aboutsummaryrefslogtreecommitdiffhomepage
path: root/vernac/assumptions.ml
diff options
context:
space:
mode:
authorGravatar Emilio Jesus Gallego Arias <e+git@x80.org>2016-12-18 18:14:58 +0100
committerGravatar Emilio Jesus Gallego Arias <e+git@x80.org>2017-02-15 20:45:28 +0100
commitfa9df2efe5666789bf91bb7761567cd53e6c451f (patch)
treedfabeded9b4060114e0f9d7f4d3760efc982ae0c /vernac/assumptions.ml
parent0df095ec0715f548180bbff70a6feb673c6726a6 (diff)
[stm] Break stm/toplevel dependency loop.
Currently, the STM, vernac interpretation, and the toplevel are intertwined in a mutual dependency that needs to be resolved using imperative callbacks. This is problematic for a few reasons, in particular it makes the interpretation of commands that affect the document quite intricate. As a first step, we split the `toplevel/` directory into two: "pure" vernac interpretation is moved to the `vernac/` directory, on which the STM relies. Test suite passes, and only one command seems to be disabled with this approach, "Show Script" which is to my understanding obsolete. Subsequent commits will fix this and refine some of the invariants that are not needed anymore.
Diffstat (limited to 'vernac/assumptions.ml')
-rw-r--r--vernac/assumptions.ml320
1 files changed, 320 insertions, 0 deletions
diff --git a/vernac/assumptions.ml b/vernac/assumptions.ml
new file mode 100644
index 000000000..8865cd646
--- /dev/null
+++ b/vernac/assumptions.ml
@@ -0,0 +1,320 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016 *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* The following definitions are used by the function
+ [assumptions] which gives as an output the set of all
+ axioms and sections variables on which a given term depends
+ in a context (expectingly the Global context) *)
+
+(* Initial author: Arnaud Spiwack
+ Module-traversing code: Pierre Letouzey *)
+
+open Pp
+open CErrors
+open Util
+open Names
+open Term
+open Declarations
+open Mod_subst
+open Globnames
+open Printer
+open Context.Named.Declaration
+
+module NamedDecl = Context.Named.Declaration
+
+(** For a constant c in a module sealed by an interface (M:T and
+ not M<:T), [Global.lookup_constant] may return a [constant_body]
+ without body. We fix this by looking in the implementation
+ of the module *)
+
+let modcache = ref (MPmap.empty : structure_body MPmap.t)
+
+let rec search_mod_label lab = function
+ | [] -> raise Not_found
+ | (l, SFBmodule mb) :: _ when Label.equal l lab -> mb
+ | _ :: fields -> search_mod_label lab fields
+
+let rec search_cst_label lab = function
+ | [] -> raise Not_found
+ | (l, SFBconst cb) :: _ when Label.equal l lab -> cb
+ | _ :: fields -> search_cst_label lab fields
+
+(* TODO: using [empty_delta_resolver] below is probably slightly incorrect. But:
+ a) I don't see currently what should be used instead
+ b) this shouldn't be critical for Print Assumption. At worse some
+ constants will have a canonical name which is non-canonical,
+ leading to failures in [Global.lookup_constant], but our own
+ [lookup_constant] should work.
+*)
+
+let rec fields_of_functor f subs mp0 args = function
+ |NoFunctor a -> f subs mp0 args a
+ |MoreFunctor (mbid,_,e) ->
+ match args with
+ | [] -> assert false (* we should only encounter applied functors *)
+ | mpa :: args ->
+ let subs = join (map_mbid mbid mpa empty_delta_resolver (*TODO*)) subs in
+ fields_of_functor f subs mp0 args e
+
+let rec lookup_module_in_impl mp =
+ try Global.lookup_module mp
+ with Not_found ->
+ (* The module we search might not be exported by its englobing module(s).
+ We access the upper layer, and then do a manual search *)
+ match mp with
+ | MPfile _ -> raise Not_found (* can happen if mp is an open module *)
+ | MPbound _ -> assert false
+ | MPdot (mp',lab') ->
+ let fields = memoize_fields_of_mp mp' in
+ search_mod_label lab' fields
+
+and memoize_fields_of_mp mp =
+ try MPmap.find mp !modcache
+ with Not_found ->
+ let l = fields_of_mp mp in
+ modcache := MPmap.add mp l !modcache;
+ l
+
+and fields_of_mp mp =
+ let mb = lookup_module_in_impl mp in
+ let fields,inner_mp,subs = fields_of_mb empty_subst mb [] in
+ let subs =
+ if mp_eq inner_mp mp then subs
+ else add_mp inner_mp mp mb.mod_delta subs
+ in
+ Modops.subst_structure subs fields
+
+and fields_of_mb subs mb args = match mb.mod_expr with
+ |Algebraic expr -> fields_of_expression subs mb.mod_mp args expr
+ |Struct sign -> fields_of_signature subs mb.mod_mp args sign
+ |Abstract|FullStruct -> fields_of_signature subs mb.mod_mp args mb.mod_type
+
+(** The Abstract case above corresponds to [Declare Module] *)
+
+and fields_of_signature x =
+ fields_of_functor
+ (fun subs mp0 args struc ->
+ assert (List.is_empty args);
+ (struc, mp0, subs)) x
+
+and fields_of_expr subs mp0 args = function
+ |MEident mp ->
+ let mb = lookup_module_in_impl (subst_mp subs mp) in
+ fields_of_mb subs mb args
+ |MEapply (me1,mp2) -> fields_of_expr subs mp0 (mp2::args) me1
+ |MEwith _ -> assert false (* no 'with' in [mod_expr] *)
+
+and fields_of_expression x = fields_of_functor fields_of_expr x
+
+let lookup_constant_in_impl cst fallback =
+ try
+ let mp,dp,lab = repr_kn (canonical_con cst) in
+ let fields = memoize_fields_of_mp mp in
+ (* A module found this way is necessarily closed, in particular
+ our constant cannot be in an opened section : *)
+ search_cst_label lab fields
+ with Not_found ->
+ (* Either:
+ - The module part of the constant isn't registered yet :
+ we're still in it, so the [constant_body] found earlier
+ (if any) was a true axiom.
+ - The label has not been found in the structure. This is an error *)
+ match fallback with
+ | Some cb -> cb
+ | None -> anomaly (str "Print Assumption: unknown constant " ++ pr_con cst)
+
+let lookup_constant cst =
+ try
+ let cb = Global.lookup_constant cst in
+ if Declareops.constant_has_body cb then cb
+ else lookup_constant_in_impl cst (Some cb)
+ with Not_found -> lookup_constant_in_impl cst None
+
+(** Graph traversal of an object, collecting on the way the dependencies of
+ traversed objects *)
+
+let label_of = function
+ | ConstRef kn -> pi3 (repr_con kn)
+ | IndRef (kn,_)
+ | ConstructRef ((kn,_),_) -> pi3 (repr_mind kn)
+ | VarRef id -> Label.of_id id
+
+let rec traverse current ctx accu t = match kind_of_term t with
+| Var id ->
+ let body () = id |> Global.lookup_named |> NamedDecl.get_value in
+ traverse_object accu body (VarRef id)
+| Const (kn, _) ->
+ let body () = Global.body_of_constant_body (lookup_constant kn) in
+ traverse_object accu body (ConstRef kn)
+| Ind ((mind, _) as ind, _) ->
+ traverse_inductive accu mind (IndRef ind)
+| Construct (((mind, _), _) as cst, _) ->
+ traverse_inductive accu mind (ConstructRef cst)
+| Meta _ | Evar _ -> assert false
+| Case (_,oty,c,[||]) ->
+ (* non dependent match on an inductive with no constructors *)
+ begin match Constr.(kind oty, kind c) with
+ | Lambda(_,_,oty), Const (kn, _)
+ when Vars.noccurn 1 oty &&
+ not (Declareops.constant_has_body (lookup_constant kn)) ->
+ let body () = Global.body_of_constant_body (lookup_constant kn) in
+ traverse_object
+ ~inhabits:(current,ctx,Vars.subst1 mkProp oty) accu body (ConstRef kn)
+ | _ ->
+ Termops.fold_constr_with_full_binders
+ Context.Rel.add (traverse current) ctx accu t
+ end
+| _ -> Termops.fold_constr_with_full_binders
+ Context.Rel.add (traverse current) ctx accu t
+
+and traverse_object ?inhabits (curr, data, ax2ty) body obj =
+ let data, ax2ty =
+ let already_in = Refmap_env.mem obj data in
+ match body () with
+ | None ->
+ let data =
+ if not already_in then Refmap_env.add obj Refset_env.empty data else data in
+ let ax2ty =
+ if Option.is_empty inhabits then ax2ty else
+ let ty = Option.get inhabits in
+ try let l = Refmap_env.find obj ax2ty in Refmap_env.add obj (ty::l) ax2ty
+ with Not_found -> Refmap_env.add obj [ty] ax2ty in
+ data, ax2ty
+ | Some body ->
+ if already_in then data, ax2ty else
+ let contents,data,ax2ty =
+ traverse (label_of obj) Context.Rel.empty
+ (Refset_env.empty,data,ax2ty) body in
+ Refmap_env.add obj contents data, ax2ty
+ in
+ (Refset_env.add obj curr, data, ax2ty)
+
+(** Collects the references occurring in the declaration of mutual inductive
+ definitions. All the constructors and names of a mutual inductive
+ definition share exactly the same dependencies. Also, there is no explicit
+ dependency between mutually defined inductives and constructors. *)
+and traverse_inductive (curr, data, ax2ty) mind obj =
+ let firstind_ref = (IndRef (mind, 0)) in
+ let label = label_of obj in
+ let data, ax2ty =
+ (* Invariant : I_0 \in data iff I_i \in data iff c_ij \in data
+ where I_0, I_1, ... are in the same mutual definition and c_ij
+ are all their constructors. *)
+ if Refmap_env.mem firstind_ref data then data, ax2ty else
+ let mib = Global.lookup_mind mind in
+ (* Collects references of parameters *)
+ let param_ctx = mib.mind_params_ctxt in
+ let nparam = List.length param_ctx in
+ let accu =
+ traverse_context label Context.Rel.empty
+ (Refset_env.empty, data, ax2ty) param_ctx
+ in
+ (* Build the context of all arities *)
+ let arities_ctx =
+ let global_env = Global.env () in
+ Array.fold_left (fun accu oib ->
+ let pspecif = Univ.in_punivs (mib, oib) in
+ let ind_type = Inductive.type_of_inductive global_env pspecif in
+ let ind_name = Name oib.mind_typename in
+ Context.Rel.add (Context.Rel.Declaration.LocalAssum (ind_name, ind_type)) accu)
+ Context.Rel.empty mib.mind_packets
+ in
+ (* For each inductive, collects references in their arity and in the type
+ of constructors*)
+ let (contents, data, ax2ty) = Array.fold_left (fun accu oib ->
+ let arity_wo_param =
+ List.rev (List.skipn nparam (List.rev oib.mind_arity_ctxt))
+ in
+ let accu =
+ traverse_context
+ label param_ctx accu arity_wo_param
+ in
+ Array.fold_left (fun accu cst_typ ->
+ let param_ctx, cst_typ_wo_param = Term.decompose_prod_n_assum nparam cst_typ in
+ let ctx = Context.(Rel.fold_outside Context.Rel.add ~init:arities_ctx param_ctx) in
+ traverse label ctx accu cst_typ_wo_param)
+ accu oib.mind_user_lc)
+ accu mib.mind_packets
+ in
+ (* Maps all these dependencies to inductives and constructors*)
+ let data = Array.fold_left_i (fun n data oib ->
+ let ind = (mind, n) in
+ let data = Refmap_env.add (IndRef ind) contents data in
+ Array.fold_left_i (fun k data _ ->
+ Refmap_env.add (ConstructRef (ind, k+1)) contents data
+ ) data oib.mind_consnames) data mib.mind_packets
+ in
+ data, ax2ty
+ in
+ (Refset_env.add obj curr, data, ax2ty)
+
+(** Collects references in a rel_context. *)
+and traverse_context current ctx accu ctxt =
+ snd (Context.Rel.fold_outside (fun decl (ctx, accu) ->
+ match decl with
+ | Context.Rel.Declaration.LocalDef (_,c,t) ->
+ let accu = traverse current ctx (traverse current ctx accu t) c in
+ let ctx = Context.Rel.add decl ctx in
+ ctx, accu
+ | Context.Rel.Declaration.LocalAssum (_,t) ->
+ let accu = traverse current ctx accu t in
+ let ctx = Context.Rel.add decl ctx in
+ ctx, accu) ctxt ~init:(ctx, accu))
+
+let traverse current t =
+ let () = modcache := MPmap.empty in
+ traverse current Context.Rel.empty (Refset_env.empty, Refmap_env.empty, Refmap_env.empty) t
+
+(** Hopefully bullet-proof function to recover the type of a constant. It just
+ ignores all the universe stuff. There are many issues that can arise when
+ considering terms out of any valid environment, so use with caution. *)
+let type_of_constant cb = match cb.Declarations.const_type with
+| Declarations.RegularArity ty -> ty
+| Declarations.TemplateArity (ctx, arity) ->
+ Term.mkArity (ctx, Sorts.sort_of_univ arity.Declarations.template_level)
+
+let assumptions ?(add_opaque=false) ?(add_transparent=false) st gr t =
+ let (idts, knst) = st in
+ (** Only keep the transitive dependencies *)
+ let (_, graph, ax2ty) = traverse (label_of gr) t in
+ let fold obj _ accu = match obj with
+ | VarRef id ->
+ let decl = Global.lookup_named id in
+ if is_local_assum decl then
+ let t = Context.Named.Declaration.get_type decl in
+ ContextObjectMap.add (Variable id) t accu
+ else accu
+ | ConstRef kn ->
+ let cb = lookup_constant kn in
+ let accu =
+ if cb.const_typing_flags.check_guarded then accu
+ else
+ let l = try Refmap_env.find obj ax2ty with Not_found -> [] in
+ ContextObjectMap.add (Axiom (Guarded kn, l)) Constr.mkProp accu
+ in
+ if not (Declareops.constant_has_body cb) || not cb.const_typing_flags.check_universes then
+ let t = type_of_constant cb in
+ let l = try Refmap_env.find obj ax2ty with Not_found -> [] in
+ ContextObjectMap.add (Axiom (Constant kn,l)) t accu
+ else if add_opaque && (Declareops.is_opaque cb || not (Cpred.mem kn knst)) then
+ let t = type_of_constant cb in
+ ContextObjectMap.add (Opaque kn) t accu
+ else if add_transparent then
+ let t = type_of_constant cb in
+ ContextObjectMap.add (Transparent kn) t accu
+ else
+ accu
+ | IndRef (m,_) | ConstructRef ((m,_),_) ->
+ let mind = Global.lookup_mind m in
+ if mind.mind_typing_flags.check_guarded then
+ accu
+ else
+ let l = try Refmap_env.find obj ax2ty with Not_found -> [] in
+ ContextObjectMap.add (Axiom (Positive m, l)) Constr.mkProp accu
+ in
+ Refmap_env.fold fold graph ContextObjectMap.empty