aboutsummaryrefslogtreecommitdiffhomepage
diff options
context:
space:
mode:
-rw-r--r--kernel/uGraph.ml1264
-rw-r--r--test-suite/Makefile2
2 files changed, 652 insertions, 614 deletions
diff --git a/kernel/uGraph.ml b/kernel/uGraph.ml
index ee4231b1f..9e8ffbc7f 100644
--- a/kernel/uGraph.ml
+++ b/kernel/uGraph.ml
@@ -18,67 +18,73 @@ open Univ
(* Support for universe polymorphism by MS [2014] *)
(* Revisions by Bruno Barras, Hugo Herbelin, Pierre Letouzey, Matthieu Sozeau,
- Pierre-Marie Pédrot *)
+ Pierre-Marie Pédrot, Jacques-Henri Jourdan *)
let error_inconsistency o u v (p:explanation option) =
raise (UniverseInconsistency (o,Universe.make u,Universe.make v,p))
-type status = Unset | SetLe | SetLt
+(* Universes are stratified by a partial ordering $\le$.
+ Let $\~{}$ be the associated equivalence. We also have a strict ordering
+ $<$ between equivalence classes, and we maintain that $<$ is acyclic,
+ and contained in $\le$ in the sense that $[U]<[V]$ implies $U\le V$.
+
+ At every moment, we have a finite number of universes, and we
+ maintain the ordering in the presence of assertions $U<V$ and $U\le V$.
+
+ The equivalence $\~{}$ is represented by a tree structure, as in the
+ union-find algorithm. The assertions $<$ and $\le$ are represented by
+ adjacency lists.
+
+ We use the algorithm described in the paper:
+
+ Bender, M. A., Fineman, J. T., Gilbert, S., & Tarjan, R. E. (2011). A
+ new approach to incremental cycle detection and related
+ problems. arXiv preprint arXiv:1112.0784.
+
+ *)
+
+open Universe
+
+module UMap = LMap
+
+type status = NoMark | Visited | WeakVisited | ToMerge
(* Comparison on this type is pointer equality *)
-type canonical_arc =
+type canonical_node =
{ univ: Level.t;
- lt: Level.t list;
- le: Level.t list;
+ ltle: bool UMap.t; (* true: strict (lt) constraint.
+ false: weak (le) constraint. *)
+ gtge: LSet.t;
rank : int;
- mutable status : status;
- (** Guaranteed to be unset out of the [compare_neq] functions. It is used
- to do an imperative traversal of the graph, ensuring a O(1) check that
- a node has already been visited. Quite performance critical indeed. *)
+ klvl: int;
+ ilvl: int;
+ mutable status: status
}
-let arc_is_le arc = match arc.status with
-| Unset -> false
-| SetLe | SetLt -> true
-
-let arc_is_lt arc = match arc.status with
-| Unset | SetLe -> false
-| SetLt -> true
-
-let terminal u = {univ=u; lt=[]; le=[]; rank=0; status = Unset}
-
-module UMap :
-sig
- type key = Level.t
- type +'a t
- val empty : 'a t
- val add : key -> 'a -> 'a t -> 'a t
- val find : key -> 'a t -> 'a
- val equal : ('a -> 'a -> bool) -> 'a t -> 'a t -> bool
- val fold : (key -> 'a -> 'b -> 'b) -> 'a t -> 'b -> 'b
- val iter : (key -> 'a -> unit) -> 'a t -> unit
- val mapi : (key -> 'a -> 'b) -> 'a t -> 'b t
-end = HMap.Make(Level)
+let big_rank = 1000000
(* A Level.t is either an alias for another one, or a canonical one,
for which we know the universes that are above *)
type univ_entry =
- Canonical of canonical_arc
+ Canonical of canonical_node
| Equiv of Level.t
-type universes = univ_entry UMap.t
+type universes =
+ { entries : univ_entry UMap.t;
+ index : int;
+ n_nodes : int; n_edges : int }
type t = universes
(** Used to cleanup universes if a traversal function is interrupted before it
has the opportunity to do it itself. *)
let unsafe_cleanup_universes g =
- let iter _ arc = match arc with
+ let iter _ n = match n with
| Equiv _ -> ()
- | Canonical arc -> arc.status <- Unset
+ | Canonical n -> n.status <- NoMark
in
- UMap.iter iter g
+ UMap.iter iter g.entries
let rec cleanup_universes g =
try unsafe_cleanup_universes g
@@ -89,30 +95,43 @@ let rec cleanup_universes g =
succeed. *)
cleanup_universes g; raise e
-let enter_equiv_arc u v g =
- UMap.add u (Equiv v) g
-
-let enter_arc ca g =
- UMap.add ca.univ (Canonical ca) g
-
(* Every Level.t has a unique canonical arc representative *)
-(** The graph always contains nodes for Prop and Set. *)
-
-let terminal_lt u v =
- {(terminal u) with lt=[v]}
-
-let empty_universes =
- let g = enter_arc (terminal Level.set) UMap.empty in
- let g = enter_arc (terminal_lt Level.prop Level.set) g in
- g
-
-(* repr : universes -> Level.t -> canonical_arc *)
+(* Low-level function : makes u an alias for v.
+ Does not removes edges from n_edges, but decrements n_nodes.
+ u should be entered as canonical before. *)
+let enter_equiv g u v =
+ { entries =
+ UMap.modify u (fun _ a ->
+ match a with
+ | Canonical n ->
+ n.status <- NoMark;
+ Equiv v
+ | _ -> assert false) g.entries;
+ index = g.index;
+ n_nodes = g.n_nodes - 1;
+ n_edges = g.n_edges }
+
+(* Low-level function : changes data associated with a canonical node.
+ Resets the mutable fields in the old record, in order to avoid breaking
+ invariants for other users of this record.
+ n.univ should already been inserted as a canonical node. *)
+let change_node g n =
+ { g with entries =
+ UMap.modify n.univ
+ (fun _ a ->
+ match a with
+ | Canonical n' ->
+ n'.status <- NoMark;
+ Canonical n
+ | _ -> assert false)
+ g.entries }
+
+(* repr : universes -> Level.t -> canonical_node *)
(* canonical representative : we follow the Equiv links *)
-
let rec repr g u =
let a =
- try UMap.find u g
+ try UMap.find u g.entries
with Not_found -> anomaly ~label:"Univ.repr"
(str"Universe " ++ Level.pr u ++ str" undefined")
in
@@ -127,272 +146,474 @@ let is_prop_arc u = Level.is_prop u.univ
exception AlreadyDeclared
-let add_universe vlev strict g =
- try
- let _arcv = UMap.find vlev g in
- raise AlreadyDeclared
- with Not_found ->
- let v = terminal vlev in
- let arc =
- let arc = get_set_arc g in
- if strict then
- { arc with lt=vlev::arc.lt}
- else
- { arc with le=vlev::arc.le}
- in
- let g = enter_arc arc g in
- enter_arc v g
-
-(* reprleq : canonical_arc -> canonical_arc list *)
-(* All canonical arcv such that arcu<=arcv with arcv#arcu *)
-let reprleq g arcu =
- let rec searchrec w = function
- | [] -> w
- | v :: vl ->
- let arcv = repr g v in
- if List.memq arcv w || arcu==arcv then
- searchrec w vl
- else
- searchrec (arcv :: w) vl
+(* Reindexes the given universe, using the next available index. *)
+let use_index g u =
+ let u = repr g u in
+ let g = change_node g { u with ilvl = g.index } in
+ assert (g.index > min_int);
+ { g with index = g.index - 1 }
+
+(* [safe_repr] is like [repr] but if the graph doesn't contain the
+ searched universe, we add it. *)
+let rec safe_repr g u =
+ let rec safe_repr_rec entries u =
+ match UMap.find u entries with
+ | Equiv v -> safe_repr_rec entries v
+ | Canonical arc -> arc
in
- searchrec [] arcu.le
-
-
-(* between : Level.t -> canonical_arc -> canonical_arc list *)
-(* between u v = { w | u<=w<=v, w canonical } *)
-(* between is the most costly operation *)
-
-let between g arcu arcv =
- (* good are all w | u <= w <= v *)
- (* bad are all w | u <= w ~<= v *)
- (* find good and bad nodes in {w | u <= w} *)
- (* explore b u = (b or "u is good") *)
- let rec explore ((good, bad, b) as input) arcu =
- if List.memq arcu good then
- (good, bad, true) (* b or true *)
- else if List.memq arcu bad then
- input (* (good, bad, b or false) *)
+ try g, safe_repr_rec g.entries u
+ with Not_found ->
+ let can =
+ { univ = u;
+ ltle = UMap.empty; gtge = LSet.empty;
+ rank = if Level.is_small u then big_rank else 0;
+ klvl = 0; ilvl = 0;
+ status = NoMark }
+ in
+ let g = { g with
+ entries = UMap.add u (Canonical can) g.entries;
+ n_nodes = g.n_nodes + 1 }
+ in
+ let g = use_index g u in
+ g, repr g u
+
+(* Returns 1 if u is higher than v in topological order.
+ -1 lower
+ 0 if u = v *)
+let topo_compare u v =
+ if u.klvl > v.klvl then 1
+ else if u.klvl < v.klvl then -1
+ else if u.ilvl > v.ilvl then 1
+ else if u.ilvl < v.ilvl then -1
+ else (assert (u==v); 0)
+
+(* Checks most of the invariants of the graph. For debugging purposes. *)
+let check_universes_invariants g =
+ let n_edges = ref 0 in
+ let n_nodes = ref 0 in
+ UMap.iter (fun l u ->
+ match u with
+ | Canonical u ->
+ UMap.iter (fun v strict ->
+ incr n_edges;
+ let v = repr g v in
+ assert (topo_compare u v = -1);
+ if u.klvl = v.klvl then
+ assert (LSet.mem u.univ v.gtge ||
+ LSet.exists (fun l -> u == repr g l) v.gtge))
+ u.ltle;
+ LSet.iter (fun v ->
+ let v = repr g v in
+ assert (v.klvl = u.klvl &&
+ (UMap.mem u.univ v.ltle ||
+ UMap.exists (fun l _ -> u == repr g l) v.ltle))
+ ) u.gtge;
+ assert (u.status = NoMark);
+ assert (Level.equal l u.univ);
+ assert (u.ilvl > g.index);
+ assert (not (UMap.mem u.univ u.ltle));
+ incr n_nodes
+ | Equiv _ -> assert (not (Level.is_small l)))
+ g.entries;
+ assert (!n_edges = g.n_edges);
+ assert (!n_nodes = g.n_nodes)
+
+let clean_ltle g ltle =
+ UMap.fold (fun u strict acc ->
+ let uu = (repr g u).univ in
+ if Level.equal uu u then acc
+ else (
+ let acc = UMap.remove u (fst acc) in
+ if not strict && UMap.mem uu acc then (acc, true)
+ else (UMap.add uu strict acc, true)))
+ ltle (ltle, false)
+
+let clean_gtge g gtge =
+ LSet.fold (fun u acc ->
+ let uu = (repr g u).univ in
+ if Level.equal uu u then acc
+ else LSet.add uu (LSet.remove u (fst acc)), true)
+ gtge (gtge, false)
+
+(* [get_ltle] and [get_gtge] return ltle and gtge arcs.
+ Moreover, if one of these lists is dirty (e.g. points to a
+ non-canonical node), these functions clean this node in the
+ graph by removing some duplicate edges *)
+let get_ltle g u =
+ let ltle, chgt_ltle = clean_ltle g u.ltle in
+ if not chgt_ltle then u.ltle, u, g
+ else
+ let sz = UMap.cardinal u.ltle in
+ let sz2 = UMap.cardinal ltle in
+ let u = { u with ltle } in
+ let g = change_node g u in
+ let g = { g with n_edges = g.n_edges + sz2 - sz } in
+ u.ltle, u, g
+
+let get_gtge g u =
+ let gtge, chgt_gtge = clean_gtge g u.gtge in
+ if not chgt_gtge then u.gtge, u, g
+ else
+ let u = { u with gtge } in
+ let g = change_node g u in
+ u.gtge, u, g
+
+(* [revert_graph] rollbacks the changes made to mutable fields in
+ nodes in the graph.
+ [to_revert] contains the touched nodes. *)
+let revert_graph to_revert g =
+ List.iter (fun t ->
+ match UMap.find t g.entries with
+ | Equiv _ -> ()
+ | Canonical t ->
+ t.status <- NoMark) to_revert
+
+exception AbortBackward of universes
+exception CycleDetected
+
+(* Implementation of the algorithm described in § 5.1 of the following paper:
+
+ Bender, M. A., Fineman, J. T., Gilbert, S., & Tarjan, R. E. (2011). A
+ new approach to incremental cycle detection and related
+ problems. arXiv preprint arXiv:1112.0784. *)
+
+(* [delta] is the timeout for backward search. It might be
+ usefull to tune a multiplicative constant. *)
+let get_delta g =
+ int_of_float
+ (min (float_of_int g.n_edges ** 0.5)
+ (float_of_int g.n_nodes ** (2./.3.)))
+
+let rec backward_traverse to_revert b_traversed count g x =
+ let x = repr g x in
+ let count = count - 1 in
+ if count < 0 then begin
+ revert_graph to_revert g;
+ raise (AbortBackward g)
+ end;
+ if x.status = NoMark then begin
+ x.status <- Visited;
+ let to_revert = x.univ::to_revert in
+ let gtge, x, g = get_gtge g x in
+ let to_revert, b_traversed, count, g =
+ LSet.fold (fun y (to_revert, b_traversed, count, g) ->
+ backward_traverse to_revert b_traversed count g y)
+ gtge (to_revert, b_traversed, count, g)
+ in
+ to_revert, x.univ::b_traversed, count, g
+ end
+ else to_revert, b_traversed, count, g
+
+let rec forward_traverse f_traversed g v_klvl x y =
+ let y = repr g y in
+ if y.klvl < v_klvl then begin
+ let y = { y with klvl = v_klvl;
+ gtge = if x == y then LSet.empty
+ else LSet.singleton x.univ }
+ in
+ let g = change_node g y in
+ let ltle, y, g = get_ltle g y in
+ let f_traversed, g =
+ UMap.fold (fun z _ (f_traversed, g) ->
+ forward_traverse f_traversed g v_klvl y z)
+ ltle (f_traversed, g)
+ in
+ y.univ::f_traversed, g
+ end else if y.klvl = v_klvl && x != y then
+ let g = change_node g
+ { y with gtge = LSet.add x.univ y.gtge } in
+ f_traversed, g
+ else f_traversed, g
+
+let rec find_to_merge to_revert g x v =
+ let x = repr g x in
+ match x.status with
+ | Visited -> false, to_revert | ToMerge -> true, to_revert
+ | NoMark ->
+ let to_revert = x::to_revert in
+ if Level.equal x.univ v then
+ begin x.status <- ToMerge; true, to_revert end
else
- let leq = reprleq g arcu in
- (* is some universe >= u good ? *)
- let good, bad, b_leq =
- List.fold_left explore (good, bad, false) leq
- in
- if b_leq then
- arcu::good, bad, true (* b or true *)
- else
- good, arcu::bad, b (* b or false *)
+ begin
+ let merge, to_revert = LSet.fold
+ (fun y (merge, to_revert) ->
+ let merge', to_revert = find_to_merge to_revert g y v in
+ merge' || merge, to_revert) x.gtge (false, to_revert)
+ in
+ x.status <- if merge then ToMerge else Visited;
+ merge, to_revert
+ end
+ | _ -> assert false
+
+let get_new_edges g to_merge =
+ (* Computing edge sets. *)
+ let to_merge_lvl =
+ List.fold_left (fun acc u -> UMap.add u.univ u acc)
+ UMap.empty to_merge
+ in
+ let ltle =
+ UMap.fold (fun _ n acc ->
+ UMap.merge (fun _ strict1 strict2 ->
+ match strict1, strict2 with
+ | Some true, _ | _, Some true -> Some true
+ | _, _ -> Some false)
+ acc n.ltle)
+ to_merge_lvl UMap.empty
in
- let good,_,_ = explore ([arcv],[],false) arcu in
- good
-(* We assume compare(u,v) = LE with v canonical (see compare below).
- In this case List.hd(between g u v) = repr u
- Otherwise, between g u v = []
- *)
-
-(** [fast_compare_neq] : is [arcv] in the transitive upward closure of [arcu] ?
-
- In [strict] mode, we fully distinguish between LE and LT, while in
- non-strict mode, we simply answer LE for both situations.
-
- If [arcv] is encountered in a LT part, we could directly answer
- without visiting unneeded parts of this transitive closure.
- In [strict] mode, if [arcv] is encountered in a LE part, we could only
- change the default answer (1st arg [c]) from NLE to LE, since a strict
- constraint may appear later. During the recursive traversal,
- [lt_done] and [le_done] are universes we have already visited,
- they do not contain [arcv]. The 4rd arg is [(lt_todo,le_todo)],
- two lists of universes not yet considered, known to be above [arcu],
- strictly or not.
-
- We use depth-first search, but the presence of [arcv] in [new_lt]
- is checked as soon as possible : this seems to be slightly faster
- on a test.
-
- We do the traversal imperatively, setting the [status] flag on visited nodes.
- This ensures O(1) check, but it also requires unsetting the flag when leaving
- the function. Some special care has to be taken in order to ensure we do not
- recover a messed up graph at the end. This occurs in particular when the
- traversal raises an exception. Even though the code below is exception-free,
- OCaml may still raise random exceptions, essentially fatal exceptions or
- signal handlers. Therefore we ensure the cleanup by a catch-all clause. Note
- also that the use of an imperative solution does make this function
- thread-unsafe. For now we do not check universes in different threads, but if
- ever this is to be done, we would need some lock somewhere.
+ let ltle, _ = clean_ltle g ltle in
+ let ltle =
+ UMap.merge (fun _ a strict ->
+ match a, strict with
+ | Some _, Some true ->
+ (* There is a lt edge inside the new component. This is a
+ "bad cycle". *)
+ raise CycleDetected
+ | Some _, Some false -> None
+ | _, _ -> strict
+ ) to_merge_lvl ltle
+ in
+ let gtge =
+ UMap.fold (fun _ n acc -> LSet.union acc n.gtge)
+ to_merge_lvl LSet.empty
+ in
+ let gtge, _ = clean_gtge g gtge in
+ let gtge = LSet.diff gtge (UMap.domain to_merge_lvl) in
+ (ltle, gtge)
-*)
-let get_explanation strict g arcu arcv =
- (* [c] characterizes whether (and how) arcv has already been related
- to arcu among the lt_done,le_done universe *)
- let rec cmp c to_revert lt_todo le_todo = match lt_todo, le_todo with
- | [],[] -> (to_revert, c)
- | (arc,p)::lt_todo, le_todo ->
- if arc_is_lt arc then
- cmp c to_revert lt_todo le_todo
- else
- let rec find lt_todo lt le = match le with
- | [] ->
- begin match lt with
- | [] ->
- let () = arc.status <- SetLt in
- cmp c (arc :: to_revert) lt_todo le_todo
- | u :: lt ->
- let arc = repr g u in
- let p = (Lt, Universe.make u) :: p in
- if arc == arcv then
- if strict then (to_revert, p) else (to_revert, p)
- else find ((arc, p) :: lt_todo) lt le
- end
- | u :: le ->
- let arc = repr g u in
- let p = (Le, Universe.make u) :: p in
- if arc == arcv then
- if strict then (to_revert, p) else (to_revert, p)
- else find ((arc, p) :: lt_todo) lt le
- in
- find lt_todo arc.lt arc.le
- | [], (arc,p)::le_todo ->
- if arc == arcv then
- (* No need to continue inspecting universes above arc:
- if arcv is strictly above arc, then we would have a cycle.
- But we cannot answer LE yet, a stronger constraint may
- come later from [le_todo]. *)
- if strict then cmp p to_revert [] le_todo else (to_revert, p)
- else
- if arc_is_le arc then
- cmp c to_revert [] le_todo
- else
- let rec find lt_todo lt = match lt with
- | [] ->
- let fold accu u =
- let p = (Le, Universe.make u) :: p in
- let node = (repr g u, p) in
- node :: accu
- in
- let le_new = List.fold_left fold le_todo arc.le in
- let () = arc.status <- SetLe in
- cmp c (arc :: to_revert) lt_todo le_new
- | u :: lt ->
- let arc = repr g u in
- let p = (Lt, Universe.make u) :: p in
- if arc == arcv then
- if strict then (to_revert, p) else (to_revert, p)
- else find ((arc, p) :: lt_todo) lt
+let reorder g u v =
+ (* STEP 1: backward search in the k-level of u. *)
+ let delta = get_delta g in
+
+ (* [v_klvl] is the chosen future level for u, v and all
+ traversed nodes. *)
+ let b_traversed, v_klvl, g =
+ try
+ let to_revert, b_traversed, _, g = backward_traverse [] [] delta g u in
+ revert_graph to_revert g;
+ let v_klvl = (repr g u).klvl in
+ b_traversed, v_klvl, g
+ with AbortBackward g ->
+ (* Backward search was too long, use the next k-level. *)
+ let v_klvl = (repr g u).klvl + 1 in
+ [], v_klvl, g
+ in
+ let f_traversed, g =
+ (* STEP 2: forward search. Contrary to what is described in
+ the paper, we do not test whether v_klvl = u.klvl nor we assign
+ v_klvl to v.klvl. Indeed, the first call to forward_traverse
+ will do all that. *)
+ forward_traverse [] g v_klvl (repr g v) v
+ in
+
+ (* STEP 3: merge nodes if needed. *)
+ let to_merge, b_reindex, f_reindex =
+ if (repr g u).klvl = v_klvl then
+ begin
+ let merge, to_revert = find_to_merge [] g u v in
+ let r =
+ if merge then
+ List.filter (fun u -> u.status = ToMerge) to_revert,
+ List.filter (fun u -> (repr g u).status <> ToMerge) b_traversed,
+ List.filter (fun u -> (repr g u).status <> ToMerge) f_traversed
+ else [], b_traversed, f_traversed
in
- find [] arc.lt
+ List.iter (fun u -> u.status <- NoMark) to_revert;
+ r
+ end
+ else [], b_traversed, f_traversed
in
- let start = (* if is_prop_arc arcu then [Le, make arcv.univ] else *) [] in
- try
- let (to_revert, c) = cmp start [] [] [(arcu, [])] in
- (** Reset all the touched arcs. *)
- let () = List.iter (fun arc -> arc.status <- Unset) to_revert in
- List.rev c
- with e ->
- (** Unlikely event: fatal error or signal *)
- let () = cleanup_universes g in
- raise e
+ let to_reindex, g =
+ match to_merge with
+ | [] -> List.rev_append f_reindex b_reindex, g
+ | n0::q0 ->
+ (* Computing new root. *)
+ let root, rank_rest =
+ List.fold_left (fun ((best, rank_rest) as acc) n ->
+ if n.rank >= best.rank then n, best.rank else acc)
+ (n0, min_int) q0
+ in
+ let ltle, gtge = get_new_edges g to_merge in
+ (* Inserting the new root. *)
+ let g = change_node g
+ { root with ltle; gtge;
+ rank = max root.rank (rank_rest + 1); }
+ in
-let get_explanation strict g arcu arcv =
- if !Flags.univ_print then Some (get_explanation strict g arcu arcv)
- else None
+ (* Inserting shortcuts for old nodes. *)
+ let g = List.fold_left (fun g n ->
+ if Level.equal n.univ root.univ then g else enter_equiv g n.univ root.univ)
+ g to_merge
+ in
-type fast_order = FastEQ | FastLT | FastLE | FastNLE
+ (* Updating g.n_edges *)
+ let oldsz =
+ List.fold_left (fun sz u -> sz+UMap.cardinal u.ltle)
+ 0 to_merge
+ in
+ let sz = UMap.cardinal ltle in
+ let g = { g with n_edges = g.n_edges + sz - oldsz } in
-let fast_compare_neq strict g arcu arcv =
- (* [c] characterizes whether arcv has already been related
- to arcu among the lt_done,le_done universe *)
- let rec cmp c to_revert lt_todo le_todo = match lt_todo, le_todo with
- | [],[] -> (to_revert, c)
- | arc::lt_todo, le_todo ->
- if arc_is_lt arc then
- cmp c to_revert lt_todo le_todo
- else
- let () = arc.status <- SetLt in
- process_lt c (arc :: to_revert) lt_todo le_todo arc.lt arc.le
- | [], arc::le_todo ->
- if arc == arcv then
- (* No need to continue inspecting universes above arc:
- if arcv is strictly above arc, then we would have a cycle.
- But we cannot answer LE yet, a stronger constraint may
- come later from [le_todo]. *)
- if strict then cmp FastLE to_revert [] le_todo else (to_revert, FastLE)
- else
- if arc_is_le arc then
- cmp c to_revert [] le_todo
- else
- let () = arc.status <- SetLe in
- process_le c (arc :: to_revert) [] le_todo arc.lt arc.le
-
- and process_lt c to_revert lt_todo le_todo lt le = match le with
- | [] ->
- begin match lt with
- | [] -> cmp c to_revert lt_todo le_todo
- | u :: lt ->
- let arc = repr g u in
- if arc == arcv then
- if strict then (to_revert, FastLT) else (to_revert, FastLE)
- else process_lt c to_revert (arc :: lt_todo) le_todo lt le
- end
- | u :: le ->
- let arc = repr g u in
- if arc == arcv then
- if strict then (to_revert, FastLT) else (to_revert, FastLE)
- else process_lt c to_revert (arc :: lt_todo) le_todo lt le
-
- and process_le c to_revert lt_todo le_todo lt le = match lt with
- | [] ->
- let fold accu u =
- let node = repr g u in
- node :: accu
- in
- let le_new = List.fold_left fold le_todo le in
- cmp c to_revert lt_todo le_new
- | u :: lt ->
- let arc = repr g u in
- if arc == arcv then
- if strict then (to_revert, FastLT) else (to_revert, FastLE)
- else process_le c to_revert (arc :: lt_todo) le_todo lt le
+ (* Not clear in the paper: we have to put the newly
+ created component just between B and F. *)
+ List.rev_append f_reindex (root.univ::b_reindex), g
in
+
+ (* STEP 4: reindex traversed nodes. *)
+ List.fold_left use_index g to_reindex
+
+(* Assumes [u] and [v] are already in the graph. *)
+(* Does NOT assume that ucan != vcan. *)
+let insert_edge strict ucan vcan g =
try
- let (to_revert, c) = cmp FastNLE [] [] [arcu] in
- (** Reset all the touched arcs. *)
- let () = List.iter (fun arc -> arc.status <- Unset) to_revert in
- c
- with e ->
+ let u = ucan.univ and v = vcan.univ in
+ (* do we need to reorder nodes ? *)
+ let g = if topo_compare ucan vcan <= 0 then g else reorder g u v in
+
+ (* insert the new edge in the graph. *)
+ let u = repr g u in
+ let v = repr g v in
+ if u == v then
+ if strict then raise CycleDetected else g
+ else
+ let g =
+ try let oldstrict = UMap.find v.univ u.ltle in
+ if strict && not oldstrict then
+ change_node g { u with ltle = UMap.add v.univ true u.ltle }
+ else g
+ with Not_found ->
+ { (change_node g { u with ltle = UMap.add v.univ strict u.ltle })
+ with n_edges = g.n_edges + 1 }
+ in
+ if u.klvl <> v.klvl || LSet.mem u.univ v.gtge then g
+ else
+ let v = { v with gtge = LSet.add u.univ v.gtge } in
+ change_node g v
+ with
+ | CycleDetected as e -> raise e
+ | e ->
(** Unlikely event: fatal error or signal *)
let () = cleanup_universes g in
raise e
-let get_explanation_strict g arcu arcv = get_explanation true g arcu arcv
+let add_universe vlev strict g =
+ try
+ let _arcv = UMap.find vlev g.entries in
+ raise AlreadyDeclared
+ with Not_found ->
+ assert (g.index > min_int);
+ let v = {
+ univ = vlev;
+ ltle = LMap.empty;
+ gtge = LSet.empty;
+ rank = 0;
+ klvl = 0;
+ ilvl = g.index;
+ status = NoMark;
+ }
+ in
+ let entries = UMap.add vlev (Canonical v) g.entries in
+ let g = { entries; index = g.index - 1; n_nodes = g.n_nodes + 1; n_edges = g.n_edges } in
+ insert_edge strict (get_set_arc g) v g
+
+exception Found_explanation of explanation
+
+let get_explanation strict u v g =
+ let v = repr g v in
+ let visited_strict = ref UMap.empty in
+ let rec traverse strict u =
+ if u == v then
+ if strict then None else Some []
+ else if topo_compare u v = 1 then None
+ else
+ let visited =
+ try not (UMap.find u.univ !visited_strict) || strict
+ with Not_found -> false
+ in
+ if visited then None
+ else begin
+ visited_strict := UMap.add u.univ strict !visited_strict;
+ try
+ UMap.iter (fun u' strictu' ->
+ match traverse (strict && not strictu') (repr g u') with
+ | None -> ()
+ | Some exp ->
+ let typ = if strictu' then Lt else Le in
+ raise (Found_explanation ((typ, make u') :: exp)))
+ u.ltle;
+ None
+ with Found_explanation exp -> Some exp
+ end
+ in
+ let u = repr g u in
+ if u == v then [(Eq, make v.univ)]
+ else match traverse strict u with Some exp -> exp | None -> assert false
-let fast_compare g arcu arcv =
- if arcu == arcv then FastEQ else fast_compare_neq true g arcu arcv
+let get_explanation strict u v g =
+ if !Flags.univ_print then Some (get_explanation strict u v g)
+ else None
-let is_leq g arcu arcv =
- arcu == arcv ||
- (match fast_compare_neq false g arcu arcv with
- | FastNLE -> false
- | (FastEQ|FastLE|FastLT) -> true)
-
-let is_lt g arcu arcv =
- if arcu == arcv then false
+(* To compare two nodes, we simply do a forward search.
+ We implement two improvements:
+ - we ignore nodes that are higher than the destination;
+ - we do a BFS rather than a DFS because we expect to have a short
+ path (typically, the shortest path has length 1)
+*)
+exception Found of canonical_node list
+let search_path strict u v g =
+ let rec loop to_revert todo next_todo =
+ match todo, next_todo with
+ | [], [] -> to_revert (* No path found *)
+ | [], _ -> loop to_revert next_todo []
+ | (u, strict)::todo, _ ->
+ if u.status = Visited || (u.status = WeakVisited && strict)
+ then loop to_revert todo next_todo
+ else
+ let to_revert =
+ if u.status = NoMark then u::to_revert else to_revert
+ in
+ u.status <- if strict then WeakVisited else Visited;
+ if try UMap.find v.univ u.ltle || not strict
+ with Not_found -> false
+ then raise (Found to_revert)
+ else
+ begin
+ let next_todo =
+ UMap.fold (fun u strictu next_todo ->
+ let strict = not strictu && strict in
+ let u = repr g u in
+ if u == v && not strict then raise (Found to_revert)
+ else if topo_compare u v = 1 then next_todo
+ else (u, strict)::next_todo)
+ u.ltle next_todo
+ in
+ loop to_revert todo next_todo
+ end
+ in
+ if u == v then not strict
else
- match fast_compare_neq true g arcu arcv with
- | FastLT -> true
- | (FastEQ|FastLE|FastNLE) -> false
-
-(* Invariants : compare(u,v) = EQ <=> compare(v,u) = EQ
- compare(u,v) = LT or LE => compare(v,u) = NLE
- compare(u,v) = NLE => compare(v,u) = NLE or LE or LT
-
- Adding u>=v is consistent iff compare(v,u) # LT
- and then it is redundant iff compare(u,v) # NLE
- Adding u>v is consistent iff compare(v,u) = NLE
- and then it is redundant iff compare(u,v) = LT *)
-
-(** * Universe checks [check_eq] and [check_leq], used in coqchk *)
+ try
+ let res, to_revert =
+ try false, loop [] [u, strict] []
+ with Found to_revert -> true, to_revert
+ in
+ List.iter (fun u -> u.status <- NoMark) to_revert;
+ res
+ with e ->
+ (** Unlikely event: fatal error or signal *)
+ let () = cleanup_universes g in
+ raise e
+
+(** Uncomment to debug the cycle detection algorithm. *)
+(*let insert_edge strict ucan vcan g =
+ check_universes_invariants g;
+ let g = insert_edge strict ucan vcan g in
+ check_universes_invariants g;
+ let ucan = repr g ucan.univ in
+ let vcan = repr g vcan.univ in
+ assert (search_path strict ucan vcan g);
+ g*)
(** First, checks on universe levels *)
@@ -405,11 +626,11 @@ let check_eq_level g u v = u == v || check_equal g u v
let check_smaller g strict u v =
let arcu = repr g u and arcv = repr g v in
if strict then
- is_lt g arcu arcv
+ search_path true arcu arcv g
else
is_prop_arc arcu
|| (is_set_arc arcu && not (is_prop_arc arcv))
- || is_leq g arcu arcv
+ || search_path false arcu arcv g
(** Then, checks on universes *)
@@ -448,145 +669,68 @@ let check_leq g u v =
is_type0m_univ u ||
check_eq_univs g u v || real_check_leq g u v
-(** Enforcing new constraints : [setlt], [setleq], [merge], [merge_disc] *)
-
-(* setlt : Level.t -> Level.t -> reason -> unit *)
-(* forces u > v *)
-(* this is normally an update of u in g rather than a creation. *)
-let setlt g arcu arcv =
- let arcu' = {arcu with lt=arcv.univ::arcu.lt} in
- enter_arc arcu' g, arcu'
-
-(* checks that non-redundant *)
-let setlt_if (g,arcu) v =
- let arcv = repr g v in
- if is_lt g arcu arcv then g, arcu
- else setlt g arcu arcv
-
-(* setleq : Level.t -> Level.t -> unit *)
-(* forces u >= v *)
-(* this is normally an update of u in g rather than a creation. *)
-let setleq g arcu arcv =
- let arcu' = {arcu with le=arcv.univ::arcu.le} in
- enter_arc arcu' g, arcu'
-
-(* checks that non-redundant *)
-let setleq_if (g,arcu) v =
- let arcv = repr g v in
- if is_leq g arcu arcv then g, arcu
- else setleq g arcu arcv
-
-(* merge : Level.t -> Level.t -> unit *)
-(* we assume compare(u,v) = LE *)
-(* merge u v forces u ~ v with repr u as canonical repr *)
-let merge g arcu arcv =
- (* we find the arc with the biggest rank, and we redirect all others to it *)
- let arcu, g, v =
- let best_ranked (max_rank, old_max_rank, best_arc, rest) arc =
- if Level.is_small arc.univ ||
- (arc.rank >= max_rank && not (Level.is_small best_arc.univ))
- then (arc.rank, max_rank, arc, best_arc::rest)
- else (max_rank, old_max_rank, best_arc, arc::rest)
- in
- match between g arcu arcv with
- | [] -> anomaly (str "Univ.between")
- | arc::rest ->
- let (max_rank, old_max_rank, best_arc, rest) =
- List.fold_left best_ranked (arc.rank, min_int, arc, []) rest in
- if max_rank > old_max_rank then best_arc, g, rest
- else begin
- (* one redirected node also has max_rank *)
- let arcu = {best_arc with rank = max_rank + 1} in
- arcu, enter_arc arcu g, rest
- end
- in
- let redirect (g,w,w') arcv =
- let g' = enter_equiv_arc arcv.univ arcu.univ g in
- (g',List.unionq arcv.lt w,arcv.le@w')
- in
- let (g',w,w') = List.fold_left redirect (g,[],[]) v in
- let g_arcu = (g',arcu) in
- let g_arcu = List.fold_left setlt_if g_arcu w in
- let g_arcu = List.fold_left setleq_if g_arcu w' in
- fst g_arcu
-
-(* merge_disc : Level.t -> Level.t -> unit *)
-(* we assume compare(u,v) = compare(v,u) = NLE *)
-(* merge_disc u v forces u ~ v with repr u as canonical repr *)
-let merge_disc g arc1 arc2 =
- let arcu, arcv = if Level.is_small arc2.univ || arc1.rank < arc2.rank then arc2, arc1 else arc1, arc2 in
- let arcu, g =
- if not (Int.equal arc1.rank arc2.rank) then arcu, g
- else
- let arcu = {arcu with rank = succ arcu.rank} in
- arcu, enter_arc arcu g
- in
- let g' = enter_equiv_arc arcv.univ arcu.univ g in
- let g_arcu = (g',arcu) in
- let g_arcu = List.fold_left setlt_if g_arcu arcv.lt in
- let g_arcu = List.fold_left setleq_if g_arcu arcv.le in
- fst g_arcu
+(* enforc_univ_eq g u v will force u=v if possible, will fail otherwise *)
-(* enforce_univ_eq : Level.t -> Level.t -> unit *)
-(* enforce_univ_eq u v will force u=v if possible, will fail otherwise *)
+let rec enforce_univ_eq u v g =
+ let ucan = repr g u in
+ let vcan = repr g v in
+ if topo_compare ucan vcan = 1 then enforce_univ_eq v u g
+ else
+ let g = insert_edge false ucan vcan g in (* Cannot fail *)
+ try insert_edge false vcan ucan g
+ with CycleDetected ->
+ error_inconsistency Eq v u (get_explanation true u v g)
-let enforce_univ_eq u v g =
- let arcu = repr g u and arcv = repr g v in
- match fast_compare g arcu arcv with
- | FastEQ -> g
- | FastLT ->
- let p = get_explanation_strict g arcu arcv in
- error_inconsistency Eq v u p
- | FastLE -> merge g arcu arcv
- | FastNLE ->
- (match fast_compare g arcv arcu with
- | FastLT ->
- let p = get_explanation_strict g arcv arcu in
- error_inconsistency Eq u v p
- | FastLE -> merge g arcv arcu
- | FastNLE -> merge_disc g arcu arcv
- | FastEQ -> anomaly (Pp.str "Univ.compare"))
-
-(* enforce_univ_leq : Level.t -> Level.t -> unit *)
-(* enforce_univ_leq u v will force u<=v if possible, will fail otherwise *)
+(* enforce_univ_leq g u v will force u<=v if possible, will fail otherwise *)
let enforce_univ_leq u v g =
- let arcu = repr g u and arcv = repr g v in
- if is_leq g arcu arcv then g
- else
- match fast_compare g arcv arcu with
- | FastLT ->
- let p = get_explanation_strict g arcv arcu in
- error_inconsistency Le u v p
- | FastLE -> merge g arcv arcu
- | FastNLE -> fst (setleq g arcu arcv)
- | FastEQ -> anomaly (Pp.str "Univ.compare")
+ let ucan = repr g u in
+ let vcan = repr g v in
+ try insert_edge false ucan vcan g
+ with CycleDetected ->
+ error_inconsistency Le u v (get_explanation true v u g)
(* enforce_univ_lt u v will force u<v if possible, will fail otherwise *)
let enforce_univ_lt u v g =
- let arcu = repr g u and arcv = repr g v in
- match fast_compare g arcu arcv with
- | FastLT -> g
- | FastLE -> fst (setlt g arcu arcv)
- | FastEQ -> error_inconsistency Lt u v (Some [(Eq,Universe.make v)])
- | FastNLE ->
- match fast_compare_neq false g arcv arcu with
- FastNLE -> fst (setlt g arcu arcv)
- | FastEQ -> anomaly (Pp.str "Univ.compare")
- | (FastLE|FastLT) ->
- let p = get_explanation false g arcv arcu in
- error_inconsistency Lt u v p
+ let ucan = repr g u in
+ let vcan = repr g v in
+ try insert_edge true ucan vcan g
+ with CycleDetected ->
+ error_inconsistency Lt u v (get_explanation false v u g)
+
+let empty_universes =
+ let set_arc = Canonical {
+ univ = Level.set;
+ ltle = LMap.empty;
+ gtge = LSet.empty;
+ rank = big_rank;
+ klvl = 0;
+ ilvl = (-1);
+ status = NoMark;
+ } in
+ let prop_arc = Canonical {
+ univ = Level.prop;
+ ltle = LMap.empty;
+ gtge = LSet.empty;
+ rank = big_rank;
+ klvl = 0;
+ ilvl = 0;
+ status = NoMark;
+ } in
+ let entries = UMap.add Level.set set_arc (UMap.singleton Level.prop prop_arc) in
+ let empty = { entries; index = (-2); n_nodes = 2; n_edges = 0 } in
+ enforce_univ_lt Level.prop Level.set empty
(* Prop = Set is forbidden here. *)
let initial_universes = empty_universes
-let is_initial_universes g = UMap.equal (==) g initial_universes
-
+let is_initial_universes g = UMap.equal (==) g.entries initial_universes.entries
+
let enforce_constraint cst g =
match cst with
| (u,Lt,v) -> enforce_univ_lt u v g
| (u,Le,v) -> enforce_univ_leq u v g
| (u,Eq,v) -> enforce_univ_eq u v g
-
+
let merge_constraints c g =
Constraint.fold enforce_constraint c g
@@ -608,193 +752,89 @@ let lookup_level u g =
directly to the canonical representent of their target. The output
graph should be equivalent to the input graph from a logical point
of view, but optimized. We maintain the invariant that the key of
- a [Canonical] element is its own name, by keeping [Equiv] edges
- (see the assertion)... I (Stéphane Glondu) am not sure if this
- plays a role in the rest of the module. *)
+ a [Canonical] element is its own name, by keeping [Equiv] edges. *)
let normalize_universes g =
- let rec visit u arc cache = match lookup_level u cache with
- | Some x -> x, cache
- | None -> match Lazy.force arc with
- | None ->
- u, UMap.add u u cache
- | Some (Canonical {univ=v; lt=_; le=_}) ->
- v, UMap.add u v cache
- | Some (Equiv v) ->
- let v, cache = visit v (lazy (lookup_level v g)) cache in
- v, UMap.add u v cache
- in
- let cache = UMap.fold
- (fun u arc cache -> snd (visit u (Lazy.lazy_from_val (Some arc)) cache))
- g UMap.empty
- in
- let repr x = UMap.find x cache in
- let lrepr us = List.fold_left
- (fun e x -> LSet.add (repr x) e) LSet.empty us
+ let g =
+ { g with
+ entries = UMap.map (fun entry ->
+ match entry with
+ | Equiv u -> Equiv ((repr g u).univ)
+ | Canonical ucan -> Canonical { ucan with rank = 1 })
+ g.entries }
in
- let canonicalize u = function
- | Equiv _ -> Equiv (repr u)
- | Canonical {univ=v; lt=lt; le=le; rank=rank} ->
- assert (u == v);
- (* avoid duplicates and self-loops *)
- let lt = lrepr lt and le = lrepr le in
- let le = LSet.filter
- (fun x -> x != u && not (LSet.mem x lt)) le
- in
- LSet.iter (fun x -> assert (x != u)) lt;
- Canonical {
- univ = v;
- lt = LSet.elements lt;
- le = LSet.elements le;
- rank = rank;
- status = Unset;
- }
- in
- UMap.mapi canonicalize g
+ UMap.fold (fun _ u g ->
+ match u with
+ | Equiv u -> g
+ | Canonical u ->
+ let _, u, g = get_ltle g u in
+ let _, _, g = get_gtge g u in
+ g)
+ g.entries g
let constraints_of_universes g =
let constraints_of u v acc =
match v with
- | Canonical {univ=u; lt=lt; le=le} ->
- let acc = List.fold_left (fun acc v -> Constraint.add (u,Lt,v) acc) acc lt in
- let acc = List.fold_left (fun acc v -> Constraint.add (u,Le,v) acc) acc le in
- acc
+ | Canonical {univ=u; ltle} ->
+ UMap.fold (fun v strict acc->
+ let typ = if strict then Lt else Le in
+ Constraint.add (u,typ,v) acc) ltle acc
| Equiv v -> Constraint.add (u,Eq,v) acc
in
- UMap.fold constraints_of g Constraint.empty
+ UMap.fold constraints_of g.entries Constraint.empty
let constraints_of_universes g =
constraints_of_universes (normalize_universes g)
-(** Longest path algorithm. This is used to compute the minimal number of
- universes required if the only strict edge would be the Lt one. This
- algorithm assumes that the given universes constraints are a almost DAG, in
- the sense that there may be {Eq, Le}-cycles. This is OK for consistent
- universes, which is the only case where we use this algorithm. *)
-
-(** Adjacency graph *)
-type graph = constraint_type LMap.t LMap.t
-
-exception Connected
-
-(** Check connectedness *)
-let connected x y (g : graph) =
- let rec connected x target seen g =
- if Level.equal x target then raise Connected
- else if not (LSet.mem x seen) then
- let seen = LSet.add x seen in
- let fold z _ seen = connected z target seen g in
- let neighbours = try LMap.find x g with Not_found -> LMap.empty in
- LMap.fold fold neighbours seen
- else seen
+(** [sort_universes g] builds a totally ordered universe graph. The
+ output graph should imply the input graph (and the implication
+ will be strict most of the time), but is not necessarily minimal.
+ Moreover, it adds levels [Type.n] to identify universes at level
+ n. An artificial constraint Set < Type.2 is added to ensure that
+ Type.n and small universes are not merged. Note: the result is
+ unspecified if the input graph already contains [Type.n] nodes
+ (calling a module Type is probably a bad idea anyway). *)
+let sort_universes g =
+ let cans =
+ UMap.fold (fun _ u l ->
+ match u with
+ | Equiv _ -> l
+ | Canonical can -> can :: l
+ ) g.entries []
in
- try ignore(connected x y LSet.empty g); false with Connected -> true
-
-let add_edge x y v (g : graph) =
- try
- let neighbours = LMap.find x g in
- let neighbours = LMap.add y v neighbours in
- LMap.add x neighbours g
- with Not_found ->
- LMap.add x (LMap.singleton y v) g
-
-(** We want to keep the graph DAG. If adding an edge would cause a cycle, that
- would necessarily be an {Eq, Le}-cycle, otherwise there would have been a
- universe inconsistency. Therefore we may omit adding such a cycling edge
- without changing the compacted graph. *)
-let add_eq_edge x y v g = if connected y x g then g else add_edge x y v g
-
-(** Construct the DAG and its inverse at the same time. *)
-let make_graph g : (graph * graph) =
- let fold u arc accu = match arc with
- | Equiv v ->
- let (dir, rev) = accu in
- (add_eq_edge u v Eq dir, add_eq_edge v u Eq rev)
- | Canonical { univ; lt; le; } ->
- let () = assert (u == univ) in
- let fold_lt (dir, rev) v = (add_edge u v Lt dir, add_edge v u Lt rev) in
- let fold_le (dir, rev) v = (add_eq_edge u v Le dir, add_eq_edge v u Le rev) in
- (** Order is important : lt after le, because of the possible redundancy
- between [le] and [lt] in a canonical arc. This way, the [lt] constraint
- is the last one set, which is correct because it implies [le]. *)
- let accu = List.fold_left fold_le accu le in
- let accu = List.fold_left fold_lt accu lt in
- accu
- in
- UMap.fold fold g (LMap.empty, LMap.empty)
-
-(** Construct a topological order out of a DAG. *)
-let rec topological_fold u g rem seen accu =
- let is_seen =
- try
- let status = LMap.find u seen in
- assert status; (** If false, not a DAG! *)
- true
- with Not_found -> false
+ let cans = List.sort topo_compare cans in
+ let lowest_levels =
+ UMap.mapi (fun u _ -> if Level.is_small u then 0 else 2)
+ (UMap.filter
+ (fun _ u -> match u with Equiv _ -> false | Canonical _ -> true)
+ g.entries)
in
- if not is_seen then
- let rem = LMap.remove u rem in
- let seen = LMap.add u false seen in
- let neighbours = try LMap.find u g with Not_found -> LMap.empty in
- let fold v _ (rem, seen, accu) = topological_fold v g rem seen accu in
- let (rem, seen, accu) = LMap.fold fold neighbours (rem, seen, accu) in
- (rem, LMap.add u true seen, u :: accu)
- else (rem, seen, accu)
-
-let rec topological g rem seen accu =
- let node = try Some (LMap.choose rem) with Not_found -> None in
- match node with
- | None -> accu
- | Some (u, _) ->
- let rem, seen, accu = topological_fold u g rem seen accu in
- topological g rem seen accu
-
-(** Compute the longest path from any vertex. *)
-let constraint_cost = function
-| Eq | Le -> 0
-| Lt -> 1
-
-(** This algorithm browses the graph in topological order, computing for each
- encountered node the length of the longest path leading to it. Should be
- O(|V|) or so (modulo map representation). *)
-let rec flatten_graph rem (rev : graph) map mx = match rem with
-| [] -> map, mx
-| u :: rem ->
- let prev = try LMap.find u rev with Not_found -> LMap.empty in
- let fold v cstr accu =
- let v_cost = LMap.find v map in
- max (v_cost + constraint_cost cstr) accu
+ let lowest_levels =
+ List.fold_left (fun lowest_levels can ->
+ let lvl = UMap.find can.univ lowest_levels in
+ UMap.fold (fun u' strict lowest_levels ->
+ let cost = if strict then 1 else 0 in
+ let u' = (repr g u').univ in
+ UMap.modify u' (fun _ lvl0 -> max lvl0 (lvl+cost)) lowest_levels)
+ can.ltle lowest_levels)
+ lowest_levels cans
in
- let u_cost = LMap.fold fold prev 0 in
- let map = LMap.add u u_cost map in
- flatten_graph rem rev map (max mx u_cost)
-
-(** [sort_universes g] builds a map from universes in [g] to natural
- numbers. It outputs a graph containing equivalence edges from each
- level appearing in [g] to [Type.n], and [lt] edges between the
- [Type.n]s. The output graph should imply the input graph (and the
- [Type.n]s. The output graph should imply the input graph (and the
- implication will be strict most of the time), but is not
- necessarily minimal. Note: the result is unspecified if the input
- graph already contains [Type.n] nodes (calling a module Type is
- probably a bad idea anyway). *)
-let sort_universes orig =
- let (dir, rev) = make_graph orig in
- let order = topological dir dir LMap.empty [] in
- let compact, max = flatten_graph order rev LMap.empty 0 in
+ let max_lvl = UMap.fold (fun _ a b -> max a b) lowest_levels 0 in
let mp = Names.DirPath.make [Names.Id.of_string "Type"] in
- let types = Array.init (max + 1) (fun n -> Level.make mp n) in
- (** Old universes are made equal to [Type.n] *)
- let fold u level accu = UMap.add u (Equiv types.(level)) accu in
- let sorted = LMap.fold fold compact UMap.empty in
- (** Add all [Type.n] nodes *)
- let fold i accu u =
- if i < max then
- let pred = types.(i + 1) in
- let arc = {univ = u; lt = [pred]; le = []; rank = 0; status = Unset; } in
- UMap.add u (Canonical arc) accu
- else accu
+ let types = Array.init (max_lvl + 1) (function
+ | 0 -> Level.prop
+ | 1 -> Level.set
+ | n -> Level.make mp (n-2))
+ in
+ let g = Array.fold_left (fun g u ->
+ let g, u = safe_repr g u in
+ change_node g { u with rank = big_rank }) g types
in
- Array.fold_left_i fold sorted types
+ let g = if max_lvl >= 2 then enforce_univ_lt Level.set types.(2) g else g in
+ let g =
+ UMap.fold (fun u lvl g -> enforce_univ_eq u (types.(lvl)) g)
+ lowest_levels g
+ in
+ normalize_universes g
(** Instances *)
@@ -807,39 +847,38 @@ let check_eq_instances g t1 t2 =
(Int.equal i (Array.length t1)) || (check_eq_level g t1.(i) t2.(i) && aux (i + 1))
in aux 0)
+(** Pretty-printing *)
+
let pr_arc prl = function
- | _, Canonical {univ=u; lt=[]; le=[]} ->
- mt ()
- | _, Canonical {univ=u; lt=lt; le=le} ->
- let opt_sep = match lt, le with
- | [], _ | _, [] -> mt ()
- | _ -> spc ()
- in
+ | _, Canonical {univ=u; ltle} ->
+ if UMap.is_empty ltle then mt ()
+ else
prl u ++ str " " ++
v 0
- (pr_sequence (fun v -> str "< " ++ prl v) lt ++
- opt_sep ++
- pr_sequence (fun v -> str "<= " ++ prl v) le) ++
+ (pr_sequence (fun (v, strict) ->
+ (if strict then str "< " else str "<= ") ++ prl v)
+ (UMap.bindings ltle)) ++
fnl ()
| u, Equiv v ->
prl u ++ str " = " ++ prl v ++ fnl ()
let pr_universes prl g =
- let graph = UMap.fold (fun u a l -> (u,a)::l) g [] in
+ let graph = UMap.fold (fun u a l -> (u,a)::l) g.entries [] in
prlist (pr_arc prl) graph
(* Dumping constraints to a file *)
let dump_universes output g =
let dump_arc u = function
- | Canonical {univ=u; lt=lt; le=le} ->
+ | Canonical {univ=u; ltle} ->
let u_str = Level.to_string u in
- List.iter (fun v -> output Lt u_str (Level.to_string v)) lt;
- List.iter (fun v -> output Le u_str (Level.to_string v)) le
+ UMap.iter (fun v strict ->
+ let typ = if strict then Lt else Le in
+ output typ u_str (Level.to_string v)) ltle;
| Equiv v ->
output Eq (Level.to_string u) (Level.to_string v)
in
- UMap.iter dump_arc g
+ UMap.iter dump_arc g.entries
(** Profiling *)
@@ -848,7 +887,6 @@ let merge_constraints =
let key = Profile.declare_profile "merge_constraints" in
Profile.profile2 key merge_constraints
else merge_constraints
-
let check_constraints =
if Flags.profile then
let key = Profile.declare_profile "check_constraints" in
diff --git a/test-suite/Makefile b/test-suite/Makefile
index 31b212900..6274183b3 100644
--- a/test-suite/Makefile
+++ b/test-suite/Makefile
@@ -388,7 +388,7 @@ misc/deps-order.log:
} > "$@"
# Sort universes for the whole standard library
-EXPECTED_UNIVERSES := 5
+EXPECTED_UNIVERSES := 4 # Prop is not counted
universes: misc/universes.log
misc/universes.log: misc/universes/all_stdlib.v
@echo "TEST misc/universes"