aboutsummaryrefslogtreecommitdiffhomepage
diff options
context:
space:
mode:
-rw-r--r--.depend111
-rw-r--r--.depend.coq5
-rw-r--r--Makefile13
-rw-r--r--kernel/environ.ml2
-rw-r--r--kernel/environ.mli1
-rw-r--r--states/MakeInitial.v1
-rw-r--r--tactics/Tauto.v12
-rw-r--r--tactics/tauto.ml1901
-rw-r--r--tactics/tauto.mli127
9 files changed, 2124 insertions, 49 deletions
diff --git a/.depend b/.depend
index 1b88e03d4..085f98d1e 100644
--- a/.depend
+++ b/.depend
@@ -32,6 +32,8 @@ kernel/typeops.cmi: kernel/environ.cmi kernel/evd.cmi kernel/names.cmi \
kernel/sign.cmi kernel/term.cmi kernel/univ.cmi
kernel/univ.cmi: kernel/names.cmi lib/pp.cmi
lib/pp.cmi: lib/pp_control.cmi
+lib/system.cmi: lib/pp.cmi
+lib/util.cmi: lib/pp.cmi
library/declare.cmi: kernel/constant.cmi kernel/environ.cmi \
kernel/inductive.cmi kernel/names.cmi kernel/sign.cmi kernel/term.cmi
library/global.cmi: kernel/constant.cmi kernel/environ.cmi \
@@ -47,8 +49,6 @@ library/library.cmi: lib/pp.cmi
library/nametab.cmi: kernel/names.cmi
library/redinfo.cmi: kernel/names.cmi kernel/term.cmi
library/summary.cmi: kernel/names.cmi
-lib/system.cmi: lib/pp.cmi
-lib/util.cmi: lib/pp.cmi
parsing/ast.cmi: parsing/coqast.cmi lib/dyn.cmi kernel/names.cmi \
parsing/pcoq.cmi lib/pp.cmi
parsing/astterm.cmi: parsing/coqast.cmi kernel/environ.cmi kernel/evd.cmi \
@@ -71,10 +71,6 @@ parsing/printer.cmi: parsing/coqast.cmi kernel/names.cmi lib/pp.cmi \
pretyping/rawterm.cmi kernel/sign.cmi kernel/term.cmi
parsing/termast.cmi: parsing/coqast.cmi kernel/names.cmi \
pretyping/rawterm.cmi kernel/sign.cmi kernel/term.cmi
-pretyping/cases.debug.cmi: kernel/environ.cmi pretyping/evarutil.cmi \
- kernel/evd.cmi kernel/generic.cmi kernel/inductive.cmi kernel/names.cmi \
- lib/pp.cmi pretyping/rawterm.cmi kernel/sign.cmi kernel/term.cmi \
- kernel/type_errors.cmi
pretyping/cases.cmi: kernel/environ.cmi pretyping/evarutil.cmi kernel/evd.cmi \
kernel/names.cmi pretyping/rawterm.cmi kernel/term.cmi
pretyping/class.cmi: pretyping/classops.cmi library/declare.cmi \
@@ -159,6 +155,7 @@ tactics/tactics.cmi: proofs/clenv.cmi parsing/coqast.cmi kernel/environ.cmi \
kernel/evd.cmi kernel/names.cmi proofs/proof_trees.cmi \
kernel/reduction.cmi proofs/tacmach.cmi pretyping/tacred.cmi \
tactics/tacticals.cmi kernel/term.cmi
+tactics/tauto.cmi: proofs/tacmach.cmi kernel/term.cmi
tactics/termdn.cmi: tactics/dn.cmi kernel/generic.cmi kernel/term.cmi
tactics/wcclausenv.cmi: proofs/clenv.cmi kernel/environ.cmi kernel/evd.cmi \
kernel/names.cmi proofs/proof_trees.cmi kernel/sign.cmi \
@@ -177,11 +174,11 @@ toplevel/record.cmi: parsing/coqast.cmi kernel/names.cmi kernel/term.cmi
toplevel/searchisos.cmi: library/libobject.cmi kernel/names.cmi \
kernel/term.cmi
toplevel/toplevel.cmi: parsing/pcoq.cmi lib/pp.cmi
+toplevel/vernac.cmi: parsing/coqast.cmi parsing/pcoq.cmi
toplevel/vernacentries.cmi: kernel/names.cmi kernel/term.cmi \
toplevel/vernacinterp.cmi
toplevel/vernacinterp.cmi: parsing/coqast.cmi lib/dyn.cmi kernel/names.cmi \
proofs/proof_trees.cmi
-toplevel/vernac.cmi: parsing/coqast.cmi parsing/pcoq.cmi
config/coq_config.cmo: config/coq_config.cmi
config/coq_config.cmx: config/coq_config.cmi
dev/db_printers.cmo: kernel/names.cmi lib/pp.cmi
@@ -298,22 +295,30 @@ lib/dyn.cmo: lib/util.cmi lib/dyn.cmi
lib/dyn.cmx: lib/util.cmx lib/dyn.cmi
lib/edit.cmo: lib/bstack.cmi lib/pp.cmi lib/util.cmi lib/edit.cmi
lib/edit.cmx: lib/bstack.cmx lib/pp.cmx lib/util.cmx lib/edit.cmi
-lib/gmapl.cmo: lib/gmap.cmi lib/util.cmi lib/gmapl.cmi
-lib/gmapl.cmx: lib/gmap.cmx lib/util.cmx lib/gmapl.cmi
lib/gmap.cmo: lib/gmap.cmi
lib/gmap.cmx: lib/gmap.cmi
+lib/gmapl.cmo: lib/gmap.cmi lib/util.cmi lib/gmapl.cmi
+lib/gmapl.cmx: lib/gmap.cmx lib/util.cmx lib/gmapl.cmi
lib/gset.cmo: lib/gset.cmi
lib/gset.cmx: lib/gset.cmi
lib/hashcons.cmo: lib/hashcons.cmi
lib/hashcons.cmx: lib/hashcons.cmi
lib/options.cmo: lib/util.cmi lib/options.cmi
lib/options.cmx: lib/util.cmx lib/options.cmi
-lib/pp_control.cmo: lib/pp_control.cmi
-lib/pp_control.cmx: lib/pp_control.cmi
lib/pp.cmo: lib/pp_control.cmi lib/pp.cmi
lib/pp.cmx: lib/pp_control.cmx lib/pp.cmi
+lib/pp_control.cmo: lib/pp_control.cmi
+lib/pp_control.cmx: lib/pp_control.cmi
lib/profile.cmo: lib/system.cmi lib/profile.cmi
lib/profile.cmx: lib/system.cmx lib/profile.cmi
+lib/stamps.cmo: lib/stamps.cmi
+lib/stamps.cmx: lib/stamps.cmi
+lib/system.cmo: lib/pp.cmi lib/util.cmi lib/system.cmi
+lib/system.cmx: lib/pp.cmx lib/util.cmx lib/system.cmi
+lib/tlm.cmo: lib/gmap.cmi lib/gset.cmi lib/tlm.cmi
+lib/tlm.cmx: lib/gmap.cmx lib/gset.cmx lib/tlm.cmi
+lib/util.cmo: lib/pp.cmi lib/util.cmi
+lib/util.cmx: lib/pp.cmx lib/util.cmi
library/declare.cmo: kernel/constant.cmi kernel/environ.cmi kernel/evd.cmi \
kernel/generic.cmi library/global.cmi library/impargs.cmi \
library/indrec.cmi kernel/inductive.cmi library/lib.cmi \
@@ -386,14 +391,6 @@ library/summary.cmo: lib/dyn.cmi kernel/names.cmi lib/pp.cmi lib/util.cmi \
library/summary.cmi
library/summary.cmx: lib/dyn.cmx kernel/names.cmx lib/pp.cmx lib/util.cmx \
library/summary.cmi
-lib/stamps.cmo: lib/stamps.cmi
-lib/stamps.cmx: lib/stamps.cmi
-lib/system.cmo: lib/pp.cmi lib/util.cmi lib/system.cmi
-lib/system.cmx: lib/pp.cmx lib/util.cmx lib/system.cmi
-lib/tlm.cmo: lib/gmap.cmi lib/gset.cmi lib/tlm.cmi
-lib/tlm.cmx: lib/gmap.cmx lib/gset.cmx lib/tlm.cmi
-lib/util.cmo: lib/pp.cmi lib/util.cmi
-lib/util.cmx: lib/pp.cmx lib/util.cmi
parsing/ast.cmo: parsing/coqast.cmi lib/dyn.cmi lib/hashcons.cmi \
kernel/names.cmi parsing/pcoq.cmi lib/pp.cmi lib/util.cmi parsing/ast.cmi
parsing/ast.cmx: parsing/coqast.cmx lib/dyn.cmx lib/hashcons.cmx \
@@ -560,20 +557,6 @@ pretyping/evarutil.cmx: kernel/environ.cmx kernel/evd.cmx kernel/generic.cmx \
pretyping/pretype_errors.cmx kernel/reduction.cmx pretyping/retyping.cmx \
kernel/sign.cmx kernel/term.cmx kernel/univ.cmx lib/util.cmx \
pretyping/evarutil.cmi
-pretyping/oldcases.cmo: kernel/environ.cmi pretyping/evarconv.cmi \
- pretyping/evarutil.cmi kernel/evd.cmi kernel/generic.cmi \
- library/global.cmi library/indrec.cmi kernel/inductive.cmi \
- kernel/instantiate.cmi kernel/names.cmi lib/pp.cmi \
- pretyping/pretype_errors.cmi pretyping/rawterm.cmi kernel/reduction.cmi \
- pretyping/retyping.cmi kernel/sign.cmi kernel/term.cmi \
- kernel/type_errors.cmi kernel/typeops.cmi lib/util.cmi
-pretyping/oldcases.cmx: kernel/environ.cmx pretyping/evarconv.cmx \
- pretyping/evarutil.cmx kernel/evd.cmx kernel/generic.cmx \
- library/global.cmx library/indrec.cmx kernel/inductive.cmx \
- kernel/instantiate.cmx kernel/names.cmx lib/pp.cmx \
- pretyping/pretype_errors.cmx pretyping/rawterm.cmx kernel/reduction.cmx \
- pretyping/retyping.cmx kernel/sign.cmx kernel/term.cmx \
- kernel/type_errors.cmx kernel/typeops.cmx lib/util.cmx
pretyping/pretype_errors.cmo: kernel/environ.cmi library/global.cmi \
kernel/names.cmi pretyping/rawterm.cmi kernel/sign.cmi \
kernel/type_errors.cmi pretyping/pretype_errors.cmi
@@ -808,6 +791,32 @@ tactics/hiddentac.cmo: proofs/proof_trees.cmi tactics/tacentries.cmi \
proofs/tacmach.cmi kernel/term.cmi tactics/hiddentac.cmi
tactics/hiddentac.cmx: proofs/proof_trees.cmx tactics/tacentries.cmx \
proofs/tacmach.cmx kernel/term.cmx tactics/hiddentac.cmi
+tactics/inv.cmo: tactics/auto.cmi proofs/clenv.cmi tactics/elim.cmi \
+ kernel/environ.cmi tactics/equality.cmi kernel/generic.cmi \
+ library/indrec.cmi proofs/logic.cmi kernel/names.cmi lib/pp.cmi \
+ parsing/printer.cmi proofs/proof_trees.cmi kernel/reduction.cmi \
+ proofs/tacmach.cmi tactics/tacticals.cmi tactics/tactics.cmi \
+ kernel/term.cmi tactics/wcclausenv.cmi
+tactics/inv.cmx: tactics/auto.cmx proofs/clenv.cmx tactics/elim.cmx \
+ kernel/environ.cmx tactics/equality.cmx kernel/generic.cmx \
+ library/indrec.cmx proofs/logic.cmx kernel/names.cmx lib/pp.cmx \
+ parsing/printer.cmx proofs/proof_trees.cmx kernel/reduction.cmx \
+ proofs/tacmach.cmx tactics/tacticals.cmx tactics/tactics.cmx \
+ kernel/term.cmx tactics/wcclausenv.cmx
+tactics/leminv.cmo: proofs/clenv.cmi library/declare.cmi \
+ toplevel/discharge.cmi kernel/environ.cmi tactics/equality.cmi \
+ kernel/evd.cmi kernel/generic.cmi tactics/inv.cmo kernel/names.cmi \
+ tactics/pattern.cmi proofs/pfedit.cmi lib/pp.cmi parsing/printer.cmi \
+ proofs/proof_trees.cmi kernel/reduction.cmi proofs/refiner.cmi \
+ proofs/tacmach.cmi tactics/tacticals.cmi tactics/tactics.cmi \
+ kernel/term.cmi toplevel/vernacinterp.cmi tactics/wcclausenv.cmi
+tactics/leminv.cmx: proofs/clenv.cmx library/declare.cmx \
+ toplevel/discharge.cmx kernel/environ.cmx tactics/equality.cmx \
+ kernel/evd.cmx kernel/generic.cmx tactics/inv.cmx kernel/names.cmx \
+ tactics/pattern.cmx proofs/pfedit.cmx lib/pp.cmx parsing/printer.cmx \
+ proofs/proof_trees.cmx kernel/reduction.cmx proofs/refiner.cmx \
+ proofs/tacmach.cmx tactics/tacticals.cmx tactics/tactics.cmx \
+ kernel/term.cmx toplevel/vernacinterp.cmx tactics/wcclausenv.cmx
tactics/nbtermdn.cmo: tactics/btermdn.cmi kernel/generic.cmi lib/gmap.cmi \
library/libobject.cmi library/library.cmi kernel/names.cmi \
kernel/term.cmi tactics/termdn.cmi lib/util.cmi tactics/nbtermdn.cmi
@@ -864,6 +873,18 @@ tactics/tactics.cmx: parsing/ast.cmx parsing/astterm.cmx proofs/clenv.cmx \
lib/stamps.cmx proofs/tacinterp.cmx proofs/tacmach.cmx \
pretyping/tacred.cmx tactics/tacticals.cmx kernel/term.cmx lib/util.cmx \
tactics/tactics.cmi
+tactics/tauto.cmo: tactics/auto.cmi proofs/clenv.cmi library/declare.cmi \
+ kernel/environ.cmi kernel/generic.cmi kernel/names.cmi \
+ library/nametab.cmi tactics/pattern.cmi lib/pp.cmi proofs/proof_trees.cmi \
+ kernel/reduction.cmi kernel/sign.cmi proofs/tacmach.cmi \
+ tactics/tacticals.cmi tactics/tactics.cmi kernel/term.cmi lib/util.cmi \
+ tactics/tauto.cmi
+tactics/tauto.cmx: tactics/auto.cmx proofs/clenv.cmx library/declare.cmx \
+ kernel/environ.cmx kernel/generic.cmx kernel/names.cmx \
+ library/nametab.cmx tactics/pattern.cmx lib/pp.cmx proofs/proof_trees.cmx \
+ kernel/reduction.cmx kernel/sign.cmx proofs/tacmach.cmx \
+ tactics/tacticals.cmx tactics/tactics.cmx kernel/term.cmx lib/util.cmx \
+ tactics/tauto.cmi
tactics/termdn.cmo: tactics/dn.cmi kernel/generic.cmi kernel/term.cmi \
lib/util.cmi tactics/termdn.cmi
tactics/termdn.cmx: tactics/dn.cmx kernel/generic.cmx kernel/term.cmx \
@@ -878,8 +899,12 @@ tactics/wcclausenv.cmx: proofs/clenv.cmx kernel/environ.cmx kernel/evd.cmx \
lib/pp.cmx proofs/proof_trees.cmx kernel/reduction.cmx kernel/sign.cmx \
proofs/tacmach.cmx kernel/term.cmx pretyping/typing.cmx lib/util.cmx \
tactics/wcclausenv.cmi
-tools/coqdep.cmo: config/coq_config.cmi
-tools/coqdep.cmx: config/coq_config.cmx
+tools/coqdep.cmo: config/coq_config.cmi tools/coqdep_lexer.cmo
+tools/coqdep.cmx: config/coq_config.cmx tools/coqdep_lexer.cmx
+tools/coqdep_lexer.cmo: config/coq_config.cmi
+tools/coqdep_lexer.cmx: config/coq_config.cmx
+tools/gallina.cmo: tools/gallina_lexer.cmo
+tools/gallina.cmx: tools/gallina_lexer.cmx
toplevel/command.cmo: parsing/ast.cmi parsing/astterm.cmi kernel/constant.cmi \
parsing/coqast.cmi library/declare.cmi kernel/environ.cmi kernel/evd.cmi \
kernel/generic.cmi library/global.cmi library/indrec.cmi \
@@ -990,6 +1015,14 @@ toplevel/toplevel.cmx: parsing/ast.cmx toplevel/errors.cmx toplevel/mltop.cmi \
toplevel/vernacinterp.cmx toplevel/toplevel.cmi
toplevel/usage.cmo: toplevel/usage.cmi
toplevel/usage.cmx: toplevel/usage.cmi
+toplevel/vernac.cmo: parsing/ast.cmi parsing/coqast.cmi library/library.cmi \
+ lib/options.cmi parsing/pcoq.cmi proofs/pfedit.cmi lib/pp.cmi \
+ library/states.cmi lib/system.cmi lib/util.cmi toplevel/vernacinterp.cmi \
+ toplevel/vernac.cmi
+toplevel/vernac.cmx: parsing/ast.cmx parsing/coqast.cmx library/library.cmx \
+ lib/options.cmx parsing/pcoq.cmx proofs/pfedit.cmx lib/pp.cmx \
+ library/states.cmx lib/system.cmx lib/util.cmx toplevel/vernacinterp.cmx \
+ toplevel/vernac.cmi
toplevel/vernacentries.cmo: parsing/ast.cmi parsing/astterm.cmi \
pretyping/class.cmi toplevel/command.cmi parsing/coqast.cmi \
library/declare.cmi toplevel/discharge.cmi kernel/environ.cmi \
@@ -1026,11 +1059,3 @@ toplevel/vernacinterp.cmx: parsing/ast.cmx parsing/coqast.cmx lib/dyn.cmx \
toplevel/himsg.cmx kernel/names.cmx lib/options.cmx lib/pp.cmx \
proofs/proof_trees.cmx proofs/tacinterp.cmx lib/util.cmx \
toplevel/vernacinterp.cmi
-toplevel/vernac.cmo: parsing/ast.cmi parsing/coqast.cmi library/library.cmi \
- lib/options.cmi parsing/pcoq.cmi proofs/pfedit.cmi lib/pp.cmi \
- library/states.cmi lib/system.cmi lib/util.cmi toplevel/vernacinterp.cmi \
- toplevel/vernac.cmi
-toplevel/vernac.cmx: parsing/ast.cmx parsing/coqast.cmx library/library.cmx \
- lib/options.cmx parsing/pcoq.cmx proofs/pfedit.cmx lib/pp.cmx \
- library/states.cmx lib/system.cmx lib/util.cmx toplevel/vernacinterp.cmx \
- toplevel/vernac.cmi
diff --git a/.depend.coq b/.depend.coq
index 946d02c0e..06349fb1c 100644
--- a/.depend.coq
+++ b/.depend.coq
@@ -1,7 +1,7 @@
theories/Zarith/zarith_aux.vo: theories/Zarith/zarith_aux.v theories/Arith/Arith.vo theories/Zarith/fast_integer.vo
theories/Zarith/fast_integer.vo: theories/Zarith/fast_integer.v theories/Arith/Le.vo theories/Arith/Lt.vo theories/Arith/Plus.vo theories/Arith/Mult.vo theories/Arith/Minus.vo
theories/Zarith/auxiliary.vo: theories/Zarith/auxiliary.v tactics/Equality.vo theories/Arith/Arith.vo theories/Zarith/fast_integer.vo theories/Zarith/zarith_aux.vo theories/Arith/Peano_dec.vo theories/Arith/Compare_dec.vo
-theories/Zarith/Zsyntax.vo: theories/Zarith/Zsyntax.v theories/Zarith/fast_integer.vo theories/Zarith/zarith_aux.vo
+theories/Zarith/Zsyntax.vo: theories/Zarith/Zsyntax.v theories/Zarith/fast_integer.vo theories/Zarith/zarith_aux.vo theories/Zarith/g_zsyntax.cmo
theories/Zarith/Zmisc.vo: theories/Zarith/Zmisc.v theories/Zarith/fast_integer.vo theories/Zarith/zarith_aux.vo theories/Zarith/auxiliary.vo theories/Zarith/Zsyntax.vo theories/Bool/Bool.vo
theories/Zarith/ZArith_dec.vo: theories/Zarith/ZArith_dec.v theories/Bool/Sumbool.vo theories/Zarith/fast_integer.vo theories/Zarith/zarith_aux.vo theories/Zarith/auxiliary.vo theories/Zarith/Zsyntax.vo
theories/Zarith/ZArith.vo: theories/Zarith/ZArith.v theories/Zarith/fast_integer.vo theories/Zarith/zarith_aux.vo theories/Zarith/auxiliary.vo theories/Zarith/Zsyntax.vo theories/Zarith/ZArith_dec.vo theories/Zarith/Zmisc.vo theories/Zarith/Wf_Z.vo
@@ -50,9 +50,10 @@ theories/Arith/Between.vo: theories/Arith/Between.v theories/Arith/Le.vo theorie
theories/Arith/Arith.vo: theories/Arith/Arith.v theories/Arith/Le.vo theories/Arith/Lt.vo theories/Arith/Plus.vo theories/Arith/Gt.vo theories/Arith/Minus.vo theories/Arith/Mult.vo theories/Arith/Between.vo theories/Arith/g_natsyntax.cmo
test-suite/bench/lists_100.vo: test-suite/bench/lists_100.v
test-suite/bench/lists-100.vo: test-suite/bench/lists-100.v
+tactics/Tauto.vo: tactics/Tauto.v
tactics/Equality.vo: tactics/Equality.v
syntax/PPTactic.vo: syntax/PPTactic.v
syntax/PPConstr.vo: syntax/PPConstr.v
syntax/PPCases.vo: syntax/PPCases.v
syntax/MakeBare.vo: syntax/MakeBare.v
-states/MakeInitial.vo: states/MakeInitial.v theories/Init/Prelude.vo theories/Init/Logic_Type.vo theories/Init/Logic_TypeSyntax.vo tactics/Equality.vo
+states/MakeInitial.vo: states/MakeInitial.v theories/Init/Prelude.vo theories/Init/Logic_Type.vo theories/Init/Logic_TypeSyntax.vo tactics/Equality.vo tactics/Tauto.vo
diff --git a/Makefile b/Makefile
index 4d79a6baa..87cc1608d 100644
--- a/Makefile
+++ b/Makefile
@@ -108,7 +108,8 @@ TOPLEVEL=toplevel/himsg.cmo toplevel/errors.cmo toplevel/vernacinterp.cmo \
toplevel/protectedtoplevel.cmo toplevel/toplevel.cmo \
toplevel/usage.cmo toplevel/coqinit.cmo toplevel/coqtop.cmo
-HIGHTACTICS=tactics/dhyp.cmo tactics/auto.cmo tactics/equality.cmo
+HIGHTACTICS=tactics/dhyp.cmo tactics/auto.cmo tactics/equality.cmo \
+ tactics/tauto.cmo
CMA=$(CLIBS) $(CAMLP4OBJS)
CMXA=$(CMA:.cma=.cmxa)
@@ -199,12 +200,12 @@ INITVO=theories/Init/Datatypes.vo theories/Init/Peano.vo \
theories/Init/%.vo: theories/Init/%.v states/barestate.coq
$(COQC) -q -I theories/Init -is states/barestate.coq $<
-TACTICSVO=tactics/Equality.vo
+TACTICSVO=tactics/Equality.vo tactics/Tauto.vo
tactics/%.vo: tactics/%.v states/barestate.coq
$(COQC) -q -I tactics -is states/barestate.coq $<
-states/initial.coq: states/barestate.coq $(INITVO) $(TACTICSVO)
+states/initial.coq: states/barestate.coq states/MakeInitial.v $(INITVO) $(TACTICSVO)
./coqtop.byte -q -batch -silent -is states/barestate.coq -I tactics -load-vernac-source states/MakeInitial.v -outputstate states/initial.coq
clean::
@@ -234,7 +235,11 @@ ZARITHVO=theories/Zarith/Wf_Z.vo theories/Zarith/Zsyntax.vo \
theories/Zarith/ZArith_dec.vo theories/Zarith/fast_integer.vo \
theories/Zarith/Zmisc.vo theories/Zarith/zarith_aux.vo
-theories: $(INITVO) $(LOGICVO) $(ARITHVO) $(BOOLVO) $(ZARITHVO)
+THEORIESVO = $(LOGICVO) $(ARITHVO) $(BOOLVO) $(ZARITHVO)
+
+$(THEORIESVO): states/initial.coq
+
+theories: $(THEORIESVO)
init: $(INITVO)
logic: $(LOGICVO)
diff --git a/kernel/environ.ml b/kernel/environ.ml
index e203af98e..b58145fc3 100644
--- a/kernel/environ.ml
+++ b/kernel/environ.ml
@@ -197,6 +197,8 @@ let prod_name env (n,a,b) = mkProd (named_hd env a n) a b
let lambda_create env (a,b) = mkLambda (named_hd env a Anonymous) a b
+let lambda_name env (n,a,b) = mkLambda (named_hd env a n) a b
+
(* Abstractions. *)
let evaluable_abst env = function
diff --git a/kernel/environ.mli b/kernel/environ.mli
index 31edb0d7f..f9b17b76d 100644
--- a/kernel/environ.mli
+++ b/kernel/environ.mli
@@ -54,6 +54,7 @@ val id_of_name_using_hdchar : env -> constr -> name -> identifier
val named_hd : env -> constr -> name -> name
val prod_name : env -> name * constr * constr -> constr
val lambda_create : env -> constr * constr -> constr
+val lambda_name : env -> name * constr * constr -> constr
val translucent_abst : env -> constr -> bool
val evaluable_abst : env -> constr -> bool
diff --git a/states/MakeInitial.v b/states/MakeInitial.v
index 24bad16b7..608437bfc 100644
--- a/states/MakeInitial.v
+++ b/states/MakeInitial.v
@@ -2,3 +2,4 @@ Require Export Prelude.
Require Export Logic_Type.
Require Export Logic_TypeSyntax.
Require Export Equality.
+Require Export Tauto.
diff --git a/tactics/Tauto.v b/tactics/Tauto.v
new file mode 100644
index 000000000..2f7cbb0ea
--- /dev/null
+++ b/tactics/Tauto.v
@@ -0,0 +1,12 @@
+
+(* $Id$ *)
+
+Declare ML Module "Tauto".
+
+Grammar tactic simple_tactic :=
+ tauto [ "Tauto" ] -> [(Tauto)]
+| intuition [ "Intuition" ] -> [(Intuition)].
+
+Syntax tactic level 0:
+ tauto [(Tauto)] -> ["Tauto"]
+| intuition [(Intuition)] -> ["Intuition"].
diff --git a/tactics/tauto.ml b/tactics/tauto.ml
new file mode 100644
index 000000000..dc69a9cf4
--- /dev/null
+++ b/tactics/tauto.ml
@@ -0,0 +1,1901 @@
+
+(* $Id$ *)
+
+(* Autor: Cesar A. Munnoz H *)
+
+open Pp
+open Util
+open Names
+open Generic
+open Term
+open Sign
+open Environ
+open Declare
+open Tacmach
+open Reduction
+open Tacticals
+open Tactics
+open Pattern
+open Auto
+(* Chet's code *)
+open Proof_trees
+open Clenv
+open Pattern
+
+let hlset_subset hls1 hls2 =
+ List.for_all (fun e -> List.exists (fun e' -> eq_constr e e') hls2) hls1
+
+let hlset_eq hls1 hls2 =
+ hlset_subset hls1 hls2 & hlset_subset hls2 hls1
+
+let eq_gls g1 g2 =
+ eq_constr (pf_concl g1) (pf_concl g2)
+ & (let hl1 = vals_of_sign (pf_untyped_hyps g1)
+ and hl2 = vals_of_sign (pf_untyped_hyps g2) in
+ hlset_eq hl1 hl2)
+
+let gls_memb bTS g = List.exists (eq_gls g) bTS
+
+let gls_add g bTS =
+ if gls_memb bTS g then error "backtrack in tauto";
+ g::bTS
+
+let classically cltac = function
+ | (Some _ as cls) -> (tclTHEN (cltac cls) (clear_clause cls))
+ | None -> cltac None
+
+let somatch m pat = somatch None (get_pat pat) m
+let module_mark = ["#Logic.obj"]
+let mmk = make_module_marker ["#Prelude.obj"]
+let false_pattern = put_pat mmk "False"
+let true_pattern = put_pat mmk "True"
+let and_pattern = put_pat mmk "(and ? ?)"
+let or_pattern = put_pat mmk "(or ? ?)"
+let eq_pattern = put_pat mmk "(eq ? ? ?)"
+let pi_pattern = put_pat mmk "(x:?)((?)@[x])"
+let imply_pattern = put_pat mmk "?1->?2"
+let iff_pattern = put_pat mmk "(iff ? ?)"
+let not_pattern = put_pat mmk "(not ?1)"
+let mkIMP a b = soinstance imply_pattern [a;b]
+
+let is_atomic m =
+ (not (is_conjunction m) ||
+ (is_disjunction m) ||
+ (somatches m pi_pattern) ||
+ (somatches m not_pattern))
+
+let hypothesis = function Some id -> exact (VAR id) | None -> assert false
+
+(* Steps of the procedure *)
+
+(* 1. A,Gamma |- A *)
+let dyck_hypothesis = compose hypothesis in_some
+
+(* 2. False,Gamma |- G *)
+let dyck_absurdity_elim = contradiction_on_hyp
+
+(*3. A,B,Gamma |- G
+ ---------------
+ A/\B,Gamma |- G
+ *)
+let dyck_and_elim = compose (classically dAnd) in_some
+
+(*4. Gamma |- A Gamma |- B
+ -----------------------
+ Gamma |- A /\ B
+ *)
+let dyck_and_intro = (dAnd None)
+
+
+(*5. A,Gamma |- G B,Gamma|- G
+ ---------------------------
+ A\/B,Gamma |- G
+ *)
+
+let dyck_or_elim = compose (classically (dorE false)) in_some
+
+(*6. Gamma |- A
+ ----------
+ Gamma |- A\/B
+ *)
+let dyck_or_introleft = (dorE false)
+
+
+(*7. Gamma |-B
+ ---------
+ Gamma |- A\/B
+ *)
+let dyck_or_introright = (dorE true)
+
+
+(*8. A,Gamma |- B
+ --------------
+ Gamma |- A -> B
+ *)
+let dyck_imply_intro = (dImp None)
+
+
+(*9.
+ B,A,Gamma |- G
+ --------------
+ A->B,A,Gamma |- G (A Atomique)
+ *)
+let atomic_imply_bot_pattern = put_pat mmk "?1->?2"
+
+let atomic_imply_step cls gls =
+ let mvb = somatch (clause_type cls gls) atomic_imply_bot_pattern in
+ if not (is_atomic (List.assoc 1 mvb)) then
+ error "atomic_imply_step";
+ (tclTHENS (dImp cls) ([clear_clause cls;assumption])) gls
+
+let dyck_atomic_imply_elim = compose (atomic_imply_step) in_some
+
+(*10.
+ C ->(D-> B),Gamma |- G
+ -----------------------
+ (C/\D)->B,Gamma |- G
+ *)
+
+let and_imply_step cls gls =
+ let mvb = somatch (clause_type cls gls) imply_pattern in
+ let a = List.assoc 1 mvb
+ and b = List.assoc 2 mvb in
+ let l = match match_with_conjunction a with
+ | Some (_,l) -> l
+ | None -> error "and_imply_step"
+ in
+ (tclTHENS (cut_intro (List.fold_right mkIMP l b))
+ [clear_clause cls ;
+ (tclTHENS (tclTHEN (tclDO (List.length l) intro) (dImp cls))
+ [assumption;
+ (tclTHEN (dAnd None) assumption)])]) gls
+
+let dyck_and_imply_elim = compose (and_imply_step) in_some
+
+(*11.
+ C->B,D->B,Gamma |-G
+ --------------------
+ (C\/D)->B,Gamma |- G
+*)
+
+let or_imply_step cls gls =
+ let mvb = somatch (clause_type cls gls) imply_pattern in
+ let a = List.assoc 1 mvb
+ and b = List.assoc 2 mvb in
+ let l = match match_with_disjunction a with
+ | Some (_,l) -> l
+ | None -> error "and_imply_step"
+ in
+ (tclTHENS (cut_in_parallel (List.map (fun x -> (mkIMP x b)) l))
+ (clear_clause cls::
+ (List.map
+ (fun i -> (tclTHENS (tclTHEN intro (dImp cls))
+ [assumption ;
+ (tclTHEN (one_constructor i []) assumption)]))
+ (interval 1 (List.length l))))) gls
+
+let dyck_or_imply_elim = compose (or_imply_step) in_some
+
+(*12.
+B,Gamma|- G D->B,Gamma |- C->D
+----------------------------------
+(C->D)->B,Gamma |- G
+*)
+
+let back_thru_2 id =
+ applist(VAR id,[DOP0(Meta(new_meta()));DOP0(Meta(new_meta()))])
+
+let back_thru_1 id =
+ applist(VAR id,[DOP0(Meta(new_meta()))])
+
+let exact_last_hyp = onLastHyp (fun h -> exact (VAR (out_some h)))
+
+let imply_imply_bot_pattern = put_pat mmk "(?1->?2)->?3"
+
+let imply_imply_step cls gls =
+ let h0 = out_some cls in (* (C->D)->B *)
+ let mvb = somatch (clause_type cls gls) imply_imply_bot_pattern in
+ let c = List.assoc 1 mvb
+ and d = List.assoc 2 mvb
+ and b = List.assoc 3 mvb
+ in
+ tclTHENS (cut_intro b)
+ [clear_clause cls; (* B |- G *)
+ tclTHENS (cut_intro (mkIMP (mkIMP d b) (mkIMP c d)))
+ [onLastHyp
+ (fun h1opt (*(D->B)->(C->D)*) ->
+ let h1 = out_some h1opt in
+ (tclTHENS (refine (back_thru_1 h0))
+ [tclTHENS (tclTHEN intro (* C *) (refine (back_thru_2 h1)))
+ [tclTHENS (tclTHEN intro (* D *) (refine (back_thru_1 h0)))
+ [tclTHEN intro (* C *) assumption];
+ exact_last_hyp]]));
+ (tclTHEN (clear_clause cls) (intro))
+ ]
+ ] gls
+
+let dyck_imply_imply_elim = compose (imply_imply_step) in_some
+
+(*14.
+ B,Gamma |-G
+ --------------------
+ True->B,Gamma |- G
+*)
+
+let true_imply_step cls gls =
+ let mvb = somatch (clause_type cls gls) imply_pattern in
+ let a = List.assoc 1 mvb
+ and b = List.assoc 2 mvb in
+ let l = match match_with_unit_type a with
+ (* match_with_unit_type retournait un constr list option avec un seul
+ element dans la liste; maintenant il renvoie un constr option *)
+ (* Some (_::l) -> l *)
+ | Some _ -> []
+ | None -> error "true_imply_step"
+ in
+ let h0 = out_some cls in
+ (tclTHENS (cut_intro b)
+ [(clear_clause cls);
+ (tclTHEN (apply(VAR h0)) (one_constructor 1 []))]) gls
+
+let dyck_true_imply_elim = compose (true_imply_step) in_some
+
+(* Chet's original algorithm
+let rec prove g =
+ tclCOMPLETE
+ ((tclORELSE
+ ((tclORELSE
+ ((tclORELSE
+ ((tclORELSE
+ ((tclORELSE
+ ((tclORELSE
+ ((tclORELSE
+ ((tclORELSE
+ ((tclORELSE
+ ((tclORELSE
+ ((tclORELSE
+ ((tryAllHyps (clauseTacThen ((comp(dyck_hypothesis) (out_some))) prove)))
+ ((tryAllHyps (clauseTacThen ((comp(dyck_absurdity_elim) (out_some))) prove)))))
+ ((tryAllHyps (clauseTacThen ((comp(dyck_and_elim) (out_some))) prove)))))
+ ((tryAllHyps (clauseTacThen ((comp(dyck_or_elim) (out_some))) prove)))))
+ ((tryAllHyps (clauseTacThen ((comp(dyck_atomic_imply_elim) (out_some))) prove)))))
+ ((tryAllHyps (clauseTacThen ((comp(dyck_and_imply_elim) (out_some))) prove)))))
+ ((tryAllHyps (clauseTacThen ((comp(dyck_or_imply_elim) (out_some))) prove)))))
+ ((tryAllHyps (clauseTacThen ((comp(dyck_imply_imply_elim) (out_some))) prove)))))
+ (((tclTHEN (dyck_and_intro) (prove))))))
+ (((tclTHEN (dyck_or_introleft) (prove))))))
+ (((tclTHEN (dyck_or_introright) (prove))))))
+ (((tclTHEN (dyck_imply_intro) (prove)))))) g
+
+*)
+
+(* Cesar's code *)
+
+let trans x = ([],Nametab.sp_of_id CCI (id_of_string x))
+
+let flat_map f =
+ let rec flat_map_f = function
+ | [] -> []
+ | x::l -> f x @ flat_map_f l
+ in
+ flat_map_f
+
+type formula =
+ | FVar of string
+ | FAnd of formula*formula
+ | FOr of formula*formula
+ | FImp of formula*formula
+ | FEqu of formula*formula
+ | FNot of formula
+ | FEq of formula*formula*formula
+ | FPred of constr (* Predicado proposicional *)
+ | FFalse
+ | FTrue
+ (* La siguiente no puede aparecer en una formula de entrada *)
+ (* Representa una formula atomica cuando aparece en un principal de una
+ regla *)
+ | FLis of formula list (* Lista de formulas *)
+ | FAto of string (* Formula atomica *)
+ | FLisfor of string (* Variable para una lista de formulas *)
+ (* En el antecedente se llama GAMA,
+ en el sucedente DELTA *)
+
+(* Terminos en calculo lambda *)
+type termino =
+ | TVar of string
+ | TApl of formula*formula*termino*termino
+ | TFun of string*formula*termino
+ | TPar of formula*formula*termino*termino
+ | TInl of formula*formula*termino
+ | TInr of formula*formula*termino
+ | TFst of formula*formula*termino
+ | TSnd of formula*formula*termino
+ | TCase of formula list * termino list
+ | TZ of formula * termino
+ | TExi of string
+ | TRefl of formula * formula (*Reflexividad de la igualdad *)
+ | TSim of formula * formula * formula * termino
+ (*Simetria de la igualdad *)
+ | TTrue
+ (* Los siguientes terminos se usan solamente en las sustituciones *)
+ | TSum of termino*termino (* Suma de terminos *)
+ | TLis of termino list (* Lista de terminos *)
+ | TLister of string (* Variable para una lista de terminos *)
+ (* En el antecendete se llama Gama,
+ en el sucedente Delta *)
+ | TZero of formula (* Milagro *)
+
+(* Es una formula asociada con un termino del calculo lambda, o los
+ multiconjuntos Gama y Delta *)
+type formulaT = termino*formula
+
+(* La primera componente es el antecedente, la segunda es sucedente *)
+type sequente = formulaT list * formulaT list
+
+(* Substitucion de variable por una formula *)
+type subsF = (string*formula) list
+
+(* Substitucion de variable por un lambda termino *)
+type subsT = (string*termino) list
+
+type regla = {
+ tip: string; (* Tipo de la formula principal *)
+ heu: bool; (* Si es una regla heuristica o no *)
+ ant: bool; (* Si principal es antecedente o sucedente *)
+ pri: formulaT;(* Formula principal de la regla *)
+ pre: sequente list; (* Premisas de la regla *)
+ res: sequente;(* Restricciones para la aplicacion de una regla*)
+ def: subsT; (* Definicion de los terminos del lado derecho *)
+ sub: subsT; (* Substitucion que se aplica al lado derecho de la
+ conclusion para obetener el lambda termino *)
+ ren: string list; (* Variables que se deben renombrar *)
+ vardelta:bool; (* Si se usa la variable proposicional DELTA *)
+ ssi:bool; (* Si la regla es reversible o no *)
+ rendelta: string list } (* Renombramientos de delta *)
+ (* Note que si Res = A |- B, entonces la conclusion de la regla es
+ A,Gama,Pri' |- B, Pri'',Delta
+ Si ant = true Pri'= Pri
+ Si ant =false Pri''=Pri*)
+
+(* Substitucion Formula Termino para aplicar una regla *)
+type sFT = {
+ sReg : regla ref; (*Apuntador a la regla *)
+ sFor : subsF; (*Substitucion de Formulas *)
+ sGam : formulaT list; (* Lista de formulas de Gamma *)
+ sDel : formulaT list; (* Lista de formulas de Delta *)
+ sRen : (string*subsT) list; (* Renombramientos de variables *)
+ sTer : subsT; (* Susbstitucion de terminos *)
+ sDef : subsT } (* Definicion de terminos *)
+
+type subsFT = SNil | SCons of sFT
+
+type reglaSub = RNil | RCons of (sFT*regla list*formulaT list*sequente)
+
+(* De un arbol de demostracion *)
+type nodo = {
+ seq: sequente ref; (* Sequente que se resuelve *)
+ reg: regla ref; (* Regla usada para resolver *)
+ sd: subsT; (* Substitucion que define los lambda terminos *)
+ st: subsT } (* Substitucion que calcula el lambda termino *)
+
+(* Arbol de demostracion *)
+type arbol = Nil | Cons of arbol * nodo * arbol
+
+(* Demostracion *)
+(* Si el secuente es valido Arb es un arbol de demostracion y Lisbut
+ es vacio, sino Lisbut es un contexto en el cual Arb es valido *)
+type demostracion = { arb : arbol; lisbut : formulaT list }
+
+(* Definicion de excepcion para rescribir terminos *)
+exception NoAplica
+exception TacticFailure
+
+(* ------------------ Sistema de Gentzen Intuisionista -------------------*)
+(* Gama,Delta son metavariables de conjuntos de reglas
+ A,B son variables de formulas *)
+
+let gama = (TLister "Gama",FLisfor "GAMA")
+let delta = (TLister "Delta",FLisfor "DELTA")
+let delta' = (TLister "Delta'",FLisfor "DELTA")
+let delta'' = (TLister "Delta''",FLisfor "DELTA")
+
+let curry(a,b,c,a_0,b_0,p) = TFun(a_0,a,TFun(b_0,b,TApl(FAnd(a,b),c,p,
+ TPar(a,b,TVar a_0,TVar b_0))))
+let left(a,b,c,a_0,p) = TFun(a_0,a,TApl(FOr(a,b),c,p,TInl(a,b,TVar a_0)))
+let right(a,b,c,b_0,p) = TFun(b_0,b,TApl(FOr(a,b),c,p,TInr(a,b,TVar b_0)))
+let imp2(a,b,c,a_0,b_0,p) = TFun(a_0,a,TApl(FImp(b,a),c,p,TFun(b_0,b,TVar a_0)))
+
+(* Regla inicial *)
+(* / A,Gama |- A,Delta *)
+let inic = {
+ tip="inic";
+ heu=false;
+ ant=true;
+ pri= TVar "#x",FAto "#A";
+ pre=[];
+ res=([],[TVar "#x",FVar "#A"]);
+ def=["Delta",TZero(FLisfor "DELTA")];
+ sub=[];
+ ren=["#x"];
+ vardelta = true;
+ ssi = true;
+ rendelta=[] }
+
+(* Regla l_false *)
+(* / Gama,False |- Delta *)
+let l_false = {
+ tip="false";
+ heu=false;
+ ant=true;
+ pri= TVar "#x",FFalse;
+ pre=[];
+ res=([],[]);
+ def=["Delta",TZ(FLisfor "DELTA",TVar "#x")];
+ sub=[];
+ ren=["#x"];
+ vardelta = true;
+ ssi = true;
+ rendelta=[]}
+
+(* Regla r_true *)
+(* / Gama |- True,Delta *)
+let r_true = {
+ tip="true";
+ heu=false;
+ ant=false;
+ pri= TTrue,FTrue;
+ pre=[];
+ res=([],[]);
+ def=["Delta",TZero(FLisfor "DELTA")];
+ sub=[];
+ ren=[];
+ vardelta = true;
+ ssi = true;
+ rendelta=[]}
+
+(* Regla l_and *)
+(* A,B,Gama |- Delta / FAnd(A,B),Gama |- Delta *)
+let l_and = {
+ tip="l_and";
+ heu=false;
+ ant=true;
+ pri= TVar "#xy",FAnd(FVar "#A",FVar "#B");
+ pre=[[TVar "#x",FVar "#A";TVar "#y",FVar "#B";gama],[delta]];
+ res=([],[]);
+ def=[];
+ sub=["#x",TFst(FVar "#A",FVar "#B",TVar "#xy");
+ "#y",TSnd(FVar "#A",FVar "#B",TVar "#xy")];
+ ren=["#x";"#y"];
+ vardelta = false;
+ ssi = true;
+ rendelta=[]}
+
+(* Regla r_and *)
+(* Gama |- A,Delta' Gama |- B,Delta'' / Gama |- A/\B,Delta *)
+let r_and = {
+ tip="r_and";
+ heu=false;
+ ant=false;
+ pri= TPar(FVar "#A",FVar "#B",TVar "#x",TVar "#y"),
+ FAnd(FVar "#A",FVar "#B");
+ pre=[[gama],[TVar "#x",FVar "#A";delta'];[gama],
+ [TVar "#y",FVar "#B";delta'']];
+ res=([],[]);
+ def=["Delta",TSum(TLister "Delta'",TLister "Delta''")];
+ sub=[];
+ ren=["#x";"#y"];
+ vardelta = true;
+ ssi = true;
+ rendelta=["Delta'";"Delta''"]}
+
+(* Regla l_or *)
+(* A,Gama |- Delta' B,Gama |- Delta'' / A\/B,Gama |- Delta *)
+let l_or = {
+ tip="l_or";
+ heu=false;
+ ant=true;
+ pri= TVar "#xy",FOr(FVar "#A",FVar "#B");
+ pre=[[TVar "#x",FVar "#A";gama],[delta'];
+ [TVar "#y",FVar "#B";gama],[delta'']];
+ res=([],[]);
+ sub=[];
+ def=["Delta", TCase([FVar "#A";FVar "#B";FLisfor "DELTA"],
+ [TFun("#x",FVar "#A",TLister "Delta'");
+ TFun("#y",FVar "#B",TLister "Delta''");
+ TVar "#xy"])];
+ ren=["#x";"#y";"#xy"];
+ vardelta = true;
+ ssi = true;
+ rendelta=["Delta'";"Delta''"]}
+
+(* Regla r_or *)
+(* Gama |- A,B,Delta / Gama |- A\/B,Delta *)
+let r_or = {
+ tip="r_or";
+ heu=false;
+ ant=false;
+ pri= TSum(TInl(FVar "#A",FVar "#B",TVar "#x"),
+ TInr(FVar "#A",FVar "#B",TVar "#y")),
+ FOr(FVar "#A",FVar "#B");
+ pre=[[gama],
+ [TVar "#x",FVar "#A";TVar "#y",FVar "#B";delta]];
+ res=([],[]);
+ sub=[];
+ def=[];
+ ren=["#x";"#y"];
+ vardelta = false;
+ ssi = true;
+ rendelta=[]}
+
+(* Regla l_imp1 *)
+(* A,B,Gama |- Delta / A->B,A,Gama |- Delta (A es un atomo) *)
+let l_imp1 = {
+ tip="l_imp1";
+ heu=false;
+ ant=true;
+ pri= TVar "#p",FImp(FAto "#A",FVar "#B");
+ pre=[[TVar "#x",FVar "#B";gama],
+ [delta]];
+ res=([TVar "#a",FVar "#A"],[]);
+ def=[];
+ sub=["#x",TApl(FVar "#A",FVar "#B",TVar "#p",TVar "#a")];
+ ren=["#x"];
+ vardelta = false;
+ ssi = true;
+ rendelta=[]}
+
+(* Regla l_imp2 *)
+(* C->(D->B),Gama |- Delta / C/\D->B,Gama |- Delta *)
+let l_imp2 = {
+ tip="l_imp2";
+ heu=false;
+ ant=true;
+ pri= TVar "#p",FImp(FAnd(FVar "#C",FVar "#D"),FVar "#B");
+ pre=[[TVar "#x",FImp(FVar "#C",FImp(FVar "#D",FVar "#B"));gama],
+ [delta]];
+ res=([],[]);
+ def=[];
+ sub=["#x",curry(FVar "#C",FVar "#D",FVar "#B","#c","#d",TVar "#p")];
+ ren=["#x";"#c";"#d"];
+ vardelta = false;
+ ssi = true;
+ rendelta=[]}
+
+(* Regla l_imp3 *)
+(* C->B,D->B,Gama |- Delta / C\/D->B,Gama |- Delta *)
+let l_imp3 = {
+ tip="l_imp3";
+ heu=false;
+ ant=true;
+ pri= TVar "#p",FImp(FOr(FVar "#C",FVar "#D"),FVar "#B");
+ pre=[[TVar "#x",FImp(FVar "#C",FVar "#B");TVar "#y",
+ FImp(FVar "#D",FVar "#B");gama],
+ [delta]];
+ res=([],[]);
+ def=[];
+ sub=["#x",left(FVar "#C",FVar "#D",FVar "#B","#c",TVar "#p");
+ "#y",right(FVar "#C",FVar "#D",FVar "#B","#d",TVar "#p")];
+ ren=["#x";"#y";"#c";"#d"];
+ vardelta = false;
+ ssi = true;
+ rendelta=[]}
+
+(* Regla l_imp4 *)
+(* D->B,Gama |- C->D,Delta B,Gama |- Delta / (C->D)->B,Gama |- Delta *)
+let l_imp4 = {
+ tip="l_imp4";
+ heu=false;
+ ant=true;
+ pri= TVar "#p",FImp(FImp(FVar "#C",FVar "#D"),FVar "#B");
+ pre=[[TVar "#x",FVar "#B";gama],[delta];
+ [TVar "#z",FImp(FVar "#D",FVar "#B");gama],[TVar "#y",
+ FImp(FVar "#C",FVar "#D")]];
+ res=([],[]);
+ def=[];
+ sub=["#x",
+ TApl(FImp(FVar "#C",FVar "#D"),FVar "#B",TVar "#p",
+ TApl(FVar "#D",FVar "#B",
+ TFun("#z",FImp(FVar "#D",FVar "#B"),TVar "#y"),
+ imp2(FVar "#D",FVar "#C",FVar "#B","#d","#c",TVar "#p")))];
+ ren=["#x";"#y";"#z";"#d";"#c"];
+ vardelta = false;
+ ssi = false;
+ rendelta=[]}
+
+(* Regla l_imp5 *)
+(* (A->False)->B,Gama |- Delta / Not(A)->B,Gama |- Delta *)
+let l_imp5 = {
+ tip="l_imp5";
+ heu=false;
+ ant=true;
+ pri= TVar "#x",FImp(FNot(FVar "#A"),FVar "#B");
+ pre=[[TVar "#x",FImp(FImp(FVar "#A",FFalse),FVar "#B");gama],
+ [delta]];
+ res=([],[]);
+ def=[];
+ sub=[];
+ ren=["#x"];
+ vardelta = false;
+ ssi = true;
+ rendelta=[]}
+
+(* Regla l_imp6 *)
+(* (C->D/\D->C)->B,Gama |- Delta / (C<->D)->B,Gama |- Delta *)
+let l_imp6 = {
+ tip="l_imp6";
+ heu=false;
+ ant=true;
+ pri= TVar "#x",FImp(FEqu(FVar "#C",FVar "#D"),FVar "#B");
+ pre=[[TVar "#x",
+ FImp(FAnd(FImp(FVar "#C",FVar "#D"),
+ FImp(FVar "#D",FVar "#C")),FVar "#B");gama],[delta]];
+ res=([],[]);
+ def=[];
+ sub=[];
+ ren=["#x"];
+ vardelta = false;
+ ssi = true;
+ rendelta=[]}
+
+(* Regla l_imp7 *)
+(* B,Gama |- Delta / True->B,Gama |- Delta *)
+let l_imp7 = {
+ tip="l_imp7";
+ heu=false;
+ ant=true;
+ pri= TVar "#t",FImp(FTrue,FVar "#B");
+ pre=[[TVar "#x",FVar "#B";gama],[delta]];
+ res=([],[]);
+ def=[];
+ sub=["#x",TApl(FTrue,FVar "#B",TVar "#t",TTrue)];
+ ren=["#x"];
+ vardelta = false;
+ ssi = true;
+ rendelta=[]}
+
+(* Regla r_imp *)
+(* A,Gama |- B / Gama |- A->B,Delta *)
+let r_imp = {
+ tip="r_imp";
+ heu=false;
+ ant=false;
+ pri= TFun("#x",FVar "#A",TVar "#y"),FImp(FVar "#A",FVar "#B");
+ pre=[[TVar "#x",FVar "#A";gama],[TVar "#y",FVar "#B"]];
+ res=([],[]);
+ def=["Delta",TZero(FLisfor "DELTA")];
+ sub=[];
+ ren=["#x";"#y"];
+ vardelta = true;
+ ssi = false;
+ rendelta=[]}
+
+(* Regla l_not *)
+(* A->False,Gama |- Delta / Not(A),Gama |- Delta *)
+let l_not = {
+ tip="l_not";
+ heu=false;
+ ant=true;
+ pri= TVar "#x",FNot(FVar "#A");
+ pre=[[TVar "#x",FImp(FVar "#A",FFalse);gama],[delta]];
+ res=([],[]);
+ def=[];
+ sub=[];
+ ren=["#x"];
+ vardelta = false;
+ ssi = true;
+ rendelta=[]}
+
+(* Regla r_not *)
+(* Gama |- A->False,Delta / Gama |- Not(A),Delta *)
+let r_not = {
+ tip="r_not";
+ heu=false;
+ ant=false;
+ pri= TVar "#x",FNot(FVar "#A");
+ pre=[[gama],[TVar "#x",FImp(FVar "#A",FFalse);delta]];
+ res=([],[]);
+ def=[];
+ sub=[];
+ ren=["#x"];
+ vardelta = false;
+ ssi = true;
+ rendelta=[]}
+
+(* Regla l_equ *)
+(* A->B/\B->A,Gama |- Delta / A<->B,Gama |- Delta *)
+let l_equ = {
+ tip="l_equ";
+ heu=false;
+ ant=true;
+ pri= TVar "#x",FEqu(FVar "#A",FVar "#B");
+ pre=[[TVar "#x",FAnd(FImp(FVar "#A",FVar "#B"),
+ FImp(FVar "#B",FVar "#A"));gama],[delta]];
+ res=([],[]);
+ def=[];
+ sub=[];
+ ren=["#x"];
+ vardelta = false;
+ ssi = true;
+ rendelta=[]}
+
+(* Regla r_equ *)
+(* Gama |- A->B/\B->A,Delta / Gama |- A<->B,Delta *)
+let r_equ = {
+ tip="r_equ";
+ heu=false;
+ ant=false;
+ pri= TVar "#x",FEqu(FVar "#A",FVar "#B");
+ pre=[[gama],
+ [TVar "#x",FAnd(FImp(FVar "#A",FVar "#B"),
+ FImp(FVar "#B",FVar "#A"));delta]];
+ res=([],[]);
+ def=[];
+ sub=[];
+ ren=["#x"];
+ vardelta = false;
+ ssi = true;
+ rendelta=[]}
+
+(* Definicion de la regla VACIA *)
+let vACIA = {
+ tip="vacia";
+ heu=false;
+ ant=false;
+ pri=gama;
+ pre=[];
+ res=([],[]);
+ def=[];
+ sub=[];
+ ren=[];
+ vardelta = false;
+ ssi = false;
+ rendelta=[]}
+
+(*---------------------- Reglas heuristicas ------------------------------*)
+
+(* Regla simetria de igualdad *)
+(* / a=b,Gama |- b=a,Delta *)
+let sim = {
+ tip="sim";
+ heu=true;
+ ant=true;
+ pri= TVar "#x",FEq(FVar "#A",FVar "#a",FVar "#b");
+ pre=[];
+ res=([],[TSim(FVar "#A",FVar "#a",FVar"#b",TVar"#x"),
+ FEq(FVar "#A",FVar "#b",FVar "#a")]);
+ def=["Delta",TZero(FLisfor "DELTA")];
+ sub=[];
+ ren=["#x";"#a";"#b"];
+ vardelta = true;
+ ssi = true;
+ rendelta=[]}
+
+(* Regla r_refl *)
+(* / Gama |- <t>a=a,Delta *)
+let r_refl = {
+ tip="refl";
+ heu=true;
+ ant=false;
+ pri= TRefl(FVar "#A",FVar "#a"),FEq(FVar "#A",FVar "#a",FVar "#a");
+ pre=[];
+ res=([],[]);
+ def=["Delta",TZero(FLisfor "DELTA")];
+ sub=[];
+ ren=["#a"];
+ vardelta = true;
+ ssi = true;
+ rendelta=[]}
+
+let sistema = [inic;l_false;r_true;l_and;r_and;l_imp1;l_imp2;l_imp3;
+ l_imp5;l_imp6;l_imp7;l_not;r_not;l_equ;r_equ;r_imp;
+ l_or;r_or;l_imp4]
+
+(*----------- Proyecciones del tipos de datos Sequente ----------------------*)
+
+(* Antecedente de un sequente *)
+let ante (a,_) = a
+
+(* Sucedente de un sequente *)
+let suce (_,s) = s
+
+(*----------- Constructores de los tipos de datos ----------------------*)
+
+(* Simplifica una substitucion es decir elemina las substituciones
+ inutiles *)
+let rec simple = function
+ | [] -> []
+ | ((x,_) as a)::z ->
+ if String.get x 0 = '#' then simple z else a::simple z
+
+(* Construye un node de demostracion *)
+let consd a l = {arb=a;lisbut=l}
+
+(* Construye un nodo de un arbol *)
+let consa s r sd st = {seq = ref s;reg = ref r;sd = simple sd;
+ st= simple st}
+
+(* Construye un nodo de sustitucion *)
+let conss r sf sg sd ren sdef ster =
+ SCons({sReg=ref r;sFor=sf;sGam=sg;sDel=sd;
+ sRen=ren;sDef=sdef;sTer=ster})
+
+(*----------------------- Aplicacion de Reglas ------------------------------*)
+
+(* Buscar un nombre de variable en una sustitucion, retorna la lista
+ que contiene la formula que la variable sustituye *)
+let rec busque n = function
+ | [] -> []
+ | (x,f)::y -> if x=n then [f] else busque n y
+
+(* Aplicar una substitucion a una formula, retorna otra formula *)
+let rec apl_f s = function
+ | (FVar y) as x -> (match busque y s with
+ | [] -> x
+ | a::_ -> a )
+ | (FLisfor y) as x -> (match busque y s with
+ | [] -> x
+ | a::_ -> a)
+ | FAnd (a,b) -> FAnd(apl_f s a, apl_f s b)
+ | FOr (a,b) -> FOr(apl_f s a, apl_f s b)
+ | FImp (a,b) -> FImp(apl_f s a, apl_f s b)
+ | FEqu (a,b) -> FEqu(apl_f s a, apl_f s b)
+ | FEq (a,b,c) -> FEq(apl_f s a, apl_f s b,apl_f s c)
+ | FNot a -> FNot(apl_f s a)
+ | x -> x
+
+(* Aplicar una sustitucion a una lista de formulas *)
+let apl_lf s l = List.map (apl_f s) l
+
+(* Encuentra un unificador de primer orden de dos formulas proposicionales,
+ retorna la pareja (e,u), donde e indica exito o fracaso
+ y u es el unificador principal (si no existe es [] vacia ) *)
+let rec unif_f = function
+ | FAnd(a,b),FAnd(x,y) -> unif_lf([a;b],[x;y])
+ | FOr(a,b),FOr(x,y) -> unif_lf([a;b],[x;y])
+ | FImp(a,b),FImp(x,y) -> unif_lf([a;b],[x;y])
+ | FEqu(a,b),FEqu(x,y) -> unif_lf([a;b],[x;y])
+ | FEq(a,b,c),FEq(x,y,z) -> unif_lf([a;b;c],[x;y;z])
+ | FVar(a),x -> (true,[a,x])
+ | FAto(a),(FPred(_) as x) -> (true,[a,x])
+ | FAto(a),(FEq(_) as x) -> (true,[a,x])
+ | FPred(a),FPred(x) -> (eq_constr a x,[])
+ | FNot(a),FNot(x) -> unif_f(a,x)
+ | FFalse,FFalse -> (true,[])
+ | FTrue,FTrue -> (true,[])
+ | _ -> (false,[])
+
+and unif_lf = function
+ | ([],[]) -> (true,[])
+ | (x::y,a::b) ->
+ let (e,u) = unif_f (x,a) in
+ if e then
+ let (e1,u1) = unif_lf (apl_lf u y,b) in
+ if e1 then (true,u@u1) else (false,[])
+ else
+ (false,[])
+ | _ -> (false,[])
+
+(* Aplicar una substitucion a un lamda termino, retorna otro lambda termino *)
+let rec apl_t st sf = function
+ | (TVar y) as x -> (match busque y st with
+ | [] -> x
+ | a::_ -> a )
+ | (TLister y) as x -> (match busque y st with
+ | [] -> x
+ | a::_ -> a )
+ | TApl(f1,f2,t1,t2) -> TApl (apl_f sf f1,apl_f sf f2,
+ apl_t st sf t1,apl_t st sf t2)
+ | TFun(x,f,y) -> (match busque x st with
+ | [] -> TFun(x,apl_f sf f,apl_t st sf y)
+ | [TVar n] -> TFun(n,apl_f sf f,apl_t st sf y)
+ | _ -> raise TacticFailure)
+ | TCase(lf,lt) -> TCase(List.map (apl_f sf) lf,List.map (apl_t st sf) lt)
+ | TPar(f1,f2,t1,t2) -> TPar(apl_f sf f1,apl_f sf f2,
+ apl_t st sf t1,apl_t st sf t2)
+ | TInl(f1,f2,t) -> TInl(apl_f sf f1,apl_f sf f2,apl_t st sf t)
+ | TInr(f1,f2,t) -> TInr(apl_f sf f1,apl_f sf f2,apl_t st sf t)
+ | TFst(f1,f2,t) -> TFst(apl_f sf f1,apl_f sf f2,apl_t st sf t)
+ | TSnd(f1,f2,t) -> TSnd(apl_f sf f1,apl_f sf f2,apl_t st sf t)
+ | TRefl(f1,f2) -> TRefl(apl_f sf f1,apl_f sf f2)
+ | TSim(f1,f2,f3,t) -> TSim(apl_f sf f1,apl_f sf f2,
+ apl_f sf f3,apl_t st sf t)
+ | TLis lt -> TLis (List.map (apl_t st sf) lt)
+ | TSum(t1,t2) -> TSum (apl_t st sf t1,apl_t st sf t2)
+ | TZ(f,t) -> TZ(apl_f sf f,apl_t st sf t)
+ | (TExi y) as x -> (match busque y st with
+ | [] -> x
+ | a::_ -> a )
+ | TZero f -> TZero(apl_f sf f)
+ | t -> t
+
+(* Aplicar substitucion gama delta y una substitucion de terminos lambda
+ a una lista de formulasT, retorna una lista de formulasT *)
+let rec apl_lft (s,gama_0,delta_0) st rendelta =
+ (* Aplicar una substitucion gama delta y una substitucion de terminos a una
+ formulaT, retorna una lista de formulasT *)
+ let apl_fm = function
+ | (_,FLisfor "GAMA") -> gama_0
+ | (TLister x,FLisfor "DELTA") ->
+ (match busque x rendelta with
+ | [] -> delta_0
+ | a::_ -> apl_lft ([],[],[]) a [] delta_0)
+ | (_,FLisfor "DELTA") -> delta_0
+ | (t,f) -> [apl_t st [] t,apl_f s f]
+ in
+ flat_map apl_fm
+
+(* Aplicar substitucion gama delta y una substitucion de terminos lambda a un
+ sequente, retorna un nuevo sequente*)
+let apl sf st rendelta = function
+ (l1,l2) -> (apl_lft sf st rendelta l1,apl_lft sf st rendelta l2)
+
+(* Aplicar la regla r, dada una substitucion.
+ Retorna una lista de sequentes *)
+let aplr_s subs = List.map (apl (subs.sFor,subs.sGam,subs.sDel)
+ subs.sDef subs.sRen) !(subs.sReg).pre
+
+(* Componer dos substituciones de lambda terminos. Aplica la primera
+ sobre la segunda *)
+let rec comp_st st = function
+ | [] -> st
+ | (x,y)::z -> (x,apl_t st [] y)::comp_st st z
+
+(* Renombrar las variables izquierdas de una sustitucion *)
+let rec ren_izq ren = function
+ | [] -> []
+ | ((x,y) as a)::z -> match busque x ren with
+ | [TVar a] -> (a,y)::ren_izq ren z
+ | _ -> a::ren_izq ren z
+
+(* Indica si dos formulas son iguales *)
+let iguales_f f1 f2 =
+ let (e,u) = unif_f(f1,f2) in
+ e & u = []
+
+(*------------------- Unificador para lambda terminos --------------------*)
+
+(* Encuentra un unificador de primer orden de dos lambda terminos,
+ retorna la pareja (e,u), donde e indica exito o fracaso
+ y u es el unificador principal (si no existe es [] vacia ).
+ TPara los terminos que contienen formulas recibe el unificador de
+ ellas *)
+let rec unif_t sf = function
+ | (TVar x,((TVar y) as y_0)) ->
+ if (x = y) then (true,[]) else (true,[x,apl_t [] sf y_0])
+ | (TVar x, y) -> (true,[x,apl_t [] sf y])
+ | TApl(f,ff,t,tt),TApl(f1,ff1,t1,tt1) ->
+ unif_lft sf [f;ff][f1;ff1][t;tt][t1;tt1]
+ | TZ(f,t), TZ(f1,t1) -> unif_lft sf [f][f1][t][t1]
+ | (TExi x,((TExi y) as y_0)) ->
+ if (x = y) then (true,[]) else (true,[x,apl_t [] sf y_0])
+ | TZero f, TZero f1 -> unif_lft sf [f][f1][][]
+ | TTrue,TTrue -> (true,[])
+ | TFun(x,f,t),TFun(a,f1,t1) -> unif_lft sf [f][f1][t][t1]
+ | TPar(f,ff,t,tt),TPar(f1,ff1,t1,tt1) ->
+ unif_lft sf [f;ff][f1;ff1] [t;tt][t1;tt1]
+ | TInl(f,ff,t),TInl(f1,ff1,t1) -> unif_lft sf [f;ff][f1;ff1][t][t1]
+ | TInr(f,ff,t),TInr(f1,ff1,t1) -> unif_lft sf [f;ff][f1;ff1][t][t1]
+ | TFst(f,ff,t),TFst(f1,ff1,t1) -> unif_lft sf [f;ff][f1;ff1][t][t1]
+ | TSnd(f,ff,t),TSnd(f1,ff1,t1) -> unif_lft sf [f;ff][f1;ff1][t][t1]
+ | TRefl(f,ff),TRefl(f1,ff1) -> unif_lft sf [f;ff][f1;ff1][][]
+ | TSim(f1,f2,f3,t),TSim(f1',f2',f3',t') ->
+ unif_lft sf [f1;f2;f3] [f1';f2';f3'][t][t']
+ | _ -> (false,[])
+
+and iguales_lf sf = function
+ | ([],[]) -> true
+ | (x::y,a::b) ->
+ if iguales_f (apl_f sf x) (apl_f sf a) then
+ iguales_lf sf (y,b)
+ else
+ false
+ | _ -> false
+
+and unif_lt sf = function
+ | ([],[]) -> (true,[])
+ | (x::y,a::b) ->
+ let (e,u) = unif_t sf (x,a) in
+ if e then
+ let (e1,u1) = unif_lt sf (y,b) in
+ if e1 then (true,u@u1)
+ else (false,[])
+ else
+ (false,[])
+ | _ -> (false,[])
+
+and unif_lft sf lf lf1 lt lt1 =
+ if iguales_lf sf (lf,lf1) then
+ unif_lt sf (lt,lt1)
+ else
+ (false,[])
+
+(* Indica si dos terminos son iguales *)
+let iguales_t t1 t2 =
+ let (e,u) = unif_t [] (t1,t2) in
+ e & u = []
+
+(* Indica si dos formulas son iguales. Retorna una pareja con el exito
+ y un unificador de los dos lambda terminos *)
+let iguales_unif uf tr ts fr fs =
+ if iguales_f fr fs then
+ let (e,ut) = unif_t uf (ts,tr) in
+ if e then
+ (true,ut)
+ else
+ raise TacticFailure
+ else
+ (false,[])
+
+(* Crear una nueva variable *)
+let hipvar = ref ((id_of_string "#")::[])
+
+let genvar () =
+ let id = next_ident_away
+ (id_of_string "H")
+ !hipvar in
+ (hipvar := id::(!hipvar); string_of_id id)
+
+(* Lista de terminos de una substitucion *)
+let listerm = List.map snd
+
+(* Lista de variables de una lista de formulasS *)
+let rec lisvar = function
+ | [] -> []
+ | (TVar x,_)::y -> x::lisvar y
+ | (TExi x,_)::y -> x::lisvar y
+ | _::y -> lisvar y
+
+(* Lista de formulas de una lista de formulasS *)
+let rec lisfor = function
+ | [] -> []
+ | (TVar _,x)::y -> x::lisfor y
+ | (TExi _,x)::y -> x::lisfor y
+ | _::y -> lisfor y
+
+(* Recibe una lista de variables, retorna un renombramiento de ellas *)
+let renombra = List.map (function x -> (x,TVar(genvar())))
+
+(* Obtiene un renombramiento de todas las metavariables delta *)
+let renombradelta s rend=
+ let l = lisvar (suce s) in
+ List.map (function x -> (x,renombra l)) rend
+
+(* Obtiene una substitucion de las metavariables delta, por lista de
+ terminos *)
+let rec subsdelta = function
+ | [] -> []
+ | (x,y)::y_0 -> match listerm y with
+ | [] -> []
+ | [a] -> (x,a)::subsdelta y_0
+ | a -> (x,TLis a)::subsdelta y_0
+
+(* Indica si una formula pertenece a una lista de formulasT.
+ Retorna una pareja con el exito y una unificacion de los lambda terminos *)
+let rec pertenece uf ant tr fr = function
+ | [] -> (false,[])
+ | (TLister _,_)::y -> pertenece uf ant tr fr y
+ | (ts,fs)::y ->
+ let (e,ut) =
+ if ant then
+ iguales_unif uf ts tr fr fs
+ else
+ iguales_unif uf tr ts fr fs
+ in
+ if e then
+ (true,ut)
+ else
+ pertenece uf ant tr fr y
+
+(* Indica si la primera lista de formulasT contiene la segunda.
+ Retorna una pareja con el exito y una unificacion de los lambda terminos *)
+let rec contiene uf ant l = function
+ | [] -> (true,[])
+ | (TLister _,_)::y -> contiene uf ant l y
+ | (tr,fr)::y ->
+ let (e1,s1) = pertenece uf ant tr fr l in
+ if e1 then
+ let (e2,s2) = contiene uf ant l y in
+ if e2 then
+ (true,s1@s2)
+ else
+ (false,[])
+ else
+ (false,[])
+
+(* Decide si un secuente cumple con las restricciones de aplicacion de una
+ regla. Recibe el unificador de la regla con la restriccion. Retorna una
+ pareja con el exito y las unificaciones de lambda terminos del antecedente
+ y el sucedente del secuente *)
+let cumple uf res = function (seql,seqr) ->
+ let (resl,resr) = apl (uf,[],[]) [] [] res in
+ let (e1,s1) = contiene uf true seql resl in
+ if e1 then
+ let (e2,s2) = contiene uf false seqr resr in
+ if e2 then
+ (true,s1,s2)
+ else
+ (false,[],[])
+ else
+ (false,[],[])
+
+(* Compone una substitucion de formulas con una substitucion de terminos *)
+let rec comp_sfst uf = function
+ | [] -> []
+ | (x,y)::z -> (x,apl_t [] uf y)::comp_sfst uf z
+
+(* Crea una substitucion para las variables de un lambda termino, basado
+ en la regla que aplica *)
+let cree_sub s uf ter t ul ur r =
+ let lv =
+ if r.vardelta then ["DELTA",FLis(lisfor (suce s))] else []
+ in
+ let rendelta = renombradelta s r.rendelta in
+ let ren = (renombra r.ren) @ (subsdelta rendelta) in
+ let sd0 =
+ if r.ant then
+ ur (* Calcular definicion basica *)
+ else
+ match unif_t uf (t,ter) with
+ | (false,_) -> raise(TacticFailure)
+ | (_,u) -> ur@u
+ in
+ let sd1 = comp_st r.def sd0 in
+ let sd2 = comp_sfst (uf@lv) sd1 in (*Susbstituir var. proposicionales *)
+ let sd = comp_st ren sd2 in (* Componer con un renombramiento *)
+ let st0 =
+ if r.ant then (* Calcular sustitucion basica *)
+ match unif_t uf (ter,t) with
+ | (false,_) -> raise(TacticFailure)
+ | (_,u) -> ul@u
+ else
+ ul
+ in
+ let st1 = comp_st st0 r.sub in
+ let st2 = comp_sfst (uf@lv) st1 in (*Susbstituir var. proposicionales *)
+ let st3 = ren_izq ren st2 in (* Componer con un renombramiento *)
+ let st = comp_st ren st3 in
+ (sd,st,rendelta)
+
+(* Decide se una regla dada es aplicable sobre un termino (tf)
+ de un secuente y un lado de reduccion o. Retorna la sustitucion
+ apropiada para la regla o SNil si no existe *)
+
+let rec aplicable s lf tf o = function
+ ({ant=ant;pri=ter,pri;res=res}) as r ->
+ if o<>ant then
+ SNil
+ else
+ (match tf with
+ | (TLister _,_) -> SNil
+ | (t,f) ->
+ let (ef,uf) = unif_f(pri,f) in
+ if ef then
+ let (et,ul,ur) = cumple uf res s in
+ if et then
+ let (gam,del) = if ant then (lf,suce s)
+ else (ante s,lf) in
+ let (sd,st,rn) = cree_sub s uf ter t ul ur r in
+ conss r uf gam del rn sd st
+ else SNil
+ else SNil)
+
+(* Dado una regla, retorna una posicion donde la regla sea aplicable. RNil
+ si no existe *)
+let rec escoja_termino r s o rseq lacum = function
+ | [] ->
+ if o=0 then
+ escoja_termino r s 2 [] lacum rseq
+ else if o=1 then
+ escoja_termino r s 2 [] [] rseq
+ else
+ RNil
+ | t::y ->
+ let oo = if o=0 then 1 else o in
+ (match aplicable s (lacum@y) t (oo=1) r with
+ | SNil -> escoja_termino r s oo rseq (lacum@[t]) y
+ | SCons(s) ->
+ if oo=1 then RCons(s,[],lacum,(y,rseq))
+ else RCons(s,[],lacum,([],y)))
+
+(* Dado un secuente y un sistema de reglas
+ retorna una sustitucion apropiada para la regla, o RNil si no existe *)
+let rec escoja_regla s (lrseq,lac) = function
+ | [] -> RNil
+ | (r::y) as lreg ->
+ (match escoja_termino r s 0 (suce lrseq) lac (ante lrseq) with
+ | RNil -> escoja_regla s (s,[]) y
+ | RCons(subs,_,lanew,lrnew) -> RCons(subs,lreg,lanew,lrnew))
+
+(* Si una formula proposicional existe en una lista de formulas *)
+let rec existeprop f = function
+ | [] -> false
+ | x::y -> if iguales_f f x then true else existeprop f y
+
+(* Buscar una formula proposicional en una lista de formulasT,
+ retorna el termino o TZero si no la encuentra *)
+let rec busqueprop f = function
+ | [] -> TZero(FFalse)
+ | (tt,ff)::y -> if iguales_f f ff then tt else busqueprop f y
+
+(* Crear un termino como aplicaciones sucesivas del subobjetivo sobre las
+ hipotesis *)
+let rec ter_subobjetivo lisprop subobj = function
+ | [] -> (fst subobj)
+ | (x,f)::y ->
+ if existeprop f lisprop then
+ ter_subobjetivo lisprop subobj y
+ else
+ (match snd(subobj) with
+ | FImp(a,b) -> ter_subobjetivo (f::lisprop)
+ (TApl(a,b,fst(subobj),x),b) y
+ | _ -> TZero(FFalse))
+
+(* Convierte la lista del succedente en una disyuncion *)
+let rec disyuncion = function
+ | [] -> FFalse
+ | [a] -> a
+ | x::y -> FOr(x,disyuncion y)
+
+(* Convierte la lista del antecedente en una implicacion *)
+let rec implicacion dis vp = function
+ | [] -> dis
+ | x::y ->
+ if (existeprop x vp) then
+ implicacion dis vp y
+ else
+ FImp(x,implicacion dis vp y)
+
+(* Lista de proposiciones de un secuente sin repetidos *)
+let rec it_propos lisacum = function
+ | [] -> lisacum
+ | (_,f)::y ->
+ if (existeprop f lisacum) then
+ it_propos lisacum y
+ else
+ it_propos (lisacum@[f]) y
+
+let proposiciones = it_propos []
+
+(* Generar una subobjetivo de la demostracion de tal manera que
+ la validez del sequente original sea equivalente a la validez del
+ subobjetivo *)
+let subobjetivo s vp =
+ let dis = disyuncion (proposiciones (suce s)) in
+ let ter = TExi(genvar()) in
+ (ter,implicacion dis vp (proposiciones (ante s))),dis
+
+(* Crea una substitucion que supone un subobjetivo demostrado *)
+let rec termino_caso fapp f = function
+ | FOr(a,b) ->
+ let id1 = genvar() in
+ let t1 = TVar(id1) in
+ let id2 = genvar() in
+ let t2 = TVar(id2) in
+ if iguales_f a f then
+ TCase([a;b;f],[TFun(id1,a,t1);TFun(id2,b,TZero(f));fapp])
+ else
+ TCase([a;b;f],[TFun(id1,a,TZero(f));TFun(id2,b,termino_caso t2 f b);
+ fapp])
+ | _ -> fapp
+
+let rec it_subs_subobj subs sec fapp tip = function
+ | [] -> subs
+ | ((TVar x,f) as a)::y ->
+ let t = busqueprop f sec in
+ if t <> TZero(FFalse) then
+ it_subs_subobj ((x,apl_t subs [] t)::subs) sec fapp tip y
+ else
+ it_subs_subobj ((x,termino_caso fapp f tip)::subs) (a::sec)
+ fapp tip y
+ | _ -> assert false
+
+let subs_subobj fapp tip s = it_subs_subobj [] [] fapp tip s
+
+let rec esta_en_case l = function
+ | TApl(_,_,t1,t2) ->
+ (esta_en_case l t1) or (esta_en_case l t2)
+ | TFun(_,_,t) ->
+ esta_en_case l t
+ | TPar(_,_,t1,t2) ->
+ (esta_en_case l t1) or (esta_en_case l t2)
+ | TInl(_,_,t) ->
+ esta_en_case l t
+ | TInr(_,_,t) ->
+ esta_en_case l t
+ | TFst(_,_,t) ->
+ esta_en_case l t
+ | TSnd(_,_,t) ->
+ esta_en_case l t
+ | TZ(_,t) ->
+ esta_en_case l t
+ | TSum(t1,t2) ->
+ (esta_en_case l t1) or (esta_en_case l t2)
+ | TCase([f1;f2;f3],[t1;t2;t3]) ->
+ (match l with
+ | [ff1;ff2;ff3] ->
+ if (iguales_f f1 ff1) & (iguales_f f2 ff2) &
+ (iguales_f f3 ff3) then
+ true
+ else
+ (esta_en_case l t1) or (esta_en_case l t2)
+ | _ -> assert false)
+ | _ -> false
+
+let rec busque_termino t = function
+ | [] -> (false,"",false)
+ | (x,v,o)::y -> if iguales_t t x then (true,v,o) else busque_termino t y
+
+(* Sistema de reglas para simplificar terminos *)
+let rec sistreg lcase = function
+ | TApl(_,_,TFun (x,_,t),t1) -> apl_t [x,t1] [] t
+ | TFst(_,_,TPar(_,_,t,_)) -> t
+ | TSnd(_,_,TPar(_,_,_,t)) -> t
+ (* Simplificacion con TZero *)
+ | TApl(_,f,TZero _,t) -> TZero f
+ | TApl(_,f,t,TZero _) -> TZero f
+ | TFun(x,f1,TZero f2) -> TZero (FImp(f1,f2))
+ | TPar(f1,f2,TZero _,t2) -> TZero (FAnd(f1,f2))
+ | TPar(f1,f2,t1,TZero _) -> TZero (FAnd(f1,f2))
+ | TInl(f1,f2,TZero _) -> TZero (FOr(f1,f2))
+ | TInr(f1,f2,TZero _) -> TZero (FOr(f1,f2))
+ | TFst(f1,f2,TZero _) -> TZero f1
+ | TSnd(f1,f2,TZero _) -> TZero f2
+ | TZ(f,TZero _) -> TZero f
+ | TSum(TZero _,t) -> t
+ | TSum(t,TZero _) -> t
+ | TCase([_;_;f],[_;_;TZero _]) -> TZero f
+ | TSum(TFun(v1,ff1,t1),TFun(v2,ff2,t2)) ->
+ TFun(v1,ff1,TSum(t1,apl_t [v2,(TVar v1)][] t2))
+ (* Simplificacion del case *)
+ | TApl(f1,f2,TCase([a;b;FImp(c,d)],[TFun(v1,ff1,t1);
+ TFun(v2,ff2,t2);t3]),t) ->
+ TCase([a;b;f2],[TFun(v1,ff1,TApl(c,d,t1,t));
+ TFun(v2,ff2,TApl(c,d,t2,t));t3])
+ | TApl(f1,f2,t,TCase([a;b;c],[TFun(v1,ff1,t1);TFun(v2,ff2,t2);t3])) ->
+ TCase([a;b;f2],[TFun(v1,ff1,TApl(f1,f2,t,t1));
+ TFun(v2,ff2,TApl(f1,f2,t,t2));t3])
+ | TPar(f1,f2,TCase([a;b;c],[TFun(v1,ff1,t1);TFun(v2,ff2,t2);t3]),t) ->
+ TCase([a;b;FAnd(f1,f2)],[TFun(v1,ff1,TPar(f1,f2,t1,t));
+ TFun(v2,ff2,TPar(f1,f2,t2,t));t3])
+ | TPar(f1,f2,t,TCase([a;b;c],[TFun(v1,ff1,t1);TFun(v2,ff2,t2);t3])) ->
+ TCase([a;b;FAnd(f1,f2)],[TFun(v1,ff1,TPar(f1,f2,t,t1));
+ TFun(v2,ff2,TPar(f1,f2,t,t2));t3])
+ | TInl(f1,f2,TCase([a;b;c],[TFun(v1,ff1,t1);TFun(v2,ff2,t2);t3])) ->
+ TCase([a;b;FOr(f1,f2)],[TFun(v1,ff1,TInl(f1,f2,t1));
+ TFun(v2,ff2,TInl(f1,f2,t2));t3])
+ | TInr(f1,f2,TCase([a;b;c],[TFun(v1,ff1,t1);TFun(v2,ff2,t2);t3])) ->
+ TCase([a;b;FOr(f1,f2)],[TFun(v1,ff1,TInr(f1,f2,t1));
+ TFun(v2,ff2,TInr(f1,f2,t2));t3])
+ | TFst(f1,f2,TCase([a;b;c],[TFun(v1,ff1,t1);TFun(v2,ff2,t2);t3])) ->
+ TCase([a;b;f1],[TFun(v1,ff1,TFst(f1,f2,t1));
+ TFun(v2,ff2,TFst(f1,f2,t2));t3])
+ | TSnd(f1,f2,TCase([a;b;c],[TFun(v1,ff1,t1);TFun(v2,ff2,t2);t3])) ->
+ TCase([a;b;f2],[TFun(v1,ff1,TSnd(f1,f2,t1));
+ TFun(v2,ff2,TSnd(f1,f2,t2));t3])
+ | TZ(f,TCase([a;b;c],[TFun(v1,ff1,t1);TFun(v2,ff2,t2);t3])) ->
+ TCase([a;b;f],[TFun(v1,ff1,TZ(f,t1));
+ TFun(v2,ff2,TZ(f,t2));t3])
+ | TSum((TCase([a;b;c],[TFun(v1,ff1,t1);TFun(v2,ff2,t2);t3]) as tC1),
+ (TCase([a';b';c'],
+ [TFun(v1',ff1',t1');TFun(v2',ff2',t2');t3']) as tC2)) ->
+ if (iguales_f a a') & (iguales_f b b') then
+ TCase([a;b;c],[TFun(v1,ff1,TSum(t1,apl_t [v1',(TVar v1)] [] t1'));
+ TFun(v2,ff2,TSum(t2,apl_t [v2',(TVar v2)] [] t2'));
+ TSum(t3,t3')])
+ else if (esta_en_case [a;b;c] t1') or (esta_en_case [a;b;c] t2') then
+ TCase([a';b';c'],[TFun(v1',ff1',TSum(t1',tC1));
+ TFun(v2',ff2',TSum(t2',tC1));t3'])
+ else
+ TCase([a;b;c],[TFun(v1,ff1,TSum(t1,tC2));TFun(v2,ff2,TSum(t2,tC2));t3])
+ | TCase([_;_;f],[TFun(_,_,TZero _);TFun(_,_,TZero _);_]) -> TZero(f)
+ | TCase([a;b;f],[TFun(v1,f1,t1) as tt1;TFun(v2,f2,t2) as tt2;t]) ->
+ if iguales_t t1 t2 then t2
+ else
+ let (exi,var,ori) = busque_termino t lcase in
+ if exi then
+ if ori then apl_t [v1,TVar var][] t1
+ else apl_t [v1, TVar var] [] t2
+ else raise(NoAplica)
+ | TSum(t1,t2)->
+ if (iguales_t t1 t2) then t1
+ else raise (NoAplica)
+ | TPar(_,_,TFst(_,_,t1),TSnd(_,_,t2)) ->
+ if iguales_t t1 t2 then
+ t1
+ else raise(NoAplica)
+ | _ -> raise(NoAplica)
+
+(* Aplicacion de una regla sobre un termino, si no pudo aplicar retorna
+ NoAplica. Estrategia mas izquierdo, menos profundo *)
+
+let pr l = List.hd l
+
+let sn l = List.hd(List.tl l)
+
+let rec it_apl_listsistr lcase lacum siapl = function
+ | [] -> (lacum,siapl)
+ | x::y ->
+ let (xp,exi) =
+ try (apl_sistr lcase x,true) with NoAplica -> (x,false)
+ in
+ it_apl_listsistr lcase (lacum@[xp]) (exi or siapl) y
+
+and apl_listsistr lcase l = it_apl_listsistr lcase [] false l
+
+and apl_sistr_try lcase x =
+ try (apl_sistr lcase x,true) with NoAplica -> (x,false)
+
+and apl_sistr lcase a =
+ try
+ sistreg lcase a
+ with NoAplica ->
+ (match a with
+ | TApl(f1,f2,t1,t2) ->
+ let (lt,exi) = apl_listsistr lcase [t1;t2] in
+ if exi then TApl(f1,f2,pr lt,sn lt)
+ else raise(NoAplica)
+ | TFun(x,f,t) ->
+ let (lt,exi) = apl_listsistr lcase [t] in
+ if exi then TFun(x,f,pr lt)
+ else raise(NoAplica)
+ | TPar(f1,f2,t1,t2) ->
+ let (lt,exi) = apl_listsistr lcase [t1;t2] in
+ if exi then TPar(f1,f2,pr lt,sn lt)
+ else raise(NoAplica)
+ | TInl(f1,f2,t) ->
+ let (lt,exi) = apl_listsistr lcase [t] in
+ if exi then TInl(f1,f2,pr lt)
+ else raise(NoAplica)
+ | TInr(f1,f2,t) ->
+ let (lt,exi) = apl_listsistr lcase [t] in
+ if exi then TInr(f1,f2,pr lt)
+ else raise(NoAplica)
+ | TFst(f1,f2,t) ->
+ let (lt,exi) = apl_listsistr lcase [t] in
+ if exi then TFst(f1,f2,pr lt)
+ else raise(NoAplica)
+ | TSnd(f1,f2,t) ->
+ let (lt,exi) = apl_listsistr lcase [t] in
+ if exi then TSnd(f1,f2,pr lt)
+ else raise(NoAplica)
+ | TZ(f,t) ->
+ let (lt,exi) = apl_listsistr lcase [t] in
+ if exi then TZ(f,pr lt)
+ else raise(NoAplica)
+ | TSum(t1,t2) ->
+ let (lt,exi) = apl_listsistr lcase [t1;t2] in
+ if exi then TSum(pr lt,sn lt)
+ else raise(NoAplica)
+ | TCase([f1;f2;f3],[TFun(v1,ff1,t1);TFun(v2,ff2,t2);t3]) ->
+ let (t1',exi1) = apl_sistr_try ((t3,v1,true)::lcase) t1 in
+ let (t2',exi2) = apl_sistr_try ((t3,v2,false)::lcase) t2 in
+ let (t3',exi3) = apl_sistr_try lcase t3 in
+ if (exi1 or exi2 or exi3) then
+ TCase([f1;f2;f3],[TFun(v1,ff1,t1');
+ TFun(v2,ff2,t2');t3'])
+ else raise(NoAplica)
+ | _ -> raise(NoAplica))
+
+(* Indica si hay un zero en el termino *)
+let rec tiene_zero = function
+ | TApl(_,_,t,t1) -> tiene_zero(t) or tiene_zero(t1)
+ | TFun(_,_,t) -> tiene_zero(t)
+ | TPar(_,_,t,t1) -> tiene_zero(t) or tiene_zero(t1)
+ | TInl(_,_,t) -> tiene_zero(t)
+ | TInr(_,_,t) -> tiene_zero(t)
+ | TFst(_,_,t) -> tiene_zero(t)
+ | TSnd(_,_,t) -> tiene_zero(t)
+ | TCase(_,[t;t1;t2]) -> tiene_zero (t) or tiene_zero (t1) or
+ tiene_zero(t2)
+ | TZ(_,t) -> tiene_zero(t)
+ | TZero(f) -> true
+ | a -> false
+
+(* Elemento de la posicion p de una lista *)
+let rec lis_pos p = function
+ | [] -> raise(TacticFailure)
+ | x::y -> if (p=0) then x else lis_pos (p-1) y
+
+(* Genera una copia de una formula con reemplazo de los terminos de tipo
+ FLis por las formulas que aparecen en la posicion p'esima de las
+ listas respectivas *)
+let rec copia_f p = function
+ | FAnd(a,b) -> FAnd(copia_f p a,copia_f p b)
+ | FEqu(a,b) -> FEqu(copia_f p a,copia_f p b)
+ | FOr(a,b) -> FOr(copia_f p a,copia_f p b)
+ | FImp(a,b) -> FImp(copia_f p a,copia_f p b)
+ | FNot(a) -> FNot(copia_f p a)
+ | FLis lf -> lis_pos p lf
+ | a -> a
+
+(* Genera una copia de un termino con reemplazo de los terminos de tipo
+ Lista por los terminos que aparecen en la posicion p'esima de las listas
+ respectivas *)
+let rec copia_t sinplus p = function
+ | TApl(f,f1,t,t1) -> TApl(copia_f p f,copia_f p f1,
+ copia_t sinplus p t,copia_t sinplus p t1)
+ | TFun(x,f,t) -> TFun(x,copia_f p f,copia_t sinplus p t)
+ | TPar(f,f1,t,t1) -> TPar(copia_f p f,copia_f p f1,
+ copia_t sinplus p t,copia_t sinplus p t1)
+ | TInl(f,f1,t) -> TInl(copia_f p f,copia_f p f1,copia_t sinplus p t)
+ | TInr(f,f1,t) -> TInr(copia_f p f,copia_f p f1,copia_t sinplus p t)
+ | TFst(f,f1,t) -> TFst(copia_f p f,copia_f p f1,copia_t sinplus p t)
+ | TSnd(f,f1,t) -> TSnd(copia_f p f,copia_f p f1,copia_t sinplus p t)
+ | TLis lt -> lis_pos p lt
+ | TSum(t,t1) -> let s = copia_t sinplus p t in
+ let s1 = copia_t sinplus p t1 in
+ if sinplus then
+ if tiene_zero s then s1
+ else s
+ else TSum(s,s1)
+ | TCase(lf,lt) ->
+ TCase(List.map (copia_f p) lf,List.map (copia_t sinplus p) lt)
+ | TZ(f,t) -> TZ(copia_f p f,copia_t sinplus p t)
+ | TZero(f) -> TZero(copia_f p f)
+ | a -> a
+
+(* Reescribe un lambda termino con constructores TZero y TSum a un lambda
+ termino *)
+let rec normal t =
+ try normal(apl_sistr [] t) with NoAplica -> copia_t true 0 t
+
+(*-------------------- Procedimiento de decision --------------------------*)
+
+(* Indica que no debe buscar mas en el arbol *)
+let no_back rev = function
+ {arb=a;lisbut=l} -> (a <> Nil) & (l=[] or rev)
+
+(* Funcion que dice si un sequente es demostrable o no. Retorna
+ un arbol de demostracion del sequente, o vacio. *)
+let rec naive intu vp = function
+ (l,r) as s -> naive_s s intu (s,[]) vp sistema
+
+(* Dado un secuente s y un subsecuente (en el cual busca una formula
+ para aplicarle una regla), encuentra un elemento de demostracion.
+ Si intu es true genera subojetivos equivalentes al original en caso
+ de no encontrar la demostracion. Si es false, retorna el arbol Vacio*)
+
+and naive_s s intu seq_acum vp listareg =
+ (match escoja_regla s seq_acum listareg with
+ | RNil ->
+ if intu then
+ let obj = subobjetivo s vp in
+ let fapp = ter_subobjetivo vp (fst obj) (ante s) in
+ let subs_sub = subs_subobj fapp (snd obj) (suce s) in
+ consd (Cons(Nil,consa s vACIA subs_sub [],Nil))
+ [fst obj]
+ else consd Nil []
+ | RCons(subs,lreg,lanew,lrnew) ->
+ let reversible = !(subs.sReg).ssi or subs.sDel = [] in
+ ( match aplr_s subs with
+ | [] ->
+ consd(Cons(Nil,
+ consa s !(subs.sReg) subs.sDef subs.sTer,
+ Nil)) []
+ | [a] ->
+ let {arb=a1;lisbut=l1} as al = (naive intu vp a) in
+ if no_back reversible al then
+ consd (Cons(a1,
+ consa s !(subs.sReg) subs.sDef subs.sTer,
+ Nil)) l1
+ else if (not (reversible)) then
+ naive_s s intu (lrnew,lanew) vp lreg
+ else
+ consd Nil []
+ | a::(b::_) ->
+ let {arb=a1;lisbut=l1} as al1 = naive intu vp a in
+ let {arb=a2;lisbut=l2} as al2 = naive intu vp b in
+ if (no_back reversible al1) & (no_back reversible al2) then
+ consd (Cons(a1,
+ consa s !(subs.sReg) subs.sDef subs.sTer,
+ a2)) (l1@l2)
+ else if (not (reversible)) then
+ naive_s s intu (lrnew,lanew) vp lreg
+ else
+ consd Nil []))
+
+(* Crea nuevas substituciones para cada variable del sucedente *)
+let rec nuevas_subs t p = function
+ | [] -> []
+ | x::y -> (x,copia_t false p t) :: nuevas_subs t (p+1) y
+
+(* Busca todos lo Delta que aparecen en el lado izquierdo de la
+ sustitucion y lo reemplaza por las variables del sucedente del secuente *)
+let rec remplacedelta lisv = function
+ | [] -> []
+ | ("Delta",t)::y -> nuevas_subs t 0 lisv @ remplacedelta lisv y
+ | x::y -> x :: remplacedelta lisv y
+
+(* Calcula una lista de susbtituciones sobre las variables que aparecen al
+ en el sucedente del secuente de un arbol de demostracion. De tal forma
+ que al componerlas y aplicarlas se obtienen los lambda terminos que expresan
+ la demostracion*)
+let rec subs_t = function
+ | Nil -> []
+ | Cons(a,{seq=seq;sd=sd0;st=st0;reg=r},b) ->
+ let sd = if (!r.rendelta <> []) or (!r.vardelta) then
+ remplacedelta (lisvar (suce !seq)) sd0
+ else sd0 in
+ let st = if (!r.rendelta <> []) or (!r.vardelta) then
+ remplacedelta (lisvar (suce !seq)) st0
+ else st0 in
+ [sd] @ (subs_t a) @ [st] @ (subs_t b)
+
+(* Funcion que compone recursivamente una substitucion con una lista
+ de substituciones *)
+let rec componga_r s = function
+ | [] -> s
+ | x::y -> componga_r (comp_st x s) y
+
+(* Dado un arbol de demostracion de un secuente, calcula los lambda terminos
+ que expresan la demostracion *)
+let lterm = function
+ | Nil -> []
+ | (Cons(_,{seq=seq},_)) as a ->
+ List.map (function (x,y) -> (x,normal y)) (componga_r [] (subs_t a))
+
+(*--------------------- Interface con Coq ---------------------------------*)
+(*-- Convierte una formula cci a una formula notacion Tauto --*)
+
+let (tAUTOFAIL:tactic) = fun _ -> errorlabstrm "TAUTOFAIL"
+ [< 'sTR "Tauto failed.">]
+
+let is_imp_term t =
+ match t with
+ | DOP2(Prod,_,DLAM(_,b)) -> (not((dependent (Rel 1) b)))
+ | _ -> false
+
+(* Chet's code depends on the names of the logical constants. *)
+
+let tauto_of_cci_fmla gls cciterm =
+ let rec tradrec cciterm =
+ if matches gls cciterm and_pattern then
+ match dest_match gls cciterm and_pattern with
+ | [a;b] -> FAnd(tradrec a,tradrec b)
+ | _ -> assert false
+ else if matches gls cciterm or_pattern then
+ match dest_match gls cciterm or_pattern with
+ | [a;b] -> FOr(tradrec a,tradrec b)
+ | _ -> assert false
+ else if matches gls cciterm iff_pattern then
+ match dest_match gls cciterm iff_pattern with
+ | [a;b] -> FEqu(tradrec a,tradrec b)
+ | _ -> assert false
+ else if matches gls cciterm eq_pattern then
+ match dest_match gls cciterm eq_pattern with
+ | [a;b;c] -> FEq(FPred a,FPred b, FPred c)
+ | _ -> assert false
+ else if matches gls cciterm not_pattern then
+ match dest_match gls cciterm not_pattern with
+ | [a] -> FNot(tradrec a)
+ | _ -> assert false
+ else if matches gls cciterm false_pattern then
+ FFalse
+ else if matches gls cciterm true_pattern then
+ FTrue
+ else if is_imp_term cciterm then
+ match cciterm with
+ | DOP2(Prod,a,DLAM(_,b)) -> FImp(tradrec a,tradrec (Generic.pop b))
+ | _ -> assert false
+ else FPred cciterm
+ in
+ tradrec (whd_betaiota (pf_env gls) (project gls) cciterm)
+
+(*-- Retorna una lista de todas las variables proposicionales que
+ aparescan en una lista de formulasS --*)
+let rec lisvarprop = function
+ | [] -> []
+ | (_,((FPred x) as fx))::y -> fx::lisvarprop y
+ | _::y -> lisvarprop y
+
+(*-- Dado el ambiente COQ construye el lado izquierdo de un secuente
+ (hipotesis) --*)
+let rec constr_lseq gls = function
+ | ([],[]) -> []
+ | (idx::idy,hx::hy) ->
+ (match (pf_type_of gls hx) with
+ | DOP0 (Sort (Prop Null)) ->
+ (TVar(string_of_id idx),tauto_of_cci_fmla gls hx)
+ :: constr_lseq gls (idy,hy)
+ |_-> constr_lseq gls (idy,hy))
+ | _ -> []
+
+(*-- Dado un estado COQ construye el lado derecho de un secuente
+ (conclusion) --*)
+let constr_rseq gls but = [TVar(genvar()),
+ tauto_of_cci_fmla gls but]
+
+(*-- Calula la posicion de la lista de un elemento --*)
+let rec pos_lis x = function
+ | [] -> raise TacticFailure
+ | a::r -> if (x=a) then 1 else 1 + (pos_lis x r)
+
+(*-- Construye un termino constr dado una formula tauto --*)
+let rec cci_of_tauto_fml env =
+ let cAnd = global_reference CCI (id_of_string "and")
+ and cOr = global_reference CCI (id_of_string "or")
+ and cFalse = global_reference CCI (id_of_string "False")
+ and cTrue = global_reference CCI (id_of_string "True")
+ and cEq = global_reference CCI (id_of_string "eq") in
+ function
+ | FAnd(a,b) -> applistc cAnd
+ [cci_of_tauto_fml env a;cci_of_tauto_fml env b]
+ | FOr(a,b) -> applistc cOr
+ [cci_of_tauto_fml env a; cci_of_tauto_fml env b]
+ | FEq(a,b,c)-> applistc cEq
+ [cci_of_tauto_fml env a; cci_of_tauto_fml env b;
+ cci_of_tauto_fml env c]
+ | FImp(a,b) -> mkArrow (cci_of_tauto_fml env a) (cci_of_tauto_fml env b)
+ | FPred a -> a
+ | FFalse -> cFalse
+ | FTrue -> cTrue
+ | FLis lf -> raise TacticFailure
+ | FVar a -> raise TacticFailure
+ | FAto a -> raise TacticFailure
+ | FLisfor a -> raise TacticFailure
+ | _ -> anomaly "Tauto:cci_of_tauto_fml"
+
+let search env id =
+ try
+ (match lookup_id id (Environ.context env) with
+ | RELNAME (n,_) -> Rel n
+ | GLOBNAME _ -> VAR id)
+ with Not_found ->
+ global_reference CCI id
+
+(*-- Construye un termino constr de un termino tauto --*)
+let cci_of_tauto_term env t =
+ let cFalse_ind = global_reference CCI (id_of_string "False_ind")
+ and cconj = global_reference CCI (id_of_string "conj")
+ and cor_ind = global_reference CCI (id_of_string "or_ind")
+ and cor_introl = global_reference CCI (id_of_string "or_introl")
+ and cor_intror = global_reference CCI (id_of_string "or_intror")
+ and cproj1 = global_reference CCI (id_of_string "proj1")
+ and cproj2 = global_reference CCI (id_of_string "proj2")
+ and crefl = global_reference CCI (id_of_string "refl_equal")
+ and csim = global_reference CCI (id_of_string "sym_eq")
+ and ci = global_reference CCI (id_of_string "I")
+ in
+ let rec ter_constr l = function
+ | TVar x -> (try (try Rel(pos_lis x l)
+ with TacticFailure ->
+ search env (id_of_string x))
+ with _ -> raise TacticFailure)
+ | TZ(f,x) -> applistc cFalse_ind
+ [cci_of_tauto_fml env f;ter_constr l x]
+ | TSum(t1,t2) -> ter_constr l t1
+ | TExi (x) -> (try search env (id_of_string x) with
+ _ -> raise TacticFailure)
+ | TApl(_,_,t1,t2) -> applistc (ter_constr l t1) [ter_constr l t2]
+ | TPar(f1,f2,t1,t2) -> applistc cconj
+ [cci_of_tauto_fml env f1;cci_of_tauto_fml env f2;
+ ter_constr l t1;ter_constr l t2]
+ | TInl(f1,f2,t) -> applistc cor_introl
+ [cci_of_tauto_fml env f1;cci_of_tauto_fml env f2;
+ ter_constr l t]
+ | TInr(f1,f2,t) -> applistc cor_intror
+ [cci_of_tauto_fml env f1;cci_of_tauto_fml env f2;
+ ter_constr l t]
+ | TFst(f1,f2,t) -> applistc cproj1
+ [cci_of_tauto_fml env f1;cci_of_tauto_fml env f2;
+ ter_constr l t]
+ | TSnd(f1,f2,t) -> applistc cproj2
+ [cci_of_tauto_fml env f1;cci_of_tauto_fml env f2;
+ ter_constr l t]
+ | TRefl(f1,f2) -> applistc crefl
+ [cci_of_tauto_fml env f1;cci_of_tauto_fml env f2]
+ | TSim(f1,f2,f3,t) -> applistc csim
+ [cci_of_tauto_fml env f1;cci_of_tauto_fml env f2;
+ cci_of_tauto_fml env f3;ter_constr l t]
+ | TCase(lf,lt) -> applistc cor_ind
+ ((List.map (cci_of_tauto_fml env) lf)@
+ (List.map (ter_constr l) lt))
+ | TFun(n,f,t) ->
+ Environ.lambda_name env
+ (Name(id_of_string n ), cci_of_tauto_fml env f,ter_constr (n::l) t)
+ | TTrue -> ci
+ | TLis _ -> raise TacticFailure
+ | TLister _ -> raise TacticFailure
+ | TZero _ -> raise TacticFailure
+ in
+ ter_constr [] t
+
+let cutUsing id t = (tclTHENS (Tactics.cut t) ([intro_using id;tclIDTAC]))
+
+let cut_in_parallelUsing idlist l =
+ let rec prec l_0 = function
+ | [] -> tclIDTAC
+ | h::t ->
+ (tclTHENS (cutUsing (id_of_string (List.hd l_0)) h)
+ ([prec (List.tl l_0) t;tclIDTAC]))
+ in
+ prec (List.rev idlist) (List.rev l)
+
+let exacto tt gls =
+ match (try cci_of_tauto_term (pf_env gls) tt with
+ _ -> (DOP0 Prod)) with (* Efectivamente, es cualquier cosa!! *)
+ | (DOP0 Prod) -> tAUTOFAIL gls (* Esto confirma el comentario anterior *)
+ | t -> (exact t) gls
+
+let subbuts l hyp = cut_in_parallelUsing
+ (lisvar l)
+ (List.map (cci_of_tauto_fml (gLOB hyp)) (lisfor l))
+
+let t_exacto = ref (TVar "#")
+
+let tautoOR ti gls =
+ let hyp = pf_untyped_hyps gls in
+ let thyp = pf_hyps gls in
+ hipvar := ids_of_sign hyp;
+ let but = pf_concl gls in
+ let seq = (constr_lseq gls (ids_of_sign hyp,vals_of_sign hyp),
+ constr_rseq gls but) in
+ let vp = lisvarprop (ante seq) in
+ match naive ti vp seq with
+ | {arb=Nil} ->
+ tAUTOFAIL gls
+ | {arb=arb;lisbut=l} ->
+ let se = apl ([],[],[]) (lterm arb) [] seq in
+ let tt = fst(List.hd(suce se)) in
+ (t_exacto := tt;
+ subbuts l thyp gls)
+
+let exact_Idtac = function
+ | 0 -> exacto (!t_exacto)
+ | _ -> tclIDTAC
+
+let tautoOR_0 gl =
+ tclORELSE
+ (tclTHEN_i (tautoOR false) exact_Idtac 0)
+ tAUTOFAIL gl
+
+let intuitionOR =
+ tclTRY (tclTHEN
+ (tclTHEN_i (tautoOR true) exact_Idtac 0)
+ default_full_auto)
+
+(*--- Mixed code Chet-Cesar ---*)
+
+let rec prove tauto_intu g =
+ (tclORELSE (tryAllHyps (clauseTacThen
+ (compose dyck_hypothesis out_some)
+ (prove tauto_intu)))
+ (tclORELSE (tryAllHyps (clauseTacThen
+ (compose dyck_absurdity_elim out_some)
+ (prove tauto_intu)))
+ (tclORELSE (tryAllHyps (clauseTacThen
+ (compose dyck_and_elim out_some) (prove tauto_intu)))
+ (tclORELSE (tryAllHyps (flush stdout;clauseTacThen
+ (compose dyck_atomic_imply_elim out_some)
+ (prove tauto_intu)))
+ (tclORELSE (tryAllHyps (clauseTacThen
+ (compose dyck_and_imply_elim out_some)
+ (prove tauto_intu)))
+ (tclORELSE (tryAllHyps (clauseTacThen
+ (compose dyck_or_imply_elim out_some)
+ (prove tauto_intu)))
+ (tclORELSE (tclTHEN dyck_and_intro (prove tauto_intu))
+ (tclORELSE (tclTHEN dyck_imply_intro (prove tauto_intu))
+ (tclORELSE (tryAllHyps (flush stdout;clauseTacThen
+ (compose dyck_or_elim out_some) (prove tauto_intu)))
+ (tclORELSE (tryAllHyps (clauseTacThen (* 28/5/99, ajout par HH *)
+ (compose dyck_imply_imply_elim out_some)
+ (prove tauto_intu)))
+ tauto_intu)))))))))) g
+
+let tauto gls =
+ let strToOccs x = ([],Nametab.sp_of_id CCI (id_of_string x)) in
+ (tclTHEN (onAllClausesLR
+ (unfold_option [strToOccs "not";strToOccs "iff"]))
+ (prove tautoOR_0)) gls
+
+let intuition gls =
+ let strToOccs x = ([],Nametab.sp_of_id CCI (id_of_string x)) in
+ (tclTHEN
+ ((tclTHEN (onAllClausesLR
+ (unfold_option [strToOccs "not";strToOccs "iff"]))
+ (prove intuitionOR))) intros) gls
+
+let tauto_tac = hide_atomic_tactic "Tauto" tauto
+
+let intuition_tac = hide_atomic_tactic "Intuition" intuition
diff --git a/tactics/tauto.mli b/tactics/tauto.mli
new file mode 100644
index 000000000..27bd8ee43
--- /dev/null
+++ b/tactics/tauto.mli
@@ -0,0 +1,127 @@
+
+(* $Id$ *)
+
+(* Mars 1993 *)
+(* Autor: Cesar A. Munnoz H *)
+
+open Tacmach
+open Term
+
+(* Prototipo *)
+(* Estructuras de Datos *)
+
+type formula =
+ | FVar of string
+ | FAnd of formula*formula
+ | FOr of formula*formula
+ | FImp of formula*formula
+ | FEqu of formula*formula
+ | FNot of formula
+ | FEq of formula*formula*formula
+ | FPred of constr (* Predicado proposicional *)
+ | FFalse
+ | FTrue
+ (* La siguiente no puede aparecer en una formula de entrada *)
+ (* Representa una formula atomica cuando aparece en un principal de una
+ regla *)
+ | FLis of formula list (* Lista de formulas *)
+ | FAto of string (* Formula atomica *)
+ | FLisfor of string (* Variable para una lista de formulas *)
+ (* En el antecedente se llama GAMA,
+ en el sucedente DELTA *)
+
+(* Terminos en calculo lambda *)
+type termino =
+ | TVar of string
+ | TApl of formula*formula*termino*termino
+ | TFun of string*formula*termino
+ | TPar of formula*formula*termino*termino
+ | TInl of formula*formula*termino
+ | TInr of formula*formula*termino
+ | TFst of formula*formula*termino
+ | TSnd of formula*formula*termino
+ | TCase of formula list * termino list
+ | TZ of formula * termino
+ | TExi of string
+ | TRefl of formula * formula (*Reflexividad de la igualdad *)
+ | TSim of formula * formula * formula * termino
+ (*Simetria de la igualdad *)
+ | TTrue
+ (* Los siguientes terminos se usan solamente en las sustituciones *)
+ | TSum of termino*termino (* Suma de terminos *)
+ | TLis of termino list (* Lista de terminos *)
+ | TLister of string (* Variable para una lista de terminos *)
+ (* En el antecendete se llama Gama,
+ en el sucedente Delta *)
+ | TZero of formula (* Milagro *)
+
+(* Es una formula asociada con un termino del calculo lambda, o los
+ multiconjuntos Gama y Delta *)
+type formulaT = termino*formula
+
+(* La primera componente es el antecedente, la segunda es sucedente *)
+type sequente = formulaT list * formulaT list
+
+(* Substitucion de variable por una formula *)
+type subsF = (string*formula) list
+
+(* Substitucion de variable por un lambda termino *)
+type subsT = (string*termino) list
+
+type regla = {
+ tip: string; (* Tipo de la formula principal *)
+ heu: bool; (* Si es una regla heuristica o no *)
+ ant: bool; (* Si principal es antecedente o sucedente *)
+ pri: formulaT;(* Formula principal de la regla *)
+ pre: sequente list; (* Premisas de la regla *)
+ res: sequente;(* Restricciones para la aplicacion de una regla*)
+ def: subsT; (* Definicion de los terminos del lado derecho *)
+ sub: subsT; (* Substitucion que se aplica al lado derecho de la
+ conclusion para obetener el lambda termino *)
+ ren: string list; (* Variables que se deben renombrar *)
+ vardelta:bool; (* Si se usa la variable proposicional DELTA *)
+ ssi:bool; (* Si la regla es reversible o no *)
+ rendelta: string list} (* Renombramientos de delta *)
+ (* Note que si Res = A |- B, entonces la conclusion de la regla es
+ A,Gama,Pri' |- B, Pri'',Delta
+ Si ant = true Pri'= Pri
+ Si ant =false Pri''=Pri*)
+
+(* Substitucion Formula Termino para aplicar una regla *)
+type sFT = {
+ sReg : regla ref; (*Apuntador a la regla *)
+ sFor : subsF; (*Substitucion de Formulas *)
+ sGam : formulaT list; (* Lista de formulas de Gamma *)
+ sDel : formulaT list; (* Lista de formulas de Delta *)
+ sRen : (string*subsT) list; (* Renombramientos de variables *)
+ sTer : subsT; (* Susbstitucion de terminos *)
+ sDef : subsT } (* Definicion de terminos *)
+
+type subsFT = SNil | SCons of sFT
+
+type reglaSub = RNil | RCons of (sFT*regla list*formulaT list*sequente)
+
+(* De un arbol de demostracion *)
+type nodo = {
+ seq: sequente ref; (* Sequente que se resuelve *)
+ reg: regla ref; (* Regla usada para resolver *)
+ sd: subsT; (* Substitucion que define los lambda terminos *)
+ st: subsT } (* Substitucion que calcula el lambda termino *)
+
+(* Arbol de demostracion *)
+type arbol = Nil | Cons of arbol * nodo * arbol
+
+(* Demostracion *)
+(* Si el secuente es valido Arb es un arbol de demostracion y Lisbut
+ es vacio, sino Lisbut es un contexto en el cual Arb es valido *)
+type demostracion = { arb : arbol; lisbut : formulaT list }
+
+(* Definicion de excepcion para rescribir terminos *)
+exception NoAplica
+exception TacticFailure
+
+val tauto_tac : tactic
+val intuition : tactic
+val intuition_tac : tactic
+val tauto : tactic
+