aboutsummaryrefslogtreecommitdiffhomepage
diff options
context:
space:
mode:
-rw-r--r--plugins/romega/ReflOmegaCore.v117
-rw-r--r--theories/FSets/FMapAVL.v1
-rw-r--r--theories/MSets/MSetAVL.v1
-rw-r--r--theories/ZArith/Int.v6
4 files changed, 47 insertions, 78 deletions
diff --git a/plugins/romega/ReflOmegaCore.v b/plugins/romega/ReflOmegaCore.v
index 11d9a071c..ab424c223 100644
--- a/plugins/romega/ReflOmegaCore.v
+++ b/plugins/romega/ReflOmegaCore.v
@@ -14,14 +14,14 @@ Delimit Scope Int_scope with I.
Module Type Int.
- Parameter int : Set.
+ Parameter t : Set.
- Parameter zero : int.
- Parameter one : int.
- Parameter plus : int -> int -> int.
- Parameter opp : int -> int.
- Parameter minus : int -> int -> int.
- Parameter mult : int -> int -> int.
+ Parameter zero : t.
+ Parameter one : t.
+ Parameter plus : t -> t -> t.
+ Parameter opp : t -> t.
+ Parameter minus : t -> t -> t.
+ Parameter mult : t -> t -> t.
Notation "0" := zero : Int_scope.
Notation "1" := one : Int_scope.
@@ -33,14 +33,14 @@ Module Type Int.
Open Scope Int_scope.
(* First, int is a ring: *)
- Axiom ring : @ring_theory int 0 1 plus mult minus opp (@eq int).
+ Axiom ring : @ring_theory t 0 1 plus mult minus opp (@eq t).
(* int should also be ordered: *)
- Parameter le : int -> int -> Prop.
- Parameter lt : int -> int -> Prop.
- Parameter ge : int -> int -> Prop.
- Parameter gt : int -> int -> Prop.
+ Parameter le : t -> t -> Prop.
+ Parameter lt : t -> t -> Prop.
+ Parameter ge : t -> t -> Prop.
+ Parameter gt : t -> t -> Prop.
Notation "x <= y" := (le x y): Int_scope.
Notation "x < y" := (lt x y) : Int_scope.
Notation "x >= y" := (ge x y) : Int_scope.
@@ -61,7 +61,7 @@ Module Type Int.
forall i j k, 0 < k -> i < j -> k*i<k*j.
(* We should have a way to decide the equality and the order*)
- Parameter compare : int -> int -> comparison.
+ Parameter compare : t -> t -> comparison.
Infix "?=" := compare (at level 70, no associativity) : Int_scope.
Axiom compare_Eq : forall i j, compare i j = Eq <-> i=j.
Axiom compare_Lt : forall i j, compare i j = Lt <-> i<j.
@@ -83,7 +83,7 @@ Module Z_as_Int <: Int.
Open Scope Z_scope.
- Definition int := Z.
+ Definition t := Z.
Definition zero := 0.
Definition one := 1.
Definition plus := Z.add.
@@ -91,7 +91,7 @@ Module Z_as_Int <: Int.
Definition minus := Z.sub.
Definition mult := Z.mul.
- Lemma ring : @ring_theory int zero one plus mult minus opp (@eq int).
+ Lemma ring : @ring_theory t zero one plus mult minus opp (@eq t).
Proof.
constructor.
exact Z.add_0_l.
@@ -138,6 +138,7 @@ End Z_as_Int.
Module IntProperties (I:Int).
Import I.
+ Local Notation int := I.t.
(* Primo, some consequences of being a ring theory... *)
@@ -827,6 +828,7 @@ Module IntOmega (I:Int).
Import I.
Module IP:=IntProperties(I).
Import IP.
+Local Notation int := I.t.
(* \subsubsection{Definition of reified integer expressions}
Terms are either:
@@ -1037,20 +1039,16 @@ Close Scope romega_scope.
Theorem eq_term_true : forall t1 t2 : term, eq_term t1 t2 = true -> t1 = t2.
Proof.
- simple induction t1; intros until t2; case t2; simpl in *;
- try (intros; discriminate; fail);
- [ intros; elim beq_true with (1 := H); trivial
- | intros t21 t22 H3; elim andb_prop with (1 := H3); intros H4 H5;
- elim H with (1 := H4); elim H0 with (1 := H5);
- trivial
- | intros t21 t22 H3; elim andb_prop with (1 := H3); intros H4 H5;
- elim H with (1 := H4); elim H0 with (1 := H5);
- trivial
- | intros t21 t22 H3; elim andb_prop with (1 := H3); intros H4 H5;
- elim H with (1 := H4); elim H0 with (1 := H5);
- trivial
- | intros t21 H3; elim H with (1 := H3); trivial
- | intros; elim beq_nat_true with (1 := H); trivial ].
+ induction t1; destruct t2; simpl in *; try discriminate;
+ (rewrite andb_true_iff; intros (H1,H2)) || intros H; f_equal;
+ auto using beq_true, beq_nat_true.
+Qed.
+
+Theorem eq_term_refl : forall t0 : term, eq_term t0 t0 = true.
+Proof.
+ induction t0; simpl in *; try (apply andb_true_iff; split); trivial.
+ - now apply beq_iff.
+ - now apply beq_nat_true_iff.
Qed.
Ltac trivial_case := unfold not; intros; discriminate.
@@ -1058,31 +1056,7 @@ Ltac trivial_case := unfold not; intros; discriminate.
Theorem eq_term_false :
forall t1 t2 : term, eq_term t1 t2 = false -> t1 <> t2.
Proof.
- simple induction t1;
- [ intros z t2; case t2; try trivial_case; simpl; unfold not;
- intros; elim beq_false with (1 := H); simplify_eq H0;
- auto
- | intros t11 H1 t12 H2 t2; case t2; try trivial_case; simpl;
- intros t21 t22 H3; unfold not; intro H4;
- elim andb_false_elim with (1 := H3); intros H5;
- [ elim H1 with (1 := H5); simplify_eq H4; auto
- | elim H2 with (1 := H5); simplify_eq H4; auto ]
- | intros t11 H1 t12 H2 t2; case t2; try trivial_case; simpl;
- intros t21 t22 H3; unfold not; intro H4;
- elim andb_false_elim with (1 := H3); intros H5;
- [ elim H1 with (1 := H5); simplify_eq H4; auto
- | elim H2 with (1 := H5); simplify_eq H4; auto ]
- | intros t11 H1 t12 H2 t2; case t2; try trivial_case; simpl;
- intros t21 t22 H3; unfold not; intro H4;
- elim andb_false_elim with (1 := H3); intros H5;
- [ elim H1 with (1 := H5); simplify_eq H4; auto
- | elim H2 with (1 := H5); simplify_eq H4; auto ]
- | intros t11 H1 t2; case t2; try trivial_case; simpl; intros t21 H3;
- unfold not; intro H4; elim H1 with (1 := H3);
- simplify_eq H4; auto
- | intros n t2; case t2; try trivial_case; simpl; unfold not;
- intros; elim beq_nat_false with (1 := H); simplify_eq H0;
- auto ].
+ intros t1 t2 H E. subst t2. now rewrite eq_term_refl in H.
Qed.
(* \subsubsection{Tactiques pour éliminer ces tests}
@@ -1919,9 +1893,9 @@ Fixpoint fusion (trace : list t_fusion) (t : term) {struct trace} : term :=
end
end.
-Theorem fusion_stable : forall t : list t_fusion, term_stable (fusion t).
+Theorem fusion_stable : forall trace : list t_fusion, term_stable (fusion trace).
Proof.
- simple induction t; simpl;
+ simple induction trace; simpl;
[ exact reduce_stable
| intros stp l H; case stp;
[ apply compose_term_stable;
@@ -2093,11 +2067,8 @@ Definition constant_not_nul (i : nat) (h : hyps) :=
Theorem constant_not_nul_valid :
forall i : nat, valid_hyps (constant_not_nul i).
Proof.
- unfold valid_hyps, constant_not_nul; intros;
- generalize (nth_valid ep e i lp); Simplify; simpl.
-
- elim_beq i1 i0; auto; simpl; intros H1 H2;
- elim H1; symmetry ; auto.
+ unfold valid_hyps, constant_not_nul; intros i ep e lp H.
+ generalize (nth_valid ep e i lp H); Simplify.
Qed.
(* \paragraph{[O_CONSTANT_NEG]} *)
@@ -2131,12 +2102,12 @@ Definition not_exact_divide (k1 k2 : int) (body : term)
end.
Theorem not_exact_divide_valid :
- forall (k1 k2 : int) (body : term) (t i : nat),
- valid_hyps (not_exact_divide k1 k2 body t i).
+ forall (k1 k2 : int) (body : term) (t0 i : nat),
+ valid_hyps (not_exact_divide k1 k2 body t0 i).
Proof.
unfold valid_hyps, not_exact_divide; intros;
generalize (nth_valid ep e i lp); Simplify.
- rewrite (scalar_norm_add_stable t e), <-H1.
+ rewrite (scalar_norm_add_stable t0 e), <-H1.
do 2 rewrite <- scalar_norm_add_stable; simpl in *; intros.
absurd (interp_term e body * k1 + k2 = 0);
[ now apply OMEGA4 | symmetry; auto ].
@@ -2509,9 +2480,9 @@ Fixpoint execute_omega (t : t_omega) (l : hyps) {struct t} : lhyps :=
execute_omega cont (apply_oper_2 i1 i2 (state m s) l)
end.
-Theorem omega_valid : forall t : t_omega, valid_list_hyps (execute_omega t).
+Theorem omega_valid : forall tr : t_omega, valid_list_hyps (execute_omega tr).
Proof.
- simple induction t; simpl;
+ simple induction tr; simpl;
[ unfold valid_list_hyps; simpl; intros; left;
apply (constant_not_nul_valid n ep e lp H)
| unfold valid_list_hyps; simpl; intros; left;
@@ -2522,7 +2493,7 @@ Proof.
(apply_oper_1_valid m (divide_and_approx k1 k2 body n)
(divide_and_approx_valid k1 k2 body n) ep e lp H)
| unfold valid_list_hyps; simpl; intros; left;
- apply (not_exact_divide_valid i i0 t0 n n0 ep e lp H)
+ apply (not_exact_divide_valid _ _ _ _ _ ep e lp H)
| unfold valid_list_hyps, valid_hyps;
intros k body n t' Ht' m ep e lp H; apply Ht';
apply
@@ -2618,10 +2589,10 @@ Qed.
(* \subsubsection{Exécution de la trace} *)
Theorem execute_goal :
- forall (t : t_omega) (ep : list Prop) (env : list int) (l : hyps),
- interp_list_goal ep env (execute_omega t l) -> interp_goal ep env l.
+ forall (tr : t_omega) (ep : list Prop) (env : list int) (l : hyps),
+ interp_list_goal ep env (execute_omega tr l) -> interp_goal ep env l.
Proof.
- intros; apply (goal_valid (execute_omega t) (omega_valid t) ep env l H).
+ intros; apply (goal_valid (execute_omega tr) (omega_valid tr) ep env l H).
Qed.
@@ -2936,13 +2907,13 @@ Proof.
| intro; apply ne_left_2; assumption ]
| case p; simpl; intros; auto; generalize H; elim (t_rewrite_stable s);
simpl; intro H1;
- [ rewrite (plus_0_r_reverse (interp_term e t0)); rewrite H1;
+ [ rewrite (plus_0_r_reverse (interp_term e t1)); rewrite H1;
rewrite plus_permute; rewrite plus_opp_r;
rewrite plus_0_r; trivial
- | apply (fun a b => plus_le_reg_r a b (- interp_term e t));
+ | apply (fun a b => plus_le_reg_r a b (- interp_term e t0));
rewrite plus_opp_r; assumption
| rewrite ge_le_iff;
- apply (fun a b => plus_le_reg_r a b (- interp_term e t0));
+ apply (fun a b => plus_le_reg_r a b (- interp_term e t1));
rewrite plus_opp_r; assumption
| rewrite gt_lt_iff; apply lt_left_inv; assumption
| apply lt_left_inv; assumption
diff --git a/theories/FSets/FMapAVL.v b/theories/FSets/FMapAVL.v
index a603751b2..f42f1e9e0 100644
--- a/theories/FSets/FMapAVL.v
+++ b/theories/FSets/FMapAVL.v
@@ -35,6 +35,7 @@ Module Raw (Import I:Int)(X: OrderedType).
Local Open Scope pair_scope.
Local Open Scope lazy_bool_scope.
Local Open Scope Int_scope.
+Local Notation int := I.t.
Definition key := X.t.
Hint Transparent key.
diff --git a/theories/MSets/MSetAVL.v b/theories/MSets/MSetAVL.v
index 2182504dd..e719ae441 100644
--- a/theories/MSets/MSetAVL.v
+++ b/theories/MSets/MSetAVL.v
@@ -44,6 +44,7 @@ Local Unset Case Analysis Schemes.
Module Ops (Import I:Int)(X:OrderedType) <: MSetInterface.Ops X.
Local Open Scope Int_scope.
+Local Notation int := I.t.
(** ** Generic trees instantiated with integer height *)
diff --git a/theories/ZArith/Int.v b/theories/ZArith/Int.v
index 384c046f3..99ecd150b 100644
--- a/theories/ZArith/Int.v
+++ b/theories/ZArith/Int.v
@@ -25,9 +25,6 @@ Module Type Int.
Parameter t : Set.
Bind Scope Int_scope with t.
- (** For compatibility *)
- Definition int := t.
-
Parameter i2z : t -> Z.
Parameter _0 : t.
@@ -362,7 +359,6 @@ End MoreInt.
Module Z_as_Int <: Int.
Local Open Scope Z_scope.
Definition t := Z.
- Definition int := t.
Definition _0 := 0.
Definition _1 := 1.
Definition _2 := 2.
@@ -375,7 +371,7 @@ Module Z_as_Int <: Int.
Definition gt_le_dec := Z_gt_le_dec.
Definition ge_lt_dec := Z_ge_lt_dec.
Definition eq_dec := Z.eq_dec.
- Definition i2z : int -> Z := fun n => n.
+ Definition i2z : t -> Z := fun n => n.
Lemma i2z_eq : forall n p, i2z n=i2z p -> n = p. Proof. auto. Qed.
Lemma i2z_0 : i2z _0 = 0. Proof. auto. Qed.
Lemma i2z_1 : i2z _1 = 1. Proof. auto. Qed.