aboutsummaryrefslogtreecommitdiffhomepage
diff options
context:
space:
mode:
-rw-r--r--doc/RefMan-gal.tex5
1 files changed, 4 insertions, 1 deletions
diff --git a/doc/RefMan-gal.tex b/doc/RefMan-gal.tex
index e856566c7..0696f1702 100644
--- a/doc/RefMan-gal.tex
+++ b/doc/RefMan-gal.tex
@@ -963,7 +963,7 @@ Reset Initial.
\begin{Variants}
\item
\begin{coq_example*}
-Inductive list (A:Set) : Set := nil | cons (_:X) (_:list X).
+Inductive list (A:Set) : Set := nil | cons (_:A) (_:list A).
\end{coq_example*}
This is an alternative definition of lists where we specify the
arguments of the constructors rather than their full type.
@@ -1036,6 +1036,9 @@ The typical example of a mutual inductive data type is the one for
trees and forests. We assume given two types $A$ and $B$ as variables.
It can be declared the following way.
+\begin{coq_eval}
+Reset Initial.
+\end{coq_eval}
\begin{coq_example*}
Variables A B : Set.
Inductive tree : Set :=