left-to-right. \str{subterm} stops at the first
-subterm for which $s$ made progress. The composite strategies
-\str{innermost} and \str{outermost} perform a single innermost our outermost
-rewrite using their argument strategy. Their counterparts
-\str{bottomup} and \str{topdown} perform as many rewritings as possible,
-starting from the bottom or the top of the term.
-
-Hint databases created for \texttt{autorewrite} can also be used by
-\texttt{rewrite\_strat} using the \str{hints} strategy that applies any
-of the lemmas at the current subterm. The \str{terms} strategy takes the
-lemma names directly as arguments. The \str{eval} strategy expects a
-reduction expression (see \S\ref{Conversion-tactics}) and succeeds if it
-reduces the subterm under consideration. The \str{fold} strategy takes a
-term $c$ and tries to \emph{unify} it to the current subterm, converting
-it to $c$ on success, it is stronger than the tactic \texttt{fold}.
-
-
-\subsection{Usage}
-\tacindex{rewrite\_strat}
-
-\texttt{rewrite\_strat}~\textit{s}~\zeroone{\texttt{in} \textit{ident}}:
-
- Rewrite using the strategy \textit{s} in hypothesis \textit{ident}
- or the conclusion.
-
- \begin{ErrMsgs}
- \item \errindex{Nothing to rewrite}. If the strategy failed.
- \item \errindex{No progress made}. If the strategy succeeded but
- made no progress.
- \item \errindex{Unable to satisfy the rewriting constraints}.
- If the strategy succeeded and made progress but the corresponding
- rewriting constraints are not satisfied.
- \end{ErrMsgs}
-
-
-The \texttt{setoid\_rewrite}~c tactic is basically equivalent to
-\texttt{rewrite\_strat}~(\str{outermost}~c).
-
-
-
-
-
-%%% Local Variables:
-%%% mode: latex
-%%% TeX-master: "Reference-Manual"
-%%% End:
diff --git a/doc/sphinx/addendum/extraction.rst b/doc/sphinx/addendum/extraction.rst
new file mode 100644
index 000000000..d7f97edab
--- /dev/null
+++ b/doc/sphinx/addendum/extraction.rst
@@ -0,0 +1,586 @@
+.. _extraction:
+
+.. include:: ../replaces.rst
+
+Extraction of programs in OCaml and Haskell
+============================================
+
+:Authors: Jean-Christophe Filliâtre and Pierre Letouzey
+
+We present here the |Coq| extraction commands, used to build certified
+and relatively efficient functional programs, extracting them from
+either |Coq| functions or |Coq| proofs of specifications. The
+functional languages available as output are currently OCaml, Haskell
+and Scheme. In the following, "ML" will be used (abusively) to refer
+to any of the three.
+
+Before using any of the commands or options described in this chapter,
+the extraction framework should first be loaded explicitly
+via ``Require Extraction``, or via the more robust
+``From Coq Require Extraction``.
+Note that in earlier versions of Coq, these commands and options were
+directly available without any preliminary ``Require``.
+
+.. coqtop:: in
+
+ Require Extraction.
+
+Generating ML Code
+-------------------
+
+.. note::
+
+ In the following, a qualified identifier `qualid`
+ can be used to refer to any kind of |Coq| global "object" : constant,
+ inductive type, inductive constructor or module name.
+
+The next two commands are meant to be used for rapid preview of
+extraction. They both display extracted term(s) inside |Coq|.
+
+.. cmd:: Extraction @qualid.
+
+ Extraction of the mentioned object in the |Coq| toplevel.
+
+.. cmd:: Recursive Extraction @qualid ... @qualid.
+
+ Recursive extraction of all the mentioned objects and
+ all their dependencies in the |Coq| toplevel.
+
+All the following commands produce real ML files. User can choose to
+produce one monolithic file or one file per |Coq| library.
+
+.. cmd:: Extraction "@file" @qualid ... @qualid.
+
+ Recursive extraction of all the mentioned objects and all
+ their dependencies in one monolithic `file`.
+ Global and local identifiers are renamed according to the chosen ML
+ language to fulfill its syntactic conventions, keeping original
+ names as much as possible.
+
+.. cmd:: Extraction Library @ident.
+
+ Extraction of the whole |Coq| library ``ident.v`` to an ML module
+ ``ident.ml``. In case of name clash, identifiers are here renamed
+ using prefixes ``coq_`` or ``Coq_`` to ensure a session-independent
+ renaming.
+
+.. cmd:: Recursive Extraction Library @ident.
+
+ Extraction of the |Coq| library ``ident.v`` and all other modules
+ ``ident.v`` depends on.
+
+.. cmd:: Separate Extraction @qualid ... @qualid.
+
+ Recursive extraction of all the mentioned objects and all
+ their dependencies, just as ``Extraction "file"``,
+ but instead of producing one monolithic file, this command splits
+ the produced code in separate ML files, one per corresponding Coq
+ ``.v`` file. This command is hence quite similar to
+ ``Recursive Extraction Library``, except that only the needed
+ parts of Coq libraries are extracted instead of the whole.
+ The naming convention in case of name clash is the same one as
+ ``Extraction Library``: identifiers are here renamed using prefixes
+ ``coq_`` or ``Coq_``.
+
+The following command is meant to help automatic testing of
+the extraction, see for instance the ``test-suite`` directory
+in the |Coq| sources.
+
+.. cmd:: Extraction TestCompile @qualid ... @qualid.
+
+ All the mentioned objects and all their dependencies are extracted
+ to a temporary OCaml file, just as in ``Extraction "file"``. Then
+ this temporary file and its signature are compiled with the same
+ OCaml compiler used to built |Coq|. This command succeeds only
+ if the extraction and the OCaml compilation succeed. It fails
+ if the current target language of the extraction is not OCaml.
+
+Extraction Options
+-------------------
+
+Setting the target language
+~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+The ability to fix target language is the first and more important
+of the extraction options. Default is ``Ocaml``.
+
+.. cmd:: Extraction Language Ocaml.
+.. cmd:: Extraction Language Haskell.
+.. cmd:: Extraction Language Scheme.
+
+Inlining and optimizations
+~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Since OCaml is a strict language, the extracted code has to
+be optimized in order to be efficient (for instance, when using
+induction principles we do not want to compute all the recursive calls
+but only the needed ones). So the extraction mechanism provides an
+automatic optimization routine that will be called each time the user
+want to generate OCaml programs. The optimizations can be split in two
+groups: the type-preserving ones (essentially constant inlining and
+reductions) and the non type-preserving ones (some function
+abstractions of dummy types are removed when it is deemed safe in order
+to have more elegant types). Therefore some constants may not appear in the
+resulting monolithic OCaml program. In the case of modular extraction,
+even if some inlining is done, the inlined constant are nevertheless
+printed, to ensure session-independent programs.
+
+Concerning Haskell, type-preserving optimizations are less useful
+because of laziness. We still make some optimizations, for example in
+order to produce more readable code.
+
+The type-preserving optimizations are controlled by the following |Coq| options:
+
+.. opt:: Extraction Optimize.
+
+ Default is on. This controls all type-preserving optimizations made on
+ the ML terms (mostly reduction of dummy beta/iota redexes, but also
+ simplifications on Cases, etc). Turn this option off if you want a
+ ML term as close as possible to the Coq term.
+
+.. opt:: Extraction Conservative Types.
+
+ Default is off. This controls the non type-preserving optimizations
+ made on ML terms (which try to avoid function abstraction of dummy
+ types). Turn this option on to make sure that ``e:t``
+ implies that ``e':t'`` where ``e'`` and ``t'`` are the extracted
+ code of ``e`` and ``t`` respectively.
+
+.. opt:: Extraction KeepSingleton.
+
+ Default is off. Normally, when the extraction of an inductive type
+ produces a singleton type (i.e. a type with only one constructor, and
+ only one argument to this constructor), the inductive structure is
+ removed and this type is seen as an alias to the inner type.
+ The typical example is ``sig``. This option allows disabling this
+ optimization when one wishes to preserve the inductive structure of types.
+
+.. opt:: Extraction AutoInline.
+
+ Default is on. The extraction mechanism inlines the bodies of
+ some defined constants, according to some heuristics
+ like size of bodies, uselessness of some arguments, etc.
+ Those heuristics are not always perfect; if you want to disable
+ this feature, turn this option off.
+
+.. cmd:: Extraction Inline @qualid ... @qualid.
+
+ In addition to the automatic inline feature, the constants
+ mentionned by this command will always be inlined during extraction.
+
+.. cmd:: Extraction NoInline @qualid ... @qualid.
+
+ Conversely, the constants mentionned by this command will
+ never be inlined during extraction.
+
+.. cmd:: Print Extraction Inline.
+
+ Prints the current state of the table recording the custom inlinings
+ declared by the two previous commands.
+
+.. cmd:: Reset Extraction Inline.
+
+ Empties the table recording the custom inlinings (see the
+ previous commands).
+
+**Inlining and printing of a constant declaration:**
+
+A user can explicitly ask for a constant to be extracted by two means:
+
+ * by mentioning it on the extraction command line
+
+ * by extracting the whole |Coq| module of this constant.
+
+In both cases, the declaration of this constant will be present in the
+produced file. But this same constant may or may not be inlined in
+the following terms, depending on the automatic/custom inlining mechanism.
+
+For the constants non-explicitly required but needed for dependency
+reasons, there are two cases:
+
+ * If an inlining decision is taken, whether automatically or not,
+ all occurrences of this constant are replaced by its extracted body,
+ and this constant is not declared in the generated file.
+
+ * If no inlining decision is taken, the constant is normally
+ declared in the produced file.
+
+Extra elimination of useless arguments
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+The following command provides some extra manual control on the
+code elimination performed during extraction, in a way which
+is independent but complementary to the main elimination
+principles of extraction (logical parts and types).
+
+.. cmd:: Extraction Implicit @qualid [ @ident ... @ident ].
+
+ This experimental command allows declaring some arguments of
+ `qualid` as implicit, i.e. useless in extracted code and hence to
+ be removed by extraction. Here `qualid` can be any function or
+ inductive constructor, and the given `ident` are the names of
+ the concerned arguments. In fact, an argument can also be referred
+ by a number indicating its position, starting from 1.
+
+When an actual extraction takes place, an error is normally raised if the
+``Extraction Implicit`` declarations cannot be honored, that is
+if any of the implicited variables still occurs in the final code.
+This behavior can be relaxed via the following option:
+
+.. opt:: Extraction SafeImplicits.
+
+ Default is on. When this option is off, a warning is emitted
+ instead of an error if some implicited variables still occur in the
+ final code of an extraction. This way, the extracted code may be
+ obtained nonetheless and reviewed manually to locate the source of the issue
+ (in the code, some comments mark the location of these remaining
+ implicited variables).
+ Note that this extracted code might not compile or run properly,
+ depending of the use of these remaining implicited variables.
+
+Realizing axioms
+~~~~~~~~~~~~~~~~
+
+Extraction will fail if it encounters an informative axiom not realized.
+A warning will be issued if it encounters a logical axiom, to remind the
+user that inconsistent logical axioms may lead to incorrect or
+non-terminating extracted terms.
+
+It is possible to assume some axioms while developing a proof. Since
+these axioms can be any kind of proposition or object or type, they may
+perfectly well have some computational content. But a program must be
+a closed term, and of course the system cannot guess the program which
+realizes an axiom. Therefore, it is possible to tell the system
+what ML term corresponds to a given axiom.
+
+.. cmd:: Extract Constant @qualid => @string.
+
+ Give an ML extraction for the given constant.
+ The `string` may be an identifier or a quoted string.
+
+.. cmd:: Extract Inlined Constant @qualid => @string.
+
+ Same as the previous one, except that the given ML terms will
+ be inlined everywhere instead of being declared via a ``let``.
+
+ .. note::
+
+ This command is sugar for an ``Extract Constant`` followed
+ by a ``Extraction Inline``. Hence a ``Reset Extraction Inline``
+ will have an effect on the realized and inlined axiom.
+
+.. caution:: It is the responsibility of the user to ensure that the ML
+ terms given to realize the axioms do have the expected types. In
+ fact, the strings containing realizing code are just copied to the
+ extracted files. The extraction recognizes whether the realized axiom
+ should become a ML type constant or a ML object declaration. For example:
+
+.. coqtop:: in
+
+ Axiom X:Set.
+ Axiom x:X.
+ Extract Constant X => "int".
+ Extract Constant x => "0".
+
+Notice that in the case of type scheme axiom (i.e. whose type is an
+arity, that is a sequence of product finished by a sort), then some type
+variables have to be given (as quoted strings). The syntax is then:
+
+.. cmdv:: Extract Constant @qualid @string ... @string => @string.
+
+The number of type variables is checked by the system. For example:
+
+.. coqtop:: in
+
+ Axiom Y : Set -> Set -> Set.
+ Extract Constant Y "'a" "'b" => " 'a * 'b ".
+
+Realizing an axiom via ``Extract Constant`` is only useful in the
+case of an informative axiom (of sort ``Type`` or ``Set``). A logical axiom
+have no computational content and hence will not appears in extracted
+terms. But a warning is nonetheless issued if extraction encounters a
+logical axiom. This warning reminds user that inconsistent logical
+axioms may lead to incorrect or non-terminating extracted terms.
+
+If an informative axiom has not been realized before an extraction, a
+warning is also issued and the definition of the axiom is filled with
+an exception labeled ``AXIOM TO BE REALIZED``. The user must then
+search these exceptions inside the extracted file and replace them by
+real code.
+
+Realizing inductive types
+~~~~~~~~~~~~~~~~~~~~~~~~~
+
+The system also provides a mechanism to specify ML terms for inductive
+types and constructors. For instance, the user may want to use the ML
+native boolean type instead of |Coq| one. The syntax is the following:
+
+.. cmd:: Extract Inductive @qualid => @string [ @string ... @string ].
+
+ Give an ML extraction for the given inductive type. You must specify
+ extractions for the type itself (first `string`) and all its
+ constructors (all the `string` between square brackets). In this form,
+ the ML extraction must be an ML inductive datatype, and the native
+ pattern-matching of the language will be used.
+
+.. cmdv:: Extract Inductive @qualid => @string [ @string ... @string ] @string.
+
+ Same as before, with a final extra `string` that indicates how to
+ perform pattern-matching over this inductive type. In this form,
+ the ML extraction could be an arbitrary type.
+ For an inductive type with `k` constructors, the function used to
+ emulate the pattern-matching should expect `(k+1)` arguments, first the `k`
+ branches in functional form, and then the inductive element to
+ destruct. For instance, the match branch ``| S n => foo`` gives the
+ functional form ``(fun n -> foo)``. Note that a constructor with no
+ argument is considered to have one unit argument, in order to block
+ early evaluation of the branch: ``| O => bar`` leads to the functional
+ form ``(fun () -> bar)``. For instance, when extracting ``nat``
+ into OCaml ``int``, the code to provide has type:
+ ``(unit->'a)->(int->'a)->int->'a``.
+
+.. caution:: As for ``Extract Constant``, this command should be used with care:
+
+ * The ML code provided by the user is currently **not** checked at all by
+ extraction, even for syntax errors.
+
+ * Extracting an inductive type to a pre-existing ML inductive type
+ is quite sound. But extracting to a general type (by providing an
+ ad-hoc pattern-matching) will often **not** be fully rigorously
+ correct. For instance, when extracting ``nat`` to OCaml ``int``,
+ it is theoretically possible to build ``nat`` values that are
+ larger than OCaml ``max_int``. It is the user's responsibility to
+ be sure that no overflow or other bad events occur in practice.
+
+ * Translating an inductive type to an arbitrary ML type does **not**
+ magically improve the asymptotic complexity of functions, even if the
+ ML type is an efficient representation. For instance, when extracting
+ ``nat`` to OCaml ``int``, the function ``Nat.mul`` stays quadratic.
+ It might be interesting to associate this translation with
+ some specific ``Extract Constant`` when primitive counterparts exist.
+
+Typical examples are the following:
+
+.. coqtop:: in
+
+ Extract Inductive unit => "unit" [ "()" ].
+ Extract Inductive bool => "bool" [ "true" "false" ].
+ Extract Inductive sumbool => "bool" [ "true" "false" ].
+
+.. note::
+
+ When extracting to Ocaml, if an inductive constructor or type has arity 2 and
+ the corresponding string is enclosed by parentheses, and the string meets
+ Ocaml's lexical criteria for an infix symbol, then the rest of the string is
+ used as infix constructor or type.
+
+.. coqtop:: in
+
+ Extract Inductive list => "list" [ "[]" "(::)" ].
+ Extract Inductive prod => "(*)" [ "(,)" ].
+
+As an example of translation to a non-inductive datatype, let's turn
+``nat`` into OCaml ``int`` (see caveat above):
+
+.. coqtop:: in
+
+ Extract Inductive nat => int [ "0" "succ" ] "(fun fO fS n -> if n=0 then fO () else fS (n-1))".
+
+Avoiding conflicts with existing filenames
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+When using ``Extraction Library``, the names of the extracted files
+directly depends from the names of the |Coq| files. It may happen that
+these filenames are in conflict with already existing files,
+either in the standard library of the target language or in other
+code that is meant to be linked with the extracted code.
+For instance the module ``List`` exists both in |Coq| and in OCaml.
+It is possible to instruct the extraction not to use particular filenames.
+
+.. cmd:: Extraction Blacklist @ident ... @ident.
+
+ Instruct the extraction to avoid using these names as filenames
+ for extracted code.
+
+.. cmd:: Print Extraction Blacklist.
+
+ Show the current list of filenames the extraction should avoid.
+
+.. cmd:: Reset Extraction Blacklist.
+
+ Allow the extraction to use any filename.
+
+For OCaml, a typical use of these commands is
+``Extraction Blacklist String List``.
+
+Differences between |Coq| and ML type systems
+----------------------------------------------
+
+Due to differences between |Coq| and ML type systems,
+some extracted programs are not directly typable in ML.
+We now solve this problem (at least in OCaml) by adding
+when needed some unsafe casting ``Obj.magic``, which give
+a generic type ``'a`` to any term.
+
+First, if some part of the program is *very* polymorphic, there
+may be no ML type for it. In that case the extraction to ML works
+alright but the generated code may be refused by the ML
+type-checker. A very well known example is the ``distr-pair``
+function:
+
+.. coqtop:: in
+
+ Definition dp {A B:Type}(x:A)(y:B)(f:forall C:Type, C->C) := (f A x, f B y).
+
+In Ocaml, for instance, the direct extracted term would be::
+
+ let dp x y f = Pair((f () x),(f () y))
+
+and would have type::
+
+ dp : 'a -> 'a -> (unit -> 'a -> 'b) -> ('b,'b) prod
+
+which is not its original type, but a restriction.
+
+We now produce the following correct version::
+
+ let dp x y f = Pair ((Obj.magic f () x), (Obj.magic f () y))
+
+Secondly, some |Coq| definitions may have no counterpart in ML. This
+happens when there is a quantification over types inside the type
+of a constructor; for example:
+
+.. coqtop:: in
+
+ Inductive anything : Type := dummy : forall A:Set, A -> anything.
+
+which corresponds to the definition of an ML dynamic type.
+In OCaml, we must cast any argument of the constructor dummy
+(no GADT are produced yet by the extraction).
+
+Even with those unsafe castings, you should never get error like
+``segmentation fault``. In fact even if your program may seem
+ill-typed to the Ocaml type-checker, it can't go wrong : it comes
+from a Coq well-typed terms, so for example inductive types will always
+have the correct number of arguments, etc. Of course, when launching
+manually some extracted function, you should apply it to arguments
+of the right shape (from the |Coq| point-of-view).
+
+More details about the correctness of the extracted programs can be
+found in :cite:`Let02`.
+
+We have to say, though, that in most "realistic" programs, these problems do not
+occur. For example all the programs of Coq library are accepted by the OCaml
+type-checker without any ``Obj.magic`` (see examples below).
+
+Some examples
+-------------
+
+We present here two examples of extractions, taken from the
+|Coq| Standard Library. We choose OCaml as target language,
+but all can be done in the other dialects with slight modifications.
+We then indicate where to find other examples and tests of extraction.
+
+A detailed example: Euclidean division
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+The file ``Euclid`` contains the proof of Euclidean division.
+The natural numbers used there are unary integers of type ``nat``,
+defined by two constructors ``O`` and ``S``.
+This module contains a theorem ``eucl_dev``, whose type is::
+
+ forall b:nat, b > 0 -> forall a:nat, diveucl a b
+
+where ``diveucl`` is a type for the pair of the quotient and the
+modulo, plus some logical assertions that disappear during extraction.
+We can now extract this program to OCaml:
+
+.. coqtop:: none
+
+ Reset Initial.
+
+.. coqtop:: all
+
+ Require Extraction.
+ Require Import Euclid Wf_nat.
+ Extraction Inline gt_wf_rec lt_wf_rec induction_ltof2.
+ Recursive Extraction eucl_dev.
+
+The inlining of ``gt_wf_rec`` and others is not
+mandatory. It only enhances readability of extracted code.
+You can then copy-paste the output to a file ``euclid.ml`` or let
+|Coq| do it for you with the following command::
+
+ Extraction "euclid" eucl_dev.
+
+Let us play the resulting program (in an OCaml toplevel)::
+
+ #use "euclid.ml";;
+ type nat = O | S of nat
+ type sumbool = Left | Right
+ val sub : nat -> nat -> nat = <fun>
+ val le_lt_dec : nat -> nat -> sumbool = <fun>
+ val le_gt_dec : nat -> nat -> sumbool = <fun>
+ type diveucl = Divex of nat * nat
+ val eucl_dev : nat -> nat -> diveucl = <fun>
+
+ # eucl_dev (S (S O)) (S (S (S (S (S O)))));;
+ - : diveucl = Divex (S (S O), S O)
+
+It is easier to test on OCaml integers::
+
+ # let rec nat_of_int = function 0 -> O | n -> S (nat_of_int (n-1));;
+ val nat_of_int : int -> nat = <fun>
+
+ # let rec int_of_nat = function O -> 0 | S p -> 1+(int_of_nat p);;
+ val int_of_nat : nat -> int = <fun>
+
+ # let div a b =
+ let Divex (q,r) = eucl_dev (nat_of_int b) (nat_of_int a)
+ in (int_of_nat q, int_of_nat r);;
+ val div : int -> int -> int * int = <fun>
+
+ # div 173 15;;
+ - : int * int = (11, 8)
+
+Note that these ``nat_of_int`` and ``int_of_nat`` are now
+available via a mere ``Require Import ExtrOcamlIntConv`` and then
+adding these functions to the list of functions to extract. This file
+``ExtrOcamlIntConv.v`` and some others in ``plugins/extraction/``
+are meant to help building concrete program via extraction.
+
+Extraction's horror museum
+~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Some pathological examples of extraction are grouped in the file
+``test-suite/success/extraction.v`` of the sources of |Coq|.
+
+Users' Contributions
+~~~~~~~~~~~~~~~~~~~~
+
+Several of the |Coq| Users' Contributions use extraction to produce
+certified programs. In particular the following ones have an automatic
+extraction test:
+
+ * ``additions`` : https://github.com/coq-contribs/additions
+ * ``bdds`` : https://github.com/coq-contribs/bdds
+ * ``canon-bdds`` : https://github.com/coq-contribs/canon-bdds
+ * ``chinese`` : https://github.com/coq-contribs/chinese
+ * ``continuations`` : https://github.com/coq-contribs/continuations
+ * ``coq-in-coq`` : https://github.com/coq-contribs/coq-in-coq
+ * ``exceptions`` : https://github.com/coq-contribs/exceptions
+ * ``firing-squad`` : https://github.com/coq-contribs/firing-squad
+ * ``founify`` : https://github.com/coq-contribs/founify
+ * ``graphs`` : https://github.com/coq-contribs/graphs
+ * ``higman-cf`` : https://github.com/coq-contribs/higman-cf
+ * ``higman-nw`` : https://github.com/coq-contribs/higman-nw
+ * ``hardware`` : https://github.com/coq-contribs/hardware
+ * ``multiplier`` : https://github.com/coq-contribs/multiplier
+ * ``search-trees`` : https://github.com/coq-contribs/search-trees
+ * ``stalmarck`` : https://github.com/coq-contribs/stalmarck
+
+Note that ``continuations`` and ``multiplier`` are a bit particular. They are
+examples of developments where ``Obj.magic`` are needed. This is
+probably due to an heavy use of impredicativity. After compilation, those
+two examples run nonetheless, thanks to the correction of the
+extraction :cite:`Let02`.
diff --git a/doc/sphinx/addendum/generalized-rewriting.rst b/doc/sphinx/addendum/generalized-rewriting.rst
new file mode 100644
index 000000000..da9e97e6f
--- /dev/null
+++ b/doc/sphinx/addendum/generalized-rewriting.rst
@@ -0,0 +1,845 @@
+.. _generalizedrewriting:
+
+-----------------------
+ Generalized rewriting
+-----------------------
+
+:Author: Matthieu Sozeau
+
+Generalized rewriting
+=====================
+
+
+This chapter presents the extension of several equality related
+tactics to work over user-defined structures (called setoids) that are
+equipped with ad-hoc equivalence relations meant to behave as
+equalities. Actually, the tactics have also been generalized to
+relations weaker then equivalences (e.g. rewriting systems). The
+toolbox also extends the automatic rewriting capabilities of the
+system, allowing the specification of custom strategies for rewriting.
+
+This documentation is adapted from the previous setoid documentation
+by Claudio Sacerdoti Coen (based on previous work by Clément Renard).
+The new implementation is a drop-in replacement for the old one
+[#tabareau]_, hence most of the documentation still applies.
+
+The work is a complete rewrite of the previous implementation, based
+on the type class infrastructure. It also improves on and generalizes
+the previous implementation in several ways:
+
+
++ User-extensible algorithm. The algorithm is separated in two parts:
+ generations of the rewriting constraints (done in ML) and solving of
+ these constraints using type class resolution. As type class
+ resolution is extensible using tactics, this allows users to define
+ general ways to solve morphism constraints.
++ Sub-relations. An example extension to the base algorithm is the
+ ability to define one relation as a subrelation of another so that
+ morphism declarations on one relation can be used automatically for
+ the other. This is done purely using tactics and type class search.
++ Rewriting under binders. It is possible to rewrite under binders in
+ the new implementation, if one provides the proper morphisms. Again,
+ most of the work is handled in the tactics.
++ First-class morphisms and signatures. Signatures and morphisms are
+ ordinary Coq terms, hence they can be manipulated inside Coq, put
+ inside structures and lemmas about them can be proved inside the
+ system. Higher-order morphisms are also allowed.
++ Performance. The implementation is based on a depth-first search for
+ the first solution to a set of constraints which can be as fast as
+ linear in the size of the term, and the size of the proof term is
+ linear in the size of the original term. Besides, the extensibility
+ allows the user to customize the proof search if necessary.
+
+.. [#tabareau] Nicolas Tabareau helped with the gluing.
+
+Introduction to generalized rewriting
+-------------------------------------
+
+
+Relations and morphisms
+~~~~~~~~~~~~~~~~~~~~~~~
+
+A parametric *relation* ``R`` is any term of type
+``forall (x1 :T1 ) ... (xn :Tn ), relation A``.
+The expression ``A``, which depends on ``x1 ... xn`` , is called the *carrier*
+of the relation and ``R`` is said to be a relation over ``A``; the list
+``x1,...,xn`` is the (possibly empty) list of parameters of the relation.
+
+**Example 1 (Parametric relation):**
+
+It is possible to implement finite sets of elements of type ``A`` as
+unordered list of elements of type ``A``.
+The function ``set_eq: forall (A: Type), relation (list A)``
+satisfied by two lists with the same elements is a parametric relation
+over ``(list A)`` with one parameter ``A``. The type of ``set_eq``
+is convertible with ``forall (A: Type), list A -> list A -> Prop.``
+
+An *instance* of a parametric relation ``R`` with n parameters is any term
+``(R t1 ... tn )``.
+
+Let ``R`` be a relation over ``A`` with ``n`` parameters. A term is a parametric
+proof of reflexivity for ``R`` if it has type
+``forall (x1 :T1 ) ... (xn :Tn), reflexive (R x1 ... xn )``.
+Similar definitions are given for parametric proofs of symmetry and transitivity.
+
+**Example 2 (Parametric relation (cont.)):**
+
+The ``set_eq`` relation of the previous example can be proved to be
+reflexive, symmetric and transitive. A parametric unary function ``f`` of type
+``forall (x1 :T1 ) ... (xn :Tn ), A1 -> A2`` covariantly respects two parametric relation instances
+``R1`` and ``R2`` if, whenever ``x``, ``y`` satisfy ``R1 x y``, their images (``f x``) and (``f y``)
+satisfy ``R2 (f x) (f y)``. An ``f`` that respects its input and output
+relations will be called a unary covariant *morphism*. We can also say
+that ``f`` is a monotone function with respect to ``R1`` and ``R2`` . The
+sequence ``x1 ... xn`` represents the parameters of the morphism.
+
+Let ``R1`` and ``R2`` be two parametric relations. The *signature* of a
+parametric morphism of type ``forall (x1 :T1 ) ... (xn :Tn ), A1 -> A2``
+that covariantly respects two instances :math:`I_{R_1}` and :math:`I_{R_2}` of ``R1`` and ``R2``
+is written :math:`I_{R_1} ++> I_{R_2}`. Notice that the special arrow ++>, which
+reminds the reader of covariance, is placed between the two relation
+instances, not between the two carriers. The signature relation
+instances and morphism will be typed in a context introducing
+variables for the parameters.
+
+The previous definitions are extended straightforwardly to n-ary
+morphisms, that are required to be simultaneously monotone on every
+argument.
+
+Morphisms can also be contravariant in one or more of their arguments.
+A morphism is contravariant on an argument associated to the relation
+instance :math`R` if it is covariant on the same argument when the inverse
+relation :math:`R^{−1}` (``inverse R`` in Coq) is considered. The special arrow ``-->``
+is used in signatures for contravariant morphisms.
+
+Functions having arguments related by symmetric relations instances
+are both covariant and contravariant in those arguments. The special
+arrow ``==>`` is used in signatures for morphisms that are both
+covariant and contravariant.
+
+An instance of a parametric morphism :math:`f` with :math:`n`
+parameters is any term :math:`f \, t_1 \ldots t_n`.
+
+**Example 3 (Morphisms):**
+
+Continuing the previous example, let ``union: forall (A: Type), list A -> list A -> list A``
+perform the union of two sets by appending one list to the other. ``union` is a binary
+morphism parametric over ``A`` that respects the relation instance
+``(set_eq A)``. The latter condition is proved by showing:
+
+.. coqtop:: in
+
+ forall (A: Type) (S1 S1’ S2 S2’: list A),
+ set_eq A S1 S1’ ->
+ set_eq A S2 S2’ ->
+ set_eq A (union A S1 S2) (union A S1’ S2’).
+
+The signature of the function ``union A`` is ``set_eq A ==> set_eq A ==> set_eq A``
+for all ``A``.
+
+**Example 4 (Contravariant morphism):**
+
+The division function ``Rdiv: R -> R -> R`` is a morphism of signature
+``le ++> le --> le`` where ``le`` is the usual order relation over
+real numbers. Notice that division is covariant in its first argument
+and contravariant in its second argument.
+
+Leibniz equality is a relation and every function is a morphism that
+respects Leibniz equality. Unfortunately, Leibniz equality is not
+always the intended equality for a given structure.
+
+In the next section we will describe the commands to register terms as
+parametric relations and morphisms. Several tactics that deal with
+equality in Coq can also work with the registered relations. The exact
+list of tactic will be given :ref:`in this section <tactics-enabled-on-user-provided-relations>`.
+For instance, the tactic reflexivity can be used to close a goal ``R n n`` whenever ``R``
+is an instance of a registered reflexive relation. However, the
+tactics that replace in a context ``C[]`` one term with another one
+related by ``R`` must verify that ``C[]`` is a morphism that respects the
+intended relation. Currently the verification consists in checking
+whether ``C[]`` is a syntactic composition of morphism instances that respects some obvious
+compatibility constraints.
+
+
+**Example 5 (Rewriting):**
+
+Continuing the previous examples, suppose that the user must prove
+``set_eq int (union int (union int S1 S2) S2) (f S1 S2)`` under the
+hypothesis ``H: set_eq int S2 (@nil int)``. It
+is possible to use the ``rewrite`` tactic to replace the first two
+occurrences of ``S2`` with ``@nil int`` in the goal since the
+context ``set_eq int (union int (union int S1 nil) nil) (f S1 S2)``,
+being a composition of morphisms instances, is a morphism. However the
+tactic will fail replacing the third occurrence of ``S2`` unless ``f``
+has also been declared as a morphism.
+
+
+Adding new relations and morphisms
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+A parametric relation :g:`Aeq: forall (y1 : β1 ... ym : βm )`,
+:g:`relation (A t1 ... tn)` over :g:`(A : αi -> ... αn -> Type)` can be
+declared with the following command:
+
+.. cmd:: Add Parametric Relation (x1 : T1) ... (xn : Tk) : (A t1 ... tn) (Aeq t′1 ... t′m ) {? reflexivity proved by refl} {? symmetry proved by sym} {? transitivity proved by trans} as @ident.
+
+after having required the ``Setoid`` module with the ``Require Setoid``
+command.
+
+The :g:`@ident` gives a unique name to the morphism and it is used
+by the command to generate fresh names for automatically provided
+lemmas used internally.
+
+Notice that the carrier and relation parameters may refer to the
+context of variables introduced at the beginning of the declaration,
+but the instances need not be made only of variables. Also notice that
+``A`` is *not* required to be a term having the same parameters as ``Aeq``,
+although that is often the case in practice (this departs from the
+previous implementation).
+
+
+.. cmd:: Add Relation
+
+In case the carrier and relations are not parametric, one can use this command
+instead, whose syntax is the same except there is no local context.
+
+The proofs of reflexivity, symmetry and transitivity can be omitted if
+the relation is not an equivalence relation. The proofs must be
+instances of the corresponding relation definitions: e.g. the proof of
+reflexivity must have a type convertible to
+:g:`reflexive (A t1 ... tn) (Aeq t′ 1 …t′ n )`.
+Each proof may refer to the introduced variables as well.
+
+**Example 6 (Parametric relation):**
+
+For Leibniz equality, we may declare:
+
+.. coqtop:: in
+
+ Add Parametric Relation (A : Type) : A (@eq A)
+ [reflexivity proved by @refl_equal A]
+ ...
+
+Some tactics (``reflexivity``, ``symmetry``, ``transitivity``) work only on
+relations that respect the expected properties. The remaining tactics
+(``replace``, ``rewrite`` and derived tactics such as ``autorewrite``) do not
+require any properties over the relation. However, they are able to
+replace terms with related ones only in contexts that are syntactic
+compositions of parametric morphism instances declared with the
+following command.
+
+.. cmd:: Add Parametric Morphism (x1 : T1 ) ... (xk : Tk ) : (f t1 ... tn ) with signature sig as @ident.
+
+The command declares ``f`` as a parametric morphism of signature ``sig``. The
+identifier ``id`` gives a unique name to the morphism and it is used as
+the base name of the type class instance definition and as the name of
+the lemma that proves the well-definedness of the morphism. The
+parameters of the morphism as well as the signature may refer to the
+context of variables. The command asks the user to prove interactively
+that ``f`` respects the relations identified from the signature.
+
+**Example 7:**
+
+We start the example by assuming a small theory over
+homogeneous sets and we declare set equality as a parametric
+equivalence relation and union of two sets as a parametric morphism.
+
+.. coqtop:: in
+
+ Require Export Setoid.
+ Require Export Relation_Definitions.
+
+ Set Implicit Arguments.
+
+ Parameter set: Type -> Type.
+ Parameter empty: forall A, set A.
+ Parameter eq_set: forall A, set A -> set A -> Prop.
+ Parameter union: forall A, set A -> set A -> set A.
+
+ Axiom eq_set_refl: forall A, reflexive _ (eq_set (A:=A)).
+ Axiom eq_set_sym: forall A, symmetric _ (eq_set (A:=A)).
+ Axiom eq_set_trans: forall A, transitive _ (eq_set (A:=A)).
+ Axiom empty_neutral: forall A (S: set A), eq_set (union S (empty A)) S.
+
+ Axiom union_compat: forall (A : Type),
+ forall x x' : set A, eq_set x x' ->
+ forall y y' : set A, eq_set y y' ->
+ eq_set (union x y) (union x' y').
+
+ Add Parametric Relation A : (set A) (@eq_set A)
+ reflexivity proved by (eq_set_refl (A:=A))
+ symmetry proved by (eq_set_sym (A:=A))
+ transitivity proved by (eq_set_trans (A:=A))
+ as eq_set_rel.
+
+ Add Parametric Morphism A : (@union A) with
+ signature (@eq_set A) ==> (@eq_set A) ==> (@eq_set A) as union_mor.
+ Proof.
+ exact (@union_compat A).
+ Qed.
+
+It is possible to reduce the burden of specifying parameters using
+(maximally inserted) implicit arguments. If ``A`` is always set as
+maximally implicit in the previous example, one can write:
+
+.. coqtop:: in
+
+ Add Parametric Relation A : (set A) eq_set
+ reflexivity proved by eq_set_refl
+ symmetry proved by eq_set_sym
+ transitivity proved by eq_set_trans
+ as eq_set_rel.
+
+.. coqtop:: in
+
+ Add Parametric Morphism A : (@union A) with
+ signature eq_set ==> eq_set ==> eq_set as union_mor.
+
+.. coqtop:: in
+
+ Proof. exact (@union_compat A). Qed.
+
+We proceed now by proving a simple lemma performing a rewrite step and
+then applying reflexivity, as we would do working with Leibniz
+equality. Both tactic applications are accepted since the required
+properties over ``eq_set`` and ``union`` can be established from the two
+declarations above.
+
+.. coqtop:: in
+
+ Goal forall (S: set nat),
+ eq_set (union (union S empty) S) (union S S).
+
+.. coqtop:: in
+
+ Proof. intros. rewrite empty_neutral. reflexivity. Qed.
+
+The tables of relations and morphisms are managed by the type class
+instance mechanism. The behavior on section close is to generalize the
+instances by the variables of the section (and possibly hypotheses
+used in the proofs of instance declarations) but not to export them in
+the rest of the development for proof search. One can use the
+``Existing Instance`` command to do so outside the section, using the name of the
+declared morphism suffixed by ``_Morphism``, or use the ``Global`` modifier
+for the corresponding class instance declaration
+(see :ref:`First Class Setoids and Morphisms <first-class-setoids-and-morphisms>`) at
+definition time. When loading a compiled file or importing a module,
+all the declarations of this module will be loaded.
+
+
+Rewriting and non reflexive relations
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+To replace only one argument of an n-ary morphism it is necessary to
+prove that all the other arguments are related to themselves by the
+respective relation instances.
+
+**Example 8:**
+
+To replace ``(union S empty)`` with ``S`` in ``(union (union S empty) S) (union S S)``
+the rewrite tactic must exploit the monotony of ``union`` (axiom ``union_compat``
+in the previous example). Applying ``union_compat`` by hand we are left with the
+goal ``eq_set (union S S) (union S S)``.
+
+When the relations associated to some arguments are not reflexive, the
+tactic cannot automatically prove the reflexivity goals, that are left
+to the user.
+
+Setoids whose relation are partial equivalence relations (PER) are
+useful to deal with partial functions. Let ``R`` be a PER. We say that an
+element ``x`` is defined if ``R x x``. A partial function whose domain
+comprises all the defined elements only is declared as a morphism that
+respects ``R``. Every time a rewriting step is performed the user must
+prove that the argument of the morphism is defined.
+
+**Example 9:**
+
+Let ``eqO`` be ``fun x y => x = y /\ x <> 0`` (the
+smaller PER over non zero elements). Division can be declared as a
+morphism of signature ``eq ==> eq0 ==> eq``. Replace ``x`` with
+``y`` in ``div x n = div y n`` opens the additional goal ``eq0 n n``
+that is equivalent to ``n = n /\ n <> 0``.
+
+
+Rewriting and non symmetric relations
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+When the user works up to relations that are not symmetric, it is no
+longer the case that any covariant morphism argument is also
+contravariant. As a result it is no longer possible to replace a term
+with a related one in every context, since the obtained goal implies
+the previous one if and only if the replacement has been performed in
+a contravariant position. In a similar way, replacement in an
+hypothesis can be performed only if the replaced term occurs in a
+covariant position.
+
+**Example 10 (Covariance and contravariance):**
+
+Suppose that division over real numbers has been defined as a morphism of signature
+``Z.div: Z.lt ++> Z.lt --> Z.lt`` (i.e. ``Z.div`` is increasing in
+its first argument, but decreasing on the second one). Let ``<``
+denotes ``Z.lt``. Under the hypothesis ``H: x < y`` we have
+``k < x / y -> k < x / x``, but not ``k < y / x -> k < x / x``. Dually,
+under the same hypothesis ``k < x / y -> k < y / y`` holds, but
+``k < y / x -> k < y / y`` does not. Thus, if the current goal is
+``k < x / x``, it is possible to replace only the second occurrence of
+``x`` (in contravariant position) with ``y`` since the obtained goal
+must imply the current one. On the contrary, if ``k < x / x`` is an
+hypothesis, it is possible to replace only the first occurrence of
+``x`` (in covariant position) with ``y`` since the current
+hypothesis must imply the obtained one.
+
+Contrary to the previous implementation, no specific error message
+will be raised when trying to replace a term that occurs in the wrong
+position. It will only fail because the rewriting constraints are not
+satisfiable. However it is possible to use the at modifier to specify
+which occurrences should be rewritten.
+
+As expected, composing morphisms together propagates the variance
+annotations by switching the variance every time a contravariant
+position is traversed.
+
+**Example 11:**
+
+Let us continue the previous example and let us consider
+the goal ``x / (x / x) < k``. The first and third occurrences of
+``x`` are in a contravariant position, while the second one is in
+covariant position. More in detail, the second occurrence of ``x``
+occurs covariantly in ``(x / x)`` (since division is covariant in
+its first argument), and thus contravariantly in ``x / (x / x)``
+(since division is contravariant in its second argument), and finally
+covariantly in ``x / (x / x) < k`` (since ``<``, as every
+transitive relation, is contravariant in its first argument with
+respect to the relation itself).
+
+
+Rewriting in ambiguous setoid contexts
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+One function can respect several different relations and thus it can
+be declared as a morphism having multiple signatures.
+
+**Example 12:**
+
+
+Union over homogeneous lists can be given all the
+following signatures: ``eq ==> eq ==> eq`` (``eq`` being the
+equality over ordered lists) ``set_eq ==> set_eq ==> set_eq``
+(``set_eq`` being the equality over unordered lists up to duplicates),
+``multiset_eq ==> multiset_eq ==> multiset_eq`` (``multiset_eq``
+being the equality over unordered lists).
+
+To declare multiple signatures for a morphism, repeat the ``Add Morphism``
+command.
+
+When morphisms have multiple signatures it can be the case that a
+rewrite request is ambiguous, since it is unclear what relations
+should be used to perform the rewriting. Contrary to the previous
+implementation, the tactic will always choose the first possible
+solution to the set of constraints generated by a rewrite and will not
+try to find *all* possible solutions to warn the user about.
+
+
+Commands and tactics
+--------------------
+
+
+.. _first-class-setoids-and-morphisms:
+
+First class setoids and morphisms
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+
+
+The implementation is based on a first-class representation of
+properties of relations and morphisms as type classes. That is, the
+various combinations of properties on relations and morphisms are
+represented as records and instances of theses classes are put in a
+hint database. For example, the declaration:
+
+.. coqtop:: in
+
+ Add Parametric Relation (x1 : T1) ... (xn : Tk) : (A t1 ... tn) (Aeq t′1 ... t′m)
+ [reflexivity proved by refl]
+ [symmetry proved by sym]
+ [transitivity proved by trans]
+ as id.
+
+
+is equivalent to an instance declaration:
+
+.. coqtop:: in
+
+ Instance (x1 : T1) ... (xn : Tk) => id : @Equivalence (A t1 ... tn) (Aeq t′1 ... t′m) :=
+ [Equivalence_Reflexive := refl]
+ [Equivalence_Symmetric := sym]
+ [Equivalence_Transitive := trans].
+
+The declaration itself amounts to the definition of an object of the
+record type ``Coq.Classes.RelationClasses.Equivalence`` and a hint added
+to the ``typeclass_instances`` hint database. Morphism declarations are
+also instances of a type class defined in ``Classes.Morphisms``. See the
+documentation on type classes :ref:`TODO-chapter-20-type-classes`
+and the theories files in Classes for further explanations.
+
+One can inform the rewrite tactic about morphisms and relations just
+by using the typeclass mechanism to declare them using Instance and
+Context vernacular commands. Any object of type Proper (the type of
+morphism declarations) in the local context will also be automatically
+used by the rewriting tactic to solve constraints.
+
+Other representations of first class setoids and morphisms can also be
+handled by encoding them as records. In the following example, the
+projections of the setoid relation and of the morphism function can be
+registered as parametric relations and morphisms.
+
+**Example 13 (First class setoids):**
+
+.. coqtop:: in
+
+ Require Import Relation_Definitions Setoid.
+
+ Record Setoid: Type :=
+ { car: Type;
+ eq: car -> car -> Prop;
+ refl: reflexive _ eq;
+ sym: symmetric _ eq;
+ trans: transitive _ eq
+ }.
+
+ Add Parametric Relation (s : Setoid) : (@car s) (@eq s)
+ reflexivity proved by (refl s)
+ symmetry proved by (sym s)
+ transitivity proved by (trans s) as eq_rel.
+
+ Record Morphism (S1 S2:Setoid): Type :=
+ { f: car S1 -> car S2;
+ compat: forall (x1 x2: car S1), eq S1 x1 x2 -> eq S2 (f x1) (f x2)
+ }.
+
+ Add Parametric Morphism (S1 S2 : Setoid) (M : Morphism S1 S2) :
+ (@f S1 S2 M) with signature (@eq S1 ==> @eq S2) as apply_mor.
+ Proof. apply (compat S1 S2 M). Qed.
+
+ Lemma test: forall (S1 S2:Setoid) (m: Morphism S1 S2)
+ (x y: car S1), eq S1 x y -> eq S2 (f _ _ m x) (f _ _ m y).
+ Proof. intros. rewrite H. reflexivity. Qed.
+
+.. _tactics-enabled-on-user-provided-relations:
+
+Tactics enabled on user provided relations
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+The following tactics, all prefixed by ``setoid_``, deal with arbitrary
+registered relations and morphisms. Moreover, all the corresponding
+unprefixed tactics (i.e. ``reflexivity``, ``symmetry``, ``transitivity``,
+``replace``, ``rewrite``) have been extended to fall back to their prefixed
+counterparts when the relation involved is not Leibniz equality.
+Notice, however, that using the prefixed tactics it is possible to
+pass additional arguments such as ``using relation``.
+
+.. tacv:: setoid_reflexivity
+
+.. tacv:: setoid_symmetry [in @ident]
+
+.. tacv:: setoid_transitivity
+
+.. tacv:: setoid_rewrite [@orientation] @term [at @occs] [in @ident]
+
+.. tacv:: setoid_replace @term with @term [in @ident] [using relation @term] [by @tactic]
+
+
+The ``using relation`` arguments cannot be passed to the unprefixed form.
+The latter argument tells the tactic what parametric relation should
+be used to replace the first tactic argument with the second one. If
+omitted, it defaults to the ``DefaultRelation`` instance on the type of
+the objects. By default, it means the most recent ``Equivalence`` instance
+in the environment, but it can be customized by declaring
+new ``DefaultRelation`` instances. As Leibniz equality is a declared
+equivalence, it will fall back to it if no other relation is declared
+on a given type.
+
+Every derived tactic that is based on the unprefixed forms of the
+tactics considered above will also work up to user defined relations.
+For instance, it is possible to register hints for ``autorewrite`` that
+are not proof of Leibniz equalities. In particular it is possible to
+exploit ``autorewrite`` to simulate normalization in a term rewriting
+system up to user defined equalities.
+
+
+Printing relations and morphisms
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+The ``Print Instances`` command can be used to show the list of currently
+registered ``Reflexive`` (using ``Print Instances Reflexive``), ``Symmetric``
+or ``Transitive`` relations, Equivalences, PreOrders, PERs, and Morphisms
+(implemented as ``Proper`` instances). When the rewriting tactics refuse
+to replace a term in a context because the latter is not a composition
+of morphisms, the ``Print Instances`` commands can be useful to understand
+what additional morphisms should be registered.
+
+
+Deprecated syntax and backward incompatibilities
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Due to backward compatibility reasons, the following syntax for the
+declaration of setoids and morphisms is also accepted.
+
+.. tacv:: Add Setoid @A @Aeq @ST as @ident
+
+where ``Aeq`` is a congruence relation without parameters, ``A`` is its carrier
+and ``ST`` is an object of type (``Setoid_Theory A Aeq``) (i.e. a record
+packing together the reflexivity, symmetry and transitivity lemmas).
+Notice that the syntax is not completely backward compatible since the
+identifier was not required.
+
+.. cmd:: Add Morphism f : @ident.
+
+The latter command also is restricted to the declaration of morphisms
+without parameters. It is not fully backward compatible since the
+property the user is asked to prove is slightly different: for n-ary
+morphisms the hypotheses of the property are permuted; moreover, when
+the morphism returns a proposition, the property is now stated using a
+bi-implication in place of a simple implication. In practice, porting
+an old development to the new semantics is usually quite simple.
+
+Notice that several limitations of the old implementation have been
+lifted. In particular, it is now possible to declare several relations
+with the same carrier and several signatures for the same morphism.
+Moreover, it is now also possible to declare several morphisms having
+the same signature. Finally, the replace and rewrite tactics can be
+used to replace terms in contexts that were refused by the old
+implementation. As discussed in the next section, the semantics of the
+new ``setoid_rewrite`` command differs slightly from the old one and
+``rewrite``.
+
+
+Extensions
+----------
+
+
+Rewriting under binders
+~~~~~~~~~~~~~~~~~~~~~~~
+
+warning:: Due to compatibility issues, this feature is enabled only
+when calling the ``setoid_rewrite`` tactics directly and not ``rewrite``.
+
+To be able to rewrite under binding constructs, one must declare
+morphisms with respect to pointwise (setoid) equivalence of functions.
+Example of such morphisms are the standard ``all`` and ``ex`` combinators for
+universal and existential quantification respectively. They are
+declared as morphisms in the ``Classes.Morphisms_Prop`` module. For
+example, to declare that universal quantification is a morphism for
+logical equivalence:
+
+.. coqtop:: in
+
+ Instance all_iff_morphism (A : Type) :
+ Proper (pointwise_relation A iff ==> iff) (@all A).
+
+.. coqtop:: all
+
+ Proof. simpl_relation.
+
+One then has to show that if two predicates are equivalent at every
+point, their universal quantifications are equivalent. Once we have
+declared such a morphism, it will be used by the setoid rewriting
+tactic each time we try to rewrite under an ``all`` application (products
+in ``Prop`` are implicitly translated to such applications).
+
+Indeed, when rewriting under a lambda, binding variable ``x``, say from ``P x``
+to ``Q x`` using the relation iff, the tactic will generate a proof of
+``pointwise_relation A iff (fun x => P x) (fun x => Q x)`` from the proof
+of ``iff (P x) (Q x)`` and a constraint of the form Proper
+``(pointwise_relation A iff ==> ?) m`` will be generated for the
+surrounding morphism ``m``.
+
+Hence, one can add higher-order combinators as morphisms by providing
+signatures using pointwise extension for the relations on the
+functional arguments (or whatever subrelation of the pointwise
+extension). For example, one could declare the ``map`` combinator on lists
+as a morphism:
+
+.. coqtop:: in
+
+ Instance map_morphism `{Equivalence A eqA, Equivalence B eqB} :
+ Proper ((eqA ==> eqB) ==> list_equiv eqA ==> list_equiv eqB) (@map A B).
+
+where ``list_equiv`` implements an equivalence on lists parameterized by
+an equivalence on the elements.
+
+Note that when one does rewriting with a lemma under a binder using
+``setoid_rewrite``, the application of the lemma may capture the bound
+variable, as the semantics are different from rewrite where the lemma
+is first matched on the whole term. With the new ``setoid_rewrite``,
+matching is done on each subterm separately and in its local
+environment, and all matches are rewritten *simultaneously* by
+default. The semantics of the previous ``setoid_rewrite`` implementation
+can almost be recovered using the ``at 1`` modifier.
+
+
+Sub-relations
+~~~~~~~~~~~~~
+
+Sub-relations can be used to specify that one relation is included in
+another, so that morphisms signatures for one can be used for the
+other. If a signature mentions a relation ``R`` on the left of an
+arrow ``==>``, then the signature also applies for any relation ``S`` that is
+smaller than ``R``, and the inverse applies on the right of an arrow. One
+can then declare only a few morphisms instances that generate the
+complete set of signatures for a particular constant. By default, the
+only declared subrelation is ``iff``, which is a subrelation of ``impl`` and
+``inverse impl`` (the dual of implication). That’s why we can declare only
+two morphisms for conjunction: ``Proper (impl ==> impl ==> impl) and`` and
+``Proper (iff ==> iff ==> iff) and``. This is sufficient to satisfy any
+rewriting constraints arising from a rewrite using ``iff``, ``impl`` or
+``inverse impl`` through ``and``.
+
+Sub-relations are implemented in ``Classes.Morphisms`` and are a prime
+example of a mostly user-space extension of the algorithm.
+
+
+Constant unfolding
+~~~~~~~~~~~~~~~~~~
+
+The resolution tactic is based on type classes and hence regards user-
+defined constants as transparent by default. This may slow down the
+resolution due to a lot of unifications (all the declared ``Proper``
+instances are tried at each node of the search tree). To speed it up,
+declare your constant as rigid for proof search using the command
+``Typeclasses Opaque`` (see :ref:`TODO-20.6.7-typeclasses-transparency`).
+
+
+Strategies for rewriting
+------------------------
+
+
+Definitions
+~~~~~~~~~~~
+
+The generalized rewriting tactic is based on a set of strategies that
+can be combined to obtain custom rewriting procedures. Its set of
+strategies is based on Elan’s rewriting strategies :ref:`TODO-102-biblio`. Rewriting
+strategies are applied using the tactic ``rewrite_strat s`` where ``s`` is a
+strategy expression. Strategies are defined inductively as described
+by the following grammar:
+
+.. productionlist:: rewriting
+ s, t, u : `strategy`
+ : | `lemma`
+ : | `lemma_right_to_left`
+ : | `failure`
+ : | `identity`
+ : | `reflexivity`
+ : | `progress`
+ : | `failure_catch`
+ : | `composition`
+ : | `left_biased_choice`
+ : | `iteration_one_or_more`
+ : | `iteration_zero_or_more`
+ : | `one_subterm`
+ : | `all_subterms`
+ : | `innermost_first`
+ : | `outermost_first`
+ : | `bottom_up`
+ : | `top_down`
+ : | `apply_hint`
+ : | `any_of_the_terms`
+ : | `apply_reduction`
+ : | `fold_expression`
+
+.. productionlist:: rewriting
+ strategy : "(" `s` ")"
+ lemma : `c`
+ lemma_right_to_left : "<-" `c`
+ failure : `fail`
+ identity : `id`
+ reflexivity : `refl`
+ progress : `progress` `s`
+ failure_catch : `try` `s`
+ composition : `s` ";" `u`
+ left_biased_choice : choice `s` `t`
+ iteration_one_or_more : `repeat` `s`
+ iteration_zero_or_more : `any` `s`
+ one_subterm : subterm `s`
+ all_subterms : subterms `s`
+ innermost_first : `innermost` `s`
+ outermost_first : `outermost` `s`
+ bottom_up : `bottomup` `s`
+ top_down : `topdown` `s`
+ apply_hint : hints `hintdb`
+ any_of_the_terms : terms (`c`)+
+ apply_reduction : eval `redexpr`
+ fold_expression : fold `c`
+
+
+Actually a few of these are defined in term of the others using a
+primitive fixpoint operator:
+
+.. productionlist:: rewriting
+ try `s` : choice `s` `id`
+ any `s` : fix `u`. try (`s` ; `u`)
+ repeat `s` : `s` ; `any` `s`
+ bottomup s : fix `bu`. (choice (progress (subterms bu)) s) ; try bu
+ topdown s : fix `td`. (choice s (progress (subterms td))) ; try td
+ innermost s : fix `i`. (choice (subterm i) s)
+ outermost s : fix `o`. (choice s (subterm o))
+
+The basic control strategy semantics are straightforward: strategies
+are applied to subterms of the term to rewrite, starting from the root
+of the term. The lemma strategies unify the left-hand-side of the
+lemma with the current subterm and on success rewrite it to the right-
+hand-side. Composition can be used to continue rewriting on the
+current subterm. The fail strategy always fails while the identity
+strategy succeeds without making progress. The reflexivity strategy
+succeeds, making progress using a reflexivity proof of rewriting.
+Progress tests progress of the argument strategy and fails if no
+progress was made, while ``try`` always succeeds, catching failures.
+Choice is left-biased: it will launch the first strategy and fall back
+on the second one in case of failure. One can iterate a strategy at
+least 1 time using ``repeat`` and at least 0 times using ``any``.
+
+The ``subterm`` and ``subterms`` strategies apply their argument strategy ``s`` to
+respectively one or all subterms of the current term under
+consideration, left-to-right. ``subterm`` stops at the first subterm for
+which ``s`` made progress. The composite strategies ``innermost`` and ``outermost``
+perform a single innermost or outermost rewrite using their argument
+strategy. Their counterparts ``bottomup`` and ``topdown`` perform as many
+rewritings as possible, starting from the bottom or the top of the
+term.
+
+Hint databases created for ``autorewrite`` can also be used
+by ``rewrite_strat`` using the ``hints`` strategy that applies any of the
+lemmas at the current subterm. The ``terms`` strategy takes the lemma
+names directly as arguments. The ``eval`` strategy expects a reduction
+expression (see :ref:`TODO-8.7-performing-computations`) and succeeds
+if it reduces the subterm under consideration. The ``fold`` strategy takes
+a term ``c`` and tries to *unify* it to the current subterm, converting it to ``c``
+on success, it is stronger than the tactic ``fold``.
+
+
+Usage
+~~~~~
+
+
+.. tacv:: rewrite_strat @s [in @ident]
+
+ Rewrite using the strategy s in hypothesis ident or the conclusion.
+
+ .. exn:: Nothing to rewrite.
+
+ If the strategy failed.
+
+ .. exn:: No progress made.
+
+ If the strategy succeeded but made no progress.
+
+ .. exn:: Unable to satisfy the rewriting constraints.
+
+ If the strategy succeeded and made progress but the
+ corresponding rewriting constraints are not satisfied.
+
+
+ The ``setoid_rewrite c`` tactic is basically equivalent to
+ ``rewrite_strat (outermost c)``.
+
diff --git a/doc/sphinx/addendum/implicit-coercions.rst b/doc/sphinx/addendum/implicit-coercions.rst
new file mode 100644
index 000000000..f5ca5be44
--- /dev/null
+++ b/doc/sphinx/addendum/implicit-coercions.rst
@@ -0,0 +1,469 @@
+.. _implicitcoercions:
+
+.. include:: ../replaces.rst
+
+Implicit Coercions
+====================
+
+:Author: Amokrane Saïbi
+
+General Presentation
+---------------------
+
+This section describes the inheritance mechanism of |Coq|. In |Coq| with
+inheritance, we are not interested in adding any expressive power to
+our theory, but only convenience. Given a term, possibly not typable,
+we are interested in the problem of determining if it can be well
+typed modulo insertion of appropriate coercions. We allow to write:
+
+ * :g:`f a` where :g:`f:(forall x:A,B)` and :g:`a:A'` when ``A'`` can
+ be seen in some sense as a subtype of ``A``.
+ * :g:`x:A` when ``A`` is not a type, but can be seen in
+ a certain sense as a type: set, group, category etc.
+ * :g:`f a` when ``f`` is not a function, but can be seen in a certain sense
+ as a function: bijection, functor, any structure morphism etc.
+
+
+Classes
+-------
+
+A class with `n` parameters is any defined name with a type
+:g:`forall (x₁:A₁)..(xₙ:Aₙ),s` where ``s`` is a sort. Thus a class with
+parameters is considered as a single class and not as a family of
+classes. An object of a class ``C`` is any term of type :g:`C t₁ .. tₙ`.
+In addition to these user-classes, we have two abstract classes:
+
+
+ * ``Sortclass``, the class of sorts; its objects are the terms whose type is a
+ sort (e.g. :g:`Prop` or :g:`Type`).
+ * ``Funclass``, the class of functions; its objects are all the terms with a functional
+ type, i.e. of form :g:`forall x:A,B`.
+
+Formally, the syntax of a classes is defined as:
+
+.. productionlist::
+ class: qualid
+ : | `Sortclass`
+ : | `Funclass`
+
+
+Coercions
+---------
+
+A name ``f`` can be declared as a coercion between a source user-class
+``C`` with `n` parameters and a target class ``D`` if one of these
+conditions holds:
+
+ * ``D`` is a user-class, then the type of ``f`` must have the form
+ :g:`forall (x₁:A₁)..(xₙ:Aₙ)(y:C x₁..xₙ), D u₁..uₘ` where `m`
+ is the number of parameters of ``D``.
+ * ``D`` is ``Funclass``, then the type of ``f`` must have the form
+ :g:`forall (x₁:A₁)..(xₙ:Aₙ)(y:C x₁..xₙ)(x:A), B`.
+ * ``D`` is ``Sortclass``, then the type of ``f`` must have the form
+ :g:`forall (x₁:A₁)..(xₙ:Aₙ)(y:C x₁..xₙ), s` with ``s`` a sort.
+
+We then write :g:`f : C >-> D`. The restriction on the type
+of coercions is called *the uniform inheritance condition*.
+
+.. note:: The abstract classe ``Sortclass`` can be used as a source class, but
+ the abstract class ``Funclass`` cannot.
+
+To coerce an object :g:`t:C t₁..tₙ` of ``C`` towards ``D``, we have to
+apply the coercion ``f`` to it; the obtained term :g:`f t₁..tₙ t` is
+then an object of ``D``.
+
+
+Identity Coercions
+-------------------
+
+Identity coercions are special cases of coercions used to go around
+the uniform inheritance condition. Let ``C`` and ``D`` be two classes
+with respectively `n` and `m` parameters and
+:g:`f:forall (x₁:T₁)..(xₖ:Tₖ)(y:C u₁..uₙ), D v₁..vₘ` a function which
+does not verify the uniform inheritance condition. To declare ``f`` as
+coercion, one has first to declare a subclass ``C'`` of ``C``:
+
+ :g:`C' := fun (x₁:T₁)..(xₖ:Tₖ) => C u₁..uₙ`
+
+We then define an *identity coercion* between ``C'`` and ``C``:
+
+ :g:`Id_C'_C := fun (x₁:T₁)..(xₖ:Tₖ)(y:C' x₁..xₖ) => (y:C u₁..uₙ)`
+
+We can now declare ``f`` as coercion from ``C'`` to ``D``, since we can
+"cast" its type as
+:g:`forall (x₁:T₁)..(xₖ:Tₖ)(y:C' x₁..xₖ),D v₁..vₘ`.
+
+The identity coercions have a special status: to coerce an object
+:g:`t:C' t₁..tₖ`
+of ``C'`` towards ``C``, we does not have to insert explicitly ``Id_C'_C``
+since :g:`Id_C'_C t₁..tₖ t` is convertible with ``t``. However we
+"rewrite" the type of ``t`` to become an object of ``C``; in this case,
+it becomes :g:`C uₙ'..uₖ'` where each ``uᵢ'`` is the result of the
+substitution in ``uᵢ`` of the variables ``xⱼ`` by ``tⱼ``.
+
+Inheritance Graph
+------------------
+
+Coercions form an inheritance graph with classes as nodes. We call
+*coercion path* an ordered list of coercions between two nodes of
+the graph. A class ``C`` is said to be a subclass of ``D`` if there is a
+coercion path in the graph from ``C`` to ``D``; we also say that ``C``
+inherits from ``D``. Our mechanism supports multiple inheritance since a
+class may inherit from several classes, contrary to simple inheritance
+where a class inherits from at most one class. However there must be
+at most one path between two classes. If this is not the case, only
+the *oldest* one is valid and the others are ignored. So the order
+of declaration of coercions is important.
+
+We extend notations for coercions to coercion paths. For instance
+:g:`[f₁;..;fₖ] : C >-> D` is the coercion path composed
+by the coercions ``f₁..fₖ``. The application of a coercion path to a
+term consists of the successive application of its coercions.
+
+
+Declaration of Coercions
+-------------------------
+
+.. cmd:: Coercion @qualid : @class >-> @class.
+
+ Declares the construction denoted by `qualid` as a coercion between
+ the two given classes.
+
+ .. exn:: @qualid not declared
+ .. exn:: @qualid is already a coercion
+ .. exn:: Funclass cannot be a source class
+ .. exn:: @qualid is not a function
+ .. exn:: Cannot find the source class of @qualid
+ .. exn:: Cannot recognize @class as a source class of @qualid
+ .. exn:: @qualid does not respect the uniform inheritance condition
+ .. exn:: Found target class ... instead of ...
+
+ .. warn:: Ambigous path:
+
+ When the coercion `qualid` is added to the inheritance graph, non
+ valid coercion paths are ignored; they are signaled by a warning
+ displaying these paths of the form :g:`[f₁;..;fₙ] : C >-> D`.
+
+ .. cmdv:: Local Coercion @qualid : @class >-> @class.
+
+ Declares the construction denoted by `qualid` as a coercion local to
+ the current section.
+
+ .. cmdv:: Coercion @ident := @term.
+
+ This defines `ident` just like ``Definition`` `ident` ``:=`` `term`,
+ and then declares `ident` as a coercion between it source and its target.
+
+ .. cmdv:: Coercion @ident := @term : @type.
+
+ This defines `ident` just like ``Definition`` `ident` : `type` ``:=`` `term`,
+ and then declares `ident` as a coercion between it source and its target.
+
+ .. cmdv:: Local Coercion @ident := @term.
+
+ This defines `ident` just like ``Let`` `ident` ``:=`` `term`,
+ and then declares `ident` as a coercion between it source and its target.
+
+Assumptions can be declared as coercions at declaration time.
+This extends the grammar of assumptions from
+Figure :ref:`TODO-1.3-sentences-syntax` as follows:
+
+..
+ FIXME:
+ \comindex{Variable \mbox{\rm (and coercions)}}
+ \comindex{Axiom \mbox{\rm (and coercions)}}
+ \comindex{Parameter \mbox{\rm (and coercions)}}
+ \comindex{Hypothesis \mbox{\rm (and coercions)}}
+
+.. productionlist::
+ assumption : assumption_keyword assums .
+ assums : simple_assums
+ : | (simple_assums) ... (simple_assums)
+ simple_assums : ident ... ident :[>] term
+
+If the extra ``>`` is present before the type of some assumptions, these
+assumptions are declared as coercions.
+
+Similarly, constructors of inductive types can be declared as coercions at
+definition time of the inductive type. This extends and modifies the
+grammar of inductive types from Figure :ref:`TODO-1.3-sentences-syntax` as follows:
+
+..
+ FIXME:
+ \comindex{Inductive \mbox{\rm (and coercions)}}
+ \comindex{CoInductive \mbox{\rm (and coercions)}}
+
+.. productionlist::
+ inductive : `Inductive` ind_body `with` ... `with` ind_body
+ : | `CoInductive` ind_body `with` ... `with` ind_body
+ ind_body : ident [binders] : term := [[|] constructor | ... | constructor]
+ constructor : ident [binders] [:[>] term]
+
+Especially, if the extra ``>`` is present in a constructor
+declaration, this constructor is declared as a coercion.
+
+.. cmd:: Identity Coercion @ident : @class >-> @class.
+
+ If ``C`` is the source `class` and ``D`` the destination, we check
+ that ``C`` is a constant with a body of the form
+ :g:`fun (x₁:T₁)..(xₙ:Tₙ) => D t₁..tₘ` where `m` is the
+ number of parameters of ``D``. Then we define an identity
+ function with type :g:`forall (x₁:T₁)..(xₙ:Tₙ)(y:C x₁..xₙ),D t₁..tₘ`,
+ and we declare it as an identity coercion between ``C`` and ``D``.
+
+ .. exn:: @class must be a transparent constant
+
+ .. cmdv:: Local Identity Coercion @ident : @ident >-> @ident.
+
+ Idem but locally to the current section.
+
+ .. cmdv:: SubClass @ident := @type.
+
+ If `type` is a class `ident'` applied to some arguments then
+ `ident` is defined and an identity coercion of name
+ `Id_ident_ident'` is
+ declared. Otherwise said, this is an abbreviation for
+
+ ``Definition`` `ident` ``:=`` `type`.
+
+ ``Identity Coercion`` `Id_ident_ident'` : `ident` ``>->`` `ident'`.
+
+ .. cmdv:: Local SubClass @ident := @type.
+
+ Same as before but locally to the current section.
+
+
+Displaying Available Coercions
+-------------------------------
+
+.. cmd:: Print Classes.
+
+ Print the list of declared classes in the current context.
+
+.. cmd:: Print Coercions.
+
+ Print the list of declared coercions in the current context.
+
+.. cmd:: Print Graph.
+
+ Print the list of valid coercion paths in the current context.
+
+.. cmd:: Print Coercion Paths @class @class.
+
+ Print the list of valid coercion paths between the two given classes.
+
+Activating the Printing of Coercions
+-------------------------------------
+
+.. cmd:: Set Printing Coercions.
+
+ This command forces all the coercions to be printed.
+ Conversely, to skip the printing of coercions, use
+ ``Unset Printing Coercions``. By default, coercions are not printed.
+
+.. cmd:: Add Printing Coercion @qualid.
+
+ This command forces coercion denoted by `qualid` to be printed.
+ To skip the printing of coercion `qualid`, use
+ ``Remove Printing Coercion`` `qualid`. By default, a coercion is never printed.
+
+
+Classes as Records
+------------------
+
+We allow the definition of *Structures with Inheritance* (or
+classes as records) by extending the existing ``Record`` macro
+(see Section :ref:`TODO-2.1-Record`). Its new syntax is:
+
+.. cmd:: Record {? >} @ident {? @binders} : @sort := {? @ident} { {+; @ident :{? >} @term } }.
+
+ The first identifier `ident` is the name of the defined record and
+ `sort` is its type. The optional identifier after ``:=`` is the name
+ of the constuctor (it will be ``Build_``\ `ident` if not given).
+ The other identifiers are the names of the fields, and the `term`
+ are their respective types. If ``:>`` is used instead of ``:`` in
+ the declaration of a field, then the name of this field is automatically
+ declared as a coercion from the record name to the class of this
+ field type. Remark that the fields always verify the uniform
+ inheritance condition. If the optional ``>`` is given before the
+ record name, then the constructor name is automatically declared as
+ a coercion from the class of the last field type to the record name
+ (this may fail if the uniform inheritance condition is not
+ satisfied).
+
+.. note::
+
+ The keyword ``Structure`` is a synonym of ``Record``.
+
+..
+ FIXME: \comindex{Structure}
+
+
+Coercions and Sections
+----------------------
+
+The inheritance mechanism is compatible with the section
+mechanism. The global classes and coercions defined inside a section
+are redefined after its closing, using their new value and new
+type. The classes and coercions which are local to the section are
+simply forgotten.
+Coercions with a local source class or a local target class, and
+coercions which do not verify the uniform inheritance condition any longer
+are also forgotten.
+
+Coercions and Modules
+--------------------=
+
+From |Coq| version 8.3, the coercions present in a module are activated
+only when the module is explicitly imported. Formerly, the coercions
+were activated as soon as the module was required, whatever it was
+imported or not.
+
+To recover the behavior of the versions of |Coq| prior to 8.3, use the
+following command:
+
+.. cmd:: Set Automatic Coercions Import.
+
+To cancel the effect of the option, use instead ``Unset Automatic Coercions Import``.
+
+
+Examples
+--------
+
+There are three situations:
+
+Coercion at function application
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+:g:`f a` is ill-typed where :g:`f:forall x:A,B` and :g:`a:A'`. If there is a
+coercion path between ``A'`` and ``A``, then :g:`f a` is transformed into
+:g:`f a'` where ``a'`` is the result of the application of this
+coercion path to ``a``.
+
+We first give an example of coercion between atomic inductive types
+
+.. coqtop:: all
+
+ Definition bool_in_nat (b:bool) := if b then 0 else 1.
+ Coercion bool_in_nat : bool >-> nat.
+ Check (0 = true).
+ Set Printing Coercions.
+ Check (0 = true).
+ Unset Printing Coercions.
+
+
+.. warning::
+
+ Note that ``Check true=O`` would fail. This is "normal" behaviour of
+ coercions. To validate ``true=O``, the coercion is searched from
+ ``nat`` to ``bool``. There is none.
+
+We give an example of coercion between classes with parameters.
+
+.. coqtop:: all
+
+ Parameters (C : nat -> Set) (D : nat -> bool -> Set) (E : bool -> Set).
+ Parameter f : forall n:nat, C n -> D (S n) true.
+ Coercion f : C >-> D.
+ Parameter g : forall (n:nat) (b:bool), D n b -> E b.
+ Coercion g : D >-> E.
+ Parameter c : C 0.
+ Parameter T : E true -> nat.
+ Check (T c).
+ Set Printing Coercions.
+ Check (T c).
+ Unset Printing Coercions.
+
+We give now an example using identity coercions.
+
+.. coqtop:: all
+
+ Definition D' (b:bool) := D 1 b.
+ Identity Coercion IdD'D : D' >-> D.
+ Print IdD'D.
+ Parameter d' : D' true.
+ Check (T d').
+ Set Printing Coercions.
+ Check (T d').
+ Unset Printing Coercions.
+
+
+In the case of functional arguments, we use the monotonic rule of
+sub-typing. Approximatively, to coerce :g:`t:forall x:A,B` towards
+:g:`forall x:A',B'`, one have to coerce ``A'`` towards ``A`` and ``B``
+towards ``B'``. An example is given below:
+
+.. coqtop:: all
+
+ Parameters (A B : Set) (h : A -> B).
+ Coercion h : A >-> B.
+ Parameter U : (A -> E true) -> nat.
+ Parameter t : B -> C 0.
+ Check (U t).
+ Set Printing Coercions.
+ Check (U t).
+ Unset Printing Coercions.
+
+Remark the changes in the result following the modification of the
+previous example.
+
+.. coqtop:: all
+
+ Parameter U' : (C 0 -> B) -> nat.
+ Parameter t' : E true -> A.
+ Check (U' t').
+ Set Printing Coercions.
+ Check (U' t').
+ Unset Printing Coercions.
+
+
+Coercion to a type
+~~~~~~~~~~~~~~~~~~
+
+An assumption ``x:A`` when ``A`` is not a type, is ill-typed. It is
+replaced by ``x:A'`` where ``A'`` is the result of the application to
+``A`` of the coercion path between the class of ``A`` and
+``Sortclass`` if it exists. This case occurs in the abstraction
+:g:`fun x:A => t`, universal quantification :g:`forall x:A,B`, global
+variables and parameters of (co-)inductive definitions and
+functions. In :g:`forall x:A,B`, such a coercion path may be applied
+to ``B`` also if necessary.
+
+.. coqtop:: all
+
+ Parameter Graph : Type.
+ Parameter Node : Graph -> Type.
+ Coercion Node : Graph >-> Sortclass.
+ Parameter G : Graph.
+ Parameter Arrows : G -> G -> Type.
+ Check Arrows.
+ Parameter fg : G -> G.
+ Check fg.
+ Set Printing Coercions.
+ Check fg.
+ Unset Printing Coercions.
+
+
+Coercion to a function
+~~~~~~~~~~~~~~~~~~~~~~
+
+``f a`` is ill-typed because ``f:A`` is not a function. The term
+``f`` is replaced by the term obtained by applying to ``f`` the
+coercion path between ``A`` and ``Funclass`` if it exists.
+
+.. coqtop:: all
+
+ Parameter bij : Set -> Set -> Set.
+ Parameter ap : forall A B:Set, bij A B -> A -> B.
+ Coercion ap : bij >-> Funclass.
+ Parameter b : bij nat nat.
+ Check (b 0).
+ Set Printing Coercions.
+ Check (b 0).
+ Unset Printing Coercions.
+
+Let us see the resulting graph after all these examples.
+
+.. coqtop:: all
+
+ Print Graph.
diff --git a/doc/sphinx/addendum/nsatz.rst b/doc/sphinx/addendum/nsatz.rst
new file mode 100644
index 000000000..ef9b3505d
--- /dev/null
+++ b/doc/sphinx/addendum/nsatz.rst
@@ -0,0 +1,101 @@
+.. include:: ../preamble.rst
+
+.. _nsatz:
+
+Nsatz: tactics for proving equalities in integral domains
+===========================================================
+
+:Author: Loïc Pottier
+
+The tactic `nsatz` proves goals of the form
+
+:math:`\begin{array}{l}
+\forall X_1,\ldots,X_n \in A,\\
+P_1(X_1,\ldots,X_n) = Q_1(X_1,\ldots,X_n) , \ldots , P_s(X_1,\ldots,X_n) =Q_s(X_1,\ldots,X_n)\\
+\vdash P(X_1,\ldots,X_n) = Q(X_1,\ldots,X_n)\\
+\end{array}`
+
+where :math:`P, Q, P₁,Q₁,\ldots,Pₛ, Qₛ` are polynomials and :math:`A` is an integral
+domain, i.e. a commutative ring with no zero divisor. For example, :math:`A`
+can be :math:`\mathbb{R}`, :math:`\mathbb{Z}`, or :math:`\mathbb{Q}`.
+Note that the equality :math:`=` used in these goals can be
+any setoid equality (see :ref:`TODO-27.2.2`) , not only Leibnitz equality.
+
+It also proves formulas
+
+:math:`\begin{array}{l}
+\forall X_1,\ldots,X_n \in A,\\
+P_1(X_1,\ldots,X_n) = Q_1(X_1,\ldots,X_n) \wedge \ldots \wedge P_s(X_1,\ldots,X_n) =Q_s(X_1,\ldots,X_n)\\
+\rightarrow P(X_1,\ldots,X_n) = Q(X_1,\ldots,X_n)\\
+\end{array}`
+
+doing automatic introductions.
+
+
+Using the basic tactic `nsatz`
+------------------------------
+
+
+Load the Nsatz module:
+
+.. coqtop:: all
+
+ Require Import Nsatz.
+
+and use the tactic `nsatz`.
+
+More about `nsatz`
+---------------------
+
+Hilbert’s Nullstellensatz theorem shows how to reduce proofs of
+equalities on polynomials on a commutative ring :math:`A` with no zero divisor
+to algebraic computations: it is easy to see that if a polynomial :math:`P` in
+:math:`A[X_1,\ldots,X_n]` verifies :math:`c P^r = \sum_{i=1}^{s} S_i P_i`, with
+:math:`c \in A`, :math:`c \not = 0`,
+:math:`r` a positive integer, and the :math:`S_i` s in :math:`A[X_1,\ldots,X_n ]`,
+then :math:`P` is zero whenever polynomials :math:`P_1,\ldots,P_s` are zero
+(the converse is also true when :math:`A` is an algebraic closed field: the method is
+complete).
+
+So, proving our initial problem can reduce into finding :math:`S_1,\ldots,S_s`,
+:math:`c` and :math:`r` such that :math:`c (P-Q)^r = \sum_{i} S_i (P_i-Q_i)`,
+which will be proved by the tactic ring.
+
+This is achieved by the computation of a Gröbner basis of the ideal
+generated by :math:`P_1-Q_1,...,P_s-Q_s`, with an adapted version of the
+Buchberger algorithm.
+
+This computation is done after a step of *reification*, which is
+performed using :ref:`typeclasses`.
+
+The ``Nsatz`` module defines the tactic `nsatz`, which can be used without
+arguments, or with the syntax:
+
+| nsatz with radicalmax:=num%N strategy:=num%Z parameters:= :n:`{* var}` variables:= :n:`{* var}`
+
+where:
+
+* `radicalmax` is a bound when for searching r s.t.
+ :math:`c (P−Q) r = \sum_{i=1..s} S_i (P i − Q i)`
+
+* `strategy` gives the order on variables :math:`X_1,\ldots,X_n` and the strategy
+ used in Buchberger algorithm (see :cite:`sugar` for details):
+
+ * strategy = 0: reverse lexicographic order and newest s-polynomial.
+ * strategy = 1: reverse lexicographic order and sugar strategy.
+ * strategy = 2: pure lexicographic order and newest s-polynomial.
+ * strategy = 3: pure lexicographic order and sugar strategy.
+
+* `parameters` is the list of variables :math:`X_{i_1},\ldots,X_{i_k}` among
+ :math:`X_1,\ldots,X_n` which are considered as parameters: computation will be performed with
+ rational fractions in these variables, i.e. polynomials are considered
+ with coefficients in :math:`R(X_{i_1},\ldots,X_{i_k})`. In this case, the coefficient
+ :math:`c` can be a non constant polynomial in :math:`X_{i_1},\ldots,X_{i_k}`, and the tactic
+ produces a goal which states that :math:`c` is not zero.
+
+* `variables` is the list of the variables in the decreasing order in
+ which they will be used in Buchberger algorithm. If `variables` = `(@nil R)`,
+ then `lvar` is replaced by all the variables which are not in
+ `parameters`.
+
+See file `Nsatz.v` for many examples, especially in geometry.
diff --git a/doc/sphinx/addendum/program.rst b/doc/sphinx/addendum/program.rst
new file mode 100644
index 000000000..eb50e52dc
--- /dev/null
+++ b/doc/sphinx/addendum/program.rst
@@ -0,0 +1,381 @@
+.. include:: ../preamble.rst
+.. include:: ../replaces.rst
+
+.. this should be just "_program", but refs to it don't work
+
+.. _programs:
+
+Program
+========
+
+:Author: Matthieu Sozeau
+
+We present here the |Program| tactic commands, used to build
+certified |Coq| programs, elaborating them from their algorithmic
+skeleton and a rich specification :cite:`sozeau06`. It can be thought of as a
+dual of :ref:`Extraction <extraction>`. The goal of |Program| is to
+program as in a regular functional programming language whilst using
+as rich a specification as desired and proving that the code meets the
+specification using the whole |Coq| proof apparatus. This is done using
+a technique originating from the “Predicate subtyping” mechanism of
+PVS :cite:`Rushby98`, which generates type-checking conditions while typing a
+term constrained to a particular type. Here we insert existential
+variables in the term, which must be filled with proofs to get a
+complete |Coq| term. |Program| replaces the |Program| tactic by Catherine
+Parent :cite:`Parent95b` which had a similar goal but is no longer maintained.
+
+The languages available as input are currently restricted to |Coq|’s
+term language, but may be extended to OCaml, Haskell and
+others in the future. We use the same syntax as |Coq| and permit to use
+implicit arguments and the existing coercion mechanism. Input terms
+and types are typed in an extended system (Russell) and interpreted
+into |Coq| terms. The interpretation process may produce some proof
+obligations which need to be resolved to create the final term.
+
+
+.. _elaborating-programs:
+
+Elaborating programs
+---------------------
+
+The main difference from |Coq| is that an object in a type T : Set can
+be considered as an object of type { x : T | P} for any wellformed P :
+Prop. If we go from T to the subset of T verifying property P, we must
+prove that the object under consideration verifies it. Russell will
+generate an obligation for every such coercion. In the other
+direction, Russell will automatically insert a projection.
+
+Another distinction is the treatment of pattern-matching. Apart from
+the following differences, it is equivalent to the standard match
+operation (see :ref:`extendedpatternmatching`).
+
+
++ Generation of equalities. A match expression is always generalized
+ by the corresponding equality. As an example, the expression:
+
+ ::
+
+ match x with
+ | 0 => t
+ | S n => u
+ end.
+
+ will be first rewritten to:
+
+ ::
+
+ (match x as y return (x = y -> _) with
+ | 0 => fun H : x = 0 -> t
+ | S n => fun H : x = S n -> u
+ end) (eq_refl n).
+
+ This permits to get the proper equalities in the context of proof
+ obligations inside clauses, without which reasoning is very limited.
+
++ Generation of inequalities. If a pattern intersects with a previous
+ one, an inequality is added in the context of the second branch. See
+ for example the definition of div2 below, where the second branch is
+ typed in a context where ∀ p, _ <> S (S p).
++ Coercion. If the object being matched is coercible to an inductive
+ type, the corresponding coercion will be automatically inserted. This
+ also works with the previous mechanism.
+
+
+There are options to control the generation of equalities and
+coercions.
+
+.. opt:: Program Cases
+
+ This controls the special treatment of pattern-matching generating equalities
+ and inequalities when using |Program| (it is on by default). All
+ pattern-matchings and let-patterns are handled using the standard algorithm
+ of |Coq| (see :ref:`extendedpatternmatching`) when this option is
+ deactivated.
+
+.. opt:: Program Generalized Coercion
+
+ This controls the coercion of general inductive types when using |Program|
+ (the option is on by default). Coercion of subset types and pairs is still
+ active in this case.
+
+.. _syntactic_control:
+
+Syntactic control over equalities
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+To give more control over the generation of equalities, the
+typechecker will fall back directly to |Coq|’s usual typing of dependent
+pattern-matching if a return or in clause is specified. Likewise, the
+if construct is not treated specially by |Program| so boolean tests in
+the code are not automatically reflected in the obligations. One can
+use the dec combinator to get the correct hypotheses as in:
+
+.. coqtop:: none
+
+ Require Import Program Arith.
+
+.. coqtop:: all
+
+ Program Definition id (n : nat) : { x : nat | x = n } :=
+ if dec (leb n 0) then 0
+ else S (pred n).
+
+The let tupling construct :g:`let (x1, ..., xn) := t in b` does not
+produce an equality, contrary to the let pattern construct :g:`let ’(x1,
+..., xn) := t in b`. Also, :g:`term :>` explicitly asks the system to
+coerce term to its support type. It can be useful in notations, for
+example:
+
+.. coqtop:: all
+
+ Notation " x `= y " := (@eq _ (x :>) (y :>)) (only parsing).
+
+This notation denotes equality on subset types using equality on their
+support types, avoiding uses of proof-irrelevance that would come up
+when reasoning with equality on the subset types themselves.
+
+The next two commands are similar to their standard counterparts
+Definition (see Section `TODO-1.3.2-Definition`_) and Fixpoint (see Section `TODO-1.3.4-Fixpoint`_)
+in that they define constants. However, they may require the user to
+prove some goals to construct the final definitions.
+
+
+.. _program_definition:
+
+Program Definition
+~~~~~~~~~~~~~~~~~~
+
+.. cmd:: Program Definition @ident := @term.
+
+ This command types the value term in Russell and generates proof
+ obligations. Once solved using the commands shown below, it binds the
+ final |Coq| term to the name ``ident`` in the environment.
+
+ .. exn:: ident already exists
+
+ .. cmdv:: Program Definition @ident : @type := @term
+
+ It interprets the type ``type``, potentially generating proof
+ obligations to be resolved. Once done with them, we have a |Coq|
+ type |type_0|. It then elaborates the preterm ``term`` into a |Coq|
+ term |term_0|, checking that the type of |term_0| is coercible to
+ |type_0|, and registers ``ident`` as being of type |type_0| once the
+ set of obligations generated during the interpretation of |term_0|
+ and the aforementioned coercion derivation are solved.
+
+ .. exn:: In environment … the term: @term does not have type @type. Actually, it has type ...
+
+
+ .. cmdv:: Program Definition @ident @binders : @type := @term.
+
+ This is equivalent to:
+
+ :g:`Program Definition ident : forall binders, type := fun binders => term`.
+
+ .. TODO refer to production in alias
+
+See also: Sections `TODO-6.10.1-Opaque`_, `TODO-6.10.2-Transparent`_, `TODO-8.7.5-unfold`_
+
+.. _program_fixpoint:
+
+Program Fixpoint
+~~~~~~~~~~~~~~~~
+
+.. cmd:: Program Fixpoint @ident @params {? {@order}} : @type := @term.
+
+The optional order annotation follows the grammar:
+
+.. productionlist:: orderannot
+ order : measure `term` (`term`)? | wf `term` `term`
+
++ :g:`measure f ( R )` where :g:`f` is a value of type :g:`X` computed on
+ any subset of the arguments and the optional (parenthesised) term
+ ``(R)`` is a relation on ``X``. By default ``X`` defaults to ``nat`` and ``R``
+ to ``lt``.
+
++ :g:`wf R x` which is equivalent to :g:`measure x (R)`.
+
+The structural fixpoint operator behaves just like the one of |Coq| (see
+Section `TODO-1.3.4-Fixpoint`_), except it may also generate obligations. It works
+with mutually recursive definitions too.
+
+.. coqtop:: reset none
+
+ Require Import Program Arith.
+
+.. coqtop:: all
+
+ Program Fixpoint div2 (n : nat) : { x : nat | n = 2 * x \/ n = 2 * x + 1 } :=
+ match n with
+ | S (S p) => S (div2 p)
+ | _ => O
+ end.
+
+Here we have one obligation for each branch (branches for :g:`0` and
+``(S 0)`` are automatically generated by the pattern-matching
+compilation algorithm).
+
+.. coqtop:: all
+
+ Obligation 1.
+
+.. coqtop:: reset none
+
+ Require Import Program Arith.
+
+One can use a well-founded order or a measure as termination orders
+using the syntax:
+
+.. coqtop:: in
+
+ Program Fixpoint div2 (n : nat) {measure n} : { x : nat | n = 2 * x \/ n = 2 * x + 1 } :=
+ match n with
+ | S (S p) => S (div2 p)
+ | _ => O
+ end.
+
+
+
+.. caution:: When defining structurally recursive functions, the generated
+ obligations should have the prototype of the currently defined
+ functional in their context. In this case, the obligations should be
+ transparent (e.g. defined using :g:`Defined`) so that the guardedness
+ condition on recursive calls can be checked by the kernel’s type-
+ checker. There is an optimization in the generation of obligations
+ which gets rid of the hypothesis corresponding to the functional when
+ it is not necessary, so that the obligation can be declared opaque
+ (e.g. using :g:`Qed`). However, as soon as it appears in the context, the
+ proof of the obligation is *required* to be declared transparent.
+
+ No such problems arise when using measures or well-founded recursion.
+
+.. _program_lemma:
+
+Program Lemma
+~~~~~~~~~~~~~
+
+.. cmd:: Program Lemma @ident : @type.
+
+ The Russell language can also be used to type statements of logical
+ properties. It will generate obligations, try to solve them
+ automatically and fail if some unsolved obligations remain. In this
+ case, one can first define the lemma’s statement using :g:`Program
+ Definition` and use it as the goal afterwards. Otherwise the proof
+ will be started with the elaborated version as a goal. The
+ :g:`Program` prefix can similarly be used as a prefix for
+ :g:`Variable`, :g:`Hypothesis`, :g:`Axiom` etc...
+
+.. _solving_obligations:
+
+Solving obligations
+--------------------
+
+The following commands are available to manipulate obligations. The
+optional identifier is used when multiple functions have unsolved
+obligations (e.g. when defining mutually recursive blocks). The
+optional tactic is replaced by the default one if not specified.
+
+.. cmd:: {? Local|Global} Obligation Tactic := @tactic
+
+ Sets the default obligation solving tactic applied to all obligations
+ automatically, whether to solve them or when starting to prove one,
+ e.g. using :g:`Next`. :g:`Local` makes the setting last only for the current
+ module. Inside sections, local is the default.
+
+.. cmd:: Show Obligation Tactic
+
+ Displays the current default tactic.
+
+.. cmd:: Obligations {? of @ident}
+
+ Displays all remaining obligations.
+
+.. cmd:: Obligation num {? of @ident}
+
+ Start the proof of obligation num.
+
+.. cmd:: Next Obligation {? of @ident}
+
+ Start the proof of the next unsolved obligation.
+
+.. cmd:: Solve Obligations {? of @ident} {? with @tactic}
+
+ Tries to solve each obligation of ``ident`` using the given ``tactic`` or the default one.
+
+.. cmd:: Solve All Obligations {? with @tactic}
+
+ Tries to solve each obligation of every program using the given
+ tactic or the default one (useful for mutually recursive definitions).
+
+.. cmd:: Admit Obligations {? of @ident}
+
+ Admits all obligations (of ``ident``).
+
+ .. note:: Does not work with structurally recursive programs.
+
+.. cmd:: Preterm {? of @ident}
+
+ Shows the term that will be fed to the kernel once the obligations
+ are solved. Useful for debugging.
+
+.. opt:: Transparent Obligations
+
+ Control whether all obligations should be declared as transparent
+ (the default), or if the system should infer which obligations can be
+ declared opaque.
+
+.. opt:: Hide Obligations
+
+ Control whether obligations appearing in the
+ term should be hidden as implicit arguments of the special
+ constantProgram.Tactics.obligation.
+
+.. opt:: Shrink Obligations
+
+ *Deprecated since 8.7*
+
+ This option (on by default) controls whether obligations should have
+ their context minimized to the set of variables used in the proof of
+ the obligation, to avoid unnecessary dependencies.
+
+The module :g:`Coq.Program.Tactics` defines the default tactic for solving
+obligations called :g:`program_simpl`. Importing :g:`Coq.Program.Program` also
+adds some useful notations, as documented in the file itself.
+
+.. _program-faq:
+
+Frequently Asked Questions
+---------------------------
+
+
+.. exn:: Ill-formed recursive definition
+
+ This error can happen when one tries to define a function by structural
+ recursion on a subset object, which means the |Coq| function looks like:
+
+ ::
+
+ Program Fixpoint f (x : A | P) := match x with A b => f b end.
+
+ Supposing ``b : A``, the argument at the recursive call to ``f`` is not a
+ direct subterm of ``x`` as ``b`` is wrapped inside an ``exist`` constructor to
+ build an object of type ``{x : A | P}``. Hence the definition is
+ rejected by the guardedness condition checker. However one can use
+ wellfounded recursion on subset objects like this:
+
+ ::
+
+ Program Fixpoint f (x : A | P) { measure (size x) } :=
+ match x with A b => f b end.
+
+ One will then just have to prove that the measure decreases at each
+ recursive call. There are three drawbacks though:
+
+ #. A measure function has to be defined;
+ #. The reduction is a little more involved, although it works well
+ using lazy evaluation;
+ #. Mutual recursion on the underlying inductive type isn’t possible
+ anymore, but nested mutual recursion is always possible.
+
+.. bibliography:: ../biblio.bib
+ :keyprefix: p-
diff --git a/doc/sphinx/addendum/ring.rst b/doc/sphinx/addendum/ring.rst
new file mode 100644
index 000000000..b861892cb
--- /dev/null
+++ b/doc/sphinx/addendum/ring.rst
@@ -0,0 +1,770 @@
+.. include:: ../replaces.rst
+.. |ra| replace:: :math:`\rightarrow_{\beta\delta\iota}`
+.. |la| replace:: :math:`\leftarrow_{\beta\delta\iota}`
+.. |eq| replace:: `=`:sub:`(by the main correctness theorem)`
+.. |re| replace:: ``(PEeval`` `v` `ap`\ ``)``
+.. |le| replace:: ``(Pphi_dev`` `v` ``(norm`` `ap`\ ``))``
+
+
+.. _theringandfieldtacticfamilies:
+
+The ring and field tactic families
+====================================
+
+:Author: Bruno Barras, Benjamin Grégoire, Assia Mahboubi, Laurent Théry [#f1]_
+
+This chapter presents the tactics dedicated to deal with ring and
+field equations.
+
+What does this tactic do?
+------------------------------
+
+``ring`` does associative-commutative rewriting in ring and semi-ring
+structures. Assume you have two binary functions :math:`\oplus` and
+:math:`\otimes` that are associative and commutative, with :math:`\oplus`
+distributive on :math:`\otimes`, and two constants 0 and 1 that are unities for
+:math:`\oplus` and :math:`\otimes`. A polynomial is an expression built on
+variables :math:`V_0`, :math:`V_1`, :math:`\dots` and constants by application
+of :math:`\oplus` and :math:`\otimes`.
+
+Let an ordered product be a product of variables :math:`V_{i_1} \otimes \dots
+\otimes V_{i_n}` verifying :math:`i_1 ≤ i_2 ≤ \dots ≤ i_n` . Let a monomial be
+the product of a constant and an ordered product. We can order the monomials by
+the lexicographic order on products of variables. Let a canonical sum be an
+ordered sum of monomials that are all different, i.e. each monomial in the sum
+is strictly less than the following monomial according to the lexicographic
+order. It is an easy theorem to show that every polynomial is equivalent (modulo
+the ring properties) to exactly one canonical sum. This canonical sum is called
+the normal form of the polynomial. In fact, the actual representation shares
+monomials with same prefixes. So what does ring? It normalizes polynomials over
+any ring or semi-ring structure. The basic use of ``ring`` is to simplify ring
+expressions, so that the user does not have to deal manually with the theorems
+of associativity and commutativity.
+
+
+.. example::
+
+ In the ring of integers, the normal form of
+ :math:`x (3 + yx + 25(1 − z)) + zx`
+ is
+ :math:`28x + (−24)xz + xxy`.
+
+
+``ring`` is also able to compute a normal form modulo monomial equalities.
+For example, under the hypothesis that :math:`2x^2 = yz+1`, the normal form of
+:math:`2(x + 1)x − x − zy` is :math:`x+1`.
+
+The variables map
+----------------------
+
+It is frequent to have an expression built with :math:`+` and :math:`\times`,
+but rarely on variables only. Let us associate a number to each subterm of a
+ring expression in the Gallina language. For example in the ring |nat|, consider
+the expression:
+
+
+::
+
+ (plus (mult (plus (f (5)) x) x)
+ (mult (if b then (4) else (f (3))) (2)))
+
+
+As a ring expression, it has 3 subterms. Give each subterm a number in
+an arbitrary order:
+
+===== =============== =========================
+0 :math:`\mapsto` if b then (4) else (f (3))
+1 :math:`\mapsto` (f (5))
+2 :math:`\mapsto` x
+===== =============== =========================
+
+Then normalize the “abstract” polynomial
+:math:`((V_1 \otimes V_2 ) \oplus V_2) \oplus (V_0 \otimes 2)`
+In our example the normal form is:
+:math:`(2 \otimes V_0 ) \oplus (V_1 \otimes V_2) \oplus (V_2 \otimes V_2 )`.
+Then substitute the variables by their values in the variables map to
+get the concrete normal polynomial:
+
+::
+
+ (plus (mult (2) (if b then (4) else (f (3))))
+ (plus (mult (f (5)) x) (mult x x)))
+
+
+Is it automatic?
+---------------------
+
+Yes, building the variables map and doing the substitution after
+normalizing is automatically done by the tactic. So you can just
+forget this paragraph and use the tactic according to your intuition.
+
+Concrete usage in Coq
+--------------------------
+
+.. tacn:: ring
+
+The ``ring`` tactic solves equations upon polynomial expressions of a ring
+(or semi-ring) structure. It proceeds by normalizing both hand sides
+of the equation (w.r.t. associativity, commutativity and
+distributivity, constant propagation, rewriting of monomials) and
+comparing syntactically the results.
+
+.. tacn:: ring_simplify
+
+``ring_simplify`` applies the normalization procedure described above to
+the terms given. The tactic then replaces all occurrences of the terms
+given in the conclusion of the goal by their normal forms. If no term
+is given, then the conclusion should be an equation and both hand
+sides are normalized. The tactic can also be applied in a hypothesis.
+
+The tactic must be loaded by ``Require Import Ring``. The ring structures
+must be declared with the ``Add Ring`` command (see below). The ring of
+booleans is predefined; if one wants to use the tactic on |nat| one must
+first require the module ``ArithRing`` exported by ``Arith``); for |Z|, do
+``Require Import ZArithRing`` or simply ``Require Import ZArith``; for |N|, do
+``Require Import NArithRing`` or ``Require Import NArith``.
+
+
+.. example::
+
+ .. coqtop:: all
+
+ Require Import ZArith.
+ Open Scope Z_scope.
+ Goal forall a b c:Z,
+ (a + b + c) ^ 2 =
+ a * a + b ^ 2 + c * c + 2 * a * b + 2 * a * c + 2 * b * c.
+ intros; ring.
+ Abort.
+ Goal forall a b:Z,
+ 2 * a * b = 30 -> (a + b) ^ 2 = a ^ 2 + b ^ 2 + 30.
+ intros a b H; ring [H].
+ Abort.
+
+
+.. tacv:: ring [{* @term }]
+
+decides the equality of two terms modulo ring operations and
+the equalities defined by the :n:`@term`\ s.
+Each :n:`@term` has to be a proof of some equality `m = p`, where `m` is a monomial (after “abstraction”), `p` a polynomial and `=` the corresponding equality of the ring structure.
+
+.. tacv:: ring_simplify [{* @term }] {* @term } in @ident
+
+performs the simplification in the hypothesis named :n:`@ident`.
+
+
+.. note::
+
+ .. tacn:: ring_simplify @term1; ring_simplify @term2
+
+ is not equivalent to
+
+ .. tacn:: ring_simplify @term1 @term2
+
+ In the latter case the variables map
+ is shared between the two terms, and common subterm `t` of :n:`@term1` and :n:`@term2`
+ will have the same associated variable number. So the first
+ alternative should be avoided for terms belonging to the same ring
+ theory.
+
+
+Error messages:
+
+
+.. exn:: not a valid ring equation
+
+ The conclusion of the goal is not provable in the corresponding ring theory.
+
+.. exn:: arguments of ring_simplify do not have all the same type
+
+ ``ring_simplify`` cannot simplify terms of several rings at the same
+ time. Invoke the tactic once per ring structure.
+
+.. exn:: cannot find a declared ring structure over @term
+
+ No ring has been declared for the type of the terms to be simplified.
+ Use ``Add Ring`` first.
+
+.. exn:: cannot find a declared ring structure for equality @term
+
+ Same as above is the case of the ``ring`` tactic.
+
+
+Adding a ring structure
+----------------------------
+
+Declaring a new ring consists in proving that a ring signature (a
+carrier set, an equality, and ring operations: ``Ring_theory.ring_theory``
+and ``Ring_theory.semi_ring_theory``) satisfies the ring axioms. Semi-
+rings (rings without + inverse) are also supported. The equality can
+be either Leibniz equality, or any relation declared as a setoid (see
+:ref:`tactics-enabled-on-user-provided-relations`). The definition of ring and semi-rings (see module
+``Ring_theory``) is:
+
+.. coqtop:: in
+
+ Record ring_theory : Prop := mk_rt {
+ Radd_0_l : forall x, 0 + x == x;
+ Radd_sym : forall x y, x + y == y + x;
+ Radd_assoc : forall x y z, x + (y + z) == (x + y) + z;
+ Rmul_1_l : forall x, 1 * x == x;
+ Rmul_sym : forall x y, x * y == y * x;
+ Rmul_assoc : forall x y z, x * (y * z) == (x * y) * z;
+ Rdistr_l : forall x y z, (x + y) * z == (x * z) + (y * z);
+ Rsub_def : forall x y, x - y == x + -y;
+ Ropp_def : forall x, x + (- x) == 0
+ }.
+
+ Record semi_ring_theory : Prop := mk_srt {
+ SRadd_0_l : forall n, 0 + n == n;
+ SRadd_sym : forall n m, n + m == m + n ;
+ SRadd_assoc : forall n m p, n + (m + p) == (n + m) + p;
+ SRmul_1_l : forall n, 1*n == n;
+ SRmul_0_l : forall n, 0*n == 0;
+ SRmul_sym : forall n m, n*m == m*n;
+ SRmul_assoc : forall n m p, n*(m*p) == (n*m)*p;
+ SRdistr_l : forall n m p, (n + m)*p == n*p + m*p
+ }.
+
+
+This implementation of ``ring`` also features a notion of constant that
+can be parameterized. This can be used to improve the handling of
+closed expressions when operations are effective. It consists in
+introducing a type of *coefficients* and an implementation of the ring
+operations, and a morphism from the coefficient type to the ring
+carrier type. The morphism needs not be injective, nor surjective.
+
+As an example, one can consider the real numbers. The set of
+coefficients could be the rational numbers, upon which the ring
+operations can be implemented. The fact that there exists a morphism
+is defined by the following properties:
+
+.. coqtop:: in
+
+ Record ring_morph : Prop := mkmorph {
+ morph0 : [cO] == 0;
+ morph1 : [cI] == 1;
+ morph_add : forall x y, [x +! y] == [x]+[y];
+ morph_sub : forall x y, [x -! y] == [x]-[y];
+ morph_mul : forall x y, [x *! y] == [x]*[y];
+ morph_opp : forall x, [-!x] == -[x];
+ morph_eq : forall x y, x?=!y = true -> [x] == [y]
+ }.
+
+ Record semi_morph : Prop := mkRmorph {
+ Smorph0 : [cO] == 0;
+ Smorph1 : [cI] == 1;
+ Smorph_add : forall x y, [x +! y] == [x]+[y];
+ Smorph_mul : forall x y, [x *! y] == [x]*[y];
+ Smorph_eq : forall x y, x?=!y = true -> [x] == [y]
+ }.
+
+
+where ``c0`` and ``cI`` denote the 0 and 1 of the coefficient set, ``+!``, ``*!``, ``-!``
+are the implementations of the ring operations, ``==`` is the equality of
+the coefficients, ``?+!`` is an implementation of this equality, and ``[x]``
+is a notation for the image of ``x`` by the ring morphism.
+
+Since |Z| is an initial ring (and |N| is an initial semi-ring), it can
+always be considered as a set of coefficients. There are basically
+three kinds of (semi-)rings:
+
+abstract rings
+ to be used when operations are not effective. The set
+ of coefficients is |Z| (or |N| for semi-rings).
+
+computational rings
+ to be used when operations are effective. The
+ set of coefficients is the ring itself. The user only has to provide
+ an implementation for the equality.
+
+customized ring
+ for other cases. The user has to provide the
+ coefficient set and the morphism.
+
+
+This implementation of ring can also recognize simple power
+expressions as ring expressions. A power function is specified by the
+following property:
+
+.. coqtop:: in
+
+ Section POWER.
+ Variable Cpow : Set.
+ Variable Cp_phi : N -> Cpow.
+ Variable rpow : R -> Cpow -> R.
+
+ Record power_theory : Prop := mkpow_th {
+ rpow_pow_N : forall r n, req (rpow r (Cp_phi n)) (pow_N rI rmul r n)
+ }.
+
+ End POWER.
+
+
+The syntax for adding a new ring is
+
+.. cmd:: Add Ring @ident : @term {? ( @ring_mod {* , @ring_mod } )}.
+
+The :n:`@ident` is not relevant. It is just used for error messages. The
+:n:`@term` is a proof that the ring signature satisfies the (semi-)ring
+axioms. The optional list of modifiers is used to tailor the behavior
+of the tactic. The following list describes their syntax and effects:
+
+.. prodn::
+ ring_mod ::= abstract %| decidable @term %| morphism @term
+ %| setoid @term @term
+ %| constants [@ltac]
+ %| preprocess [@ltac]
+ %| postprocess [@ltac]
+ %| power_tac @term [@ltac]
+ %| sign @term
+ %| div @term
+
+
+abstract
+ declares the ring as abstract. This is the default.
+
+decidable :n:`@term`
+ declares the ring as computational. The expression
+ :n:`@term` is the correctness proof of an equality test ``?=!``
+ (which hould be evaluable). Its type should be of the form
+ ``forall x y, x ?=! y = true → x == y``.
+
+morphism :n:`@term`
+ declares the ring as a customized one. The expression
+ :n:`@term` is a proof that there exists a morphism between a set of
+ coefficient and the ring carrier (see ``Ring_theory.ring_morph`` and
+ ``Ring_theory.semi_morph``).
+
+setoid :n:`@term` :n:`@term`
+ forces the use of given setoid. The first
+ :n:`@term` is a proof that the equality is indeed a setoid (see
+ ``Setoid.Setoid_Theory``), and the second :n:`@term` a proof that the
+ ring operations are morphisms (see ``Ring_theory.ring_eq_ext`` and
+ ``Ring_theory.sring_eq_ext``).
+ This modifier needs not be used if the setoid and morphisms have been
+ declared.
+
+constants [:n:`@ltac`]
+ specifies a tactic expression :n:`@ltac` that, given a
+ term, returns either an object of the coefficient set that is mapped
+ to the expression via the morphism, or returns
+ ``InitialRing.NotConstant``. The default behavior is to map only 0 and 1
+ to their counterpart in the coefficient set. This is generally not
+ desirable for non trivial computational rings.
+
+preprocess [:n:`@ltac`]
+ specifies a tactic :n:`@ltac` that is applied as a
+ preliminary step for ``ring`` and ``ring_simplify``. It can be used to
+ transform a goal so that it is better recognized. For instance, ``S n``
+ can be changed to ``plus 1 n``.
+
+postprocess [:n:`@ltac`]
+ specifies a tactic :n:`@ltac` that is applied as a final
+ step for ``ring_simplify``. For instance, it can be used to undo
+ modifications of the preprocessor.
+
+power_tac :n:`@term` [:n:`@ltac`]
+ allows ``ring`` and ``ring_simplify`` to recognize
+ power expressions with a constant positive integer exponent (example:
+ ::math:`x^2` ). The term :n:`@term` is a proof that a given power function satisfies
+ the specification of a power function (term has to be a proof of
+ ``Ring_theory.power_theory``) and :n:`@ltac` specifies a tactic expression
+ that, given a term, “abstracts” it into an object of type |N| whose
+ interpretation via ``Cp_phi`` (the evaluation function of power
+ coefficient) is the original term, or returns ``InitialRing.NotConstant``
+ if not a constant coefficient (i.e. |L_tac| is the inverse function of
+ ``Cp_phi``). See files ``plugins/setoid_ring/ZArithRing.v``
+ and ``plugins/setoid_ring/RealField.v`` for examples. By default the tactic
+ does not recognize power expressions as ring expressions.
+
+sign :n:`@term`
+ allows ``ring_simplify`` to use a minus operation when
+ outputting its normal form, i.e writing ``x − y`` instead of ``x + (− y)``. The
+ term `:n:`@term` is a proof that a given sign function indicates expressions
+ that are signed (`term` has to be a proof of ``Ring_theory.get_sign``). See
+ ``plugins/setoid_ring/InitialRing.v`` for examples of sign function.
+
+div :n:`@term`
+ allows ``ring`` and ``ring_simplify`` to use monomials with
+ coefficient other than 1 in the rewriting. The term :n:`@term` is a proof
+ that a given division function satisfies the specification of an
+ euclidean division function (:n:`@term` has to be a proof of
+ ``Ring_theory.div_theory``). For example, this function is called when
+ trying to rewrite :math:`7x` by :math:`2x = z` to tell that :math:`7 = 3 \times 2 + 1`. See
+ ``plugins/setoid_ring/InitialRing.v`` for examples of div function.
+
+Error messages:
+
+.. exn:: bad ring structure
+
+ The proof of the ring structure provided is not
+ of the expected type.
+
+.. exn:: bad lemma for decidability of equality
+
+ The equality function
+ provided in the case of a computational ring has not the expected
+ type.
+
+.. exn:: ring operation should be declared as a morphism
+
+ A setoid associated to the carrier of the ring structure has been found,
+ but the ring operation should be declared as morphism. See :ref:`tactics-enabled-on-user-provided-relations`.
+
+How does it work?
+----------------------
+
+The code of ring is a good example of tactic written using *reflection*.
+What is reflection? Basically, it is writing |Coq| tactics in |Coq|, rather
+than in |OCaml|. From the philosophical point of view, it is
+using the ability of the Calculus of Constructions to speak and reason
+about itself. For the ring tactic we used Coq as a programming
+language and also as a proof environment to build a tactic and to
+prove it correctness.
+
+The interested reader is strongly advised to have a look at the
+file ``Ring_polynom.v``. Here a type for polynomials is defined:
+
+
+.. coqtop:: in
+
+ Inductive PExpr : Type :=
+ | PEc : C -> PExpr
+ | PEX : positive -> PExpr
+ | PEadd : PExpr -> PExpr -> PExpr
+ | PEsub : PExpr -> PExpr -> PExpr
+ | PEmul : PExpr -> PExpr -> PExpr
+ | PEopp : PExpr -> PExpr
+ | PEpow : PExpr -> N -> PExpr.
+
+
+Polynomials in normal form are defined as:
+
+
+.. coqtop:: in
+
+ Inductive Pol : Type :=
+ | Pc : C -> Pol
+ | Pinj : positive -> Pol -> Pol
+ | PX : Pol -> positive -> Pol -> Pol.
+
+
+where ``Pinj n P`` denotes ``P`` in which :math:`V_i` is replaced by :math:`V_{i+n}` ,
+and ``PX P n Q`` denotes :math:`P \otimes V_1^n \oplus Q'`, `Q'` being `Q` where :math:`V_i` is replaced by :math:`V_{i+1}`.
+
+Variables maps are represented by list of ring elements, and two
+interpretation functions, one that maps a variables map and a
+polynomial to an element of the concrete ring, and the second one that
+does the same for normal forms:
+
+
+.. coqtop:: in
+
+
+ Definition PEeval : list R -> PExpr -> R := [...].
+ Definition Pphi_dev : list R -> Pol -> R := [...].
+
+
+A function to normalize polynomials is defined, and the big theorem is
+its correctness w.r.t interpretation, that is:
+
+
+.. coqtop:: in
+
+ Definition norm : PExpr -> Pol := [...].
+ Lemma Pphi_dev_ok :
+ forall l pe npe, norm pe = npe -> PEeval l pe == Pphi_dev l npe.
+
+
+So now, what is the scheme for a normalization proof? Let p be the
+polynomial expression that the user wants to normalize. First a little
+piece of |ML| code guesses the type of `p`, the ring theory `T` to use, an
+abstract polynomial `ap` and a variables map `v` such that `p` is |bdi|-
+equivalent to ``(PEeval`` `v` `ap`\ ``)``. Then we replace it by ``(Pphi_dev`` `v`
+``(norm`` `ap`\ ``))``, using the main correctness theorem and we reduce it to a
+concrete expression `p’`, which is the concrete normal form of `p`. This is summarized in this diagram:
+
+========= ====== ====
+`p` |ra| |re|
+\ |eq| \
+`p’` |la| |le|
+========= ====== ====
+
+The user do not see the right part of the diagram. From outside, the
+tactic behaves like a |bdi| simplification extended with AC rewriting
+rules. Basically, the proof is only the application of the main
+correctness theorem to well-chosen arguments.
+
+Dealing with fields
+------------------------
+
+.. tacn:: field
+
+The ``field`` tactic is an extension of the ``ring`` to deal with rational
+expression. Given a rational expression :math:`F = 0`. It first reduces the
+expression `F` to a common denominator :math:`N/D = 0` where `N` and `D`
+are two ring expressions. For example, if we take :math:`F = (1 − 1/x) x − x + 1`, this
+gives :math:`N = (x − 1) x − x^2 + x` and :math:`D = x`. It then calls ring to solve
+:math:`N = 0`.
+Note that ``field`` also generates non-zero conditions for all the
+denominators it encounters in the reduction. In our example, it
+generates the condition :math:`x \neq 0`. These conditions appear as one subgoal
+which is a conjunction if there are several denominators. Non-zero
+conditions are always polynomial expressions. For example when
+reducing the expression :math:`1/(1 + 1/x)`, two side conditions are
+generated: :math:`x \neq 0` and :math:`x + 1 \neq 0`. Factorized expressions are broken since
+a field is an integral domain, and when the equality test on
+coefficients is complete w.r.t. the equality of the target field,
+constants can be proven different from zero automatically.
+
+The tactic must be loaded by ``Require Import Field``. New field
+structures can be declared to the system with the ``Add Field`` command
+(see below). The field of real numbers is defined in module ``RealField``
+(in ``plugins/setoid_ring``). It is exported by module ``Rbase``, so
+that requiring ``Rbase`` or ``Reals`` is enough to use the field tactics on
+real numbers. Rational numbers in canonical form are also declared as
+a field in module ``Qcanon``.
+
+
+.. example::
+
+ .. coqtop:: all
+
+ Require Import Reals.
+ Open Scope R_scope.
+ Goal forall x,
+ x <> 0 -> (1 - 1 / x) * x - x + 1 = 0.
+ intros; field; auto.
+ Abort.
+ Goal forall x y,
+ y <> 0 -> y = x -> x / y = 1.
+ intros x y H H1; field [H1]; auto.
+ Abort.
+
+.. tacv:: field [{* @term}]
+
+ decides the equality of two terms modulo
+ field operations and the equalities defined
+ by the :n:`@term`\ s. Each :n:`@term` has to be a proof of some equality
+ `m` ``=`` `p`, where `m` is a monomial (after “abstraction”), `p` a polynomial
+ and ``=`` the corresponding equality of the field structure.
+
+.. note::
+
+ rewriting works with the equality `m` ``=`` `p` only if `p` is a polynomial since
+ rewriting is handled by the underlying ring tactic.
+
+.. tacv:: field_simplify
+
+ performs the simplification in the conclusion of the
+ goal, :math:`F_1 = F_2` becomes :math:`N_1 / D_1 = N_2 / D_2`. A normalization step
+ (the same as the one for rings) is then applied to :math:`N_1`, :math:`D_1`,
+ :math:`N_2` and :math:`D_2`. This way, polynomials remain in factorized form during the
+ fraction simplifications. This yields smaller expressions when
+ reducing to the same denominator since common factors can be canceled.
+
+.. tacv:: field_simplify [{* @term }]
+
+ performs the simplification in the conclusion of the goal using the equalities
+ defined by the :n:`@term`\ s.
+
+.. tacv:: field_simplify [{* @term }] {* @term }
+
+ performs the simplification in the terms :n:`@terms` of the conclusion of the goal
+ using the equalities defined by :n:`@term`\ s inside the brackets.
+
+.. tacv :: field_simplify in @ident
+
+ performs the simplification in the assumption :n:`@ident`.
+
+.. tacv :: field_simplify [{* @term }] in @ident
+
+ performs the simplification
+ in the assumption :n:`@ident` using the equalities defined by the :n:`@term`\ s.
+
+.. tacv:: field_simplify [{* @term }] {* @term } in @ident
+
+ performs the simplification in the :n:`@term`\ s of the assumption :n:`@ident` using the
+ equalities defined by the :n:`@term`\ s inside the brackets.
+
+.. tacv:: field_simplify_eq
+
+ performs the simplification in the conclusion of
+ the goal removing the denominator. :math:`F_1 = F_2` becomes :math:`N_1 D_2 = N_2 D_1`.
+
+.. tacv:: field_simplify_eq [ {* @term }]
+
+ performs the simplification in
+ the conclusion of the goal using the equalities defined by
+ :n:`@term`\ s.
+
+.. tacv:: field_simplify_eq in @ident
+
+ performs the simplification in the assumption :n:`@ident`.
+
+.. tacv:: field_simplify_eq [{* @term}] in @ident
+
+ performs the simplification in the assumption :n:`@ident` using the equalities defined by
+ :n:`@terms`\ s and removing the denominator.
+
+
+Adding a new field structure
+---------------------------------
+
+Declaring a new field consists in proving that a field signature (a
+carrier set, an equality, and field operations:
+``Field_theory.field_theory`` and ``Field_theory.semi_field_theory``)
+satisfies the field axioms. Semi-fields (fields without + inverse) are
+also supported. The equality can be either Leibniz equality, or any
+relation declared as a setoid (see :ref:`tactics-enabled-on-user-provided-relations`). The definition of
+fields and semi-fields is:
+
+.. coqtop:: in
+
+ Record field_theory : Prop := mk_field {
+ F_R : ring_theory rO rI radd rmul rsub ropp req;
+ F_1_neq_0 : ~ 1 == 0;
+ Fdiv_def : forall p q, p / q == p * / q;
+ Finv_l : forall p, ~ p == 0 -> / p * p == 1
+ }.
+
+ Record semi_field_theory : Prop := mk_sfield {
+ SF_SR : semi_ring_theory rO rI radd rmul req;
+ SF_1_neq_0 : ~ 1 == 0;
+ SFdiv_def : forall p q, p / q == p * / q;
+ SFinv_l : forall p, ~ p == 0 -> / p * p == 1
+ }.
+
+
+The result of the normalization process is a fraction represented by
+the following type:
+
+.. coqtop:: in
+
+ Record linear : Type := mk_linear {
+ num : PExpr C;
+ denum : PExpr C;
+ condition : list (PExpr C)
+ }.
+
+
+where ``num`` and ``denum`` are the numerator and denominator; ``condition`` is a
+list of expressions that have appeared as a denominator during the
+normalization process. These expressions must be proven different from
+zero for the correctness of the algorithm.
+
+The syntax for adding a new field is
+
+.. cmd:: Add Field @ident : @term {? ( @field_mod {* , @field_mod } )}.
+
+The :n:`@ident` is not relevant. It is just used for error
+messages. :n:`@term` is a proof that the field signature satisfies the
+(semi-)field axioms. The optional list of modifiers is used to tailor
+the behavior of the tactic.
+
+.. prodn::
+ field_mod := @ring_mod %| completeness @term
+
+Since field tactics are built upon ``ring``
+tactics, all modifiers of the ``Add Ring`` apply. There is only one
+specific modifier:
+
+completeness :n:`@term`
+ allows the field tactic to prove automatically
+ that the image of non-zero coefficients are mapped to non-zero
+ elements of the field. :n:`@term` is a proof of
+
+ ``forall x y, [x] == [y] -> x ?=! y = true``,
+
+ which is the completeness of equality on coefficients
+ w.r.t. the field equality.
+
+
+History of ring
+--------------------
+
+First Samuel Boutin designed the tactic ``ACDSimpl``. This tactic did lot
+of rewriting. But the proofs terms generated by rewriting were too big
+for |Coq|’s type-checker. Let us see why:
+
+.. coqtop:: all
+
+ Require Import ZArith.
+ Open Scope Z_scope.
+ Goal forall x y z : Z,
+ x + 3 + y + y * z = x + 3 + y + z * y.
+ intros; rewrite (Zmult_comm y z); reflexivity.
+ Save foo.
+ Print foo.
+
+At each step of rewriting, the whole context is duplicated in the
+proof term. Then, a tactic that does hundreds of rewriting generates
+huge proof terms. Since ``ACDSimpl`` was too slow, Samuel Boutin rewrote
+it using reflection (see his article in TACS’97 [Bou97]_). Later, it
+was rewritten by Patrick Loiseleur: the new tactic does not any
+more require ``ACDSimpl`` to compile and it makes use of |bdi|-reduction not
+only to replace the rewriting steps, but also to achieve the
+interleaving of computation and reasoning (see :ref:`discussion_reflection`). He also wrote a
+few |ML| code for the ``Add Ring`` command, that allow to register new rings
+dynamically.
+
+Proofs terms generated by ring are quite small, they are linear in the
+number of :math:`\oplus` and :math:`\otimes` operations in the normalized terms. Type-checking
+those terms requires some time because it makes a large use of the
+conversion rule, but memory requirements are much smaller.
+
+
+.. _discussion_reflection:
+
+
+Discussion
+----------------
+
+
+Efficiency is not the only motivation to use reflection here. ``ring``
+also deals with constants, it rewrites for example the expression
+``34 + 2 * x − x + 12`` to the expected result ``x + 46``.
+For the tactic ``ACDSimpl``, the only constants were 0 and 1.
+So the expression ``34 + 2 * (x − 1) + 12``
+is interpreted as :math:`V_0 \oplus V_1 \otimes (V_2 \ominus 1) \oplus V_3`\ ,
+with the variables mapping
+:math:`\{V_0 \mapsto 34; V_1 \mapsto 2; V_2 \mapsto x; V_3 \mapsto 12\}`\ .
+Then it is rewritten to ``34 − x + 2 * x + 12``, very far from the expected result.
+Here rewriting is not sufficient: you have to do some kind of reduction
+(some kind of computation) to achieve the normalization.
+
+The tactic ``ring`` is not only faster than a classical one: using
+reflection, we get for free integration of computation and reasoning
+that would be very complex to implement in the classic fashion.
+
+Is it the ultimate way to write tactics? The answer is: yes and no.
+The ``ring`` tactic uses intensively the conversion rule of |Cic|, that is
+replaces proof by computation the most as it is possible. It can be
+useful in all situations where a classical tactic generates huge proof
+terms. Symbolic Processing and Tautologies are in that case. But there
+are also tactics like ``auto`` or ``linear`` that do many complex computations,
+using side-effects and backtracking, and generate a small proof term.
+Clearly, it would be significantly less efficient to replace them by
+tactics using reflection.
+
+Another idea suggested by Benjamin Werner: reflection could be used to
+couple an external tool (a rewriting program or a model checker)
+with |Coq|. We define (in |Coq|) a type of terms, a type of *traces*, and
+prove a correction theorem that states that *replaying traces* is safe
+w.r.t some interpretation. Then we let the external tool do every
+computation (using side-effects, backtracking, exception, or others
+features that are not available in pure lambda calculus) to produce
+the trace: now we can check in |Coq| that the trace has the expected
+semantic by applying the correction lemma.
+
+
+
+
+
+
+.. rubric:: Footnotes
+.. [#f1] based on previous work from Patrick Loiseleur and Samuel Boutin
+
+
+
diff --git a/doc/sphinx/index.rst b/doc/sphinx/index.rst
index cf64aea03..75e955136 100644
--- a/doc/sphinx/index.rst
+++ b/doc/sphinx/index.rst
@@ -44,10 +44,16 @@ Table of contents
:caption: Addendum
addendum/extended-pattern-matching
+ addendum/implicit-coercions
addendum/canonical-structures
addendum/type-classes
addendum/omega
addendum/micromega
+ addendum/extraction
+ addendum/program
+ addendum/ring
+ addendum/nsatz
+ addendum/generalized-rewriting
.. toctree::
:caption: Reference
diff --git a/doc/sphinx/language/gallina-extensions.rst b/doc/sphinx/language/gallina-extensions.rst
index 68066faa3..1d6c11b38 100644
--- a/doc/sphinx/language/gallina-extensions.rst
+++ b/doc/sphinx/language/gallina-extensions.rst
@@ -2191,12 +2191,7 @@ an inductive type or any constant with a type of the form
Then the user is able to apply an object that is not a function, but
can be coerced to a function, and more generally to consider that a
term of type ``A`` is of type ``B`` provided that there is a declared coercion
-between ``A`` and ``B``. The main command is
-
-.. cmd:: Coercion @qualid : @class >-> @class.
-
-which declares the construction denoted by qualid as a coercion
-between the two given classes.
+between ``A`` and ``B``.
More details and examples, and a description of the commands related
to coercions are provided in :ref:`implicitcoercions`.
diff --git a/engine/proofview.ml b/engine/proofview.ml
index 22271dd02..639f48e77 100644
--- a/engine/proofview.ml
+++ b/engine/proofview.ml
@@ -710,13 +710,19 @@ let partition_unifiable sigma l =
(** Shelves the unifiable goals under focus, i.e. the goals which
appear in other goals under focus (the unfocused goals are not
considered). *)
-let shelve_unifiable =
+let shelve_unifiable_informative =
let open Proof in
Pv.get >>= fun initial ->
let (u,n) = partition_unifiable initial.solution initial.comb in
Comb.set n >>
InfoL.leaf (Info.Tactic (fun () -> Pp.str"shelve_unifiable")) >>
- Shelf.modify (fun gls -> gls @ CList.map drop_state u)
+ let u = CList.map drop_state u in
+ Shelf.modify (fun gls -> gls @ u) >>
+ tclUNIT u
+
+let shelve_unifiable =
+ let open Proof in
+ shelve_unifiable_informative >>= fun _ -> tclUNIT ()
(** [guard_no_unifiable] returns the list of unifiable goals if some
goals are unifiable (see {!shelve_unifiable}) in the current focus. *)
@@ -1035,6 +1041,8 @@ module Unsafe = struct
let advance = Evarutil.advance
+ let undefined = undefined
+
let mark_as_unresolvable p gl =
{ p with solution = mark_in_evm ~goal:false p.solution gl }
diff --git a/engine/proofview.mli b/engine/proofview.mli
index e7be66552..1905686fe 100644
--- a/engine/proofview.mli
+++ b/engine/proofview.mli
@@ -326,6 +326,9 @@ val unifiable : Evd.evar_map -> Evar.t -> Evar.t list -> bool
considered). *)
val shelve_unifiable : unit tactic
+(** Idem but also returns the list of shelved variables *)
+val shelve_unifiable_informative : Evar.t list tactic
+
(** [guard_no_unifiable] returns the list of unifiable goals if some
goals are unifiable (see {!shelve_unifiable}) in the current focus. *)
val guard_no_unifiable : Names.Name.t list option tactic
@@ -466,6 +469,12 @@ module Unsafe : sig
solved. *)
val advance : Evd.evar_map -> Evar.t -> Evar.t option
+ (** [undefined sigma l] applies [advance] to the goals of [l], then
+ returns the subset of resulting goals which have not yet been
+ defined *)
+ val undefined : Evd.evar_map -> Proofview_monad.goal_with_state list ->
+ Proofview_monad.goal_with_state list
+
val typeclass_resolvable : unit Evd.Store.field
end
diff --git a/interp/constrextern.ml b/interp/constrextern.ml
index 19444988b..48ddd9496 100644
--- a/interp/constrextern.ml
+++ b/interp/constrextern.ml
@@ -14,7 +14,6 @@ open CErrors
open Util
open Names
open Nameops
-open Constr
open Termops
open Libnames
open Globnames
@@ -1223,8 +1222,36 @@ let rec glob_of_pat avoid env sigma pat = DAst.make @@ match pat with
| _ -> anomaly (Pp.str "PCase with non-trivial predicate but unknown inductive.")
in
GCases (RegularStyle,rtn,[glob_of_pat avoid env sigma tm,indnames],mat)
- | PFix f -> DAst.get (Detyping.detype_names false avoid env (Global.env()) sigma (EConstr.of_constr (mkFix f))) (** FIXME bad env *)
- | PCoFix c -> DAst.get (Detyping.detype_names false avoid env (Global.env()) sigma (EConstr.of_constr (mkCoFix c)))
+ | PFix ((ln,i),(lna,tl,bl)) ->
+ let def_avoid, def_env, lfi =
+ Array.fold_left
+ (fun (avoid, env, l) na ->
+ let id = Namegen.next_name_away na avoid in
+ (Id.Set.add id avoid, Name id :: env, id::l))
+ (avoid, env, []) lna in
+ let n = Array.length tl in
+ let v = Array.map3
+ (fun c t i -> Detyping.share_pattern_names glob_of_pat (i+1) [] def_avoid def_env sigma c (Patternops.lift_pattern n t))
+ bl tl ln in
+ GRec(GFix (Array.map (fun i -> Some i, GStructRec) ln,i),Array.of_list (List.rev lfi),
+ Array.map (fun (bl,_,_) -> bl) v,
+ Array.map (fun (_,_,ty) -> ty) v,
+ Array.map (fun (_,bd,_) -> bd) v)
+ | PCoFix (ln,(lna,tl,bl)) ->
+ let def_avoid, def_env, lfi =
+ Array.fold_left
+ (fun (avoid, env, l) na ->
+ let id = Namegen.next_name_away na avoid in
+ (Id.Set.add id avoid, Name id :: env, id::l))
+ (avoid, env, []) lna in
+ let ntys = Array.length tl in
+ let v = Array.map2
+ (fun c t -> share_pattern_names glob_of_pat 0 [] def_avoid def_env sigma c (Patternops.lift_pattern ntys t))
+ bl tl in
+ GRec(GCoFix ln,Array.of_list (List.rev lfi),
+ Array.map (fun (bl,_,_) -> bl) v,
+ Array.map (fun (_,_,ty) -> ty) v,
+ Array.map (fun (_,bd,_) -> bd) v)
| PSort s -> GSort s
let extern_constr_pattern env sigma pat =
diff --git a/intf/pattern.ml b/intf/pattern.ml
index af2347674..76367b612 100644
--- a/intf/pattern.ml
+++ b/intf/pattern.ml
@@ -10,7 +10,6 @@
open Names
open Globnames
-open Constr
open Misctypes
(** {5 Patterns} *)
@@ -37,8 +36,8 @@ type constr_pattern =
| PIf of constr_pattern * constr_pattern * constr_pattern
| PCase of case_info_pattern * constr_pattern * constr_pattern *
(int * bool list * constr_pattern) list (** index of constructor, nb of args *)
- | PFix of fixpoint
- | PCoFix of cofixpoint
+ | PFix of (int array * int) * (Name.t array * constr_pattern array * constr_pattern array)
+ | PCoFix of int * (Name.t array * constr_pattern array * constr_pattern array)
(** Nota : in a [PCase], the array of branches might be shorter than
expected, denoting the use of a final "_ => _" branch *)
diff --git a/intf/vernacexpr.ml b/intf/vernacexpr.ml
index e029c78e4..0e84a07aa 100644
--- a/intf/vernacexpr.ml
+++ b/intf/vernacexpr.ml
@@ -409,8 +409,6 @@ type nonrec vernac_expr =
| VernacHints of string list * hints_expr
| VernacSyntacticDefinition of lident * (Id.t list * constr_expr) *
onlyparsing_flag
- | VernacDeclareImplicits of reference or_by_notation *
- (explicitation * bool * bool) list list
| VernacArguments of reference or_by_notation *
vernac_argument_status list (* Main arguments status list *) *
(Name.t * vernac_implicit_status) list list (* Extra implicit status lists *) *
@@ -418,8 +416,6 @@ type nonrec vernac_expr =
[ `ReductionDontExposeCase | `ReductionNeverUnfold | `Rename |
`ExtraScopes | `Assert | `ClearImplicits | `ClearScopes |
`DefaultImplicits ] list
- | VernacArgumentsScope of reference or_by_notation *
- scope_name option list
| VernacReserve of simple_binder list
| VernacGeneralizable of (lident list) option
| VernacSetOpacity of (Conv_oracle.level * reference or_by_notation list)
diff --git a/parsing/g_vernac.ml4 b/parsing/g_vernac.ml4
index 1863f3e5f..8b445985b 100644
--- a/parsing/g_vernac.ml4
+++ b/parsing/g_vernac.ml4
@@ -601,14 +601,6 @@ GEXTEND Gram
;
END
-let warn_deprecated_arguments_scope =
- CWarnings.create ~name:"deprecated-arguments-scope" ~category:"deprecated"
- (fun () -> strbrk "Arguments Scope is deprecated; use Arguments instead")
-
-let warn_deprecated_implicit_arguments =
- CWarnings.create ~name:"deprecated-implicit-arguments" ~category:"deprecated"
- (fun () -> strbrk "Implicit Arguments is deprecated; use Arguments instead")
-
(* Extensions: implicits, coercions, etc. *)
GEXTEND Gram
GLOBAL: gallina_ext instance_name hint_info;
@@ -691,20 +683,6 @@ GEXTEND Gram
let more_implicits = Option.default [] more_implicits in
VernacArguments (qid, args, more_implicits, !slash_position, mods)
-
- (* moved there so that camlp5 factors it with the previous rule *)
- | IDENT "Arguments"; IDENT "Scope"; qid = smart_global;
- "["; scl = LIST0 [ "_" -> None | sc = IDENT -> Some sc ]; "]" ->
- warn_deprecated_arguments_scope ~loc:!@loc ();
- VernacArgumentsScope (qid,scl)
-
- (* Implicit *)
- | IDENT "Implicit"; IDENT "Arguments"; qid = smart_global;
- pos = LIST0 [ "["; l = LIST0 implicit_name; "]" ->
- List.map (fun (id,b,f) -> (ExplByName id,b,f)) l ] ->
- warn_deprecated_implicit_arguments ~loc:!@loc ();
- VernacDeclareImplicits (qid,pos)
-
| IDENT "Implicit"; "Type"; bl = reserv_list ->
VernacReserve bl
@@ -734,12 +712,6 @@ GEXTEND Gram
[`ClearImplicits; `ClearScopes]
] ]
;
- implicit_name:
- [ [ "!"; id = ident -> (id, false, true)
- | id = ident -> (id,false,false)
- | "["; "!"; id = ident; "]" -> (id,true,true)
- | "["; id = ident; "]" -> (id,true, false) ] ]
- ;
scope:
[ [ "%"; key = IDENT -> key ] ]
;
diff --git a/pretyping/constr_matching.ml b/pretyping/constr_matching.ml
index 888c76e3d..89d490a41 100644
--- a/pretyping/constr_matching.ml
+++ b/pretyping/constr_matching.ml
@@ -183,9 +183,36 @@ let push_binder na1 na2 t ctx =
Namegen.next_ident_away Namegen.default_non_dependent_ident avoid in
(na1, id2, t) :: ctx
-let to_fix (idx, (nas, cs, ts)) =
- let inj = EConstr.of_constr in
- (idx, (nas, Array.map inj cs, Array.map inj ts))
+(* This is an optimization of the main pattern-matching which shares
+ the longest common prefix of the body and type of a fixpoint. The
+ only practical effect at the time of writing is in binding variable
+ names: these variable names must be bound only once since the user
+ view at a fix displays only a (maximal) shared common prefix *)
+
+let rec match_under_common_fix_binders sorec sigma binding_vars ctx ctx' env env' subst t1 t2 b1 b2 =
+ match t1, EConstr.kind sigma t2, b1, EConstr.kind sigma b2 with
+ | PProd(na1,c1,t1'), Prod(na2,c2,t2'), PLambda (_,c1',b1'), Lambda (na2',c2',b2') ->
+ let ctx = push_binder na1 na2 c2 ctx in
+ let ctx' = push_binder na1 na2' c2' ctx' in
+ let env = EConstr.push_rel (LocalAssum (na2,c2)) env in
+ let subst = sorec ctx env subst c1 c2 in
+ let subst = sorec ctx env subst c1' c2' in
+ let subst = add_binders na1 na2 binding_vars subst in
+ match_under_common_fix_binders sorec sigma binding_vars
+ ctx ctx' env env' subst t1' t2' b1' b2'
+ | PLetIn(na1,c1,u1,t1), LetIn(na2,c2,u2,t2), PLetIn(_,c1',u1',b1), LetIn(na2',c2',u2',b2) ->
+ let ctx = push_binder na1 na2 u2 ctx in
+ let ctx' = push_binder na1 na2' u2' ctx' in
+ let env = EConstr.push_rel (LocalDef (na2,c2,t2)) env in
+ let subst = sorec ctx env subst c1 c2 in
+ let subst = sorec ctx env subst c1' c2' in
+ let subst = Option.fold_left (fun subst u1 -> sorec ctx env subst u1 u2) subst u1 in
+ let subst = Option.fold_left (fun subst u1' -> sorec ctx env subst u1' u2') subst u1' in
+ let subst = add_binders na1 na2 binding_vars subst in
+ match_under_common_fix_binders sorec sigma binding_vars
+ ctx ctx' env env' subst t1 t2 b1 b2
+ | _ ->
+ sorec ctx' env' (sorec ctx env subst t1 t2) b1 b2
let merge_binding sigma allow_bound_rels ctx n cT subst =
let c = match ctx with
@@ -364,8 +391,20 @@ let matches_core env sigma allow_bound_rels
let chk_head = sorec ctx env (sorec ctx env subst a1 a2) p1 p2 in
List.fold_left chk_branch chk_head br1
- | PFix c1, Fix _ when eq_constr sigma (mkFix (to_fix c1)) cT -> subst
- | PCoFix c1, CoFix _ when eq_constr sigma (mkCoFix (to_fix c1)) cT -> subst
+ | PFix ((ln1,i1),(lna1,tl1,bl1)), Fix ((ln2,i2),(lna2,tl2,bl2))
+ when Array.equal Int.equal ln1 ln2 && i1 = i2 ->
+ let ctx' = Array.fold_left3 (fun ctx na1 na2 t2 -> push_binder na1 na2 t2 ctx) ctx lna1 lna2 tl2 in
+ let env' = Array.fold_left2 (fun env na2 c2 -> EConstr.push_rel (LocalAssum (na2,c2)) env) env lna2 tl2 in
+ let subst = Array.fold_left4 (match_under_common_fix_binders sorec sigma binding_vars ctx ctx' env env') subst tl1 tl2 bl1 bl2 in
+ Array.fold_left2 (fun subst na1 na2 -> add_binders na1 na2 binding_vars subst) subst lna1 lna2
+
+ | PCoFix (i1,(lna1,tl1,bl1)), CoFix (i2,(lna2,tl2,bl2))
+ when i1 = i2 ->
+ let ctx' = Array.fold_left3 (fun ctx na1 na2 t2 -> push_binder na1 na2 t2 ctx) ctx lna1 lna2 tl2 in
+ let env' = Array.fold_left2 (fun env na2 c2 -> EConstr.push_rel (LocalAssum (na2,c2)) env) env lna2 tl2 in
+ let subst = Array.fold_left4 (match_under_common_fix_binders sorec sigma binding_vars ctx ctx' env env') subst tl1 tl2 bl1 bl2 in
+ Array.fold_left2 (fun subst na1 na2 -> add_binders na1 na2 binding_vars subst) subst lna1 lna2
+
| PEvar (c1,args1), Evar (c2,args2) when Evar.equal c1 c2 ->
Array.fold_left2 (sorec ctx env) subst args1 args2
| (PRef _ | PVar _ | PRel _ | PApp _ | PProj _ | PLambda _
diff --git a/pretyping/detyping.ml b/pretyping/detyping.ml
index 587892141..bb563220b 100644
--- a/pretyping/detyping.ml
+++ b/pretyping/detyping.ml
@@ -501,6 +501,97 @@ let detype_case computable detype detype_eqns testdep avoid data p c bl =
let eqnl = detype_eqns constructs constagsl bl in
GCases (tag,pred,[tomatch,(alias,aliastyp)],eqnl)
+let rec share_names detype n l avoid env sigma c t =
+ match EConstr.kind sigma c, EConstr.kind sigma t with
+ (* factorize even when not necessary to have better presentation *)
+ | Lambda (na,t,c), Prod (na',t',c') ->
+ let na = match (na,na') with
+ Name _, _ -> na
+ | _, Name _ -> na'
+ | _ -> na in
+ let t' = detype avoid env sigma t in
+ let id = next_name_away na avoid in
+ let avoid = Id.Set.add id avoid and env = add_name (Name id) None t env in
+ share_names detype (n-1) ((Name id,Explicit,None,t')::l) avoid env sigma c c'
+ (* May occur for fix built interactively *)
+ | LetIn (na,b,t',c), _ when n > 0 ->
+ let t'' = detype avoid env sigma t' in
+ let b' = detype avoid env sigma b in
+ let id = next_name_away na avoid in
+ let avoid = Id.Set. add id avoid and env = add_name (Name id) (Some b) t' env in
+ share_names detype n ((Name id,Explicit,Some b',t'')::l) avoid env sigma c (lift 1 t)
+ (* Only if built with the f/n notation or w/o let-expansion in types *)
+ | _, LetIn (_,b,_,t) when n > 0 ->
+ share_names detype n l avoid env sigma c (subst1 b t)
+ (* If it is an open proof: we cheat and eta-expand *)
+ | _, Prod (na',t',c') when n > 0 ->
+ let t'' = detype avoid env sigma t' in
+ let id = next_name_away na' avoid in
+ let avoid = Id.Set.add id avoid and env = add_name (Name id) None t' env in
+ let appc = mkApp (lift 1 c,[|mkRel 1|]) in
+ share_names detype (n-1) ((Name id,Explicit,None,t'')::l) avoid env sigma appc c'
+ (* If built with the f/n notation: we renounce to share names *)
+ | _ ->
+ if n>0 then Feedback.msg_debug (strbrk "Detyping.detype: cannot factorize fix enough");
+ let c = detype avoid env sigma c in
+ let t = detype avoid env sigma t in
+ (List.rev l,c,t)
+
+let rec share_pattern_names detype n l avoid env sigma c t =
+ let open Pattern in
+ if n = 0 then
+ let c = detype avoid env sigma c in
+ let t = detype avoid env sigma t in
+ (List.rev l,c,t)
+ else match c, t with
+ | PLambda (na,t,c), PProd (na',t',c') ->
+ let na = match (na,na') with
+ Name _, _ -> na
+ | _, Name _ -> na'
+ | _ -> na in
+ let t' = detype avoid env sigma t in
+ let id = next_name_away na avoid in
+ let avoid = Id.Set.add id avoid in
+ let env = Name id :: env in
+ share_pattern_names detype (n-1) ((Name id,Explicit,None,t')::l) avoid env sigma c c'
+ | _ ->
+ if n>0 then Feedback.msg_debug (strbrk "Detyping.detype: cannot factorize fix enough");
+ let c = detype avoid env sigma c in
+ let t = detype avoid env sigma t in
+ (List.rev l,c,t)
+
+let detype_fix detype avoid env sigma (vn,_ as nvn) (names,tys,bodies) =
+ let def_avoid, def_env, lfi =
+ Array.fold_left2
+ (fun (avoid, env, l) na ty ->
+ let id = next_name_away na avoid in
+ (Id.Set.add id avoid, add_name (Name id) None ty env, id::l))
+ (avoid, env, []) names tys in
+ let n = Array.length tys in
+ let v = Array.map3
+ (fun c t i -> share_names detype (i+1) [] def_avoid def_env sigma c (lift n t))
+ bodies tys vn in
+ GRec(GFix (Array.map (fun i -> Some i, GStructRec) (fst nvn), snd nvn),Array.of_list (List.rev lfi),
+ Array.map (fun (bl,_,_) -> bl) v,
+ Array.map (fun (_,_,ty) -> ty) v,
+ Array.map (fun (_,bd,_) -> bd) v)
+
+let detype_cofix detype avoid env sigma n (names,tys,bodies) =
+ let def_avoid, def_env, lfi =
+ Array.fold_left2
+ (fun (avoid, env, l) na ty ->
+ let id = next_name_away na avoid in
+ (Id.Set.add id avoid, add_name (Name id) None ty env, id::l))
+ (avoid, env, []) names tys in
+ let ntys = Array.length tys in
+ let v = Array.map2
+ (fun c t -> share_names detype 0 [] def_avoid def_env sigma c (lift ntys t))
+ bodies tys in
+ GRec(GCoFix n,Array.of_list (List.rev lfi),
+ Array.map (fun (bl,_,_) -> bl) v,
+ Array.map (fun (_,_,ty) -> ty) v,
+ Array.map (fun (_,bd,_) -> bd) v)
+
let detype_universe sigma u =
let fn (l, n) = Some (Termops.reference_of_level sigma l, n) in
Univ.Universe.map fn u
@@ -655,76 +746,8 @@ and detype_r d flags avoid env sigma t =
(ci.ci_ind,ci.ci_pp_info.style,
ci.ci_pp_info.cstr_tags,ci.ci_pp_info.ind_tags)
p c bl
- | Fix (nvn,recdef) -> detype_fix d flags avoid env sigma nvn recdef
- | CoFix (n,recdef) -> detype_cofix d flags avoid env sigma n recdef
-
-and detype_fix d flags avoid env sigma (vn,_ as nvn) (names,tys,bodies) =
- let def_avoid, def_env, lfi =
- Array.fold_left2
- (fun (avoid, env, l) na ty ->
- let id = next_name_away na avoid in
- (Id.Set.add id avoid, add_name (Name id) None ty env, id::l))
- (avoid, env, []) names tys in
- let n = Array.length tys in
- let v = Array.map3
- (fun c t i -> share_names d flags (i+1) [] def_avoid def_env sigma c (lift n t))
- bodies tys vn in
- GRec(GFix (Array.map (fun i -> Some i, GStructRec) (fst nvn), snd nvn),Array.of_list (List.rev lfi),
- Array.map (fun (bl,_,_) -> bl) v,
- Array.map (fun (_,_,ty) -> ty) v,
- Array.map (fun (_,bd,_) -> bd) v)
-
-and detype_cofix d flags avoid env sigma n (names,tys,bodies) =
- let def_avoid, def_env, lfi =
- Array.fold_left2
- (fun (avoid, env, l) na ty ->
- let id = next_name_away na avoid in
- (Id.Set.add id avoid, add_name (Name id) None ty env, id::l))
- (avoid, env, []) names tys in
- let ntys = Array.length tys in
- let v = Array.map2
- (fun c t -> share_names d flags 0 [] def_avoid def_env sigma c (lift ntys t))
- bodies tys in
- GRec(GCoFix n,Array.of_list (List.rev lfi),
- Array.map (fun (bl,_,_) -> bl) v,
- Array.map (fun (_,_,ty) -> ty) v,
- Array.map (fun (_,bd,_) -> bd) v)
-
-and share_names d flags n l avoid env sigma c t =
- match EConstr.kind sigma c, EConstr.kind sigma t with
- (* factorize even when not necessary to have better presentation *)
- | Lambda (na,t,c), Prod (na',t',c') ->
- let na = match (na,na') with
- Name _, _ -> na
- | _, Name _ -> na'
- | _ -> na in
- let t' = detype d flags avoid env sigma t in
- let id = next_name_away na avoid in
- let avoid = Id.Set.add id avoid and env = add_name (Name id) None t env in
- share_names d flags (n-1) ((Name id,Explicit,None,t')::l) avoid env sigma c c'
- (* May occur for fix built interactively *)
- | LetIn (na,b,t',c), _ when n > 0 ->
- let t'' = detype d flags avoid env sigma t' in
- let b' = detype d flags avoid env sigma b in
- let id = next_name_away na avoid in
- let avoid = Id.Set. add id avoid and env = add_name (Name id) (Some b) t' env in
- share_names d flags n ((Name id,Explicit,Some b',t'')::l) avoid env sigma c (lift 1 t)
- (* Only if built with the f/n notation or w/o let-expansion in types *)
- | _, LetIn (_,b,_,t) when n > 0 ->
- share_names d flags n l avoid env sigma c (subst1 b t)
- (* If it is an open proof: we cheat and eta-expand *)
- | _, Prod (na',t',c') when n > 0 ->
- let t'' = detype d flags avoid env sigma t' in
- let id = next_name_away na' avoid in
- let avoid = Id.Set.add id avoid and env = add_name (Name id) None t' env in
- let appc = mkApp (lift 1 c,[|mkRel 1|]) in
- share_names d flags (n-1) ((Name id,Explicit,None,t'')::l) avoid env sigma appc c'
- (* If built with the f/n notation: we renounce to share names *)
- | _ ->
- if n>0 then Feedback.msg_debug (strbrk "Detyping.detype: cannot factorize fix enough");
- let c = detype d flags avoid env sigma c in
- let t = detype d flags avoid env sigma t in
- (List.rev l,c,t)
+ | Fix (nvn,recdef) -> detype_fix (detype d flags) avoid env sigma nvn recdef
+ | CoFix (n,recdef) -> detype_cofix (detype d flags) avoid env sigma n recdef
and detype_eqns d flags avoid env sigma ci computable constructs consnargsl bl =
try
diff --git a/pretyping/detyping.mli b/pretyping/detyping.mli
index 32b94e1b0..817b8ba6e 100644
--- a/pretyping/detyping.mli
+++ b/pretyping/detyping.mli
@@ -56,6 +56,13 @@ val detype_sort : evar_map -> Sorts.t -> glob_sort
val detype_rel_context : 'a delay -> ?lax:bool -> constr option -> Id.Set.t -> (names_context * env) ->
evar_map -> rel_context -> 'a glob_decl_g list
+val share_pattern_names :
+ (Id.Set.t -> names_context -> 'c -> Pattern.constr_pattern -> 'a) -> int ->
+ (Name.t * Decl_kinds.binding_kind * 'b option * 'a) list ->
+ Id.Set.t -> names_context -> 'c -> Pattern.constr_pattern ->
+ Pattern.constr_pattern ->
+ (Name.t * Decl_kinds.binding_kind * 'b option * 'a) list * 'a * 'a
+
val detype_closed_glob : ?lax:bool -> bool -> Id.Set.t -> env -> evar_map -> closed_glob_constr -> glob_constr
(** look for the index of a named var or a nondep var as it is renamed *)
diff --git a/pretyping/glob_ops.ml b/pretyping/glob_ops.ml
index 74f2cefab..e89bbf7c3 100644
--- a/pretyping/glob_ops.ml
+++ b/pretyping/glob_ops.ml
@@ -136,7 +136,7 @@ let mk_glob_constr_eq f c1 c2 = match DAst.get c1, DAst.get c2 with
| GIf (m1, (pat1, p1), c1, t1), GIf (m2, (pat2, p2), c2, t2) ->
f m1 m2 && Name.equal pat1 pat2 &&
Option.equal f p1 p2 && f c1 c2 && f t1 t2
- | GRec (kn1, id1, decl1, c1, t1), GRec (kn2, id2, decl2, c2, t2) ->
+ | GRec (kn1, id1, decl1, t1, c1), GRec (kn2, id2, decl2, t2, c2) ->
fix_kind_eq f kn1 kn2 && Array.equal Id.equal id1 id2 &&
Array.equal (fun l1 l2 -> List.equal (glob_decl_eq f) l1 l2) decl1 decl2 &&
Array.equal f c1 c2 && Array.equal f t1 t2
diff --git a/pretyping/patternops.ml b/pretyping/patternops.ml
index dcb93bfb6..e52112fda 100644
--- a/pretyping/patternops.ml
+++ b/pretyping/patternops.ml
@@ -15,7 +15,6 @@ open Globnames
open Nameops
open Term
open Constr
-open Vars
open Glob_term
open Pp
open Mod_subst
@@ -57,10 +56,10 @@ let rec constr_pattern_eq p1 p2 = match p1, p2 with
constr_pattern_eq p1 p2 &&
constr_pattern_eq r1 r2 &&
List.equal pattern_eq l1 l2
-| PFix f1, PFix f2 ->
- fixpoint_eq f1 f2
-| PCoFix f1, PCoFix f2 ->
- cofixpoint_eq f1 f2
+| PFix ((ln1,i1),f1), PFix ((ln2,i2),f2) ->
+ Array.equal Int.equal ln1 ln2 && Int.equal i1 i2 && rec_declaration_eq f1 f2
+| PCoFix (i1,f1), PCoFix (i2,f2) ->
+ Int.equal i1 i2 && rec_declaration_eq f1 f2
| PProj (p1, t1), PProj (p2, t2) ->
Projection.equal p1 p2 && constr_pattern_eq t1 t2
| (PRef _ | PVar _ | PEvar _ | PRel _ | PApp _ | PSoApp _
@@ -71,19 +70,10 @@ let rec constr_pattern_eq p1 p2 = match p1, p2 with
and pattern_eq (i1, j1, p1) (i2, j2, p2) =
Int.equal i1 i2 && List.equal (==) j1 j2 && constr_pattern_eq p1 p2
-and fixpoint_eq ((arg1, i1), r1) ((arg2, i2), r2) =
- Int.equal i1 i2 &&
- Array.equal Int.equal arg1 arg2 &&
- rec_declaration_eq r1 r2
-
-and cofixpoint_eq (i1, r1) (i2, r2) =
- Int.equal i1 i2 &&
- rec_declaration_eq r1 r2
-
and rec_declaration_eq (n1, c1, r1) (n2, c2, r2) =
Array.equal Name.equal n1 n2 &&
- Array.equal Constr.equal c1 c2 &&
- Array.equal Constr.equal r1 r2
+ Array.equal constr_pattern_eq c1 c2 &&
+ Array.equal constr_pattern_eq r1 r2
let rec occur_meta_pattern = function
| PApp (f,args) ->
@@ -123,8 +113,10 @@ let rec occurn_pattern n = function
| PMeta _ | PSoApp _ -> true
| PEvar (_,args) -> Array.exists (occurn_pattern n) args
| PVar _ | PRef _ | PSort _ -> false
- | PFix fix -> not (noccurn n (mkFix fix))
- | PCoFix cofix -> not (noccurn n (mkCoFix cofix))
+ | PFix (_,(_,tl,bl)) ->
+ Array.exists (occurn_pattern n) tl || Array.exists (occurn_pattern (n+Array.length tl)) bl
+ | PCoFix (_,(_,tl,bl)) ->
+ Array.exists (occurn_pattern n) tl || Array.exists (occurn_pattern (n+Array.length tl)) bl
let noccurn_pattern n c = not (occurn_pattern n c)
@@ -209,8 +201,16 @@ let pattern_of_constr env sigma t =
in
PCase (cip, pattern_of_constr env p, pattern_of_constr env a,
Array.to_list (Array.mapi branch_of_constr br))
- | Fix f -> PFix f
- | CoFix f -> PCoFix f in
+ | Fix (lni,(lna,tl,bl)) ->
+ let push env na2 c2 = push_rel (LocalAssum (na2,c2)) env in
+ let env' = Array.fold_left2 push env lna tl in
+ PFix (lni,(lna,Array.map (pattern_of_constr env) tl,
+ Array.map (pattern_of_constr env') bl))
+ | CoFix (ln,(lna,tl,bl)) ->
+ let push env na2 c2 = push_rel (LocalAssum (na2,c2)) env in
+ let env' = Array.fold_left2 push env lna tl in
+ PCoFix (ln,(lna,Array.map (pattern_of_constr env) tl,
+ Array.map (pattern_of_constr env') bl)) in
pattern_of_constr env t
(* To process patterns, we need a translation without typing at all. *)
@@ -225,10 +225,14 @@ let map_pattern_with_binders g f l = function
| PCase (ci,po,p,pl) ->
PCase (ci,f l po,f l p, List.map (fun (i,n,c) -> (i,n,f l c)) pl)
| PProj (p,pc) -> PProj (p, f l pc)
+ | PFix (lni,(lna,tl,bl)) ->
+ let l' = Array.fold_left (fun l na -> g na l) l lna in
+ PFix (lni,(lna,Array.map (f l) tl,Array.map (f l') bl))
+ | PCoFix (ln,(lna,tl,bl)) ->
+ let l' = Array.fold_left (fun l na -> g na l) l lna in
+ PCoFix (ln,(lna,Array.map (f l) tl,Array.map (f l') bl))
(* Non recursive *)
- | (PVar _ | PEvar _ | PRel _ | PRef _ | PSort _ | PMeta _
- (* Bound to terms *)
- | PFix _ | PCoFix _ as x) -> x
+ | (PVar _ | PEvar _ | PRel _ | PRef _ | PSort _ | PMeta _ as x) -> x
let error_instantiate_pattern id l =
let is = match l with
@@ -262,15 +266,12 @@ let instantiate_pattern env sigma lvar c =
error_instantiate_pattern id (List.subtract Id.equal ctx vars)
with Not_found (* Map.find failed *) ->
x)
- | (PFix _ | PCoFix _) -> user_err Pp.(str "Non instantiable pattern.")
| c ->
map_pattern_with_binders (fun id vars -> id::vars) aux vars c in
aux [] c
let rec liftn_pattern k n = function
| PRel i as x -> if i >= n then PRel (i+k) else x
- | PFix x -> PFix (destFix (liftn k n (mkFix x)))
- | PCoFix x -> PCoFix (destCoFix (liftn k n (mkCoFix x)))
| c -> map_pattern_with_binders (fun _ -> succ) (liftn_pattern k) n c
let lift_pattern k = liftn_pattern k 1
@@ -337,19 +338,35 @@ let rec subst_pattern subst pat =
if cip' == cip && typ' == typ && c' == c && branches' == branches
then pat
else PCase(cip', typ', c', branches')
- | PFix fixpoint ->
- let cstr = mkFix fixpoint in
- let fixpoint' = destFix (subst_mps subst cstr) in
- if fixpoint' == fixpoint then pat else
- PFix fixpoint'
- | PCoFix cofixpoint ->
- let cstr = mkCoFix cofixpoint in
- let cofixpoint' = destCoFix (subst_mps subst cstr) in
- if cofixpoint' == cofixpoint then pat else
- PCoFix cofixpoint'
-
-let mkPLambda na b = PLambda(na,PMeta None,b)
-let rev_it_mkPLambda = List.fold_right mkPLambda
+ | PFix (lni,(lna,tl,bl)) ->
+ let tl' = Array.smartmap (subst_pattern subst) tl in
+ let bl' = Array.smartmap (subst_pattern subst) bl in
+ if bl' == bl && tl' == tl then pat
+ else PFix (lni,(lna,tl',bl'))
+ | PCoFix (ln,(lna,tl,bl)) ->
+ let tl' = Array.smartmap (subst_pattern subst) tl in
+ let bl' = Array.smartmap (subst_pattern subst) bl in
+ if bl' == bl && tl' == tl then pat
+ else PCoFix (ln,(lna,tl',bl'))
+
+let mkPLetIn na b t c = PLetIn(na,b,t,c)
+let mkPProd na t u = PProd(na,t,u)
+let mkPLambda na t b = PLambda(na,t,b)
+let mkPLambdaUntyped na b = PLambda(na,PMeta None,b)
+let rev_it_mkPLambdaUntyped = List.fold_right mkPLambdaUntyped
+
+let mkPProd_or_LetIn (na,_,bo,t) c =
+ match bo with
+ | None -> mkPProd na t c
+ | Some b -> mkPLetIn na b (Some t) c
+
+let mkPLambda_or_LetIn (na,_,bo,t) c =
+ match bo with
+ | None -> mkPLambda na t c
+ | Some b -> mkPLetIn na b (Some t) c
+
+let it_mkPProd_or_LetIn = List.fold_left (fun c d -> mkPProd_or_LetIn d c)
+let it_mkPLambda_or_LetIn = List.fold_left (fun c d -> mkPLambda_or_LetIn d c)
let err ?loc pp = user_err ?loc ~hdr:"pattern_of_glob_constr" pp
@@ -428,7 +445,7 @@ let rec pat_of_raw metas vars = DAst.with_loc_val (fun ?loc -> function
let pred = match p,indnames with
| Some p, Some {CAst.v=(_,nal)} ->
let nvars = na :: List.rev nal @ vars in
- rev_it_mkPLambda nal (mkPLambda na (pat_of_raw metas nvars p))
+ rev_it_mkPLambdaUntyped nal (mkPLambdaUntyped na (pat_of_raw metas nvars p))
| None, _ -> PMeta None
| Some p, None ->
match DAst.get p with
@@ -450,9 +467,40 @@ let rec pat_of_raw metas vars = DAst.with_loc_val (fun ?loc -> function
| GProj(p,c) ->
PProj(p, pat_of_raw metas vars c)
- | GPatVar _ | GIf _ | GLetTuple _ | GCases _ | GEvar _ | GRec _ ->
+ | GRec (GFix (ln,n), ids, decls, tl, cl) ->
+ if Array.exists (function (Some n, GStructRec) -> false | _ -> true) ln then
+ err ?loc (Pp.str "\"struct\" annotation is expected.")
+ else
+ let ln = Array.map (fst %> Option.get) ln in
+ let ctxtl = Array.map2 (pat_of_glob_in_context metas vars) decls tl in
+ let tl = Array.map (fun (ctx,tl) -> it_mkPProd_or_LetIn tl ctx) ctxtl in
+ let vars = Array.fold_left (fun vars na -> Name na::vars) vars ids in
+ let ctxtl = Array.map2 (pat_of_glob_in_context metas vars) decls cl in
+ let cl = Array.map (fun (ctx,cl) -> it_mkPLambda_or_LetIn cl ctx) ctxtl in
+ let names = Array.map (fun id -> Name id) ids in
+ PFix ((ln,n), (names, tl, cl))
+
+ | GRec (GCoFix n, ids, decls, tl, cl) ->
+ let ctxtl = Array.map2 (pat_of_glob_in_context metas vars) decls tl in
+ let tl = Array.map (fun (ctx,tl) -> it_mkPProd_or_LetIn tl ctx) ctxtl in
+ let vars = Array.fold_left (fun vars na -> Name na::vars) vars ids in
+ let ctxtl = Array.map2 (pat_of_glob_in_context metas vars) decls cl in
+ let cl = Array.map (fun (ctx,cl) -> it_mkPLambda_or_LetIn cl ctx) ctxtl in
+ let names = Array.map (fun id -> Name id) ids in
+ PCoFix (n, (names, tl, cl))
+
+ | GPatVar _ | GIf _ | GLetTuple _ | GCases _ | GEvar _ ->
err ?loc (Pp.str "Non supported pattern."))
+and pat_of_glob_in_context metas vars decls c =
+ let rec aux acc vars = function
+ | (na,bk,b,t) :: decls ->
+ let decl = (na,bk,Option.map (pat_of_raw metas vars) b,pat_of_raw metas vars t) in
+ aux (decl::acc) (na::vars) decls
+ | [] ->
+ acc, pat_of_raw metas vars c
+ in aux [] vars decls
+
and pats_of_glob_branches loc metas vars ind brs =
let get_arg p = match DAst.get p with
| PatVar na ->
@@ -477,7 +525,7 @@ and pats_of_glob_branches loc metas vars ind brs =
(str "No unique branch for " ++ int j ++ str"-th constructor.");
let lna = List.map get_arg lv in
let vars' = List.rev lna @ vars in
- let pat = rev_it_mkPLambda lna (pat_of_raw metas vars' br) in
+ let pat = rev_it_mkPLambdaUntyped lna (pat_of_raw metas vars' br) in
let ext,pats = get_pat (Int.Set.add (j-1) indexes) brs in
let tags = List.map (fun _ -> false) lv (* approximation, w/o let-in *) in
ext, ((j-1, tags, pat) :: pats)
diff --git a/printing/ppvernac.ml b/printing/ppvernac.ml
index 9dce65374..bbf0e2b60 100644
--- a/printing/ppvernac.ml
+++ b/printing/ppvernac.ml
@@ -155,13 +155,6 @@ open Decl_kinds
let pr_locality local = if local then keyword "Local" else keyword "Global"
- let pr_explanation (e,b,f) =
- let a = match e with
- | ExplByPos (n,_) -> anomaly (Pp.str "No more supported.")
- | ExplByName id -> pr_id id in
- let a = if f then str"!" ++ a else a in
- if b then str "[" ++ a ++ str "]" else a
-
let pr_option_ref_value = function
| QualidRefValue id -> pr_reference id
| StringRefValue s -> qs s
@@ -651,16 +644,6 @@ open Decl_kinds
keyword "Bind Scope" ++ spc () ++ str sc ++
spc() ++ keyword "with" ++ spc () ++ prlist_with_sep spc pr_class_rawexpr cll
)
- | VernacArgumentsScope (q,scl) ->
- let pr_opt_scope = function
- | None -> str"_"
- | Some sc -> str sc
- in
- return (
- keyword "Arguments Scope"
- ++ spc() ++ pr_smart_global q
- ++ spc() ++ str"[" ++ prlist_with_sep sep pr_opt_scope scl ++ str"]"
- )
| VernacInfix (({v=s},mv),q,sn) -> (* A Verifier *)
return (
hov 0 (hov 0 (keyword "Infix "
@@ -1014,18 +997,6 @@ open Decl_kinds
| Some Flags.Current -> [SetOnlyParsing]
| Some v -> [SetCompatVersion v]))
)
- | VernacDeclareImplicits (q,[]) ->
- return (
- hov 2 (keyword "Implicit Arguments" ++ spc() ++ pr_smart_global q)
- )
- | VernacDeclareImplicits (q,impls) ->
- return (
- hov 1 (keyword "Implicit Arguments" ++ spc () ++
- spc() ++ pr_smart_global q ++ spc() ++
- prlist_with_sep spc (fun imps ->
- str"[" ++ prlist_with_sep sep pr_explanation imps ++ str"]")
- impls)
- )
| VernacArguments (q, args, more_implicits, nargs, mods) ->
return (
hov 2 (
diff --git a/stm/stm.mli b/stm/stm.mli
index a8eb10fb3..7a720aa72 100644
--- a/stm/stm.mli
+++ b/stm/stm.mli
@@ -39,14 +39,25 @@ module AsyncOpts : sig
end
-(** The STM doc type determines some properties such as what
- uncompleted proofs are allowed and recording of aux files. *)
+(** The STM document type [stm_doc_type] determines some properties
+ such as what uncompleted proofs are allowed and what gets recorded
+ to aux files. *)
type stm_doc_type =
- | VoDoc of string
- | VioDoc of string
- | Interactive of DirPath.t
+ | VoDoc of string (* file path *)
+ | VioDoc of string (* file path *)
+ | Interactive of DirPath.t (* module path *)
-(* Main initalization routine *)
+(** Coq initalization options:
+
+ - [doc_type]: Type of document being created.
+
+ - [require_libs]: list of libraries/modules to be pre-loaded at
+ startup. A tuple [(modname,modfrom,import)] is equivalent to [From
+ modfrom Require modname]; [import] works similarly to
+ [Library.require_library_from_dirpath], [Some false] will import
+ the module, [Some true] will additionally export it.
+
+*)
type stm_init_options = {
(* The STM will set some internal flags differently depending on the
specified [doc_type]. This distinction should dissappear at some
@@ -72,12 +83,14 @@ type stm_init_options = {
(** The type of a STM document *)
type doc
+(** [init_core] performs some low-level initalization; should go away
+ in future releases. *)
val init_core : unit -> unit
-(* Starts a new document *)
+(** [new_doc opt] Creates a new document with options [opt] *)
val new_doc : stm_init_options -> doc * Stateid.t
-(* [parse_sentence sid pa] Reads a sentence from [pa] with parsing
+(** [parse_sentence sid pa] Reads a sentence from [pa] with parsing
state [sid] Returns [End_of_input] if the stream ends *)
val parse_sentence : doc:doc -> Stateid.t -> Pcoq.Gram.coq_parsable ->
Vernacexpr.vernac_control CAst.t
@@ -115,14 +128,15 @@ val query : doc:doc ->
type focus = { start : Stateid.t; stop : Stateid.t; tip : Stateid.t }
val edit_at : doc:doc -> Stateid.t -> doc * [ `NewTip | `Focus of focus ]
-(* Evaluates the tip of the current branch *)
+(* [observe doc sid]] Check / execute span [sid] *)
+val observe : doc:doc -> Stateid.t -> doc
+
+(* [finish doc] Fully checks a document up to the "current" tip. *)
val finish : doc:doc -> doc
(* Internal use (fake_ide) only, do not use *)
val wait : doc:doc -> doc
-val observe : doc:doc -> Stateid.t -> doc
-
val stop_worker : string -> unit
(* Joins the entire document. Implies finish, but also checks proofs *)
diff --git a/stm/vernac_classifier.ml b/stm/vernac_classifier.ml
index a78323323..eecee40df 100644
--- a/stm/vernac_classifier.ml
+++ b/stm/vernac_classifier.ml
@@ -145,7 +145,7 @@ let classify_vernac e =
| VernacAddLoadPath _ | VernacRemoveLoadPath _ | VernacAddMLPath _
| VernacChdir _
| VernacCreateHintDb _ | VernacRemoveHints _ | VernacHints _
- | VernacDeclareImplicits _ | VernacArguments _ | VernacArgumentsScope _
+ | VernacArguments _
| VernacReserve _
| VernacGeneralizable _
| VernacSetOpacity _ | VernacSetStrategy _
diff --git a/tactics/tacticals.ml b/tactics/tacticals.ml
index 958a205a1..a97ae8f65 100644
--- a/tactics/tacticals.ml
+++ b/tactics/tacticals.ml
@@ -369,9 +369,36 @@ module New = struct
tclTHENSFIRSTn t1 l (tclUNIT())
let tclTHENFIRST t1 t2 =
tclTHENFIRSTn t1 [|t2|]
+
+ let tclBINDFIRST t1 t2 =
+ t1 >>= fun ans ->
+ Proofview.Unsafe.tclGETGOALS >>= fun gls ->
+ match gls with
+ | [] -> tclFAIL 0 (str "Expect at least one goal.")
+ | hd::tl ->
+ Proofview.Unsafe.tclSETGOALS [hd] <*> t2 ans >>= fun ans ->
+ Proofview.Unsafe.tclNEWGOALS tl <*>
+ Proofview.tclUNIT ans
+
let tclTHENLASTn t1 l =
tclTHENS3PARTS t1 [||] (tclUNIT()) l
let tclTHENLAST t1 t2 = tclTHENLASTn t1 [|t2|]
+
+ let option_of_failure f x = try Some (f x) with Failure _ -> None
+
+ let tclBINDLAST t1 t2 =
+ t1 >>= fun ans ->
+ Proofview.Unsafe.tclGETGOALS >>= fun gls ->
+ match option_of_failure List.sep_last gls with
+ | None -> tclFAIL 0 (str "Expect at least one goal.")
+ | Some (last,firstn) ->
+ Proofview.Unsafe.tclSETGOALS [last] <*> t2 ans >>= fun ans ->
+ Proofview.Unsafe.tclGETGOALS >>= fun newgls ->
+ tclEVARMAP >>= fun sigma ->
+ let firstn = Proofview.Unsafe.undefined sigma firstn in
+ Proofview.Unsafe.tclSETGOALS (firstn@newgls) <*>
+ Proofview.tclUNIT ans
+
let tclTHENS t l =
tclINDEPENDENT begin
t <*>Proofview.tclORELSE (* converts the [SizeMismatch] error into an ltac error *)
diff --git a/tactics/tacticals.mli b/tactics/tacticals.mli
index f0ebac780..340d8fbf3 100644
--- a/tactics/tacticals.mli
+++ b/tactics/tacticals.mli
@@ -196,8 +196,10 @@ module New : sig
(** [tclTHENFIRST tac1 tac2 gls] applies the tactic [tac1] to [gls]
and [tac2] to the first resulting subgoal *)
val tclTHENFIRST : unit tactic -> unit tactic -> unit tactic
+ val tclBINDFIRST : 'a tactic -> ('a -> 'b tactic) -> 'b tactic
val tclTHENLASTn : unit tactic -> unit tactic array -> unit tactic
val tclTHENLAST : unit tactic -> unit tactic -> unit tactic
+ val tclBINDLAST : 'a tactic -> ('a -> 'b tactic) -> 'b tactic
(* [tclTHENS t l = t <*> tclDISPATCH l] *)
val tclTHENS : unit tactic -> unit tactic list -> unit tactic
(* [tclTHENLIST [t1;…;tn]] is [t1<*>…<*>tn] *)
diff --git a/test-suite/bugs/closed/1341.v b/test-suite/bugs/closed/1341.v
index 8c5a38859..79a0a14d7 100644
--- a/test-suite/bugs/closed/1341.v
+++ b/test-suite/bugs/closed/1341.v
@@ -8,7 +8,7 @@ Hypothesis Xst : forall A, Equivalence (Xeq A).
Variable map : forall A B, (A -> B) -> X A -> X B.
-Implicit Arguments map [A B].
+Arguments map [A B].
Goal forall A B (a b:X (B -> A)) (c:X A) (f:A -> B -> A), Xeq _ a b -> Xeq _ b (map f c) -> Xeq _ a (map f c).
intros A B a b c f Hab Hbc.
diff --git a/test-suite/bugs/closed/1844.v b/test-suite/bugs/closed/1844.v
index 17eeb3529..c41e45900 100644
--- a/test-suite/bugs/closed/1844.v
+++ b/test-suite/bugs/closed/1844.v
@@ -5,7 +5,7 @@ Definition zeq := Z.eq_dec.
Definition update (A: Set) (x: Z) (v: A) (s: Z -> A) : Z -> A :=
fun y => if zeq x y then v else s y.
-Implicit Arguments update [A].
+Arguments update [A].
Definition ident := Z.
Parameter operator: Set.
diff --git a/test-suite/bugs/closed/1891.v b/test-suite/bugs/closed/1891.v
index 685811176..5024a5bc9 100644
--- a/test-suite/bugs/closed/1891.v
+++ b/test-suite/bugs/closed/1891.v
@@ -3,7 +3,7 @@
Definition f (A: Set) (l: T A): unit := tt.
- Implicit Arguments f [A].
+ Arguments f [A].
Lemma L (x: T unit): (unit -> T unit) -> unit.
Proof.
diff --git a/test-suite/bugs/closed/1951.v b/test-suite/bugs/closed/1951.v
index 7558b0b86..e950554c4 100644
--- a/test-suite/bugs/closed/1951.v
+++ b/test-suite/bugs/closed/1951.v
@@ -42,7 +42,7 @@ match s as a return (S a) with
pair (ind2 a0) IHl) l)
end. (* some induction principle *)
-Implicit Arguments ind [S].
+Arguments ind [S].
Lemma k : a -> Type. (* some ininteresting lemma *)
intro;pattern H;apply ind;intros.
diff --git a/test-suite/bugs/closed/1981.v b/test-suite/bugs/closed/1981.v
index 99952682d..a3d942930 100644
--- a/test-suite/bugs/closed/1981.v
+++ b/test-suite/bugs/closed/1981.v
@@ -1,4 +1,4 @@
-Implicit Arguments ex_intro [A].
+Arguments ex_intro [A].
Goal exists n : nat, True.
eapply ex_intro. exact 0. exact I.
diff --git a/test-suite/bugs/closed/2362.v b/test-suite/bugs/closed/2362.v
index febb9c7bb..10e86cd12 100644
--- a/test-suite/bugs/closed/2362.v
+++ b/test-suite/bugs/closed/2362.v
@@ -8,7 +8,7 @@ Class Pointed (M:Type -> Type) :=
Unset Implicit Arguments.
Inductive FPair (A B:Type) (neutral: B) : Type:=
fpair : forall (a:A) (b:B), FPair A B neutral.
-Implicit Arguments fpair [[A] [B] [neutral]].
+Arguments fpair {A B neutral}.
Set Implicit Arguments.
diff --git a/test-suite/bugs/closed/2378.v b/test-suite/bugs/closed/2378.v
index 23a58501f..6d73d58d4 100644
--- a/test-suite/bugs/closed/2378.v
+++ b/test-suite/bugs/closed/2378.v
@@ -63,7 +63,7 @@ Fixpoint lpSat st f: Prop :=
end.
End PropLogic.
-Implicit Arguments lpSat.
+Arguments lpSat : default implicits.
Fixpoint LPTransfo Pred1 Pred2 p2lp (f: LP Pred1): LP Pred2 :=
match f with
@@ -71,7 +71,7 @@ Fixpoint LPTransfo Pred1 Pred2 p2lp (f: LP Pred1): LP Pred2 :=
| LPAnd _ f1 f2 => LPAnd _ (LPTransfo Pred1 Pred2 p2lp f1) (LPTransfo Pred1 Pred2 p2lp f2)
| LPNot _ f1 => LPNot _ (LPTransfo Pred1 Pred2 p2lp f1)
end.
-Implicit Arguments LPTransfo.
+Arguments LPTransfo : default implicits.
Definition addIndex (Ind:Type) (Pred: Ind -> Type) (i: Ind) f :=
LPTransfo (fun p => LPPred _ (existT (fun i => Pred i) i p)) f.
@@ -139,7 +139,7 @@ Definition trProd (State: Type) Ind (Pred: Ind -> Type) (tts: Ind -> TTS State)
{i:Ind & Pred i} -> LP (Predicate _ (TTSIndexedProduct _ Ind tts)) :=
fun p => addIndex Ind _ (projS1 p) (tr (projS1 p) (projS2 p)).
-Implicit Arguments trProd.
+Arguments trProd : default implicits.
Require Import Setoid.
Theorem satTrProd:
diff --git a/test-suite/bugs/closed/2404.v b/test-suite/bugs/closed/2404.v
index 8ac696e91..f6ec67601 100644
--- a/test-suite/bugs/closed/2404.v
+++ b/test-suite/bugs/closed/2404.v
@@ -22,13 +22,13 @@ Section Derived.
Definition bexportw := exportw base.
Definition bwweak := wweak base.
- Implicit Arguments bexportw [a b].
+ Arguments bexportw [a b].
Inductive RstarSetProof {I : Type} (T : I -> I -> Type) : I -> I -> Type :=
starReflS : forall a, RstarSetProof T a a
| starTransS : forall i j k, T i j -> (RstarSetProof T j k) -> RstarSetProof T i k.
-Implicit Arguments starTransS [I T i j k].
+Arguments starTransS [I T i j k].
Definition RstarInv {A : Set} (rel : relation A) : A -> A -> Type := (flip (RstarSetProof (flip rel))).
diff --git a/test-suite/bugs/closed/2584.v b/test-suite/bugs/closed/2584.v
index ef2e4e355..b5a723b47 100644
--- a/test-suite/bugs/closed/2584.v
+++ b/test-suite/bugs/closed/2584.v
@@ -8,7 +8,7 @@ Inductive res (A: Type) : Type :=
| OK: A -> res A
| Error: err -> res A.
-Implicit Arguments Error [A].
+Arguments Error [A].
Set Printing Universes.
diff --git a/test-suite/bugs/closed/2667.v b/test-suite/bugs/closed/2667.v
index 0631e5358..0e6d0108c 100644
--- a/test-suite/bugs/closed/2667.v
+++ b/test-suite/bugs/closed/2667.v
@@ -1,11 +1,11 @@
-(* Check that extra arguments to Arguments Scope do not disturb use of *)
+(* Check that extra arguments to Arguments do not disturb use of *)
(* scopes in constructors *)
Inductive stmt : Type := Sskip: stmt | Scall : nat -> stmt.
Bind Scope Cminor with stmt.
(* extra argument is ok because of possible coercion to funclass *)
-Arguments Scope Scall [_ Cminor ].
+Arguments Scall _ _%Cminor : extra scopes.
(* extra argument is ok because of possible coercion to funclass *)
Fixpoint f (c: stmt) : Prop := match c with Scall _ => False | _ => False end.
diff --git a/test-suite/bugs/closed/2729.v b/test-suite/bugs/closed/2729.v
index 7929b8810..c9d65c12c 100644
--- a/test-suite/bugs/closed/2729.v
+++ b/test-suite/bugs/closed/2729.v
@@ -82,8 +82,8 @@ Inductive SequenceBase (pu : PatchUniverse)
(p : pu_type from mid)
(qs : SequenceBase pu mid to),
SequenceBase pu from to.
-Implicit Arguments Nil [pu cxt].
-Implicit Arguments Cons [pu from mid to].
+Arguments Nil [pu cxt].
+Arguments Cons [pu from mid to].
Program Fixpoint insertBase {pu : PatchUniverse}
{from mid to : NameSet}
diff --git a/test-suite/bugs/closed/2830.v b/test-suite/bugs/closed/2830.v
index bb607b785..07a5cf91a 100644
--- a/test-suite/bugs/closed/2830.v
+++ b/test-suite/bugs/closed/2830.v
@@ -49,9 +49,9 @@ Record ageable_facts (A:Type) (level: A -> nat) (age1:A -> option A) :=
; af_level2 : forall x y, age1 x = Some y -> level x = S (level y)
}.
-Implicit Arguments af_unage [[A] [level] [age1]].
-Implicit Arguments af_level1 [[A] [level] [age1]].
-Implicit Arguments af_level2 [[A] [level] [age1]].
+Arguments af_unage {A level age1}.
+Arguments af_level1 {A level age1}.
+Arguments af_level2 {A level age1}.
Class ageable (A:Type) := mkAgeable
{ level : A -> nat
@@ -77,7 +77,7 @@ Coercion app_pred : pred >-> Funclass.
Global Opaque pred.
Definition derives {A} `{ageable A} (P Q:pred A) := forall a:A, P a -> Q a.
-Implicit Arguments derives.
+Arguments derives : default implicits.
Program Definition andp {A} `{ageable A} (P Q:pred A) : pred A :=
fun a:A => P a /\ Q a.
@@ -170,7 +170,7 @@ Class Functor `(C:Category) `(D:Category) (im : C -> D) := {
fmap g ∘ fmap f ≈ fmap (g ∘ f)
}.
Coercion functor_im : Functor >-> Funclass.
-Implicit Arguments fmap [Object Hom C Object0 Hom0 D im a b].
+Arguments fmap [Object Hom C Object0 Hom0 D im] _ [a b].
Add Parametric Morphism `(C:Category) `(D:Category)
(Im:C->D) (F:Functor C D Im) (a b:C) : (@fmap _ _ C _ _ D Im F a b)
diff --git a/test-suite/bugs/closed/3068.v b/test-suite/bugs/closed/3068.v
index 79671ce93..9811733dc 100644
--- a/test-suite/bugs/closed/3068.v
+++ b/test-suite/bugs/closed/3068.v
@@ -33,7 +33,7 @@ Section Counted_list.
End Counted_list.
-Implicit Arguments counted_def_nth [A n].
+Arguments counted_def_nth [A n].
Section Finite_nat_set.
diff --git a/test-suite/bugs/closed/3513.v b/test-suite/bugs/closed/3513.v
index 1f0f3b0da..a1d0b9107 100644
--- a/test-suite/bugs/closed/3513.v
+++ b/test-suite/bugs/closed/3513.v
@@ -21,7 +21,7 @@ Section ILogic_Fun.
Local Instance ILFun_Ops : ILogicOps (@ILFunFrm T _ Frm _) := admit.
Definition ILFun_ILogic : ILogic (@ILFunFrm T _ Frm _) := admit.
End ILogic_Fun.
-Implicit Arguments ILFunFrm [[ILOps] [e]].
+Arguments ILFunFrm _ {e} _ {ILOps}.
Instance ILogicOps_Prop : ILogicOps Prop | 2 := {| lentails P Q := (P : Prop) -> Q;
ltrue := True;
land P Q := P /\ Q;
diff --git a/test-suite/bugs/closed/3647.v b/test-suite/bugs/closed/3647.v
index f5a22bd50..e91c004c7 100644
--- a/test-suite/bugs/closed/3647.v
+++ b/test-suite/bugs/closed/3647.v
@@ -26,7 +26,7 @@ Record morphism T T' `{e : type T} `{e' : type T'} :=
mkMorph {
morph :> T -> T';
morph_resp : setoid_resp morph}.
-Implicit Arguments mkMorph [T T' e e0 e' e1].
+Arguments mkMorph [T T' e0 e e1 e'].
Infix "-s>" := morphism (at level 45, right associativity).
Section Morphisms.
Context {S T U V} `{eS : type S} `{eT : type T} `{eU : type U} `{eV : type V}.
@@ -334,8 +334,8 @@ Section ILogic_Fun.
End ILogic_Fun.
-Implicit Arguments ILFunFrm [[ILOps] [e]].
-Implicit Arguments mkILFunFrm [T Frm ILOps].
+Arguments ILFunFrm _ {e} _ {ILOps}.
+Arguments mkILFunFrm [T] _ [Frm ILOps].
Program Definition ILFun_eq {T R} {ILOps: ILogicOps R} {ILogic: ILogic R} (P : T -> R) :
@ILFunFrm T _ R ILOps :=
diff --git a/test-suite/bugs/closed/3732.v b/test-suite/bugs/closed/3732.v
index 09f1149c2..13d62b8ff 100644
--- a/test-suite/bugs/closed/3732.v
+++ b/test-suite/bugs/closed/3732.v
@@ -16,7 +16,7 @@ Section machine.
| Inj : forall G, Prop -> propX G
| ExistsX : forall G A, propX (A :: G) -> propX G.
- Implicit Arguments Inj [G].
+ Arguments Inj [G].
Definition PropX := propX nil.
Fixpoint last (G : list Type) : Type.
diff --git a/test-suite/bugs/closed/4095.v b/test-suite/bugs/closed/4095.v
index 8d7dfbd49..bc9380f90 100644
--- a/test-suite/bugs/closed/4095.v
+++ b/test-suite/bugs/closed/4095.v
@@ -23,7 +23,7 @@ Section ILogic_Fun.
Local Instance ILFun_Ops : ILogicOps (@ILFunFrm T _ Frm _) := admit.
Definition ILFun_ILogic : ILogic (@ILFunFrm T _ Frm _) := admit.
End ILogic_Fun.
-Implicit Arguments ILFunFrm [[ILOps] [e]].
+Arguments ILFunFrm _ {e} _ {ILOps}.
Instance ILogicOps_Prop : ILogicOps Prop | 2 := {| lentails P Q := (P : Prop) -> Q;
ltrue := True;
land P Q := P /\ Q;
diff --git a/test-suite/bugs/closed/4865.v b/test-suite/bugs/closed/4865.v
index c5bf3289b..da4e53aab 100644
--- a/test-suite/bugs/closed/4865.v
+++ b/test-suite/bugs/closed/4865.v
@@ -48,5 +48,5 @@ Fail Check g 0 0 1. (* 2nd 0 in bool *)
Fixpoint arr n := match n with 0%nat => nat | S n => nat -> arr n end.
Fixpoint lam n : arr n := match n with 0%nat => 0%nat | S n => fun x => lam n end.
Notation "0" := true.
-Arguments Scope lam [nat_scope nat_scope].
+Arguments lam _%nat_scope _%nat_scope : extra scopes.
Check (lam 1 0).
diff --git a/test-suite/bugs/closed/7092.v b/test-suite/bugs/closed/7092.v
new file mode 100644
index 000000000..d90de8b93
--- /dev/null
+++ b/test-suite/bugs/closed/7092.v
@@ -0,0 +1,70 @@
+(* Examples matching fix/cofix in Ltac pattern-matching *)
+
+Goal True.
+lazymatch (eval cbv delta [Nat.add] in Nat.add) with
+| (fix F (n : nat) (v : ?A) {struct n} : @?P n v
+ := match n with
+ | O => @?O_case v
+ | S n' => @?S_case n' v F
+ end)
+ =>
+ unify A nat;
+ unify P (fun _ _ : nat => nat);
+ unify O_case (fun v : nat => v);
+ unify S_case (fun (p : nat) (m : nat) (add : nat -> nat -> nat)
+ => S (add p m))
+ end.
+Abort.
+
+Fixpoint f l n := match n with 0 => 0 | S n => g n (cons n l) end
+with g n l := match n with 0 => 1 | S n => f (cons 0 l) n end.
+
+Goal True.
+
+lazymatch (eval cbv delta [f] in f) with
+| fix myf (l : ?L) (n : ?N) {struct n} : nat :=
+ match n as _ with
+ | 0 => ?Z
+ | S n0 => @?S myf myg n0 l
+ end
+ with myg (n' : ?N') (l' : ?L') {struct n'} : nat :=
+ match n' as _ with
+ | 0 => ?Z'
+ | S n0' => @?S' myf myg n0' l'
+ end
+ for myf =>
+ unify L (list nat);
+ unify L' (list nat);
+ unify N nat;
+ unify N' nat;
+ unify Z 0;
+ unify Z' 1;
+ unify S (fun (f : L -> N -> nat) (g : N -> L -> nat) n l => g n (cons n l));
+ unify S' (fun (f : L -> N -> nat) (g : N -> L -> nat) (n:N) l => f (cons 0 l) n)
+end.
+
+Abort.
+
+CoInductive S1 := C1 : nat -> S2 -> S1 with S2 := C2 : bool -> S1 -> S2.
+
+CoFixpoint f' n l := C1 n (g' (cons n l) n n)
+with g' l n p := C2 true (f' (S n) l).
+
+Goal True.
+
+lazymatch (eval cbv delta [f'] in f') with
+| cofix myf (n : ?N) (l : ?L) : ?T := @?X n g l
+ with g (l' : ?L') (n' : ?N') (p' : ?N'') : ?T' := @?X' n' myf l'
+ for myf =>
+ unify L (list nat);
+ unify L' (list nat);
+ unify N nat;
+ unify N' nat;
+ unify N'' nat;
+ unify T S1;
+ unify T' S2;
+ unify X (fun n g l => C1 n (g (cons n l) n n));
+ unify X' (fun n f (l : list nat) => C2 true (f (S n) l))
+end.
+
+Abort.
diff --git a/test-suite/bugs/opened/2456.v b/test-suite/bugs/opened/2456.v
index 6cca5c9fb..5294adefd 100644
--- a/test-suite/bugs/opened/2456.v
+++ b/test-suite/bugs/opened/2456.v
@@ -6,7 +6,7 @@ Parameter Patch : nat -> nat -> Set.
Inductive Catch (from to : nat) : Type
:= MkCatch : forall (p : Patch from to),
Catch from to.
-Implicit Arguments MkCatch [from to].
+Arguments MkCatch [from to].
Inductive CatchCommute5
: forall {from mid1 mid2 to : nat},
diff --git a/test-suite/bugs/opened/3295.v b/test-suite/bugs/opened/3295.v
index 2a156e333..c09649de7 100644
--- a/test-suite/bugs/opened/3295.v
+++ b/test-suite/bugs/opened/3295.v
@@ -5,7 +5,7 @@ Class lops := lmk_ops {
weq: relation car
}.
-Implicit Arguments car [].
+Arguments car : clear implicits.
Coercion car: lops >-> Sortclass.
@@ -23,7 +23,7 @@ Class ops := mk_ops {
dot: forall n m p, mor n m -> mor m p -> mor n p
}.
Coercion mor: ops >-> Funclass.
-Implicit Arguments ob [].
+Arguments ob : clear implicits.
Instance dot_weq `{ops} n m p: Proper (weq ==> weq ==> weq) (dot n m p).
Proof.
diff --git a/test-suite/complexity/injection.v b/test-suite/complexity/injection.v
index 08f489d75..a76fa19d3 100644
--- a/test-suite/complexity/injection.v
+++ b/test-suite/complexity/injection.v
@@ -47,7 +47,7 @@ Parameter mkJoinmap : forall (key: Type) (t: Type) (j: joinable t),
joinmap key j.
Parameter ADMIT: forall p: Prop, p.
-Implicit Arguments ADMIT [p].
+Arguments ADMIT [p].
Module Share.
Parameter jb : joinable bool.
diff --git a/test-suite/coq-makefile/timing/run.sh b/test-suite/coq-makefile/timing/run.sh
index aa6b0a9a4..43c83e412 100755
--- a/test-suite/coq-makefile/timing/run.sh
+++ b/test-suite/coq-makefile/timing/run.sh
@@ -40,7 +40,7 @@ INFINITY_REPLACEMENT="+.%" # assume that if the before time is zero, we expected
TO_SED_IN_BOTH=(
-e s"/${INFINITY}/${INFINITY_REPLACEMENT}/g" # Whether or not something shows up as ∞ depends on whether a time registers as 0.s or as 0.001s, so we can't rely on this being consistent
- -e s":|\s*N/A\s*$:| ${INFINITY_REPLACEMENT}:g" # Whether or not something shows up as N/A depends on whether a time registers as 0.s or as 0.001s, so we can't rely on this being consistent
+ -e s':|\s*N/A\s*$:| '"${INFINITY_REPLACEMENT}"':g' # Whether or not something shows up as N/A depends on whether a time registers as 0.s or as 0.001s, so we can't rely on this being consistent
-e s'/ *$//g' # the number of trailing spaces depends on how many digits percentages end up being; since this varies across runs, we remove trailing spaces
-e s'/[0-9]*\.[0-9]*//g' # the precise timing numbers vary, so we strip them out
-e s'/^-*$/------/g' # When none of the numbers get over 100 (or 1000, in per-file), the width of the table is different, so we normalize the number of dashes for table separators
diff --git a/test-suite/failure/check.v b/test-suite/failure/check.v
index a148ebe8e..0ef4b417a 100644
--- a/test-suite/failure/check.v
+++ b/test-suite/failure/check.v
@@ -1,3 +1,3 @@
-Implicit Arguments eq [A].
+Arguments eq [A].
Fail Check (bool = true).
diff --git a/test-suite/modules/PO.v b/test-suite/modules/PO.v
index 8ba8525c6..be3310491 100644
--- a/test-suite/modules/PO.v
+++ b/test-suite/modules/PO.v
@@ -1,8 +1,8 @@
Set Implicit Arguments.
Unset Strict Implicit.
-Implicit Arguments fst.
-Implicit Arguments snd.
+Arguments fst : default implicits.
+Arguments snd : default implicits.
Module Type PO.
Parameter T : Set.
diff --git a/test-suite/modules/Przyklad.v b/test-suite/modules/Przyklad.v
index 7214287a6..ece1b47b4 100644
--- a/test-suite/modules/Przyklad.v
+++ b/test-suite/modules/Przyklad.v
@@ -1,7 +1,7 @@
Definition ifte (T : Set) (A B : Prop) (s : {A} + {B})
(th el : T) := if s then th else el.
-Implicit Arguments ifte.
+Arguments ifte : default implicits.
Lemma Reflexivity_provable :
forall (A : Set) (a : A) (s : {a = a} + {a <> a}),
diff --git a/test-suite/prerequisite/make_local.v b/test-suite/prerequisite/make_local.v
index 8700a6c4e..6d9117c05 100644
--- a/test-suite/prerequisite/make_local.v
+++ b/test-suite/prerequisite/make_local.v
@@ -2,8 +2,7 @@
Definition f (A:Type) (a:A) := a.
-Local Arguments Scope f [type_scope type_scope].
-Local Implicit Arguments f [A].
+Local Arguments f [A]%type_scope _%type_scope.
(* Used in ImportedCoercion.v to test the locality flag *)
diff --git a/test-suite/success/AdvancedTypeClasses.v b/test-suite/success/AdvancedTypeClasses.v
index b4efa7edc..d0aa5c857 100644
--- a/test-suite/success/AdvancedTypeClasses.v
+++ b/test-suite/success/AdvancedTypeClasses.v
@@ -28,8 +28,8 @@ Class interp_pair (abs : Type) :=
{ repr : term;
link: abs = interp repr }.
-Implicit Arguments repr [[interp_pair]].
-Implicit Arguments link [[interp_pair]].
+Arguments repr _ {interp_pair}.
+Arguments link _ {interp_pair}.
Lemma prod_interp `{interp_pair a, interp_pair b} : a * b = interp (Prod (repr a) (repr b)).
simpl. intros. rewrite <- link. rewrite <- (link b). reflexivity.
diff --git a/test-suite/success/ImplicitArguments.v b/test-suite/success/ImplicitArguments.v
index 921433cad..9a19b595e 100644
--- a/test-suite/success/ImplicitArguments.v
+++ b/test-suite/success/ImplicitArguments.v
@@ -2,7 +2,7 @@ Inductive vector {A : Type} : nat -> Type :=
| vnil : vector 0
| vcons : A -> forall {n'}, vector n' -> vector (S n').
-Implicit Arguments vector [].
+Arguments vector A : clear implicits.
Require Import Coq.Program.Program.
diff --git a/test-suite/success/Inductive.v b/test-suite/success/Inductive.v
index 5b1482fd5..f07c0191f 100644
--- a/test-suite/success/Inductive.v
+++ b/test-suite/success/Inductive.v
@@ -73,7 +73,7 @@ CoInductive LList (A : Set) : Set :=
| LNil : LList A
| LCons : A -> LList A -> LList A.
-Implicit Arguments LNil [A].
+Arguments LNil [A].
Inductive Finite (A : Set) : LList A -> Prop :=
| Finite_LNil : Finite LNil
diff --git a/test-suite/success/Inversion.v b/test-suite/success/Inversion.v
index 45c71615f..ca8da3948 100644
--- a/test-suite/success/Inversion.v
+++ b/test-suite/success/Inversion.v
@@ -31,7 +31,7 @@ Inductive in_extension (I : Set) (r : rule I) : extension I -> Type :=
| in_first : forall e, in_extension r (add_rule r e)
| in_rest : forall e r', in_extension r e -> in_extension r (add_rule r' e).
-Implicit Arguments NL [I].
+Arguments NL [I].
Inductive super_extension (I : Set) (e : extension I) :
extension I -> Type :=
diff --git a/test-suite/success/RecTutorial.v b/test-suite/success/RecTutorial.v
index 841940492..29350d620 100644
--- a/test-suite/success/RecTutorial.v
+++ b/test-suite/success/RecTutorial.v
@@ -991,10 +991,10 @@ Proof.
Qed.
-Implicit Arguments Vector.cons [A n].
-Implicit Arguments Vector.nil [A].
-Implicit Arguments Vector.hd [A n].
-Implicit Arguments Vector.tl [A n].
+Arguments Vector.cons [A] _ [n].
+Arguments Vector.nil [A].
+Arguments Vector.hd [A n].
+Arguments Vector.tl [A n].
Definition Vid : forall (A : Type)(n:nat), Vector.t A n -> Vector.t A n.
Proof.
@@ -1064,7 +1064,7 @@ Fixpoint vector_nth (A:Set)(n:nat)(p:nat)(v:Vector.t A p){struct v}
| S n', Vector.cons _ v' => vector_nth A n' _ v'
end.
-Implicit Arguments vector_nth [A p].
+Arguments vector_nth [A] _ [p].
Lemma nth_bitwise : forall (n:nat) (v1 v2: Vector.t bool n) i a b,
@@ -1159,7 +1159,7 @@ infiniteproof map_iterate'.
Qed.
-Implicit Arguments LNil [A].
+Arguments LNil [A].
Lemma Lnil_not_Lcons : forall (A:Set)(a:A)(l:LList A),
LNil <> (LCons a l).
diff --git a/test-suite/success/Record.v b/test-suite/success/Record.v
index 6f27c1d36..18ebcd638 100644
--- a/test-suite/success/Record.v
+++ b/test-suite/success/Record.v
@@ -5,7 +5,7 @@ Require Import Program.
Require Import List.
Record vector {A : Type} {n : nat} := { vec_list : list A ; vec_len : length vec_list = n }.
-Implicit Arguments vector [].
+Arguments vector : clear implicits.
Coercion vec_list : vector >-> list.
diff --git a/test-suite/success/Scopes.v b/test-suite/success/Scopes.v
index ca3746716..2da630633 100644
--- a/test-suite/success/Scopes.v
+++ b/test-suite/success/Scopes.v
@@ -11,7 +11,7 @@ Check (A.opp 3).
Record B := { f :> Z -> Z }.
Variable a:B.
-Arguments Scope a [Z_scope].
+Arguments a _%Z_scope : extra scopes.
Check a 0.
(* Check that casts activate scopes if ever possible *)
diff --git a/test-suite/success/Typeclasses.v b/test-suite/success/Typeclasses.v
index cd6eac35c..400479ae8 100644
--- a/test-suite/success/Typeclasses.v
+++ b/test-suite/success/Typeclasses.v
@@ -128,8 +128,8 @@ Record Monad {m : Type -> Type} := {
Print Visibility.
Print unit.
-Implicit Arguments unit [[m] [m0] [α]].
-Implicit Arguments Monad [].
+Arguments unit {m m0 α}.
+Arguments Monad : clear implicits.
Notation "'return' t" := (unit t).
(* Test correct handling of existentials and defined fields. *)
diff --git a/test-suite/success/apply.v b/test-suite/success/apply.v
index 02e043bc3..b287b5fac 100644
--- a/test-suite/success/apply.v
+++ b/test-suite/success/apply.v
@@ -39,7 +39,7 @@ Qed.
(* Check apply/eapply distinction in presence of open terms *)
Parameter h : forall x y z : nat, x = z -> x = y.
-Implicit Arguments h [[x] [y]].
+Arguments h {x y}.
Goal 1 = 0 -> True.
intro H.
apply h in H || exact I.
diff --git a/test-suite/success/dependentind.v b/test-suite/success/dependentind.v
index f5bb884d2..55ae54ca0 100644
--- a/test-suite/success/dependentind.v
+++ b/test-suite/success/dependentind.v
@@ -42,7 +42,7 @@ Inductive ctx : Type :=
Bind Scope context_scope with ctx.
Delimit Scope context_scope with ctx.
-Arguments Scope snoc [context_scope].
+Arguments snoc _%context_scope.
Notation " Γ , τ " := (snoc Γ τ) (at level 25, τ at next level, left associativity) : context_scope.
diff --git a/test-suite/success/evars.v b/test-suite/success/evars.v
index 627794832..5b13f35d5 100644
--- a/test-suite/success/evars.v
+++ b/test-suite/success/evars.v
@@ -386,7 +386,7 @@ Record iffT (X Y:Type) : Type := mkIff { iffLR : X->Y; iffRL : Y->X }.
Record tri (R:Type->Type->Type) (S:Type->Type->Type) (T:Type->Type->Type) := mkTri {
tri0 : forall a b c, R a b -> S a c -> T b c
}.
-Implicit Arguments mkTri [R S T].
+Arguments mkTri [R S T].
Definition tri_iffT : tri iffT iffT iffT :=
(mkTri
(fun X0 X1 X2 E01 E02 =>
diff --git a/test-suite/success/implicit.v b/test-suite/success/implicit.v
index a0981311b..23853890d 100644
--- a/test-suite/success/implicit.v
+++ b/test-suite/success/implicit.v
@@ -33,11 +33,11 @@ Definition eq1 := fun (A:Type) (x y:A) => x=y.
Definition eq2 := fun (A:Type) (x y:A) => x=y.
Definition eq3 := fun (A:Type) (x y:A) => x=y.
-Implicit Arguments op' [].
-Global Implicit Arguments op'' [].
+Arguments op' : clear implicits.
+Global Arguments op'' : clear implicits.
-Implicit Arguments eq2 [].
-Global Implicit Arguments eq3 [].
+Arguments eq2 : clear implicits.
+Global Arguments eq3 : clear implicits.
Check (op 0 0).
Check (op' nat 0 0).
@@ -89,14 +89,14 @@ Fixpoint plus n m {struct n} :=
(* Check multiple implicit arguments signatures *)
-Implicit Arguments eq_refl [[A] [x]] [[A]].
+Arguments eq_refl {A x}, {A}.
Check eq_refl : 0 = 0.
(* Check that notations preserve implicit (since 8.3) *)
Parameter p : forall A, A -> forall n, n = 0 -> True.
-Implicit Arguments p [A n].
+Arguments p [A] _ [n].
Notation Q := (p 0).
Check Q eq_refl.
diff --git a/tools/gallina-syntax.el b/tools/gallina-syntax.el
index 662762b08..7c59fb6ae 100644
--- a/tools/gallina-syntax.el
+++ b/tools/gallina-syntax.el
@@ -432,7 +432,6 @@
("Add Semi Ring" nil "Add Semi Ring #." t "Add\\s-+Semi\\s-+Ring")
("Add Setoid" nil "Add Setoid #." t "Add\\s-+Setoid")
("Admit Obligations" "oblsadmit" "Admit Obligations." nil "Admit\\s-+Obligations")
- ("Arguments Scope" "argsc" "Arguments Scope @{id} [ @{_} ]" t "Arguments\\s-+Scope")
("Bind Scope" "bndsc" "Bind Scope @{scope} with @{type}" t "Bind\\s-+Scope")
("Canonical Structure" nil "Canonical Structure #." t "Canonical\\s-+Structure")
("Cd" nil "Cd #." nil "Cd")
diff --git a/vernac/vernacentries.ml b/vernac/vernacentries.ml
index 4b99836fd..0e8ca2289 100644
--- a/vernac/vernacentries.ml
+++ b/vernac/vernacentries.ml
@@ -2024,7 +2024,6 @@ let interp ?proof ~atts ~st c =
| VernacDelimiters (sc,lr) -> vernac_delimiters sc lr
| VernacBindScope (sc,rl) -> vernac_bind_scope sc rl
| VernacOpenCloseScope (b, s) -> vernac_open_close_scope ~atts (b,s)
- | VernacArgumentsScope (qid,scl) -> vernac_arguments_scope ~atts qid scl
| VernacInfix (mv,qid,sc) -> vernac_infix ~atts mv qid sc
| VernacNotation (c,infpl,sc) ->
vernac_notation ~atts c infpl sc
@@ -2098,8 +2097,6 @@ let interp ?proof ~atts ~st c =
vernac_hints ~atts dbnames hints
| VernacSyntacticDefinition (id,c,b) ->
vernac_syntactic_definition ~atts id c b
- | VernacDeclareImplicits (qid,l) ->
- vernac_declare_implicits ~atts qid l
| VernacArguments (qid, args, more_implicits, nargs, flags) ->
vernac_arguments ~atts qid args more_implicits nargs flags
| VernacReserve bl -> vernac_reserve bl
@@ -2167,7 +2164,7 @@ let check_vernac_supports_locality c l =
| VernacDeclareMLModule _
| VernacCreateHintDb _ | VernacRemoveHints _ | VernacHints _
| VernacSyntacticDefinition _
- | VernacArgumentsScope _ | VernacDeclareImplicits _ | VernacArguments _
+ | VernacArguments _
| VernacGeneralizable _
| VernacSetOpacity _ | VernacSetStrategy _
| VernacSetOption _ | VernacUnsetOption _