aboutsummaryrefslogtreecommitdiffhomepage
path: root/vernac/comInductive.ml
diff options
context:
space:
mode:
authorGravatar Emilio Jesus Gallego Arias <e+git@x80.org>2017-12-13 07:18:22 +0100
committerGravatar Emilio Jesus Gallego Arias <e+git@x80.org>2017-12-17 10:56:04 +0100
commit7a5688f6e2421a706c16e23e445d42f39a82e74b (patch)
tree4dfc0054afb151a93e185ab21a51748e4b2086ea /vernac/comInductive.ml
parent53f5cc210da4debd5264d6d8651a76281b0b4256 (diff)
[vernac] Split `command.ml` into separate files.
Over the time, `Command` grew organically and it has become now one of the most complex files in the codebase; however, its functionality is well separated into 4 key components that have little to do with each other. We thus split the file, and also document the interfaces. Some parts of `Command` export tricky internals to use by other plugins, and it is common that plugin writers tend to get confused, so we are more explicit about these parts now. This patch depends on #6413.
Diffstat (limited to 'vernac/comInductive.ml')
-rw-r--r--vernac/comInductive.ml456
1 files changed, 456 insertions, 0 deletions
diff --git a/vernac/comInductive.ml b/vernac/comInductive.ml
new file mode 100644
index 000000000..f3f50f41d
--- /dev/null
+++ b/vernac/comInductive.ml
@@ -0,0 +1,456 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2017 *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+open Pp
+open CErrors
+open Sorts
+open Util
+open Constr
+open Termops
+open Environ
+open Declare
+open Names
+open Libnames
+open Globnames
+open Nameops
+open Constrexpr
+open Constrexpr_ops
+open Constrintern
+open Nametab
+open Impargs
+open Reductionops
+open Indtypes
+open Decl_kinds
+open Pretyping
+open Evarutil
+open Indschemes
+open Misctypes
+open Context.Rel.Declaration
+open Entries
+
+module RelDecl = Context.Rel.Declaration
+
+(* 3b| Mutual inductive definitions *)
+
+let rec complete_conclusion a cs = CAst.map_with_loc (fun ?loc -> function
+ | CProdN (bl,c) -> CProdN (bl,complete_conclusion a cs c)
+ | CLetIn (na,b,t,c) -> CLetIn (na,b,t,complete_conclusion a cs c)
+ | CHole (k, _, _) ->
+ let (has_no_args,name,params) = a in
+ if not has_no_args then
+ user_err ?loc
+ (strbrk"Cannot infer the non constant arguments of the conclusion of "
+ ++ Id.print cs ++ str ".");
+ let args = List.map (fun id -> CAst.make ?loc @@ CRef(Ident(loc,id),None)) params in
+ CAppExpl ((None,Ident(loc,name),None),List.rev args)
+ | c -> c
+ )
+
+let push_types env idl tl =
+ List.fold_left2 (fun env id t -> Environ.push_rel (LocalAssum (Name id,t)) env)
+ env idl tl
+
+type structured_one_inductive_expr = {
+ ind_name : Id.t;
+ ind_univs : Vernacexpr.universe_decl_expr option;
+ ind_arity : constr_expr;
+ ind_lc : (Id.t * constr_expr) list
+}
+
+type structured_inductive_expr =
+ local_binder_expr list * structured_one_inductive_expr list
+
+let minductive_message warn = function
+ | [] -> user_err Pp.(str "No inductive definition.")
+ | [x] -> (Id.print x ++ str " is defined" ++
+ if warn then str " as a non-primitive record" else mt())
+ | l -> hov 0 (prlist_with_sep pr_comma Id.print l ++
+ spc () ++ str "are defined")
+
+let check_all_names_different indl =
+ let ind_names = List.map (fun ind -> ind.ind_name) indl in
+ let cstr_names = List.map_append (fun ind -> List.map fst ind.ind_lc) indl in
+ let l = List.duplicates Id.equal ind_names in
+ let () = match l with
+ | [] -> ()
+ | t :: _ -> raise (InductiveError (SameNamesTypes t))
+ in
+ let l = List.duplicates Id.equal cstr_names in
+ let () = match l with
+ | [] -> ()
+ | c :: _ -> raise (InductiveError (SameNamesConstructors (List.hd l)))
+ in
+ let l = List.intersect Id.equal ind_names cstr_names in
+ match l with
+ | [] -> ()
+ | _ -> raise (InductiveError (SameNamesOverlap l))
+
+let mk_mltype_data sigma env assums arity indname =
+ let is_ml_type = is_sort env sigma (EConstr.of_constr arity) in
+ (is_ml_type,indname,assums)
+
+let prepare_param = function
+ | LocalAssum (na,t) -> Name.get_id na, LocalAssumEntry t
+ | LocalDef (na,b,_) -> Name.get_id na, LocalDefEntry b
+
+(** Make the arity conclusion flexible to avoid generating an upper bound universe now,
+ only if the universe does not appear anywhere else.
+ This is really a hack to stay compatible with the semantics of template polymorphic
+ inductives which are recognized when a "Type" appears at the end of the conlusion in
+ the source syntax. *)
+
+let rec check_anonymous_type ind =
+ let open Glob_term in
+ match DAst.get ind with
+ | GSort (GType []) -> true
+ | GProd ( _, _, _, e)
+ | GLetIn (_, _, _, e)
+ | GLambda (_, _, _, e)
+ | GApp (e, _)
+ | GCast (e, _) -> check_anonymous_type e
+ | _ -> false
+
+let make_conclusion_flexible sigma ty poly =
+ if poly && Term.isArity ty then
+ let _, concl = Term.destArity ty in
+ match concl with
+ | Type u ->
+ (match Univ.universe_level u with
+ | Some u ->
+ Evd.make_flexible_variable sigma ~algebraic:true u
+ | None -> sigma)
+ | _ -> sigma
+ else sigma
+
+let is_impredicative env u =
+ u = Prop Null || (is_impredicative_set env && u = Prop Pos)
+
+let interp_ind_arity env sigma ind =
+ let c = intern_gen IsType env ind.ind_arity in
+ let impls = Implicit_quantifiers.implicits_of_glob_constr ~with_products:true c in
+ let sigma,t = understand_tcc env sigma ~expected_type:IsType c in
+ let pseudo_poly = check_anonymous_type c in
+ let () = if not (Reductionops.is_arity env sigma t) then
+ user_err ?loc:(constr_loc ind.ind_arity) (str "Not an arity")
+ in
+ let t = EConstr.Unsafe.to_constr t in
+ sigma, (t, pseudo_poly, impls)
+
+let interp_cstrs env sigma impls mldata arity ind =
+ let cnames,ctyps = List.split ind.ind_lc in
+ (* Complete conclusions of constructor types if given in ML-style syntax *)
+ let ctyps' = List.map2 (complete_conclusion mldata) cnames ctyps in
+ (* Interpret the constructor types *)
+ let sigma, (ctyps'', cimpls) =
+ on_snd List.split @@
+ List.fold_left_map (fun sigma l ->
+ on_snd (on_fst EConstr.Unsafe.to_constr) @@
+ interp_type_evars_impls env sigma ~impls l) sigma ctyps' in
+ sigma, (cnames, ctyps'', cimpls)
+
+let sign_level env evd sign =
+ fst (List.fold_right
+ (fun d (lev,env) ->
+ match d with
+ | LocalDef _ -> lev, push_rel d env
+ | LocalAssum _ ->
+ let s = destSort (Reduction.whd_all env
+ (EConstr.Unsafe.to_constr (nf_evar evd (Retyping.get_type_of env evd (EConstr.of_constr (RelDecl.get_type d))))))
+ in
+ let u = univ_of_sort s in
+ (Univ.sup u lev, push_rel d env))
+ sign (Univ.type0m_univ,env))
+
+let sup_list min = List.fold_left Univ.sup min
+
+let extract_level env evd min tys =
+ let sorts = List.map (fun ty ->
+ let ctx, concl = Reduction.dest_prod_assum env ty in
+ sign_level env evd (LocalAssum (Anonymous, concl) :: ctx)) tys
+ in sup_list min sorts
+
+let is_flexible_sort evd u =
+ match Univ.Universe.level u with
+ | Some l -> Evd.is_flexible_level evd l
+ | None -> false
+
+let inductive_levels env evd poly arities inds =
+ let destarities = List.map (fun x -> x, Reduction.dest_arity env x) arities in
+ let levels = List.map (fun (x,(ctx,a)) ->
+ if a = Prop Null then None
+ else Some (univ_of_sort a)) destarities
+ in
+ let cstrs_levels, min_levels, sizes =
+ CList.split3
+ (List.map2 (fun (_,tys,_) (arity,(ctx,du)) ->
+ let len = List.length tys in
+ let minlev = Sorts.univ_of_sort du in
+ let minlev =
+ if len > 1 && not (is_impredicative env du) then
+ Univ.sup minlev Univ.type0_univ
+ else minlev
+ in
+ let minlev =
+ (** Indices contribute. *)
+ if Indtypes.is_indices_matter () && List.length ctx > 0 then (
+ let ilev = sign_level env evd ctx in
+ Univ.sup ilev minlev)
+ else minlev
+ in
+ let clev = extract_level env evd minlev tys in
+ (clev, minlev, len)) inds destarities)
+ in
+ (* Take the transitive closure of the system of constructors *)
+ (* level constraints and remove the recursive dependencies *)
+ let levels' = Universes.solve_constraints_system (Array.of_list levels)
+ (Array.of_list cstrs_levels) (Array.of_list min_levels)
+ in
+ let evd, arities =
+ CList.fold_left3 (fun (evd, arities) cu (arity,(ctx,du)) len ->
+ if is_impredicative env du then
+ (** Any product is allowed here. *)
+ evd, arity :: arities
+ else (** If in a predicative sort, or asked to infer the type,
+ we take the max of:
+ - indices (if in indices-matter mode)
+ - constructors
+ - Type(1) if there is more than 1 constructor
+ *)
+ (** Constructors contribute. *)
+ let evd =
+ if Sorts.is_set du then
+ if not (Evd.check_leq evd cu Univ.type0_univ) then
+ raise (Indtypes.InductiveError Indtypes.LargeNonPropInductiveNotInType)
+ else evd
+ else evd
+ (* Evd.set_leq_sort env evd (Type cu) du *)
+ in
+ let evd =
+ if len >= 2 && Univ.is_type0m_univ cu then
+ (** "Polymorphic" type constraint and more than one constructor,
+ should not land in Prop. Add constraint only if it would
+ land in Prop directly (no informative arguments as well). *)
+ Evd.set_leq_sort env evd (Prop Pos) du
+ else evd
+ in
+ let duu = Sorts.univ_of_sort du in
+ let evd =
+ if not (Univ.is_small_univ duu) && Univ.Universe.equal cu duu then
+ if is_flexible_sort evd duu && not (Evd.check_leq evd Univ.type0_univ duu) then
+ Evd.set_eq_sort env evd (Prop Null) du
+ else evd
+ else Evd.set_eq_sort env evd (Type cu) du
+ in
+ (evd, arity :: arities))
+ (evd,[]) (Array.to_list levels') destarities sizes
+ in evd, List.rev arities
+
+let check_named (loc, na) = match na with
+| Name _ -> ()
+| Anonymous ->
+ let msg = str "Parameters must be named." in
+ user_err ?loc msg
+
+
+let check_param = function
+| CLocalDef (na, _, _) -> check_named na
+| CLocalAssum (nas, Default _, _) -> List.iter check_named nas
+| CLocalAssum (nas, Generalized _, _) -> ()
+| CLocalPattern (loc,_) ->
+ Loc.raise ?loc (Stream.Error "pattern with quote not allowed here.")
+
+let interp_mutual_inductive (paramsl,indl) notations cum poly prv finite =
+ check_all_names_different indl;
+ List.iter check_param paramsl;
+ let env0 = Global.env() in
+ let pl = (List.hd indl).ind_univs in
+ let sigma, decl = Univdecls.interp_univ_decl_opt env0 pl in
+ let sigma, (impls, ((env_params, ctx_params), userimpls)) =
+ interp_context_evars env0 sigma paramsl
+ in
+ let ctx_params = List.map (fun d -> map_rel_decl EConstr.Unsafe.to_constr d) ctx_params in
+ let indnames = List.map (fun ind -> ind.ind_name) indl in
+
+ (* Names of parameters as arguments of the inductive type (defs removed) *)
+ let assums = List.filter is_local_assum ctx_params in
+ let params = List.map (RelDecl.get_name %> Name.get_id) assums in
+
+ (* Interpret the arities *)
+ let sigma, arities = List.fold_left_map (fun sigma -> interp_ind_arity env_params sigma) sigma indl in
+
+ let fullarities = List.map (fun (c, _, _) -> Term.it_mkProd_or_LetIn c ctx_params) arities in
+ let env_ar = push_types env0 indnames fullarities in
+ let env_ar_params = push_rel_context ctx_params env_ar in
+
+ (* Compute interpretation metadatas *)
+ let indimpls = List.map (fun (_, _, impls) -> userimpls @
+ lift_implicits (Context.Rel.nhyps ctx_params) impls) arities in
+ let arities = List.map pi1 arities and aritypoly = List.map pi2 arities in
+ let impls = compute_internalization_env env0 ~impls (Inductive (params,true)) indnames fullarities indimpls in
+ let ntn_impls = compute_internalization_env env0 (Inductive (params,true)) indnames fullarities indimpls in
+ let mldatas = List.map2 (mk_mltype_data sigma env_params params) arities indnames in
+
+ let sigma, constructors =
+ Metasyntax.with_syntax_protection (fun () ->
+ (* Temporary declaration of notations and scopes *)
+ List.iter (Metasyntax.set_notation_for_interpretation env_params ntn_impls) notations;
+ (* Interpret the constructor types *)
+ List.fold_left3_map (fun sigma -> interp_cstrs env_ar_params sigma impls) sigma mldatas arities indl)
+ () in
+
+ (* Try further to solve evars, and instantiate them *)
+ let sigma = solve_remaining_evars all_and_fail_flags env_params sigma Evd.empty in
+ (* Compute renewed arities *)
+ let sigma, nf = nf_evars_and_universes sigma in
+ let arities = List.map nf arities in
+ let constructors = List.map (fun (idl,cl,impsl) -> (idl,List.map nf cl,impsl)) constructors in
+ let sigma = List.fold_left2 (fun sigma ty poly -> make_conclusion_flexible sigma ty poly) sigma arities aritypoly in
+ let sigma, arities = inductive_levels env_ar_params sigma poly arities constructors in
+ let sigma, nf' = nf_evars_and_universes sigma in
+ let nf x = nf' (nf x) in
+ let arities = List.map nf' arities in
+ let constructors = List.map (fun (idl,cl,impsl) -> (idl,List.map nf' cl,impsl)) constructors in
+ let ctx_params = Context.Rel.map nf ctx_params in
+ let uctx = Evd.check_univ_decl ~poly sigma decl in
+ List.iter (fun c -> check_evars env_params Evd.empty sigma (EConstr.of_constr c)) arities;
+ Context.Rel.iter (fun c -> check_evars env0 Evd.empty sigma (EConstr.of_constr c)) ctx_params;
+ List.iter (fun (_,ctyps,_) ->
+ List.iter (fun c -> check_evars env_ar_params Evd.empty sigma (EConstr.of_constr c)) ctyps)
+ constructors;
+
+ (* Build the inductive entries *)
+ let entries = List.map4 (fun ind arity template (cnames,ctypes,cimpls) -> {
+ mind_entry_typename = ind.ind_name;
+ mind_entry_arity = arity;
+ mind_entry_template = template;
+ mind_entry_consnames = cnames;
+ mind_entry_lc = ctypes
+ }) indl arities aritypoly constructors in
+ let impls =
+ let len = Context.Rel.nhyps ctx_params in
+ List.map2 (fun indimpls (_,_,cimpls) ->
+ indimpls, List.map (fun impls ->
+ userimpls @ (lift_implicits len impls)) cimpls) indimpls constructors
+ in
+ let univs =
+ match uctx with
+ | Polymorphic_const_entry uctx ->
+ if cum then
+ Cumulative_ind_entry (Universes.univ_inf_ind_from_universe_context uctx)
+ else Polymorphic_ind_entry uctx
+ | Monomorphic_const_entry uctx ->
+ Monomorphic_ind_entry uctx
+ in
+ (* Build the mutual inductive entry *)
+ let mind_ent =
+ { mind_entry_params = List.map prepare_param ctx_params;
+ mind_entry_record = None;
+ mind_entry_finite = finite;
+ mind_entry_inds = entries;
+ mind_entry_private = if prv then Some false else None;
+ mind_entry_universes = univs;
+ }
+ in
+ (if poly && cum then
+ Inductiveops.infer_inductive_subtyping env_ar sigma mind_ent
+ else mind_ent), Evd.universe_binders sigma, impls
+
+(* Very syntactical equality *)
+let eq_local_binders bl1 bl2 =
+ List.equal local_binder_eq bl1 bl2
+
+let extract_coercions indl =
+ let mkqid (_,((_,id),_)) = qualid_of_ident id in
+ let extract lc = List.filter (fun (iscoe,_) -> iscoe) lc in
+ List.map mkqid (List.flatten(List.map (fun (_,_,_,lc) -> extract lc) indl))
+
+let extract_params indl =
+ let paramsl = List.map (fun (_,params,_,_) -> params) indl in
+ match paramsl with
+ | [] -> anomaly (Pp.str "empty list of inductive types.")
+ | params::paramsl ->
+ if not (List.for_all (eq_local_binders params) paramsl) then user_err Pp.(str
+ "Parameters should be syntactically the same for each inductive type.");
+ params
+
+let extract_inductive indl =
+ List.map (fun (((_,indname),pl),_,ar,lc) -> {
+ ind_name = indname; ind_univs = pl;
+ ind_arity = Option.cata (fun x -> x) (CAst.make @@ CSort (GType [])) ar;
+ ind_lc = List.map (fun (_,((_,id),t)) -> (id,t)) lc
+ }) indl
+
+let extract_mutual_inductive_declaration_components indl =
+ let indl,ntnl = List.split indl in
+ let params = extract_params indl in
+ let coes = extract_coercions indl in
+ let indl = extract_inductive indl in
+ (params,indl), coes, List.flatten ntnl
+
+let is_recursive mie =
+ let rec is_recursive_constructor lift typ =
+ match Constr.kind typ with
+ | Prod (_,arg,rest) ->
+ not (EConstr.Vars.noccurn Evd.empty (** FIXME *) lift (EConstr.of_constr arg)) ||
+ is_recursive_constructor (lift+1) rest
+ | LetIn (na,b,t,rest) -> is_recursive_constructor (lift+1) rest
+ | _ -> false
+ in
+ match mie.mind_entry_inds with
+ | [ind] ->
+ let nparams = List.length mie.mind_entry_params in
+ List.exists (fun t -> is_recursive_constructor (nparams+1) t) ind.mind_entry_lc
+ | _ -> false
+
+let declare_mutual_inductive_with_eliminations mie pl impls =
+ (* spiwack: raises an error if the structure is supposed to be non-recursive,
+ but isn't *)
+ begin match mie.mind_entry_finite with
+ | BiFinite when is_recursive mie ->
+ if Option.has_some mie.mind_entry_record then
+ user_err Pp.(str "Records declared with the keywords Record or Structure cannot be recursive. You can, however, define recursive records using the Inductive or CoInductive command.")
+ else
+ user_err Pp.(str ("Types declared with the keyword Variant cannot be recursive. Recursive types are defined with the Inductive and CoInductive command."))
+ | _ -> ()
+ end;
+ let names = List.map (fun e -> e.mind_entry_typename) mie.mind_entry_inds in
+ let (_, kn), prim = declare_mind mie in
+ let mind = Global.mind_of_delta_kn kn in
+ List.iteri (fun i (indimpls, constrimpls) ->
+ let ind = (mind,i) in
+ let gr = IndRef ind in
+ maybe_declare_manual_implicits false gr indimpls;
+ Declare.declare_univ_binders gr pl;
+ List.iteri
+ (fun j impls ->
+ maybe_declare_manual_implicits false
+ (ConstructRef (ind, succ j)) impls)
+ constrimpls)
+ impls;
+ let warn_prim = match mie.mind_entry_record with Some (Some _) -> not prim | _ -> false in
+ Flags.if_verbose Feedback.msg_info (minductive_message warn_prim names);
+ if mie.mind_entry_private == None
+ then declare_default_schemes mind;
+ mind
+
+type one_inductive_impls =
+ Impargs.manual_explicitation list (* for inds *)*
+ Impargs.manual_explicitation list list (* for constrs *)
+
+let do_mutual_inductive indl cum poly prv finite =
+ let indl,coes,ntns = extract_mutual_inductive_declaration_components indl in
+ (* Interpret the types *)
+ let mie,pl,impls = interp_mutual_inductive indl ntns cum poly prv finite in
+ (* Declare the mutual inductive block with its associated schemes *)
+ ignore (declare_mutual_inductive_with_eliminations mie pl impls);
+ (* Declare the possible notations of inductive types *)
+ List.iter (Metasyntax.add_notation_interpretation (Global.env ())) ntns;
+ (* Declare the coercions *)
+ List.iter (fun qid -> Class.try_add_new_coercion (locate qid) ~local:false poly) coes;
+ (* If positivity is assumed declares itself as unsafe. *)
+ if Environ.deactivated_guard (Global.env ()) then Feedback.feedback Feedback.AddedAxiom else ()