aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories
diff options
context:
space:
mode:
authorGravatar letouzey <letouzey@85f007b7-540e-0410-9357-904b9bb8a0f7>2012-07-05 16:56:37 +0000
committerGravatar letouzey <letouzey@85f007b7-540e-0410-9357-904b9bb8a0f7>2012-07-05 16:56:37 +0000
commitffb64d16132dd80f72ecb619ef87e3eee1fa8bda (patch)
tree5368562b42af1aeef7e19b4bd897c9fc5655769b /theories
parenta46ccd71539257bb55dcddd9ae8510856a5c9a16 (diff)
Kills the useless tactic annotations "in |- *"
Most of these heavyweight annotations were introduced a long time ago by the automatic 7.x -> 8.0 translator git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@15518 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'theories')
-rw-r--r--theories/Arith/Between.v4
-rw-r--r--theories/Arith/Compare.v2
-rw-r--r--theories/Arith/Compare_dec.v2
-rw-r--r--theories/Arith/Div2.v16
-rw-r--r--theories/Arith/EqNat.v14
-rw-r--r--theories/Arith/Euclid.v18
-rw-r--r--theories/Arith/Even.v2
-rw-r--r--theories/Arith/Factorial.v2
-rw-r--r--theories/Arith/Gt.v12
-rw-r--r--theories/Arith/Le.v4
-rw-r--r--theories/Arith/Lt.v8
-rw-r--r--theories/Arith/Minus.v28
-rw-r--r--theories/Arith/Mult.v18
-rw-r--r--theories/Arith/Peano_dec.v2
-rw-r--r--theories/Arith/Plus.v30
-rw-r--r--theories/Arith/Wf_nat.v18
-rw-r--r--theories/Bool/BoolEq.v4
-rw-r--r--theories/FSets/FMapAVL.v14
-rw-r--r--theories/FSets/FSetBridge.v144
-rw-r--r--theories/Init/Datatypes.v4
-rw-r--r--theories/Init/Logic.v8
-rw-r--r--theories/Init/Logic_Type.v2
-rw-r--r--theories/Init/Peano.v6
-rw-r--r--theories/Init/Wf.v2
-rw-r--r--theories/Lists/ListSet.v76
-rw-r--r--theories/Lists/Streams.v12
-rw-r--r--theories/Logic/Berardi.v12
-rw-r--r--theories/Logic/ChoiceFacts.v4
-rw-r--r--theories/Logic/ClassicalFacts.v20
-rw-r--r--theories/Logic/Classical_Pred_Type.v8
-rw-r--r--theories/Logic/Classical_Prop.v6
-rw-r--r--theories/Logic/Diaconescu.v6
-rw-r--r--theories/Logic/Eqdep_dec.v6
-rw-r--r--theories/Logic/Hurkens.v4
-rw-r--r--theories/NArith/Ndist.v60
-rw-r--r--theories/Program/Tactics.v2
-rw-r--r--theories/Program/Wf.v2
-rw-r--r--theories/QArith/Qcanon.v2
-rw-r--r--theories/QArith/Qreals.v60
-rw-r--r--theories/Reals/Alembert.v250
-rw-r--r--theories/Reals/AltSeries.v106
-rw-r--r--theories/Reals/ArithProp.v44
-rw-r--r--theories/Reals/Binomial.v64
-rw-r--r--theories/Reals/Cauchy_prod.v24
-rw-r--r--theories/Reals/Cos_plus.v188
-rw-r--r--theories/Reals/Cos_rel.v88
-rw-r--r--theories/Reals/DiscrR.v6
-rw-r--r--theories/Reals/Exp_prop.v206
-rw-r--r--theories/Reals/LegacyRfield.v4
-rw-r--r--theories/Reals/MVT.v98
-rw-r--r--theories/Reals/NewtonInt.v152
-rw-r--r--theories/Reals/PSeries_reg.v58
-rw-r--r--theories/Reals/PartSum.v138
-rw-r--r--theories/Reals/RIneq.v186
-rw-r--r--theories/Reals/RList.v228
-rw-r--r--theories/Reals/R_Ifp.v66
-rw-r--r--theories/Reals/R_sqr.v32
-rw-r--r--theories/Reals/R_sqrt.v52
-rw-r--r--theories/Reals/Ranalysis1.v356
-rw-r--r--theories/Reals/Ranalysis2.v88
-rw-r--r--theories/Reals/Ranalysis3.v158
-rw-r--r--theories/Reals/Ranalysis4.v100
-rw-r--r--theories/Reals/Rbasic_fun.v96
-rw-r--r--theories/Reals/Rcomplete.v46
-rw-r--r--theories/Reals/Rderiv.v100
-rw-r--r--theories/Reals/Rgeom.v26
-rw-r--r--theories/Reals/RiemannInt.v892
-rw-r--r--theories/Reals/RiemannInt_SF.v946
-rw-r--r--theories/Reals/Rlimit.v98
-rw-r--r--theories/Reals/Rlogic.v8
-rw-r--r--theories/Reals/Rpower.v154
-rw-r--r--theories/Reals/Rprod.v16
-rw-r--r--theories/Reals/Rseries.v30
-rw-r--r--theories/Reals/Rsigma.v30
-rw-r--r--theories/Reals/Rsqrt_def.v210
-rw-r--r--theories/Reals/Rtopology.v686
-rw-r--r--theories/Reals/Rtrigo_alt.v124
-rw-r--r--theories/Reals/Rtrigo_calc.v104
-rw-r--r--theories/Reals/Rtrigo_def.v92
-rw-r--r--theories/Reals/Rtrigo_fun.v16
-rw-r--r--theories/Reals/Rtrigo_reg.v152
-rw-r--r--theories/Reals/SeqProp.v256
-rw-r--r--theories/Reals/SeqSeries.v94
-rw-r--r--theories/Reals/SplitAbsolu.v2
-rw-r--r--theories/Reals/Sqrt_reg.v144
-rw-r--r--theories/Relations/Operators_Properties.v6
-rw-r--r--theories/Relations/Relations.v6
-rw-r--r--theories/Sets/Classical_sets.v16
-rw-r--r--theories/Sets/Constructive_sets.v16
-rw-r--r--theories/Sets/Finite_sets.v4
-rw-r--r--theories/Sets/Finite_sets_facts.v18
-rw-r--r--theories/Sets/Image.v10
-rw-r--r--theories/Sets/Infinite_sets.v12
-rw-r--r--theories/Sets/Integers.v22
-rw-r--r--theories/Sets/Multiset.v16
-rw-r--r--theories/Sets/Partial_Order.v18
-rw-r--r--theories/Sets/Powerset.v26
-rw-r--r--theories/Sets/Powerset_Classical_facts.v40
-rw-r--r--theories/Sets/Powerset_facts.v34
-rw-r--r--theories/Sets/Relations_1_facts.v18
-rw-r--r--theories/Sets/Relations_2_facts.v12
-rw-r--r--theories/Sets/Relations_3_facts.v26
-rw-r--r--theories/Sets/Uniset.v28
-rw-r--r--theories/Sorting/Heap.v20
-rw-r--r--theories/Sorting/PermutSetoid.v8
-rw-r--r--theories/Strings/String.v126
-rw-r--r--theories/Wellfounded/Disjoint_Union.v2
-rw-r--r--theories/Wellfounded/Inclusion.v2
-rw-r--r--theories/Wellfounded/Inverse_Image.v4
-rw-r--r--theories/Wellfounded/Lexicographic_Exponentiation.v26
-rw-r--r--theories/Wellfounded/Lexicographic_Product.v6
-rw-r--r--theories/Wellfounded/Transitive_Closure.v4
-rw-r--r--theories/Wellfounded/Union.v4
-rw-r--r--theories/Wellfounded/Well_Ordering.v6
-rw-r--r--theories/ZArith/ZArith_dec.v4
-rw-r--r--theories/ZArith/Zcomplements.v4
-rw-r--r--theories/ZArith/Zdigits.v26
-rw-r--r--theories/ZArith/Zlogarithm.v42
-rw-r--r--theories/ZArith/Znumtheory.v12
-rw-r--r--theories/ZArith/Zwf.v4
120 files changed, 4143 insertions, 4143 deletions
diff --git a/theories/Arith/Between.v b/theories/Arith/Between.v
index 67039072b..69dded848 100644
--- a/theories/Arith/Between.v
+++ b/theories/Arith/Between.v
@@ -74,7 +74,7 @@ Section Between.
Lemma in_int_intro : forall p q r, p <= r -> r < q -> in_int p q r.
Proof.
- red in |- *; auto with arith.
+ red; auto with arith.
Qed.
Hint Resolve in_int_intro: arith v62.
@@ -149,7 +149,7 @@ Section Between.
between k l ->
(forall n:nat, in_int k l n -> P n -> ~ Q n) -> ~ exists_between k l.
Proof.
- induction 1; red in |- *; intros.
+ induction 1; red; intros.
absurd (k < k); auto with arith.
absurd (Q l); auto with arith.
elim (exists_in_int k (S l)); auto with arith; intros l' inl' Ql'.
diff --git a/theories/Arith/Compare.v b/theories/Arith/Compare.v
index dc4da448e..d304b99bd 100644
--- a/theories/Arith/Compare.v
+++ b/theories/Arith/Compare.v
@@ -39,7 +39,7 @@ Proof.
lapply (lt_le_S m n); auto with arith.
intro H'; lapply (le_lt_or_eq (S m) n); auto with arith.
induction 1; auto with arith.
- right; exists (n - S (S m)); simpl in |- *.
+ right; exists (n - S (S m)); simpl.
rewrite (plus_comm m (n - S (S m))).
rewrite (plus_n_Sm (n - S (S m)) m).
rewrite (plus_n_Sm (n - S (S m)) (S m)).
diff --git a/theories/Arith/Compare_dec.v b/theories/Arith/Compare_dec.v
index 1cb91f9a5..f6801da20 100644
--- a/theories/Arith/Compare_dec.v
+++ b/theories/Arith/Compare_dec.v
@@ -256,7 +256,7 @@ Lemma leb_correct : forall m n, m <= n -> leb m n = true.
Proof.
induction m as [| m IHm]. trivial.
destruct n. intro H. elim (le_Sn_O _ H).
- intros. simpl in |- *. apply IHm. apply le_S_n. assumption.
+ intros. simpl. apply IHm. apply le_S_n. assumption.
Qed.
Lemma leb_complete : forall m n, leb m n = true -> m <= n.
diff --git a/theories/Arith/Div2.v b/theories/Arith/Div2.v
index da1d9e989..68652b70c 100644
--- a/theories/Arith/Div2.v
+++ b/theories/Arith/Div2.v
@@ -43,7 +43,7 @@ Qed.
Lemma lt_div2 : forall n, 0 < n -> div2 n < n.
Proof.
- intro n. pattern n in |- *. apply ind_0_1_SS.
+ intro n. pattern n. apply ind_0_1_SS.
(* n = 0 *)
inversion 1.
(* n=1 *)
@@ -99,12 +99,12 @@ Hint Unfold double: arith.
Lemma double_S : forall n, double (S n) = S (S (double n)).
Proof.
- intro. unfold double in |- *. simpl in |- *. auto with arith.
+ intro. unfold double. simpl. auto with arith.
Qed.
Lemma double_plus : forall n (m:nat), double (n + m) = double n + double m.
Proof.
- intros m n. unfold double in |- *.
+ intros m n. unfold double.
do 2 rewrite plus_assoc_reverse. rewrite (plus_permute n).
reflexivity.
Qed.
@@ -115,7 +115,7 @@ Lemma even_odd_double :
forall n,
(even n <-> n = double (div2 n)) /\ (odd n <-> n = S (double (div2 n))).
Proof.
- intro n. pattern n in |- *. apply ind_0_1_SS.
+ intro n. pattern n. apply ind_0_1_SS.
(* n = 0 *)
split; split; auto with arith.
intro H. inversion H.
@@ -126,11 +126,11 @@ Proof.
intros. destruct H as ((IH1,IH2),(IH3,IH4)).
split; split.
intro H. inversion H. inversion H1.
- simpl in |- *. rewrite (double_S (div2 n0)). auto with arith.
- simpl in |- *. rewrite (double_S (div2 n0)). intro H. injection H. auto with arith.
+ simpl. rewrite (double_S (div2 n0)). auto with arith.
+ simpl. rewrite (double_S (div2 n0)). intro H. injection H. auto with arith.
intro H. inversion H. inversion H1.
- simpl in |- *. rewrite (double_S (div2 n0)). auto with arith.
- simpl in |- *. rewrite (double_S (div2 n0)). intro H. injection H. auto with arith.
+ simpl. rewrite (double_S (div2 n0)). auto with arith.
+ simpl. rewrite (double_S (div2 n0)). intro H. injection H. auto with arith.
Qed.
(** Specializations *)
diff --git a/theories/Arith/EqNat.v b/theories/Arith/EqNat.v
index 1dc69f612..331990c54 100644
--- a/theories/Arith/EqNat.v
+++ b/theories/Arith/EqNat.v
@@ -23,7 +23,7 @@ Fixpoint eq_nat n m : Prop :=
end.
Theorem eq_nat_refl : forall n, eq_nat n n.
- induction n; simpl in |- *; auto.
+ induction n; simpl; auto.
Qed.
Hint Resolve eq_nat_refl: arith v62.
@@ -35,7 +35,7 @@ Qed.
Hint Immediate eq_eq_nat: arith v62.
Lemma eq_nat_eq : forall n m, eq_nat n m -> n = m.
- induction n; induction m; simpl in |- *; contradiction || auto with arith.
+ induction n; induction m; simpl; contradiction || auto with arith.
Qed.
Hint Immediate eq_nat_eq: arith v62.
@@ -55,11 +55,11 @@ Proof.
induction n.
destruct m as [| n].
auto with arith.
- intros; right; red in |- *; trivial with arith.
+ intros; right; red; trivial with arith.
destruct m as [| n0].
- right; red in |- *; auto with arith.
+ right; red; auto with arith.
intros.
- simpl in |- *.
+ simpl.
apply IHn.
Defined.
@@ -76,12 +76,12 @@ Fixpoint beq_nat n m : bool :=
Lemma beq_nat_refl : forall n, true = beq_nat n n.
Proof.
- intro x; induction x; simpl in |- *; auto.
+ intro x; induction x; simpl; auto.
Qed.
Definition beq_nat_eq : forall x y, true = beq_nat x y -> x = y.
Proof.
- double induction x y; simpl in |- *.
+ double induction x y; simpl.
reflexivity.
intros n H1 H2. discriminate H2.
intros n H1 H2. discriminate H2.
diff --git a/theories/Arith/Euclid.v b/theories/Arith/Euclid.v
index 513fd1108..6dd0272a8 100644
--- a/theories/Arith/Euclid.v
+++ b/theories/Arith/Euclid.v
@@ -19,16 +19,16 @@ Inductive diveucl a b : Set :=
Lemma eucl_dev : forall n, n > 0 -> forall m:nat, diveucl m n.
Proof.
- intros b H a; pattern a in |- *; apply gt_wf_rec; intros n H0.
+ intros b H a; pattern a; apply gt_wf_rec; intros n H0.
elim (le_gt_dec b n).
intro lebn.
elim (H0 (n - b)); auto with arith.
intros q r g e.
- apply divex with (S q) r; simpl in |- *; auto with arith.
+ apply divex with (S q) r; simpl; auto with arith.
elim plus_assoc.
elim e; auto with arith.
intros gtbn.
- apply divex with 0 n; simpl in |- *; auto with arith.
+ apply divex with 0 n; simpl; auto with arith.
Defined.
Lemma quotient :
@@ -36,17 +36,17 @@ Lemma quotient :
n > 0 ->
forall m:nat, {q : nat | exists r : nat, m = q * n + r /\ n > r}.
Proof.
- intros b H a; pattern a in |- *; apply gt_wf_rec; intros n H0.
+ intros b H a; pattern a; apply gt_wf_rec; intros n H0.
elim (le_gt_dec b n).
intro lebn.
elim (H0 (n - b)); auto with arith.
intros q Hq; exists (S q).
elim Hq; intros r Hr.
- exists r; simpl in |- *; elim Hr; intros.
+ exists r; simpl; elim Hr; intros.
elim plus_assoc.
elim H1; auto with arith.
intros gtbn.
- exists 0; exists n; simpl in |- *; auto with arith.
+ exists 0; exists n; simpl; auto with arith.
Defined.
Lemma modulo :
@@ -54,15 +54,15 @@ Lemma modulo :
n > 0 ->
forall m:nat, {r : nat | exists q : nat, m = q * n + r /\ n > r}.
Proof.
- intros b H a; pattern a in |- *; apply gt_wf_rec; intros n H0.
+ intros b H a; pattern a; apply gt_wf_rec; intros n H0.
elim (le_gt_dec b n).
intro lebn.
elim (H0 (n - b)); auto with arith.
intros r Hr; exists r.
elim Hr; intros q Hq.
- elim Hq; intros; exists (S q); simpl in |- *.
+ elim Hq; intros; exists (S q); simpl.
elim plus_assoc.
elim H1; auto with arith.
intros gtbn.
- exists n; exists 0; simpl in |- *; auto with arith.
+ exists n; exists 0; simpl; auto with arith.
Defined.
diff --git a/theories/Arith/Even.v b/theories/Arith/Even.v
index 9a84a7f2e..23dc1d259 100644
--- a/theories/Arith/Even.v
+++ b/theories/Arith/Even.v
@@ -145,7 +145,7 @@ Lemma even_mult_aux :
forall n m,
(odd (n * m) <-> odd n /\ odd m) /\ (even (n * m) <-> even n \/ even m).
Proof.
- intros n; elim n; simpl in |- *; auto with arith.
+ intros n; elim n; simpl; auto with arith.
intros m; split; split; auto with arith.
intros H'; inversion H'.
intros H'; elim H'; auto.
diff --git a/theories/Arith/Factorial.v b/theories/Arith/Factorial.v
index 82643cdcd..1432995e3 100644
--- a/theories/Arith/Factorial.v
+++ b/theories/Arith/Factorial.v
@@ -23,7 +23,7 @@ Arguments fact n%nat.
Lemma lt_O_fact : forall n:nat, 0 < fact n.
Proof.
- simple induction n; unfold lt in |- *; simpl in |- *; auto with arith.
+ simple induction n; unfold lt; simpl; auto with arith.
Qed.
Lemma fact_neq_0 : forall n:nat, fact n <> 0.
diff --git a/theories/Arith/Gt.v b/theories/Arith/Gt.v
index f9bf0f2fd..04d44f9c9 100644
--- a/theories/Arith/Gt.v
+++ b/theories/Arith/Gt.v
@@ -47,7 +47,7 @@ Hint Immediate gt_S_n: arith v62.
Theorem gt_S : forall n m, S n > m -> n > m \/ m = n.
Proof.
- intros n m H; unfold gt in |- *; apply le_lt_or_eq; auto with arith.
+ intros n m H; unfold gt; apply le_lt_or_eq; auto with arith.
Qed.
Lemma gt_pred : forall n m, m > S n -> pred m > n.
@@ -110,23 +110,23 @@ Hint Resolve le_gt_S: arith v62.
Theorem le_gt_trans : forall n m p, m <= n -> m > p -> n > p.
Proof.
- red in |- *; intros; apply lt_le_trans with m; auto with arith.
+ red; intros; apply lt_le_trans with m; auto with arith.
Qed.
Theorem gt_le_trans : forall n m p, n > m -> p <= m -> n > p.
Proof.
- red in |- *; intros; apply le_lt_trans with m; auto with arith.
+ red; intros; apply le_lt_trans with m; auto with arith.
Qed.
Lemma gt_trans : forall n m p, n > m -> m > p -> n > p.
Proof.
- red in |- *; intros n m p H1 H2.
+ red; intros n m p H1 H2.
apply lt_trans with m; auto with arith.
Qed.
Theorem gt_trans_S : forall n m p, S n > m -> m > p -> n > p.
Proof.
- red in |- *; intros; apply lt_le_trans with m; auto with arith.
+ red; intros; apply lt_le_trans with m; auto with arith.
Qed.
Hint Resolve gt_trans_S le_gt_trans gt_le_trans: arith v62.
@@ -142,7 +142,7 @@ Qed.
Lemma plus_gt_reg_l : forall n m p, p + n > p + m -> n > m.
Proof.
- red in |- *; intros n m p H; apply plus_lt_reg_l with p; auto with arith.
+ red; intros n m p H; apply plus_lt_reg_l with p; auto with arith.
Qed.
Lemma plus_gt_compat_l : forall n m p, n > m -> p + n > p + m.
diff --git a/theories/Arith/Le.v b/theories/Arith/Le.v
index 717705a1c..35d200055 100644
--- a/theories/Arith/Le.v
+++ b/theories/Arith/Le.v
@@ -46,8 +46,8 @@ Qed.
Theorem le_Sn_0 : forall n, ~ S n <= 0.
Proof.
- red in |- *; intros n H.
- change (IsSucc 0) in |- *; elim H; simpl in |- *; auto with arith.
+ red; intros n H.
+ change (IsSucc 0); elim H; simpl; auto with arith.
Qed.
Hint Resolve le_0_n le_Sn_0: arith v62.
diff --git a/theories/Arith/Lt.v b/theories/Arith/Lt.v
index 1f7e6e018..940448202 100644
--- a/theories/Arith/Lt.v
+++ b/theories/Arith/Lt.v
@@ -51,7 +51,7 @@ Qed.
Theorem lt_not_le : forall n m, n < m -> ~ m <= n.
Proof.
- red in |- *; intros n m Lt Le; exact (le_not_lt m n Le Lt).
+ red; intros n m Lt Le; exact (le_not_lt m n Le Lt).
Qed.
Hint Immediate le_not_lt lt_not_le: arith v62.
@@ -107,12 +107,12 @@ Qed.
Lemma lt_pred : forall n m, S n < m -> n < pred m.
Proof.
-induction 1; simpl in |- *; auto with arith.
+induction 1; simpl; auto with arith.
Qed.
Hint Immediate lt_pred: arith v62.
Lemma lt_pred_n_n : forall n, 0 < n -> pred n < n.
-destruct 1; simpl in |- *; auto with arith.
+destruct 1; simpl; auto with arith.
Qed.
Hint Resolve lt_pred_n_n: arith v62.
@@ -159,7 +159,7 @@ Hint Immediate lt_le_weak: arith v62.
Theorem le_or_lt : forall n m, n <= m \/ m < n.
Proof.
- intros n m; pattern n, m in |- *; apply nat_double_ind; auto with arith.
+ intros n m; pattern n, m; apply nat_double_ind; auto with arith.
induction 1; auto with arith.
Qed.
diff --git a/theories/Arith/Minus.v b/theories/Arith/Minus.v
index 7ec37a65e..85ac944cd 100644
--- a/theories/Arith/Minus.v
+++ b/theories/Arith/Minus.v
@@ -29,7 +29,7 @@ Implicit Types m n p : nat.
Lemma minus_n_O : forall n, n = n - 0.
Proof.
- induction n; simpl in |- *; auto with arith.
+ induction n; simpl; auto with arith.
Qed.
Hint Resolve minus_n_O: arith v62.
@@ -37,21 +37,21 @@ Hint Resolve minus_n_O: arith v62.
Lemma minus_Sn_m : forall n m, m <= n -> S (n - m) = S n - m.
Proof.
- intros n m Le; pattern m, n in |- *; apply le_elim_rel; simpl in |- *;
+ intros n m Le; pattern m, n; apply le_elim_rel; simpl;
auto with arith.
Qed.
Hint Resolve minus_Sn_m: arith v62.
Theorem pred_of_minus : forall n, pred n = n - 1.
Proof.
- intro x; induction x; simpl in |- *; auto with arith.
+ intro x; induction x; simpl; auto with arith.
Qed.
(** * Diagonal *)
Lemma minus_diag : forall n, n - n = 0.
Proof.
- induction n; simpl in |- *; auto with arith.
+ induction n; simpl; auto with arith.
Qed.
Lemma minus_diag_reverse : forall n, 0 = n - n.
@@ -66,7 +66,7 @@ Notation minus_n_n := minus_diag_reverse.
Lemma minus_plus_simpl_l_reverse : forall n m p, n - m = p + n - (p + m).
Proof.
- induction p; simpl in |- *; auto with arith.
+ induction p; simpl; auto with arith.
Qed.
Hint Resolve minus_plus_simpl_l_reverse: arith v62.
@@ -74,7 +74,7 @@ Hint Resolve minus_plus_simpl_l_reverse: arith v62.
Lemma plus_minus : forall n m p, n = m + p -> p = n - m.
Proof.
- intros n m p; pattern m, n in |- *; apply nat_double_ind; simpl in |- *;
+ intros n m p; pattern m, n; apply nat_double_ind; simpl;
intros.
replace (n0 - 0) with n0; auto with arith.
absurd (0 = S (n0 + p)); auto with arith.
@@ -83,20 +83,20 @@ Qed.
Hint Immediate plus_minus: arith v62.
Lemma minus_plus : forall n m, n + m - n = m.
- symmetry in |- *; auto with arith.
+ symmetry ; auto with arith.
Qed.
Hint Resolve minus_plus: arith v62.
Lemma le_plus_minus : forall n m, n <= m -> m = n + (m - n).
Proof.
- intros n m Le; pattern n, m in |- *; apply le_elim_rel; simpl in |- *;
+ intros n m Le; pattern n, m; apply le_elim_rel; simpl;
auto with arith.
Qed.
Hint Resolve le_plus_minus: arith v62.
Lemma le_plus_minus_r : forall n m, n <= m -> n + (m - n) = m.
Proof.
- symmetry in |- *; auto with arith.
+ symmetry ; auto with arith.
Qed.
Hint Resolve le_plus_minus_r: arith v62.
@@ -132,7 +132,7 @@ Qed.
Lemma lt_minus : forall n m, m <= n -> 0 < m -> n - m < n.
Proof.
- intros n m Le; pattern m, n in |- *; apply le_elim_rel; simpl in |- *;
+ intros n m Le; pattern m, n; apply le_elim_rel; simpl;
auto using le_minus with arith.
intros; absurd (0 < 0); auto with arith.
Qed.
@@ -140,7 +140,7 @@ Hint Resolve lt_minus: arith v62.
Lemma lt_O_minus_lt : forall n m, 0 < n - m -> m < n.
Proof.
- intros n m; pattern n, m in |- *; apply nat_double_ind; simpl in |- *;
+ intros n m; pattern n, m; apply nat_double_ind; simpl;
auto with arith.
intros; absurd (0 < 0); trivial with arith.
Qed.
@@ -148,9 +148,9 @@ Hint Immediate lt_O_minus_lt: arith v62.
Theorem not_le_minus_0 : forall n m, ~ m <= n -> n - m = 0.
Proof.
- intros y x; pattern y, x in |- *; apply nat_double_ind;
- [ simpl in |- *; trivial with arith
+ intros y x; pattern y, x; apply nat_double_ind;
+ [ simpl; trivial with arith
| intros n H; absurd (0 <= S n); [ assumption | apply le_O_n ]
- | simpl in |- *; intros n m H1 H2; apply H1; unfold not in |- *; intros H3;
+ | simpl; intros n m H1 H2; apply H1; unfold not; intros H3;
apply H2; apply le_n_S; assumption ].
Qed.
diff --git a/theories/Arith/Mult.v b/theories/Arith/Mult.v
index 64b0d4dd3..0c44cfaf1 100644
--- a/theories/Arith/Mult.v
+++ b/theories/Arith/Mult.v
@@ -23,7 +23,7 @@ Implicit Types m n p : nat.
Lemma mult_0_r : forall n, n * 0 = 0.
Proof.
- intro; symmetry in |- *; apply mult_n_O.
+ intro; symmetry ; apply mult_n_O.
Qed.
Lemma mult_0_l : forall n, 0 * n = 0.
@@ -35,7 +35,7 @@ Qed.
Lemma mult_1_l : forall n, 1 * n = n.
Proof.
- simpl in |- *; auto with arith.
+ simpl; auto with arith.
Qed.
Hint Resolve mult_1_l: arith v62.
@@ -68,7 +68,7 @@ Hint Resolve mult_plus_distr_r: arith v62.
Lemma mult_plus_distr_l : forall n m p, n * (m + p) = n * m + n * p.
Proof.
induction n. trivial.
- intros. simpl in |- *. rewrite IHn. symmetry. apply plus_permute_2_in_4.
+ intros. simpl. rewrite IHn. symmetry. apply plus_permute_2_in_4.
Qed.
Lemma mult_minus_distr_r : forall n m p, (n - m) * p = n * p - m * p.
@@ -137,13 +137,13 @@ Qed.
Lemma mult_O_le : forall n m, m = 0 \/ n <= m * n.
Proof.
- induction m; simpl in |- *; auto with arith.
+ induction m; simpl; auto with arith.
Qed.
Hint Resolve mult_O_le: arith v62.
Lemma mult_le_compat_l : forall n m p, n <= m -> p * n <= p * m.
Proof.
- induction p as [| p IHp]; intros; simpl in |- *.
+ induction p as [| p IHp]; intros; simpl.
apply le_n.
auto using plus_le_compat.
Qed.
@@ -167,7 +167,7 @@ Proof.
assumption.
apply le_plus_l.
(* m*p<=m0*q -> m*p<=(S m0)*q *)
- simpl in |- *; apply le_trans with (m0 * q).
+ simpl; apply le_trans with (m0 * q).
assumption.
apply le_plus_r.
Qed.
@@ -232,7 +232,7 @@ Fixpoint mult_acc (s:nat) m n : nat :=
Lemma mult_acc_aux : forall n m p, m + n * p = mult_acc m p n.
Proof.
- induction n as [| p IHp]; simpl in |- *; auto.
+ induction n as [| p IHp]; simpl; auto.
intros s m; rewrite <- plus_tail_plus; rewrite <- IHp.
rewrite <- plus_assoc_reverse; apply f_equal2; auto.
rewrite plus_comm; auto.
@@ -242,7 +242,7 @@ Definition tail_mult n m := mult_acc 0 m n.
Lemma mult_tail_mult : forall n m, n * m = tail_mult n m.
Proof.
- intros; unfold tail_mult in |- *; rewrite <- mult_acc_aux; auto.
+ intros; unfold tail_mult; rewrite <- mult_acc_aux; auto.
Qed.
(** [TailSimpl] transforms any [tail_plus] and [tail_mult] into [plus]
@@ -250,4 +250,4 @@ Qed.
Ltac tail_simpl :=
repeat rewrite <- plus_tail_plus; repeat rewrite <- mult_tail_mult;
- simpl in |- *.
+ simpl.
diff --git a/theories/Arith/Peano_dec.v b/theories/Arith/Peano_dec.v
index e68ba9590..e121ce30d 100644
--- a/theories/Arith/Peano_dec.v
+++ b/theories/Arith/Peano_dec.v
@@ -29,7 +29,7 @@ Defined.
Hint Resolve O_or_S eq_nat_dec: arith.
Theorem dec_eq_nat : forall n m, decidable (n = m).
- intros x y; unfold decidable in |- *; elim (eq_nat_dec x y); auto with arith.
+ intros x y; unfold decidable; elim (eq_nat_dec x y); auto with arith.
Defined.
Definition UIP_nat:= Eqdep_dec.UIP_dec eq_nat_dec.
diff --git a/theories/Arith/Plus.v b/theories/Arith/Plus.v
index c036d06e1..5428ada32 100644
--- a/theories/Arith/Plus.v
+++ b/theories/Arith/Plus.v
@@ -33,7 +33,7 @@ Definition plus_0_r n := eq_sym (plus_n_O n).
Lemma plus_comm : forall n m, n + m = m + n.
Proof.
- intros n m; elim n; simpl in |- *; auto with arith.
+ intros n m; elim n; simpl; auto with arith.
intros y H; elim (plus_n_Sm m y); auto with arith.
Qed.
Hint Immediate plus_comm: arith v62.
@@ -45,7 +45,7 @@ Definition plus_Snm_nSm : forall n m, S n + m = n + S m:=
Lemma plus_assoc : forall n m p, n + (m + p) = n + m + p.
Proof.
- intros n m p; elim n; simpl in |- *; auto with arith.
+ intros n m p; elim n; simpl; auto with arith.
Qed.
Hint Resolve plus_assoc: arith v62.
@@ -64,42 +64,42 @@ Hint Resolve plus_assoc_reverse: arith v62.
Lemma plus_reg_l : forall n m p, p + n = p + m -> n = m.
Proof.
- intros m p n; induction n; simpl in |- *; auto with arith.
+ intros m p n; induction n; simpl; auto with arith.
Qed.
Lemma plus_le_reg_l : forall n m p, p + n <= p + m -> n <= m.
Proof.
- induction p; simpl in |- *; auto with arith.
+ induction p; simpl; auto with arith.
Qed.
Lemma plus_lt_reg_l : forall n m p, p + n < p + m -> n < m.
Proof.
- induction p; simpl in |- *; auto with arith.
+ induction p; simpl; auto with arith.
Qed.
(** * Compatibility with order *)
Lemma plus_le_compat_l : forall n m p, n <= m -> p + n <= p + m.
Proof.
- induction p; simpl in |- *; auto with arith.
+ induction p; simpl; auto with arith.
Qed.
Hint Resolve plus_le_compat_l: arith v62.
Lemma plus_le_compat_r : forall n m p, n <= m -> n + p <= m + p.
Proof.
- induction 1; simpl in |- *; auto with arith.
+ induction 1; simpl; auto with arith.
Qed.
Hint Resolve plus_le_compat_r: arith v62.
Lemma le_plus_l : forall n m, n <= n + m.
Proof.
- induction n; simpl in |- *; auto with arith.
+ induction n; simpl; auto with arith.
Qed.
Hint Resolve le_plus_l: arith v62.
Lemma le_plus_r : forall n m, m <= n + m.
Proof.
- intros n m; elim n; simpl in |- *; auto with arith.
+ intros n m; elim n; simpl; auto with arith.
Qed.
Hint Resolve le_plus_r: arith v62.
@@ -117,7 +117,7 @@ Hint Immediate lt_plus_trans: arith v62.
Lemma plus_lt_compat_l : forall n m p, n < m -> p + n < p + m.
Proof.
- induction p; simpl in |- *; auto with arith.
+ induction p; simpl; auto with arith.
Qed.
Hint Resolve plus_lt_compat_l: arith v62.
@@ -131,18 +131,18 @@ Hint Resolve plus_lt_compat_r: arith v62.
Lemma plus_le_compat : forall n m p q, n <= m -> p <= q -> n + p <= m + q.
Proof.
intros n m p q H H0.
- elim H; simpl in |- *; auto with arith.
+ elim H; simpl; auto with arith.
Qed.
Lemma plus_le_lt_compat : forall n m p q, n <= m -> p < q -> n + p < m + q.
Proof.
- unfold lt in |- *. intros. change (S n + p <= m + q) in |- *. rewrite plus_Snm_nSm.
+ unfold lt. intros. change (S n + p <= m + q). rewrite plus_Snm_nSm.
apply plus_le_compat; assumption.
Qed.
Lemma plus_lt_le_compat : forall n m p q, n < m -> p <= q -> n + p < m + q.
Proof.
- unfold lt in |- *. intros. change (S n + p <= m + q) in |- *. apply plus_le_compat; assumption.
+ unfold lt. intros. change (S n + p <= m + q). apply plus_le_compat; assumption.
Qed.
Lemma plus_lt_compat : forall n m p q, n < m -> p < q -> n + p < m + q.
@@ -190,8 +190,8 @@ Fixpoint tail_plus n m : nat :=
end.
Lemma plus_tail_plus : forall n m, n + m = tail_plus n m.
-induction n as [| n IHn]; simpl in |- *; auto.
-intro m; rewrite <- IHn; simpl in |- *; auto.
+induction n as [| n IHn]; simpl; auto.
+intro m; rewrite <- IHn; simpl; auto.
Qed.
(** * Discrimination *)
diff --git a/theories/Arith/Wf_nat.v b/theories/Arith/Wf_nat.v
index e264ccb5d..e579010ba 100644
--- a/theories/Arith/Wf_nat.v
+++ b/theories/Arith/Wf_nat.v
@@ -24,14 +24,14 @@ Definition gtof (a b:A) := f b > f a.
Theorem well_founded_ltof : well_founded ltof.
Proof.
- red in |- *.
+ red.
cut (forall n (a:A), f a < n -> Acc ltof a).
intros H a; apply (H (S (f a))); auto with arith.
induction n.
intros; absurd (f a < 0); auto with arith.
intros a ltSma.
apply Acc_intro.
- unfold ltof in |- *; intros b ltfafb.
+ unfold ltof; intros b ltfafb.
apply IHn.
apply lt_le_trans with (f a); auto with arith.
Defined.
@@ -73,7 +73,7 @@ Proof.
intros; absurd (f a < 0); auto with arith.
intros a ltSma.
apply F.
- unfold ltof in |- *; intros b ltfafb.
+ unfold ltof; intros b ltfafb.
apply IHn.
apply lt_le_trans with (f a); auto with arith.
Defined.
@@ -108,7 +108,7 @@ Hypothesis H_compat : forall x y:A, R x y -> f x < f y.
Theorem well_founded_lt_compat : well_founded R.
Proof.
- red in |- *.
+ red.
cut (forall n (a:A), f a < n -> Acc R a).
intros H a; apply (H (S (f a))); auto with arith.
induction n.
@@ -161,8 +161,8 @@ Lemma lt_wf_double_rec :
(forall p q, p < n -> P p q) ->
(forall p, p < m -> P n p) -> P n m) -> forall n m, P n m.
Proof.
- intros P Hrec p; pattern p in |- *; apply lt_wf_rec.
- intros n H q; pattern q in |- *; apply lt_wf_rec; auto with arith.
+ intros P Hrec p; pattern p; apply lt_wf_rec.
+ intros n H q; pattern q; apply lt_wf_rec; auto with arith.
Defined.
Lemma lt_wf_double_ind :
@@ -171,8 +171,8 @@ Lemma lt_wf_double_ind :
(forall p (q:nat), p < n -> P p q) ->
(forall p, p < m -> P n p) -> P n m) -> forall n m, P n m.
Proof.
- intros P Hrec p; pattern p in |- *; apply lt_wf_ind.
- intros n H q; pattern q in |- *; apply lt_wf_ind; auto with arith.
+ intros P Hrec p; pattern p; apply lt_wf_ind.
+ intros n H q; pattern q; apply lt_wf_ind; auto with arith.
Qed.
Hint Resolve lt_wf: arith.
@@ -190,7 +190,7 @@ Section LT_WF_REL.
Remark acc_lt_rel : forall x:A, (exists n, F x n) -> Acc R x.
Proof.
intros x [n fxn]; generalize dependent x.
- pattern n in |- *; apply lt_wf_ind; intros.
+ pattern n; apply lt_wf_ind; intros.
constructor; intros.
destruct (F_compat y x) as (x0,H1,H2); trivial.
apply (H x0); auto.
diff --git a/theories/Bool/BoolEq.v b/theories/Bool/BoolEq.v
index d40e56bf6..dae282a17 100644
--- a/theories/Bool/BoolEq.v
+++ b/theories/Bool/BoolEq.v
@@ -52,12 +52,12 @@ Section Bool_eq_dec.
Definition not_eq_false_beq : forall x y:A, x <> y -> false = beq x y.
Proof.
intros x y H.
- symmetry in |- *.
+ symmetry .
apply not_true_is_false.
intro.
apply H.
apply beq_eq.
- symmetry in |- *.
+ symmetry .
assumption.
Defined.
diff --git a/theories/FSets/FMapAVL.v b/theories/FSets/FMapAVL.v
index bed5ce742..980cfeac6 100644
--- a/theories/FSets/FMapAVL.v
+++ b/theories/FSets/FMapAVL.v
@@ -603,12 +603,12 @@ Qed.
Lemma lt_leaf : forall x, lt_tree x (Leaf elt).
Proof.
- unfold lt_tree in |- *; intros; intuition_in.
+ unfold lt_tree; intros; intuition_in.
Qed.
Lemma gt_leaf : forall x, gt_tree x (Leaf elt).
Proof.
- unfold gt_tree in |- *; intros; intuition_in.
+ unfold gt_tree; intros; intuition_in.
Qed.
Lemma lt_tree_node : forall x y l r e h,
@@ -1388,8 +1388,8 @@ Lemma fold_equiv_aux :
L.fold f (elements_aux acc s) a = L.fold f acc (fold f s a).
Proof.
simple induction s.
- simpl in |- *; intuition.
- simpl in |- *; intros.
+ simpl; intuition.
+ simpl; intros.
rewrite H.
simpl.
apply H0.
@@ -1399,11 +1399,11 @@ Lemma fold_equiv :
forall (A : Type) (s : t elt) (f : key -> elt -> A -> A) (a : A),
fold f s a = fold' f s a.
Proof.
- unfold fold', elements in |- *.
- simple induction s; simpl in |- *; auto; intros.
+ unfold fold', elements.
+ simple induction s; simpl; auto; intros.
rewrite fold_equiv_aux.
rewrite H0.
- simpl in |- *; auto.
+ simpl; auto.
Qed.
Lemma fold_1 :
diff --git a/theories/FSets/FSetBridge.v b/theories/FSets/FSetBridge.v
index f0a588379..1ac544e1f 100644
--- a/theories/FSets/FSetBridge.v
+++ b/theories/FSets/FSetBridge.v
@@ -44,7 +44,7 @@ Module DepOfNodep (Import M: S) <: Sdep with Module E := M.E.
Definition add : forall (x : elt) (s : t), {s' : t | Add x s s'}.
Proof.
intros; exists (add x s); auto.
- unfold Add in |- *; intuition.
+ unfold Add; intuition.
elim (E.eq_dec x y); auto.
intros; right.
eapply add_3; eauto.
@@ -131,7 +131,7 @@ Module DepOfNodep (Import M: S) <: Sdep with Module E := M.E.
forall (P : elt -> Prop) (Pdec : forall x : elt, {P x} + {~ P x}),
compat_P E.eq P -> compat_bool E.eq (fdec Pdec).
Proof.
- unfold compat_P, compat_bool, Proper, respectful, fdec in |- *; intros.
+ unfold compat_P, compat_bool, Proper, respectful, fdec; intros.
generalize (E.eq_sym H0); case (Pdec x); case (Pdec y); firstorder.
Qed.
@@ -147,11 +147,11 @@ Module DepOfNodep (Import M: S) <: Sdep with Module E := M.E.
intuition.
eauto with set.
generalize (filter_2 H0 H1).
- unfold fdec in |- *.
+ unfold fdec.
case (Pdec x); intuition.
inversion H2.
apply filter_3; auto.
- unfold fdec in |- *; simpl in |- *.
+ unfold fdec; simpl.
case (Pdec x); intuition.
Qed.
@@ -162,17 +162,17 @@ Module DepOfNodep (Import M: S) <: Sdep with Module E := M.E.
intros.
generalize (for_all_1 (s:=s) (f:=fdec Pdec))
(for_all_2 (s:=s) (f:=fdec Pdec)).
- case (for_all (fdec Pdec) s); unfold For_all in |- *; [ left | right ];
+ case (for_all (fdec Pdec) s); unfold For_all; [ left | right ];
intros.
assert (compat_bool E.eq (fdec Pdec)); auto.
generalize (H0 H3 Logic.eq_refl _ H2).
- unfold fdec in |- *.
+ unfold fdec.
case (Pdec x); intuition.
inversion H4.
intuition.
absurd (false = true); [ auto with bool | apply H; auto ].
intro.
- unfold fdec in |- *.
+ unfold fdec.
case (Pdec x); intuition.
Qed.
@@ -183,19 +183,19 @@ Module DepOfNodep (Import M: S) <: Sdep with Module E := M.E.
intros.
generalize (exists_1 (s:=s) (f:=fdec Pdec))
(exists_2 (s:=s) (f:=fdec Pdec)).
- case (exists_ (fdec Pdec) s); unfold Exists in |- *; [ left | right ];
+ case (exists_ (fdec Pdec) s); unfold Exists; [ left | right ];
intros.
elim H0; auto; intros.
exists x; intuition.
generalize H4.
- unfold fdec in |- *.
+ unfold fdec.
case (Pdec x); intuition.
inversion H2.
intuition.
elim H2; intros.
absurd (false = true); [ auto with bool | apply H; auto ].
exists x; intuition.
- unfold fdec in |- *.
+ unfold fdec.
case (Pdec x); intuition.
Qed.
@@ -212,26 +212,26 @@ Module DepOfNodep (Import M: S) <: Sdep with Module E := M.E.
exists (partition (fdec Pdec) s).
generalize (partition_1 s (f:=fdec Pdec)) (partition_2 s (f:=fdec Pdec)).
case (partition (fdec Pdec) s).
- intros s1 s2; simpl in |- *.
+ intros s1 s2; simpl.
intros; assert (compat_bool E.eq (fdec Pdec)); auto.
intros; assert (compat_bool E.eq (fun x => negb (fdec Pdec x))).
- generalize H2; unfold compat_bool, Proper, respectful in |- *; intuition;
+ generalize H2; unfold compat_bool, Proper, respectful; intuition;
apply (f_equal negb); auto.
intuition.
- generalize H4; unfold For_all, Equal in |- *; intuition.
+ generalize H4; unfold For_all, Equal; intuition.
elim (H0 x); intros.
assert (fdec Pdec x = true).
eapply filter_2; eauto with set.
- generalize H8; unfold fdec in |- *; case (Pdec x); intuition.
+ generalize H8; unfold fdec; case (Pdec x); intuition.
inversion H9.
- generalize H; unfold For_all, Equal in |- *; intuition.
+ generalize H; unfold For_all, Equal; intuition.
elim (H0 x); intros.
cut ((fun x => negb (fdec Pdec x)) x = true).
- unfold fdec in |- *; case (Pdec x); intuition.
- change ((fun x => negb (fdec Pdec x)) x = true) in |- *.
+ unfold fdec; case (Pdec x); intuition.
+ change ((fun x => negb (fdec Pdec x)) x = true).
apply (filter_2 (s:=s) (x:=x)); auto.
set (b := fdec Pdec x) in *; generalize (Logic.eq_refl b);
- pattern b at -1 in |- *; case b; unfold b in |- *;
+ pattern b at -1; case b; unfold b;
[ left | right ].
elim (H4 x); intros _ B; apply B; auto with set.
elim (H x); intros _ B; apply B; auto with set.
@@ -308,7 +308,7 @@ Module DepOfNodep (Import M: S) <: Sdep with Module E := M.E.
intros;
generalize (min_elt_1 (s:=s)) (min_elt_2 (s:=s)) (min_elt_3 (s:=s)).
case (min_elt s); [ left | right ]; auto.
- exists e; unfold For_all in |- *; eauto.
+ exists e; unfold For_all; eauto.
Qed.
Definition max_elt :
@@ -318,7 +318,7 @@ Module DepOfNodep (Import M: S) <: Sdep with Module E := M.E.
intros;
generalize (max_elt_1 (s:=s)) (max_elt_2 (s:=s)) (max_elt_3 (s:=s)).
case (max_elt s); [ left | right ]; auto.
- exists e; unfold For_all in |- *; eauto.
+ exists e; unfold For_all; eauto.
Qed.
Definition elt := elt.
@@ -360,7 +360,7 @@ Module NodepOfDep (M: Sdep) <: S with Module E := M.E.
Lemma empty_1 : Empty empty.
Proof.
- unfold empty in |- *; case M.empty; auto.
+ unfold empty; case M.empty; auto.
Qed.
Definition is_empty (s : t) : bool :=
@@ -368,12 +368,12 @@ Module NodepOfDep (M: Sdep) <: S with Module E := M.E.
Lemma is_empty_1 : forall s : t, Empty s -> is_empty s = true.
Proof.
- intros; unfold is_empty in |- *; case (M.is_empty s); auto.
+ intros; unfold is_empty; case (M.is_empty s); auto.
Qed.
Lemma is_empty_2 : forall s : t, is_empty s = true -> Empty s.
Proof.
- intro s; unfold is_empty in |- *; case (M.is_empty s); auto.
+ intro s; unfold is_empty; case (M.is_empty s); auto.
intros; discriminate H.
Qed.
@@ -382,12 +382,12 @@ Module NodepOfDep (M: Sdep) <: S with Module E := M.E.
Lemma mem_1 : forall (s : t) (x : elt), In x s -> mem x s = true.
Proof.
- intros; unfold mem in |- *; case (M.mem x s); auto.
+ intros; unfold mem; case (M.mem x s); auto.
Qed.
Lemma mem_2 : forall (s : t) (x : elt), mem x s = true -> In x s.
Proof.
- intros s x; unfold mem in |- *; case (M.mem x s); auto.
+ intros s x; unfold mem; case (M.mem x s); auto.
intros; discriminate H.
Qed.
@@ -398,12 +398,12 @@ Module NodepOfDep (M: Sdep) <: S with Module E := M.E.
Lemma equal_1 : forall s s' : t, Equal s s' -> equal s s' = true.
Proof.
- intros; unfold equal in |- *; case M.equal; intuition.
+ intros; unfold equal; case M.equal; intuition.
Qed.
Lemma equal_2 : forall s s' : t, equal s s' = true -> Equal s s'.
Proof.
- intros s s'; unfold equal in |- *; case (M.equal s s'); intuition;
+ intros s s'; unfold equal; case (M.equal s s'); intuition;
inversion H.
Qed.
@@ -412,12 +412,12 @@ Module NodepOfDep (M: Sdep) <: S with Module E := M.E.
Lemma subset_1 : forall s s' : t, Subset s s' -> subset s s' = true.
Proof.
- intros; unfold subset in |- *; case M.subset; intuition.
+ intros; unfold subset; case M.subset; intuition.
Qed.
Lemma subset_2 : forall s s' : t, subset s s' = true -> Subset s s'.
Proof.
- intros s s'; unfold subset in |- *; case (M.subset s s'); intuition;
+ intros s s'; unfold subset; case (M.subset s s'); intuition;
inversion H.
Qed.
@@ -429,14 +429,14 @@ Module NodepOfDep (M: Sdep) <: S with Module E := M.E.
Lemma choose_1 : forall (s : t) (x : elt), choose s = Some x -> In x s.
Proof.
- intros s x; unfold choose in |- *; case (M.choose s).
+ intros s x; unfold choose; case (M.choose s).
simple destruct s0; intros; injection H; intros; subst; auto.
intros; discriminate H.
Qed.
Lemma choose_2 : forall s : t, choose s = None -> Empty s.
Proof.
- intro s; unfold choose in |- *; case (M.choose s); auto.
+ intro s; unfold choose; case (M.choose s); auto.
simple destruct s0; intros; discriminate H.
Qed.
@@ -453,17 +453,17 @@ Module NodepOfDep (M: Sdep) <: S with Module E := M.E.
Lemma elements_1 : forall (s : t) (x : elt), In x s -> InA E.eq x (elements s).
Proof.
- intros; unfold elements in |- *; case (M.elements s); firstorder.
+ intros; unfold elements; case (M.elements s); firstorder.
Qed.
Lemma elements_2 : forall (s : t) (x : elt), InA E.eq x (elements s) -> In x s.
Proof.
- intros s x; unfold elements in |- *; case (M.elements s); firstorder.
+ intros s x; unfold elements; case (M.elements s); firstorder.
Qed.
Lemma elements_3 : forall s : t, sort E.lt (elements s).
Proof.
- intros; unfold elements in |- *; case (M.elements s); firstorder.
+ intros; unfold elements; case (M.elements s); firstorder.
Qed.
Hint Resolve elements_3.
@@ -478,7 +478,7 @@ Module NodepOfDep (M: Sdep) <: S with Module E := M.E.
Lemma min_elt_1 : forall (s : t) (x : elt), min_elt s = Some x -> In x s.
Proof.
- intros s x; unfold min_elt in |- *; case (M.min_elt s).
+ intros s x; unfold min_elt; case (M.min_elt s).
simple destruct s0; intros; injection H; intros; subst; intuition.
intros; discriminate H.
Qed.
@@ -486,15 +486,15 @@ Module NodepOfDep (M: Sdep) <: S with Module E := M.E.
Lemma min_elt_2 :
forall (s : t) (x y : elt), min_elt s = Some x -> In y s -> ~ E.lt y x.
Proof.
- intros s x y; unfold min_elt in |- *; case (M.min_elt s).
- unfold For_all in |- *; simple destruct s0; intros; injection H; intros;
+ intros s x y; unfold min_elt; case (M.min_elt s).
+ unfold For_all; simple destruct s0; intros; injection H; intros;
subst; firstorder.
intros; discriminate H.
Qed.
Lemma min_elt_3 : forall s : t, min_elt s = None -> Empty s.
Proof.
- intros s; unfold min_elt in |- *; case (M.min_elt s); auto.
+ intros s; unfold min_elt; case (M.min_elt s); auto.
simple destruct s0; intros; discriminate H.
Qed.
@@ -506,7 +506,7 @@ Module NodepOfDep (M: Sdep) <: S with Module E := M.E.
Lemma max_elt_1 : forall (s : t) (x : elt), max_elt s = Some x -> In x s.
Proof.
- intros s x; unfold max_elt in |- *; case (M.max_elt s).
+ intros s x; unfold max_elt; case (M.max_elt s).
simple destruct s0; intros; injection H; intros; subst; intuition.
intros; discriminate H.
Qed.
@@ -514,15 +514,15 @@ Module NodepOfDep (M: Sdep) <: S with Module E := M.E.
Lemma max_elt_2 :
forall (s : t) (x y : elt), max_elt s = Some x -> In y s -> ~ E.lt x y.
Proof.
- intros s x y; unfold max_elt in |- *; case (M.max_elt s).
- unfold For_all in |- *; simple destruct s0; intros; injection H; intros;
+ intros s x y; unfold max_elt; case (M.max_elt s).
+ unfold For_all; simple destruct s0; intros; injection H; intros;
subst; firstorder.
intros; discriminate H.
Qed.
Lemma max_elt_3 : forall s : t, max_elt s = None -> Empty s.
Proof.
- intros s; unfold max_elt in |- *; case (M.max_elt s); auto.
+ intros s; unfold max_elt; case (M.max_elt s); auto.
simple destruct s0; intros; discriminate H.
Qed.
@@ -530,20 +530,20 @@ Module NodepOfDep (M: Sdep) <: S with Module E := M.E.
Lemma add_1 : forall (s : t) (x y : elt), E.eq x y -> In y (add x s).
Proof.
- intros; unfold add in |- *; case (M.add x s); unfold Add in |- *;
+ intros; unfold add; case (M.add x s); unfold Add;
firstorder.
Qed.
Lemma add_2 : forall (s : t) (x y : elt), In y s -> In y (add x s).
Proof.
- intros; unfold add in |- *; case (M.add x s); unfold Add in |- *;
+ intros; unfold add; case (M.add x s); unfold Add;
firstorder.
Qed.
Lemma add_3 :
forall (s : t) (x y : elt), ~ E.eq x y -> In y (add x s) -> In y s.
Proof.
- intros s x y; unfold add in |- *; case (M.add x s); unfold Add in |- *;
+ intros s x y; unfold add; case (M.add x s); unfold Add;
firstorder.
Qed.
@@ -551,30 +551,30 @@ Module NodepOfDep (M: Sdep) <: S with Module E := M.E.
Lemma remove_1 : forall (s : t) (x y : elt), E.eq x y -> ~ In y (remove x s).
Proof.
- intros; unfold remove in |- *; case (M.remove x s); firstorder.
+ intros; unfold remove; case (M.remove x s); firstorder.
Qed.
Lemma remove_2 :
forall (s : t) (x y : elt), ~ E.eq x y -> In y s -> In y (remove x s).
Proof.
- intros; unfold remove in |- *; case (M.remove x s); firstorder.
+ intros; unfold remove; case (M.remove x s); firstorder.
Qed.
Lemma remove_3 : forall (s : t) (x y : elt), In y (remove x s) -> In y s.
Proof.
- intros s x y; unfold remove in |- *; case (M.remove x s); firstorder.
+ intros s x y; unfold remove; case (M.remove x s); firstorder.
Qed.
Definition singleton (x : elt) : t := let (s, _) := singleton x in s.
Lemma singleton_1 : forall x y : elt, In y (singleton x) -> E.eq x y.
Proof.
- intros x y; unfold singleton in |- *; case (M.singleton x); firstorder.
+ intros x y; unfold singleton; case (M.singleton x); firstorder.
Qed.
Lemma singleton_2 : forall x y : elt, E.eq x y -> In y (singleton x).
Proof.
- intros x y; unfold singleton in |- *; case (M.singleton x); firstorder.
+ intros x y; unfold singleton; case (M.singleton x); firstorder.
Qed.
Definition union (s s' : t) : t := let (s'', _) := union s s' in s''.
@@ -582,60 +582,60 @@ Module NodepOfDep (M: Sdep) <: S with Module E := M.E.
Lemma union_1 :
forall (s s' : t) (x : elt), In x (union s s') -> In x s \/ In x s'.
Proof.
- intros s s' x; unfold union in |- *; case (M.union s s'); firstorder.
+ intros s s' x; unfold union; case (M.union s s'); firstorder.
Qed.
Lemma union_2 : forall (s s' : t) (x : elt), In x s -> In x (union s s').
Proof.
- intros s s' x; unfold union in |- *; case (M.union s s'); firstorder.
+ intros s s' x; unfold union; case (M.union s s'); firstorder.
Qed.
Lemma union_3 : forall (s s' : t) (x : elt), In x s' -> In x (union s s').
Proof.
- intros s s' x; unfold union in |- *; case (M.union s s'); firstorder.
+ intros s s' x; unfold union; case (M.union s s'); firstorder.
Qed.
Definition inter (s s' : t) : t := let (s'', _) := inter s s' in s''.
Lemma inter_1 : forall (s s' : t) (x : elt), In x (inter s s') -> In x s.
Proof.
- intros s s' x; unfold inter in |- *; case (M.inter s s'); firstorder.
+ intros s s' x; unfold inter; case (M.inter s s'); firstorder.
Qed.
Lemma inter_2 : forall (s s' : t) (x : elt), In x (inter s s') -> In x s'.
Proof.
- intros s s' x; unfold inter in |- *; case (M.inter s s'); firstorder.
+ intros s s' x; unfold inter; case (M.inter s s'); firstorder.
Qed.
Lemma inter_3 :
forall (s s' : t) (x : elt), In x s -> In x s' -> In x (inter s s').
Proof.
- intros s s' x; unfold inter in |- *; case (M.inter s s'); firstorder.
+ intros s s' x; unfold inter; case (M.inter s s'); firstorder.
Qed.
Definition diff (s s' : t) : t := let (s'', _) := diff s s' in s''.
Lemma diff_1 : forall (s s' : t) (x : elt), In x (diff s s') -> In x s.
Proof.
- intros s s' x; unfold diff in |- *; case (M.diff s s'); firstorder.
+ intros s s' x; unfold diff; case (M.diff s s'); firstorder.
Qed.
Lemma diff_2 : forall (s s' : t) (x : elt), In x (diff s s') -> ~ In x s'.
Proof.
- intros s s' x; unfold diff in |- *; case (M.diff s s'); firstorder.
+ intros s s' x; unfold diff; case (M.diff s s'); firstorder.
Qed.
Lemma diff_3 :
forall (s s' : t) (x : elt), In x s -> ~ In x s' -> In x (diff s s').
Proof.
- intros s s' x; unfold diff in |- *; case (M.diff s s'); firstorder.
+ intros s s' x; unfold diff; case (M.diff s s'); firstorder.
Qed.
Definition cardinal (s : t) : nat := let (f, _) := cardinal s in f.
Lemma cardinal_1 : forall s, cardinal s = length (elements s).
Proof.
- intros; unfold cardinal in |- *; case (M.cardinal s); unfold elements in *;
+ intros; unfold cardinal; case (M.cardinal s); unfold elements in *;
destruct (M.elements s); auto.
Qed.
@@ -646,7 +646,7 @@ Module NodepOfDep (M: Sdep) <: S with Module E := M.E.
forall (s : t) (A : Type) (i : A) (f : elt -> A -> A),
fold f s i = fold_left (fun a e => f e a) (elements s) i.
Proof.
- intros; unfold fold in |- *; case (M.fold f s i); unfold elements in *;
+ intros; unfold fold; case (M.fold f s i); unfold elements in *;
destruct (M.elements s); auto.
Qed.
@@ -673,7 +673,7 @@ Module NodepOfDep (M: Sdep) <: S with Module E := M.E.
forall (s : t) (x : elt) (f : elt -> bool),
compat_bool E.eq f -> In x (filter f s) -> In x s.
Proof.
- intros s x f; unfold filter in |- *; case M.filter; intuition.
+ intros s x f; unfold filter; case M.filter; intuition.
generalize (i (compat_P_aux H)); firstorder.
Qed.
@@ -681,7 +681,7 @@ Module NodepOfDep (M: Sdep) <: S with Module E := M.E.
forall (s : t) (x : elt) (f : elt -> bool),
compat_bool E.eq f -> In x (filter f s) -> f x = true.
Proof.
- intros s x f; unfold filter in |- *; case M.filter; intuition.
+ intros s x f; unfold filter; case M.filter; intuition.
generalize (i (compat_P_aux H)); firstorder.
Qed.
@@ -689,7 +689,7 @@ Module NodepOfDep (M: Sdep) <: S with Module E := M.E.
forall (s : t) (x : elt) (f : elt -> bool),
compat_bool E.eq f -> In x s -> f x = true -> In x (filter f s).
Proof.
- intros s x f; unfold filter in |- *; case M.filter; intuition.
+ intros s x f; unfold filter; case M.filter; intuition.
generalize (i (compat_P_aux H)); firstorder.
Qed.
@@ -703,7 +703,7 @@ Module NodepOfDep (M: Sdep) <: S with Module E := M.E.
compat_bool E.eq f ->
For_all (fun x => f x = true) s -> for_all f s = true.
Proof.
- intros s f; unfold for_all in |- *; case M.for_all; intuition; elim n;
+ intros s f; unfold for_all; case M.for_all; intuition; elim n;
auto.
Qed.
@@ -712,7 +712,7 @@ Module NodepOfDep (M: Sdep) <: S with Module E := M.E.
compat_bool E.eq f ->
for_all f s = true -> For_all (fun x => f x = true) s.
Proof.
- intros s f; unfold for_all in |- *; case M.for_all; intuition;
+ intros s f; unfold for_all; case M.for_all; intuition;
inversion H0.
Qed.
@@ -725,7 +725,7 @@ Module NodepOfDep (M: Sdep) <: S with Module E := M.E.
forall (s : t) (f : elt -> bool),
compat_bool E.eq f -> Exists (fun x => f x = true) s -> exists_ f s = true.
Proof.
- intros s f; unfold exists_ in |- *; case M.exists_; intuition; elim n;
+ intros s f; unfold exists_; case M.exists_; intuition; elim n;
auto.
Qed.
@@ -733,7 +733,7 @@ Module NodepOfDep (M: Sdep) <: S with Module E := M.E.
forall (s : t) (f : elt -> bool),
compat_bool E.eq f -> exists_ f s = true -> Exists (fun x => f x = true) s.
Proof.
- intros s f; unfold exists_ in |- *; case M.exists_; intuition;
+ intros s f; unfold exists_; case M.exists_; intuition;
inversion H0.
Qed.
@@ -745,10 +745,10 @@ Module NodepOfDep (M: Sdep) <: S with Module E := M.E.
forall (s : t) (f : elt -> bool),
compat_bool E.eq f -> Equal (fst (partition f s)) (filter f s).
Proof.
- intros s f; unfold partition in |- *; case M.partition.
+ intros s f; unfold partition; case M.partition.
intro p; case p; clear p; intros s1 s2 H C.
generalize (H (compat_P_aux C)); clear H; intro H.
- simpl in |- *; unfold Equal in |- *; intuition.
+ simpl; unfold Equal; intuition.
apply filter_3; firstorder.
elim (H2 a); intros.
assert (In a s).
@@ -763,13 +763,13 @@ Module NodepOfDep (M: Sdep) <: S with Module E := M.E.
forall (s : t) (f : elt -> bool),
compat_bool E.eq f -> Equal (snd (partition f s)) (filter (fun x => negb (f x)) s).
Proof.
- intros s f; unfold partition in |- *; case M.partition.
+ intros s f; unfold partition; case M.partition.
intro p; case p; clear p; intros s1 s2 H C.
generalize (H (compat_P_aux C)); clear H; intro H.
assert (D : compat_bool E.eq (fun x => negb (f x))).
generalize C; unfold compat_bool, Proper, respectful; intros; apply (f_equal negb);
auto.
- simpl in |- *; unfold Equal in |- *; intuition.
+ simpl; unfold Equal; intuition.
apply filter_3; firstorder.
elim (H2 a); intros.
assert (In a s).
diff --git a/theories/Init/Datatypes.v b/theories/Init/Datatypes.v
index 5828fc3f8..296612593 100644
--- a/theories/Init/Datatypes.v
+++ b/theories/Init/Datatypes.v
@@ -72,7 +72,7 @@ Hint Resolve andb_prop: bool.
Lemma andb_true_intro :
forall b1 b2:bool, b1 = true /\ b2 = true -> andb b1 b2 = true.
Proof.
- destruct b1; destruct b2; simpl in |- *; intros [? ?]; assumption.
+ destruct b1; destruct b2; simpl; intros [? ?]; assumption.
Qed.
Hint Resolve andb_true_intro: bool.
@@ -203,7 +203,7 @@ Lemma injective_projections :
forall (A B:Type) (p1 p2:A * B),
fst p1 = fst p2 -> snd p1 = snd p2 -> p1 = p2.
Proof.
- destruct p1; destruct p2; simpl in |- *; intros Hfst Hsnd.
+ destruct p1; destruct p2; simpl; intros Hfst Hsnd.
rewrite Hfst; rewrite Hsnd; reflexivity.
Qed.
diff --git a/theories/Init/Logic.v b/theories/Init/Logic.v
index 1dc998cdf..50a715988 100644
--- a/theories/Init/Logic.v
+++ b/theories/Init/Logic.v
@@ -261,12 +261,12 @@ Section universal_quantification.
Theorem inst : forall x:A, all (fun x => P x) -> P x.
Proof.
- unfold all in |- *; auto.
+ unfold all; auto.
Qed.
Theorem gen : forall (B:Prop) (f:forall y:A, B -> P y), B -> all P.
Proof.
- red in |- *; auto.
+ red; auto.
Qed.
End universal_quantification.
@@ -305,7 +305,7 @@ Section Logic_lemmas.
Theorem absurd : forall A C:Prop, A -> ~ A -> C.
Proof.
- unfold not in |- *; intros A C h1 h2.
+ unfold not; intros A C h1 h2.
destruct (h2 h1).
Qed.
@@ -334,7 +334,7 @@ Section Logic_lemmas.
Theorem not_eq_sym : x <> y -> y <> x.
Proof.
- red in |- *; intros h1 h2; apply h1; destruct h2; trivial.
+ red; intros h1 h2; apply h1; destruct h2; trivial.
Qed.
End equality.
diff --git a/theories/Init/Logic_Type.v b/theories/Init/Logic_Type.v
index c244ac24f..e501ac527 100644
--- a/theories/Init/Logic_Type.v
+++ b/theories/Init/Logic_Type.v
@@ -44,7 +44,7 @@ Section identity_is_a_congruence.
Lemma not_identity_sym : notT (identity x y) -> notT (identity y x).
Proof.
- red in |- *; intros H H'; apply H; destruct H'; trivial.
+ red; intros H H'; apply H; destruct H'; trivial.
Qed.
End identity_is_a_congruence.
diff --git a/theories/Init/Peano.v b/theories/Init/Peano.v
index cbb960ceb..4db490e28 100644
--- a/theories/Init/Peano.v
+++ b/theories/Init/Peano.v
@@ -54,7 +54,7 @@ Hint Immediate eq_add_S: core.
Theorem not_eq_S : forall n m:nat, n <> m -> S n <> S m.
Proof.
- red in |- *; auto.
+ red; auto.
Qed.
Hint Resolve not_eq_S: core.
@@ -93,7 +93,7 @@ Hint Resolve (f_equal2 (A1:=nat) (A2:=nat)): core.
Lemma plus_n_O : forall n:nat, n = n + 0.
Proof.
- induction n; simpl in |- *; auto.
+ induction n; simpl; auto.
Qed.
Hint Resolve plus_n_O: core.
@@ -104,7 +104,7 @@ Qed.
Lemma plus_n_Sm : forall n m:nat, S (n + m) = n + S m.
Proof.
- intros n m; induction n; simpl in |- *; auto.
+ intros n m; induction n; simpl; auto.
Qed.
Hint Resolve plus_n_Sm: core.
diff --git a/theories/Init/Wf.v b/theories/Init/Wf.v
index 2bb7eae94..df1a9df67 100644
--- a/theories/Init/Wf.v
+++ b/theories/Init/Wf.v
@@ -103,7 +103,7 @@ Section Well_founded.
Lemma Fix_eq : forall x:A, Fix x = F (fun (y:A) (p:R y x) => Fix y).
Proof.
- intro x; unfold Fix in |- *.
+ intro x; unfold Fix.
rewrite <- Fix_F_eq.
apply F_ext; intros.
apply Fix_F_inv.
diff --git a/theories/Lists/ListSet.v b/theories/Lists/ListSet.v
index d67baf57f..26bfa6d35 100644
--- a/theories/Lists/ListSet.v
+++ b/theories/Lists/ListSet.v
@@ -85,15 +85,15 @@ Section first_definitions.
Lemma set_In_dec : forall (a:A) (x:set), {set_In a x} + {~ set_In a x}.
Proof.
- unfold set_In in |- *.
+ unfold set_In.
(*** Realizer set_mem. Program_all. ***)
simple induction x.
auto.
intros a0 x0 Ha0. case (Aeq_dec a a0); intro eq.
- rewrite eq; simpl in |- *; auto with datatypes.
+ rewrite eq; simpl; auto with datatypes.
elim Ha0.
auto with datatypes.
- right; simpl in |- *; unfold not in |- *; intros [Hc1| Hc2];
+ right; simpl; unfold not; intros [Hc1| Hc2];
auto with datatypes.
Qed.
@@ -102,7 +102,7 @@ Section first_definitions.
(set_In a x -> P y) -> P z -> P (if set_mem a x then y else z).
Proof.
- simple induction x; simpl in |- *; intros.
+ simple induction x; simpl; intros.
assumption.
elim (Aeq_dec a a0); auto with datatypes.
Qed.
@@ -113,11 +113,11 @@ Section first_definitions.
(~ set_In a x -> P z) -> P (if set_mem a x then y else z).
Proof.
- simple induction x; simpl in |- *; intros.
- apply H0; red in |- *; trivial.
+ simple induction x; simpl; intros.
+ apply H0; red; trivial.
case (Aeq_dec a a0); auto with datatypes.
intro; apply H; intros; auto.
- apply H1; red in |- *; intro.
+ apply H1; red; intro.
case H3; auto.
Qed.
@@ -125,7 +125,7 @@ Section first_definitions.
Lemma set_mem_correct1 :
forall (a:A) (x:set), set_mem a x = true -> set_In a x.
Proof.
- simple induction x; simpl in |- *.
+ simple induction x; simpl.
discriminate.
intros a0 l; elim (Aeq_dec a a0); auto with datatypes.
Qed.
@@ -133,7 +133,7 @@ Section first_definitions.
Lemma set_mem_correct2 :
forall (a:A) (x:set), set_In a x -> set_mem a x = true.
Proof.
- simple induction x; simpl in |- *.
+ simple induction x; simpl.
intro Ha; elim Ha.
intros a0 l; elim (Aeq_dec a a0); auto with datatypes.
intros H1 H2 [H3| H4].
@@ -144,17 +144,17 @@ Section first_definitions.
Lemma set_mem_complete1 :
forall (a:A) (x:set), set_mem a x = false -> ~ set_In a x.
Proof.
- simple induction x; simpl in |- *.
+ simple induction x; simpl.
tauto.
intros a0 l; elim (Aeq_dec a a0).
intros; discriminate H0.
- unfold not in |- *; intros; elim H1; auto with datatypes.
+ unfold not; intros; elim H1; auto with datatypes.
Qed.
Lemma set_mem_complete2 :
forall (a:A) (x:set), ~ set_In a x -> set_mem a x = false.
Proof.
- simple induction x; simpl in |- *.
+ simple induction x; simpl.
tauto.
intros a0 l; elim (Aeq_dec a a0).
intros; elim H0; auto with datatypes.
@@ -165,7 +165,7 @@ Section first_definitions.
forall (a b:A) (x:set), set_In a x -> set_In a (set_add b x).
Proof.
- unfold set_In in |- *; simple induction x; simpl in |- *.
+ unfold set_In; simple induction x; simpl.
auto with datatypes.
intros a0 l H [Ha0a| Hal].
elim (Aeq_dec b a0); left; assumption.
@@ -176,11 +176,11 @@ Section first_definitions.
forall (a b:A) (x:set), a = b -> set_In a (set_add b x).
Proof.
- unfold set_In in |- *; simple induction x; simpl in |- *.
+ unfold set_In; simple induction x; simpl.
auto with datatypes.
intros a0 l H Hab.
elim (Aeq_dec b a0);
- [ rewrite Hab; intro Hba0; rewrite Hba0; simpl in |- *;
+ [ rewrite Hab; intro Hba0; rewrite Hba0; simpl;
auto with datatypes
| auto with datatypes ].
Qed.
@@ -198,13 +198,13 @@ Section first_definitions.
forall (a b:A) (x:set), set_In a (set_add b x) -> a = b \/ set_In a x.
Proof.
- unfold set_In in |- *.
+ unfold set_In.
simple induction x.
- simpl in |- *; intros [H1| H2]; auto with datatypes.
- simpl in |- *; do 3 intro.
+ simpl; intros [H1| H2]; auto with datatypes.
+ simpl; do 3 intro.
elim (Aeq_dec b a0).
- simpl in |- *; tauto.
- simpl in |- *; intros; elim H0.
+ simpl; tauto.
+ simpl; intros; elim H0.
trivial with datatypes.
tauto.
tauto.
@@ -220,7 +220,7 @@ Section first_definitions.
Lemma set_add_not_empty : forall (a:A) (x:set), set_add a x <> empty_set.
Proof.
- simple induction x; simpl in |- *.
+ simple induction x; simpl.
discriminate.
intros; elim (Aeq_dec a a0); intros; discriminate.
Qed.
@@ -229,13 +229,13 @@ Section first_definitions.
Lemma set_union_intro1 :
forall (a:A) (x y:set), set_In a x -> set_In a (set_union x y).
Proof.
- simple induction y; simpl in |- *; auto with datatypes.
+ simple induction y; simpl; auto with datatypes.
Qed.
Lemma set_union_intro2 :
forall (a:A) (x y:set), set_In a y -> set_In a (set_union x y).
Proof.
- simple induction y; simpl in |- *.
+ simple induction y; simpl.
tauto.
intros; elim H0; auto with datatypes.
Qed.
@@ -253,7 +253,7 @@ Section first_definitions.
forall (a:A) (x y:set),
set_In a (set_union x y) -> set_In a x \/ set_In a y.
Proof.
- simple induction y; simpl in |- *.
+ simple induction y; simpl.
auto with datatypes.
intros.
generalize (set_add_elim _ _ _ H0).
@@ -280,11 +280,11 @@ Section first_definitions.
Proof.
simple induction x.
auto with datatypes.
- simpl in |- *; intros a0 l Hrec y [Ha0a| Hal] Hy.
- simpl in |- *; rewrite Ha0a.
+ simpl; intros a0 l Hrec y [Ha0a| Hal] Hy.
+ simpl; rewrite Ha0a.
generalize (set_mem_correct1 a y).
generalize (set_mem_complete1 a y).
- elim (set_mem a y); simpl in |- *; intros.
+ elim (set_mem a y); simpl; intros.
auto with datatypes.
absurd (set_In a y); auto with datatypes.
elim (set_mem a0 y); [ right; auto with datatypes | auto with datatypes ].
@@ -295,9 +295,9 @@ Section first_definitions.
Proof.
simple induction x.
auto with datatypes.
- simpl in |- *; intros a0 l Hrec y.
+ simpl; intros a0 l Hrec y.
generalize (set_mem_correct1 a0 y).
- elim (set_mem a0 y); simpl in |- *; intros.
+ elim (set_mem a0 y); simpl; intros.
elim H0; eauto with datatypes.
eauto with datatypes.
Qed.
@@ -306,10 +306,10 @@ Section first_definitions.
forall (a:A) (x y:set), set_In a (set_inter x y) -> set_In a y.
Proof.
simple induction x.
- simpl in |- *; tauto.
- simpl in |- *; intros a0 l Hrec y.
+ simpl; tauto.
+ simpl; intros a0 l Hrec y.
generalize (set_mem_correct1 a0 y).
- elim (set_mem a0 y); simpl in |- *; intros.
+ elim (set_mem a0 y); simpl; intros.
elim H0;
[ intro Hr; rewrite <- Hr; eauto with datatypes | eauto with datatypes ].
eauto with datatypes.
@@ -329,8 +329,8 @@ Section first_definitions.
set_In a x -> ~ set_In a y -> set_In a (set_diff x y).
Proof.
simple induction x.
- simpl in |- *; tauto.
- simpl in |- *; intros a0 l Hrec y [Ha0a| Hal] Hay.
+ simpl; tauto.
+ simpl; intros a0 l Hrec y [Ha0a| Hal] Hay.
rewrite Ha0a; generalize (set_mem_complete2 _ _ Hay).
elim (set_mem a y);
[ intro Habs; discriminate Habs | auto with datatypes ].
@@ -341,8 +341,8 @@ Section first_definitions.
forall (a:A) (x y:set), set_In a (set_diff x y) -> set_In a x.
Proof.
simple induction x.
- simpl in |- *; tauto.
- simpl in |- *; intros a0 l Hrec y; elim (set_mem a0 y).
+ simpl; tauto.
+ simpl; intros a0 l Hrec y; elim (set_mem a0 y).
eauto with datatypes.
intro; generalize (set_add_elim _ _ _ H).
intros [H1| H2]; eauto with datatypes.
@@ -350,7 +350,7 @@ Section first_definitions.
Lemma set_diff_elim2 :
forall (a:A) (x y:set), set_In a (set_diff x y) -> ~ set_In a y.
- intros a x y; elim x; simpl in |- *.
+ intros a x y; elim x; simpl.
intros; contradiction.
intros a0 l Hrec.
apply set_mem_ind2; auto.
@@ -359,7 +359,7 @@ Section first_definitions.
Qed.
Lemma set_diff_trivial : forall (a:A) (x:set), ~ set_In a (set_diff x x).
- red in |- *; intros a x H.
+ red; intros a x H.
apply (set_diff_elim2 _ _ _ H).
apply (set_diff_elim1 _ _ _ H).
Qed.
diff --git a/theories/Lists/Streams.v b/theories/Lists/Streams.v
index 7a6f38fc2..85ecf97e2 100644
--- a/theories/Lists/Streams.v
+++ b/theories/Lists/Streams.v
@@ -49,21 +49,21 @@ Qed.
Lemma tl_nth_tl :
forall (n:nat) (s:Stream), tl (Str_nth_tl n s) = Str_nth_tl n (tl s).
Proof.
- simple induction n; simpl in |- *; auto.
+ simple induction n; simpl; auto.
Qed.
Hint Resolve tl_nth_tl: datatypes v62.
Lemma Str_nth_tl_plus :
forall (n m:nat) (s:Stream),
Str_nth_tl n (Str_nth_tl m s) = Str_nth_tl (n + m) s.
-simple induction n; simpl in |- *; intros; auto with datatypes.
+simple induction n; simpl; intros; auto with datatypes.
rewrite <- H.
rewrite tl_nth_tl; trivial with datatypes.
Qed.
Lemma Str_nth_plus :
forall (n m:nat) (s:Stream), Str_nth n (Str_nth_tl m s) = Str_nth (n + m) s.
-intros; unfold Str_nth in |- *; rewrite Str_nth_tl_plus;
+intros; unfold Str_nth; rewrite Str_nth_tl_plus;
trivial with datatypes.
Qed.
@@ -89,7 +89,7 @@ Qed.
Theorem sym_EqSt : forall s1 s2:Stream, EqSt s1 s2 -> EqSt s2 s1.
coinduction Eq_sym.
-case H; intros; symmetry in |- *; assumption.
+case H; intros; symmetry ; assumption.
case H; intros; assumption.
Qed.
@@ -110,10 +110,10 @@ Qed.
Theorem eqst_ntheq :
forall (n:nat) (s1 s2:Stream), EqSt s1 s2 -> Str_nth n s1 = Str_nth n s2.
-unfold Str_nth in |- *; simple induction n.
+unfold Str_nth; simple induction n.
intros s1 s2 H; case H; trivial with datatypes.
intros m hypind.
-simpl in |- *.
+simpl.
intros s1 s2 H.
apply hypind.
case H; trivial with datatypes.
diff --git a/theories/Logic/Berardi.v b/theories/Logic/Berardi.v
index 2b3886874..58e339b4c 100644
--- a/theories/Logic/Berardi.v
+++ b/theories/Logic/Berardi.v
@@ -45,7 +45,7 @@ Lemma AC_IF :
(B -> Q e1) -> (~ B -> Q e2) -> Q (IFProp B e1 e2).
Proof.
intros P B e1 e2 Q p1 p2.
-unfold IFProp in |- *.
+unfold IFProp.
case (EM B); assumption.
Qed.
@@ -76,7 +76,7 @@ Record retract_cond : Prop :=
Lemma AC : forall r:retract_cond, retract -> forall a:A, j2 r (i2 r a) = a.
Proof.
intros r.
-case r; simpl in |- *.
+case r; simpl.
trivial.
Qed.
@@ -113,7 +113,7 @@ Lemma retract_pow_U_U : retract (pow U) U.
Proof.
exists g f.
intro a.
-unfold f, g in |- *; simpl in |- *.
+unfold f, g; simpl.
apply AC.
exists (fun x:pow U => x) (fun x:pow U => x).
trivial.
@@ -130,8 +130,8 @@ Definition R : U := g (fun u:U => Not_b (u U u)).
Lemma not_has_fixpoint : R R = Not_b (R R).
Proof.
-unfold R at 1 in |- *.
-unfold g in |- *.
+unfold R at 1.
+unfold g.
rewrite AC with (r := L1 U U) (a := fun u:U => Not_b (u U u)).
trivial.
exists (fun x:pow U => x) (fun x:pow U => x); trivial.
@@ -141,7 +141,7 @@ Qed.
Theorem classical_proof_irrelevence : T = F.
Proof.
generalize not_has_fixpoint.
-unfold Not_b in |- *.
+unfold Not_b.
apply AC_IF.
intros is_true is_false.
elim is_true; elim is_false; trivial.
diff --git a/theories/Logic/ChoiceFacts.v b/theories/Logic/ChoiceFacts.v
index 8b11f09b9..b93b7688a 100644
--- a/theories/Logic/ChoiceFacts.v
+++ b/theories/Logic/ChoiceFacts.v
@@ -345,7 +345,7 @@ Lemma rel_choice_and_proof_irrel_imp_guarded_rel_choice :
RelationalChoice -> ProofIrrelevance -> GuardedRelationalChoice.
Proof.
intros rel_choice proof_irrel.
- red in |- *; intros A B P R H.
+ red; intros A B P R H.
destruct (rel_choice _ _ (fun (x:sigT P) (y:B) => R (projT1 x) y)) as (R',(HR'R,H0)).
intros (x,HPx).
destruct (H x HPx) as (y,HRxy).
@@ -581,7 +581,7 @@ Lemma classical_denumerable_description_imp_fun_choice :
(forall x y, decidable (R x y)) -> FunctionalChoice_on_rel R.
Proof.
intros A Descr.
- red in |- *; intros R Rdec H.
+ red; intros R Rdec H.
set (R':= fun x y => R x y /\ forall y', R x y' -> y <= y').
destruct (Descr R') as (f,Hf).
intro x.
diff --git a/theories/Logic/ClassicalFacts.v b/theories/Logic/ClassicalFacts.v
index 2e1e99e8a..07ed643b7 100644
--- a/theories/Logic/ClassicalFacts.v
+++ b/theories/Logic/ClassicalFacts.v
@@ -148,7 +148,7 @@ Proof.
case (prop_ext_retract_A_A_imp_A Ext A a); intros g1 g2 g1_o_g2.
exists (fun f => (fun x:A => f (g1 x x)) (g2 (fun x => f (g1 x x)))).
intro f.
- pattern (g1 (g2 (fun x:A => f (g1 x x)))) at 1 in |- *.
+ pattern (g1 (g2 (fun x:A => f (g1 x x)))) at 1.
rewrite (g1_o_g2 (fun x:A => f (g1 x x))).
reflexivity.
Qed.
@@ -192,12 +192,12 @@ Section Proof_irrelevance_gen.
case (ext_prop_fixpoint Ext bool true); intros G Gfix.
set (neg := fun b:bool => bool_elim bool false true b).
generalize (eq_refl (G neg)).
- pattern (G neg) at 1 in |- *.
+ pattern (G neg) at 1.
apply Ind with (b := G neg); intro Heq.
rewrite (bool_elim_redl bool false true).
- change (true = neg true) in |- *; rewrite Heq; apply Gfix.
+ change (true = neg true); rewrite Heq; apply Gfix.
rewrite (bool_elim_redr bool false true).
- change (neg false = false) in |- *; rewrite Heq; symmetry in |- *;
+ change (neg false = false); rewrite Heq; symmetry ;
apply Gfix.
Qed.
@@ -207,9 +207,9 @@ Section Proof_irrelevance_gen.
intros Ext Ind A a1 a2.
set (f := fun b:bool => bool_elim A a1 a2 b).
rewrite (bool_elim_redl A a1 a2).
- change (f true = a2) in |- *.
+ change (f true = a2).
rewrite (bool_elim_redr A a1 a2).
- change (f true = f false) in |- *.
+ change (f true = f false).
rewrite (aux Ext Ind).
reflexivity.
Qed.
@@ -344,8 +344,8 @@ Section Proof_irrelevance_EM_CC.
Lemma p2p1 : forall A:Prop, A -> b2p (p2b A).
Proof.
- unfold p2b in |- *; intro A; apply or_dep_elim with (b := em A);
- unfold b2p in |- *; intros.
+ unfold p2b; intro A; apply or_dep_elim with (b := em A);
+ unfold b2p; intros.
apply (or_elim_redl A (~ A) B (fun _ => b1) (fun _ => b2)).
destruct (b H).
Qed.
@@ -353,8 +353,8 @@ Section Proof_irrelevance_EM_CC.
Lemma p2p2 : b1 <> b2 -> forall A:Prop, b2p (p2b A) -> A.
Proof.
intro not_eq_b1_b2.
- unfold p2b in |- *; intro A; apply or_dep_elim with (b := em A);
- unfold b2p in |- *; intros.
+ unfold p2b; intro A; apply or_dep_elim with (b := em A);
+ unfold b2p; intros.
assumption.
destruct not_eq_b1_b2.
rewrite <- (or_elim_redr A (~ A) B (fun _ => b1) (fun _ => b2)) in H.
diff --git a/theories/Logic/Classical_Pred_Type.v b/theories/Logic/Classical_Pred_Type.v
index 9d57fe88b..8da364a38 100644
--- a/theories/Logic/Classical_Pred_Type.v
+++ b/theories/Logic/Classical_Pred_Type.v
@@ -42,7 +42,7 @@ Qed.
Lemma not_ex_all_not :
forall P:U -> Prop, ~ (exists n : U, P n) -> forall n:U, ~ P n.
Proof. (* Intuitionistic *)
-unfold not in |- *; intros P notex n abs.
+unfold not; intros P notex n abs.
apply notex.
exists n; trivial.
Qed.
@@ -52,20 +52,20 @@ Lemma not_ex_not_all :
Proof.
intros P H n.
apply NNPP.
-red in |- *; intro K; apply H; exists n; trivial.
+red; intro K; apply H; exists n; trivial.
Qed.
Lemma ex_not_not_all :
forall P:U -> Prop, (exists n : U, ~ P n) -> ~ (forall n:U, P n).
Proof. (* Intuitionistic *)
-unfold not in |- *; intros P exnot allP.
+unfold not; intros P exnot allP.
elim exnot; auto.
Qed.
Lemma all_not_not_ex :
forall P:U -> Prop, (forall n:U, ~ P n) -> ~ (exists n : U, P n).
Proof. (* Intuitionistic *)
-unfold not in |- *; intros P allnot exP; elim exP; intros n p.
+unfold not; intros P allnot exP; elim exP; intros n p.
apply allnot with n; auto.
Qed.
diff --git a/theories/Logic/Classical_Prop.v b/theories/Logic/Classical_Prop.v
index 5d7764e7e..c48165c61 100644
--- a/theories/Logic/Classical_Prop.v
+++ b/theories/Logic/Classical_Prop.v
@@ -20,7 +20,7 @@ Axiom classic : forall P:Prop, P \/ ~ P.
Lemma NNPP : forall p:Prop, ~ ~ p -> p.
Proof.
-unfold not in |- *; intros; elim (classic p); auto.
+unfold not; intros; elim (classic p); auto.
intro NP; elim (H NP).
Qed.
@@ -35,7 +35,7 @@ Qed.
Lemma not_imply_elim : forall P Q:Prop, ~ (P -> Q) -> P.
Proof.
-intros; apply NNPP; red in |- *.
+intros; apply NNPP; red.
intro; apply H; intro; absurd P; trivial.
Qed.
@@ -68,7 +68,7 @@ Qed.
Lemma or_not_and : forall P Q:Prop, ~ P \/ ~ Q -> ~ (P /\ Q).
Proof.
-simple induction 1; red in |- *; simple induction 2; auto.
+simple induction 1; red; simple induction 2; auto.
Qed.
Lemma not_or_and : forall P Q:Prop, ~ (P \/ Q) -> ~ P /\ ~ Q.
diff --git a/theories/Logic/Diaconescu.v b/theories/Logic/Diaconescu.v
index e8e8b94ce..b5e7b2c41 100644
--- a/theories/Logic/Diaconescu.v
+++ b/theories/Logic/Diaconescu.v
@@ -61,7 +61,7 @@ Variable pred_extensionality : PredicateExtensionality.
Lemma prop_ext : forall A B:Prop, (A <-> B) -> A = B.
Proof.
intros A B H.
- change ((fun _ => A) true = (fun _ => B) true) in |- *.
+ change ((fun _ => A) true = (fun _ => B) true).
rewrite
pred_extensionality with (P := fun _:bool => A) (Q := fun _:bool => B).
reflexivity.
@@ -134,8 +134,8 @@ right.
intro HP.
assert (Hequiv : forall b:bool, class_of_true b <-> class_of_false b).
intro b; split.
-unfold class_of_false in |- *; right; assumption.
-unfold class_of_true in |- *; right; assumption.
+unfold class_of_false; right; assumption.
+unfold class_of_true; right; assumption.
assert (Heq : class_of_true = class_of_false).
apply pred_extensionality with (1 := Hequiv).
apply diff_true_false.
diff --git a/theories/Logic/Eqdep_dec.v b/theories/Logic/Eqdep_dec.v
index 2ed5d428c..ba43600fc 100644
--- a/theories/Logic/Eqdep_dec.v
+++ b/theories/Logic/Eqdep_dec.v
@@ -61,7 +61,7 @@ Section EqdepDec.
Let nu_constant : forall (y:A) (u v:x = y), nu u = nu v.
intros.
- unfold nu in |- *.
+ unfold nu.
case (eq_dec x y); intros.
reflexivity.
@@ -75,7 +75,7 @@ Section EqdepDec.
Remark nu_left_inv : forall (y:A) (u:x = y), nu_inv (nu u) = u.
Proof.
intros.
- case u; unfold nu_inv in |- *.
+ case u; unfold nu_inv.
apply trans_sym_eq.
Qed.
@@ -115,7 +115,7 @@ Section EqdepDec.
Proof.
intros.
cut (proj (ex_intro P x y) y = proj (ex_intro P x y') y).
- simpl in |- *.
+ simpl.
case (eq_dec x x).
intro e.
elim e using K_dec; trivial.
diff --git a/theories/Logic/Hurkens.v b/theories/Logic/Hurkens.v
index bb03c6664..cf2c8a16b 100644
--- a/theories/Logic/Hurkens.v
+++ b/theories/Logic/Hurkens.v
@@ -46,7 +46,7 @@ Lemma Omega : forall i:U -> bool, induct i -> b2p (i WF).
Proof.
intros i y.
apply y.
-unfold le, WF, induct in |- *.
+unfold le, WF, induct.
apply p2p2.
intros x H0.
apply y.
@@ -55,7 +55,7 @@ Qed.
Lemma lemma1 : induct (fun u => p2b (I u)).
Proof.
-unfold induct in |- *.
+unfold induct.
intros x p.
apply (p2p2 (I x)).
intro q.
diff --git a/theories/NArith/Ndist.v b/theories/NArith/Ndist.v
index 7097159c7..490bf745a 100644
--- a/theories/NArith/Ndist.v
+++ b/theories/NArith/Ndist.v
@@ -33,7 +33,7 @@ Definition Nplength (a:N) :=
Lemma Nplength_infty : forall a:N, Nplength a = infty -> a = N0.
Proof.
simple induction a; trivial.
- unfold Nplength in |- *; intros; discriminate H.
+ unfold Nplength; intros; discriminate H.
Qed.
Lemma Nplength_zeros :
@@ -46,9 +46,9 @@ Proof.
intros. simpl in H1. discriminate H1.
simple induction k. trivial.
generalize H0. case n. intros. inversion H3.
- intros. simpl in |- *. unfold N.testbit_nat in H. apply (H n0). simpl in H1. inversion H1. reflexivity.
+ intros. simpl. unfold N.testbit_nat in H. apply (H n0). simpl in H1. inversion H1. reflexivity.
exact (lt_S_n n1 n0 H3).
- simpl in |- *. intros n H. inversion H. intros. inversion H0.
+ simpl. intros n H. inversion H. intros. inversion H0.
Qed.
Lemma Nplength_one :
@@ -56,7 +56,7 @@ Lemma Nplength_one :
Proof.
simple induction a. intros. inversion H.
simple induction p. intros. simpl in H0. inversion H0. reflexivity.
- intros. simpl in H0. inversion H0. simpl in |- *. unfold N.testbit_nat in H. apply H. reflexivity.
+ intros. simpl in H0. inversion H0. simpl. unfold N.testbit_nat in H. apply H. reflexivity.
intros. simpl in H. inversion H. reflexivity.
Qed.
@@ -70,9 +70,9 @@ Proof.
intros. absurd (N.testbit_nat (Npos (xI p0)) 0 = false). trivial with bool.
auto with bool arith.
intros. generalize H0 H1. case n. intros. simpl in H3. discriminate H3.
- intros. simpl in |- *. unfold Nplength in H.
+ intros. simpl. unfold Nplength in H.
cut (ni (Pplength p0) = ni n0). intro. inversion H4. reflexivity.
- apply H. intros. change (N.testbit_nat (Npos (xO p0)) (S k) = false) in |- *. apply H2. apply lt_n_S. exact H4.
+ apply H. intros. change (N.testbit_nat (Npos (xO p0)) (S k) = false). apply H2. apply lt_n_S. exact H4.
exact H3.
intro. case n. trivial.
intros. simpl in H0. discriminate H0.
@@ -90,10 +90,10 @@ Definition ni_min (d d':natinf) :=
Lemma ni_min_idemp : forall d:natinf, ni_min d d = d.
Proof.
simple induction d; trivial.
- unfold ni_min in |- *.
+ unfold ni_min.
simple induction n; trivial.
intros.
- simpl in |- *.
+ simpl.
inversion H.
rewrite H1.
rewrite H1.
@@ -105,7 +105,7 @@ Proof.
simple induction d. simple induction d'; trivial.
simple induction d'; trivial. elim n. simple induction n0; trivial.
intros. elim n1; trivial. intros. unfold ni_min in H. cut (min n0 n2 = min n2 n0).
- intro. unfold ni_min in |- *. simpl in |- *. rewrite H1. reflexivity.
+ intro. unfold ni_min. simpl. rewrite H1. reflexivity.
cut (ni (min n0 n2) = ni (min n2 n0)). intros.
inversion H1; trivial.
exact (H n2).
@@ -116,11 +116,11 @@ Lemma ni_min_assoc :
Proof.
simple induction d; trivial. simple induction d'; trivial.
simple induction d''; trivial.
- unfold ni_min in |- *. intro. cut (min (min n n0) n1 = min n (min n0 n1)).
+ unfold ni_min. intro. cut (min (min n n0) n1 = min n (min n0 n1)).
intro. rewrite H. reflexivity.
generalize n0 n1. elim n; trivial.
simple induction n3; trivial. simple induction n5; trivial.
- intros. simpl in |- *. auto.
+ intros. simpl. auto.
Qed.
Lemma ni_min_O_l : forall d:natinf, ni_min (ni 0) d = ni 0.
@@ -152,42 +152,42 @@ Qed.
Lemma ni_le_antisym : forall d d':natinf, ni_le d d' -> ni_le d' d -> d = d'.
Proof.
- unfold ni_le in |- *. intros d d'. rewrite ni_min_comm. intro H. rewrite H. trivial.
+ unfold ni_le. intros d d'. rewrite ni_min_comm. intro H. rewrite H. trivial.
Qed.
Lemma ni_le_trans :
forall d d' d'':natinf, ni_le d d' -> ni_le d' d'' -> ni_le d d''.
Proof.
- unfold ni_le in |- *. intros. rewrite <- H. rewrite ni_min_assoc. rewrite H0. reflexivity.
+ unfold ni_le. intros. rewrite <- H. rewrite ni_min_assoc. rewrite H0. reflexivity.
Qed.
Lemma ni_le_min_1 : forall d d':natinf, ni_le (ni_min d d') d.
Proof.
- unfold ni_le in |- *. intros. rewrite (ni_min_comm d d'). rewrite ni_min_assoc.
+ unfold ni_le. intros. rewrite (ni_min_comm d d'). rewrite ni_min_assoc.
rewrite ni_min_idemp. reflexivity.
Qed.
Lemma ni_le_min_2 : forall d d':natinf, ni_le (ni_min d d') d'.
Proof.
- unfold ni_le in |- *. intros. rewrite ni_min_assoc. rewrite ni_min_idemp. reflexivity.
+ unfold ni_le. intros. rewrite ni_min_assoc. rewrite ni_min_idemp. reflexivity.
Qed.
Lemma ni_min_case : forall d d':natinf, ni_min d d' = d \/ ni_min d d' = d'.
Proof.
simple induction d. intro. right. exact (ni_min_inf_l d').
simple induction d'. left. exact (ni_min_inf_r (ni n)).
- unfold ni_min in |- *. cut (forall n0:nat, min n n0 = n \/ min n n0 = n0).
+ unfold ni_min. cut (forall n0:nat, min n n0 = n \/ min n n0 = n0).
intros. case (H n0). intro. left. rewrite H0. reflexivity.
intro. right. rewrite H0. reflexivity.
elim n. intro. left. reflexivity.
simple induction n1. right. reflexivity.
- intros. case (H n2). intro. left. simpl in |- *. rewrite H1. reflexivity.
- intro. right. simpl in |- *. rewrite H1. reflexivity.
+ intros. case (H n2). intro. left. simpl. rewrite H1. reflexivity.
+ intro. right. simpl. rewrite H1. reflexivity.
Qed.
Lemma ni_le_total : forall d d':natinf, ni_le d d' \/ ni_le d' d.
Proof.
- unfold ni_le in |- *. intros. rewrite (ni_min_comm d' d). apply ni_min_case.
+ unfold ni_le. intros. rewrite (ni_min_comm d' d). apply ni_min_case.
Qed.
Lemma ni_le_min_induc :
@@ -201,7 +201,7 @@ Proof.
apply ni_le_antisym. apply H1. apply ni_le_refl.
exact H2.
exact H.
- intro. rewrite H2. apply ni_le_antisym. apply H1. unfold ni_le in |- *. rewrite ni_min_comm. exact H2.
+ intro. rewrite H2. apply ni_le_antisym. apply H1. unfold ni_le. rewrite ni_min_comm. exact H2.
apply ni_le_refl.
exact H0.
Qed.
@@ -209,15 +209,15 @@ Qed.
Lemma le_ni_le : forall m n:nat, m <= n -> ni_le (ni m) (ni n).
Proof.
cut (forall m n:nat, m <= n -> min m n = m).
- intros. unfold ni_le, ni_min in |- *. rewrite (H m n H0). reflexivity.
+ intros. unfold ni_le, ni_min. rewrite (H m n H0). reflexivity.
simple induction m. trivial.
simple induction n0. intro. inversion H0.
- intros. simpl in |- *. rewrite (H n1 (le_S_n n n1 H1)). reflexivity.
+ intros. simpl. rewrite (H n1 (le_S_n n n1 H1)). reflexivity.
Qed.
Lemma ni_le_le : forall m n:nat, ni_le (ni m) (ni n) -> m <= n.
Proof.
- unfold ni_le in |- *. unfold ni_min in |- *. intros. inversion H. apply le_min_r.
+ unfold ni_le. unfold ni_min. intros. inversion H. apply le_min_r.
Qed.
Lemma Nplength_lb :
@@ -225,7 +225,7 @@ Lemma Nplength_lb :
(forall k:nat, k < n -> N.testbit_nat a k = false) -> ni_le (ni n) (Nplength a).
Proof.
simple induction a. intros. exact (ni_min_inf_r (ni n)).
- intros. unfold Nplength in |- *. apply le_ni_le. case (le_or_lt n (Pplength p)). trivial.
+ intros. unfold Nplength. apply le_ni_le. case (le_or_lt n (Pplength p)). trivial.
intro. absurd (N.testbit_nat (Npos p) (Pplength p) = false).
rewrite
(Nplength_one (Npos p) (Pplength p)
@@ -238,7 +238,7 @@ Lemma Nplength_ub :
forall (a:N) (n:nat), N.testbit_nat a n = true -> ni_le (Nplength a) (ni n).
Proof.
simple induction a. intros. discriminate H.
- intros. unfold Nplength in |- *. apply le_ni_le. case (le_or_lt (Pplength p) n). trivial.
+ intros. unfold Nplength. apply le_ni_le. case (le_or_lt (Pplength p) n). trivial.
intro. absurd (N.testbit_nat (Npos p) n = true).
rewrite
(Nplength_zeros (Npos p) (Pplength p)
@@ -262,7 +262,7 @@ Definition Npdist (a a':N) := Nplength (N.lxor a a').
Lemma Npdist_eq_1 : forall a:N, Npdist a a = infty.
Proof.
- intros. unfold Npdist in |- *. rewrite N.lxor_nilpotent. reflexivity.
+ intros. unfold Npdist. rewrite N.lxor_nilpotent. reflexivity.
Qed.
Lemma Npdist_eq_2 : forall a a':N, Npdist a a' = infty -> a = a'.
@@ -274,7 +274,7 @@ Qed.
Lemma Npdist_comm : forall a a':N, Npdist a a' = Npdist a' a.
Proof.
- unfold Npdist in |- *. intros. rewrite N.lxor_comm. reflexivity.
+ unfold Npdist. intros. rewrite N.lxor_comm. reflexivity.
Qed.
(** $d$ is an ultrametric distance, that is, not only $d(a,a')\leq
@@ -296,8 +296,8 @@ Lemma Nplength_ultra_1 :
Proof.
simple induction a. intros. unfold ni_le in H. unfold Nplength at 1 3 in H.
rewrite (ni_min_inf_l (Nplength a')) in H.
- rewrite (Nplength_infty a' H). simpl in |- *. apply ni_le_refl.
- intros. unfold Nplength at 1 in |- *. apply Nplength_lb. intros.
+ rewrite (Nplength_infty a' H). simpl. apply ni_le_refl.
+ intros. unfold Nplength at 1. apply Nplength_lb. intros.
cut (forall a'':N, N.lxor (Npos p) a' = a'' -> N.testbit_nat a'' k = false).
intros. apply H1. reflexivity.
intro a''. case a''. intro. reflexivity.
@@ -329,7 +329,7 @@ Lemma Npdist_ultra :
forall a a' a'':N,
ni_le (ni_min (Npdist a a'') (Npdist a'' a')) (Npdist a a').
Proof.
- intros. unfold Npdist in |- *. cut (N.lxor (N.lxor a a'') (N.lxor a'' a') = N.lxor a a').
+ intros. unfold Npdist. cut (N.lxor (N.lxor a a'') (N.lxor a'' a') = N.lxor a a').
intro. rewrite <- H. apply Nplength_ultra.
rewrite N.lxor_assoc. rewrite <- (N.lxor_assoc a'' a'' a'). rewrite N.lxor_nilpotent.
rewrite N.lxor_0_l. reflexivity.
diff --git a/theories/Program/Tactics.v b/theories/Program/Tactics.v
index 9694e3fd1..54011fee8 100644
--- a/theories/Program/Tactics.v
+++ b/theories/Program/Tactics.v
@@ -310,7 +310,7 @@ Ltac refine_hyp c :=
possibly using [program_simplify] to use standard goal-cleaning tactics. *)
Ltac program_simplify :=
-simpl in |- *; intros ; destruct_all_rec_calls ; repeat (destruct_conjs; simpl proj1_sig in * );
+simpl; intros ; destruct_all_rec_calls ; repeat (destruct_conjs; simpl proj1_sig in * );
subst*; autoinjections ; try discriminates ;
try (solve [ red ; intros ; destruct_conjs ; autoinjections ; discriminates ]).
diff --git a/theories/Program/Wf.v b/theories/Program/Wf.v
index 8ef1eb4e6..6494ed87c 100644
--- a/theories/Program/Wf.v
+++ b/theories/Program/Wf.v
@@ -52,7 +52,7 @@ Section Well_founded.
Lemma Fix_eq : forall x:A, Fix_sub x = F_sub x (fun y:{ y:A | R y x} => Fix_sub (proj1_sig y)).
Proof.
- intro x; unfold Fix_sub in |- *.
+ intro x; unfold Fix_sub.
rewrite <- (Fix_F_eq ).
apply F_ext; intros.
apply Fix_F_inv.
diff --git a/theories/QArith/Qcanon.v b/theories/QArith/Qcanon.v
index 05a27cc43..c20c3ba7f 100644
--- a/theories/QArith/Qcanon.v
+++ b/theories/QArith/Qcanon.v
@@ -488,7 +488,7 @@ Definition Qc_eq_bool (x y : Qc) :=
Lemma Qc_eq_bool_correct : forall x y : Qc, Qc_eq_bool x y = true -> x=y.
Proof.
- intros x y; unfold Qc_eq_bool in |- *; case (Qc_eq_dec x y); simpl in |- *; auto.
+ intros x y; unfold Qc_eq_bool; case (Qc_eq_dec x y); simpl; auto.
intros _ H; inversion H.
Qed.
diff --git a/theories/QArith/Qreals.v b/theories/QArith/Qreals.v
index 24f6d7204..3730bcd7f 100644
--- a/theories/QArith/Qreals.v
+++ b/theories/QArith/Qreals.v
@@ -21,7 +21,7 @@ Hint Resolve IZR_nz Rmult_integral_contrapositive.
Lemma eqR_Qeq : forall x y : Q, Q2R x = Q2R y -> x==y.
Proof.
-unfold Qeq, Q2R in |- *; intros (x1, x2) (y1, y2); unfold Qnum, Qden in |- *;
+unfold Qeq, Q2R; intros (x1, x2) (y1, y2); unfold Qnum, Qden;
intros.
apply eq_IZR.
do 2 rewrite mult_IZR.
@@ -36,24 +36,24 @@ Qed.
Lemma Qeq_eqR : forall x y : Q, x==y -> Q2R x = Q2R y.
Proof.
-unfold Qeq, Q2R in |- *; intros (x1, x2) (y1, y2); unfold Qnum, Qden in |- *;
+unfold Qeq, Q2R; intros (x1, x2) (y1, y2); unfold Qnum, Qden;
intros.
set (X1 := IZR x1) in *; assert (X2nz := IZR_nz x2);
set (X2 := IZR (Zpos x2)) in *.
set (Y1 := IZR y1) in *; assert (Y2nz := IZR_nz y2);
set (Y2 := IZR (Zpos y2)) in *.
assert ((X1 * Y2)%R = (Y1 * X2)%R).
- unfold X1, X2, Y1, Y2 in |- *; do 2 rewrite <- mult_IZR.
+ unfold X1, X2, Y1, Y2; do 2 rewrite <- mult_IZR.
apply IZR_eq; auto.
clear H.
field_simplify_eq; auto.
ring_simplify X1 Y2 (Y2 * X1)%R.
-rewrite H0 in |- *; ring.
+rewrite H0; ring.
Qed.
Lemma Rle_Qle : forall x y : Q, (Q2R x <= Q2R y)%R -> x<=y.
Proof.
-unfold Qle, Q2R in |- *; intros (x1, x2) (y1, y2); unfold Qnum, Qden in |- *;
+unfold Qle, Q2R; intros (x1, x2) (y1, y2); unfold Qnum, Qden;
intros.
apply le_IZR.
do 2 rewrite mult_IZR.
@@ -65,37 +65,37 @@ replace (X1 * Y2)%R with (X1 * / X2 * (X2 * Y2))%R; try (field; auto).
replace (Y1 * X2)%R with (Y1 * / Y2 * (X2 * Y2))%R; try (field; auto).
apply Rmult_le_compat_r; auto.
apply Rmult_le_pos.
-unfold X2 in |- *; replace 0%R with (IZR 0); auto; apply IZR_le;
+unfold X2; replace 0%R with (IZR 0); auto; apply IZR_le;
auto with zarith.
-unfold Y2 in |- *; replace 0%R with (IZR 0); auto; apply IZR_le;
+unfold Y2; replace 0%R with (IZR 0); auto; apply IZR_le;
auto with zarith.
Qed.
Lemma Qle_Rle : forall x y : Q, x<=y -> (Q2R x <= Q2R y)%R.
Proof.
-unfold Qle, Q2R in |- *; intros (x1, x2) (y1, y2); unfold Qnum, Qden in |- *;
+unfold Qle, Q2R; intros (x1, x2) (y1, y2); unfold Qnum, Qden;
intros.
set (X1 := IZR x1) in *; assert (X2nz := IZR_nz x2);
set (X2 := IZR (Zpos x2)) in *.
set (Y1 := IZR y1) in *; assert (Y2nz := IZR_nz y2);
set (Y2 := IZR (Zpos y2)) in *.
assert (X1 * Y2 <= Y1 * X2)%R.
- unfold X1, X2, Y1, Y2 in |- *; do 2 rewrite <- mult_IZR.
+ unfold X1, X2, Y1, Y2; do 2 rewrite <- mult_IZR.
apply IZR_le; auto.
clear H.
replace (X1 * / X2)%R with (X1 * Y2 * (/ X2 * / Y2))%R; try (field; auto).
replace (Y1 * / Y2)%R with (Y1 * X2 * (/ X2 * / Y2))%R; try (field; auto).
apply Rmult_le_compat_r; auto.
apply Rmult_le_pos; apply Rlt_le; apply Rinv_0_lt_compat.
-unfold X2 in |- *; replace 0%R with (IZR 0); auto; apply IZR_lt; red in |- *;
+unfold X2; replace 0%R with (IZR 0); auto; apply IZR_lt; red;
auto with zarith.
-unfold Y2 in |- *; replace 0%R with (IZR 0); auto; apply IZR_lt; red in |- *;
+unfold Y2; replace 0%R with (IZR 0); auto; apply IZR_lt; red;
auto with zarith.
Qed.
Lemma Rlt_Qlt : forall x y : Q, (Q2R x < Q2R y)%R -> x<y.
Proof.
-unfold Qlt, Q2R in |- *; intros (x1, x2) (y1, y2); unfold Qnum, Qden in |- *;
+unfold Qlt, Q2R; intros (x1, x2) (y1, y2); unfold Qnum, Qden;
intros.
apply lt_IZR.
do 2 rewrite mult_IZR.
@@ -107,38 +107,38 @@ replace (X1 * Y2)%R with (X1 * / X2 * (X2 * Y2))%R; try (field; auto).
replace (Y1 * X2)%R with (Y1 * / Y2 * (X2 * Y2))%R; try (field; auto).
apply Rmult_lt_compat_r; auto.
apply Rmult_lt_0_compat.
-unfold X2 in |- *; replace 0%R with (IZR 0); auto; apply IZR_lt; red in |- *;
+unfold X2; replace 0%R with (IZR 0); auto; apply IZR_lt; red;
auto with zarith.
-unfold Y2 in |- *; replace 0%R with (IZR 0); auto; apply IZR_lt; red in |- *;
+unfold Y2; replace 0%R with (IZR 0); auto; apply IZR_lt; red;
auto with zarith.
Qed.
Lemma Qlt_Rlt : forall x y : Q, x<y -> (Q2R x < Q2R y)%R.
Proof.
-unfold Qlt, Q2R in |- *; intros (x1, x2) (y1, y2); unfold Qnum, Qden in |- *;
+unfold Qlt, Q2R; intros (x1, x2) (y1, y2); unfold Qnum, Qden;
intros.
set (X1 := IZR x1) in *; assert (X2nz := IZR_nz x2);
set (X2 := IZR (Zpos x2)) in *.
set (Y1 := IZR y1) in *; assert (Y2nz := IZR_nz y2);
set (Y2 := IZR (Zpos y2)) in *.
assert (X1 * Y2 < Y1 * X2)%R.
- unfold X1, X2, Y1, Y2 in |- *; do 2 rewrite <- mult_IZR.
+ unfold X1, X2, Y1, Y2; do 2 rewrite <- mult_IZR.
apply IZR_lt; auto.
clear H.
replace (X1 * / X2)%R with (X1 * Y2 * (/ X2 * / Y2))%R; try (field; auto).
replace (Y1 * / Y2)%R with (Y1 * X2 * (/ X2 * / Y2))%R; try (field; auto).
apply Rmult_lt_compat_r; auto.
apply Rmult_lt_0_compat; apply Rinv_0_lt_compat.
-unfold X2 in |- *; replace 0%R with (IZR 0); auto; apply IZR_lt; red in |- *;
+unfold X2; replace 0%R with (IZR 0); auto; apply IZR_lt; red;
auto with zarith.
-unfold Y2 in |- *; replace 0%R with (IZR 0); auto; apply IZR_lt; red in |- *;
+unfold Y2; replace 0%R with (IZR 0); auto; apply IZR_lt; red;
auto with zarith.
Qed.
Lemma Q2R_plus : forall x y : Q, Q2R (x+y) = (Q2R x + Q2R y)%R.
Proof.
-unfold Qplus, Qeq, Q2R in |- *; intros (x1, x2) (y1, y2);
- unfold Qden, Qnum in |- *.
+unfold Qplus, Qeq, Q2R; intros (x1, x2) (y1, y2);
+ unfold Qden, Qnum.
simpl_mult.
rewrite plus_IZR.
do 3 rewrite mult_IZR.
@@ -147,8 +147,8 @@ Qed.
Lemma Q2R_mult : forall x y : Q, Q2R (x*y) = (Q2R x * Q2R y)%R.
Proof.
-unfold Qmult, Qeq, Q2R in |- *; intros (x1, x2) (y1, y2);
- unfold Qden, Qnum in |- *.
+unfold Qmult, Qeq, Q2R; intros (x1, x2) (y1, y2);
+ unfold Qden, Qnum.
simpl_mult.
do 2 rewrite mult_IZR.
field; auto.
@@ -156,24 +156,24 @@ Qed.
Lemma Q2R_opp : forall x : Q, Q2R (- x) = (- Q2R x)%R.
Proof.
-unfold Qopp, Qeq, Q2R in |- *; intros (x1, x2); unfold Qden, Qnum in |- *.
+unfold Qopp, Qeq, Q2R; intros (x1, x2); unfold Qden, Qnum.
rewrite Ropp_Ropp_IZR.
field; auto.
Qed.
Lemma Q2R_minus : forall x y : Q, Q2R (x-y) = (Q2R x - Q2R y)%R.
-unfold Qminus in |- *; intros; rewrite Q2R_plus; rewrite Q2R_opp; auto.
+unfold Qminus; intros; rewrite Q2R_plus; rewrite Q2R_opp; auto.
Qed.
Lemma Q2R_inv : forall x : Q, ~ x==0 -> Q2R (/x) = (/ Q2R x)%R.
Proof.
-unfold Qinv, Q2R, Qeq in |- *; intros (x1, x2); unfold Qden, Qnum in |- *.
+unfold Qinv, Q2R, Qeq; intros (x1, x2); unfold Qden, Qnum.
case x1.
-simpl in |- *; intros; elim H; trivial.
+simpl; intros; elim H; trivial.
intros; field; auto.
intros;
- change (IZR (Zneg x2)) with (- IZR (' x2))%R in |- *;
- change (IZR (Zneg p)) with (- IZR (' p))%R in |- *;
+ change (IZR (Zneg x2)) with (- IZR (' x2))%R;
+ change (IZR (Zneg p)) with (- IZR (' p))%R;
field; (*auto 8 with real.*)
repeat split; auto; auto with real.
Qed.
@@ -181,7 +181,7 @@ Qed.
Lemma Q2R_div :
forall x y : Q, ~ y==0 -> Q2R (x/y) = (Q2R x / Q2R y)%R.
Proof.
-unfold Qdiv, Rdiv in |- *.
+unfold Qdiv, Rdiv.
intros; rewrite Q2R_mult.
rewrite Q2R_inv; auto.
Qed.
@@ -205,7 +205,7 @@ Qed.
Let ex2 : forall x y : Q, ~ y==0 -> (x/y)*y == x.
intros; QField.
intro; apply H; apply eqR_Qeq.
-rewrite H0; unfold Q2R in |- *; simpl in |- *; field; auto with real.
+rewrite H0; unfold Q2R; simpl; field; auto with real.
Qed.
End LegacyQField.
diff --git a/theories/Reals/Alembert.v b/theories/Reals/Alembert.v
index 5e91accfe..9f78e0b66 100644
--- a/theories/Reals/Alembert.v
+++ b/theories/Reals/Alembert.v
@@ -31,23 +31,23 @@ Proof.
{ l:R | Un_cv (fun N:nat => sum_f_R0 An N) l }).
intro X; apply X.
apply completeness.
- unfold Un_cv in H0; unfold bound in |- *; cut (0 < / 2);
+ unfold Un_cv in H0; unfold bound; cut (0 < / 2);
[ intro | apply Rinv_0_lt_compat; prove_sup0 ].
elim (H0 (/ 2) H1); intros.
exists (sum_f_R0 An x + 2 * An (S x)).
- unfold is_upper_bound in |- *; intros; unfold EUn in H3; elim H3; intros.
+ unfold is_upper_bound; intros; unfold EUn in H3; elim H3; intros.
rewrite H4; assert (H5 := lt_eq_lt_dec x1 x).
elim H5; intros.
elim a; intro.
replace (sum_f_R0 An x) with
(sum_f_R0 An x1 + sum_f_R0 (fun i:nat => An (S x1 + i)%nat) (x - S x1)).
- pattern (sum_f_R0 An x1) at 1 in |- *; rewrite <- Rplus_0_r;
+ pattern (sum_f_R0 An x1) at 1; rewrite <- Rplus_0_r;
rewrite Rplus_assoc; apply Rplus_le_compat_l.
left; apply Rplus_lt_0_compat.
apply tech1; intros; apply H.
apply Rmult_lt_0_compat; [ prove_sup0 | apply H ].
- symmetry in |- *; apply tech2; assumption.
- rewrite b; pattern (sum_f_R0 An x) at 1 in |- *; rewrite <- Rplus_0_r;
+ symmetry ; apply tech2; assumption.
+ rewrite b; pattern (sum_f_R0 An x) at 1; rewrite <- Rplus_0_r;
apply Rplus_le_compat_l.
left; apply Rmult_lt_0_compat; [ prove_sup0 | apply H ].
replace (sum_f_R0 An x1) with
@@ -64,14 +64,14 @@ Proof.
left; apply H.
rewrite tech3.
replace (1 - / 2) with (/ 2).
- unfold Rdiv in |- *; rewrite Rinv_involutive.
- pattern 2 at 3 in |- *; rewrite <- Rmult_1_r; rewrite <- (Rmult_comm 2);
+ unfold Rdiv; rewrite Rinv_involutive.
+ pattern 2 at 3; rewrite <- Rmult_1_r; rewrite <- (Rmult_comm 2);
apply Rmult_le_compat_l.
left; prove_sup0.
left; apply Rplus_lt_reg_r with ((/ 2) ^ S (x1 - S x)).
replace ((/ 2) ^ S (x1 - S x) + (1 - (/ 2) ^ S (x1 - S x))) with 1;
[ idtac | ring ].
- rewrite <- (Rplus_comm 1); pattern 1 at 1 in |- *; rewrite <- Rplus_0_r;
+ rewrite <- (Rplus_comm 1); pattern 1 at 1; rewrite <- Rplus_0_r;
apply Rplus_lt_compat_l.
apply pow_lt; apply Rinv_0_lt_compat; prove_sup0.
discrR.
@@ -80,14 +80,14 @@ Proof.
ring.
discrR.
discrR.
- pattern 1 at 3 in |- *; replace 1 with (/ 1);
+ pattern 1 at 3; replace 1 with (/ 1);
[ apply tech7; discrR | apply Rinv_1 ].
replace (An (S x)) with (An (S x + 0)%nat).
apply (tech6 (fun i:nat => An (S x + i)%nat) (/ 2)).
left; apply Rinv_0_lt_compat; prove_sup0.
intro; cut (forall n:nat, (n >= x)%nat -> An (S n) < / 2 * An n).
intro; replace (S x + S i)%nat with (S (S x + i)).
- apply H6; unfold ge in |- *; apply tech8.
+ apply H6; unfold ge; apply tech8.
apply INR_eq; rewrite S_INR; do 2 rewrite plus_INR; do 2 rewrite S_INR; ring.
intros; unfold R_dist in H2; apply Rmult_lt_reg_l with (/ An n).
apply Rinv_0_lt_compat; apply H.
@@ -96,20 +96,20 @@ Proof.
rewrite Rmult_1_r;
replace (An (S n) * / An n) with (Rabs (Rabs (An (S n) / An n) - 0)).
apply H2; assumption.
- unfold Rminus in |- *; rewrite Ropp_0; rewrite Rplus_0_r;
+ unfold Rminus; rewrite Ropp_0; rewrite Rplus_0_r;
rewrite Rabs_Rabsolu; rewrite Rabs_right.
- unfold Rdiv in |- *; reflexivity.
- left; unfold Rdiv in |- *; change (0 < An (S n) * / An n) in |- *;
+ unfold Rdiv; reflexivity.
+ left; unfold Rdiv; change (0 < An (S n) * / An n);
apply Rmult_lt_0_compat; [ apply H | apply Rinv_0_lt_compat; apply H ].
- red in |- *; intro; assert (H8 := H n); rewrite H7 in H8;
+ red; intro; assert (H8 := H n); rewrite H7 in H8;
elim (Rlt_irrefl _ H8).
replace (S x + 0)%nat with (S x); [ reflexivity | ring ].
- symmetry in |- *; apply tech2; assumption.
- exists (sum_f_R0 An 0); unfold EUn in |- *; exists 0%nat; reflexivity.
+ symmetry ; apply tech2; assumption.
+ exists (sum_f_R0 An 0); unfold EUn; exists 0%nat; reflexivity.
intro X; elim X; intros.
exists x; apply Un_cv_crit_lub;
- [ unfold Un_growing in |- *; intro; rewrite tech5;
- pattern (sum_f_R0 An n) at 1 in |- *; rewrite <- Rplus_0_r;
+ [ unfold Un_growing; intro; rewrite tech5;
+ pattern (sum_f_R0 An n) at 1; rewrite <- Rplus_0_r;
apply Rplus_le_compat_l; left; apply H
| apply p ].
Defined.
@@ -131,14 +131,14 @@ Proof.
assert (H6 := Alembert_C1 Wn H2 H4).
elim H5; intros.
elim H6; intros.
- exists (x - x0); unfold Un_cv in |- *; unfold Un_cv in p;
+ exists (x - x0); unfold Un_cv; unfold Un_cv in p;
unfold Un_cv in p0; intros; cut (0 < eps / 2).
intro; elim (p (eps / 2) H8); clear p; intros.
elim (p0 (eps / 2) H8); clear p0; intros.
set (N := max x1 x2).
exists N; intros;
replace (sum_f_R0 An n) with (sum_f_R0 Vn n - sum_f_R0 Wn n).
- unfold R_dist in |- *;
+ unfold R_dist;
replace (sum_f_R0 Vn n - sum_f_R0 Wn n - (x - x0)) with
(sum_f_R0 Vn n - x + - (sum_f_R0 Wn n - x0)); [ idtac | ring ];
apply Rle_lt_trans with
@@ -146,29 +146,29 @@ Proof.
apply Rabs_triang.
rewrite Rabs_Ropp; apply Rlt_le_trans with (eps / 2 + eps / 2).
apply Rplus_lt_compat.
- unfold R_dist in H9; apply H9; unfold ge in |- *; apply le_trans with N;
- [ unfold N in |- *; apply le_max_l | assumption ].
- unfold R_dist in H10; apply H10; unfold ge in |- *; apply le_trans with N;
- [ unfold N in |- *; apply le_max_r | assumption ].
- right; symmetry in |- *; apply double_var.
- symmetry in |- *; apply tech11; intro; unfold Vn, Wn in |- *;
- unfold Rdiv in |- *; do 2 rewrite <- (Rmult_comm (/ 2));
+ unfold R_dist in H9; apply H9; unfold ge; apply le_trans with N;
+ [ unfold N; apply le_max_l | assumption ].
+ unfold R_dist in H10; apply H10; unfold ge; apply le_trans with N;
+ [ unfold N; apply le_max_r | assumption ].
+ right; symmetry ; apply double_var.
+ symmetry ; apply tech11; intro; unfold Vn, Wn;
+ unfold Rdiv; do 2 rewrite <- (Rmult_comm (/ 2));
apply Rmult_eq_reg_l with 2.
rewrite Rmult_minus_distr_l; repeat rewrite <- Rmult_assoc;
rewrite <- Rinv_r_sym.
ring.
discrR.
discrR.
- unfold Rdiv in |- *; apply Rmult_lt_0_compat;
+ unfold Rdiv; apply Rmult_lt_0_compat;
[ assumption | apply Rinv_0_lt_compat; prove_sup0 ].
cut (forall n:nat, / 2 * Rabs (An n) <= Wn n <= 3 * / 2 * Rabs (An n)).
intro; cut (forall n:nat, / Wn n <= 2 * / Rabs (An n)).
intro; cut (forall n:nat, Wn (S n) / Wn n <= 3 * Rabs (An (S n) / An n)).
- intro; unfold Un_cv in |- *; intros; unfold Un_cv in H0; cut (0 < eps / 3).
+ intro; unfold Un_cv; intros; unfold Un_cv in H0; cut (0 < eps / 3).
intro; elim (H0 (eps / 3) H8); intros.
exists x; intros.
assert (H11 := H9 n H10).
- unfold R_dist in |- *; unfold Rminus in |- *; rewrite Ropp_0;
+ unfold R_dist; unfold Rminus; rewrite Ropp_0;
rewrite Rplus_0_r; rewrite Rabs_Rabsolu; unfold R_dist in H11;
unfold Rminus in H11; rewrite Ropp_0 in H11; rewrite Rplus_0_r in H11;
rewrite Rabs_Rabsolu in H11; rewrite Rabs_right.
@@ -179,13 +179,13 @@ Proof.
rewrite <- Rmult_assoc; rewrite <- Rinv_l_sym; [ idtac | discrR ];
rewrite Rmult_1_l; rewrite <- (Rmult_comm eps); unfold Rdiv in H11;
exact H11.
- left; change (0 < Wn (S n) / Wn n) in |- *; unfold Rdiv in |- *;
+ left; change (0 < Wn (S n) / Wn n); unfold Rdiv;
apply Rmult_lt_0_compat.
apply H2.
apply Rinv_0_lt_compat; apply H2.
- unfold Rdiv in |- *; apply Rmult_lt_0_compat;
+ unfold Rdiv; apply Rmult_lt_0_compat;
[ assumption | apply Rinv_0_lt_compat; prove_sup0 ].
- intro; unfold Rdiv in |- *; rewrite Rabs_mult; rewrite <- Rmult_assoc;
+ intro; unfold Rdiv; rewrite Rabs_mult; rewrite <- Rmult_assoc;
replace 3 with (2 * (3 * / 2));
[ idtac | rewrite <- Rmult_assoc; apply Rinv_r_simpl_m; discrR ];
apply Rle_trans with (Wn (S n) * 2 * / Rabs (An n)).
@@ -218,32 +218,32 @@ Proof.
rewrite Rmult_1_l; elim (H4 n); intros; assumption.
discrR.
apply Rabs_no_R0; apply H.
- red in |- *; intro; assert (H6 := H2 n); rewrite H5 in H6;
+ red; intro; assert (H6 := H2 n); rewrite H5 in H6;
elim (Rlt_irrefl _ H6).
intro; split.
- unfold Wn in |- *; unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2));
+ unfold Wn; unfold Rdiv; rewrite <- (Rmult_comm (/ 2));
apply Rmult_le_compat_l.
left; apply Rinv_0_lt_compat; prove_sup0.
- pattern (Rabs (An n)) at 1 in |- *; rewrite <- Rplus_0_r; rewrite double;
- unfold Rminus in |- *; rewrite Rplus_assoc; apply Rplus_le_compat_l.
+ pattern (Rabs (An n)) at 1; rewrite <- Rplus_0_r; rewrite double;
+ unfold Rminus; rewrite Rplus_assoc; apply Rplus_le_compat_l.
apply Rplus_le_reg_l with (An n).
rewrite Rplus_0_r; rewrite (Rplus_comm (An n)); rewrite Rplus_assoc;
rewrite Rplus_opp_l; rewrite Rplus_0_r; apply RRle_abs.
- unfold Wn in |- *; unfold Rdiv in |- *; repeat rewrite <- (Rmult_comm (/ 2));
+ unfold Wn; unfold Rdiv; repeat rewrite <- (Rmult_comm (/ 2));
repeat rewrite Rmult_assoc; apply Rmult_le_compat_l.
left; apply Rinv_0_lt_compat; prove_sup0.
- unfold Rminus in |- *; rewrite double;
+ unfold Rminus; rewrite double;
replace (3 * Rabs (An n)) with (Rabs (An n) + Rabs (An n) + Rabs (An n));
[ idtac | ring ]; repeat rewrite Rplus_assoc; repeat apply Rplus_le_compat_l.
rewrite <- Rabs_Ropp; apply RRle_abs.
cut (forall n:nat, / 2 * Rabs (An n) <= Vn n <= 3 * / 2 * Rabs (An n)).
intro; cut (forall n:nat, / Vn n <= 2 * / Rabs (An n)).
intro; cut (forall n:nat, Vn (S n) / Vn n <= 3 * Rabs (An (S n) / An n)).
- intro; unfold Un_cv in |- *; intros; unfold Un_cv in H1; cut (0 < eps / 3).
+ intro; unfold Un_cv; intros; unfold Un_cv in H1; cut (0 < eps / 3).
intro; elim (H0 (eps / 3) H7); intros.
exists x; intros.
assert (H10 := H8 n H9).
- unfold R_dist in |- *; unfold Rminus in |- *; rewrite Ropp_0;
+ unfold R_dist; unfold Rminus; rewrite Ropp_0;
rewrite Rplus_0_r; rewrite Rabs_Rabsolu; unfold R_dist in H10;
unfold Rminus in H10; rewrite Ropp_0 in H10; rewrite Rplus_0_r in H10;
rewrite Rabs_Rabsolu in H10; rewrite Rabs_right.
@@ -254,13 +254,13 @@ Proof.
rewrite <- Rmult_assoc; rewrite <- Rinv_l_sym; [ idtac | discrR ];
rewrite Rmult_1_l; rewrite <- (Rmult_comm eps); unfold Rdiv in H10;
exact H10.
- left; change (0 < Vn (S n) / Vn n) in |- *; unfold Rdiv in |- *;
+ left; change (0 < Vn (S n) / Vn n); unfold Rdiv;
apply Rmult_lt_0_compat.
apply H1.
apply Rinv_0_lt_compat; apply H1.
- unfold Rdiv in |- *; apply Rmult_lt_0_compat;
+ unfold Rdiv; apply Rmult_lt_0_compat;
[ assumption | apply Rinv_0_lt_compat; prove_sup0 ].
- intro; unfold Rdiv in |- *; rewrite Rabs_mult; rewrite <- Rmult_assoc;
+ intro; unfold Rdiv; rewrite Rabs_mult; rewrite <- Rmult_assoc;
replace 3 with (2 * (3 * / 2));
[ idtac | rewrite <- Rmult_assoc; apply Rinv_r_simpl_m; discrR ];
apply Rle_trans with (Vn (S n) * 2 * / Rabs (An n)).
@@ -293,44 +293,44 @@ Proof.
rewrite Rmult_1_l; elim (H3 n); intros; assumption.
discrR.
apply Rabs_no_R0; apply H.
- red in |- *; intro; assert (H5 := H1 n); rewrite H4 in H5;
+ red; intro; assert (H5 := H1 n); rewrite H4 in H5;
elim (Rlt_irrefl _ H5).
intro; split.
- unfold Vn in |- *; unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2));
+ unfold Vn; unfold Rdiv; rewrite <- (Rmult_comm (/ 2));
apply Rmult_le_compat_l.
left; apply Rinv_0_lt_compat; prove_sup0.
- pattern (Rabs (An n)) at 1 in |- *; rewrite <- Rplus_0_r; rewrite double;
+ pattern (Rabs (An n)) at 1; rewrite <- Rplus_0_r; rewrite double;
rewrite Rplus_assoc; apply Rplus_le_compat_l.
apply Rplus_le_reg_l with (- An n); rewrite Rplus_0_r;
rewrite <- (Rplus_comm (An n)); rewrite <- Rplus_assoc;
rewrite Rplus_opp_l; rewrite Rplus_0_l; rewrite <- Rabs_Ropp;
apply RRle_abs.
- unfold Vn in |- *; unfold Rdiv in |- *; repeat rewrite <- (Rmult_comm (/ 2));
+ unfold Vn; unfold Rdiv; repeat rewrite <- (Rmult_comm (/ 2));
repeat rewrite Rmult_assoc; apply Rmult_le_compat_l.
left; apply Rinv_0_lt_compat; prove_sup0.
- unfold Rminus in |- *; rewrite double;
+ unfold Rminus; rewrite double;
replace (3 * Rabs (An n)) with (Rabs (An n) + Rabs (An n) + Rabs (An n));
[ idtac | ring ]; repeat rewrite Rplus_assoc; repeat apply Rplus_le_compat_l;
apply RRle_abs.
- intro; unfold Wn in |- *; unfold Rdiv in |- *; rewrite <- (Rmult_0_r (/ 2));
+ intro; unfold Wn; unfold Rdiv; rewrite <- (Rmult_0_r (/ 2));
rewrite <- (Rmult_comm (/ 2)); apply Rmult_lt_compat_l.
apply Rinv_0_lt_compat; prove_sup0.
- apply Rplus_lt_reg_r with (An n); rewrite Rplus_0_r; unfold Rminus in |- *;
+ apply Rplus_lt_reg_r with (An n); rewrite Rplus_0_r; unfold Rminus;
rewrite (Rplus_comm (An n)); rewrite Rplus_assoc;
rewrite Rplus_opp_l; rewrite Rplus_0_r;
apply Rle_lt_trans with (Rabs (An n)).
apply RRle_abs.
- rewrite double; pattern (Rabs (An n)) at 1 in |- *; rewrite <- Rplus_0_r;
+ rewrite double; pattern (Rabs (An n)) at 1; rewrite <- Rplus_0_r;
apply Rplus_lt_compat_l; apply Rabs_pos_lt; apply H.
- intro; unfold Vn in |- *; unfold Rdiv in |- *; rewrite <- (Rmult_0_r (/ 2));
+ intro; unfold Vn; unfold Rdiv; rewrite <- (Rmult_0_r (/ 2));
rewrite <- (Rmult_comm (/ 2)); apply Rmult_lt_compat_l.
apply Rinv_0_lt_compat; prove_sup0.
- apply Rplus_lt_reg_r with (- An n); rewrite Rplus_0_r; unfold Rminus in |- *;
+ apply Rplus_lt_reg_r with (- An n); rewrite Rplus_0_r; unfold Rminus;
rewrite (Rplus_comm (- An n)); rewrite Rplus_assoc;
rewrite Rplus_opp_r; rewrite Rplus_0_r;
apply Rle_lt_trans with (Rabs (An n)).
rewrite <- Rabs_Ropp; apply RRle_abs.
- rewrite double; pattern (Rabs (An n)) at 1 in |- *; rewrite <- Rplus_0_r;
+ rewrite double; pattern (Rabs (An n)) at 1; rewrite <- Rplus_0_r;
apply Rplus_lt_compat_l; apply Rabs_pos_lt; apply H.
Defined.
@@ -347,11 +347,11 @@ Proof.
intro; assert (H4 := Alembert_C2 Bn H2 H3).
elim H4; intros.
exists x0; unfold Bn in p; apply tech12; assumption.
- unfold Un_cv in |- *; intros; unfold Un_cv in H1; cut (0 < eps / Rabs x).
+ unfold Un_cv; intros; unfold Un_cv in H1; cut (0 < eps / Rabs x).
intro; elim (H1 (eps / Rabs x) H4); intros.
- exists x0; intros; unfold R_dist in |- *; unfold Rminus in |- *;
+ exists x0; intros; unfold R_dist; unfold Rminus;
rewrite Ropp_0; rewrite Rplus_0_r; rewrite Rabs_Rabsolu;
- unfold Bn in |- *;
+ unfold Bn;
replace (An (S n) * x ^ S n / (An n * x ^ n)) with (An (S n) / An n * x).
rewrite Rabs_mult; apply Rmult_lt_reg_l with (/ Rabs x).
apply Rinv_0_lt_compat; apply Rabs_pos_lt; assumption.
@@ -360,22 +360,22 @@ Proof.
rewrite Rmult_1_l; rewrite <- (Rmult_comm eps); unfold Rdiv in H5;
replace (Rabs (An (S n) / An n)) with (R_dist (Rabs (An (S n) * / An n)) 0).
apply H5; assumption.
- unfold R_dist in |- *; unfold Rminus in |- *; rewrite Ropp_0;
- rewrite Rplus_0_r; rewrite Rabs_Rabsolu; unfold Rdiv in |- *;
+ unfold R_dist; unfold Rminus; rewrite Ropp_0;
+ rewrite Rplus_0_r; rewrite Rabs_Rabsolu; unfold Rdiv;
reflexivity.
apply Rabs_no_R0; assumption.
replace (S n) with (n + 1)%nat; [ idtac | ring ]; rewrite pow_add;
- unfold Rdiv in |- *; rewrite Rinv_mult_distr.
+ unfold Rdiv; rewrite Rinv_mult_distr.
replace (An (n + 1)%nat * (x ^ n * x ^ 1) * (/ An n * / x ^ n)) with
(An (n + 1)%nat * x ^ 1 * / An n * (x ^ n * / x ^ n));
[ idtac | ring ]; rewrite <- Rinv_r_sym.
- simpl in |- *; ring.
+ simpl; ring.
apply pow_nonzero; assumption.
apply H0.
apply pow_nonzero; assumption.
- unfold Rdiv in |- *; apply Rmult_lt_0_compat;
+ unfold Rdiv; apply Rmult_lt_0_compat;
[ assumption | apply Rinv_0_lt_compat; apply Rabs_pos_lt; assumption ].
- intro; unfold Bn in |- *; apply prod_neq_R0;
+ intro; unfold Bn; apply prod_neq_R0;
[ apply H0 | apply pow_nonzero; assumption ].
Defined.
@@ -383,14 +383,14 @@ Lemma AlembertC3_step2 :
forall (An:nat -> R) (x:R), x = 0 -> { l:R | Pser An x l }.
Proof.
intros; exists (An 0%nat).
- unfold Pser in |- *; unfold infinite_sum in |- *; intros; exists 0%nat; intros;
+ unfold Pser; unfold infinite_sum; intros; exists 0%nat; intros;
replace (sum_f_R0 (fun n0:nat => An n0 * x ^ n0) n) with (An 0%nat).
- unfold R_dist in |- *; unfold Rminus in |- *; rewrite Rplus_opp_r;
+ unfold R_dist; unfold Rminus; rewrite Rplus_opp_r;
rewrite Rabs_R0; assumption.
induction n as [| n Hrecn].
- simpl in |- *; ring.
+ simpl; ring.
rewrite tech5; rewrite Hrecn;
- [ rewrite H; simpl in |- *; ring | unfold ge in |- *; apply le_O_n ].
+ [ rewrite H; simpl; ring | unfold ge; apply le_O_n ].
Qed.
(** A useful criterion of convergence for power series *)
@@ -404,11 +404,11 @@ Proof.
elim s; intro.
cut (x <> 0).
intro; apply AlembertC3_step1; assumption.
- red in |- *; intro; rewrite H1 in a; elim (Rlt_irrefl _ a).
+ red; intro; rewrite H1 in a; elim (Rlt_irrefl _ a).
apply AlembertC3_step2; assumption.
cut (x <> 0).
intro; apply AlembertC3_step1; assumption.
- red in |- *; intro; rewrite H1 in r; elim (Rlt_irrefl _ r).
+ red; intro; rewrite H1 in r; elim (Rlt_irrefl _ r).
Defined.
Lemma Alembert_C4 :
@@ -428,8 +428,8 @@ Proof.
elim H1; intros.
elim H2; intros.
elim H4; intros.
- unfold bound in |- *; exists (sum_f_R0 An x0 + / (1 - x) * An (S x0)).
- unfold is_upper_bound in |- *; intros; unfold EUn in H6.
+ unfold bound; exists (sum_f_R0 An x0 + / (1 - x) * An (S x0)).
+ unfold is_upper_bound; intros; unfold EUn in H6.
elim H6; intros.
rewrite H7.
assert (H8 := lt_eq_lt_dec x2 x0).
@@ -437,7 +437,7 @@ Proof.
elim a; intro.
replace (sum_f_R0 An x0) with
(sum_f_R0 An x2 + sum_f_R0 (fun i:nat => An (S x2 + i)%nat) (x0 - S x2)).
- pattern (sum_f_R0 An x2) at 1 in |- *; rewrite <- Rplus_0_r.
+ pattern (sum_f_R0 An x2) at 1; rewrite <- Rplus_0_r.
rewrite Rplus_assoc; apply Rplus_le_compat_l.
left; apply Rplus_lt_0_compat.
apply tech1.
@@ -446,8 +446,8 @@ Proof.
apply Rinv_0_lt_compat; apply Rplus_lt_reg_r with x; rewrite Rplus_0_r;
replace (x + (1 - x)) with 1; [ elim H3; intros; assumption | ring ].
apply H.
- symmetry in |- *; apply tech2; assumption.
- rewrite b; pattern (sum_f_R0 An x0) at 1 in |- *; rewrite <- Rplus_0_r;
+ symmetry ; apply tech2; assumption.
+ rewrite b; pattern (sum_f_R0 An x0) at 1; rewrite <- Rplus_0_r;
apply Rplus_le_compat_l.
left; apply Rmult_lt_0_compat.
apply Rinv_0_lt_compat; apply Rplus_lt_reg_r with x; rewrite Rplus_0_r;
@@ -465,7 +465,7 @@ Proof.
rewrite <- (Rmult_comm (An (S x0))); apply Rmult_le_compat_l.
left; apply H.
rewrite tech3.
- unfold Rdiv in |- *; apply Rmult_le_reg_l with (1 - x).
+ unfold Rdiv; apply Rmult_le_reg_l with (1 - x).
apply Rplus_lt_reg_r with x; rewrite Rplus_0_r.
replace (x + (1 - x)) with 1; [ elim H3; intros; assumption | ring ].
do 2 rewrite (Rmult_comm (1 - x)).
@@ -473,17 +473,17 @@ Proof.
rewrite Rmult_1_r; apply Rplus_le_reg_l with (x ^ S (x2 - S x0)).
replace (x ^ S (x2 - S x0) + (1 - x ^ S (x2 - S x0))) with 1;
[ idtac | ring ].
- rewrite <- (Rplus_comm 1); pattern 1 at 1 in |- *; rewrite <- Rplus_0_r;
+ rewrite <- (Rplus_comm 1); pattern 1 at 1; rewrite <- Rplus_0_r;
apply Rplus_le_compat_l.
left; apply pow_lt.
apply Rle_lt_trans with k.
elim Hyp; intros; assumption.
elim H3; intros; assumption.
apply Rminus_eq_contra.
- red in |- *; intro.
+ red; intro.
elim H3; intros.
rewrite H10 in H12; elim (Rlt_irrefl _ H12).
- red in |- *; intro.
+ red; intro.
elim H3; intros.
rewrite H10 in H12; elim (Rlt_irrefl _ H12).
replace (An (S x0)) with (An (S x0 + 0)%nat).
@@ -496,7 +496,7 @@ Proof.
intro.
replace (S x0 + S i)%nat with (S (S x0 + i)).
apply H9.
- unfold ge in |- *.
+ unfold ge.
apply tech8.
apply INR_eq; rewrite S_INR; do 2 rewrite plus_INR; do 2 rewrite S_INR;
ring.
@@ -510,21 +510,21 @@ Proof.
replace (An (S n) * / An n) with (Rabs (An (S n) / An n)).
apply H5; assumption.
rewrite Rabs_right.
- unfold Rdiv in |- *; reflexivity.
- left; unfold Rdiv in |- *; change (0 < An (S n) * / An n) in |- *;
+ unfold Rdiv; reflexivity.
+ left; unfold Rdiv; change (0 < An (S n) * / An n);
apply Rmult_lt_0_compat.
apply H.
apply Rinv_0_lt_compat; apply H.
- red in |- *; intro.
+ red; intro.
assert (H11 := H n).
rewrite H10 in H11; elim (Rlt_irrefl _ H11).
replace (S x0 + 0)%nat with (S x0); [ reflexivity | ring ].
- symmetry in |- *; apply tech2; assumption.
- exists (sum_f_R0 An 0); unfold EUn in |- *; exists 0%nat; reflexivity.
+ symmetry ; apply tech2; assumption.
+ exists (sum_f_R0 An 0); unfold EUn; exists 0%nat; reflexivity.
intro X; elim X; intros.
exists x; apply Un_cv_crit_lub;
- [ unfold Un_growing in |- *; intro; rewrite tech5;
- pattern (sum_f_R0 An n) at 1 in |- *; rewrite <- Rplus_0_r;
+ [ unfold Un_growing; intro; rewrite tech5;
+ pattern (sum_f_R0 An n) at 1; rewrite <- Rplus_0_r;
apply Rplus_le_compat_l; left; apply H
| apply p ].
Qed.
@@ -551,9 +551,9 @@ Proof.
apply (Alembert_C4 (fun i:nat => Rabs (An i)) k).
assumption.
intro; apply Rabs_pos_lt; apply H0.
- unfold Un_cv in |- *.
+ unfold Un_cv.
unfold Un_cv in H1.
- unfold Rdiv in |- *.
+ unfold Rdiv.
intros.
elim (H1 eps H2); intros.
exists x; intros.
@@ -590,22 +590,22 @@ Lemma Alembert_C6 :
elim s; intro.
eapply Alembert_C5 with (k * Rabs x).
split.
- unfold Rdiv in |- *; apply Rmult_le_pos.
+ unfold Rdiv; apply Rmult_le_pos.
left; assumption.
left; apply Rabs_pos_lt.
- red in |- *; intro; rewrite H3 in a; elim (Rlt_irrefl _ a).
+ red; intro; rewrite H3 in a; elim (Rlt_irrefl _ a).
apply Rmult_lt_reg_l with (/ k).
apply Rinv_0_lt_compat; assumption.
rewrite <- Rmult_assoc.
rewrite <- Rinv_l_sym.
rewrite Rmult_1_l.
rewrite Rmult_1_r; assumption.
- red in |- *; intro; rewrite H3 in H; elim (Rlt_irrefl _ H).
+ red; intro; rewrite H3 in H; elim (Rlt_irrefl _ H).
intro; apply prod_neq_R0.
apply H0.
apply pow_nonzero.
- red in |- *; intro; rewrite H3 in a; elim (Rlt_irrefl _ a).
- unfold Un_cv in |- *; unfold Un_cv in H1.
+ red; intro; rewrite H3 in a; elim (Rlt_irrefl _ a).
+ unfold Un_cv; unfold Un_cv in H1.
intros.
cut (0 < eps / Rabs x).
intro.
@@ -613,7 +613,7 @@ Lemma Alembert_C6 :
exists x0.
intros.
replace (An (S n) * x ^ S n / (An n * x ^ n)) with (An (S n) / An n * x).
- unfold R_dist in |- *.
+ unfold R_dist.
rewrite Rabs_mult.
replace (Rabs (An (S n) / An n) * Rabs x - k * Rabs x) with
(Rabs x * (Rabs (An (S n) / An n) - k)); [ idtac | ring ].
@@ -621,18 +621,18 @@ Lemma Alembert_C6 :
rewrite Rabs_Rabsolu.
apply Rmult_lt_reg_l with (/ Rabs x).
apply Rinv_0_lt_compat; apply Rabs_pos_lt.
- red in |- *; intro; rewrite H7 in a; elim (Rlt_irrefl _ a).
+ red; intro; rewrite H7 in a; elim (Rlt_irrefl _ a).
rewrite <- Rmult_assoc.
rewrite <- Rinv_l_sym.
rewrite Rmult_1_l.
rewrite <- (Rmult_comm eps).
unfold R_dist in H5.
- unfold Rdiv in |- *; unfold Rdiv in H5; apply H5; assumption.
+ unfold Rdiv; unfold Rdiv in H5; apply H5; assumption.
apply Rabs_no_R0.
- red in |- *; intro; rewrite H7 in a; elim (Rlt_irrefl _ a).
- unfold Rdiv in |- *; replace (S n) with (n + 1)%nat; [ idtac | ring ].
+ red; intro; rewrite H7 in a; elim (Rlt_irrefl _ a).
+ unfold Rdiv; replace (S n) with (n + 1)%nat; [ idtac | ring ].
rewrite pow_add.
- simpl in |- *.
+ simpl.
rewrite Rmult_1_r.
rewrite Rinv_mult_distr.
replace (An (n + 1)%nat * (x ^ n * x) * (/ An n * / x ^ n)) with
@@ -641,46 +641,46 @@ Lemma Alembert_C6 :
rewrite <- Rinv_r_sym.
rewrite Rmult_1_r; reflexivity.
apply pow_nonzero.
- red in |- *; intro; rewrite H7 in a; elim (Rlt_irrefl _ a).
+ red; intro; rewrite H7 in a; elim (Rlt_irrefl _ a).
apply H0.
apply pow_nonzero.
- red in |- *; intro; rewrite H7 in a; elim (Rlt_irrefl _ a).
- unfold Rdiv in |- *; apply Rmult_lt_0_compat.
+ red; intro; rewrite H7 in a; elim (Rlt_irrefl _ a).
+ unfold Rdiv; apply Rmult_lt_0_compat.
assumption.
apply Rinv_0_lt_compat; apply Rabs_pos_lt.
- red in |- *; intro H7; rewrite H7 in a; elim (Rlt_irrefl _ a).
+ red; intro H7; rewrite H7 in a; elim (Rlt_irrefl _ a).
exists (An 0%nat).
- unfold Un_cv in |- *.
+ unfold Un_cv.
intros.
exists 0%nat.
intros.
- unfold R_dist in |- *.
+ unfold R_dist.
replace (sum_f_R0 (fun i:nat => An i * x ^ i) n) with (An 0%nat).
- unfold Rminus in |- *; rewrite Rplus_opp_r; rewrite Rabs_R0; assumption.
+ unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0; assumption.
induction n as [| n Hrecn].
- simpl in |- *; ring.
+ simpl; ring.
rewrite tech5.
rewrite <- Hrecn.
- rewrite b; simpl in |- *; ring.
- unfold ge in |- *; apply le_O_n.
+ rewrite b; simpl; ring.
+ unfold ge; apply le_O_n.
eapply Alembert_C5 with (k * Rabs x).
split.
- unfold Rdiv in |- *; apply Rmult_le_pos.
+ unfold Rdiv; apply Rmult_le_pos.
left; assumption.
left; apply Rabs_pos_lt.
- red in |- *; intro; rewrite H3 in r; elim (Rlt_irrefl _ r).
+ red; intro; rewrite H3 in r; elim (Rlt_irrefl _ r).
apply Rmult_lt_reg_l with (/ k).
apply Rinv_0_lt_compat; assumption.
rewrite <- Rmult_assoc.
rewrite <- Rinv_l_sym.
rewrite Rmult_1_l.
rewrite Rmult_1_r; assumption.
- red in |- *; intro; rewrite H3 in H; elim (Rlt_irrefl _ H).
+ red; intro; rewrite H3 in H; elim (Rlt_irrefl _ H).
intro; apply prod_neq_R0.
apply H0.
apply pow_nonzero.
- red in |- *; intro; rewrite H3 in r; elim (Rlt_irrefl _ r).
- unfold Un_cv in |- *; unfold Un_cv in H1.
+ red; intro; rewrite H3 in r; elim (Rlt_irrefl _ r).
+ unfold Un_cv; unfold Un_cv in H1.
intros.
cut (0 < eps / Rabs x).
intro.
@@ -688,7 +688,7 @@ Lemma Alembert_C6 :
exists x0.
intros.
replace (An (S n) * x ^ S n / (An n * x ^ n)) with (An (S n) / An n * x).
- unfold R_dist in |- *.
+ unfold R_dist.
rewrite Rabs_mult.
replace (Rabs (An (S n) / An n) * Rabs x - k * Rabs x) with
(Rabs x * (Rabs (An (S n) / An n) - k)); [ idtac | ring ].
@@ -696,18 +696,18 @@ Lemma Alembert_C6 :
rewrite Rabs_Rabsolu.
apply Rmult_lt_reg_l with (/ Rabs x).
apply Rinv_0_lt_compat; apply Rabs_pos_lt.
- red in |- *; intro; rewrite H7 in r; elim (Rlt_irrefl _ r).
+ red; intro; rewrite H7 in r; elim (Rlt_irrefl _ r).
rewrite <- Rmult_assoc.
rewrite <- Rinv_l_sym.
rewrite Rmult_1_l.
rewrite <- (Rmult_comm eps).
unfold R_dist in H5.
- unfold Rdiv in |- *; unfold Rdiv in H5; apply H5; assumption.
+ unfold Rdiv; unfold Rdiv in H5; apply H5; assumption.
apply Rabs_no_R0.
- red in |- *; intro; rewrite H7 in r; elim (Rlt_irrefl _ r).
- unfold Rdiv in |- *; replace (S n) with (n + 1)%nat; [ idtac | ring ].
+ red; intro; rewrite H7 in r; elim (Rlt_irrefl _ r).
+ unfold Rdiv; replace (S n) with (n + 1)%nat; [ idtac | ring ].
rewrite pow_add.
- simpl in |- *.
+ simpl.
rewrite Rmult_1_r.
rewrite Rinv_mult_distr.
replace (An (n + 1)%nat * (x ^ n * x) * (/ An n * / x ^ n)) with
@@ -716,12 +716,12 @@ Lemma Alembert_C6 :
rewrite <- Rinv_r_sym.
rewrite Rmult_1_r; reflexivity.
apply pow_nonzero.
- red in |- *; intro; rewrite H7 in r; elim (Rlt_irrefl _ r).
+ red; intro; rewrite H7 in r; elim (Rlt_irrefl _ r).
apply H0.
apply pow_nonzero.
- red in |- *; intro; rewrite H7 in r; elim (Rlt_irrefl _ r).
- unfold Rdiv in |- *; apply Rmult_lt_0_compat.
+ red; intro; rewrite H7 in r; elim (Rlt_irrefl _ r).
+ unfold Rdiv; apply Rmult_lt_0_compat.
assumption.
apply Rinv_0_lt_compat; apply Rabs_pos_lt.
- red in |- *; intro H7; rewrite H7 in r; elim (Rlt_irrefl _ r).
+ red; intro H7; rewrite H7 in r; elim (Rlt_irrefl _ r).
Qed.
diff --git a/theories/Reals/AltSeries.v b/theories/Reals/AltSeries.v
index 227081cab..a6d4c2314 100644
--- a/theories/Reals/AltSeries.v
+++ b/theories/Reals/AltSeries.v
@@ -24,13 +24,13 @@ Lemma CV_ALT_step0 :
Un_decreasing Un ->
Un_growing (fun N:nat => sum_f_R0 (tg_alt Un) (S (2 * N))).
Proof.
- intros; unfold Un_growing in |- *; intro.
+ intros; unfold Un_growing; intro.
cut ((2 * S n)%nat = S (S (2 * n))).
intro; rewrite H0.
do 4 rewrite tech5; repeat rewrite Rplus_assoc; apply Rplus_le_compat_l.
- pattern (tg_alt Un (S (2 * n))) at 1 in |- *; rewrite <- Rplus_0_r.
+ pattern (tg_alt Un (S (2 * n))) at 1; rewrite <- Rplus_0_r.
apply Rplus_le_compat_l.
- unfold tg_alt in |- *; rewrite <- H0; rewrite pow_1_odd; rewrite pow_1_even;
+ unfold tg_alt; rewrite <- H0; rewrite pow_1_odd; rewrite pow_1_even;
rewrite Rmult_1_l.
apply Rplus_le_reg_l with (Un (S (2 * S n))).
rewrite Rplus_0_r;
@@ -46,12 +46,12 @@ Lemma CV_ALT_step1 :
Un_decreasing Un ->
Un_decreasing (fun N:nat => sum_f_R0 (tg_alt Un) (2 * N)).
Proof.
- intros; unfold Un_decreasing in |- *; intro.
+ intros; unfold Un_decreasing; intro.
cut ((2 * S n)%nat = S (S (2 * n))).
intro; rewrite H0; do 2 rewrite tech5; repeat rewrite Rplus_assoc.
- pattern (sum_f_R0 (tg_alt Un) (2 * n)) at 2 in |- *; rewrite <- Rplus_0_r.
+ pattern (sum_f_R0 (tg_alt Un) (2 * n)) at 2; rewrite <- Rplus_0_r.
apply Rplus_le_compat_l.
- unfold tg_alt in |- *; rewrite <- H0; rewrite pow_1_odd; rewrite pow_1_even;
+ unfold tg_alt; rewrite <- H0; rewrite pow_1_odd; rewrite pow_1_even;
rewrite Rmult_1_l.
apply Rplus_le_reg_l with (Un (S (2 * n))).
rewrite Rplus_0_r;
@@ -70,7 +70,7 @@ Lemma CV_ALT_step2 :
sum_f_R0 (fun i:nat => tg_alt Un (S i)) (S (2 * N)) <= 0.
Proof.
intros; induction N as [| N HrecN].
- simpl in |- *; unfold tg_alt in |- *; simpl in |- *; rewrite Rmult_1_r.
+ simpl; unfold tg_alt; simpl; rewrite Rmult_1_r.
replace (-1 * -1 * Un 2%nat) with (Un 2%nat); [ idtac | ring ].
apply Rplus_le_reg_l with (Un 1%nat); rewrite Rplus_0_r.
replace (Un 1%nat + (-1 * Un 1%nat + Un 2%nat)) with (Un 2%nat);
@@ -78,10 +78,10 @@ Proof.
cut (S (2 * S N) = S (S (S (2 * N)))).
intro; rewrite H1; do 2 rewrite tech5.
apply Rle_trans with (sum_f_R0 (fun i:nat => tg_alt Un (S i)) (S (2 * N))).
- pattern (sum_f_R0 (fun i:nat => tg_alt Un (S i)) (S (2 * N))) at 2 in |- *;
+ pattern (sum_f_R0 (fun i:nat => tg_alt Un (S i)) (S (2 * N))) at 2;
rewrite <- Rplus_0_r.
rewrite Rplus_assoc; apply Rplus_le_compat_l.
- unfold tg_alt in |- *; rewrite <- H1.
+ unfold tg_alt; rewrite <- H1.
rewrite pow_1_odd.
cut (S (S (2 * S N)) = (2 * S (S N))%nat).
intro; rewrite H2; rewrite pow_1_even; rewrite Rmult_1_l; rewrite <- H2.
@@ -102,7 +102,7 @@ Lemma CV_ALT_step3 :
positivity_seq Un -> sum_f_R0 (fun i:nat => tg_alt Un (S i)) N <= 0.
Proof.
intros; induction N as [| N HrecN].
- simpl in |- *; unfold tg_alt in |- *; simpl in |- *; rewrite Rmult_1_r.
+ simpl; unfold tg_alt; simpl; rewrite Rmult_1_r.
apply Rplus_le_reg_l with (Un 1%nat).
rewrite Rplus_0_r; replace (Un 1%nat + -1 * Un 1%nat) with 0;
[ apply H0 | ring ].
@@ -112,10 +112,10 @@ Proof.
rewrite H3; apply CV_ALT_step2; assumption.
rewrite H3; rewrite tech5.
apply Rle_trans with (sum_f_R0 (fun i:nat => tg_alt Un (S i)) (S (2 * x))).
- pattern (sum_f_R0 (fun i:nat => tg_alt Un (S i)) (S (2 * x))) at 2 in |- *;
+ pattern (sum_f_R0 (fun i:nat => tg_alt Un (S i)) (S (2 * x))) at 2;
rewrite <- Rplus_0_r.
apply Rplus_le_compat_l.
- unfold tg_alt in |- *; simpl in |- *.
+ unfold tg_alt; simpl.
replace (x + (x + 0))%nat with (2 * x)%nat; [ idtac | ring ].
rewrite pow_1_even.
replace (-1 * (-1 * (-1 * 1)) * Un (S (S (S (2 * x))))) with
@@ -133,15 +133,15 @@ Lemma CV_ALT_step4 :
positivity_seq Un ->
has_ub (fun N:nat => sum_f_R0 (tg_alt Un) (S (2 * N))).
Proof.
- intros; unfold has_ub in |- *; unfold bound in |- *.
+ intros; unfold has_ub; unfold bound.
exists (Un 0%nat).
- unfold is_upper_bound in |- *; intros; elim H1; intros.
+ unfold is_upper_bound; intros; elim H1; intros.
rewrite H2; rewrite decomp_sum.
replace (tg_alt Un 0) with (Un 0%nat).
- pattern (Un 0%nat) at 2 in |- *; rewrite <- Rplus_0_r.
+ pattern (Un 0%nat) at 2; rewrite <- Rplus_0_r.
apply Rplus_le_compat_l.
apply CV_ALT_step3; assumption.
- unfold tg_alt in |- *; simpl in |- *; ring.
+ unfold tg_alt; simpl; ring.
apply lt_O_Sn.
Qed.
@@ -159,11 +159,11 @@ Proof.
assert (X := growing_cv _ H2 H3).
elim X; intros.
exists x.
- unfold Un_cv in |- *; unfold R_dist in |- *; unfold Un_cv in H1;
+ unfold Un_cv; unfold R_dist; unfold Un_cv in H1;
unfold R_dist in H1; unfold Un_cv in p; unfold R_dist in p.
intros; cut (0 < eps / 2);
[ intro
- | unfold Rdiv in |- *; apply Rmult_lt_0_compat;
+ | unfold Rdiv; apply Rmult_lt_0_compat;
[ assumption | apply Rinv_0_lt_compat; prove_sup0 ] ].
elim (H1 (eps / 2) H5); intros N2 H6.
elim (p (eps / 2) H5); intros N1 H7.
@@ -180,32 +180,32 @@ Proof.
apply Rabs_triang.
rewrite (double_var eps); apply Rplus_lt_compat.
rewrite H12; apply H7; assumption.
- rewrite Rabs_Ropp; unfold tg_alt in |- *; rewrite Rabs_mult;
+ rewrite Rabs_Ropp; unfold tg_alt; rewrite Rabs_mult;
rewrite pow_1_abs; rewrite Rmult_1_l; unfold Rminus in H6;
rewrite Ropp_0 in H6; rewrite <- (Rplus_0_r (Un (S n)));
apply H6.
- unfold ge in |- *; apply le_trans with n.
- apply le_trans with N; [ unfold N in |- *; apply le_max_r | assumption ].
+ unfold ge; apply le_trans with n.
+ apply le_trans with N; [ unfold N; apply le_max_r | assumption ].
apply le_n_Sn.
rewrite tech5; ring.
rewrite H12; apply Rlt_trans with (eps / 2).
apply H7; assumption.
- unfold Rdiv in |- *; apply Rmult_lt_reg_l with 2.
+ unfold Rdiv; apply Rmult_lt_reg_l with 2.
prove_sup0.
rewrite (Rmult_comm 2); rewrite Rmult_assoc; rewrite <- Rinv_l_sym;
[ rewrite Rmult_1_r | discrR ].
rewrite double.
- pattern eps at 1 in |- *; rewrite <- (Rplus_0_r eps); apply Rplus_lt_compat_l;
+ pattern eps at 1; rewrite <- (Rplus_0_r eps); apply Rplus_lt_compat_l;
assumption.
elim H10; intro; apply le_double.
rewrite <- H11; apply le_trans with N.
- unfold N in |- *; apply le_trans with (S (2 * N1));
+ unfold N; apply le_trans with (S (2 * N1));
[ apply le_n_Sn | apply le_max_l ].
assumption.
apply lt_n_Sm_le.
rewrite <- H11.
apply lt_le_trans with N.
- unfold N in |- *; apply lt_le_trans with (S (2 * N1)).
+ unfold N; apply lt_le_trans with (S (2 * N1)).
apply lt_n_Sn.
apply le_max_l.
assumption.
@@ -222,7 +222,7 @@ Theorem alternated_series :
Proof.
intros; apply CV_ALT.
assumption.
- unfold positivity_seq in |- *; apply decreasing_ineq; assumption.
+ unfold positivity_seq; apply decreasing_ineq; assumption.
assumption.
Qed.
@@ -243,31 +243,31 @@ Proof.
apply (decreasing_ineq (fun N:nat => sum_f_R0 (tg_alt Un) (2 * N))).
apply CV_ALT_step1; assumption.
assumption.
- unfold Un_cv in |- *; unfold R_dist in |- *; unfold Un_cv in H1;
+ unfold Un_cv; unfold R_dist; unfold Un_cv in H1;
unfold R_dist in H1; intros.
elim (H1 eps H2); intros.
exists x; intros.
apply H3.
- unfold ge in |- *; apply le_trans with (2 * n)%nat.
+ unfold ge; apply le_trans with (2 * n)%nat.
apply le_trans with n.
assumption.
assert (H5 := mult_O_le n 2).
elim H5; intro.
cut (0%nat <> 2%nat);
- [ intro; elim H7; symmetry in |- *; assumption | discriminate ].
+ [ intro; elim H7; symmetry ; assumption | discriminate ].
assumption.
apply le_n_Sn.
- unfold Un_cv in |- *; unfold R_dist in |- *; unfold Un_cv in H1;
+ unfold Un_cv; unfold R_dist; unfold Un_cv in H1;
unfold R_dist in H1; intros.
elim (H1 eps H2); intros.
exists x; intros.
apply H3.
- unfold ge in |- *; apply le_trans with n.
+ unfold ge; apply le_trans with n.
assumption.
assert (H5 := mult_O_le n 2).
elim H5; intro.
cut (0%nat <> 2%nat);
- [ intro; elim H7; symmetry in |- *; assumption | discriminate ].
+ [ intro; elim H7; symmetry ; assumption | discriminate ].
assumption.
Qed.
@@ -279,13 +279,13 @@ Definition PI_tg (n:nat) := / INR (2 * n + 1).
Lemma PI_tg_pos : forall n:nat, 0 <= PI_tg n.
Proof.
- intro; unfold PI_tg in |- *; left; apply Rinv_0_lt_compat; apply lt_INR_0;
+ intro; unfold PI_tg; left; apply Rinv_0_lt_compat; apply lt_INR_0;
replace (2 * n + 1)%nat with (S (2 * n)); [ apply lt_O_Sn | ring ].
Qed.
Lemma PI_tg_decreasing : Un_decreasing PI_tg.
Proof.
- unfold PI_tg, Un_decreasing in |- *; intro.
+ unfold PI_tg, Un_decreasing; intro.
apply Rmult_le_reg_l with (INR (2 * n + 1)).
apply lt_INR_0.
replace (2 * n + 1)%nat with (S (2 * n)); [ apply lt_O_Sn | ring ].
@@ -306,7 +306,7 @@ Qed.
Lemma PI_tg_cv : Un_cv PI_tg 0.
Proof.
- unfold Un_cv in |- *; unfold R_dist in |- *; intros.
+ unfold Un_cv; unfold R_dist; intros.
cut (0 < 2 * eps);
[ intro | apply Rmult_lt_0_compat; [ prove_sup0 | assumption ] ].
assert (H1 := archimed (/ (2 * eps))).
@@ -316,9 +316,9 @@ Proof.
cut (0 < N)%nat.
intro; exists N; intros.
cut (0 < n)%nat.
- intro; unfold Rminus in |- *; rewrite Ropp_0; rewrite Rplus_0_r;
+ intro; unfold Rminus; rewrite Ropp_0; rewrite Rplus_0_r;
rewrite Rabs_right.
- unfold PI_tg in |- *; apply Rlt_trans with (/ INR (2 * n)).
+ unfold PI_tg; apply Rlt_trans with (/ INR (2 * n)).
apply Rmult_lt_reg_l with (INR (2 * n)).
apply lt_INR_0.
replace (2 * n)%nat with (n + n)%nat; [ idtac | ring ].
@@ -337,27 +337,27 @@ Proof.
[ discriminate | ring ].
replace n with (S (pred n)).
apply not_O_INR; discriminate.
- symmetry in |- *; apply S_pred with 0%nat.
+ symmetry ; apply S_pred with 0%nat.
assumption.
apply Rle_lt_trans with (/ INR (2 * N)).
apply Rmult_le_reg_l with (INR (2 * N)).
rewrite mult_INR; apply Rmult_lt_0_compat;
- [ simpl in |- *; prove_sup0 | apply lt_INR_0; assumption ].
+ [ simpl; prove_sup0 | apply lt_INR_0; assumption ].
rewrite <- Rinv_r_sym.
apply Rmult_le_reg_l with (INR (2 * n)).
rewrite mult_INR; apply Rmult_lt_0_compat;
- [ simpl in |- *; prove_sup0 | apply lt_INR_0; assumption ].
+ [ simpl; prove_sup0 | apply lt_INR_0; assumption ].
rewrite (Rmult_comm (INR (2 * n))); rewrite Rmult_assoc;
rewrite <- Rinv_l_sym.
do 2 rewrite Rmult_1_r; apply le_INR.
apply (fun m n p:nat => mult_le_compat_l p n m); assumption.
replace n with (S (pred n)).
apply not_O_INR; discriminate.
- symmetry in |- *; apply S_pred with 0%nat.
+ symmetry ; apply S_pred with 0%nat.
assumption.
replace N with (S (pred N)).
apply not_O_INR; discriminate.
- symmetry in |- *; apply S_pred with 0%nat.
+ symmetry ; apply S_pred with 0%nat.
assumption.
rewrite mult_INR.
rewrite Rinv_mult_distr.
@@ -377,14 +377,14 @@ Proof.
rewrite Rmult_1_r; replace (INR N) with (IZR (Z.of_nat N)).
rewrite <- H4.
elim H1; intros; assumption.
- symmetry in |- *; apply INR_IZR_INZ.
+ symmetry ; apply INR_IZR_INZ.
apply prod_neq_R0;
- [ discrR | red in |- *; intro; rewrite H8 in H; elim (Rlt_irrefl _ H) ].
+ [ discrR | red; intro; rewrite H8 in H; elim (Rlt_irrefl _ H) ].
apply not_O_INR.
- red in |- *; intro; rewrite H8 in H5; elim (lt_irrefl _ H5).
+ red; intro; rewrite H8 in H5; elim (lt_irrefl _ H5).
replace (INR 2) with 2; [ discrR | reflexivity ].
apply not_O_INR.
- red in |- *; intro; rewrite H8 in H5; elim (lt_irrefl _ H5).
+ red; intro; rewrite H8 in H5; elim (lt_irrefl _ H5).
apply Rle_ge; apply PI_tg_pos.
apply lt_le_trans with N; assumption.
elim H1; intros H5 _.
@@ -399,7 +399,7 @@ Proof.
elim (Rlt_irrefl _ (Rlt_trans _ _ _ H7 H5)).
elim (lt_n_O _ b).
apply le_IZR.
- simpl in |- *.
+ simpl.
left; apply Rlt_trans with (/ (2 * eps)).
apply Rinv_0_lt_compat; assumption.
elim H1; intros; assumption.
@@ -425,10 +425,10 @@ Proof.
intro; apply alternated_series_ineq.
apply PI_tg_decreasing.
apply PI_tg_cv.
- unfold Alt_PI in |- *; case exist_PI; intro.
+ unfold Alt_PI; case exist_PI; intro.
replace (4 * x / 4) with x.
trivial.
- unfold Rdiv in |- *; rewrite (Rmult_comm 4); rewrite Rmult_assoc;
+ unfold Rdiv; rewrite (Rmult_comm 4); rewrite Rmult_assoc;
rewrite <- Rinv_r_sym; [ rewrite Rmult_1_r; reflexivity | discrR ].
Qed.
@@ -441,14 +441,14 @@ Proof.
elim H; clear H; intros H _.
unfold Rdiv in H;
apply Rlt_le_trans with (sum_f_R0 (tg_alt PI_tg) (S (2 * 0))).
- simpl in |- *; unfold tg_alt in |- *; simpl in |- *; rewrite Rmult_1_l;
+ simpl; unfold tg_alt; simpl; rewrite Rmult_1_l;
rewrite Rmult_1_r; apply Rplus_lt_reg_r with (PI_tg 1).
rewrite Rplus_0_r;
replace (PI_tg 1 + (PI_tg 0 + -1 * PI_tg 1)) with (PI_tg 0);
- [ unfold PI_tg in |- * | ring ].
- simpl in |- *; apply Rinv_lt_contravar.
+ [ unfold PI_tg | ring ].
+ simpl; apply Rinv_lt_contravar.
rewrite Rmult_1_l; replace (2 + 1) with 3; [ prove_sup0 | ring ].
- rewrite Rplus_comm; pattern 1 at 1 in |- *; rewrite <- Rplus_0_r;
+ rewrite Rplus_comm; pattern 1 at 1; rewrite <- Rplus_0_r;
apply Rplus_lt_compat_l; prove_sup0.
assumption.
Qed.
diff --git a/theories/Reals/ArithProp.v b/theories/Reals/ArithProp.v
index 359b2855c..2580cc3a7 100644
--- a/theories/Reals/ArithProp.v
+++ b/theories/Reals/ArithProp.v
@@ -17,7 +17,7 @@ Local Open Scope R_scope.
Lemma minus_neq_O : forall n i:nat, (i < n)%nat -> (n - i)%nat <> 0%nat.
Proof.
- intros; red in |- *; intro.
+ intros; red; intro.
cut (forall n m:nat, (m <= n)%nat -> (n - m)%nat = 0%nat -> n = m).
intro; assert (H2 := H1 _ _ (lt_le_weak _ _ H) H0); rewrite H2 in H;
elim (lt_irrefl _ H).
@@ -27,11 +27,11 @@ Proof.
forall n0 m:nat, (m <= n0)%nat -> (n0 - m)%nat = 0%nat -> n0 = m).
intro; apply H1.
apply nat_double_ind.
- unfold R in |- *; intros; inversion H2; reflexivity.
- unfold R in |- *; intros; simpl in H3; assumption.
- unfold R in |- *; intros; simpl in H4; assert (H5 := le_S_n _ _ H3);
+ unfold R; intros; inversion H2; reflexivity.
+ unfold R; intros; simpl in H3; assumption.
+ unfold R; intros; simpl in H4; assert (H5 := le_S_n _ _ H3);
assert (H6 := H2 H5 H4); rewrite H6; reflexivity.
- unfold R in |- *; intros; apply H1; assumption.
+ unfold R; intros; apply H1; assumption.
Qed.
Lemma le_minusni_n : forall n i:nat, (i <= n)%nat -> (n - i <= n)%nat.
@@ -41,20 +41,20 @@ Proof.
((forall m n:nat, R m n) -> forall n i:nat, (i <= n)%nat -> (n - i <= n)%nat).
intro; apply H.
apply nat_double_ind.
- unfold R in |- *; intros; simpl in |- *; apply le_n.
- unfold R in |- *; intros; simpl in |- *; apply le_n.
- unfold R in |- *; intros; simpl in |- *; apply le_trans with n.
+ unfold R; intros; simpl; apply le_n.
+ unfold R; intros; simpl; apply le_n.
+ unfold R; intros; simpl; apply le_trans with n.
apply H0; apply le_S_n; assumption.
apply le_n_Sn.
- unfold R in |- *; intros; apply H; assumption.
+ unfold R; intros; apply H; assumption.
Qed.
Lemma lt_minus_O_lt : forall m n:nat, (m < n)%nat -> (0 < n - m)%nat.
Proof.
- intros n m; pattern n, m in |- *; apply nat_double_ind;
+ intros n m; pattern n, m; apply nat_double_ind;
[ intros; rewrite <- minus_n_O; assumption
| intros; elim (lt_n_O _ H)
- | intros; simpl in |- *; apply H; apply lt_S_n; assumption ].
+ | intros; simpl; apply H; apply lt_S_n; assumption ].
Qed.
Lemma even_odd_cor :
@@ -73,7 +73,7 @@ Proof.
apply H3; assumption.
right.
apply H4; assumption.
- unfold double in |- *;ring.
+ unfold double;ring.
Qed.
(* 2m <= 2n => m<=n *)
@@ -105,9 +105,9 @@ Proof.
exists (x - IZR k0 * y).
split.
ring.
- unfold k0 in |- *; case (Rcase_abs y); intro.
- assert (H0 := archimed (x / - y)); rewrite <- Z_R_minus; simpl in |- *;
- unfold Rminus in |- *.
+ unfold k0; case (Rcase_abs y); intro.
+ assert (H0 := archimed (x / - y)); rewrite <- Z_R_minus; simpl;
+ unfold Rminus.
replace (- ((1 + - IZR (up (x / - y))) * y)) with
((IZR (up (x / - y)) - 1) * y); [ idtac | ring ].
split.
@@ -118,7 +118,7 @@ Proof.
rewrite Rmult_assoc; repeat rewrite Ropp_mult_distr_r_reverse;
rewrite <- Rinv_r_sym; [ rewrite Rmult_1_r | assumption ].
apply Rplus_le_reg_l with (IZR (up (x / - y)) - x / - y).
- rewrite Rplus_0_r; unfold Rdiv in |- *; pattern (/ - y) at 4 in |- *;
+ rewrite Rplus_0_r; unfold Rdiv; pattern (/ - y) at 4;
rewrite <- Ropp_inv_permute; [ idtac | assumption ].
replace
(IZR (up (x * / - y)) - x * - / y +
@@ -138,11 +138,11 @@ Proof.
replace (IZR (up (x / - y)) - 1 + (- (x * / y) + - (IZR (up (x / - y)) - 1)))
with (- (x * / y)); [ idtac | ring ].
rewrite <- Ropp_mult_distr_r_reverse; rewrite (Ropp_inv_permute _ H); elim H0;
- unfold Rdiv in |- *; intros H1 _; exact H1.
+ unfold Rdiv; intros H1 _; exact H1.
apply Ropp_neq_0_compat; assumption.
- assert (H0 := archimed (x / y)); rewrite <- Z_R_minus; simpl in |- *;
+ assert (H0 := archimed (x / y)); rewrite <- Z_R_minus; simpl;
cut (0 < y).
- intro; unfold Rminus in |- *;
+ intro; unfold Rminus;
replace (- ((IZR (up (x / y)) + -1) * y)) with ((1 - IZR (up (x / y))) * y);
[ idtac | ring ].
split.
@@ -152,7 +152,7 @@ Proof.
rewrite Rmult_assoc; rewrite <- Rinv_r_sym;
[ rewrite Rmult_1_r | assumption ];
apply Rplus_le_reg_l with (IZR (up (x / y)) - x / y);
- rewrite Rplus_0_r; unfold Rdiv in |- *;
+ rewrite Rplus_0_r; unfold Rdiv;
replace
(IZR (up (x * / y)) - x * / y + (x * / y + (1 - IZR (up (x * / y))))) with
1; [ idtac | ring ]; elim H0; intros _ H2; unfold Rdiv in H2;
@@ -166,12 +166,12 @@ Proof.
replace (IZR (up (x / y)) - 1 + 1) with (IZR (up (x / y)));
[ idtac | ring ];
replace (IZR (up (x / y)) - 1 + (x * / y + (1 - IZR (up (x / y))))) with
- (x * / y); [ idtac | ring ]; elim H0; unfold Rdiv in |- *;
+ (x * / y); [ idtac | ring ]; elim H0; unfold Rdiv;
intros H2 _; exact H2.
case (total_order_T 0 y); intro.
elim s; intro.
assumption.
- elim H; symmetry in |- *; exact b.
+ elim H; symmetry ; exact b.
assert (H1 := Rge_le _ _ r); elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H1 r0)).
Qed.
diff --git a/theories/Reals/Binomial.v b/theories/Reals/Binomial.v
index a7bb4d9a6..65ddf5437 100644
--- a/theories/Reals/Binomial.v
+++ b/theories/Reals/Binomial.v
@@ -16,7 +16,7 @@ Definition C (n p:nat) : R :=
Lemma pascal_step1 : forall n i:nat, (i <= n)%nat -> C n i = C n (n - i).
Proof.
- intros; unfold C in |- *; replace (n - (n - i))%nat with i.
+ intros; unfold C; replace (n - (n - i))%nat with i.
rewrite Rmult_comm.
reflexivity.
apply plus_minus; rewrite plus_comm; apply le_plus_minus; assumption.
@@ -26,10 +26,10 @@ Lemma pascal_step2 :
forall n i:nat,
(i <= n)%nat -> C (S n) i = INR (S n) / INR (S n - i) * C n i.
Proof.
- intros; unfold C in |- *; replace (S n - i)%nat with (S (n - i)).
+ intros; unfold C; replace (S n - i)%nat with (S (n - i)).
cut (forall n:nat, fact (S n) = (S n * fact n)%nat).
intro; repeat rewrite H0.
- unfold Rdiv in |- *; repeat rewrite mult_INR; repeat rewrite Rinv_mult_distr.
+ unfold Rdiv; repeat rewrite mult_INR; repeat rewrite Rinv_mult_distr.
ring.
apply INR_fact_neq_0.
apply INR_fact_neq_0.
@@ -46,13 +46,13 @@ Qed.
Lemma pascal_step3 :
forall n i:nat, (i < n)%nat -> C n (S i) = INR (n - i) / INR (S i) * C n i.
Proof.
- intros; unfold C in |- *.
+ intros; unfold C.
cut (forall n:nat, fact (S n) = (S n * fact n)%nat).
intro.
cut ((n - i)%nat = S (n - S i)).
intro.
- pattern (n - i)%nat at 2 in |- *; rewrite H1.
- repeat rewrite H0; unfold Rdiv in |- *; repeat rewrite mult_INR;
+ pattern (n - i)%nat at 2; rewrite H1.
+ repeat rewrite H0; unfold Rdiv; repeat rewrite mult_INR;
repeat rewrite Rinv_mult_distr.
rewrite <- H1; rewrite (Rmult_comm (/ INR (n - i)));
repeat rewrite Rmult_assoc; rewrite (Rmult_comm (INR (n - i)));
@@ -68,7 +68,7 @@ Proof.
apply prod_neq_R0; [ apply not_O_INR; discriminate | apply INR_fact_neq_0 ].
apply INR_fact_neq_0.
rewrite minus_Sn_m.
- simpl in |- *; reflexivity.
+ simpl; reflexivity.
apply lt_le_S; assumption.
intro; reflexivity.
Qed.
@@ -95,13 +95,13 @@ Proof.
rewrite <- minus_Sn_m.
cut ((n - (n - i))%nat = i).
intro; rewrite H0; reflexivity.
- symmetry in |- *; apply plus_minus.
+ symmetry ; apply plus_minus.
rewrite plus_comm; rewrite le_plus_minus_r.
reflexivity.
apply lt_le_weak; assumption.
apply le_minusni_n; apply lt_le_weak; assumption.
apply lt_le_weak; assumption.
- unfold Rdiv in |- *.
+ unfold Rdiv.
repeat rewrite S_INR.
rewrite minus_INR.
cut (INR i + 1 <> 0).
@@ -125,18 +125,18 @@ Lemma binomial :
(x + y) ^ n = sum_f_R0 (fun i:nat => C n i * x ^ i * y ^ (n - i)) n.
Proof.
intros; induction n as [| n Hrecn].
- unfold C in |- *; simpl in |- *; unfold Rdiv in |- *;
+ unfold C; simpl; unfold Rdiv;
repeat rewrite Rmult_1_r; rewrite Rinv_1; ring.
- pattern (S n) at 1 in |- *; replace (S n) with (n + 1)%nat; [ idtac | ring ].
+ pattern (S n) at 1; replace (S n) with (n + 1)%nat; [ idtac | ring ].
rewrite pow_add; rewrite Hrecn.
- replace ((x + y) ^ 1) with (x + y); [ idtac | simpl in |- *; ring ].
+ replace ((x + y) ^ 1) with (x + y); [ idtac | simpl; ring ].
rewrite tech5.
cut (forall p:nat, C p p = 1).
cut (forall p:nat, C p 0 = 1).
intros; rewrite H0; rewrite <- minus_n_n; rewrite Rmult_1_l.
- replace (y ^ 0) with 1; [ rewrite Rmult_1_r | simpl in |- *; reflexivity ].
+ replace (y ^ 0) with 1; [ rewrite Rmult_1_r | simpl; reflexivity ].
induction n as [| n Hrecn0].
- simpl in |- *; do 2 rewrite H; ring.
+ simpl; do 2 rewrite H; ring.
(* N >= 1 *)
set (N := S n).
rewrite Rmult_plus_distr_l.
@@ -158,7 +158,7 @@ Proof.
rewrite (Rplus_comm (sum_f_R0 An n)).
repeat rewrite Rplus_assoc.
rewrite <- tech5.
- fold N in |- *.
+ fold N.
set (Cn := fun i:nat => C N i * x ^ i * y ^ (S N - i)).
cut (forall i:nat, (i < N)%nat -> Cn (S i) = Bn i).
intro; replace (sum_f_R0 Bn n) with (sum_f_R0 (fun i:nat => Cn (S i)) n).
@@ -166,42 +166,42 @@ Proof.
rewrite <- Rplus_assoc; rewrite (decomp_sum Cn N).
replace (pred N) with n.
ring.
- unfold N in |- *; simpl in |- *; reflexivity.
- unfold N in |- *; apply lt_O_Sn.
- unfold Cn in |- *; rewrite H; simpl in |- *; ring.
+ unfold N; simpl; reflexivity.
+ unfold N; apply lt_O_Sn.
+ unfold Cn; rewrite H; simpl; ring.
apply sum_eq.
intros; apply H1.
- unfold N in |- *; apply le_lt_trans with n; [ assumption | apply lt_n_Sn ].
- intros; unfold Bn, Cn in |- *.
+ unfold N; apply le_lt_trans with n; [ assumption | apply lt_n_Sn ].
+ intros; unfold Bn, Cn.
replace (S N - S i)%nat with (N - i)%nat; reflexivity.
- unfold An in |- *; fold N in |- *; rewrite <- minus_n_n; rewrite H0;
- simpl in |- *; ring.
+ unfold An; fold N; rewrite <- minus_n_n; rewrite H0;
+ simpl; ring.
apply sum_eq.
- intros; unfold An, Bn in |- *; replace (S N - S i)%nat with (N - i)%nat;
+ intros; unfold An, Bn; replace (S N - S i)%nat with (N - i)%nat;
[ idtac | reflexivity ].
rewrite <- pascal;
[ ring
- | apply le_lt_trans with n; [ assumption | unfold N in |- *; apply lt_n_Sn ] ].
- unfold N in |- *; reflexivity.
- unfold N in |- *; apply lt_O_Sn.
+ | apply le_lt_trans with n; [ assumption | unfold N; apply lt_n_Sn ] ].
+ unfold N; reflexivity.
+ unfold N; apply lt_O_Sn.
rewrite <- (Rmult_comm y); rewrite scal_sum; apply sum_eq.
intros; replace (S N - i)%nat with (S (N - i)).
replace (S (N - i)) with (N - i + 1)%nat; [ idtac | ring ].
- rewrite pow_add; replace (y ^ 1) with y; [ idtac | simpl in |- *; ring ];
+ rewrite pow_add; replace (y ^ 1) with y; [ idtac | simpl; ring ];
ring.
apply minus_Sn_m; assumption.
rewrite <- (Rmult_comm x); rewrite scal_sum; apply sum_eq.
intros; replace (S i) with (i + 1)%nat; [ idtac | ring ]; rewrite pow_add;
- replace (x ^ 1) with x; [ idtac | simpl in |- *; ring ];
+ replace (x ^ 1) with x; [ idtac | simpl; ring ];
ring.
- intro; unfold C in |- *.
+ intro; unfold C.
replace (INR (fact 0)) with 1; [ idtac | reflexivity ].
replace (p - 0)%nat with p; [ idtac | apply minus_n_O ].
- rewrite Rmult_1_l; unfold Rdiv in |- *; rewrite <- Rinv_r_sym;
+ rewrite Rmult_1_l; unfold Rdiv; rewrite <- Rinv_r_sym;
[ reflexivity | apply INR_fact_neq_0 ].
- intro; unfold C in |- *.
+ intro; unfold C.
replace (p - p)%nat with 0%nat; [ idtac | apply minus_n_n ].
replace (INR (fact 0)) with 1; [ idtac | reflexivity ].
- rewrite Rmult_1_r; unfold Rdiv in |- *; rewrite <- Rinv_r_sym;
+ rewrite Rmult_1_r; unfold Rdiv; rewrite <- Rinv_r_sym;
[ reflexivity | apply INR_fact_neq_0 ].
Qed.
diff --git a/theories/Reals/Cauchy_prod.v b/theories/Reals/Cauchy_prod.v
index 3019be9e8..41aaf8dc6 100644
--- a/theories/Reals/Cauchy_prod.v
+++ b/theories/Reals/Cauchy_prod.v
@@ -21,7 +21,7 @@ Proof.
replace N with (S (pred N)).
rewrite tech5.
reflexivity.
- symmetry in |- *; apply S_pred with 0%nat; assumption.
+ symmetry ; apply S_pred with 0%nat; assumption.
Qed.
(**********)
@@ -51,7 +51,7 @@ Proof.
elim (lt_irrefl _ H).
cut (N = 0%nat \/ (0 < N)%nat).
intro; elim H0; intro.
- rewrite H1; simpl in |- *; ring.
+ rewrite H1; simpl; ring.
replace (pred (S N)) with (S (pred N)).
do 5 rewrite tech5.
rewrite Rmult_plus_distr_r; rewrite Rmult_plus_distr_l; rewrite (HrecN H1).
@@ -66,7 +66,7 @@ Proof.
repeat rewrite Rplus_assoc; apply Rplus_eq_compat_l.
rewrite <- minus_n_n; cut (N = 1%nat \/ (2 <= N)%nat).
intro; elim H2; intro.
- rewrite H3; simpl in |- *; ring.
+ rewrite H3; simpl; ring.
replace
(sum_f_R0
(fun k:nat =>
@@ -147,7 +147,7 @@ Proof.
(pred (pred N))).
repeat rewrite Rplus_assoc; apply Rplus_eq_compat_l.
replace (pred (N - pred N)) with 0%nat.
- simpl in |- *; rewrite <- minus_n_O.
+ simpl; rewrite <- minus_n_O.
replace (S (pred N)) with N.
replace (sum_f_R0 (fun k:nat => An (S N) * Bn (S k)) (pred (pred N))) with
(sum_f_R0 (fun k:nat => Bn (S k) * An (S N)) (pred (pred N))).
@@ -161,11 +161,11 @@ Proof.
apply S_pred with 0%nat; assumption.
replace (N - pred N)%nat with 1%nat.
reflexivity.
- pattern N at 1 in |- *; replace N with (S (pred N)).
+ pattern N at 1; replace N with (S (pred N)).
rewrite <- minus_Sn_m.
rewrite <- minus_n_n; reflexivity.
apply le_n.
- symmetry in |- *; apply S_pred with 0%nat; assumption.
+ symmetry ; apply S_pred with 0%nat; assumption.
apply sum_eq; intros;
rewrite
(sum_N_predN (fun l:nat => An (S (S (l + i))) * Bn (N - l)%nat)
@@ -259,7 +259,7 @@ Proof.
apply le_n.
apply (fun p n m:nat => plus_le_reg_l n m p) with 1%nat.
rewrite le_plus_minus_r.
- simpl in |- *; assumption.
+ simpl; assumption.
apply le_trans with 2%nat; [ apply le_n_Sn | assumption ].
apply le_trans with 2%nat; [ apply le_n_Sn | assumption ].
simpl; ring.
@@ -274,7 +274,7 @@ Proof.
apply le_trans with (pred (pred N)).
assumption.
apply le_pred_n.
- symmetry in |- *; apply S_pred with 0%nat; assumption.
+ symmetry ; apply S_pred with 0%nat; assumption.
apply INR_eq; rewrite S_INR; rewrite plus_INR; reflexivity.
apply le_trans with (pred (pred N)).
assumption.
@@ -427,7 +427,7 @@ Proof.
apply le_trans with (pred (pred N)).
assumption.
apply le_pred_n.
- symmetry in |- *; apply S_pred with 0%nat; assumption.
+ symmetry ; apply S_pred with 0%nat; assumption.
apply INR_eq; rewrite S_INR; rewrite plus_INR; simpl; ring.
apply le_trans with (pred (pred N)).
assumption.
@@ -441,11 +441,11 @@ Proof.
inversion H1.
left; reflexivity.
right; apply le_n_S; assumption.
- simpl in |- *.
+ simpl.
replace (S (pred N)) with N.
reflexivity.
apply S_pred with 0%nat; assumption.
- simpl in |- *.
+ simpl.
cut ((N - pred N)%nat = 1%nat).
intro; rewrite H2; reflexivity.
rewrite pred_of_minus.
@@ -453,7 +453,7 @@ Proof.
simpl; ring.
apply lt_le_S; assumption.
rewrite <- pred_of_minus; apply le_pred_n.
- simpl in |- *; symmetry in |- *; apply S_pred with 0%nat; assumption.
+ simpl; symmetry ; apply S_pred with 0%nat; assumption.
inversion H.
left; reflexivity.
right; apply lt_le_trans with 1%nat; [ apply lt_n_Sn | exact H1 ].
diff --git a/theories/Reals/Cos_plus.v b/theories/Reals/Cos_plus.v
index e966357ce..b679d9c41 100644
--- a/theories/Reals/Cos_plus.v
+++ b/theories/Reals/Cos_plus.v
@@ -29,23 +29,23 @@ Proof.
intro.
assert (H1 := cv_speed_pow_fact C0).
unfold Un_cv in H1; unfold R_dist in H1.
- unfold Un_cv in |- *; unfold R_dist in |- *; intros.
+ unfold Un_cv; unfold R_dist; intros.
cut (0 < eps / C0);
[ intro
- | unfold Rdiv in |- *; apply Rmult_lt_0_compat;
+ | unfold Rdiv; apply Rmult_lt_0_compat;
[ assumption | apply Rinv_0_lt_compat; assumption ] ].
elim (H1 (eps / C0) H3); intros N0 H4.
exists N0; intros.
replace (Majxy x y n) with (C0 ^ S n / INR (fact n)).
- simpl in |- *.
+ simpl.
apply Rmult_lt_reg_l with (Rabs (/ C0)).
apply Rabs_pos_lt.
apply Rinv_neq_0_compat.
- red in |- *; intro; rewrite H6 in H0; elim (Rlt_irrefl _ H0).
+ red; intro; rewrite H6 in H0; elim (Rlt_irrefl _ H0).
rewrite <- Rabs_mult.
- unfold Rminus in |- *; rewrite Rmult_plus_distr_l.
+ unfold Rminus; rewrite Rmult_plus_distr_l.
rewrite Ropp_0; rewrite Rmult_0_r.
- unfold Rdiv in |- *; repeat rewrite <- Rmult_assoc.
+ unfold Rdiv; repeat rewrite <- Rmult_assoc.
rewrite <- Rinv_l_sym.
rewrite Rmult_1_l.
rewrite (Rabs_right (/ C0)).
@@ -54,15 +54,15 @@ Proof.
[ idtac | ring ].
unfold Rdiv in H4; apply H4; assumption.
apply Rle_ge; left; apply Rinv_0_lt_compat; assumption.
- red in |- *; intro; rewrite H6 in H0; elim (Rlt_irrefl _ H0).
- unfold Majxy in |- *.
- unfold C0 in |- *.
+ red; intro; rewrite H6 in H0; elim (Rlt_irrefl _ H0).
+ unfold Majxy.
+ unfold C0.
rewrite pow_mult.
- unfold C in |- *; reflexivity.
- unfold C0 in |- *; apply pow_lt; assumption.
+ unfold C; reflexivity.
+ unfold C0; apply pow_lt; assumption.
apply Rlt_le_trans with 1.
apply Rlt_0_1.
- unfold C in |- *.
+ unfold C.
apply RmaxLess1.
Qed.
@@ -72,7 +72,7 @@ Lemma reste1_maj :
Proof.
intros.
set (C := Rmax 1 (Rmax (Rabs x) (Rabs y))).
- unfold Reste1 in |- *.
+ unfold Reste1.
apply Rle_trans with
(sum_f_R0
(fun k:nat =>
@@ -120,7 +120,7 @@ Proof.
C ^ (2 * S (N + k))) (pred (N - k))) (pred N)).
apply sum_Rle; intros.
apply sum_Rle; intros.
- unfold Rdiv in |- *; repeat rewrite Rabs_mult.
+ unfold Rdiv; repeat rewrite Rabs_mult.
do 2 rewrite pow_1_abs.
do 2 rewrite Rmult_1_l.
rewrite (Rabs_right (/ INR (fact (2 * S (n0 + n))))).
@@ -142,7 +142,7 @@ Proof.
apply pow_incr.
split.
apply Rabs_pos.
- unfold C in |- *.
+ unfold C.
apply Rle_trans with (Rmax (Rabs x) (Rabs y)); apply RmaxLess2.
apply Rle_trans with (C ^ (2 * S (n0 + n)) * C ^ (2 * (N - n0))).
do 2 rewrite <- (Rmult_comm (C ^ (2 * (N - n0)))).
@@ -150,11 +150,11 @@ Proof.
apply pow_le.
apply Rle_trans with 1.
left; apply Rlt_0_1.
- unfold C in |- *; apply RmaxLess1.
+ unfold C; apply RmaxLess1.
apply pow_incr.
split.
apply Rabs_pos.
- unfold C in |- *; apply Rle_trans with (Rmax (Rabs x) (Rabs y)).
+ unfold C; apply Rle_trans with (Rmax (Rabs x) (Rabs y)).
apply RmaxLess1.
apply RmaxLess2.
right.
@@ -203,7 +203,7 @@ Proof.
left; apply Rinv_0_lt_compat.
rewrite mult_INR; apply Rmult_lt_0_compat; apply INR_fact_lt_0.
apply Rle_pow.
- unfold C in |- *; apply RmaxLess1.
+ unfold C; apply RmaxLess1.
replace (4 * N)%nat with (2 * (2 * N))%nat; [ idtac | ring ].
apply (fun m n p:nat => mult_le_compat_l p n m).
replace (2 * N)%nat with (S (N + pred N)).
@@ -223,33 +223,33 @@ Proof.
apply pow_le.
left; apply Rlt_le_trans with 1.
apply Rlt_0_1.
- unfold C in |- *; apply RmaxLess1.
+ unfold C; apply RmaxLess1.
replace (/ INR (fact (2 * S (n0 + n)) * fact (2 * (N - n0)))) with
(Binomial.C (2 * S (N + n)) (2 * S (n0 + n)) / INR (fact (2 * S (N + n)))).
apply Rle_trans with
(Binomial.C (2 * S (N + n)) (S (N + n)) / INR (fact (2 * S (N + n)))).
- unfold Rdiv in |- *;
+ unfold Rdiv;
do 2 rewrite <- (Rmult_comm (/ INR (fact (2 * S (N + n))))).
apply Rmult_le_compat_l.
left; apply Rinv_0_lt_compat; apply INR_fact_lt_0.
apply C_maj.
omega.
right.
- unfold Rdiv in |- *; rewrite Rmult_comm.
- unfold Binomial.C in |- *.
- unfold Rdiv in |- *; repeat rewrite <- Rmult_assoc.
+ unfold Rdiv; rewrite Rmult_comm.
+ unfold Binomial.C.
+ unfold Rdiv; repeat rewrite <- Rmult_assoc.
rewrite <- Rinv_l_sym.
rewrite Rmult_1_l.
replace (2 * S (N + n) - S (N + n))%nat with (S (N + n)).
rewrite Rinv_mult_distr.
- unfold Rsqr in |- *; reflexivity.
+ unfold Rsqr; reflexivity.
apply INR_fact_neq_0.
apply INR_fact_neq_0.
omega.
apply INR_fact_neq_0.
- unfold Rdiv in |- *; rewrite Rmult_comm.
- unfold Binomial.C in |- *.
- unfold Rdiv in |- *; repeat rewrite <- Rmult_assoc.
+ unfold Rdiv; rewrite Rmult_comm.
+ unfold Binomial.C.
+ unfold Rdiv; repeat rewrite <- Rmult_assoc.
rewrite <- Rinv_l_sym.
rewrite Rmult_1_l.
replace (2 * S (N + n) - 2 * S (n0 + n))%nat with (2 * (N - n0))%nat.
@@ -271,17 +271,17 @@ Proof.
apply pow_le.
left; apply Rlt_le_trans with 1.
apply Rlt_0_1.
- unfold C in |- *; apply RmaxLess1.
+ unfold C; apply RmaxLess1.
apply Rle_trans with (Rsqr (/ INR (fact (S (N + n)))) * INR N).
apply Rmult_le_compat_l.
apply Rle_0_sqr.
apply le_INR.
omega.
- rewrite Rmult_comm; unfold Rdiv in |- *; apply Rmult_le_compat_l.
+ rewrite Rmult_comm; unfold Rdiv; apply Rmult_le_compat_l.
apply pos_INR.
apply Rle_trans with (/ INR (fact (S (N + n)))).
- pattern (/ INR (fact (S (N + n)))) at 2 in |- *; rewrite <- Rmult_1_r.
- unfold Rsqr in |- *.
+ pattern (/ INR (fact (S (N + n)))) at 2; rewrite <- Rmult_1_r.
+ unfold Rsqr.
apply Rmult_le_compat_l.
left; apply Rinv_0_lt_compat; apply INR_fact_lt_0.
apply Rmult_le_reg_l with (INR (fact (S (N + n)))).
@@ -313,14 +313,14 @@ Proof.
rewrite sum_cte.
apply Rle_trans with (C ^ (4 * N) / INR (fact (pred N))).
rewrite <- (Rmult_comm (C ^ (4 * N))).
- unfold Rdiv in |- *; rewrite Rmult_assoc; apply Rmult_le_compat_l.
+ unfold Rdiv; rewrite Rmult_assoc; apply Rmult_le_compat_l.
apply pow_le.
left; apply Rlt_le_trans with 1.
apply Rlt_0_1.
- unfold C in |- *; apply RmaxLess1.
+ unfold C; apply RmaxLess1.
cut (S (pred N) = N).
intro; rewrite H0.
- pattern N at 2 in |- *; rewrite <- H0.
+ pattern N at 2; rewrite <- H0.
do 2 rewrite fact_simpl.
rewrite H0.
repeat rewrite mult_INR.
@@ -329,7 +329,7 @@ Proof.
repeat rewrite <- Rmult_assoc.
rewrite <- Rinv_r_sym.
rewrite Rmult_1_l.
- pattern (/ INR (fact (pred N))) at 2 in |- *; rewrite <- Rmult_1_r.
+ pattern (/ INR (fact (pred N))) at 2; rewrite <- Rmult_1_r.
rewrite Rmult_assoc.
apply Rmult_le_compat_l.
left; apply Rinv_0_lt_compat; apply INR_fact_lt_0.
@@ -340,19 +340,19 @@ Proof.
apply le_INR; apply le_n_Sn.
apply not_O_INR; discriminate.
apply not_O_INR.
- red in |- *; intro; rewrite H1 in H; elim (lt_irrefl _ H).
+ red; intro; rewrite H1 in H; elim (lt_irrefl _ H).
apply not_O_INR.
- red in |- *; intro; rewrite H1 in H; elim (lt_irrefl _ H).
+ red; intro; rewrite H1 in H; elim (lt_irrefl _ H).
apply INR_fact_neq_0.
apply not_O_INR; discriminate.
apply prod_neq_R0.
apply not_O_INR.
- red in |- *; intro; rewrite H1 in H; elim (lt_irrefl _ H).
+ red; intro; rewrite H1 in H; elim (lt_irrefl _ H).
apply INR_fact_neq_0.
- symmetry in |- *; apply S_pred with 0%nat; assumption.
+ symmetry ; apply S_pred with 0%nat; assumption.
right.
- unfold Majxy in |- *.
- unfold C in |- *.
+ unfold Majxy.
+ unfold C.
replace (S (pred N)) with N.
reflexivity.
apply S_pred with 0%nat; assumption.
@@ -363,7 +363,7 @@ Lemma reste2_maj :
Proof.
intros.
set (C := Rmax 1 (Rmax (Rabs x) (Rabs y))).
- unfold Reste2 in |- *.
+ unfold Reste2.
apply Rle_trans with
(sum_f_R0
(fun k:nat =>
@@ -415,7 +415,7 @@ Proof.
pred N)).
apply sum_Rle; intros.
apply sum_Rle; intros.
- unfold Rdiv in |- *; repeat rewrite Rabs_mult.
+ unfold Rdiv; repeat rewrite Rabs_mult.
do 2 rewrite pow_1_abs.
do 2 rewrite Rmult_1_l.
rewrite (Rabs_right (/ INR (fact (2 * S (n0 + n) + 1)))).
@@ -437,7 +437,7 @@ Proof.
apply pow_incr.
split.
apply Rabs_pos.
- unfold C in |- *.
+ unfold C.
apply Rle_trans with (Rmax (Rabs x) (Rabs y)); apply RmaxLess2.
apply Rle_trans with (C ^ (2 * S (n0 + n) + 1) * C ^ (2 * (N - n0) + 1)).
do 2 rewrite <- (Rmult_comm (C ^ (2 * (N - n0) + 1))).
@@ -445,11 +445,11 @@ Proof.
apply pow_le.
apply Rle_trans with 1.
left; apply Rlt_0_1.
- unfold C in |- *; apply RmaxLess1.
+ unfold C; apply RmaxLess1.
apply pow_incr.
split.
apply Rabs_pos.
- unfold C in |- *; apply Rle_trans with (Rmax (Rabs x) (Rabs y)).
+ unfold C; apply Rle_trans with (Rmax (Rabs x) (Rabs y)).
apply RmaxLess1.
apply RmaxLess2.
right.
@@ -477,7 +477,7 @@ Proof.
left; apply Rinv_0_lt_compat.
rewrite mult_INR; apply Rmult_lt_0_compat; apply INR_fact_lt_0.
apply Rle_pow.
- unfold C in |- *; apply RmaxLess1.
+ unfold C; apply RmaxLess1.
replace (4 * S N)%nat with (2 * (2 * S N))%nat; [ idtac | ring ].
apply (fun m n p:nat => mult_le_compat_l p n m).
replace (2 * S N)%nat with (S (S (N + N))).
@@ -500,14 +500,14 @@ Proof.
apply pow_le.
left; apply Rlt_le_trans with 1.
apply Rlt_0_1.
- unfold C in |- *; apply RmaxLess1.
+ unfold C; apply RmaxLess1.
replace (/ INR (fact (2 * S (n0 + n) + 1) * fact (2 * (N - n0) + 1))) with
(Binomial.C (2 * S (S (N + n))) (2 * S (n0 + n) + 1) /
INR (fact (2 * S (S (N + n))))).
apply Rle_trans with
(Binomial.C (2 * S (S (N + n))) (S (S (N + n))) /
INR (fact (2 * S (S (N + n))))).
- unfold Rdiv in |- *;
+ unfold Rdiv;
do 2 rewrite <- (Rmult_comm (/ INR (fact (2 * S (S (N + n)))))).
apply Rmult_le_compat_l.
left; apply Rinv_0_lt_compat; apply INR_fact_lt_0.
@@ -518,21 +518,21 @@ Proof.
ring.
omega.
right.
- unfold Rdiv in |- *; rewrite Rmult_comm.
- unfold Binomial.C in |- *.
- unfold Rdiv in |- *; repeat rewrite <- Rmult_assoc.
+ unfold Rdiv; rewrite Rmult_comm.
+ unfold Binomial.C.
+ unfold Rdiv; repeat rewrite <- Rmult_assoc.
rewrite <- Rinv_l_sym.
rewrite Rmult_1_l.
replace (2 * S (S (N + n)) - S (S (N + n)))%nat with (S (S (N + n))).
rewrite Rinv_mult_distr.
- unfold Rsqr in |- *; reflexivity.
+ unfold Rsqr; reflexivity.
apply INR_fact_neq_0.
apply INR_fact_neq_0.
omega.
apply INR_fact_neq_0.
- unfold Rdiv in |- *; rewrite Rmult_comm.
- unfold Binomial.C in |- *.
- unfold Rdiv in |- *; repeat rewrite <- Rmult_assoc.
+ unfold Rdiv; rewrite Rmult_comm.
+ unfold Binomial.C.
+ unfold Rdiv; repeat rewrite <- Rmult_assoc.
rewrite <- Rinv_l_sym.
rewrite Rmult_1_l.
replace (2 * S (S (N + n)) - (2 * S (n0 + n) + 1))%nat with
@@ -556,7 +556,7 @@ Proof.
apply pow_le.
left; apply Rlt_le_trans with 1.
apply Rlt_0_1.
- unfold C in |- *; apply RmaxLess1.
+ unfold C; apply RmaxLess1.
apply Rle_trans with (Rsqr (/ INR (fact (S (S (N + n))))) * INR N).
apply Rmult_le_compat_l.
apply Rle_0_sqr.
@@ -564,11 +564,11 @@ Proof.
apply le_INR.
omega.
omega.
- rewrite Rmult_comm; unfold Rdiv in |- *; apply Rmult_le_compat_l.
+ rewrite Rmult_comm; unfold Rdiv; apply Rmult_le_compat_l.
apply pos_INR.
apply Rle_trans with (/ INR (fact (S (S (N + n))))).
- pattern (/ INR (fact (S (S (N + n))))) at 2 in |- *; rewrite <- Rmult_1_r.
- unfold Rsqr in |- *.
+ pattern (/ INR (fact (S (S (N + n))))) at 2; rewrite <- Rmult_1_r.
+ unfold Rsqr.
apply Rmult_le_compat_l.
left; apply Rinv_0_lt_compat; apply INR_fact_lt_0.
apply Rmult_le_reg_l with (INR (fact (S (S (N + n))))).
@@ -599,11 +599,11 @@ Proof.
rewrite sum_cte.
apply Rle_trans with (C ^ (4 * S N) / INR (fact N)).
rewrite <- (Rmult_comm (C ^ (4 * S N))).
- unfold Rdiv in |- *; rewrite Rmult_assoc; apply Rmult_le_compat_l.
+ unfold Rdiv; rewrite Rmult_assoc; apply Rmult_le_compat_l.
apply pow_le.
left; apply Rlt_le_trans with 1.
apply Rlt_0_1.
- unfold C in |- *; apply RmaxLess1.
+ unfold C; apply RmaxLess1.
cut (S (pred N) = N).
intro; rewrite H0.
do 2 rewrite fact_simpl.
@@ -642,10 +642,10 @@ Proof.
apply INR_fact_neq_0.
apply not_O_INR; discriminate.
apply prod_neq_R0; [ apply not_O_INR; discriminate | apply INR_fact_neq_0 ].
- symmetry in |- *; apply S_pred with 0%nat; assumption.
+ symmetry ; apply S_pred with 0%nat; assumption.
right.
- unfold Majxy in |- *.
- unfold C in |- *.
+ unfold Majxy.
+ unfold C.
reflexivity.
Qed.
@@ -654,10 +654,10 @@ Proof.
intros.
assert (H := Majxy_cv_R0 x y).
unfold Un_cv in H; unfold R_dist in H.
- unfold Un_cv in |- *; unfold R_dist in |- *; intros.
+ unfold Un_cv; unfold R_dist; intros.
elim (H eps H0); intros N0 H1.
exists (S N0); intros.
- unfold Rminus in |- *; rewrite Ropp_0; rewrite Rplus_0_r.
+ unfold Rminus; rewrite Ropp_0; rewrite Rplus_0_r.
apply Rle_lt_trans with (Rabs (Majxy x y (pred n))).
rewrite (Rabs_right (Majxy x y (pred n))).
apply reste1_maj.
@@ -665,8 +665,8 @@ Proof.
apply lt_O_Sn.
assumption.
apply Rle_ge.
- unfold Majxy in |- *.
- unfold Rdiv in |- *; apply Rmult_le_pos.
+ unfold Majxy.
+ unfold Rdiv; apply Rmult_le_pos.
apply pow_le.
apply Rle_trans with 1.
left; apply Rlt_0_1.
@@ -674,7 +674,7 @@ Proof.
left; apply Rinv_0_lt_compat; apply INR_fact_lt_0.
replace (Majxy x y (pred n)) with (Majxy x y (pred n) - 0); [ idtac | ring ].
apply H1.
- unfold ge in |- *; apply le_S_n.
+ unfold ge; apply le_S_n.
replace (S (pred n)) with n.
assumption.
apply S_pred with 0%nat.
@@ -686,10 +686,10 @@ Proof.
intros.
assert (H := Majxy_cv_R0 x y).
unfold Un_cv in H; unfold R_dist in H.
- unfold Un_cv in |- *; unfold R_dist in |- *; intros.
+ unfold Un_cv; unfold R_dist; intros.
elim (H eps H0); intros N0 H1.
exists (S N0); intros.
- unfold Rminus in |- *; rewrite Ropp_0; rewrite Rplus_0_r.
+ unfold Rminus; rewrite Ropp_0; rewrite Rplus_0_r.
apply Rle_lt_trans with (Rabs (Majxy x y n)).
rewrite (Rabs_right (Majxy x y n)).
apply reste2_maj.
@@ -697,8 +697,8 @@ Proof.
apply lt_O_Sn.
assumption.
apply Rle_ge.
- unfold Majxy in |- *.
- unfold Rdiv in |- *; apply Rmult_le_pos.
+ unfold Majxy.
+ unfold Rdiv; apply Rmult_le_pos.
apply pow_le.
apply Rle_trans with 1.
left; apply Rlt_0_1.
@@ -706,7 +706,7 @@ Proof.
left; apply Rinv_0_lt_compat; apply INR_fact_lt_0.
replace (Majxy x y n) with (Majxy x y n - 0); [ idtac | ring ].
apply H1.
- unfold ge in |- *; apply le_trans with (S N0).
+ unfold ge; apply le_trans with (S N0).
apply le_n_Sn.
exact H2.
Qed.
@@ -714,7 +714,7 @@ Qed.
Lemma reste_cv_R0 : forall x y:R, Un_cv (Reste x y) 0.
Proof.
intros.
- unfold Reste in |- *.
+ unfold Reste.
set (An := fun n:nat => Reste2 x y n).
set (Bn := fun n:nat => Reste1 x y (S n)).
cut
@@ -723,21 +723,21 @@ Proof.
intro.
apply H.
apply CV_minus.
- unfold An in |- *.
+ unfold An.
replace (fun n:nat => Reste2 x y n) with (Reste2 x y).
apply reste2_cv_R0.
reflexivity.
- unfold Bn in |- *.
+ unfold Bn.
assert (H0 := reste1_cv_R0 x y).
unfold Un_cv in H0; unfold R_dist in H0.
- unfold Un_cv in |- *; unfold R_dist in |- *; intros.
+ unfold Un_cv; unfold R_dist; intros.
elim (H0 eps H1); intros N0 H2.
exists N0; intros.
apply H2.
- unfold ge in |- *; apply le_trans with (S N0).
+ unfold ge; apply le_trans with (S N0).
apply le_n_Sn.
apply le_n_S; assumption.
- unfold An, Bn in |- *.
+ unfold An, Bn.
intro.
replace 0 with (0 - 0); [ idtac | ring ].
exact H.
@@ -751,7 +751,7 @@ Proof.
intros.
apply UL_sequence with (C1 x y); assumption.
apply C1_cvg.
- unfold Un_cv in |- *; unfold R_dist in |- *.
+ unfold Un_cv; unfold R_dist.
intros.
assert (H0 := A1_cvg x).
assert (H1 := A1_cvg y).
@@ -764,7 +764,7 @@ Proof.
unfold R_dist in H4; unfold R_dist in H5; unfold R_dist in H6.
cut (0 < eps / 3);
[ intro
- | unfold Rdiv in |- *; apply Rmult_lt_0_compat;
+ | unfold Rdiv; apply Rmult_lt_0_compat;
[ assumption | apply Rinv_0_lt_compat; prove_sup0 ] ].
elim (H4 (eps / 3) H7); intros N1 H8.
elim (H5 (eps / 3) H7); intros N2 H9.
@@ -788,8 +788,8 @@ Proof.
replace eps with (eps / 3 + (eps / 3 + eps / 3)).
apply Rplus_lt_compat.
apply H8.
- unfold ge in |- *; apply le_trans with N.
- unfold N in |- *.
+ unfold ge; apply le_trans with N.
+ unfold N.
apply le_trans with (max N1 N2).
apply le_max_l.
apply le_trans with (max (max N1 N2) N3).
@@ -804,12 +804,12 @@ Proof.
rewrite <- Rabs_Ropp.
rewrite Ropp_minus_distr.
apply H9.
- unfold ge in |- *; apply le_trans with (max N1 N2).
+ unfold ge; apply le_trans with (max N1 N2).
apply le_max_r.
apply le_S_n.
rewrite <- H12.
apply le_trans with N.
- unfold N in |- *.
+ unfold N.
apply le_n_S.
apply le_trans with (max (max N1 N2) N3).
apply le_max_l.
@@ -817,35 +817,35 @@ Proof.
assumption.
replace (Reste x y (pred n)) with (Reste x y (pred n) - 0).
apply H10.
- unfold ge in |- *.
+ unfold ge.
apply le_S_n.
rewrite <- H12.
apply le_trans with N.
- unfold N in |- *.
+ unfold N.
apply le_n_S.
apply le_trans with (max (max N1 N2) N3).
apply le_max_r.
apply le_n_Sn.
assumption.
ring.
- pattern eps at 4 in |- *; replace eps with (3 * (eps / 3)).
+ pattern eps at 4; replace eps with (3 * (eps / 3)).
ring.
- unfold Rdiv in |- *.
+ unfold Rdiv.
rewrite <- Rmult_assoc.
apply Rinv_r_simpl_m.
discrR.
apply lt_le_trans with (pred N).
- unfold N in |- *; simpl in |- *; apply lt_O_Sn.
+ unfold N; simpl; apply lt_O_Sn.
apply le_S_n.
rewrite <- H12.
replace (S (pred N)) with N.
assumption.
- unfold N in |- *; simpl in |- *; reflexivity.
+ unfold N; simpl; reflexivity.
cut (0 < N)%nat.
intro.
cut (0 < n)%nat.
intro.
apply S_pred with 0%nat; assumption.
apply lt_le_trans with N; assumption.
- unfold N in |- *; apply lt_O_Sn.
+ unfold N; apply lt_O_Sn.
Qed.
diff --git a/theories/Reals/Cos_rel.v b/theories/Reals/Cos_rel.v
index 204e2009d..cf501917f 100644
--- a/theories/Reals/Cos_rel.v
+++ b/theories/Reals/Cos_rel.v
@@ -50,7 +50,7 @@ Theorem cos_plus_form :
(0 < n)%nat ->
A1 x (S n) * A1 y (S n) - B1 x n * B1 y n + Reste x y n = C1 x y (S n).
intros.
-unfold A1, B1 in |- *.
+unfold A1, B1.
rewrite
(cauchy_finite (fun k:nat => (-1) ^ k / INR (fact (2 * k)) * x ^ (2 * k))
(fun k:nat => (-1) ^ k / INR (fact (2 * k)) * y ^ (2 * k)) (
@@ -60,7 +60,7 @@ rewrite
(fun k:nat => (-1) ^ k / INR (fact (2 * k + 1)) * x ^ (2 * k + 1))
(fun k:nat => (-1) ^ k / INR (fact (2 * k + 1)) * y ^ (2 * k + 1)) n H)
.
-unfold Reste in |- *.
+unfold Reste.
replace
(sum_f_R0
(fun k:nat =>
@@ -119,13 +119,13 @@ replace
((-1) ^ (k - p) / INR (fact (2 * (k - p) + 1)) *
y ^ (2 * (k - p) + 1))) k) n) with (sum_f_R0 sin_nnn (S n)).
rewrite <- sum_plus.
-unfold C1 in |- *.
+unfold C1.
apply sum_eq; intros.
induction i as [| i Hreci].
-simpl in |- *.
-unfold C in |- *; simpl in |- *.
+simpl.
+unfold C; simpl.
field; discrR.
-unfold sin_nnn in |- *.
+unfold sin_nnn.
rewrite <- Rmult_plus_distr_l.
apply Rmult_eq_compat_l.
rewrite binomial.
@@ -141,13 +141,13 @@ replace
(sum_f_R0 (fun l:nat => Wn (S (2 * l))) i).
apply sum_decomposition.
apply sum_eq; intros.
-unfold Wn in |- *.
+unfold Wn.
apply Rmult_eq_compat_l.
replace (2 * S i - S (2 * i0))%nat with (S (2 * (i - i0))).
reflexivity.
omega.
apply sum_eq; intros.
-unfold Wn in |- *.
+unfold Wn.
apply Rmult_eq_compat_l.
replace (2 * S i - 2 * i0)%nat with (2 * (S i - i0))%nat.
reflexivity.
@@ -177,11 +177,11 @@ change (pred (S n)) with n.
(* replace (pred (S n)) with n; [ idtac | reflexivity ]. *)
apply sum_eq; intros.
rewrite Rmult_comm.
-unfold sin_nnn in |- *.
+unfold sin_nnn.
rewrite scal_sum.
rewrite scal_sum.
apply sum_eq; intros.
-unfold Rdiv in |- *.
+unfold Rdiv.
(*repeat rewrite Rmult_assoc.*)
(* rewrite (Rmult_comm (/ INR (fact (2 * S i)))). *)
repeat rewrite <- Rmult_assoc.
@@ -193,13 +193,13 @@ replace (S (2 * i0)) with (2 * i0 + 1)%nat; [ idtac | ring ].
replace (S (2 * (i - i0))) with (2 * (i - i0) + 1)%nat; [ idtac | ring ].
replace ((-1) ^ S i) with (-1 * (-1) ^ i0 * (-1) ^ (i - i0)).
ring.
-simpl in |- *.
-pattern i at 2 in |- *; replace i with (i0 + (i - i0))%nat.
+simpl.
+pattern i at 2; replace i with (i0 + (i - i0))%nat.
rewrite pow_add.
ring.
-symmetry in |- *; apply le_plus_minus; assumption.
-unfold C in |- *.
-unfold Rdiv in |- *; repeat rewrite <- Rmult_assoc.
+symmetry ; apply le_plus_minus; assumption.
+unfold C.
+unfold Rdiv; repeat rewrite <- Rmult_assoc.
rewrite <- Rinv_l_sym.
rewrite Rmult_1_l.
rewrite Rinv_mult_distr.
@@ -217,7 +217,7 @@ apply lt_O_Sn.
apply sum_eq; intros.
rewrite scal_sum.
apply sum_eq; intros.
-unfold Rdiv in |- *.
+unfold Rdiv.
repeat rewrite <- Rmult_assoc.
rewrite <- (Rmult_comm (/ INR (fact (2 * i)))).
repeat rewrite <- Rmult_assoc.
@@ -225,12 +225,12 @@ replace (/ INR (fact (2 * i)) * C (2 * i) (2 * i0)) with
(/ INR (fact (2 * i0)) * / INR (fact (2 * (i - i0)))).
replace ((-1) ^ i) with ((-1) ^ i0 * (-1) ^ (i - i0)).
ring.
-pattern i at 2 in |- *; replace i with (i0 + (i - i0))%nat.
+pattern i at 2; replace i with (i0 + (i - i0))%nat.
rewrite pow_add.
ring.
-symmetry in |- *; apply le_plus_minus; assumption.
-unfold C in |- *.
-unfold Rdiv in |- *; repeat rewrite <- Rmult_assoc.
+symmetry ; apply le_plus_minus; assumption.
+unfold C.
+unfold Rdiv; repeat rewrite <- Rmult_assoc.
rewrite <- Rinv_l_sym.
rewrite Rmult_1_l.
rewrite Rinv_mult_distr.
@@ -240,12 +240,12 @@ omega.
apply INR_fact_neq_0.
apply INR_fact_neq_0.
apply INR_fact_neq_0.
-unfold Reste2 in |- *; apply sum_eq; intros.
+unfold Reste2; apply sum_eq; intros.
apply sum_eq; intros.
-unfold Rdiv in |- *; ring.
-unfold Reste1 in |- *; apply sum_eq; intros.
+unfold Rdiv; ring.
+unfold Reste1; apply sum_eq; intros.
apply sum_eq; intros.
-unfold Rdiv in |- *; ring.
+unfold Rdiv; ring.
apply lt_O_Sn.
Qed.
@@ -266,10 +266,10 @@ unfold R_dist in p.
cut (cos x = x0).
intro.
rewrite H0.
-unfold Un_cv in |- *; unfold R_dist in |- *; intros.
+unfold Un_cv; unfold R_dist; intros.
elim (p eps H1); intros.
exists x1; intros.
-unfold A1 in |- *.
+unfold A1.
replace
(sum_f_R0 (fun k:nat => (-1) ^ k / INR (fact (2 * k)) * x ^ (2 * k)) n) with
(sum_f_R0 (fun i:nat => (-1) ^ i / INR (fact (2 * i)) * (x * x) ^ i) n).
@@ -279,9 +279,9 @@ intros.
replace ((x * x) ^ i) with (x ^ (2 * i)).
reflexivity.
apply pow_sqr.
-unfold cos in |- *.
+unfold cos.
case (exist_cos (Rsqr x)).
-unfold Rsqr in |- *; intros.
+unfold Rsqr; intros.
unfold cos_in in p_i.
unfold cos_in in c.
apply uniqueness_sum with (fun i:nat => cos_n i * (x * x) ^ i); assumption.
@@ -298,10 +298,10 @@ unfold R_dist in p.
cut (cos (x + y) = x0).
intro.
rewrite H0.
-unfold Un_cv in |- *; unfold R_dist in |- *; intros.
+unfold Un_cv; unfold R_dist; intros.
elim (p eps H1); intros.
exists x1; intros.
-unfold C1 in |- *.
+unfold C1.
replace
(sum_f_R0 (fun k:nat => (-1) ^ k / INR (fact (2 * k)) * (x + y) ^ (2 * k)) n)
with
@@ -313,9 +313,9 @@ intros.
replace (((x + y) * (x + y)) ^ i) with ((x + y) ^ (2 * i)).
reflexivity.
apply pow_sqr.
-unfold cos in |- *.
+unfold cos.
case (exist_cos (Rsqr (x + y))).
-unfold Rsqr in |- *; intros.
+unfold Rsqr; intros.
unfold cos_in in p_i.
unfold cos_in in c.
apply uniqueness_sum with (fun i:nat => cos_n i * ((x + y) * (x + y)) ^ i);
@@ -327,17 +327,17 @@ intro.
case (Req_dec x 0); intro.
rewrite H.
rewrite sin_0.
-unfold B1 in |- *.
-unfold Un_cv in |- *; unfold R_dist in |- *; intros; exists 0%nat; intros.
+unfold B1.
+unfold Un_cv; unfold R_dist; intros; exists 0%nat; intros.
replace
(sum_f_R0 (fun k:nat => (-1) ^ k / INR (fact (2 * k + 1)) * 0 ^ (2 * k + 1))
n) with 0.
-unfold Rminus in |- *; rewrite Rplus_opp_r; rewrite Rabs_R0; assumption.
+unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0; assumption.
induction n as [| n Hrecn].
-simpl in |- *; ring.
+simpl; ring.
rewrite tech5; rewrite <- Hrecn.
-simpl in |- *; ring.
-unfold ge in |- *; apply le_O_n.
+simpl; ring.
+unfold ge; apply le_O_n.
assert (H0 := exist_sin (x * x)).
elim H0; intros.
assert (p_i := p).
@@ -347,14 +347,14 @@ unfold R_dist in p.
cut (sin x = x * x0).
intro.
rewrite H1.
-unfold Un_cv in |- *; unfold R_dist in |- *; intros.
+unfold Un_cv; unfold R_dist; intros.
cut (0 < eps / Rabs x);
[ intro
- | unfold Rdiv in |- *; apply Rmult_lt_0_compat;
+ | unfold Rdiv; apply Rmult_lt_0_compat;
[ assumption | apply Rinv_0_lt_compat; apply Rabs_pos_lt; assumption ] ].
elim (p (eps / Rabs x) H3); intros.
exists x1; intros.
-unfold B1 in |- *.
+unfold B1.
replace
(sum_f_R0 (fun k:nat => (-1) ^ k / INR (fact (2 * k + 1)) * x ^ (2 * k + 1))
n) with
@@ -380,11 +380,11 @@ apply sum_eq.
intros.
rewrite pow_add.
rewrite pow_sqr.
-simpl in |- *.
+simpl.
ring.
-unfold sin in |- *.
+unfold sin.
case (exist_sin (Rsqr x)).
-unfold Rsqr in |- *; intros.
+unfold Rsqr; intros.
unfold sin_in in p_i.
unfold sin_in in s.
assert
diff --git a/theories/Reals/DiscrR.v b/theories/Reals/DiscrR.v
index c21421b94..6eb73fa71 100644
--- a/theories/Reals/DiscrR.v
+++ b/theories/Reals/DiscrR.v
@@ -21,7 +21,7 @@ intros; rewrite H; reflexivity.
Qed.
Lemma IZR_neq : forall z1 z2:Z, z1 <> z2 -> IZR z1 <> IZR z2.
-intros; red in |- *; intro; elim H; apply eq_IZR; assumption.
+intros; red; intro; elim H; apply eq_IZR; assumption.
Qed.
Ltac discrR :=
@@ -45,7 +45,7 @@ Ltac prove_sup0 :=
repeat
(apply Rmult_lt_0_compat || apply Rplus_lt_pos;
try apply Rlt_0_1 || apply Rlt_R0_R2)
- | |- (?X1 > 0) => change (0 < X1) in |- *; prove_sup0
+ | |- (?X1 > 0) => change (0 < X1); prove_sup0
end.
Ltac omega_sup :=
@@ -59,7 +59,7 @@ Ltac omega_sup :=
Ltac prove_sup :=
match goal with
- | |- (?X1 > ?X2) => change (X2 < X1) in |- *; prove_sup
+ | |- (?X1 > ?X2) => change (X2 < X1); prove_sup
| |- (0 < ?X1) => prove_sup0
| |- (- ?X1 < 0) => rewrite <- Ropp_0; prove_sup
| |- (- ?X1 < - ?X2) => apply Ropp_lt_gt_contravar; prove_sup
diff --git a/theories/Reals/Exp_prop.v b/theories/Reals/Exp_prop.v
index 4b1b09406..c6b37383a 100644
--- a/theories/Reals/Exp_prop.v
+++ b/theories/Reals/Exp_prop.v
@@ -23,9 +23,9 @@ Definition E1 (x:R) (N:nat) : R :=
Lemma E1_cvg : forall x:R, Un_cv (E1 x) (exp x).
Proof.
- intro; unfold exp in |- *; unfold projT1 in |- *.
+ intro; unfold exp; unfold projT1.
case (exist_exp x); intro.
- unfold exp_in, Un_cv in |- *; unfold infinite_sum, E1 in |- *; trivial.
+ unfold exp_in, Un_cv; unfold infinite_sum, E1; trivial.
Qed.
Definition Reste_E (x y:R) (N:nat) : R :=
@@ -41,14 +41,14 @@ Lemma exp_form :
forall (x y:R) (n:nat),
(0 < n)%nat -> E1 x n * E1 y n - Reste_E x y n = E1 (x + y) n.
Proof.
- intros; unfold E1 in |- *.
+ intros; unfold E1.
rewrite cauchy_finite.
- unfold Reste_E in |- *; unfold Rminus in |- *; rewrite Rplus_assoc;
+ unfold Reste_E; unfold Rminus; rewrite Rplus_assoc;
rewrite Rplus_opp_r; rewrite Rplus_0_r; apply sum_eq;
intros.
rewrite binomial.
rewrite scal_sum; apply sum_eq; intros.
- unfold C in |- *; unfold Rdiv in |- *; repeat rewrite Rmult_assoc;
+ unfold C; unfold Rdiv; repeat rewrite Rmult_assoc;
rewrite (Rmult_comm (INR (fact i))); repeat rewrite Rmult_assoc;
rewrite <- Rinv_l_sym.
rewrite Rmult_1_r; rewrite Rinv_mult_distr.
@@ -70,7 +70,7 @@ Proof.
intro; induction N as [| N HrecN].
reflexivity.
replace (2 * S N)%nat with (S (S (2 * N))).
- simpl in |- *; simpl in HrecN; rewrite HrecN; reflexivity.
+ simpl; simpl in HrecN; rewrite HrecN; reflexivity.
ring.
Qed.
@@ -79,7 +79,7 @@ Proof.
intro; induction N as [| N HrecN].
reflexivity.
replace (2 * S N)%nat with (S (S (2 * N))).
- simpl in |- *; simpl in HrecN; rewrite HrecN; reflexivity.
+ simpl; simpl in HrecN; rewrite HrecN; reflexivity.
ring.
Qed.
@@ -93,7 +93,7 @@ Proof.
elim H2; intro.
rewrite <- (even_div2 _ a); apply HrecN; assumption.
rewrite <- (odd_div2 _ b); apply lt_O_Sn.
- rewrite H1; simpl in |- *; apply lt_O_Sn.
+ rewrite H1; simpl; apply lt_O_Sn.
inversion H.
right; reflexivity.
left; apply lt_le_trans with 2%nat; [ apply lt_n_Sn | apply H1 ].
@@ -110,7 +110,7 @@ Proof.
(fun k:nat =>
sum_f_R0 (fun l:nat => / Rsqr (INR (fact (div2 (S N)))))
(pred (N - k))) (pred N)).
- unfold Reste_E in |- *.
+ unfold Reste_E.
apply Rle_trans with
(sum_f_R0
(fun k:nat =>
@@ -189,25 +189,25 @@ Proof.
apply Rabs_pos.
apply Rle_trans with (Rmax (Rabs x) (Rabs y)).
apply RmaxLess1.
- unfold M in |- *; apply RmaxLess2.
+ unfold M; apply RmaxLess2.
apply Rle_trans with (M ^ S (n0 + n) * M ^ (N - n0)).
apply Rmult_le_compat_l.
apply pow_le; apply Rle_trans with 1.
left; apply Rlt_0_1.
- unfold M in |- *; apply RmaxLess1.
+ unfold M; apply RmaxLess1.
apply pow_incr; split.
apply Rabs_pos.
apply Rle_trans with (Rmax (Rabs x) (Rabs y)).
apply RmaxLess2.
- unfold M in |- *; apply RmaxLess2.
+ unfold M; apply RmaxLess2.
rewrite <- pow_add; replace (S (n0 + n) + (N - n0))%nat with (N + S n)%nat.
apply Rle_pow.
- unfold M in |- *; apply RmaxLess1.
+ unfold M; apply RmaxLess1.
replace (2 * N)%nat with (N + N)%nat; [ idtac | ring ].
apply plus_le_compat_l.
replace N with (S (pred N)).
apply le_n_S; apply H0.
- symmetry in |- *; apply S_pred with 0%nat; apply H.
+ symmetry ; apply S_pred with 0%nat; apply H.
apply INR_eq; do 2 rewrite plus_INR; do 2 rewrite S_INR; rewrite plus_INR;
rewrite minus_INR.
ring.
@@ -246,7 +246,7 @@ Proof.
apply pow_le.
apply Rle_trans with 1.
left; apply Rlt_0_1.
- unfold M in |- *; apply RmaxLess1.
+ unfold M; apply RmaxLess1.
assert (H2 := even_odd_cor N).
elim H2; intros N0 H3.
elim H3; intro.
@@ -262,9 +262,9 @@ Proof.
apply le_n_Sn.
replace (/ INR (fact n0) * / INR (fact (N - n0))) with
(C N n0 / INR (fact N)).
- pattern N at 1 in |- *; rewrite H4.
+ pattern N at 1; rewrite H4.
apply Rle_trans with (C N N0 / INR (fact N)).
- unfold Rdiv in |- *; do 2 rewrite <- (Rmult_comm (/ INR (fact N))).
+ unfold Rdiv; do 2 rewrite <- (Rmult_comm (/ INR (fact N))).
apply Rmult_le_compat_l.
left; apply Rinv_0_lt_compat; apply INR_fact_lt_0.
rewrite H4.
@@ -294,7 +294,7 @@ Proof.
apply le_pred_n.
replace (C N N0 / INR (fact N)) with (/ Rsqr (INR (fact N0))).
rewrite H4; rewrite div2_S_double; right; reflexivity.
- unfold Rsqr, C, Rdiv in |- *.
+ unfold Rsqr, C, Rdiv.
repeat rewrite Rinv_mult_distr.
rewrite (Rmult_comm (INR (fact N))).
repeat rewrite Rmult_assoc.
@@ -302,7 +302,7 @@ Proof.
rewrite Rmult_1_r; replace (N - N0)%nat with N0.
ring.
replace N with (N0 + N0)%nat.
- symmetry in |- *; apply minus_plus.
+ symmetry ; apply minus_plus.
rewrite H4.
ring.
apply INR_fact_neq_0.
@@ -310,7 +310,7 @@ Proof.
apply INR_fact_neq_0.
apply INR_fact_neq_0.
apply INR_fact_neq_0.
- unfold C, Rdiv in |- *.
+ unfold C, Rdiv.
rewrite (Rmult_comm (INR (fact N))).
repeat rewrite Rmult_assoc.
rewrite <- Rinv_r_sym.
@@ -322,7 +322,7 @@ Proof.
replace (/ INR (fact (S n0)) * / INR (fact (N - n0))) with
(C (S N) (S n0) / INR (fact (S N))).
apply Rle_trans with (C (S N) (S N0) / INR (fact (S N))).
- unfold Rdiv in |- *; do 2 rewrite <- (Rmult_comm (/ INR (fact (S N)))).
+ unfold Rdiv; do 2 rewrite <- (Rmult_comm (/ INR (fact (S N)))).
apply Rmult_le_compat_l.
left; apply Rinv_0_lt_compat; apply INR_fact_lt_0.
cut (S N = (2 * S N0)%nat).
@@ -357,7 +357,7 @@ Proof.
replace (C (S N) (S N0) / INR (fact (S N))) with (/ Rsqr (INR (fact (S N0)))).
rewrite H5; rewrite div2_double.
right; reflexivity.
- unfold Rsqr, C, Rdiv in |- *.
+ unfold Rsqr, C, Rdiv.
repeat rewrite Rinv_mult_distr.
replace (S N - S N0)%nat with (S N0).
rewrite (Rmult_comm (INR (fact (S N)))).
@@ -366,14 +366,14 @@ Proof.
rewrite Rmult_1_r; reflexivity.
apply INR_fact_neq_0.
replace (S N) with (S N0 + S N0)%nat.
- symmetry in |- *; apply minus_plus.
+ symmetry ; apply minus_plus.
rewrite H5; ring.
apply INR_fact_neq_0.
apply INR_fact_neq_0.
apply INR_fact_neq_0.
apply INR_fact_neq_0.
rewrite H4; ring.
- unfold C, Rdiv in |- *.
+ unfold C, Rdiv.
rewrite (Rmult_comm (INR (fact (S N)))).
rewrite Rmult_assoc; rewrite <- Rinv_r_sym.
rewrite Rmult_1_r; rewrite Rinv_mult_distr.
@@ -381,8 +381,8 @@ Proof.
apply INR_fact_neq_0.
apply INR_fact_neq_0.
apply INR_fact_neq_0.
- unfold maj_Reste_E in |- *.
- unfold Rdiv in |- *; rewrite (Rmult_comm 4).
+ unfold maj_Reste_E.
+ unfold Rdiv; rewrite (Rmult_comm 4).
rewrite Rmult_assoc.
apply Rmult_le_compat_l.
apply pow_le.
@@ -433,7 +433,7 @@ Proof.
cut (INR N <= INR (2 * div2 (S N))).
intro; apply Rmult_le_reg_l with (Rsqr (INR (div2 (S N)))).
apply Rsqr_pos_lt.
- apply not_O_INR; red in |- *; intro.
+ apply not_O_INR; red; intro.
cut (1 < S N)%nat.
intro; assert (H4 := div2_not_R0 _ H3).
rewrite H2 in H4; elim (lt_n_O _ H4).
@@ -456,17 +456,17 @@ Proof.
apply lt_INR_0; apply div2_not_R0.
apply lt_n_S; apply H.
cut (1 < S N)%nat.
- intro; unfold Rsqr in |- *; apply prod_neq_R0; apply not_O_INR; intro;
+ intro; unfold Rsqr; apply prod_neq_R0; apply not_O_INR; intro;
assert (H4 := div2_not_R0 _ H2); rewrite H3 in H4;
elim (lt_n_O _ H4).
apply lt_n_S; apply H.
assert (H1 := even_odd_cor N).
elim H1; intros N0 H2.
elim H2; intro.
- pattern N at 2 in |- *; rewrite H3.
+ pattern N at 2; rewrite H3.
rewrite div2_S_double.
right; rewrite H3; reflexivity.
- pattern N at 2 in |- *; rewrite H3.
+ pattern N at 2; rewrite H3.
replace (S (S (2 * N0))) with (2 * S N0)%nat.
rewrite div2_double.
rewrite H3.
@@ -475,12 +475,12 @@ Proof.
rewrite Rmult_plus_distr_l.
apply Rplus_le_compat_l.
rewrite Rmult_1_r.
- simpl in |- *.
- pattern 1 at 1 in |- *; rewrite <- Rplus_0_r; apply Rplus_le_compat_l; left;
+ simpl.
+ pattern 1 at 1; rewrite <- Rplus_0_r; apply Rplus_le_compat_l; left;
apply Rlt_0_1.
ring.
- unfold Rsqr in |- *; apply prod_neq_R0; apply INR_fact_neq_0.
- unfold Rsqr in |- *; apply prod_neq_R0; apply not_O_INR; discriminate.
+ unfold Rsqr; apply prod_neq_R0; apply INR_fact_neq_0.
+ unfold Rsqr; apply prod_neq_R0; apply not_O_INR; discriminate.
assert (H0 := even_odd_cor N).
elim H0; intros N0 H1.
elim H1; intro.
@@ -506,15 +506,15 @@ Qed.
Lemma maj_Reste_cv_R0 : forall x y:R, Un_cv (maj_Reste_E x y) 0.
Proof.
intros; assert (H := Majxy_cv_R0 x y).
- unfold Un_cv in H; unfold Un_cv in |- *; intros.
+ unfold Un_cv in H; unfold Un_cv; intros.
cut (0 < eps / 4);
[ intro
- | unfold Rdiv in |- *; apply Rmult_lt_0_compat;
+ | unfold Rdiv; apply Rmult_lt_0_compat;
[ assumption | apply Rinv_0_lt_compat; prove_sup0 ] ].
elim (H _ H1); intros N0 H2.
exists (max (2 * S N0) 2); intros.
- unfold R_dist in H2; unfold R_dist in |- *; rewrite Rminus_0_r;
- unfold Majxy in H2; unfold maj_Reste_E in |- *.
+ unfold R_dist in H2; unfold R_dist; rewrite Rminus_0_r;
+ unfold Majxy in H2; unfold maj_Reste_E.
rewrite Rabs_right.
apply Rle_lt_trans with
(4 *
@@ -522,7 +522,7 @@ Proof.
INR (fact (div2 (pred n))))).
apply Rmult_le_compat_l.
left; prove_sup0.
- unfold Rdiv, Rsqr in |- *; rewrite Rinv_mult_distr.
+ unfold Rdiv, Rsqr; rewrite Rinv_mult_distr.
rewrite (Rmult_comm (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n)));
rewrite
(Rmult_comm (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (div2 (pred n)))))
@@ -530,7 +530,7 @@ Proof.
left; apply Rinv_0_lt_compat; apply INR_fact_lt_0.
apply Rle_trans with (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n)).
rewrite Rmult_comm;
- pattern (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n)) at 2 in |- *;
+ pattern (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n)) at 2;
rewrite <- Rmult_1_r; apply Rmult_le_compat_l.
apply pow_le; apply Rle_trans with 1.
left; apply Rlt_0_1.
@@ -584,11 +584,11 @@ Proof.
(Rabs
(Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (div2 (pred n))) /
INR (fact (div2 (pred n))) - 0)).
- apply H2; unfold ge in |- *.
+ apply H2; unfold ge.
cut (2 * S N0 <= n)%nat.
intro; apply le_S_n.
apply INR_le; apply Rmult_le_reg_l with (INR 2).
- simpl in |- *; prove_sup0.
+ simpl; prove_sup0.
do 2 rewrite <- mult_INR; apply le_INR.
apply le_trans with n.
apply H4.
@@ -606,12 +606,12 @@ Proof.
apply S_pred with 0%nat; apply H8.
replace (2 * N1)%nat with (S (S (2 * pred N1))).
reflexivity.
- pattern N1 at 2 in |- *; replace N1 with (S (pred N1)).
+ pattern N1 at 2; replace N1 with (S (pred N1)).
ring.
- symmetry in |- *; apply S_pred with 0%nat; apply H8.
+ symmetry ; apply S_pred with 0%nat; apply H8.
apply INR_lt.
apply Rmult_lt_reg_l with (INR 2).
- simpl in |- *; prove_sup0.
+ simpl; prove_sup0.
rewrite Rmult_0_r; rewrite <- mult_INR.
apply lt_INR_0.
rewrite <- H7.
@@ -632,7 +632,7 @@ Proof.
apply H3.
rewrite Rminus_0_r; apply Rabs_right.
apply Rle_ge.
- unfold Rdiv in |- *; apply Rmult_le_pos.
+ unfold Rdiv; apply Rmult_le_pos.
apply pow_le.
apply Rle_trans with 1.
left; apply Rlt_0_1.
@@ -640,7 +640,7 @@ Proof.
left; apply Rinv_0_lt_compat; apply INR_fact_lt_0.
discrR.
apply Rle_ge.
- unfold Rdiv in |- *; apply Rmult_le_pos.
+ unfold Rdiv; apply Rmult_le_pos.
left; prove_sup0.
apply Rmult_le_pos.
apply pow_le.
@@ -654,9 +654,9 @@ Qed.
Lemma Reste_E_cv : forall x y:R, Un_cv (Reste_E x y) 0.
Proof.
intros; assert (H := maj_Reste_cv_R0 x y).
- unfold Un_cv in H; unfold Un_cv in |- *; intros; elim (H _ H0); intros.
+ unfold Un_cv in H; unfold Un_cv; intros; elim (H _ H0); intros.
exists (max x0 1); intros.
- unfold R_dist in |- *; rewrite Rminus_0_r.
+ unfold R_dist; rewrite Rminus_0_r.
apply Rle_lt_trans with (maj_Reste_E x y n).
apply Reste_E_maj.
apply lt_le_trans with 1%nat.
@@ -666,10 +666,10 @@ Proof.
apply H2.
replace (maj_Reste_E x y n) with (R_dist (maj_Reste_E x y n) 0).
apply H1.
- unfold ge in |- *; apply le_trans with (max x0 1).
+ unfold ge; apply le_trans with (max x0 1).
apply le_max_l.
apply H2.
- unfold R_dist in |- *; rewrite Rminus_0_r; apply Rabs_right.
+ unfold R_dist; rewrite Rminus_0_r; apply Rabs_right.
apply Rle_ge; apply Rle_trans with (Rabs (Reste_E x y n)).
apply Rabs_pos.
apply Reste_E_maj.
@@ -690,13 +690,13 @@ Proof.
apply H1.
assert (H2 := CV_mult _ _ _ _ H0 H).
assert (H3 := CV_minus _ _ _ _ H2 (Reste_E_cv x y)).
- unfold Un_cv in |- *; unfold Un_cv in H3; intros.
+ unfold Un_cv; unfold Un_cv in H3; intros.
elim (H3 _ H4); intros.
exists (S x0); intros.
rewrite <- (exp_form x y n).
rewrite Rminus_0_r in H5.
apply H5.
- unfold ge in |- *; apply le_trans with (S x0).
+ unfold ge; apply le_trans with (S x0).
apply le_n_Sn.
apply H6.
apply lt_le_trans with (S x0).
@@ -710,15 +710,15 @@ Proof.
intros; set (An := fun N:nat => / INR (fact N) * x ^ N).
cut (Un_cv (fun n:nat => sum_f_R0 An n) (exp x)).
intro; apply Rlt_le_trans with (sum_f_R0 An 0).
- unfold An in |- *; simpl in |- *; rewrite Rinv_1; rewrite Rmult_1_r;
+ unfold An; simpl; rewrite Rinv_1; rewrite Rmult_1_r;
apply Rlt_0_1.
apply sum_incr.
assumption.
- intro; unfold An in |- *; left; apply Rmult_lt_0_compat.
+ intro; unfold An; left; apply Rmult_lt_0_compat.
apply Rinv_0_lt_compat; apply INR_fact_lt_0.
apply (pow_lt _ n H).
- unfold exp in |- *; unfold projT1 in |- *; case (exist_exp x); intro.
- unfold exp_in in |- *; unfold infinite_sum, Un_cv in |- *; trivial.
+ unfold exp; unfold projT1; case (exist_exp x); intro.
+ unfold exp_in; unfold infinite_sum, Un_cv; trivial.
Qed.
(**********)
@@ -729,12 +729,12 @@ Proof.
apply (exp_pos_pos _ a).
rewrite <- b; rewrite exp_0; apply Rlt_0_1.
replace (exp x) with (1 / exp (- x)).
- unfold Rdiv in |- *; apply Rmult_lt_0_compat.
+ unfold Rdiv; apply Rmult_lt_0_compat.
apply Rlt_0_1.
apply Rinv_0_lt_compat; apply exp_pos_pos.
apply (Ropp_0_gt_lt_contravar _ r).
cut (exp (- x) <> 0).
- intro; unfold Rdiv in |- *; apply Rmult_eq_reg_l with (exp (- x)).
+ intro; unfold Rdiv; apply Rmult_eq_reg_l with (exp (- x)).
rewrite Rmult_1_l; rewrite <- Rinv_r_sym.
rewrite <- exp_plus.
rewrite Rplus_opp_l; rewrite exp_0; reflexivity.
@@ -742,7 +742,7 @@ Proof.
apply H.
assert (H := exp_plus x (- x)).
rewrite Rplus_opp_r in H; rewrite exp_0 in H.
- red in |- *; intro; rewrite H0 in H.
+ red; intro; rewrite H0 in H.
rewrite Rmult_0_r in H.
elim R1_neq_R0; assumption.
Qed.
@@ -750,7 +750,7 @@ Qed.
(* ((exp h)-1)/h -> 0 quand h->0 *)
Lemma derivable_pt_lim_exp_0 : derivable_pt_lim exp 0 1.
Proof.
- unfold derivable_pt_lim in |- *; intros.
+ unfold derivable_pt_lim; intros.
set (fn := fun (N:nat) (x:R) => x ^ N / INR (fact (S N))).
cut (CVN_R fn).
intro; cut (forall x:R, { l:R | Un_cv (fun N:nat => SP fn N x) l }).
@@ -768,41 +768,41 @@ Proof.
replace 1 with (SFL fn cv 0).
apply H5.
split.
- unfold D_x, no_cond in |- *; split.
+ unfold D_x, no_cond; split.
trivial.
apply (not_eq_sym H6).
rewrite Rminus_0_r; apply H7.
- unfold SFL in |- *.
+ unfold SFL.
case (cv 0); intros.
eapply UL_sequence.
apply u.
- unfold Un_cv, SP in |- *.
+ unfold Un_cv, SP.
intros; exists 1%nat; intros.
- unfold R_dist in |- *; rewrite decomp_sum.
+ unfold R_dist; rewrite decomp_sum.
rewrite (Rplus_comm (fn 0%nat 0)).
replace (fn 0%nat 0) with 1.
- unfold Rminus in |- *; rewrite Rplus_assoc; rewrite Rplus_opp_r;
+ unfold Rminus; rewrite Rplus_assoc; rewrite Rplus_opp_r;
rewrite Rplus_0_r.
replace (sum_f_R0 (fun i:nat => fn (S i) 0) (pred n)) with 0.
rewrite Rabs_R0; apply H8.
- symmetry in |- *; apply sum_eq_R0; intros.
- unfold fn in |- *.
- simpl in |- *.
- unfold Rdiv in |- *; do 2 rewrite Rmult_0_l; reflexivity.
- unfold fn in |- *; simpl in |- *.
- unfold Rdiv in |- *; rewrite Rinv_1; rewrite Rmult_1_r; reflexivity.
+ symmetry ; apply sum_eq_R0; intros.
+ unfold fn.
+ simpl.
+ unfold Rdiv; do 2 rewrite Rmult_0_l; reflexivity.
+ unfold fn; simpl.
+ unfold Rdiv; rewrite Rinv_1; rewrite Rmult_1_r; reflexivity.
apply lt_le_trans with 1%nat; [ apply lt_n_Sn | apply H9 ].
- unfold SFL, exp in |- *.
+ unfold SFL, exp.
case (cv h); case (exist_exp h); simpl; intros.
eapply UL_sequence.
apply u.
- unfold Un_cv in |- *; intros.
+ unfold Un_cv; intros.
unfold exp_in in e.
unfold infinite_sum in e.
cut (0 < eps0 * Rabs h).
intro; elim (e _ H9); intros N0 H10.
exists N0; intros.
- unfold R_dist in |- *.
+ unfold R_dist.
apply Rmult_lt_reg_l with (Rabs h).
apply Rabs_pos_lt; assumption.
rewrite <- Rabs_mult.
@@ -813,47 +813,47 @@ Proof.
(sum_f_R0 (fun i:nat => / INR (fact i) * h ^ i) (S n) - x).
rewrite (Rmult_comm (Rabs h)).
apply H10.
- unfold ge in |- *.
+ unfold ge.
apply le_trans with (S N0).
apply le_n_Sn.
apply le_n_S; apply H11.
rewrite decomp_sum.
replace (/ INR (fact 0) * h ^ 0) with 1.
- unfold Rminus in |- *.
+ unfold Rminus.
rewrite Ropp_plus_distr.
rewrite Ropp_involutive.
rewrite <- (Rplus_comm (- x)).
rewrite <- (Rplus_comm (- x + 1)).
rewrite Rplus_assoc; repeat apply Rplus_eq_compat_l.
replace (pred (S n)) with n; [ idtac | reflexivity ].
- unfold SP in |- *.
+ unfold SP.
rewrite scal_sum.
apply sum_eq; intros.
- unfold fn in |- *.
+ unfold fn.
replace (h ^ S i) with (h * h ^ i).
- unfold Rdiv in |- *; ring.
- simpl in |- *; ring.
- simpl in |- *; rewrite Rinv_1; rewrite Rmult_1_r; reflexivity.
+ unfold Rdiv; ring.
+ simpl; ring.
+ simpl; rewrite Rinv_1; rewrite Rmult_1_r; reflexivity.
apply lt_O_Sn.
- unfold Rdiv in |- *.
+ unfold Rdiv.
rewrite <- Rmult_assoc.
- symmetry in |- *; apply Rinv_r_simpl_m.
+ symmetry ; apply Rinv_r_simpl_m.
assumption.
apply Rmult_lt_0_compat.
apply H8.
apply Rabs_pos_lt; assumption.
apply SFL_continuity; assumption.
- intro; unfold fn in |- *.
+ intro; unfold fn.
replace (fun x:R => x ^ n / INR (fact (S n))) with
(pow_fct n / fct_cte (INR (fact (S n))))%F; [ idtac | reflexivity ].
apply continuity_div.
apply derivable_continuous; apply (derivable_pow n).
apply derivable_continuous; apply derivable_const.
- intro; unfold fct_cte in |- *; apply INR_fact_neq_0.
+ intro; unfold fct_cte; apply INR_fact_neq_0.
apply (CVN_R_CVS _ X).
assert (H0 := Alembert_exp).
- unfold CVN_R in |- *.
- intro; unfold CVN_r in |- *.
+ unfold CVN_R.
+ intro; unfold CVN_r.
exists (fun N:nat => r ^ N / INR (fact (S N))).
cut
{ l:R |
@@ -865,10 +865,10 @@ Proof.
exists x; intros.
split.
apply p.
- unfold Boule in |- *; intros.
+ unfold Boule; intros.
rewrite Rminus_0_r in H1.
- unfold fn in |- *.
- unfold Rdiv in |- *; rewrite Rabs_mult.
+ unfold fn.
+ unfold Rdiv; rewrite Rabs_mult.
cut (0 < INR (fact (S n))).
intro.
rewrite (Rabs_right (/ INR (fact (S n)))).
@@ -883,14 +883,14 @@ Proof.
cut ((r:R) <> 0).
intro; apply Alembert_C2.
intro; apply Rabs_no_R0.
- unfold Rdiv in |- *; apply prod_neq_R0.
+ unfold Rdiv; apply prod_neq_R0.
apply pow_nonzero; assumption.
apply Rinv_neq_0_compat; apply INR_fact_neq_0.
unfold Un_cv in H0.
- unfold Un_cv in |- *; intros.
+ unfold Un_cv; intros.
cut (0 < eps0 / r);
[ intro
- | unfold Rdiv in |- *; apply Rmult_lt_0_compat;
+ | unfold Rdiv; apply Rmult_lt_0_compat;
[ assumption | apply Rinv_0_lt_compat; apply (cond_pos r) ] ].
elim (H0 _ H3); intros N0 H4.
exists N0; intros.
@@ -899,7 +899,7 @@ Proof.
assert (H6 := H4 _ hyp_sn).
unfold R_dist in H6; rewrite Rminus_0_r in H6.
rewrite Rabs_Rabsolu in H6.
- unfold R_dist in |- *; rewrite Rminus_0_r.
+ unfold R_dist; rewrite Rminus_0_r.
rewrite Rabs_Rabsolu.
replace
(Rabs (r ^ S n / INR (fact (S (S n)))) / Rabs (r ^ n / INR (fact (S n))))
@@ -913,7 +913,7 @@ Proof.
apply H6.
assumption.
apply Rle_ge; left; apply (cond_pos r).
- unfold Rdiv in |- *.
+ unfold Rdiv.
repeat rewrite Rabs_mult.
repeat rewrite Rabs_Rinv.
rewrite Rinv_mult_distr.
@@ -926,7 +926,7 @@ Proof.
rewrite (Rmult_comm r).
rewrite <- Rmult_assoc; rewrite <- (Rmult_comm (INR (fact (S n)))).
apply Rmult_eq_compat_l.
- simpl in |- *.
+ simpl.
rewrite Rmult_assoc; rewrite <- Rinv_r_sym.
ring.
apply pow_nonzero; assumption.
@@ -939,10 +939,10 @@ Proof.
apply Rinv_neq_0_compat; apply Rabs_no_R0; apply INR_fact_neq_0.
apply INR_fact_neq_0.
apply INR_fact_neq_0.
- unfold ge in |- *; apply le_trans with n.
+ unfold ge; apply le_trans with n.
apply H5.
apply le_n_Sn.
- assert (H1 := cond_pos r); red in |- *; intro; rewrite H2 in H1;
+ assert (H1 := cond_pos r); red; intro; rewrite H2 in H1;
elim (Rlt_irrefl _ H1).
Qed.
@@ -950,10 +950,10 @@ Qed.
Lemma derivable_pt_lim_exp : forall x:R, derivable_pt_lim exp x (exp x).
Proof.
intro; assert (H0 := derivable_pt_lim_exp_0).
- unfold derivable_pt_lim in H0; unfold derivable_pt_lim in |- *; intros.
+ unfold derivable_pt_lim in H0; unfold derivable_pt_lim; intros.
cut (0 < eps / exp x);
[ intro
- | unfold Rdiv in |- *; apply Rmult_lt_0_compat;
+ | unfold Rdiv; apply Rmult_lt_0_compat;
[ apply H | apply Rinv_0_lt_compat; apply exp_pos ] ].
elim (H0 _ H1); intros del H2.
exists del; intros.
@@ -967,11 +967,11 @@ Proof.
rewrite <- Rmult_assoc; rewrite <- Rinv_l_sym.
rewrite Rmult_1_l; rewrite <- (Rmult_comm eps).
apply H5.
- assert (H6 := exp_pos x); red in |- *; intro; rewrite H7 in H6;
+ assert (H6 := exp_pos x); red; intro; rewrite H7 in H6;
elim (Rlt_irrefl _ H6).
apply Rle_ge; left; apply exp_pos.
rewrite Rmult_minus_distr_l.
- rewrite Rmult_1_r; unfold Rdiv in |- *; rewrite <- Rmult_assoc;
+ rewrite Rmult_1_r; unfold Rdiv; rewrite <- Rmult_assoc;
rewrite Rmult_minus_distr_l.
rewrite Rmult_1_r; rewrite exp_plus; reflexivity.
Qed.
diff --git a/theories/Reals/LegacyRfield.v b/theories/Reals/LegacyRfield.v
index 49a94021a..8a62eb866 100644
--- a/theories/Reals/LegacyRfield.v
+++ b/theories/Reals/LegacyRfield.v
@@ -17,9 +17,9 @@ Open Scope R_scope.
Lemma RLegacyTheory : Ring_Theory Rplus Rmult 1 0 Ropp (fun x y:R => false).
split.
exact Rplus_comm.
- symmetry in |- *; apply Rplus_assoc.
+ symmetry ; apply Rplus_assoc.
exact Rmult_comm.
- symmetry in |- *; apply Rmult_assoc.
+ symmetry ; apply Rmult_assoc.
intro; apply Rplus_0_l.
intro; apply Rmult_1_l.
exact Rplus_opp_r.
diff --git a/theories/Reals/MVT.v b/theories/Reals/MVT.v
index b872e3fe3..59dcf1344 100644
--- a/theories/Reals/MVT.v
+++ b/theories/Reals/MVT.v
@@ -55,13 +55,13 @@ Proof.
split.
apply Rmult_lt_reg_l with 2.
prove_sup0.
- unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
+ unfold Rdiv; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
rewrite <- Rinv_r_sym.
rewrite Rmult_1_l; rewrite double; apply Rplus_lt_compat_l; apply H.
discrR.
apply Rmult_lt_reg_l with 2.
prove_sup0.
- unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
+ unfold Rdiv; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
rewrite <- Rinv_r_sym.
rewrite Rmult_1_l; rewrite Rplus_comm; rewrite double;
apply Rplus_lt_compat_l; apply H.
@@ -103,7 +103,7 @@ Proof.
inversion H13.
apply H14.
rewrite H8 in H10; rewrite <- H14 in H10; elim H10; reflexivity.
- intros; unfold h in |- *;
+ intros; unfold h;
replace
(derive_pt (fun y:R => (g b - g a) * f y - (f b - f a) * g y) c (X c P))
with
@@ -115,11 +115,11 @@ Proof.
rewrite derive_pt_minus; do 2 rewrite derive_pt_mult;
do 2 rewrite derive_pt_const; do 2 rewrite Rmult_0_l;
do 2 rewrite Rplus_0_l; reflexivity.
- unfold h in |- *; ring.
- intros; unfold h in |- *;
+ unfold h; ring.
+ intros; unfold h;
change
(continuity_pt ((fct_cte (g b - g a) * f)%F - (fct_cte (f b - f a) * g)%F)
- c) in |- *.
+ c).
apply continuity_pt_minus; apply continuity_pt_mult.
apply derivable_continuous_pt; apply derivable_const.
apply H0; apply H3.
@@ -128,7 +128,7 @@ Proof.
intros;
change
(derivable_pt ((fct_cte (g b - g a) * f)%F - (fct_cte (f b - f a) * g)%F)
- c) in |- *.
+ c).
apply derivable_pt_minus; apply derivable_pt_mult.
apply derivable_pt_const.
apply (pr1 _ H3).
@@ -178,7 +178,7 @@ Proof.
cut (derive_pt id x (X2 x x0) = 1).
cut (derive_pt f x (X0 x x0) = f' x).
intros; rewrite H4 in H3; rewrite H5 in H3; unfold id in H3;
- rewrite Rmult_1_r in H3; rewrite Rmult_comm; symmetry in |- *;
+ rewrite Rmult_1_r in H3; rewrite Rmult_comm; symmetry ;
assumption.
apply derive_pt_eq_0; apply H0; elim x0; intros; split; left; assumption.
apply derive_pt_eq_0; apply derivable_pt_lim_id.
@@ -188,7 +188,7 @@ Proof.
intros; apply derivable_pt_id.
intros; apply derivable_continuous_pt; apply X; assumption.
intros; elim H1; intros; apply X; split; left; assumption.
- intros; unfold derivable_pt in |- *; exists (f' c); apply H0;
+ intros; unfold derivable_pt; exists (f' c); apply H0;
apply H1.
Qed.
@@ -221,7 +221,7 @@ Proof.
unfold id in H6; unfold Rminus in H6; rewrite Rplus_opp_r in H6;
rewrite Rmult_0_l in H6; apply Rmult_eq_reg_l with (b - a);
[ rewrite Rmult_0_r; apply H6
- | apply Rminus_eq_contra; red in |- *; intro; rewrite H7 in H0;
+ | apply Rminus_eq_contra; red; intro; rewrite H7 in H0;
elim (Rlt_irrefl _ H0) ].
Qed.
@@ -231,7 +231,7 @@ Lemma nonneg_derivative_1 :
(forall x:R, 0 <= derive_pt f x (pr x)) -> increasing f.
Proof.
intros.
- unfold increasing in |- *.
+ unfold increasing.
intros.
case (total_order_T x y); intro.
elim s; intro.
@@ -268,12 +268,12 @@ Proof.
intro; decompose [and] H8; intros; generalize (H7 (delta / 2) H9 H12);
cut ((f (x + delta / 2) - f x) / (delta / 2) <= 0).
intro; cut (0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)).
- intro; unfold Rabs in |- *;
+ intro; unfold Rabs;
case (Rcase_abs ((f (x + delta / 2) - f x) / (delta / 2) - l)).
intros;
generalize
(Rplus_lt_compat_r (- l) (- ((f (x + delta / 2) - f x) / (delta / 2) - l))
- (l / 2) H14); unfold Rminus in |- *.
+ (l / 2) H14); unfold Rminus.
replace (l / 2 + - l) with (- (l / 2)).
replace (- ((f (x + delta / 2) + - f x) / (delta / 2) + - l) + - l) with
(- ((f (x + delta / 2) + - f x) / (delta / 2))).
@@ -290,7 +290,7 @@ Proof.
(Rlt_irrefl 0
(Rlt_le_trans 0 ((f (x + delta / 2) - f x) / (delta / 2)) 0 H17 H10)).
ring.
- pattern l at 3 in |- *; rewrite double_var.
+ pattern l at 3; rewrite double_var.
ring.
intros.
generalize
@@ -303,22 +303,22 @@ Proof.
H15)).
replace (- ((f (x + delta / 2) - f x) / (delta / 2) - l)) with
((f x - f (x + delta / 2)) / (delta / 2) + l).
- unfold Rminus in |- *.
+ unfold Rminus.
apply Rplus_le_lt_0_compat.
- unfold Rdiv in |- *; apply Rmult_le_pos.
+ unfold Rdiv; apply Rmult_le_pos.
cut (x <= x + delta * / 2).
intro; generalize (H0 x (x + delta * / 2) H13); intro;
generalize
(Rplus_le_compat_l (- f (x + delta / 2)) (f (x + delta / 2)) (f x) H14);
rewrite Rplus_opp_l; rewrite Rplus_comm; intro; assumption.
- pattern x at 1 in |- *; rewrite <- (Rplus_0_r x); apply Rplus_le_compat_l;
+ pattern x at 1; rewrite <- (Rplus_0_r x); apply Rplus_le_compat_l;
left; assumption.
left; apply Rinv_0_lt_compat; assumption.
assumption.
rewrite Ropp_minus_distr.
- unfold Rminus in |- *.
+ unfold Rminus.
rewrite (Rplus_comm l).
- unfold Rdiv in |- *.
+ unfold Rdiv.
rewrite <- Ropp_mult_distr_l_reverse.
rewrite Ropp_plus_distr.
rewrite Ropp_involutive.
@@ -329,38 +329,38 @@ Proof.
rewrite <- Ropp_0.
apply Ropp_ge_le_contravar.
apply Rle_ge.
- unfold Rdiv in |- *; apply Rmult_le_pos.
+ unfold Rdiv; apply Rmult_le_pos.
cut (x <= x + delta * / 2).
intro; generalize (H0 x (x + delta * / 2) H10); intro.
generalize
(Rplus_le_compat_l (- f (x + delta / 2)) (f (x + delta / 2)) (f x) H13);
rewrite Rplus_opp_l; rewrite Rplus_comm; intro; assumption.
- pattern x at 1 in |- *; rewrite <- (Rplus_0_r x); apply Rplus_le_compat_l;
+ pattern x at 1; rewrite <- (Rplus_0_r x); apply Rplus_le_compat_l;
left; assumption.
left; apply Rinv_0_lt_compat; assumption.
- unfold Rdiv in |- *; rewrite <- Ropp_mult_distr_l_reverse.
+ unfold Rdiv; rewrite <- Ropp_mult_distr_l_reverse.
rewrite Ropp_minus_distr.
reflexivity.
split.
- unfold Rdiv in |- *; apply prod_neq_R0.
- generalize (cond_pos delta); intro; red in |- *; intro H9; rewrite H9 in H8;
+ unfold Rdiv; apply prod_neq_R0.
+ generalize (cond_pos delta); intro; red; intro H9; rewrite H9 in H8;
elim (Rlt_irrefl 0 H8).
apply Rinv_neq_0_compat; discrR.
split.
- unfold Rdiv in |- *; apply Rmult_lt_0_compat;
+ unfold Rdiv; apply Rmult_lt_0_compat;
[ apply (cond_pos delta) | apply Rinv_0_lt_compat; prove_sup0 ].
rewrite Rabs_right.
- unfold Rdiv in |- *; apply Rmult_lt_reg_l with 2.
+ unfold Rdiv; apply Rmult_lt_reg_l with 2.
prove_sup0.
rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc; rewrite <- Rinv_r_sym.
- rewrite Rmult_1_l; rewrite double; pattern (pos delta) at 1 in |- *;
+ rewrite Rmult_1_l; rewrite double; pattern (pos delta) at 1;
rewrite <- Rplus_0_r.
apply Rplus_lt_compat_l; apply (cond_pos delta).
discrR.
- apply Rle_ge; unfold Rdiv in |- *; left; apply Rmult_lt_0_compat.
+ apply Rle_ge; unfold Rdiv; left; apply Rmult_lt_0_compat.
apply (cond_pos delta).
apply Rinv_0_lt_compat; prove_sup0.
- unfold Rdiv in |- *; apply Rmult_lt_0_compat;
+ unfold Rdiv; apply Rmult_lt_0_compat;
[ apply H4 | apply Rinv_0_lt_compat; prove_sup0 ].
Qed.
@@ -368,7 +368,7 @@ Qed.
Lemma increasing_decreasing_opp :
forall f:R -> R, increasing f -> decreasing (- f)%F.
Proof.
- unfold increasing, decreasing, opp_fct in |- *; intros; generalize (H x y H0);
+ unfold increasing, decreasing, opp_fct; intros; generalize (H x y H0);
intro; apply Ropp_ge_le_contravar; apply Rle_ge; assumption.
Qed.
@@ -381,8 +381,8 @@ Proof.
cut (forall h:R, - - f h = f h).
intro.
generalize (increasing_decreasing_opp (- f)%F).
- unfold decreasing in |- *.
- unfold opp_fct in |- *.
+ unfold decreasing.
+ unfold opp_fct.
intros.
rewrite <- (H0 x); rewrite <- (H0 y).
apply H1.
@@ -410,7 +410,7 @@ Lemma positive_derivative :
(forall x:R, 0 < derive_pt f x (pr x)) -> strict_increasing f.
Proof.
intros.
- unfold strict_increasing in |- *.
+ unfold strict_increasing.
intros.
apply Rplus_lt_reg_r with (- f x).
rewrite Rplus_opp_l; rewrite Rplus_comm.
@@ -429,7 +429,7 @@ Qed.
Lemma strictincreasing_strictdecreasing_opp :
forall f:R -> R, strict_increasing f -> strict_decreasing (- f)%F.
Proof.
- unfold strict_increasing, strict_decreasing, opp_fct in |- *; intros;
+ unfold strict_increasing, strict_decreasing, opp_fct; intros;
generalize (H x y H0); intro; apply Ropp_lt_gt_contravar;
assumption.
Qed.
@@ -443,7 +443,7 @@ Proof.
cut (forall h:R, - - f h = f h).
intros.
generalize (strictincreasing_strictdecreasing_opp (- f)%F).
- unfold strict_decreasing, opp_fct in |- *.
+ unfold strict_decreasing, opp_fct.
intros.
rewrite <- (H0 x).
rewrite <- (H0 y).
@@ -470,8 +470,8 @@ Proof.
intros.
unfold constant in H.
apply derive_pt_eq_0.
- intros; exists (mkposreal 1 Rlt_0_1); simpl in |- *; intros.
- rewrite (H x (x + h)); unfold Rminus in |- *; unfold Rdiv in |- *;
+ intros; exists (mkposreal 1 Rlt_0_1); simpl; intros.
+ rewrite (H x (x + h)); unfold Rminus; unfold Rdiv;
rewrite Rplus_opp_r; rewrite Rmult_0_l; rewrite Rplus_opp_r;
rewrite Rabs_R0; assumption.
Qed.
@@ -480,13 +480,13 @@ Qed.
Lemma increasing_decreasing :
forall f:R -> R, increasing f -> decreasing f -> constant f.
Proof.
- unfold increasing, decreasing, constant in |- *; intros;
+ unfold increasing, decreasing, constant; intros;
case (Rtotal_order x y); intro.
generalize (Rlt_le x y H1); intro;
apply (Rle_antisym (f x) (f y) (H x y H2) (H0 x y H2)).
elim H1; intro.
rewrite H2; reflexivity.
- generalize (Rlt_le y x H2); intro; symmetry in |- *;
+ generalize (Rlt_le y x H2); intro; symmetry ;
apply (Rle_antisym (f y) (f x) (H y x H3) (H0 y x H3)).
Qed.
@@ -502,7 +502,7 @@ Proof.
assert (H2 := nonneg_derivative_1 f pr H0).
assert (H3 := nonpos_derivative_1 f pr H1).
apply increasing_decreasing; assumption.
- intro; right; symmetry in |- *; apply (H x).
+ intro; right; symmetry ; apply (H x).
intro; right; apply (H x).
Qed.
@@ -601,7 +601,7 @@ Proof.
elim H4; intros.
split; left; assumption.
rewrite b0.
- unfold Rminus in |- *; do 2 rewrite Rplus_opp_r.
+ unfold Rminus; do 2 rewrite Rplus_opp_r.
rewrite Rmult_0_r; right; reflexivity.
elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H r)).
Qed.
@@ -648,7 +648,7 @@ Lemma null_derivative_loc :
(forall (x:R) (P:a < x < b), derive_pt f x (pr x P) = 0) ->
constant_D_eq f (fun x:R => a <= x <= b) (f a).
Proof.
- intros; unfold constant_D_eq in |- *; intros; case (total_order_T a b); intro.
+ intros; unfold constant_D_eq; intros; case (total_order_T a b); intro.
elim s; intro.
assert (H2 : forall y:R, a < y < x -> derivable_pt id y).
intros; apply derivable_pt_id.
@@ -674,7 +674,7 @@ Proof.
assert (H12 : derive_pt id x0 (H2 x0 x1) = 1).
apply derive_pt_eq_0; apply derivable_pt_lim_id.
rewrite H11 in H9; rewrite H12 in H9; rewrite Rmult_0_r in H9;
- rewrite Rmult_1_r in H9; apply Rminus_diag_uniq; symmetry in |- *;
+ rewrite Rmult_1_r in H9; apply Rminus_diag_uniq; symmetry ;
assumption.
rewrite H1; reflexivity.
assert (H2 : x = a).
@@ -691,15 +691,15 @@ Lemma antiderivative_Ucte :
antiderivative f g2 a b ->
exists c : R, (forall x:R, a <= x <= b -> g1 x = g2 x + c).
Proof.
- unfold antiderivative in |- *; intros; elim H; clear H; intros; elim H0;
+ unfold antiderivative; intros; elim H; clear H; intros; elim H0;
clear H0; intros H0 _; exists (g1 a - g2 a); intros;
assert (H3 : forall x:R, a <= x <= b -> derivable_pt g1 x).
- intros; unfold derivable_pt in |- *; exists (f x0); elim (H x0 H3);
- intros; eapply derive_pt_eq_1; symmetry in |- *;
+ intros; unfold derivable_pt; exists (f x0); elim (H x0 H3);
+ intros; eapply derive_pt_eq_1; symmetry ;
apply H4.
assert (H4 : forall x:R, a <= x <= b -> derivable_pt g2 x).
- intros; unfold derivable_pt in |- *; exists (f x0);
- elim (H0 x0 H4); intros; eapply derive_pt_eq_1; symmetry in |- *;
+ intros; unfold derivable_pt; exists (f x0);
+ elim (H0 x0 H4); intros; eapply derive_pt_eq_1; symmetry ;
apply H5.
assert (H5 : forall x:R, a < x < b -> derivable_pt (g1 - g2) x).
intros; elim H5; intros; apply derivable_pt_minus;
@@ -713,7 +713,7 @@ Proof.
assert (H9 : a <= x0 <= b).
split; left; assumption.
apply derivable_pt_lim_minus; [ elim (H _ H9) | elim (H0 _ H9) ]; intros;
- eapply derive_pt_eq_1; symmetry in |- *; apply H10.
+ eapply derive_pt_eq_1; symmetry ; apply H10.
assert (H8 := null_derivative_loc (g1 - g2)%F a b H5 H6 H7);
unfold constant_D_eq in H8; assert (H9 := H8 _ H2);
unfold minus_fct in H9; rewrite <- H9; ring.
diff --git a/theories/Reals/NewtonInt.v b/theories/Reals/NewtonInt.v
index 35192d0c4..bfe18df28 100644
--- a/theories/Reals/NewtonInt.v
+++ b/theories/Reals/NewtonInt.v
@@ -28,8 +28,8 @@ Lemma FTCN_step1 :
forall (f:Differential) (a b:R),
Newton_integrable (fun x:R => derive_pt f x (cond_diff f x)) a b.
Proof.
- intros f a b; unfold Newton_integrable in |- *; exists (d1 f);
- unfold antiderivative in |- *; intros; case (Rle_dec a b);
+ intros f a b; unfold Newton_integrable; exists (d1 f);
+ unfold antiderivative; intros; case (Rle_dec a b);
intro;
[ left; split; [ intros; exists (cond_diff f x); reflexivity | assumption ]
| right; split;
@@ -42,26 +42,26 @@ Lemma FTC_Newton :
NewtonInt (fun x:R => derive_pt f x (cond_diff f x)) a b
(FTCN_step1 f a b) = f b - f a.
Proof.
- intros; unfold NewtonInt in |- *; reflexivity.
+ intros; unfold NewtonInt; reflexivity.
Qed.
(* $\int_a^a f$ exists forall a:R and f:R->R *)
Lemma NewtonInt_P1 : forall (f:R -> R) (a:R), Newton_integrable f a a.
Proof.
- intros f a; unfold Newton_integrable in |- *;
+ intros f a; unfold Newton_integrable;
exists (fct_cte (f a) * id)%F; left;
- unfold antiderivative in |- *; split.
+ unfold antiderivative; split.
intros; assert (H1 : derivable_pt (fct_cte (f a) * id) x).
apply derivable_pt_mult.
apply derivable_pt_const.
apply derivable_pt_id.
exists H1; assert (H2 : x = a).
elim H; intros; apply Rle_antisym; assumption.
- symmetry in |- *; apply derive_pt_eq_0;
+ symmetry ; apply derive_pt_eq_0;
replace (f x) with (0 * id x + fct_cte (f a) x * 1);
[ apply (derivable_pt_lim_mult (fct_cte (f a)) id x);
[ apply derivable_pt_lim_const | apply derivable_pt_lim_id ]
- | unfold id, fct_cte in |- *; rewrite H2; ring ].
+ | unfold id, fct_cte; rewrite H2; ring ].
right; reflexivity.
Defined.
@@ -69,8 +69,8 @@ Defined.
Lemma NewtonInt_P2 :
forall (f:R -> R) (a:R), NewtonInt f a a (NewtonInt_P1 f a) = 0.
Proof.
- intros; unfold NewtonInt in |- *; simpl in |- *;
- unfold mult_fct, fct_cte, id in |- *; ring.
+ intros; unfold NewtonInt; simpl;
+ unfold mult_fct, fct_cte, id; ring.
Qed.
(* If $\int_a^b f$ exists, then $\int_b^a f$ exists too *)
@@ -78,7 +78,7 @@ Lemma NewtonInt_P3 :
forall (f:R -> R) (a b:R) (X:Newton_integrable f a b),
Newton_integrable f b a.
Proof.
- unfold Newton_integrable in |- *; intros; elim X; intros g H;
+ unfold Newton_integrable; intros; elim X; intros g H;
exists g; tauto.
Defined.
@@ -88,7 +88,7 @@ Lemma NewtonInt_P4 :
NewtonInt f a b pr = - NewtonInt f b a (NewtonInt_P3 f a b pr).
Proof.
intros; unfold Newton_integrable in pr; elim pr; intros; elim p; intro.
- unfold NewtonInt in |- *;
+ unfold NewtonInt;
case
(NewtonInt_P3 f a b
(exist
@@ -106,7 +106,7 @@ Proof.
assert (H4 : a <= b <= b).
split; [ assumption | right; reflexivity ].
assert (H5 := H2 _ H3); assert (H6 := H2 _ H4); rewrite H5; rewrite H6; ring.
- unfold NewtonInt in |- *;
+ unfold NewtonInt;
case
(NewtonInt_P3 f a b
(exist
@@ -132,37 +132,37 @@ Lemma NewtonInt_P5 :
Newton_integrable g a b ->
Newton_integrable (fun x:R => l * f x + g x) a b.
Proof.
- unfold Newton_integrable in |- *; intros f g l a b X X0;
+ unfold Newton_integrable; intros f g l a b X X0;
elim X; intros; elim X0; intros;
exists (fun y:R => l * x y + x0 y).
elim p; intro.
elim p0; intro.
- left; unfold antiderivative in |- *; unfold antiderivative in H, H0; elim H;
+ left; unfold antiderivative; unfold antiderivative in H, H0; elim H;
clear H; intros; elim H0; clear H0; intros H0 _.
split.
intros; elim (H _ H2); elim (H0 _ H2); intros.
assert (H5 : derivable_pt (fun y:R => l * x y + x0 y) x1).
reg.
- exists H5; symmetry in |- *; reg; rewrite <- H3; rewrite <- H4; reflexivity.
+ exists H5; symmetry ; reg; rewrite <- H3; rewrite <- H4; reflexivity.
assumption.
unfold antiderivative in H, H0; elim H; elim H0; intros; elim H4; intro.
elim (Rlt_irrefl _ (Rlt_le_trans _ _ _ H5 H2)).
- left; rewrite <- H5; unfold antiderivative in |- *; split.
+ left; rewrite <- H5; unfold antiderivative; split.
intros; elim H6; intros; assert (H9 : x1 = a).
apply Rle_antisym; assumption.
assert (H10 : a <= x1 <= b).
- split; right; [ symmetry in |- *; assumption | rewrite <- H5; assumption ].
+ split; right; [ symmetry ; assumption | rewrite <- H5; assumption ].
assert (H11 : b <= x1 <= a).
- split; right; [ rewrite <- H5; symmetry in |- *; assumption | assumption ].
+ split; right; [ rewrite <- H5; symmetry ; assumption | assumption ].
assert (H12 : derivable_pt x x1).
- unfold derivable_pt in |- *; exists (f x1); elim (H3 _ H10); intros;
- eapply derive_pt_eq_1; symmetry in |- *; apply H12.
+ unfold derivable_pt; exists (f x1); elim (H3 _ H10); intros;
+ eapply derive_pt_eq_1; symmetry ; apply H12.
assert (H13 : derivable_pt x0 x1).
- unfold derivable_pt in |- *; exists (g x1); elim (H1 _ H11); intros;
- eapply derive_pt_eq_1; symmetry in |- *; apply H13.
+ unfold derivable_pt; exists (g x1); elim (H1 _ H11); intros;
+ eapply derive_pt_eq_1; symmetry ; apply H13.
assert (H14 : derivable_pt (fun y:R => l * x y + x0 y) x1).
reg.
- exists H14; symmetry in |- *; reg.
+ exists H14; symmetry ; reg.
assert (H15 : derive_pt x0 x1 H13 = g x1).
elim (H1 _ H11); intros; rewrite H15; apply pr_nu.
assert (H16 : derive_pt x x1 H12 = f x1).
@@ -172,34 +172,34 @@ Proof.
elim p0; intro.
unfold antiderivative in H, H0; elim H; elim H0; intros; elim H4; intro.
elim (Rlt_irrefl _ (Rlt_le_trans _ _ _ H5 H2)).
- left; rewrite H5; unfold antiderivative in |- *; split.
+ left; rewrite H5; unfold antiderivative; split.
intros; elim H6; intros; assert (H9 : x1 = a).
apply Rle_antisym; assumption.
assert (H10 : a <= x1 <= b).
- split; right; [ symmetry in |- *; assumption | rewrite H5; assumption ].
+ split; right; [ symmetry ; assumption | rewrite H5; assumption ].
assert (H11 : b <= x1 <= a).
- split; right; [ rewrite H5; symmetry in |- *; assumption | assumption ].
+ split; right; [ rewrite H5; symmetry ; assumption | assumption ].
assert (H12 : derivable_pt x x1).
- unfold derivable_pt in |- *; exists (f x1); elim (H3 _ H11); intros;
- eapply derive_pt_eq_1; symmetry in |- *; apply H12.
+ unfold derivable_pt; exists (f x1); elim (H3 _ H11); intros;
+ eapply derive_pt_eq_1; symmetry ; apply H12.
assert (H13 : derivable_pt x0 x1).
- unfold derivable_pt in |- *; exists (g x1); elim (H1 _ H10); intros;
- eapply derive_pt_eq_1; symmetry in |- *; apply H13.
+ unfold derivable_pt; exists (g x1); elim (H1 _ H10); intros;
+ eapply derive_pt_eq_1; symmetry ; apply H13.
assert (H14 : derivable_pt (fun y:R => l * x y + x0 y) x1).
reg.
- exists H14; symmetry in |- *; reg.
+ exists H14; symmetry ; reg.
assert (H15 : derive_pt x0 x1 H13 = g x1).
elim (H1 _ H10); intros; rewrite H15; apply pr_nu.
assert (H16 : derive_pt x x1 H12 = f x1).
elim (H3 _ H11); intros; rewrite H16; apply pr_nu.
rewrite H15; rewrite H16; ring.
right; reflexivity.
- right; unfold antiderivative in |- *; unfold antiderivative in H, H0; elim H;
+ right; unfold antiderivative; unfold antiderivative in H, H0; elim H;
clear H; intros; elim H0; clear H0; intros H0 _; split.
intros; elim (H _ H2); elim (H0 _ H2); intros.
assert (H5 : derivable_pt (fun y:R => l * x y + x0 y) x1).
reg.
- exists H5; symmetry in |- *; reg; rewrite <- H3; rewrite <- H4; reflexivity.
+ exists H5; symmetry ; reg; rewrite <- H3; rewrite <- H4; reflexivity.
assumption.
Defined.
@@ -210,12 +210,12 @@ Lemma antiderivative_P1 :
antiderivative g G a b ->
antiderivative (fun x:R => l * f x + g x) (fun x:R => l * F x + G x) a b.
Proof.
- unfold antiderivative in |- *; intros; elim H; elim H0; clear H H0; intros;
+ unfold antiderivative; intros; elim H; elim H0; clear H H0; intros;
split.
intros; elim (H _ H3); elim (H1 _ H3); intros.
assert (H6 : derivable_pt (fun x:R => l * F x + G x) x).
reg.
- exists H6; symmetry in |- *; reg; rewrite <- H4; rewrite <- H5; ring.
+ exists H6; symmetry ; reg; rewrite <- H4; rewrite <- H5; ring.
assumption.
Qed.
@@ -226,7 +226,7 @@ Lemma NewtonInt_P6 :
NewtonInt (fun x:R => l * f x + g x) a b (NewtonInt_P5 f g l a b pr1 pr2) =
l * NewtonInt f a b pr1 + NewtonInt g a b pr2.
Proof.
- intros f g l a b pr1 pr2; unfold NewtonInt in |- *;
+ intros f g l a b pr1 pr2; unfold NewtonInt;
case (NewtonInt_P5 f g l a b pr1 pr2); intros; case pr1;
intros; case pr2; intros; case (total_order_T a b);
intro.
@@ -277,7 +277,7 @@ Lemma antiderivative_P2 :
| right _ => F1 x + (F0 b - F1 b)
end) a c.
Proof.
- unfold antiderivative in |- *; intros; elim H; clear H; intros; elim H0;
+ unfold antiderivative; intros; elim H; clear H; intros; elim H0;
clear H0; intros; split.
2: apply Rle_trans with b; assumption.
intros; elim H3; clear H3; intros; case (total_order_T x b); intro.
@@ -293,25 +293,25 @@ Proof.
| left _ => F0 x
| right _ => F1 x + (F0 b - F1 b)
end) x (f x)).
- unfold derivable_pt_lim in |- *; assert (H7 : derive_pt F0 x x0 = f x).
- symmetry in |- *; assumption.
+ unfold derivable_pt_lim; assert (H7 : derive_pt F0 x x0 = f x).
+ symmetry ; assumption.
assert (H8 := derive_pt_eq_1 F0 x (f x) x0 H7); unfold derivable_pt_lim in H8;
intros; elim (H8 _ H9); intros; set (D := Rmin x1 (b - x)).
assert (H11 : 0 < D).
- unfold D in |- *; unfold Rmin in |- *; case (Rle_dec x1 (b - x)); intro.
+ unfold D; unfold Rmin; case (Rle_dec x1 (b - x)); intro.
apply (cond_pos x1).
apply Rlt_Rminus; assumption.
exists (mkposreal _ H11); intros; case (Rle_dec x b); intro.
case (Rle_dec (x + h) b); intro.
apply H10.
assumption.
- apply Rlt_le_trans with D; [ assumption | unfold D in |- *; apply Rmin_l ].
+ apply Rlt_le_trans with D; [ assumption | unfold D; apply Rmin_l ].
elim n; left; apply Rlt_le_trans with (x + D).
apply Rplus_lt_compat_l; apply Rle_lt_trans with (Rabs h).
apply RRle_abs.
apply H13.
apply Rplus_le_reg_l with (- x); rewrite <- Rplus_assoc; rewrite Rplus_opp_l;
- rewrite Rplus_0_l; rewrite Rplus_comm; unfold D in |- *;
+ rewrite Rplus_0_l; rewrite Rplus_comm; unfold D;
apply Rmin_r.
elim n; left; assumption.
assert
@@ -322,16 +322,16 @@ Proof.
| left _ => F0 x
| right _ => F1 x + (F0 b - F1 b)
end) x).
- unfold derivable_pt in |- *; exists (f x); apply H7.
- exists H8; symmetry in |- *; apply derive_pt_eq_0; apply H7.
+ unfold derivable_pt; exists (f x); apply H7.
+ exists H8; symmetry ; apply derive_pt_eq_0; apply H7.
assert (H5 : a <= x <= b).
split; [ assumption | right; assumption ].
assert (H6 : b <= x <= c).
- split; [ right; symmetry in |- *; assumption | assumption ].
+ split; [ right; symmetry ; assumption | assumption ].
elim (H _ H5); elim (H0 _ H6); intros; assert (H9 : derive_pt F0 x x1 = f x).
- symmetry in |- *; assumption.
+ symmetry ; assumption.
assert (H10 : derive_pt F1 x x0 = f x).
- symmetry in |- *; assumption.
+ symmetry ; assumption.
assert (H11 := derive_pt_eq_1 F0 x (f x) x1 H9);
assert (H12 := derive_pt_eq_1 F1 x (f x) x0 H10);
assert
@@ -342,21 +342,21 @@ Proof.
| left _ => F0 x
| right _ => F1 x + (F0 b - F1 b)
end) x (f x)).
- unfold derivable_pt_lim in |- *; unfold derivable_pt_lim in H11, H12; intros;
+ unfold derivable_pt_lim; unfold derivable_pt_lim in H11, H12; intros;
elim (H11 _ H13); elim (H12 _ H13); intros; set (D := Rmin x2 x3);
assert (H16 : 0 < D).
- unfold D in |- *; unfold Rmin in |- *; case (Rle_dec x2 x3); intro.
+ unfold D; unfold Rmin; case (Rle_dec x2 x3); intro.
apply (cond_pos x2).
apply (cond_pos x3).
exists (mkposreal _ H16); intros; case (Rle_dec x b); intro.
case (Rle_dec (x + h) b); intro.
apply H15.
assumption.
- apply Rlt_le_trans with D; [ assumption | unfold D in |- *; apply Rmin_r ].
+ apply Rlt_le_trans with D; [ assumption | unfold D; apply Rmin_r ].
replace (F1 (x + h) + (F0 b - F1 b) - F0 x) with (F1 (x + h) - F1 x).
apply H14.
assumption.
- apply Rlt_le_trans with D; [ assumption | unfold D in |- *; apply Rmin_l ].
+ apply Rlt_le_trans with D; [ assumption | unfold D; apply Rmin_l ].
rewrite b0; ring.
elim n; right; assumption.
assert
@@ -367,8 +367,8 @@ Proof.
| left _ => F0 x
| right _ => F1 x + (F0 b - F1 b)
end) x).
- unfold derivable_pt in |- *; exists (f x); apply H13.
- exists H14; symmetry in |- *; apply derive_pt_eq_0; apply H13.
+ unfold derivable_pt; exists (f x); apply H13.
+ exists H14; symmetry ; apply derive_pt_eq_0; apply H13.
assert (H5 : b <= x <= c).
split; [ left; assumption | assumption ].
assert (H6 := H0 _ H5); elim H6; clear H6; intros;
@@ -380,12 +380,12 @@ Proof.
| left _ => F0 x
| right _ => F1 x + (F0 b - F1 b)
end) x (f x)).
- unfold derivable_pt_lim in |- *; assert (H7 : derive_pt F1 x x0 = f x).
- symmetry in |- *; assumption.
+ unfold derivable_pt_lim; assert (H7 : derive_pt F1 x x0 = f x).
+ symmetry ; assumption.
assert (H8 := derive_pt_eq_1 F1 x (f x) x0 H7); unfold derivable_pt_lim in H8;
intros; elim (H8 _ H9); intros; set (D := Rmin x1 (x - b));
assert (H11 : 0 < D).
- unfold D in |- *; unfold Rmin in |- *; case (Rle_dec x1 (x - b)); intro.
+ unfold D; unfold Rmin; case (Rle_dec x1 (x - b)); intro.
apply (cond_pos x1).
apply Rlt_Rminus; assumption.
exists (mkposreal _ H11); intros; case (Rle_dec x b); intro.
@@ -399,13 +399,13 @@ Proof.
rewrite <- Rabs_Ropp; apply RRle_abs.
apply Rlt_le_trans with D.
apply H13.
- unfold D in |- *; apply Rmin_r.
+ unfold D; apply Rmin_r.
replace (F1 (x + h) + (F0 b - F1 b) - (F1 x + (F0 b - F1 b))) with
(F1 (x + h) - F1 x); [ idtac | ring ]; apply H10.
assumption.
apply Rlt_le_trans with D.
assumption.
- unfold D in |- *; apply Rmin_l.
+ unfold D; apply Rmin_l.
assert
(H8 :
derivable_pt
@@ -414,8 +414,8 @@ Proof.
| left _ => F0 x
| right _ => F1 x + (F0 b - F1 b)
end) x).
- unfold derivable_pt in |- *; exists (f x); apply H7.
- exists H8; symmetry in |- *; apply derive_pt_eq_0; apply H7.
+ unfold derivable_pt; exists (f x); apply H7.
+ exists H8; symmetry ; apply derive_pt_eq_0; apply H7.
Qed.
Lemma antiderivative_P3 :
@@ -427,15 +427,15 @@ Proof.
intros; unfold antiderivative in H, H0; elim H; clear H; elim H0; clear H0;
intros; case (total_order_T a c); intro.
elim s; intro.
- right; unfold antiderivative in |- *; split.
+ right; unfold antiderivative; split.
intros; apply H1; elim H3; intros; split;
[ assumption | apply Rle_trans with c; assumption ].
left; assumption.
- right; unfold antiderivative in |- *; split.
+ right; unfold antiderivative; split.
intros; apply H1; elim H3; intros; split;
[ assumption | apply Rle_trans with c; assumption ].
right; assumption.
- left; unfold antiderivative in |- *; split.
+ left; unfold antiderivative; split.
intros; apply H; elim H3; intros; split;
[ assumption | apply Rle_trans with a; assumption ].
left; assumption.
@@ -450,15 +450,15 @@ Proof.
intros; unfold antiderivative in H, H0; elim H; clear H; elim H0; clear H0;
intros; case (total_order_T c b); intro.
elim s; intro.
- right; unfold antiderivative in |- *; split.
+ right; unfold antiderivative; split.
intros; apply H1; elim H3; intros; split;
[ apply Rle_trans with c; assumption | assumption ].
left; assumption.
- right; unfold antiderivative in |- *; split.
+ right; unfold antiderivative; split.
intros; apply H1; elim H3; intros; split;
[ apply Rle_trans with c; assumption | assumption ].
right; assumption.
- left; unfold antiderivative in |- *; split.
+ left; unfold antiderivative; split.
intros; apply H; elim H3; intros; split;
[ apply Rle_trans with b; assumption | assumption ].
left; assumption.
@@ -471,7 +471,7 @@ Lemma NewtonInt_P7 :
Newton_integrable f a b ->
Newton_integrable f b c -> Newton_integrable f a c.
Proof.
- unfold Newton_integrable in |- *; intros f a b c Hab Hbc X X0; elim X;
+ unfold Newton_integrable; intros f a b c Hab Hbc X X0; elim X;
clear X; intros F0 H0; elim X0; clear X0; intros F1 H1;
set
(g :=
@@ -479,7 +479,7 @@ Proof.
match Rle_dec x b with
| left _ => F0 x
| right _ => F1 x + (F0 b - F1 b)
- end); exists g; left; unfold g in |- *;
+ end); exists g; left; unfold g;
apply antiderivative_P2.
elim H0; intro.
assumption.
@@ -504,7 +504,7 @@ Proof.
case (total_order_T b c); intro.
elim s0; intro.
(* a<b & b<c *)
- unfold Newton_integrable in |- *;
+ unfold Newton_integrable;
exists
(fun x:R =>
match Rle_dec x b with
@@ -523,7 +523,7 @@ Proof.
(* a<b & b>c *)
case (total_order_T a c); intro.
elim s0; intro.
- unfold Newton_integrable in |- *; exists F0.
+ unfold Newton_integrable; exists F0.
left.
elim H1; intro.
unfold antiderivative in H; elim H; clear H; intros _ H.
@@ -537,7 +537,7 @@ Proof.
unfold antiderivative in H2; elim H2; clear H2; intros _ H2.
elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H2 a0)).
rewrite b0; apply NewtonInt_P1.
- unfold Newton_integrable in |- *; exists F1.
+ unfold Newton_integrable; exists F1.
right.
elim H1; intro.
unfold antiderivative in H; elim H; clear H; intros _ H.
@@ -557,7 +557,7 @@ Proof.
(* a>b & b<c *)
case (total_order_T a c); intro.
elim s0; intro.
- unfold Newton_integrable in |- *; exists F1.
+ unfold Newton_integrable; exists F1.
left.
elim H1; intro.
(*****************)
@@ -572,7 +572,7 @@ Proof.
unfold antiderivative in H; elim H; clear H; intros _ H.
elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H a0)).
rewrite b0; apply NewtonInt_P1.
- unfold Newton_integrable in |- *; exists F0.
+ unfold Newton_integrable; exists F0.
right.
elim H0; intro.
unfold antiderivative in H; elim H; clear H; intros _ H.
@@ -601,7 +601,7 @@ Lemma NewtonInt_P9 :
NewtonInt f a c (NewtonInt_P8 f a b c pr1 pr2) =
NewtonInt f a b pr1 + NewtonInt f b c pr2.
Proof.
- intros; unfold NewtonInt in |- *.
+ intros; unfold NewtonInt.
case (NewtonInt_P8 f a b c pr1 pr2); intros.
case pr1; intros.
case pr2; intros.
@@ -641,7 +641,7 @@ Proof.
elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H a0)).
(* a<b & b=c *)
rewrite <- b0.
- unfold Rminus in |- *; rewrite Rplus_opp_r; rewrite Rplus_0_r.
+ unfold Rminus; rewrite Rplus_opp_r; rewrite Rplus_0_r.
rewrite <- b0 in o.
elim o0; intro.
elim o; intro.
@@ -759,7 +759,7 @@ Proof.
elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H0 a0)).
(* a>b & b=c *)
rewrite <- b0.
- unfold Rminus in |- *; rewrite Rplus_opp_r; rewrite Rplus_0_r.
+ unfold Rminus; rewrite Rplus_opp_r; rewrite Rplus_0_r.
rewrite <- b0 in o.
elim o0; intro.
unfold antiderivative in H; elim H; clear H; intros _ H.
diff --git a/theories/Reals/PSeries_reg.v b/theories/Reals/PSeries_reg.v
index 38de00030..d426f06b5 100644
--- a/theories/Reals/PSeries_reg.v
+++ b/theories/Reals/PSeries_reg.v
@@ -44,7 +44,7 @@ Lemma CVN_CVU :
(cv:forall x:R, {l:R | Un_cv (fun N:nat => SP fn N x) l })
(r:posreal), CVN_r fn r -> CVU (fun n:nat => SP fn n) (SFL fn cv) 0 r.
Proof.
- intros; unfold CVU in |- *; intros.
+ intros; unfold CVU; intros.
unfold CVN_r in X.
elim X; intros An X0.
elim X0; intros s H0.
@@ -58,7 +58,7 @@ Proof.
rewrite Ropp_minus_distr';
rewrite (Rabs_right (s - sum_f_R0 (fun k:nat => Rabs (An k)) n)).
eapply sum_maj1.
- unfold SFL in |- *; case (cv y); intro.
+ unfold SFL; case (cv y); intro.
trivial.
apply H1.
intro; elim H0; intros.
@@ -69,7 +69,7 @@ Proof.
apply H8; apply H6.
apply Rle_ge;
apply Rplus_le_reg_l with (sum_f_R0 (fun k:nat => Rabs (An k)) n).
- rewrite Rplus_0_r; unfold Rminus in |- *; rewrite (Rplus_comm s);
+ rewrite Rplus_0_r; unfold Rminus; rewrite (Rplus_comm s);
rewrite <- Rplus_assoc; rewrite Rplus_opp_r; rewrite Rplus_0_l;
apply sum_incr.
apply H1.
@@ -77,10 +77,10 @@ Proof.
unfold R_dist in H4; unfold Rminus in H4; rewrite Ropp_0 in H4.
assert (H7 := H4 n H5).
rewrite Rplus_0_r in H7; apply H7.
- unfold Un_cv in H1; unfold Un_cv in |- *; intros.
+ unfold Un_cv in H1; unfold Un_cv; intros.
elim (H1 _ H3); intros.
exists x; intros.
- unfold R_dist in |- *; unfold R_dist in H4.
+ unfold R_dist; unfold R_dist in H4.
rewrite Rminus_0_r; apply H4; assumption.
Qed.
@@ -91,13 +91,13 @@ Lemma CVU_continuity :
(forall (n:nat) (y:R), Boule x r y -> continuity_pt (fn n) y) ->
forall y:R, Boule x r y -> continuity_pt f y.
Proof.
- intros; unfold continuity_pt in |- *; unfold continue_in in |- *;
- unfold limit1_in in |- *; unfold limit_in in |- *;
- simpl in |- *; unfold R_dist in |- *; intros.
+ intros; unfold continuity_pt; unfold continue_in;
+ unfold limit1_in; unfold limit_in;
+ simpl; unfold R_dist; intros.
unfold CVU in H.
cut (0 < eps / 3);
[ intro
- | unfold Rdiv in |- *; apply Rmult_lt_0_compat;
+ | unfold Rdiv; apply Rmult_lt_0_compat;
[ assumption | apply Rinv_0_lt_compat; prove_sup0 ] ].
elim (H _ H3); intros N0 H4.
assert (H5 := H0 N0 y H1).
@@ -110,7 +110,7 @@ Proof.
set (del := Rmin del1 del2).
exists del; intros.
split.
- unfold del in |- *; unfold Rmin in |- *; case (Rle_dec del1 del2); intro.
+ unfold del; unfold Rmin; case (Rle_dec del1 del2); intro.
apply (cond_pos del1).
elim H8; intros; assumption.
intros;
@@ -130,27 +130,27 @@ Proof.
elim H9; intros.
apply Rlt_le_trans with del.
assumption.
- unfold del in |- *; apply Rmin_l.
+ unfold del; apply Rmin_l.
elim H8; intros.
apply H11.
split.
elim H9; intros; assumption.
elim H9; intros; apply Rlt_le_trans with del.
assumption.
- unfold del in |- *; apply Rmin_r.
+ unfold del; apply Rmin_r.
rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr'; apply H4.
apply le_n.
assumption.
apply Rmult_eq_reg_l with 3.
- do 2 rewrite Rmult_plus_distr_l; unfold Rdiv in |- *; rewrite <- Rmult_assoc;
+ do 2 rewrite Rmult_plus_distr_l; unfold Rdiv; rewrite <- Rmult_assoc;
rewrite Rinv_r_simpl_m.
ring.
discrR.
discrR.
cut (0 < r - Rabs (x - y)).
intro; exists (mkposreal _ H6).
- simpl in |- *; intros.
- unfold Boule in |- *; replace (y + h - x) with (h + (y - x));
+ simpl; intros.
+ unfold Boule; replace (y + h - x) with (h + (y - x));
[ idtac | ring ]; apply Rle_lt_trans with (Rabs h + Rabs (y - x)).
apply Rabs_triang.
apply Rplus_lt_reg_r with (- Rabs (x - y)).
@@ -173,8 +173,8 @@ Lemma continuity_pt_finite_SF :
continuity_pt (fun y:R => sum_f_R0 (fun k:nat => fn k y) N) x.
Proof.
intros; induction N as [| N HrecN].
- simpl in |- *; apply (H 0%nat); apply le_n.
- simpl in |- *;
+ simpl; apply (H 0%nat); apply le_n.
+ simpl;
replace (fun y:R => sum_f_R0 (fun k:nat => fn k y) N + fn (S N) y) with
((fun y:R => sum_f_R0 (fun k:nat => fn k y) N) + (fun y:R => fn (S N) y))%F;
[ idtac | reflexivity ].
@@ -197,7 +197,7 @@ Proof.
intros; eapply CVU_continuity.
apply CVN_CVU.
apply X.
- intros; unfold SP in |- *; apply continuity_pt_finite_SF.
+ intros; unfold SP; apply continuity_pt_finite_SF.
intros; apply H.
apply H1.
apply H0.
@@ -208,7 +208,7 @@ Lemma SFL_continuity :
(cv:forall x:R, { l:R | Un_cv (fun N:nat => SP fn N x) l }),
CVN_R fn -> (forall n:nat, continuity (fn n)) -> continuity (SFL fn cv).
Proof.
- intros; unfold continuity in |- *; intro.
+ intros; unfold continuity; intro.
cut (0 < Rabs x + 1);
[ intro | apply Rplus_le_lt_0_compat; [ apply Rabs_pos | apply Rlt_0_1 ] ].
cut (Boule 0 (mkposreal _ H0) x).
@@ -216,8 +216,8 @@ Proof.
apply X.
intros; apply (H n y).
apply H1.
- unfold Boule in |- *; simpl in |- *; rewrite Rminus_0_r;
- pattern (Rabs x) at 1 in |- *; rewrite <- Rplus_0_r;
+ unfold Boule; simpl; rewrite Rminus_0_r;
+ pattern (Rabs x) at 1; rewrite <- Rplus_0_r;
apply Rplus_lt_compat_l; apply Rlt_0_1.
Qed.
@@ -227,10 +227,10 @@ Lemma CVN_R_CVS :
CVN_R fn -> forall x:R, { l:R | Un_cv (fun N:nat => SP fn N x) l }.
Proof.
intros; apply R_complete.
- unfold SP in |- *; set (An := fun N:nat => fn N x).
- change (Cauchy_crit_series An) in |- *.
+ unfold SP; set (An := fun N:nat => fn N x).
+ change (Cauchy_crit_series An).
apply cauchy_abs.
- unfold Cauchy_crit_series in |- *; apply CV_Cauchy.
+ unfold Cauchy_crit_series; apply CV_Cauchy.
unfold CVN_R in X; cut (0 < Rabs x + 1).
intro; assert (H0 := X (mkposreal _ H)).
unfold CVN_r in H0; elim H0; intros Bn H1.
@@ -239,13 +239,13 @@ Proof.
apply Rseries_CV_comp with Bn.
intro; split.
apply Rabs_pos.
- unfold An in |- *; apply H4; unfold Boule in |- *; simpl in |- *;
+ unfold An; apply H4; unfold Boule; simpl;
rewrite Rminus_0_r.
- pattern (Rabs x) at 1 in |- *; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l;
+ pattern (Rabs x) at 1; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l;
apply Rlt_0_1.
exists l.
cut (forall n:nat, 0 <= Bn n).
- intro; unfold Un_cv in H3; unfold Un_cv in |- *; intros.
+ intro; unfold Un_cv in H3; unfold Un_cv; intros.
elim (H3 _ H6); intros.
exists x0; intros.
replace (sum_f_R0 Bn n) with (sum_f_R0 (fun k:nat => Rabs (Bn k)) n).
@@ -253,8 +253,8 @@ Proof.
apply sum_eq; intros; apply Rabs_right; apply Rle_ge; apply H5.
intro; apply Rle_trans with (Rabs (An n)).
apply Rabs_pos.
- unfold An in |- *; apply H4; unfold Boule in |- *; simpl in |- *;
- rewrite Rminus_0_r; pattern (Rabs x) at 1 in |- *;
+ unfold An; apply H4; unfold Boule; simpl;
+ rewrite Rminus_0_r; pattern (Rabs x) at 1;
rewrite <- Rplus_0_r; apply Rplus_lt_compat_l; apply Rlt_0_1.
apply Rplus_le_lt_0_compat; [ apply Rabs_pos | apply Rlt_0_1 ].
Qed.
diff --git a/theories/Reals/PartSum.v b/theories/Reals/PartSum.v
index 3d9314b7d..801bfa399 100644
--- a/theories/Reals/PartSum.v
+++ b/theories/Reals/PartSum.v
@@ -18,8 +18,8 @@ Lemma tech1 :
(forall n:nat, (n <= N)%nat -> 0 < An n) -> 0 < sum_f_R0 An N.
Proof.
intros; induction N as [| N HrecN].
- simpl in |- *; apply H; apply le_n.
- simpl in |- *; apply Rplus_lt_0_compat.
+ simpl; apply H; apply le_n.
+ simpl; apply Rplus_lt_0_compat.
apply HrecN; intros; apply H; apply le_S; assumption.
apply H; apply le_n.
Qed.
@@ -52,7 +52,7 @@ Proof.
repeat rewrite S_INR; ring.
apply le_n_S; apply lt_le_weak; assumption.
apply lt_le_S; assumption.
- rewrite H1; rewrite <- minus_n_n; simpl in |- *.
+ rewrite H1; rewrite <- minus_n_n; simpl.
replace (n + 0)%nat with n; [ reflexivity | ring ].
inversion H.
right; reflexivity.
@@ -66,7 +66,7 @@ Lemma tech3 :
Proof.
intros; cut (1 - k <> 0).
intro; induction N as [| N HrecN].
- simpl in |- *; rewrite Rmult_1_r; unfold Rdiv in |- *; rewrite <- Rinv_r_sym.
+ simpl; rewrite Rmult_1_r; unfold Rdiv; rewrite <- Rinv_r_sym.
reflexivity.
apply H0.
replace (sum_f_R0 (fun i:nat => k ^ i) (S N)) with
@@ -75,15 +75,15 @@ Proof.
replace ((1 - k ^ S N) / (1 - k) + k ^ S N) with
((1 - k ^ S N + (1 - k) * k ^ S N) / (1 - k)).
apply Rmult_eq_reg_l with (1 - k).
- unfold Rdiv in |- *; do 2 rewrite <- (Rmult_comm (/ (1 - k)));
+ unfold Rdiv; do 2 rewrite <- (Rmult_comm (/ (1 - k)));
repeat rewrite <- Rmult_assoc; rewrite <- Rinv_r_sym;
- [ do 2 rewrite Rmult_1_l; simpl in |- *; ring | apply H0 ].
+ [ do 2 rewrite Rmult_1_l; simpl; ring | apply H0 ].
apply H0.
- unfold Rdiv in |- *; rewrite Rmult_plus_distr_r; rewrite (Rmult_comm (1 - k));
+ unfold Rdiv; rewrite Rmult_plus_distr_r; rewrite (Rmult_comm (1 - k));
repeat rewrite Rmult_assoc; rewrite <- Rinv_r_sym.
rewrite Rmult_1_r; reflexivity.
apply H0.
- apply Rminus_eq_contra; red in |- *; intro; elim H; symmetry in |- *;
+ apply Rminus_eq_contra; red; intro; elim H; symmetry ;
assumption.
Qed.
@@ -92,11 +92,11 @@ Lemma tech4 :
0 <= k -> (forall i:nat, An (S i) < k * An i) -> An N <= An 0%nat * k ^ N.
Proof.
intros; induction N as [| N HrecN].
- simpl in |- *; right; ring.
+ simpl; right; ring.
apply Rle_trans with (k * An N).
left; apply (H0 N).
replace (S N) with (N + 1)%nat; [ idtac | ring ].
- rewrite pow_add; simpl in |- *; rewrite Rmult_1_r;
+ rewrite pow_add; simpl; rewrite Rmult_1_r;
replace (An 0%nat * (k ^ N * k)) with (k * (An 0%nat * k ^ N));
[ idtac | ring ]; apply Rmult_le_compat_l.
assumption.
@@ -116,7 +116,7 @@ Lemma tech6 :
sum_f_R0 An N <= An 0%nat * sum_f_R0 (fun i:nat => k ^ i) N.
Proof.
intros; induction N as [| N HrecN].
- simpl in |- *; right; ring.
+ simpl; right; ring.
apply Rle_trans with (An 0%nat * sum_f_R0 (fun i:nat => k ^ i) N + An (S N)).
rewrite tech5; do 2 rewrite <- (Rplus_comm (An (S N)));
apply Rplus_le_compat_l.
@@ -127,13 +127,13 @@ Qed.
Lemma tech7 : forall r1 r2:R, r1 <> 0 -> r2 <> 0 -> r1 <> r2 -> / r1 <> / r2.
Proof.
- intros; red in |- *; intro.
+ intros; red; intro.
assert (H3 := Rmult_eq_compat_l r1 _ _ H2).
rewrite <- Rinv_r_sym in H3; [ idtac | assumption ].
assert (H4 := Rmult_eq_compat_l r2 _ _ H3).
rewrite Rmult_1_r in H4; rewrite <- Rmult_assoc in H4.
rewrite Rinv_r_simpl_m in H4; [ idtac | assumption ].
- elim H1; symmetry in |- *; assumption.
+ elim H1; symmetry ; assumption.
Qed.
Lemma tech11 :
@@ -142,7 +142,7 @@ Lemma tech11 :
sum_f_R0 An N = sum_f_R0 Bn N - sum_f_R0 Cn N.
Proof.
intros; induction N as [| N HrecN].
- simpl in |- *; apply H.
+ simpl; apply H.
do 3 rewrite tech5; rewrite HrecN; rewrite (H (S N)); ring.
Qed.
@@ -151,7 +151,7 @@ Lemma tech12 :
Un_cv (fun N:nat => sum_f_R0 (fun i:nat => An i * x ^ i) N) l ->
Pser An x l.
Proof.
- intros; unfold Pser in |- *; unfold infinite_sum in |- *; unfold Un_cv in H;
+ intros; unfold Pser; unfold infinite_sum; unfold Un_cv in H;
assumption.
Qed.
@@ -160,7 +160,7 @@ Lemma scal_sum :
x * sum_f_R0 An N = sum_f_R0 (fun i:nat => An i * x) N.
Proof.
intros; induction N as [| N HrecN].
- simpl in |- *; ring.
+ simpl; ring.
do 2 rewrite tech5.
rewrite Rmult_plus_distr_l; rewrite <- HrecN; ring.
Qed.
@@ -179,14 +179,14 @@ Proof.
do 2 rewrite tech5.
replace (S (S (pred N))) with (S N).
rewrite (HrecN H1); ring.
- rewrite H2; simpl in |- *; reflexivity.
+ rewrite H2; simpl; reflexivity.
assert (H2 := O_or_S N).
elim H2; intros.
elim a; intros.
rewrite <- p.
- simpl in |- *; reflexivity.
+ simpl; reflexivity.
rewrite <- b in H1; elim (lt_irrefl _ H1).
- rewrite H1; simpl in |- *; reflexivity.
+ rewrite H1; simpl; reflexivity.
inversion H.
right; reflexivity.
left; apply lt_le_trans with 1%nat; [ apply lt_O_Sn | assumption ].
@@ -197,7 +197,7 @@ Lemma plus_sum :
sum_f_R0 (fun i:nat => An i + Bn i) N = sum_f_R0 An N + sum_f_R0 Bn N.
Proof.
intros; induction N as [| N HrecN].
- simpl in |- *; ring.
+ simpl; ring.
do 3 rewrite tech5; rewrite HrecN; ring.
Qed.
@@ -207,7 +207,7 @@ Lemma sum_eq :
sum_f_R0 An N = sum_f_R0 Bn N.
Proof.
intros; induction N as [| N HrecN].
- simpl in |- *; apply H; apply le_n.
+ simpl; apply H; apply le_n.
do 2 rewrite tech5; rewrite HrecN.
rewrite (H (S N)); [ reflexivity | apply le_n ].
intros; apply H; apply le_trans with N; [ assumption | apply le_n_Sn ].
@@ -218,7 +218,7 @@ Lemma uniqueness_sum :
forall (An:nat -> R) (l1 l2:R),
infinite_sum An l1 -> infinite_sum An l2 -> l1 = l2.
Proof.
- unfold infinite_sum in |- *; intros.
+ unfold infinite_sum; intros.
case (Req_dec l1 l2); intro.
assumption.
cut (0 < Rabs ((l1 - l2) / 2)); [ intro | apply Rabs_pos_lt ].
@@ -235,19 +235,19 @@ Proof.
intro; rewrite H12 in H11; assert (H13 := double_var); unfold Rdiv in H13;
rewrite <- H13 in H11.
elim (Rlt_irrefl _ H11).
- apply Rabs_right; left; change (0 < / 2) in |- *; apply Rinv_0_lt_compat;
+ apply Rabs_right; left; change (0 < / 2); apply Rinv_0_lt_compat;
cut (0%nat <> 2%nat);
- [ intro H20; generalize (lt_INR_0 2 (neq_O_lt 2 H20)); unfold INR in |- *;
+ [ intro H20; generalize (lt_INR_0 2 (neq_O_lt 2 H20)); unfold INR;
intro; assumption
| discriminate ].
- unfold R_dist in |- *; rewrite <- (Rabs_Ropp (sum_f_R0 An N - l1));
+ unfold R_dist; rewrite <- (Rabs_Ropp (sum_f_R0 An N - l1));
rewrite Ropp_minus_distr'.
replace (l1 - l2) with (l1 - sum_f_R0 An N + (sum_f_R0 An N - l2));
[ idtac | ring ].
apply Rabs_triang.
- unfold ge in |- *; unfold N in |- *; apply le_max_r.
- unfold ge in |- *; unfold N in |- *; apply le_max_l.
- unfold Rdiv in |- *; apply prod_neq_R0.
+ unfold ge; unfold N; apply le_max_r.
+ unfold ge; unfold N; apply le_max_l.
+ unfold Rdiv; apply prod_neq_R0.
apply Rminus_eq_contra; assumption.
apply Rinv_neq_0_compat; discrR.
Qed.
@@ -257,7 +257,7 @@ Lemma minus_sum :
sum_f_R0 (fun i:nat => An i - Bn i) N = sum_f_R0 An N - sum_f_R0 Bn N.
Proof.
intros; induction N as [| N HrecN].
- simpl in |- *; ring.
+ simpl; ring.
do 3 rewrite tech5; rewrite HrecN; ring.
Qed.
@@ -268,7 +268,7 @@ Lemma sum_decomposition :
Proof.
intros.
induction N as [| N HrecN].
- simpl in |- *; ring.
+ simpl; ring.
rewrite tech5.
rewrite (tech5 (fun l:nat => An (S (2 * l))) N).
replace (2 * S (S N))%nat with (S (S (2 * S N))).
@@ -286,7 +286,7 @@ Lemma sum_Rle :
Proof.
intros.
induction N as [| N HrecN].
- simpl in |- *; apply H.
+ simpl; apply H.
apply le_n.
do 2 rewrite tech5.
apply Rle_trans with (sum_f_R0 An N + Bn (S N)).
@@ -306,7 +306,7 @@ Lemma Rsum_abs :
Proof.
intros.
induction N as [| N HrecN].
- simpl in |- *.
+ simpl.
right; reflexivity.
do 2 rewrite tech5.
apply Rle_trans with (Rabs (sum_f_R0 An N) + Rabs (An (S N))).
@@ -321,7 +321,7 @@ Lemma sum_cte :
Proof.
intros.
induction N as [| N HrecN].
- simpl in |- *; ring.
+ simpl; ring.
rewrite tech5.
rewrite HrecN; repeat rewrite S_INR; ring.
Qed.
@@ -333,7 +333,7 @@ Lemma sum_growing :
Proof.
intros.
induction N as [| N HrecN].
- simpl in |- *; apply H.
+ simpl; apply H.
do 2 rewrite tech5.
apply Rle_trans with (sum_f_R0 An N + Bn (S N)).
apply Rplus_le_compat_l; apply H.
@@ -348,7 +348,7 @@ Lemma Rabs_triang_gen :
Proof.
intros.
induction N as [| N HrecN].
- simpl in |- *.
+ simpl.
right; reflexivity.
do 2 rewrite tech5.
apply Rle_trans with (Rabs (sum_f_R0 An N) + Rabs (An (S N))).
@@ -364,7 +364,7 @@ Lemma cond_pos_sum :
Proof.
intros.
induction N as [| N HrecN].
- simpl in |- *; apply H.
+ simpl; apply H.
rewrite tech5.
apply Rplus_le_le_0_compat.
apply HrecN.
@@ -380,7 +380,7 @@ Lemma cauchy_abs :
forall An:nat -> R,
Cauchy_crit_series (fun i:nat => Rabs (An i)) -> Cauchy_crit_series An.
Proof.
- unfold Cauchy_crit_series in |- *; unfold Cauchy_crit in |- *.
+ unfold Cauchy_crit_series; unfold Cauchy_crit.
intros.
elim (H eps H0); intros.
exists x.
@@ -400,8 +400,8 @@ Proof.
elim a; intro.
rewrite (tech2 An n m); [ idtac | assumption ].
rewrite (tech2 (fun i:nat => Rabs (An i)) n m); [ idtac | assumption ].
- unfold R_dist in |- *.
- unfold Rminus in |- *.
+ unfold R_dist.
+ unfold Rminus.
do 2 rewrite Ropp_plus_distr.
do 2 rewrite <- Rplus_assoc.
do 2 rewrite Rplus_opp_r.
@@ -414,18 +414,18 @@ Proof.
replace (fun i:nat => Rabs (An (S n + i)%nat)) with
(fun i:nat => Rabs (Bn i)).
apply Rabs_triang_gen.
- unfold Bn in |- *; reflexivity.
+ unfold Bn; reflexivity.
apply Rle_ge.
apply cond_pos_sum.
intro; apply Rabs_pos.
rewrite b.
- unfold R_dist in |- *.
- unfold Rminus in |- *; do 2 rewrite Rplus_opp_r.
+ unfold R_dist.
+ unfold Rminus; do 2 rewrite Rplus_opp_r.
rewrite Rabs_R0; right; reflexivity.
rewrite (tech2 An m n); [ idtac | assumption ].
rewrite (tech2 (fun i:nat => Rabs (An i)) m n); [ idtac | assumption ].
- unfold R_dist in |- *.
- unfold Rminus in |- *.
+ unfold R_dist.
+ unfold Rminus.
do 2 rewrite Rplus_assoc.
rewrite (Rplus_comm (sum_f_R0 An m)).
rewrite (Rplus_comm (sum_f_R0 (fun i:nat => Rabs (An i)) m)).
@@ -439,7 +439,7 @@ Proof.
replace (fun i:nat => Rabs (An (S m + i)%nat)) with
(fun i:nat => Rabs (Bn i)).
apply Rabs_triang_gen.
- unfold Bn in |- *; reflexivity.
+ unfold Bn; reflexivity.
apply Rle_ge.
apply cond_pos_sum.
intro; apply Rabs_pos.
@@ -454,7 +454,7 @@ Proof.
intros An X.
elim X; intros.
unfold Un_cv in p.
- unfold Cauchy_crit_series in |- *; unfold Cauchy_crit in |- *.
+ unfold Cauchy_crit_series; unfold Cauchy_crit.
intros.
cut (0 < eps / 2).
intro.
@@ -462,7 +462,7 @@ Proof.
exists x0.
intros.
apply Rle_lt_trans with (R_dist (sum_f_R0 An n) x + R_dist (sum_f_R0 An m) x).
- unfold R_dist in |- *.
+ unfold R_dist.
replace (sum_f_R0 An n - sum_f_R0 An m) with
(sum_f_R0 An n - x + - (sum_f_R0 An m - x)); [ idtac | ring ].
rewrite <- (Rabs_Ropp (sum_f_R0 An m - x)).
@@ -471,8 +471,8 @@ Proof.
apply Rplus_lt_compat.
apply H1; assumption.
apply H1; assumption.
- right; symmetry in |- *; apply double_var.
- unfold Rdiv in |- *; apply Rmult_lt_0_compat;
+ right; symmetry ; apply double_var.
+ unfold Rdiv; apply Rmult_lt_0_compat;
[ assumption | apply Rinv_0_lt_compat; prove_sup0 ].
Qed.
@@ -493,7 +493,7 @@ Lemma sum_eq_R0 :
(forall n:nat, (n <= N)%nat -> An n = 0) -> sum_f_R0 An N = 0.
Proof.
intros; induction N as [| N HrecN].
- simpl in |- *; apply H; apply le_n.
+ simpl; apply H; apply le_n.
rewrite tech5; rewrite HrecN;
[ rewrite Rplus_0_l; apply H; apply le_n
| intros; apply H; apply le_trans with N; [ assumption | apply le_n_Sn ] ].
@@ -530,15 +530,15 @@ Proof.
[ idtac | ring ]; apply Rle_trans with l1.
left; apply r.
apply H6.
- unfold l1 in |- *; apply Rge_le;
+ unfold l1; apply Rge_le;
apply (growing_prop (fun k:nat => sum_f_R0 An k)).
apply H1.
- unfold ge, N0 in |- *; apply le_max_r.
- unfold ge, N0 in |- *; apply le_max_l.
+ unfold ge, N0; apply le_max_r.
+ unfold ge, N0; apply le_max_l.
apply Rplus_lt_reg_r with l; rewrite Rplus_0_r;
replace (l + (l1 - l)) with l1; [ apply r | ring ].
- unfold Un_growing in |- *; intro; simpl in |- *;
- pattern (sum_f_R0 An n) at 1 in |- *; rewrite <- Rplus_0_r;
+ unfold Un_growing; intro; simpl;
+ pattern (sum_f_R0 An n) at 1; rewrite <- Rplus_0_r;
apply Rplus_le_compat_l; apply H0.
Qed.
@@ -572,7 +572,7 @@ Proof.
apply Rlt_trans with (Rabs l1).
apply Rmult_lt_reg_l with 2.
prove_sup0.
- unfold Rdiv in |- *; rewrite (Rmult_comm 2); rewrite Rmult_assoc;
+ unfold Rdiv; rewrite (Rmult_comm 2); rewrite Rmult_assoc;
rewrite <- Rinv_l_sym.
rewrite Rmult_1_r; rewrite double; apply Rplus_lt_compat_l; apply r.
discrR.
@@ -581,18 +581,18 @@ Proof.
apply Rplus_lt_reg_r with ((Rabs l1 - l2) / 2 - Rabs (SP fn N x)).
replace ((Rabs l1 - l2) / 2 - Rabs (SP fn N x) + (Rabs l1 + l2) / 2) with
(Rabs l1 - Rabs (SP fn N x)).
- unfold Rminus in |- *; rewrite Rplus_assoc; rewrite Rplus_opp_l;
+ unfold Rminus; rewrite Rplus_assoc; rewrite Rplus_opp_l;
rewrite Rplus_0_r; apply H7.
- unfold Rdiv in |- *; rewrite Rmult_plus_distr_r;
+ unfold Rdiv; rewrite Rmult_plus_distr_r;
rewrite <- (Rmult_comm (/ 2)); rewrite Rmult_minus_distr_l;
- repeat rewrite (Rmult_comm (/ 2)); pattern (Rabs l1) at 1 in |- *;
- rewrite double_var; unfold Rdiv in |- *; ring.
+ repeat rewrite (Rmult_comm (/ 2)); pattern (Rabs l1) at 1;
+ rewrite double_var; unfold Rdiv; ring.
case (Rcase_abs (sum_f_R0 An N - l2)); intro.
apply Rlt_trans with l2.
apply (Rminus_lt _ _ r0).
apply Rmult_lt_reg_l with 2.
prove_sup0.
- rewrite (double l2); unfold Rdiv in |- *; rewrite (Rmult_comm 2);
+ rewrite (double l2); unfold Rdiv; rewrite (Rmult_comm 2);
rewrite Rmult_assoc; rewrite <- Rinv_l_sym.
rewrite Rmult_1_r; rewrite (Rplus_comm (Rabs l1)); apply Rplus_lt_compat_l;
apply r.
@@ -600,23 +600,23 @@ Proof.
rewrite (Rabs_right _ r0) in H6; apply Rplus_lt_reg_r with (- l2).
replace (- l2 + (Rabs l1 + l2) / 2) with ((Rabs l1 - l2) / 2).
rewrite Rplus_comm; apply H6.
- unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2));
+ unfold Rdiv; rewrite <- (Rmult_comm (/ 2));
rewrite Rmult_minus_distr_l; rewrite Rmult_plus_distr_r;
- pattern l2 at 2 in |- *; rewrite double_var;
+ pattern l2 at 2; rewrite double_var;
repeat rewrite (Rmult_comm (/ 2)); rewrite Ropp_plus_distr;
- unfold Rdiv in |- *; ring.
+ unfold Rdiv; ring.
apply Rle_lt_trans with (Rabs (SP fn N x - l1)).
rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr'; apply Rabs_triang_inv2.
- apply H4; unfold ge, N in |- *; apply le_max_l.
- apply H5; unfold ge, N in |- *; apply le_max_r.
- unfold Rdiv in |- *; apply Rmult_lt_0_compat.
+ apply H4; unfold ge, N; apply le_max_l.
+ apply H5; unfold ge, N; apply le_max_r.
+ unfold Rdiv; apply Rmult_lt_0_compat.
apply Rplus_lt_reg_r with l2.
rewrite Rplus_0_r; replace (l2 + (Rabs l1 - l2)) with (Rabs l1);
[ apply r | ring ].
apply Rinv_0_lt_compat; prove_sup0.
intros; induction n0 as [| n0 Hrecn0].
- unfold SP in |- *; simpl in |- *; apply H1.
- unfold SP in |- *; simpl in |- *.
+ unfold SP; simpl; apply H1.
+ unfold SP; simpl.
apply Rle_trans with
(Rabs (sum_f_R0 (fun k:nat => fn k x) n0) + Rabs (fn (S n0) x)).
apply Rabs_triang.
diff --git a/theories/Reals/RIneq.v b/theories/Reals/RIneq.v
index 2f58201f7..cc8c478ab 100644
--- a/theories/Reals/RIneq.v
+++ b/theories/Reals/RIneq.v
@@ -52,8 +52,8 @@ Proof. exact Rlt_irrefl. Qed.
Lemma Rlt_not_eq : forall r1 r2, r1 < r2 -> r1 <> r2.
Proof.
- red in |- *; intros r1 r2 H H0; apply (Rlt_irrefl r1).
- pattern r1 at 2 in |- *; rewrite H0; trivial.
+ red; intros r1 r2 H H0; apply (Rlt_irrefl r1).
+ pattern r1 at 2; rewrite H0; trivial.
Qed.
Lemma Rgt_not_eq : forall r1 r2, r1 > r2 -> r1 <> r2.
@@ -104,7 +104,7 @@ Qed.
Lemma Rlt_le : forall r1 r2, r1 < r2 -> r1 <= r2.
Proof.
- intros; red in |- *; tauto.
+ intros; red; tauto.
Qed.
Hint Resolve Rlt_le: real.
@@ -116,14 +116,14 @@ Qed.
(**********)
Lemma Rle_ge : forall r1 r2, r1 <= r2 -> r2 >= r1.
Proof.
- destruct 1; red in |- *; auto with real.
+ destruct 1; red; auto with real.
Qed.
Hint Immediate Rle_ge: real.
Hint Resolve Rle_ge: rorders.
Lemma Rge_le : forall r1 r2, r1 >= r2 -> r2 <= r1.
Proof.
- destruct 1; red in |- *; auto with real.
+ destruct 1; red; auto with real.
Qed.
Hint Resolve Rge_le: real.
Hint Immediate Rge_le: rorders.
@@ -145,7 +145,7 @@ Hint Immediate Rgt_lt: rorders.
Lemma Rnot_le_lt : forall r1 r2, ~ r1 <= r2 -> r2 < r1.
Proof.
- intros r1 r2; generalize (Rtotal_order r1 r2); unfold Rle in |- *; tauto.
+ intros r1 r2; generalize (Rtotal_order r1 r2); unfold Rle; tauto.
Qed.
Hint Immediate Rnot_le_lt: real.
@@ -176,7 +176,7 @@ Proof. eauto using Rnot_gt_ge with rorders. Qed.
(**********)
Lemma Rlt_not_le : forall r1 r2, r2 < r1 -> ~ r1 <= r2.
Proof.
- generalize Rlt_asym Rlt_dichotomy_converse; unfold Rle in |- *.
+ generalize Rlt_asym Rlt_dichotomy_converse; unfold Rle.
unfold not; intuition eauto 3.
Qed.
Hint Immediate Rlt_not_le: real.
@@ -194,7 +194,7 @@ Proof. exact Rlt_not_ge. Qed.
Lemma Rle_not_lt : forall r1 r2, r2 <= r1 -> ~ r1 < r2.
Proof.
intros r1 r2. generalize (Rlt_asym r1 r2) (Rlt_dichotomy_converse r1 r2).
- unfold Rle in |- *; intuition.
+ unfold Rle; intuition.
Qed.
Lemma Rge_not_lt : forall r1 r2, r1 >= r2 -> ~ r1 < r2.
@@ -209,25 +209,25 @@ Proof. do 2 intro; apply Rge_not_lt. Qed.
(**********)
Lemma Req_le : forall r1 r2, r1 = r2 -> r1 <= r2.
Proof.
- unfold Rle in |- *; tauto.
+ unfold Rle; tauto.
Qed.
Hint Immediate Req_le: real.
Lemma Req_ge : forall r1 r2, r1 = r2 -> r1 >= r2.
Proof.
- unfold Rge in |- *; tauto.
+ unfold Rge; tauto.
Qed.
Hint Immediate Req_ge: real.
Lemma Req_le_sym : forall r1 r2, r2 = r1 -> r1 <= r2.
Proof.
- unfold Rle in |- *; auto.
+ unfold Rle; auto.
Qed.
Hint Immediate Req_le_sym: real.
Lemma Req_ge_sym : forall r1 r2, r2 = r1 -> r1 >= r2.
Proof.
- unfold Rge in |- *; auto.
+ unfold Rge; auto.
Qed.
Hint Immediate Req_ge_sym: real.
@@ -242,7 +242,7 @@ Proof. do 2 intro; apply Rlt_asym. Qed.
Lemma Rle_antisym : forall r1 r2, r1 <= r2 -> r2 <= r1 -> r1 = r2.
Proof.
- intros r1 r2; generalize (Rlt_asym r1 r2); unfold Rle in |- *; intuition.
+ intros r1 r2; generalize (Rlt_asym r1 r2); unfold Rle; intuition.
Qed.
Hint Resolve Rle_antisym: real.
@@ -293,13 +293,13 @@ Proof. eauto using Rlt_trans with rorders. Qed.
Lemma Rle_lt_trans : forall r1 r2 r3, r1 <= r2 -> r2 < r3 -> r1 < r3.
Proof.
generalize Rlt_trans Rlt_eq_compat.
- unfold Rle in |- *.
+ unfold Rle.
intuition eauto 2.
Qed.
Lemma Rlt_le_trans : forall r1 r2 r3, r1 < r2 -> r2 <= r3 -> r1 < r3.
Proof.
- generalize Rlt_trans Rlt_eq_compat; unfold Rle in |- *; intuition eauto 2.
+ generalize Rlt_trans Rlt_eq_compat; unfold Rle; intuition eauto 2.
Qed.
Lemma Rge_gt_trans : forall r1 r2 r3, r1 >= r2 -> r2 > r3 -> r1 > r3.
@@ -432,7 +432,7 @@ Hint Resolve Rplus_eq_reg_l: real.
(**********)
Lemma Rplus_0_r_uniq : forall r r1, r + r1 = r -> r1 = 0.
Proof.
- intros r b; pattern r at 2 in |- *; replace r with (r + 0); eauto with real.
+ intros r b; pattern r at 2; replace r with (r + 0); eauto with real.
Qed.
(***********)
@@ -443,7 +443,7 @@ Proof.
absurd (0 < a + b).
rewrite H1; auto with real.
apply Rle_lt_trans with (a + 0).
- rewrite Rplus_0_r in |- *; assumption.
+ rewrite Rplus_0_r; assumption.
auto using Rplus_lt_compat_l with real.
rewrite <- H0, Rplus_0_r in H1; assumption.
Qed.
@@ -572,14 +572,14 @@ Qed.
(**********)
Lemma Rmult_neq_0_reg : forall r1 r2, r1 * r2 <> 0 -> r1 <> 0 /\ r2 <> 0.
Proof.
- intros r1 r2 H; split; red in |- *; intro; apply H; auto with real.
+ intros r1 r2 H; split; red; intro; apply H; auto with real.
Qed.
(**********)
Lemma Rmult_integral_contrapositive :
forall r1 r2, r1 <> 0 /\ r2 <> 0 -> r1 * r2 <> 0.
Proof.
- red in |- *; intros r1 r2 [H1 H2] H.
+ red; intros r1 r2 [H1 H2] H.
case (Rmult_integral r1 r2); auto with real.
Qed.
Hint Resolve Rmult_integral_contrapositive: real.
@@ -606,12 +606,12 @@ Notation "r ²" := (Rsqr r) (at level 1, format "r ²") : R_scope.
(***********)
Lemma Rsqr_0 : Rsqr 0 = 0.
- unfold Rsqr in |- *; auto with real.
+ unfold Rsqr; auto with real.
Qed.
(***********)
Lemma Rsqr_0_uniq : forall r, Rsqr r = 0 -> r = 0.
- unfold Rsqr in |- *; intros; elim (Rmult_integral r r H); trivial.
+ unfold Rsqr; intros; elim (Rmult_integral r r H); trivial.
Qed.
(*********************************************************)
@@ -649,7 +649,7 @@ Hint Resolve Ropp_involutive: real.
(*********)
Lemma Ropp_neq_0_compat : forall r, r <> 0 -> - r <> 0.
Proof.
- red in |- *; intros r H H0.
+ red; intros r H H0.
apply H.
transitivity (- - r); auto with real.
Qed.
@@ -722,7 +722,7 @@ Hint Resolve Rminus_diag_eq: real.
(**********)
Lemma Rminus_diag_uniq : forall r1 r2, r1 - r2 = 0 -> r1 = r2.
Proof.
- intros r1 r2; unfold Rminus in |- *; rewrite Rplus_comm; intro.
+ intros r1 r2; unfold Rminus; rewrite Rplus_comm; intro.
rewrite <- (Ropp_involutive r2); apply (Rplus_opp_r_uniq (- r2) r1 H).
Qed.
Hint Immediate Rminus_diag_uniq: real.
@@ -743,20 +743,20 @@ Hint Resolve Rplus_minus: real.
(**********)
Lemma Rminus_eq_contra : forall r1 r2, r1 <> r2 -> r1 - r2 <> 0.
Proof.
- red in |- *; intros r1 r2 H H0.
+ red; intros r1 r2 H H0.
apply H; auto with real.
Qed.
Hint Resolve Rminus_eq_contra: real.
Lemma Rminus_not_eq : forall r1 r2, r1 - r2 <> 0 -> r1 <> r2.
Proof.
- red in |- *; intros; elim H; apply Rminus_diag_eq; auto.
+ red; intros; elim H; apply Rminus_diag_eq; auto.
Qed.
Hint Resolve Rminus_not_eq: real.
Lemma Rminus_not_eq_right : forall r1 r2, r2 - r1 <> 0 -> r1 <> r2.
Proof.
- red in |- *; intros; elim H; rewrite H0; ring.
+ red; intros; elim H; rewrite H0; ring.
Qed.
Hint Resolve Rminus_not_eq_right: real.
@@ -780,7 +780,7 @@ Hint Resolve Rinv_1: real.
(*********)
Lemma Rinv_neq_0_compat : forall r, r <> 0 -> / r <> 0.
Proof.
- red in |- *; intros; apply R1_neq_R0.
+ red; intros; apply R1_neq_R0.
replace 1 with (/ r * r); auto with real.
Qed.
Hint Resolve Rinv_neq_0_compat: real.
@@ -860,7 +860,7 @@ Proof. do 3 intro; apply Rplus_lt_compat_r. Qed.
(**********)
Lemma Rplus_le_compat_l : forall r r1 r2, r1 <= r2 -> r + r1 <= r + r2.
Proof.
- unfold Rle in |- *; intros; elim H; intro.
+ unfold Rle; intros; elim H; intro.
left; apply (Rplus_lt_compat_l r r1 r2 H0).
right; rewrite <- H0; auto with zarith real.
Qed.
@@ -872,7 +872,7 @@ Hint Resolve Rplus_ge_compat_l: real.
(**********)
Lemma Rplus_le_compat_r : forall r r1 r2, r1 <= r2 -> r1 + r <= r2 + r.
Proof.
- unfold Rle in |- *; intros; elim H; intro.
+ unfold Rle; intros; elim H; intro.
left; apply (Rplus_lt_compat_r r r1 r2 H0).
right; rewrite <- H0; auto with real.
Qed.
@@ -933,7 +933,7 @@ Lemma Rplus_lt_0_compat : forall r1 r2, 0 < r1 -> 0 < r2 -> 0 < r1 + r2.
Proof.
intros x y; intros; apply Rlt_trans with x;
[ assumption
- | pattern x at 1 in |- *; rewrite <- (Rplus_0_r x); apply Rplus_lt_compat_l;
+ | pattern x at 1; rewrite <- (Rplus_0_r x); apply Rplus_lt_compat_l;
assumption ].
Qed.
@@ -941,7 +941,7 @@ Lemma Rplus_le_lt_0_compat : forall r1 r2, 0 <= r1 -> 0 < r2 -> 0 < r1 + r2.
Proof.
intros x y; intros; apply Rle_lt_trans with x;
[ assumption
- | pattern x at 1 in |- *; rewrite <- (Rplus_0_r x); apply Rplus_lt_compat_l;
+ | pattern x at 1; rewrite <- (Rplus_0_r x); apply Rplus_lt_compat_l;
assumption ].
Qed.
@@ -955,7 +955,7 @@ Lemma Rplus_le_le_0_compat : forall r1 r2, 0 <= r1 -> 0 <= r2 -> 0 <= r1 + r2.
Proof.
intros x y; intros; apply Rle_trans with x;
[ assumption
- | pattern x at 1 in |- *; rewrite <- (Rplus_0_r x); apply Rplus_le_compat_l;
+ | pattern x at 1; rewrite <- (Rplus_0_r x); apply Rplus_le_compat_l;
assumption ].
Qed.
@@ -983,7 +983,7 @@ Qed.
Lemma Rplus_le_reg_l : forall r r1 r2, r + r1 <= r + r2 -> r1 <= r2.
Proof.
- unfold Rle in |- *; intros; elim H; intro.
+ unfold Rle; intros; elim H; intro.
left; apply (Rplus_lt_reg_r r r1 r2 H0).
right; apply (Rplus_eq_reg_l r r1 r2 H0).
Qed.
@@ -997,7 +997,7 @@ Qed.
Lemma Rplus_gt_reg_l : forall r r1 r2, r + r1 > r + r2 -> r1 > r2.
Proof.
- unfold Rgt in |- *; intros; apply (Rplus_lt_reg_r r r2 r1 H).
+ unfold Rgt; intros; apply (Rplus_lt_reg_r r r2 r1 H).
Qed.
Lemma Rplus_ge_reg_l : forall r r1 r2, r + r1 >= r + r2 -> r1 >= r2.
@@ -1048,7 +1048,7 @@ Qed.
Lemma Ropp_gt_lt_contravar : forall r1 r2, r1 > r2 -> - r1 < - r2.
Proof.
- unfold Rgt in |- *; intros.
+ unfold Rgt; intros.
apply (Rplus_lt_reg_r (r2 + r1)).
replace (r2 + r1 + - r1) with r2.
replace (r2 + r1 + - r2) with r1.
@@ -1060,7 +1060,7 @@ Hint Resolve Ropp_gt_lt_contravar.
Lemma Ropp_lt_gt_contravar : forall r1 r2, r1 < r2 -> - r1 > - r2.
Proof.
- unfold Rgt in |- *; auto with real.
+ unfold Rgt; auto with real.
Qed.
Hint Resolve Ropp_lt_gt_contravar: real.
@@ -1185,7 +1185,7 @@ Proof. eauto using Rmult_lt_compat_l with rorders. Qed.
Lemma Rmult_le_compat_l :
forall r r1 r2, 0 <= r -> r1 <= r2 -> r * r1 <= r * r2.
Proof.
- intros r r1 r2 H H0; destruct H; destruct H0; unfold Rle in |- *;
+ intros r r1 r2 H H0; destruct H; destruct H0; unfold Rle;
auto with real.
right; rewrite <- H; do 2 rewrite Rmult_0_l; reflexivity.
Qed.
@@ -1344,7 +1344,7 @@ Qed.
(**********)
Lemma Rle_minus : forall r1 r2, r1 <= r2 -> r1 - r2 <= 0.
Proof.
- destruct 1; unfold Rle in |- *; auto with real.
+ destruct 1; unfold Rle; auto with real.
Qed.
Lemma Rge_minus : forall r1 r2, r1 >= r2 -> r1 - r2 >= 0.
@@ -1358,7 +1358,7 @@ Qed.
Lemma Rminus_lt : forall r1 r2, r1 - r2 < 0 -> r1 < r2.
Proof.
intros; replace r1 with (r1 - r2 + r2).
- pattern r2 at 3 in |- *; replace r2 with (0 + r2); auto with real.
+ pattern r2 at 3; replace r2 with (0 + r2); auto with real.
ring.
Qed.
@@ -1374,7 +1374,7 @@ Qed.
Lemma Rminus_le : forall r1 r2, r1 - r2 <= 0 -> r1 <= r2.
Proof.
intros; replace r1 with (r1 - r2 + r2).
- pattern r2 at 3 in |- *; replace r2 with (0 + r2); auto with real.
+ pattern r2 at 3; replace r2 with (0 + r2); auto with real.
ring.
Qed.
@@ -1400,7 +1400,7 @@ Hint Immediate tech_Rplus: real.
Lemma Rle_0_sqr : forall r, 0 <= Rsqr r.
Proof.
- intro; case (Rlt_le_dec r 0); unfold Rsqr in |- *; intro.
+ intro; case (Rlt_le_dec r 0); unfold Rsqr; intro.
replace (r * r) with (- r * - r); auto with real.
replace 0 with (- r * 0); auto with real.
replace 0 with (0 * r); auto with real.
@@ -1409,7 +1409,7 @@ Qed.
(***********)
Lemma Rlt_0_sqr : forall r, r <> 0 -> 0 < Rsqr r.
Proof.
- intros; case (Rdichotomy r 0); trivial; unfold Rsqr in |- *; intro.
+ intros; case (Rdichotomy r 0); trivial; unfold Rsqr; intro.
replace (r * r) with (- r * - r); auto with real.
replace 0 with (- r * 0); auto with real.
replace 0 with (0 * r); auto with real.
@@ -1439,7 +1439,7 @@ Qed.
Lemma Rlt_0_1 : 0 < 1.
Proof.
replace 1 with (Rsqr 1); auto with real.
- unfold Rsqr in |- *; auto with real.
+ unfold Rsqr; auto with real.
Qed.
Hint Resolve Rlt_0_1: real.
@@ -1455,7 +1455,7 @@ Qed.
Lemma Rinv_0_lt_compat : forall r, 0 < r -> 0 < / r.
Proof.
- intros; apply Rnot_le_lt; red in |- *; intros.
+ intros; apply Rnot_le_lt; red; intros.
absurd (1 <= 0); auto with real.
replace 1 with (r * / r); auto with real.
replace 0 with (r * 0); auto with real.
@@ -1465,7 +1465,7 @@ Hint Resolve Rinv_0_lt_compat: real.
(*********)
Lemma Rinv_lt_0_compat : forall r, r < 0 -> / r < 0.
Proof.
- intros; apply Rnot_le_lt; red in |- *; intros.
+ intros; apply Rnot_le_lt; red; intros.
absurd (1 <= 0); auto with real.
replace 1 with (r * / r); auto with real.
replace 0 with (r * 0); auto with real.
@@ -1479,8 +1479,8 @@ Proof.
case (Rmult_neq_0_reg r1 r2); intros; auto with real.
replace (r1 * r2 * / r2) with r1.
replace (r1 * r2 * / r1) with r2; trivial.
- symmetry in |- *; auto with real.
- symmetry in |- *; auto with real.
+ symmetry ; auto with real.
+ symmetry ; auto with real.
Qed.
Lemma Rinv_1_lt_contravar : forall r1 r2, 1 <= r1 -> r1 < r2 -> / r2 < / r1.
@@ -1497,7 +1497,7 @@ Proof.
rewrite (Rmult_comm x); rewrite <- Rmult_assoc; rewrite (Rmult_comm y (/ y));
rewrite Rinv_l; auto with real.
apply Rlt_dichotomy_converse; right.
- red in |- *; apply Rlt_trans with (r2 := x); auto with real.
+ red; apply Rlt_trans with (r2 := x); auto with real.
Qed.
Hint Resolve Rinv_1_lt_contravar: real.
@@ -1510,7 +1510,7 @@ Lemma Rle_lt_0_plus_1 : forall r, 0 <= r -> 0 < r + 1.
Proof.
intros.
apply Rlt_le_trans with 1; auto with real.
- pattern 1 at 1 in |- *; replace 1 with (0 + 1); auto with real.
+ pattern 1 at 1; replace 1 with (0 + 1); auto with real.
Qed.
Hint Resolve Rle_lt_0_plus_1: real.
@@ -1518,15 +1518,15 @@ Hint Resolve Rle_lt_0_plus_1: real.
Lemma Rlt_plus_1 : forall r, r < r + 1.
Proof.
intros.
- pattern r at 1 in |- *; replace r with (r + 0); auto with real.
+ pattern r at 1; replace r with (r + 0); auto with real.
Qed.
Hint Resolve Rlt_plus_1: real.
(**********)
Lemma tech_Rgt_minus : forall r1 r2, 0 < r2 -> r1 > r1 - r2.
Proof.
- red in |- *; unfold Rminus in |- *; intros.
- pattern r1 at 2 in |- *; replace r1 with (r1 + 0); auto with real.
+ red; unfold Rminus; intros.
+ pattern r1 at 2; replace r1 with (r1 + 0); auto with real.
Qed.
(*********************************************************)
@@ -1542,14 +1542,14 @@ Qed.
(**********)
Lemma S_O_plus_INR : forall n:nat, INR (1 + n) = INR 1 + INR n.
Proof.
- intro; simpl in |- *; case n; intros; auto with real.
+ intro; simpl; case n; intros; auto with real.
Qed.
(**********)
Lemma plus_INR : forall n m:nat, INR (n + m) = INR n + INR m.
Proof.
intros n m; induction n as [| n Hrecn].
- simpl in |- *; auto with real.
+ simpl; auto with real.
replace (S n + m)%nat with (S (n + m)); auto with arith.
repeat rewrite S_INR.
rewrite Hrecn; ring.
@@ -1559,9 +1559,9 @@ Hint Resolve plus_INR: real.
(**********)
Lemma minus_INR : forall n m:nat, (m <= n)%nat -> INR (n - m) = INR n - INR m.
Proof.
- intros n m le; pattern m, n in |- *; apply le_elim_rel; auto with real.
+ intros n m le; pattern m, n; apply le_elim_rel; auto with real.
intros; rewrite <- minus_n_O; auto with real.
- intros; repeat rewrite S_INR; simpl in |- *.
+ intros; repeat rewrite S_INR; simpl.
rewrite H0; ring.
Qed.
Hint Resolve minus_INR: real.
@@ -1570,8 +1570,8 @@ Hint Resolve minus_INR: real.
Lemma mult_INR : forall n m:nat, INR (n * m) = INR n * INR m.
Proof.
intros n m; induction n as [| n Hrecn].
- simpl in |- *; auto with real.
- intros; repeat rewrite S_INR; simpl in |- *.
+ simpl; auto with real.
+ intros; repeat rewrite S_INR; simpl.
rewrite plus_INR; rewrite Hrecn; ring.
Qed.
Hint Resolve mult_INR: real.
@@ -1602,7 +1602,7 @@ Hint Resolve lt_1_INR: real.
Lemma pos_INR_nat_of_P : forall p:positive, 0 < INR (Pos.to_nat p).
Proof.
intro; apply lt_0_INR.
- simpl in |- *; auto with real.
+ simpl; auto with real.
apply Pos2Nat.is_pos.
Qed.
Hint Resolve pos_INR_nat_of_P: real.
@@ -1611,7 +1611,7 @@ Hint Resolve pos_INR_nat_of_P: real.
Lemma pos_INR : forall n:nat, 0 <= INR n.
Proof.
intro n; case n.
- simpl in |- *; auto with real.
+ simpl; auto with real.
auto with arith real.
Qed.
Hint Resolve pos_INR: real.
@@ -1619,10 +1619,10 @@ Hint Resolve pos_INR: real.
Lemma INR_lt : forall n m:nat, INR n < INR m -> (n < m)%nat.
Proof.
double induction n m; intros.
- simpl in |- *; exfalso; apply (Rlt_irrefl 0); auto.
+ simpl; exfalso; apply (Rlt_irrefl 0); auto.
auto with arith.
generalize (pos_INR (S n0)); intro; cut (INR 0 = 0);
- [ intro H2; rewrite H2 in H0; idtac | simpl in |- *; trivial ].
+ [ intro H2; rewrite H2 in H0; idtac | simpl; trivial ].
generalize (Rle_lt_trans 0 (INR (S n0)) 0 H1 H0); intro; exfalso;
apply (Rlt_irrefl 0); auto.
do 2 rewrite S_INR in H1; cut (INR n1 < INR n0).
@@ -1644,7 +1644,7 @@ Hint Resolve le_INR: real.
(**********)
Lemma INR_not_0 : forall n:nat, INR n <> 0 -> n <> 0%nat.
Proof.
- red in |- *; intros n H H1.
+ red; intros n H H1.
apply H.
rewrite H1; trivial.
Qed.
@@ -1656,7 +1656,7 @@ Proof.
intro n; case n.
intro; absurd (0%nat = 0%nat); trivial.
intros; rewrite S_INR.
- apply Rgt_not_eq; red in |- *; auto with real.
+ apply Rgt_not_eq; red; auto with real.
Qed.
Hint Resolve not_0_INR: real.
@@ -1677,7 +1677,7 @@ Proof.
cut (n <> m).
intro H3; generalize (not_INR n m H3); intro H4; exfalso; auto.
omega.
- symmetry in |- *; cut (m <> n).
+ symmetry ; cut (m <> n).
intro H3; generalize (not_INR m n H3); intro H4; exfalso; auto.
omega.
Qed.
@@ -1712,7 +1712,7 @@ Qed.
Lemma INR_IZR_INZ : forall n:nat, INR n = IZR (Z.of_nat n).
Proof.
simple induction n; auto with real.
- intros; simpl in |- *; rewrite SuccNat2Pos.id_succ;
+ intros; simpl; rewrite SuccNat2Pos.id_succ;
auto with real.
Qed.
@@ -1744,7 +1744,7 @@ Qed.
(**********)
Lemma mult_IZR : forall n m:Z, IZR (n * m) = IZR n * IZR m.
Proof.
- intros z t; case z; case t; simpl in |- *; auto with real.
+ intros z t; case z; case t; simpl; auto with real.
intros t1 z1; rewrite Pos2Nat.inj_mul; auto with real.
intros t1 z1; rewrite Pos2Nat.inj_mul; auto with real.
rewrite Rmult_comm.
@@ -1775,7 +1775,7 @@ Qed.
(**********)
Lemma opp_IZR : forall n:Z, IZR (- n) = - IZR n.
Proof.
- intro z; case z; simpl in |- *; auto with real.
+ intro z; case z; simpl; auto with real.
Qed.
Definition Ropp_Ropp_IZR := opp_IZR.
@@ -1790,16 +1790,16 @@ Qed.
(**********)
Lemma Z_R_minus : forall n m:Z, IZR n - IZR m = IZR (n - m).
Proof.
- intros z1 z2; unfold Rminus in |- *; unfold Z.sub in |- *.
- rewrite <- (Ropp_Ropp_IZR z2); symmetry in |- *; apply plus_IZR.
+ intros z1 z2; unfold Rminus; unfold Z.sub.
+ rewrite <- (Ropp_Ropp_IZR z2); symmetry ; apply plus_IZR.
Qed.
(**********)
Lemma lt_0_IZR : forall n:Z, 0 < IZR n -> (0 < n)%Z.
Proof.
- intro z; case z; simpl in |- *; intros.
+ intro z; case z; simpl; intros.
absurd (0 < 0); auto with real.
- unfold Z.lt in |- *; simpl in |- *; trivial.
+ unfold Z.lt; simpl; trivial.
case Rlt_not_le with (1 := H).
replace 0 with (-0); auto with real.
Qed.
@@ -1816,10 +1816,10 @@ Qed.
(**********)
Lemma eq_IZR_R0 : forall n:Z, IZR n = 0 -> n = 0%Z.
Proof.
- intro z; destruct z; simpl in |- *; intros; auto with zarith.
+ intro z; destruct z; simpl; intros; auto with zarith.
case (Rlt_not_eq 0 (INR (Pos.to_nat p))); auto with real.
case (Rlt_not_eq (- INR (Pos.to_nat p)) 0); auto with real.
- apply Ropp_lt_gt_0_contravar. unfold Rgt in |- *; apply pos_INR_nat_of_P.
+ apply Ropp_lt_gt_0_contravar. unfold Rgt; apply pos_INR_nat_of_P.
Qed.
(**********)
@@ -1833,22 +1833,22 @@ Qed.
(**********)
Lemma not_0_IZR : forall n:Z, n <> 0%Z -> IZR n <> 0.
Proof.
- intros z H; red in |- *; intros H0; case H.
+ intros z H; red; intros H0; case H.
apply eq_IZR; auto.
Qed.
(*********)
Lemma le_0_IZR : forall n:Z, 0 <= IZR n -> (0 <= n)%Z.
Proof.
- unfold Rle in |- *; intros z [H| H].
- red in |- *; intro; apply (Z.lt_le_incl 0 z (lt_0_IZR z H)); assumption.
+ unfold Rle; intros z [H| H].
+ red; intro; apply (Z.lt_le_incl 0 z (lt_0_IZR z H)); assumption.
rewrite (eq_IZR_R0 z); auto with zarith real.
Qed.
(**********)
Lemma le_IZR : forall n m:Z, IZR n <= IZR m -> (n <= m)%Z.
Proof.
- unfold Rle in |- *; intros z1 z2 [H| H].
+ unfold Rle; intros z1 z2 [H| H].
apply (Z.lt_le_incl z1 z2); auto with real.
apply lt_IZR; trivial.
rewrite (eq_IZR z1 z2); auto with zarith real.
@@ -1857,20 +1857,20 @@ Qed.
(**********)
Lemma le_IZR_R1 : forall n:Z, IZR n <= 1 -> (n <= 1)%Z.
Proof.
- pattern 1 at 1 in |- *; replace 1 with (IZR 1); intros; auto.
+ pattern 1 at 1; replace 1 with (IZR 1); intros; auto.
apply le_IZR; trivial.
Qed.
(**********)
Lemma IZR_ge : forall n m:Z, (n >= m)%Z -> IZR n >= IZR m.
Proof.
- intros m n H; apply Rnot_lt_ge; red in |- *; intro.
+ intros m n H; apply Rnot_lt_ge; red; intro.
generalize (lt_IZR m n H0); intro; omega.
Qed.
Lemma IZR_le : forall n m:Z, (n <= m)%Z -> IZR n <= IZR m.
Proof.
- intros m n H; apply Rnot_gt_le; red in |- *; intro.
+ intros m n H; apply Rnot_gt_le; red; intro.
unfold Rgt in H0; generalize (lt_IZR n m H0); intro; omega.
Qed.
@@ -1899,10 +1899,10 @@ Proof.
apply one_IZR_lt1.
rewrite <- Z_R_minus; split.
replace (-1) with (r - (r + 1)).
- unfold Rminus in |- *; apply Rplus_lt_le_compat; auto with real.
+ unfold Rminus; apply Rplus_lt_le_compat; auto with real.
ring.
replace 1 with (r + 1 - r).
- unfold Rminus in |- *; apply Rplus_le_lt_compat; auto with real.
+ unfold Rminus; apply Rplus_le_lt_compat; auto with real.
ring.
Qed.
@@ -1943,8 +1943,8 @@ Proof.
rewrite Rmult_1_r; rewrite Rmult_comm; rewrite Rmult_assoc;
rewrite <- Rinv_l_sym.
rewrite Rmult_1_r; apply H1.
- red in |- *; intro; rewrite H2 in H0; elim (Rlt_irrefl _ H0).
- red in |- *; intro; rewrite H2 in H; elim (Rlt_irrefl _ H).
+ red; intro; rewrite H2 in H0; elim (Rlt_irrefl _ H0).
+ red; intro; rewrite H2 in H; elim (Rlt_irrefl _ H).
Qed.
Lemma double : forall r1, 2 * r1 = r1 + r1.
@@ -1954,10 +1954,10 @@ Qed.
Lemma double_var : forall r1, r1 = r1 / 2 + r1 / 2.
Proof.
- intro; rewrite <- double; unfold Rdiv in |- *; rewrite <- Rmult_assoc;
- symmetry in |- *; apply Rinv_r_simpl_m.
+ intro; rewrite <- double; unfold Rdiv; rewrite <- Rmult_assoc;
+ symmetry ; apply Rinv_r_simpl_m.
replace 2 with (INR 2);
- [ apply not_0_INR; discriminate | unfold INR in |- *; ring ].
+ [ apply not_0_INR; discriminate | unfold INR; ring ].
Qed.
(*********************************************************)
@@ -1992,22 +1992,22 @@ Proof.
rewrite (Rplus_comm y); intro H5; apply Rplus_le_reg_l with x; assumption.
ring.
replace 2 with (INR 2); [ apply not_0_INR; discriminate | reflexivity ].
- pattern y at 2 in |- *; replace y with (y / 2 + y / 2).
- unfold Rminus, Rdiv in |- *.
+ pattern y at 2; replace y with (y / 2 + y / 2).
+ unfold Rminus, Rdiv.
repeat rewrite Rmult_plus_distr_r.
ring.
cut (forall z:R, 2 * z = z + z).
intro.
rewrite <- (H4 (y / 2)).
- unfold Rdiv in |- *.
+ unfold Rdiv.
rewrite <- Rmult_assoc; apply Rinv_r_simpl_m.
replace 2 with (INR 2).
apply not_0_INR.
discriminate.
- unfold INR in |- *; reflexivity.
+ unfold INR; reflexivity.
intro; ring.
cut (0%nat <> 2%nat);
- [ intro H0; generalize (lt_0_INR 2 (neq_O_lt 2 H0)); unfold INR in |- *;
+ [ intro H0; generalize (lt_0_INR 2 (neq_O_lt 2 H0)); unfold INR;
intro; assumption
| discriminate ].
Qed.
diff --git a/theories/Reals/RList.v b/theories/Reals/RList.v
index 246d6dea9..4d140cdea 100644
--- a/theories/Reals/RList.v
+++ b/theories/Reals/RList.v
@@ -52,19 +52,19 @@ Proof.
simpl in H; elim H.
induction l as [| r0 l Hrecl0].
simpl in H; elim H; intro.
- simpl in |- *; right; assumption.
+ simpl; right; assumption.
elim H0.
replace (MaxRlist (cons r (cons r0 l))) with (Rmax r (MaxRlist (cons r0 l))).
simpl in H; decompose [or] H.
rewrite H0; apply RmaxLess1.
- unfold Rmax in |- *; case (Rle_dec r (MaxRlist (cons r0 l))); intro.
- apply Hrecl; simpl in |- *; tauto.
+ unfold Rmax; case (Rle_dec r (MaxRlist (cons r0 l))); intro.
+ apply Hrecl; simpl; tauto.
apply Rle_trans with (MaxRlist (cons r0 l));
- [ apply Hrecl; simpl in |- *; tauto | left; auto with real ].
- unfold Rmax in |- *; case (Rle_dec r (MaxRlist (cons r0 l))); intro.
- apply Hrecl; simpl in |- *; tauto.
+ [ apply Hrecl; simpl; tauto | left; auto with real ].
+ unfold Rmax; case (Rle_dec r (MaxRlist (cons r0 l))); intro.
+ apply Hrecl; simpl; tauto.
apply Rle_trans with (MaxRlist (cons r0 l));
- [ apply Hrecl; simpl in |- *; tauto | left; auto with real ].
+ [ apply Hrecl; simpl; tauto | left; auto with real ].
reflexivity.
Qed.
@@ -80,19 +80,19 @@ Proof.
simpl in H; elim H.
induction l as [| r0 l Hrecl0].
simpl in H; elim H; intro.
- simpl in |- *; right; symmetry in |- *; assumption.
+ simpl; right; symmetry ; assumption.
elim H0.
replace (MinRlist (cons r (cons r0 l))) with (Rmin r (MinRlist (cons r0 l))).
simpl in H; decompose [or] H.
rewrite H0; apply Rmin_l.
- unfold Rmin in |- *; case (Rle_dec r (MinRlist (cons r0 l))); intro.
+ unfold Rmin; case (Rle_dec r (MinRlist (cons r0 l))); intro.
apply Rle_trans with (MinRlist (cons r0 l)).
assumption.
- apply Hrecl; simpl in |- *; tauto.
- apply Hrecl; simpl in |- *; tauto.
+ apply Hrecl; simpl; tauto.
+ apply Hrecl; simpl; tauto.
apply Rle_trans with (MinRlist (cons r0 l)).
apply Rmin_r.
- apply Hrecl; simpl in |- *; tauto.
+ apply Hrecl; simpl; tauto.
reflexivity.
Qed.
@@ -101,7 +101,7 @@ Lemma AbsList_P1 :
Proof.
intros; induction l as [| r l Hrecl].
elim H.
- simpl in |- *; simpl in H; elim H; intro.
+ simpl; simpl in H; elim H; intro.
left; rewrite H0; reflexivity.
right; apply Hrecl; assumption.
Qed.
@@ -112,11 +112,11 @@ Proof.
intros; induction l as [| r l Hrecl].
apply Rlt_0_1.
induction l as [| r0 l Hrecl0].
- simpl in |- *; apply H; simpl in |- *; tauto.
+ simpl; apply H; simpl; tauto.
replace (MinRlist (cons r (cons r0 l))) with (Rmin r (MinRlist (cons r0 l))).
- unfold Rmin in |- *; case (Rle_dec r (MinRlist (cons r0 l))); intro.
- apply H; simpl in |- *; tauto.
- apply Hrecl; intros; apply H; simpl in |- *; simpl in H0; tauto.
+ unfold Rmin; case (Rle_dec r (MinRlist (cons r0 l))); intro.
+ apply H; simpl; tauto.
+ apply Hrecl; intros; apply H; simpl; simpl in H0; tauto.
reflexivity.
Qed.
@@ -128,10 +128,10 @@ Proof.
elim H.
elim H; intro.
exists r; split.
- simpl in |- *; tauto.
+ simpl; tauto.
assumption.
assert (H1 := Hrecl H0); elim H1; intros; elim H2; clear H2; intros;
- exists x0; simpl in |- *; simpl in H2; tauto.
+ exists x0; simpl; simpl in H2; tauto.
Qed.
Lemma MaxRlist_P2 :
@@ -140,9 +140,9 @@ Proof.
intros; induction l as [| r l Hrecl].
simpl in H; elim H; trivial.
induction l as [| r0 l Hrecl0].
- simpl in |- *; left; reflexivity.
- change (In (Rmax r (MaxRlist (cons r0 l))) (cons r (cons r0 l))) in |- *;
- unfold Rmax in |- *; case (Rle_dec r (MaxRlist (cons r0 l)));
+ simpl; left; reflexivity.
+ change (In (Rmax r (MaxRlist (cons r0 l))) (cons r (cons r0 l)));
+ unfold Rmax; case (Rle_dec r (MaxRlist (cons r0 l)));
intro.
right; apply Hrecl; exists r0; left; reflexivity.
left; reflexivity.
@@ -164,7 +164,7 @@ Lemma pos_Rl_P1 :
Proof.
intros; induction l as [| r l Hrecl];
[ elim (lt_n_O _ H)
- | simpl in |- *; case (Rlength l); [ reflexivity | intro; reflexivity ] ].
+ | simpl; case (Rlength l); [ reflexivity | intro; reflexivity ] ].
Qed.
Lemma pos_Rl_P2 :
@@ -177,14 +177,14 @@ Proof.
split; intro.
elim H; intro.
exists 0%nat; split;
- [ simpl in |- *; apply lt_O_Sn | simpl in |- *; apply H0 ].
+ [ simpl; apply lt_O_Sn | simpl; apply H0 ].
elim Hrecl; intros; assert (H3 := H1 H0); elim H3; intros; elim H4; intros;
exists (S x0); split;
- [ simpl in |- *; apply lt_n_S; assumption | simpl in |- *; assumption ].
+ [ simpl; apply lt_n_S; assumption | simpl; assumption ].
elim H; intros; elim H0; intros; elim (zerop x0); intro.
rewrite a in H2; simpl in H2; left; assumption.
right; elim Hrecl; intros; apply H4; assert (H5 : S (pred x0) = x0).
- symmetry in |- *; apply S_pred with 0%nat; assumption.
+ symmetry ; apply S_pred with 0%nat; assumption.
exists (pred x0); split;
[ simpl in H1; apply lt_S_n; rewrite H5; assumption
| rewrite <- H5 in H2; simpl in H2; assumption ].
@@ -201,18 +201,18 @@ Proof.
exists nil; intros; split;
[ reflexivity | intros; simpl in H0; elim (lt_n_O _ H0) ].
assert (H0 : In r (cons r l)).
- simpl in |- *; left; reflexivity.
+ simpl; left; reflexivity.
assert (H1 := H _ H0);
assert (H2 : forall x:R, In x l -> exists y : R, P x y).
- intros; apply H; simpl in |- *; right; assumption.
+ intros; apply H; simpl; right; assumption.
assert (H3 := Hrecl H2); elim H1; intros; elim H3; intros; exists (cons x x0);
intros; elim H5; clear H5; intros; split.
- simpl in |- *; rewrite H5; reflexivity.
+ simpl; rewrite H5; reflexivity.
intros; elim (zerop i); intro.
- rewrite a; simpl in |- *; assumption.
+ rewrite a; simpl; assumption.
assert (H8 : i = S (pred i)).
apply S_pred with 0%nat; assumption.
- rewrite H8; simpl in |- *; apply H6; simpl in H7; apply lt_S_n; rewrite <- H8;
+ rewrite H8; simpl; apply H6; simpl in H7; apply lt_S_n; rewrite <- H8;
assumption.
Qed.
@@ -271,7 +271,7 @@ Lemma RList_P0 :
Proof.
intros; induction l as [| r l Hrecl];
[ left; reflexivity
- | simpl in |- *; case (Rle_dec r a); intro;
+ | simpl; case (Rle_dec r a); intro;
[ right; reflexivity | left; reflexivity ] ].
Qed.
@@ -279,41 +279,41 @@ Lemma RList_P1 :
forall (l:Rlist) (a:R), ordered_Rlist l -> ordered_Rlist (insert l a).
Proof.
intros; induction l as [| r l Hrecl].
- simpl in |- *; unfold ordered_Rlist in |- *; intros; simpl in H0;
+ simpl; unfold ordered_Rlist; intros; simpl in H0;
elim (lt_n_O _ H0).
- simpl in |- *; case (Rle_dec r a); intro.
+ simpl; case (Rle_dec r a); intro.
assert (H1 : ordered_Rlist l).
- unfold ordered_Rlist in |- *; unfold ordered_Rlist in H; intros;
+ unfold ordered_Rlist; unfold ordered_Rlist in H; intros;
assert (H1 : (S i < pred (Rlength (cons r l)))%nat);
- [ simpl in |- *; replace (Rlength l) with (S (pred (Rlength l)));
+ [ simpl; replace (Rlength l) with (S (pred (Rlength l)));
[ apply lt_n_S; assumption
- | symmetry in |- *; apply S_pred with 0%nat; apply neq_O_lt; red in |- *;
+ | symmetry ; apply S_pred with 0%nat; apply neq_O_lt; red;
intro; rewrite <- H1 in H0; simpl in H0; elim (lt_n_O _ H0) ]
| apply (H _ H1) ].
- assert (H2 := Hrecl H1); unfold ordered_Rlist in |- *; intros;
+ assert (H2 := Hrecl H1); unfold ordered_Rlist; intros;
induction i as [| i Hreci].
- simpl in |- *; assert (H3 := RList_P0 l a); elim H3; intro.
+ simpl; assert (H3 := RList_P0 l a); elim H3; intro.
rewrite H4; assumption.
induction l as [| r1 l Hrecl0];
- [ simpl in |- *; assumption
- | rewrite H4; apply (H 0%nat); simpl in |- *; apply lt_O_Sn ].
- simpl in |- *; apply H2; simpl in H0; apply lt_S_n;
+ [ simpl; assumption
+ | rewrite H4; apply (H 0%nat); simpl; apply lt_O_Sn ].
+ simpl; apply H2; simpl in H0; apply lt_S_n;
replace (S (pred (Rlength (insert l a)))) with (Rlength (insert l a));
[ assumption
- | apply S_pred with 0%nat; apply neq_O_lt; red in |- *; intro;
+ | apply S_pred with 0%nat; apply neq_O_lt; red; intro;
rewrite <- H3 in H0; elim (lt_n_O _ H0) ].
- unfold ordered_Rlist in |- *; intros; induction i as [| i Hreci];
- [ simpl in |- *; auto with real
- | change (pos_Rl (cons r l) i <= pos_Rl (cons r l) (S i)) in |- *; apply H;
- simpl in H0; simpl in |- *; apply (lt_S_n _ _ H0) ].
+ unfold ordered_Rlist; intros; induction i as [| i Hreci];
+ [ simpl; auto with real
+ | change (pos_Rl (cons r l) i <= pos_Rl (cons r l) (S i)); apply H;
+ simpl in H0; simpl; apply (lt_S_n _ _ H0) ].
Qed.
Lemma RList_P2 :
forall l1 l2:Rlist, ordered_Rlist l2 -> ordered_Rlist (cons_ORlist l1 l2).
Proof.
simple induction l1;
- [ intros; simpl in |- *; apply H
- | intros; simpl in |- *; apply H; apply RList_P1; assumption ].
+ [ intros; simpl; apply H
+ | intros; simpl; apply H; apply RList_P1; assumption ].
Qed.
Lemma RList_P3 :
@@ -324,11 +324,11 @@ Proof.
[ induction l as [| r l Hrecl] | induction l as [| r l Hrecl] ].
elim H.
elim H; intro;
- [ exists 0%nat; split; [ apply H0 | simpl in |- *; apply lt_O_Sn ]
+ [ exists 0%nat; split; [ apply H0 | simpl; apply lt_O_Sn ]
| elim (Hrecl H0); intros; elim H1; clear H1; intros; exists (S x0); split;
- [ apply H1 | simpl in |- *; apply lt_n_S; assumption ] ].
+ [ apply H1 | simpl; apply lt_n_S; assumption ] ].
elim H; intros; elim H0; intros; elim (lt_n_O _ H2).
- simpl in |- *; elim H; intros; elim H0; clear H0; intros;
+ simpl; elim H; intros; elim H0; clear H0; intros;
induction x0 as [| x0 Hrecx0];
[ left; apply H0
| right; apply Hrecl; exists x0; split;
@@ -338,10 +338,10 @@ Qed.
Lemma RList_P4 :
forall (l1:Rlist) (a:R), ordered_Rlist (cons a l1) -> ordered_Rlist l1.
Proof.
- intros; unfold ordered_Rlist in |- *; intros; apply (H (S i)); simpl in |- *;
+ intros; unfold ordered_Rlist; intros; apply (H (S i)); simpl;
replace (Rlength l1) with (S (pred (Rlength l1)));
[ apply lt_n_S; assumption
- | symmetry in |- *; apply S_pred with 0%nat; apply neq_O_lt; red in |- *;
+ | symmetry ; apply S_pred with 0%nat; apply neq_O_lt; red;
intro; rewrite <- H1 in H0; elim (lt_n_O _ H0) ].
Qed.
@@ -350,11 +350,11 @@ Lemma RList_P5 :
Proof.
intros; induction l as [| r l Hrecl];
[ elim H0
- | simpl in |- *; elim H0; intro;
+ | simpl; elim H0; intro;
[ rewrite H1; right; reflexivity
| apply Rle_trans with (pos_Rl l 0);
- [ apply (H 0%nat); simpl in |- *; induction l as [| r0 l Hrecl0];
- [ elim H1 | simpl in |- *; apply lt_O_Sn ]
+ [ apply (H 0%nat); simpl; induction l as [| r0 l Hrecl0];
+ [ elim H1 | simpl; apply lt_O_Sn ]
| apply Hrecl; [ eapply RList_P4; apply H | assumption ] ] ] ].
Qed.
@@ -366,13 +366,13 @@ Lemma RList_P6 :
Proof.
simple induction l; split; intro.
intros; right; reflexivity.
- unfold ordered_Rlist in |- *; intros; simpl in H0; elim (lt_n_O _ H0).
+ unfold ordered_Rlist; intros; simpl in H0; elim (lt_n_O _ H0).
intros; induction i as [| i Hreci];
[ induction j as [| j Hrecj];
[ right; reflexivity
- | simpl in |- *; apply Rle_trans with (pos_Rl r0 0);
- [ apply (H0 0%nat); simpl in |- *; simpl in H2; apply neq_O_lt;
- red in |- *; intro; rewrite <- H3 in H2;
+ | simpl; apply Rle_trans with (pos_Rl r0 0);
+ [ apply (H0 0%nat); simpl; simpl in H2; apply neq_O_lt;
+ red; intro; rewrite <- H3 in H2;
assert (H4 := lt_S_n _ _ H2); elim (lt_n_O _ H4)
| elim H; intros; apply H3;
[ apply RList_P4 with r; assumption
@@ -380,12 +380,12 @@ Proof.
| simpl in H2; apply lt_S_n; assumption ] ] ]
| induction j as [| j Hrecj];
[ elim (le_Sn_O _ H1)
- | simpl in |- *; elim H; intros; apply H3;
+ | simpl; elim H; intros; apply H3;
[ apply RList_P4 with r; assumption
| apply le_S_n; assumption
| simpl in H2; apply lt_S_n; assumption ] ] ].
- unfold ordered_Rlist in |- *; intros; apply H0;
- [ apply le_n_Sn | simpl in |- *; simpl in H1; apply lt_n_S; assumption ].
+ unfold ordered_Rlist; intros; apply H0;
+ [ apply le_n_Sn | simpl; simpl in H1; apply lt_n_S; assumption ].
Qed.
Lemma RList_P7 :
@@ -397,11 +397,11 @@ Proof.
clear H1; intros; assert (H4 := H1 H0); elim H4; clear H4;
intros; elim H4; clear H4; intros; rewrite H4;
assert (H6 : Rlength l = S (pred (Rlength l))).
- apply S_pred with 0%nat; apply neq_O_lt; red in |- *; intro;
+ apply S_pred with 0%nat; apply neq_O_lt; red; intro;
rewrite <- H6 in H5; elim (lt_n_O _ H5).
apply H3;
[ rewrite H6 in H5; apply lt_n_Sm_le; assumption
- | apply lt_pred_n_n; apply neq_O_lt; red in |- *; intro; rewrite <- H7 in H5;
+ | apply lt_pred_n_n; apply neq_O_lt; red; intro; rewrite <- H7 in H5;
elim (lt_n_O _ H5) ].
Qed.
@@ -420,7 +420,7 @@ Proof.
[ left; assumption
| right; left; assumption
| right; right; assumption ] ]
- | simpl in |- *; case (Rle_dec r a); intro;
+ | simpl; case (Rle_dec r a); intro;
[ simpl in H0; decompose [or] H0;
[ right; elim (H a x); intros; apply H3; left
| left
@@ -435,14 +435,14 @@ Proof.
simple induction l1.
intros; split; intro;
[ simpl in H; right; assumption
- | simpl in |- *; elim H; intro; [ elim H0 | assumption ] ].
+ | simpl; elim H; intro; [ elim H0 | assumption ] ].
intros; split.
- simpl in |- *; intros; elim (H (insert l2 r) x); intros; assert (H3 := H1 H0);
+ simpl; intros; elim (H (insert l2 r) x); intros; assert (H3 := H1 H0);
elim H3; intro;
[ left; right; assumption
| elim (RList_P8 l2 r x); intros H5 _; assert (H6 := H5 H4); elim H6; intro;
[ left; left; assumption | right; assumption ] ].
- intro; simpl in |- *; elim (H (insert l2 r) x); intros _ H1; apply H1;
+ intro; simpl; elim (H (insert l2 r) x); intros _ H1; apply H1;
elim H0; intro;
[ elim H2; intro;
[ right; elim (RList_P8 l2 r x); intros _ H4; apply H4; left; assumption
@@ -455,8 +455,8 @@ Lemma RList_P10 :
Proof.
intros; induction l as [| r l Hrecl];
[ reflexivity
- | simpl in |- *; case (Rle_dec r a); intro;
- [ simpl in |- *; rewrite Hrecl; reflexivity | reflexivity ] ].
+ | simpl; case (Rle_dec r a); intro;
+ [ simpl; rewrite Hrecl; reflexivity | reflexivity ] ].
Qed.
Lemma RList_P11 :
@@ -465,7 +465,7 @@ Lemma RList_P11 :
Proof.
simple induction l1;
[ intro; reflexivity
- | intros; simpl in |- *; rewrite (H (insert l2 r)); rewrite RList_P10;
+ | intros; simpl; rewrite (H (insert l2 r)); rewrite RList_P10;
apply INR_eq; rewrite S_INR; do 2 rewrite plus_INR;
rewrite S_INR; ring ].
Qed.
@@ -477,7 +477,7 @@ Proof.
simple induction l;
[ intros; elim (lt_n_O _ H)
| intros; induction i as [| i Hreci];
- [ reflexivity | simpl in |- *; apply H; apply lt_S_n; apply H0 ] ].
+ [ reflexivity | simpl; apply H; apply lt_S_n; apply H0 ] ].
Qed.
Lemma RList_P13 :
@@ -494,13 +494,13 @@ Proof.
change
(pos_Rl (mid_Rlist (cons r1 r2) r) (S i) =
(pos_Rl (cons r1 r2) i + pos_Rl (cons r1 r2) (S i)) / 2)
- in |- *; apply H0; simpl in |- *; apply lt_S_n; assumption.
+ ; apply H0; simpl; apply lt_S_n; assumption.
Qed.
Lemma RList_P14 : forall (l:Rlist) (a:R), Rlength (mid_Rlist l a) = Rlength l.
Proof.
simple induction l; intros;
- [ reflexivity | simpl in |- *; rewrite (H r); reflexivity ].
+ [ reflexivity | simpl; rewrite (H r); reflexivity ].
Qed.
Lemma RList_P15 :
@@ -511,7 +511,7 @@ Lemma RList_P15 :
Proof.
intros; apply Rle_antisym.
induction l1 as [| r l1 Hrecl1];
- [ simpl in |- *; simpl in H1; right; symmetry in |- *; assumption
+ [ simpl; simpl in H1; right; symmetry ; assumption
| elim (RList_P9 (cons r l1) l2 (pos_Rl (cons r l1) 0)); intros;
assert
(H4 :
@@ -520,7 +520,7 @@ Proof.
| assert (H5 := H3 H4); apply RList_P5;
[ apply RList_P2; assumption | assumption ] ] ].
induction l1 as [| r l1 Hrecl1];
- [ simpl in |- *; simpl in H1; right; assumption
+ [ simpl; simpl in H1; right; assumption
| assert
(H2 :
In (pos_Rl (cons_ORlist (cons r l1) l2) 0) (cons_ORlist (cons r l1) l2));
@@ -528,7 +528,7 @@ Proof.
(RList_P3 (cons_ORlist (cons r l1) l2)
(pos_Rl (cons_ORlist (cons r l1) l2) 0));
intros; apply H3; exists 0%nat; split;
- [ reflexivity | rewrite RList_P11; simpl in |- *; apply lt_O_Sn ]
+ [ reflexivity | rewrite RList_P11; simpl; apply lt_O_Sn ]
| elim (RList_P9 (cons r l1) l2 (pos_Rl (cons_ORlist (cons r l1) l2) 0));
intros; assert (H5 := H3 H2); elim H5; intro;
[ apply RList_P5; assumption
@@ -545,7 +545,7 @@ Lemma RList_P16 :
Proof.
intros; apply Rle_antisym.
induction l1 as [| r l1 Hrecl1].
- simpl in |- *; simpl in H1; right; symmetry in |- *; assumption.
+ simpl; simpl in H1; right; symmetry ; assumption.
assert
(H2 :
In
@@ -557,7 +557,7 @@ Proof.
(pos_Rl (cons_ORlist (cons r l1) l2)
(pred (Rlength (cons_ORlist (cons r l1) l2)))));
intros; apply H3; exists (pred (Rlength (cons_ORlist (cons r l1) l2)));
- split; [ reflexivity | rewrite RList_P11; simpl in |- *; apply lt_n_Sn ]
+ split; [ reflexivity | rewrite RList_P11; simpl; apply lt_n_Sn ]
| elim
(RList_P9 (cons r l1) l2
(pos_Rl (cons_ORlist (cons r l1) l2)
@@ -565,7 +565,7 @@ Proof.
intros; assert (H5 := H3 H2); elim H5; intro;
[ apply RList_P7; assumption | rewrite H1; apply RList_P7; assumption ] ].
induction l1 as [| r l1 Hrecl1].
- simpl in |- *; simpl in H1; right; assumption.
+ simpl; simpl in H1; right; assumption.
elim
(RList_P9 (cons r l1) l2 (pos_Rl (cons r l1) (pred (Rlength (cons r l1)))));
intros;
@@ -573,10 +573,10 @@ Proof.
(H4 :
In (pos_Rl (cons r l1) (pred (Rlength (cons r l1)))) (cons r l1) \/
In (pos_Rl (cons r l1) (pred (Rlength (cons r l1)))) l2);
- [ left; change (In (pos_Rl (cons r l1) (Rlength l1)) (cons r l1)) in |- *;
+ [ left; change (In (pos_Rl (cons r l1) (Rlength l1)) (cons r l1));
elim (RList_P3 (cons r l1) (pos_Rl (cons r l1) (Rlength l1)));
intros; apply H5; exists (Rlength l1); split;
- [ reflexivity | simpl in |- *; apply lt_n_Sn ]
+ [ reflexivity | simpl; apply lt_n_Sn ]
| assert (H5 := H3 H4); apply RList_P7;
[ apply RList_P2; assumption
| elim
@@ -587,7 +587,7 @@ Proof.
(RList_P3 (cons r l1)
(pos_Rl (cons r l1) (pred (Rlength (cons r l1)))));
intros; apply H9; exists (pred (Rlength (cons r l1)));
- split; [ reflexivity | simpl in |- *; apply lt_n_Sn ] ] ].
+ split; [ reflexivity | simpl; apply lt_n_Sn ] ] ].
Qed.
Lemma RList_P17 :
@@ -599,14 +599,14 @@ Proof.
simple induction l1.
intros; elim H0.
intros; induction i as [| i Hreci].
- simpl in |- *; elim H1; intro;
+ simpl; elim H1; intro;
[ simpl in H2; rewrite H4 in H2; elim (Rlt_irrefl _ H2)
| apply RList_P5; [ apply RList_P4 with r; assumption | assumption ] ].
- simpl in |- *; simpl in H2; elim H1; intro.
+ simpl; simpl in H2; elim H1; intro.
rewrite H4 in H2; assert (H5 : r <= pos_Rl r0 i);
[ apply Rle_trans with (pos_Rl r0 0);
- [ apply (H0 0%nat); simpl in |- *; simpl in H3; apply neq_O_lt;
- red in |- *; intro; rewrite <- H5 in H3; elim (lt_n_O _ H3)
+ [ apply (H0 0%nat); simpl; simpl in H3; apply neq_O_lt;
+ red; intro; rewrite <- H5 in H3; elim (lt_n_O _ H3)
| elim (RList_P6 r0); intros; apply H5;
[ apply RList_P4 with r; assumption
| apply le_O_n
@@ -618,7 +618,7 @@ Proof.
| simpl in H3; apply lt_S_n;
replace (S (pred (Rlength r0))) with (Rlength r0);
[ apply H3
- | apply S_pred with 0%nat; apply neq_O_lt; red in |- *; intro;
+ | apply S_pred with 0%nat; apply neq_O_lt; red; intro;
rewrite <- H5 in H3; elim (lt_n_O _ H3) ] ].
Qed.
@@ -626,7 +626,7 @@ Lemma RList_P18 :
forall (l:Rlist) (f:R -> R), Rlength (app_Rlist l f) = Rlength l.
Proof.
simple induction l; intros;
- [ reflexivity | simpl in |- *; rewrite H; reflexivity ].
+ [ reflexivity | simpl; rewrite H; reflexivity ].
Qed.
Lemma RList_P19 :
@@ -666,7 +666,7 @@ Lemma RList_P23 :
Rlength (cons_Rlist l1 l2) = (Rlength l1 + Rlength l2)%nat.
Proof.
simple induction l1;
- [ intro; reflexivity | intros; simpl in |- *; rewrite H; reflexivity ].
+ [ intro; reflexivity | intros; simpl; rewrite H; reflexivity ].
Qed.
Lemma RList_P24 :
@@ -685,9 +685,9 @@ Proof.
[ replace (Rlength r0 + Rlength (cons r1 l2))%nat with
(S (Rlength r0 + Rlength l2));
[ reflexivity
- | simpl in |- *; apply INR_eq; rewrite S_INR; do 2 rewrite plus_INR;
+ | simpl; apply INR_eq; rewrite S_INR; do 2 rewrite plus_INR;
rewrite S_INR; ring ]
- | simpl in |- *; apply INR_eq; do 3 rewrite S_INR; do 2 rewrite plus_INR;
+ | simpl; apply INR_eq; do 3 rewrite S_INR; do 2 rewrite plus_INR;
rewrite S_INR; ring ].
Qed.
@@ -699,27 +699,27 @@ Lemma RList_P25 :
ordered_Rlist (cons_Rlist l1 l2).
Proof.
simple induction l1.
- intros; simpl in |- *; assumption.
+ intros; simpl; assumption.
simple induction r0.
- intros; simpl in |- *; simpl in H2; unfold ordered_Rlist in |- *; intros;
+ intros; simpl; simpl in H2; unfold ordered_Rlist; intros;
simpl in H3.
induction i as [| i Hreci].
- simpl in |- *; assumption.
- change (pos_Rl l2 i <= pos_Rl l2 (S i)) in |- *; apply (H1 i); apply lt_S_n;
+ simpl; assumption.
+ change (pos_Rl l2 i <= pos_Rl l2 (S i)); apply (H1 i); apply lt_S_n;
replace (S (pred (Rlength l2))) with (Rlength l2);
[ assumption
- | apply S_pred with 0%nat; apply neq_O_lt; red in |- *; intro;
+ | apply S_pred with 0%nat; apply neq_O_lt; red; intro;
rewrite <- H4 in H3; elim (lt_n_O _ H3) ].
intros; clear H; assert (H : ordered_Rlist (cons_Rlist (cons r1 r2) l2)).
apply H0; try assumption.
apply RList_P4 with r; assumption.
- unfold ordered_Rlist in |- *; intros; simpl in H4;
+ unfold ordered_Rlist; intros; simpl in H4;
induction i as [| i Hreci].
- simpl in |- *; apply (H1 0%nat); simpl in |- *; apply lt_O_Sn.
+ simpl; apply (H1 0%nat); simpl; apply lt_O_Sn.
change
(pos_Rl (cons_Rlist (cons r1 r2) l2) i <=
- pos_Rl (cons_Rlist (cons r1 r2) l2) (S i)) in |- *;
- apply (H i); simpl in |- *; apply lt_S_n; assumption.
+ pos_Rl (cons_Rlist (cons r1 r2) l2) (S i));
+ apply (H i); simpl; apply lt_S_n; assumption.
Qed.
Lemma RList_P26 :
@@ -738,13 +738,13 @@ Lemma RList_P27 :
cons_Rlist l1 (cons_Rlist l2 l3) = cons_Rlist (cons_Rlist l1 l2) l3.
Proof.
simple induction l1; intros;
- [ reflexivity | simpl in |- *; rewrite (H l2 l3); reflexivity ].
+ [ reflexivity | simpl; rewrite (H l2 l3); reflexivity ].
Qed.
Lemma RList_P28 : forall l:Rlist, cons_Rlist l nil = l.
Proof.
simple induction l;
- [ reflexivity | intros; simpl in |- *; rewrite H; reflexivity ].
+ [ reflexivity | intros; simpl; rewrite H; reflexivity ].
Qed.
Lemma RList_P29 :
@@ -759,23 +759,23 @@ Proof.
replace (cons_Rlist l1 (cons r r0)) with
(cons_Rlist (cons_Rlist l1 (cons r nil)) r0).
inversion H0.
- rewrite <- minus_n_n; simpl in |- *; rewrite RList_P26.
+ rewrite <- minus_n_n; simpl; rewrite RList_P26.
clear l2 r0 H i H0 H1 H2; induction l1 as [| r0 l1 Hrecl1].
reflexivity.
- simpl in |- *; assumption.
- rewrite RList_P23; rewrite plus_comm; simpl in |- *; apply lt_n_Sn.
+ simpl; assumption.
+ rewrite RList_P23; rewrite plus_comm; simpl; apply lt_n_Sn.
replace (S m - Rlength l1)%nat with (S (S m - S (Rlength l1))).
- rewrite H3; simpl in |- *;
+ rewrite H3; simpl;
replace (S (Rlength l1)) with (Rlength (cons_Rlist l1 (cons r nil))).
apply (H (cons_Rlist l1 (cons r nil)) i).
- rewrite RList_P23; rewrite plus_comm; simpl in |- *; rewrite <- H3;
+ rewrite RList_P23; rewrite plus_comm; simpl; rewrite <- H3;
apply le_n_S; assumption.
- repeat rewrite RList_P23; simpl in |- *; rewrite RList_P23 in H1;
+ repeat rewrite RList_P23; simpl; rewrite RList_P23 in H1;
rewrite plus_comm in H1; simpl in H1; rewrite (plus_comm (Rlength l1));
- simpl in |- *; rewrite plus_comm; apply H1.
+ simpl; rewrite plus_comm; apply H1.
rewrite RList_P23; rewrite plus_comm; reflexivity.
- change (S (m - Rlength l1) = (S m - Rlength l1)%nat) in |- *;
+ change (S (m - Rlength l1) = (S m - Rlength l1)%nat);
apply minus_Sn_m; assumption.
replace (cons r r0) with (cons_Rlist (cons r nil) r0);
- [ symmetry in |- *; apply RList_P27 | reflexivity ].
+ [ symmetry ; apply RList_P27 | reflexivity ].
Qed.
diff --git a/theories/Reals/R_Ifp.v b/theories/Reals/R_Ifp.v
index 9b64ea5f0..d0d4abb30 100644
--- a/theories/Reals/R_Ifp.v
+++ b/theories/Reals/R_Ifp.v
@@ -45,7 +45,7 @@ Proof.
intros; generalize (Rplus_le_compat_l 1 (IZR z) r H); intro; clear H;
rewrite (Rplus_comm 1 (IZR z)) in H1; rewrite (Rplus_comm 1 r) in H1;
cut (1 = IZR 1); auto with zarith real.
- intro; generalize H1; pattern 1 at 1 in |- *; rewrite H; intro; clear H H1;
+ intro; generalize H1; pattern 1 at 1; rewrite H; intro; clear H H1;
rewrite <- (plus_IZR z 1) in H2; apply (tech_up r (z + 1));
auto with zarith real.
Qed.
@@ -53,8 +53,8 @@ Qed.
(**********)
Lemma fp_R0 : frac_part 0 = 0.
Proof.
- unfold frac_part in |- *; unfold Int_part in |- *; elim (archimed 0); intros;
- unfold Rminus in |- *; elim (Rplus_ne (- IZR (up 0 - 1)));
+ unfold frac_part; unfold Int_part; elim (archimed 0); intros;
+ unfold Rminus; elim (Rplus_ne (- IZR (up 0 - 1)));
intros a b; rewrite b; clear a b; rewrite <- Z_R_minus;
cut (up 0 = 1%Z).
intro; rewrite H1;
@@ -81,21 +81,21 @@ Qed.
(**********)
Lemma base_fp : forall r:R, frac_part r >= 0 /\ frac_part r < 1.
Proof.
- intro; unfold frac_part in |- *; unfold Int_part in |- *; split.
+ intro; unfold frac_part; unfold Int_part; split.
(*sup a O*)
cut (r - IZR (up r) >= -1).
- rewrite <- Z_R_minus; simpl in |- *; intro; unfold Rminus in |- *;
+ rewrite <- Z_R_minus; simpl; intro; unfold Rminus;
rewrite Ropp_plus_distr; rewrite <- Rplus_assoc;
- fold (r - IZR (up r)) in |- *; fold (r - IZR (up r) - -1) in |- *;
+ fold (r - IZR (up r)); fold (r - IZR (up r) - -1);
apply Rge_minus; auto with zarith real.
rewrite <- Ropp_minus_distr; apply Ropp_le_ge_contravar; elim (for_base_fp r);
auto with zarith real.
(*inf a 1*)
cut (r - IZR (up r) < 0).
- rewrite <- Z_R_minus; simpl in |- *; intro; unfold Rminus in |- *;
+ rewrite <- Z_R_minus; simpl; intro; unfold Rminus;
rewrite Ropp_plus_distr; rewrite <- Rplus_assoc;
- fold (r - IZR (up r)) in |- *; rewrite Ropp_involutive;
- elim (Rplus_ne 1); intros a b; pattern 1 at 2 in |- *;
+ fold (r - IZR (up r)); rewrite Ropp_involutive;
+ elim (Rplus_ne 1); intros a b; pattern 1 at 2;
rewrite <- a; clear a b; rewrite (Rplus_comm (r - IZR (up r)) 1);
apply Rplus_lt_compat_l; auto with zarith real.
elim (for_base_fp r); intros; rewrite <- Ropp_0; rewrite <- Ropp_minus_distr;
@@ -110,8 +110,8 @@ Qed.
Lemma base_Int_part :
forall r:R, IZR (Int_part r) <= r /\ IZR (Int_part r) - r > -1.
Proof.
- intro; unfold Int_part in |- *; elim (archimed r); intros.
- split; rewrite <- (Z_R_minus (up r) 1); simpl in |- *.
+ intro; unfold Int_part; elim (archimed r); intros.
+ split; rewrite <- (Z_R_minus (up r) 1); simpl.
generalize (Rle_minus (IZR (up r) - r) 1 H0); intro; unfold Rminus in H1;
rewrite (Rplus_assoc (IZR (up r)) (- r) (-1)) in H1;
rewrite (Rplus_comm (- r) (-1)) in H1;
@@ -132,29 +132,29 @@ Qed.
(**********)
Lemma Int_part_INR : forall n:nat, Int_part (INR n) = Z.of_nat n.
Proof.
- intros n; unfold Int_part in |- *.
+ intros n; unfold Int_part.
cut (up (INR n) = (Z.of_nat n + Z.of_nat 1)%Z).
- intros H'; rewrite H'; simpl in |- *; ring.
+ intros H'; rewrite H'; simpl; ring.
symmetry; apply tech_up; auto.
replace (Z.of_nat n + Z.of_nat 1)%Z with (Z.of_nat (S n)).
repeat rewrite <- INR_IZR_INZ.
apply lt_INR; auto.
- rewrite Z.add_comm; rewrite <- Znat.Nat2Z.inj_add; simpl in |- *; auto.
- rewrite plus_IZR; simpl in |- *; auto with real.
+ rewrite Z.add_comm; rewrite <- Znat.Nat2Z.inj_add; simpl; auto.
+ rewrite plus_IZR; simpl; auto with real.
repeat rewrite <- INR_IZR_INZ; auto with real.
Qed.
(**********)
Lemma fp_nat : forall r:R, frac_part r = 0 -> exists c : Z, r = IZR c.
Proof.
- unfold frac_part in |- *; intros; split with (Int_part r);
+ unfold frac_part; intros; split with (Int_part r);
apply Rminus_diag_uniq; auto with zarith real.
Qed.
(**********)
Lemma R0_fp_O : forall r:R, 0 <> frac_part r -> 0 <> r.
Proof.
- red in |- *; intros; rewrite <- H0 in H; generalize fp_R0; intro;
+ red; intros; rewrite <- H0 in H; generalize fp_R0; intro;
auto with zarith real.
Qed.
@@ -243,7 +243,7 @@ Proof.
intro; rewrite H1 in H; clear H1;
rewrite <- (plus_IZR (Int_part r1 - Int_part r2) 1) in H;
generalize (up_tech (r1 - r2) (Int_part r1 - Int_part r2) H0 H);
- intros; clear H H0; unfold Int_part at 1 in |- *;
+ intros; clear H H0; unfold Int_part at 1;
omega.
Qed.
@@ -336,7 +336,7 @@ Proof.
generalize (Rlt_le (IZR (Int_part r1 - Int_part r2 - 1)) (r1 - r2) H);
intro; clear H;
generalize (up_tech (r1 - r2) (Int_part r1 - Int_part r2 - 1) H1 H0);
- intros; clear H0 H1; unfold Int_part at 1 in |- *;
+ intros; clear H0 H1; unfold Int_part at 1;
omega.
Qed.
@@ -346,9 +346,9 @@ Lemma Rminus_fp1 :
frac_part r1 >= frac_part r2 ->
frac_part (r1 - r2) = frac_part r1 - frac_part r2.
Proof.
- intros; unfold frac_part in |- *; generalize (Rminus_Int_part1 r1 r2 H);
+ intros; unfold frac_part; generalize (Rminus_Int_part1 r1 r2 H);
intro; rewrite H0; rewrite <- (Z_R_minus (Int_part r1) (Int_part r2));
- unfold Rminus in |- *;
+ unfold Rminus;
rewrite (Ropp_plus_distr (IZR (Int_part r1)) (- IZR (Int_part r2)));
rewrite (Ropp_plus_distr r2 (- IZR (Int_part r2)));
rewrite (Ropp_involutive (IZR (Int_part r2)));
@@ -366,17 +366,17 @@ Lemma Rminus_fp2 :
frac_part r1 < frac_part r2 ->
frac_part (r1 - r2) = frac_part r1 - frac_part r2 + 1.
Proof.
- intros; unfold frac_part in |- *; generalize (Rminus_Int_part2 r1 r2 H);
+ intros; unfold frac_part; generalize (Rminus_Int_part2 r1 r2 H);
intro; rewrite H0; rewrite <- (Z_R_minus (Int_part r1 - Int_part r2) 1);
rewrite <- (Z_R_minus (Int_part r1) (Int_part r2));
- unfold Rminus in |- *;
+ unfold Rminus;
rewrite
(Ropp_plus_distr (IZR (Int_part r1) + - IZR (Int_part r2)) (- IZR 1))
; rewrite (Ropp_plus_distr r2 (- IZR (Int_part r2)));
rewrite (Ropp_involutive (IZR 1));
rewrite (Ropp_involutive (IZR (Int_part r2)));
rewrite (Ropp_plus_distr (IZR (Int_part r1)));
- rewrite (Ropp_involutive (IZR (Int_part r2))); simpl in |- *;
+ rewrite (Ropp_involutive (IZR (Int_part r2))); simpl;
rewrite <-
(Rplus_assoc (r1 + - r2) (- IZR (Int_part r1) + IZR (Int_part r2)) 1)
; rewrite (Rplus_assoc r1 (- r2) (- IZR (Int_part r1) + IZR (Int_part r2)));
@@ -451,7 +451,7 @@ Proof.
rewrite <- (plus_IZR (Int_part r1 + Int_part r2) 1) in H0;
rewrite <- (plus_IZR (Int_part r1 + Int_part r2 + 1) 1) in H0;
generalize (up_tech (r1 + r2) (Int_part r1 + Int_part r2 + 1) H H0);
- intro; clear H H0; unfold Int_part at 1 in |- *; omega.
+ intro; clear H H0; unfold Int_part at 1; omega.
Qed.
(**********)
@@ -514,7 +514,7 @@ Proof.
rewrite <- (plus_IZR (Int_part r1) (Int_part r2)) in H1;
rewrite <- (plus_IZR (Int_part r1 + Int_part r2) 1) in H1;
generalize (up_tech (r1 + r2) (Int_part r1 + Int_part r2) H0 H1);
- intro; clear H0 H1; unfold Int_part at 1 in |- *;
+ intro; clear H0 H1; unfold Int_part at 1;
omega.
Qed.
@@ -524,17 +524,17 @@ Lemma plus_frac_part1 :
frac_part r1 + frac_part r2 >= 1 ->
frac_part (r1 + r2) = frac_part r1 + frac_part r2 - 1.
Proof.
- intros; unfold frac_part in |- *; generalize (plus_Int_part1 r1 r2 H); intro;
+ intros; unfold frac_part; generalize (plus_Int_part1 r1 r2 H); intro;
rewrite H0; rewrite (plus_IZR (Int_part r1 + Int_part r2) 1);
- rewrite (plus_IZR (Int_part r1) (Int_part r2)); simpl in |- *;
- unfold Rminus at 3 4 in |- *;
+ rewrite (plus_IZR (Int_part r1) (Int_part r2)); simpl;
+ unfold Rminus at 3 4;
rewrite (Rplus_assoc r1 (- IZR (Int_part r1)) (r2 + - IZR (Int_part r2)));
rewrite (Rplus_comm r2 (- IZR (Int_part r2)));
rewrite <- (Rplus_assoc (- IZR (Int_part r1)) (- IZR (Int_part r2)) r2);
rewrite (Rplus_comm (- IZR (Int_part r1) + - IZR (Int_part r2)) r2);
rewrite <- (Rplus_assoc r1 r2 (- IZR (Int_part r1) + - IZR (Int_part r2)));
rewrite <- (Ropp_plus_distr (IZR (Int_part r1)) (IZR (Int_part r2)));
- unfold Rminus in |- *;
+ unfold Rminus;
rewrite
(Rplus_assoc (r1 + r2) (- (IZR (Int_part r1) + IZR (Int_part r2))) (-1))
; rewrite <- (Ropp_plus_distr (IZR (Int_part r1) + IZR (Int_part r2)) 1);
@@ -547,14 +547,14 @@ Lemma plus_frac_part2 :
frac_part r1 + frac_part r2 < 1 ->
frac_part (r1 + r2) = frac_part r1 + frac_part r2.
Proof.
- intros; unfold frac_part in |- *; generalize (plus_Int_part2 r1 r2 H); intro;
+ intros; unfold frac_part; generalize (plus_Int_part2 r1 r2 H); intro;
rewrite H0; rewrite (plus_IZR (Int_part r1) (Int_part r2));
- unfold Rminus at 2 3 in |- *;
+ unfold Rminus at 2 3;
rewrite (Rplus_assoc r1 (- IZR (Int_part r1)) (r2 + - IZR (Int_part r2)));
rewrite (Rplus_comm r2 (- IZR (Int_part r2)));
rewrite <- (Rplus_assoc (- IZR (Int_part r1)) (- IZR (Int_part r2)) r2);
rewrite (Rplus_comm (- IZR (Int_part r1) + - IZR (Int_part r2)) r2);
rewrite <- (Rplus_assoc r1 r2 (- IZR (Int_part r1) + - IZR (Int_part r2)));
rewrite <- (Ropp_plus_distr (IZR (Int_part r1)) (IZR (Int_part r2)));
- unfold Rminus in |- *; trivial with zarith real.
+ unfold Rminus; trivial with zarith real.
Qed.
diff --git a/theories/Reals/R_sqr.v b/theories/Reals/R_sqr.v
index 868b8617f..8bea7618c 100644
--- a/theories/Reals/R_sqr.v
+++ b/theories/Reals/R_sqr.v
@@ -14,7 +14,7 @@ Local Open Scope R_scope.
(** Rsqr : some results *)
(****************************************************)
-Ltac ring_Rsqr := unfold Rsqr in |- *; ring.
+Ltac ring_Rsqr := unfold Rsqr; ring.
Lemma Rsqr_neg : forall x:R, Rsqr x = Rsqr (- x).
Proof.
@@ -48,25 +48,25 @@ Qed.
Lemma Rsqr_gt_0_0 : forall x:R, 0 < Rsqr x -> x <> 0.
Proof.
- intros; red in |- *; intro; rewrite H0 in H; rewrite Rsqr_0 in H;
+ intros; red; intro; rewrite H0 in H; rewrite Rsqr_0 in H;
elim (Rlt_irrefl 0 H).
Qed.
Lemma Rsqr_pos_lt : forall x:R, x <> 0 -> 0 < Rsqr x.
Proof.
intros; case (Rtotal_order 0 x); intro;
- [ unfold Rsqr in |- *; apply Rmult_lt_0_compat; assumption
+ [ unfold Rsqr; apply Rmult_lt_0_compat; assumption
| elim H0; intro;
- [ elim H; symmetry in |- *; exact H1
+ [ elim H; symmetry ; exact H1
| rewrite Rsqr_neg; generalize (Ropp_lt_gt_contravar x 0 H1);
- rewrite Ropp_0; intro; unfold Rsqr in |- *;
+ rewrite Ropp_0; intro; unfold Rsqr;
apply Rmult_lt_0_compat; assumption ] ].
Qed.
Lemma Rsqr_div : forall x y:R, y <> 0 -> Rsqr (x / y) = Rsqr x / Rsqr y.
Proof.
- intros; unfold Rsqr in |- *.
- unfold Rdiv in |- *.
+ intros; unfold Rsqr.
+ unfold Rdiv.
rewrite Rinv_mult_distr.
repeat rewrite Rmult_assoc.
apply Rmult_eq_compat_l.
@@ -80,7 +80,7 @@ Qed.
Lemma Rsqr_eq_0 : forall x:R, Rsqr x = 0 -> x = 0.
Proof.
- unfold Rsqr in |- *; intros; generalize (Rmult_integral x x H); intro;
+ unfold Rsqr; intros; generalize (Rmult_integral x x H); intro;
elim H0; intro; assumption.
Qed.
@@ -122,7 +122,7 @@ Qed.
Lemma Rsqr_incr_1 :
forall x y:R, x <= y -> 0 <= x -> 0 <= y -> Rsqr x <= Rsqr y.
Proof.
- intros; unfold Rsqr in |- *; apply Rmult_le_compat; assumption.
+ intros; unfold Rsqr; apply Rmult_le_compat; assumption.
Qed.
Lemma Rsqr_incrst_0 :
@@ -140,7 +140,7 @@ Qed.
Lemma Rsqr_incrst_1 :
forall x y:R, x < y -> 0 <= x -> 0 <= y -> Rsqr x < Rsqr y.
Proof.
- intros; unfold Rsqr in |- *; apply Rmult_le_0_lt_compat; assumption.
+ intros; unfold Rsqr; apply Rmult_le_0_lt_compat; assumption.
Qed.
Lemma Rsqr_neg_pos_le_0 :
@@ -183,7 +183,7 @@ Qed.
Lemma Rsqr_abs : forall x:R, Rsqr x = Rsqr (Rabs x).
Proof.
- intro; unfold Rabs in |- *; case (Rcase_abs x); intro;
+ intro; unfold Rabs; case (Rcase_abs x); intro;
[ apply Rsqr_neg | reflexivity ].
Qed.
@@ -220,7 +220,7 @@ Qed.
Lemma Rsqr_eq_abs_0 : forall x y:R, Rsqr x = Rsqr y -> Rabs x = Rabs y.
Proof.
- intros; unfold Rabs in |- *; case (Rcase_abs x); case (Rcase_abs y); intros.
+ intros; unfold Rabs; case (Rcase_abs x); case (Rcase_abs y); intros.
rewrite (Rsqr_neg x) in H; rewrite (Rsqr_neg y) in H;
generalize (Ropp_lt_gt_contravar y 0 r);
generalize (Ropp_lt_gt_contravar x 0 r0); rewrite Ropp_0;
@@ -288,7 +288,7 @@ Qed.
Lemma Rsqr_inv : forall x:R, x <> 0 -> Rsqr (/ x) = / Rsqr x.
Proof.
- intros; unfold Rsqr in |- *.
+ intros; unfold Rsqr.
rewrite Rinv_mult_distr; try reflexivity || assumption.
Qed.
@@ -302,7 +302,7 @@ Proof.
repeat rewrite Rmult_plus_distr_l.
repeat rewrite Rplus_assoc.
apply Rplus_eq_compat_l.
- unfold Rdiv, Rminus in |- *.
+ unfold Rdiv, Rminus.
replace (2 * 1 + 2 * 1) with 4; [ idtac | ring ].
rewrite (Rmult_plus_distr_r (4 * a * c) (- Rsqr b) (/ (4 * a))).
rewrite Rsqr_mult.
@@ -332,7 +332,7 @@ Proof.
rewrite (Rmult_comm x).
apply Rplus_eq_compat_l.
rewrite (Rmult_comm (/ a)).
- unfold Rsqr in |- *; repeat rewrite Rmult_assoc.
+ unfold Rsqr; repeat rewrite Rmult_assoc.
rewrite <- Rinv_l_sym.
rewrite Rmult_1_r.
ring.
@@ -357,7 +357,7 @@ Proof.
rewrite Rplus_opp_l; replace (- (y * y) + x * x) with ((x - y) * (x + y)).
intro; generalize (Rmult_integral (x - y) (x + y) H0); intro; elim H1; intros.
left; apply Rminus_diag_uniq; assumption.
- right; apply Rminus_diag_uniq; unfold Rminus in |- *; rewrite Ropp_involutive;
+ right; apply Rminus_diag_uniq; unfold Rminus; rewrite Ropp_involutive;
assumption.
ring.
Qed.
diff --git a/theories/Reals/R_sqrt.v b/theories/Reals/R_sqrt.v
index 47b9e6cf9..28db95b38 100644
--- a/theories/Reals/R_sqrt.v
+++ b/theories/Reals/R_sqrt.v
@@ -36,7 +36,7 @@ Qed.
Lemma sqrt_sqrt : forall x:R, 0 <= x -> sqrt x * sqrt x = x.
Proof.
intros.
- unfold sqrt in |- *.
+ unfold sqrt.
case (Rcase_abs x); intro.
elim (Rlt_irrefl _ (Rlt_le_trans _ _ _ r H)).
rewrite Rsqrt_Rsqrt; reflexivity.
@@ -44,7 +44,7 @@ Qed.
Lemma sqrt_0 : sqrt 0 = 0.
Proof.
- apply Rsqr_eq_0; unfold Rsqr in |- *; apply sqrt_sqrt; right; reflexivity.
+ apply Rsqr_eq_0; unfold Rsqr; apply sqrt_sqrt; right; reflexivity.
Qed.
Lemma sqrt_1 : sqrt 1 = 1.
@@ -52,7 +52,7 @@ Proof.
apply (Rsqr_inj (sqrt 1) 1);
[ apply sqrt_positivity; left
| left
- | unfold Rsqr in |- *; rewrite sqrt_sqrt; [ ring | left ] ];
+ | unfold Rsqr; rewrite sqrt_sqrt; [ ring | left ] ];
apply Rlt_0_1.
Qed.
@@ -73,7 +73,7 @@ Proof.
intros; apply Rsqr_inj;
[ apply (sqrt_positivity x H)
| assumption
- | unfold Rsqr in |- *; rewrite H1; apply (sqrt_sqrt x H) ].
+ | unfold Rsqr; rewrite H1; apply (sqrt_sqrt x H) ].
Qed.
Lemma sqrt_def : forall x:R, 0 <= x -> sqrt x * sqrt x = x.
@@ -86,12 +86,12 @@ Proof.
intros;
apply
(Rsqr_inj (sqrt (Rsqr x)) x (sqrt_positivity (Rsqr x) (Rle_0_sqr x)) H);
- unfold Rsqr in |- *; apply (sqrt_sqrt (Rsqr x) (Rle_0_sqr x)).
+ unfold Rsqr; apply (sqrt_sqrt (Rsqr x) (Rle_0_sqr x)).
Qed.
Lemma sqrt_Rsqr : forall x:R, 0 <= x -> sqrt (Rsqr x) = x.
Proof.
- intros; unfold Rsqr in |- *; apply sqrt_square; assumption.
+ intros; unfold Rsqr; apply sqrt_square; assumption.
Qed.
Lemma sqrt_Rsqr_abs : forall x:R, sqrt (Rsqr x) = Rabs x.
@@ -101,7 +101,7 @@ Qed.
Lemma Rsqr_sqrt : forall x:R, 0 <= x -> Rsqr (sqrt x) = x.
Proof.
- intros x H1; unfold Rsqr in |- *; apply (sqrt_sqrt x H1).
+ intros x H1; unfold Rsqr; apply (sqrt_sqrt x H1).
Qed.
Lemma sqrt_mult_alt :
@@ -300,7 +300,7 @@ Proof.
intros x H1 H2;
generalize (sqrt_lt_1 x 1 (Rlt_le 0 x H1) (Rlt_le 0 1 Rlt_0_1) H2);
intro H3; rewrite sqrt_1 in H3; generalize (Rmult_ne (sqrt x));
- intro H4; elim H4; intros H5 H6; rewrite <- H5; pattern x at 1 in |- *;
+ intro H4; elim H4; intros H5 H6; rewrite <- H5; pattern x at 1;
rewrite <- (sqrt_def x (Rlt_le 0 x H1));
apply (Rmult_lt_compat_l (sqrt x) (sqrt x) 1 (sqrt_lt_R0 x H1) H3).
Qed.
@@ -310,7 +310,7 @@ Lemma sqrt_cauchy :
a * c + b * d <= sqrt (Rsqr a + Rsqr b) * sqrt (Rsqr c + Rsqr d).
Proof.
intros a b c d; apply Rsqr_incr_0_var;
- [ rewrite Rsqr_mult; repeat rewrite Rsqr_sqrt; unfold Rsqr in |- *;
+ [ rewrite Rsqr_mult; repeat rewrite Rsqr_sqrt; unfold Rsqr;
[ replace ((a * c + b * d) * (a * c + b * d)) with
(a * a * c * c + b * b * d * d + 2 * a * b * c * d);
[ replace ((a * a + b * b) * (c * c + d * d)) with
@@ -319,11 +319,11 @@ Proof.
replace (a * a * d * d + b * b * c * c) with
(2 * a * b * c * d +
(a * a * d * d + b * b * c * c - 2 * a * b * c * d));
- [ pattern (2 * a * b * c * d) at 1 in |- *; rewrite <- Rplus_0_r;
+ [ pattern (2 * a * b * c * d) at 1; rewrite <- Rplus_0_r;
apply Rplus_le_compat_l;
replace (a * a * d * d + b * b * c * c - 2 * a * b * c * d)
with (Rsqr (a * d - b * c));
- [ apply Rle_0_sqr | unfold Rsqr in |- *; ring ]
+ [ apply Rle_0_sqr | unfold Rsqr; ring ]
| ring ]
| ring ]
| ring ]
@@ -355,16 +355,16 @@ Lemma Rsqr_sol_eq_0_1 :
x = sol_x1 a b c \/ x = sol_x2 a b c -> a * Rsqr x + b * x + c = 0.
Proof.
intros; elim H0; intro.
- unfold sol_x1 in H1; unfold Delta in H1; rewrite H1; unfold Rdiv in |- *;
+ unfold sol_x1 in H1; unfold Delta in H1; rewrite H1; unfold Rdiv;
repeat rewrite Rsqr_mult; rewrite Rsqr_plus; rewrite <- Rsqr_neg;
rewrite Rsqr_sqrt.
rewrite Rsqr_inv.
- unfold Rsqr in |- *; repeat rewrite Rinv_mult_distr.
+ unfold Rsqr; repeat rewrite Rinv_mult_distr.
repeat rewrite Rmult_assoc; rewrite (Rmult_comm a).
repeat rewrite Rmult_assoc; rewrite <- Rinv_l_sym.
rewrite Rmult_1_r; rewrite Rmult_plus_distr_r.
repeat rewrite Rmult_assoc.
- pattern 2 at 2 in |- *; rewrite (Rmult_comm 2).
+ pattern 2 at 2; rewrite (Rmult_comm 2).
repeat rewrite Rmult_assoc; rewrite <- Rinv_l_sym.
rewrite Rmult_1_r.
rewrite
@@ -376,7 +376,7 @@ Proof.
(b * (- b * (/ 2 * / a)) +
(b * (sqrt (b * b - 2 * (2 * (a * c))) * (/ 2 * / a)) + c))) with
(b * (- b * (/ 2 * / a)) + c).
- unfold Rminus in |- *; repeat rewrite <- Rplus_assoc.
+ unfold Rminus; repeat rewrite <- Rplus_assoc.
replace (b * b + b * b) with (2 * (b * b)).
rewrite Rmult_plus_distr_r; repeat rewrite Rmult_assoc.
rewrite (Rmult_comm 2); repeat rewrite Rmult_assoc.
@@ -407,17 +407,17 @@ Proof.
apply prod_neq_R0; [ discrR | apply (cond_nonzero a) ].
apply prod_neq_R0; [ discrR | apply (cond_nonzero a) ].
assumption.
- unfold sol_x2 in H1; unfold Delta in H1; rewrite H1; unfold Rdiv in |- *;
+ unfold sol_x2 in H1; unfold Delta in H1; rewrite H1; unfold Rdiv;
repeat rewrite Rsqr_mult; rewrite Rsqr_minus; rewrite <- Rsqr_neg;
rewrite Rsqr_sqrt.
rewrite Rsqr_inv.
- unfold Rsqr in |- *; repeat rewrite Rinv_mult_distr;
+ unfold Rsqr; repeat rewrite Rinv_mult_distr;
repeat rewrite Rmult_assoc.
rewrite (Rmult_comm a); repeat rewrite Rmult_assoc.
rewrite <- Rinv_l_sym.
- rewrite Rmult_1_r; unfold Rminus in |- *; rewrite Rmult_plus_distr_r.
+ rewrite Rmult_1_r; unfold Rminus; rewrite Rmult_plus_distr_r.
rewrite Ropp_mult_distr_l_reverse; repeat rewrite Rmult_assoc;
- pattern 2 at 2 in |- *; rewrite (Rmult_comm 2).
+ pattern 2 at 2; rewrite (Rmult_comm 2).
repeat rewrite Rmult_assoc; rewrite <- Rinv_l_sym.
rewrite Rmult_1_r;
rewrite
@@ -480,23 +480,23 @@ Proof.
intro;
generalize (Rsqr_eq (x + b / (2 * a)) (sqrt (Delta a b c) / (2 * a)) H3);
intro; elim H4; intro.
- left; unfold sol_x1 in |- *;
+ left; unfold sol_x1;
generalize
(Rplus_eq_compat_l (- (b / (2 * a))) (x + b / (2 * a))
(sqrt (Delta a b c) / (2 * a)) H5);
replace (- (b / (2 * a)) + (x + b / (2 * a))) with x.
- intro; rewrite H6; unfold Rdiv in |- *; ring.
+ intro; rewrite H6; unfold Rdiv; ring.
ring.
- right; unfold sol_x2 in |- *;
+ right; unfold sol_x2;
generalize
(Rplus_eq_compat_l (- (b / (2 * a))) (x + b / (2 * a))
(- (sqrt (Delta a b c) / (2 * a))) H5);
replace (- (b / (2 * a)) + (x + b / (2 * a))) with x.
- intro; rewrite H6; unfold Rdiv in |- *; ring.
+ intro; rewrite H6; unfold Rdiv; ring.
ring.
rewrite Rsqr_div.
rewrite Rsqr_sqrt.
- unfold Rdiv in |- *.
+ unfold Rdiv.
repeat rewrite Rmult_assoc.
rewrite (Rmult_comm (/ a)).
rewrite Rmult_assoc.
@@ -510,9 +510,9 @@ Proof.
assumption.
apply prod_neq_R0; [ discrR | apply (cond_nonzero a) ].
rewrite <- Rmult_assoc; rewrite <- Rinv_l_sym.
- symmetry in |- *; apply Rmult_1_l.
+ symmetry ; apply Rmult_1_l.
apply (cond_nonzero a).
- unfold Rdiv in |- *; rewrite <- Ropp_mult_distr_l_reverse.
+ unfold Rdiv; rewrite <- Ropp_mult_distr_l_reverse.
rewrite Ropp_minus_distr.
reflexivity.
reflexivity.
diff --git a/theories/Reals/Ranalysis1.v b/theories/Reals/Ranalysis1.v
index 804bfe114..4ca39d37c 100644
--- a/theories/Reals/Ranalysis1.v
+++ b/theories/Reals/Ranalysis1.v
@@ -82,14 +82,14 @@ Lemma continuity_pt_plus :
forall f1 f2 (x0:R),
continuity_pt f1 x0 -> continuity_pt f2 x0 -> continuity_pt (f1 + f2) x0.
Proof.
- unfold continuity_pt, plus_fct in |- *; unfold continue_in in |- *; intros;
+ unfold continuity_pt, plus_fct; unfold continue_in; intros;
apply limit_plus; assumption.
Qed.
Lemma continuity_pt_opp :
forall f (x0:R), continuity_pt f x0 -> continuity_pt (- f) x0.
Proof.
- unfold continuity_pt, opp_fct in |- *; unfold continue_in in |- *; intros;
+ unfold continuity_pt, opp_fct; unfold continue_in; intros;
apply limit_Ropp; assumption.
Qed.
@@ -97,7 +97,7 @@ Lemma continuity_pt_minus :
forall f1 f2 (x0:R),
continuity_pt f1 x0 -> continuity_pt f2 x0 -> continuity_pt (f1 - f2) x0.
Proof.
- unfold continuity_pt, minus_fct in |- *; unfold continue_in in |- *; intros;
+ unfold continuity_pt, minus_fct; unfold continue_in; intros;
apply limit_minus; assumption.
Qed.
@@ -105,17 +105,17 @@ Lemma continuity_pt_mult :
forall f1 f2 (x0:R),
continuity_pt f1 x0 -> continuity_pt f2 x0 -> continuity_pt (f1 * f2) x0.
Proof.
- unfold continuity_pt, mult_fct in |- *; unfold continue_in in |- *; intros;
+ unfold continuity_pt, mult_fct; unfold continue_in; intros;
apply limit_mul; assumption.
Qed.
Lemma continuity_pt_const : forall f (x0:R), constant f -> continuity_pt f x0.
Proof.
- unfold constant, continuity_pt in |- *; unfold continue_in in |- *;
- unfold limit1_in in |- *; unfold limit_in in |- *;
+ unfold constant, continuity_pt; unfold continue_in;
+ unfold limit1_in; unfold limit_in;
intros; exists 1; split;
[ apply Rlt_0_1
- | intros; generalize (H x x0); intro; rewrite H2; simpl in |- *;
+ | intros; generalize (H x x0); intro; rewrite H2; simpl;
rewrite R_dist_eq; assumption ].
Qed.
@@ -123,9 +123,9 @@ Lemma continuity_pt_scal :
forall f (a x0:R),
continuity_pt f x0 -> continuity_pt (mult_real_fct a f) x0.
Proof.
- unfold continuity_pt, mult_real_fct in |- *; unfold continue_in in |- *;
+ unfold continuity_pt, mult_real_fct; unfold continue_in;
intros; apply (limit_mul (fun x:R => a) f (D_x no_cond x0) a (f x0) x0).
- unfold limit1_in in |- *; unfold limit_in in |- *; intros; exists 1; split.
+ unfold limit1_in; unfold limit_in; intros; exists 1; split.
apply Rlt_0_1.
intros; rewrite R_dist_eq; assumption.
assumption.
@@ -136,9 +136,9 @@ Lemma continuity_pt_inv :
Proof.
intros.
replace (/ f)%F with (fun x:R => / f x).
- unfold continuity_pt in |- *; unfold continue_in in |- *; intros;
+ unfold continuity_pt; unfold continue_in; intros;
apply limit_inv; assumption.
- unfold inv_fct in |- *; reflexivity.
+ unfold inv_fct; reflexivity.
Qed.
Lemma div_eq_inv : forall f1 f2, (f1 / f2)%F = (f1 * / f2)%F.
@@ -159,8 +159,8 @@ Lemma continuity_pt_comp :
forall f1 f2 (x:R),
continuity_pt f1 x -> continuity_pt f2 (f1 x) -> continuity_pt (f2 o f1) x.
Proof.
- unfold continuity_pt in |- *; unfold continue_in in |- *; intros;
- unfold comp in |- *.
+ unfold continuity_pt; unfold continue_in; intros;
+ unfold comp.
cut
(limit1_in (fun x0:R => f2 (f1 x0))
(Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1) (
@@ -170,23 +170,23 @@ Proof.
eapply limit_comp.
apply H.
apply H0.
- unfold limit1_in in |- *; unfold limit_in in |- *; unfold dist in |- *;
- simpl in |- *; unfold R_dist in |- *; intros.
+ unfold limit1_in; unfold limit_in; unfold dist;
+ simpl; unfold R_dist; intros.
assert (H3 := H1 eps H2).
elim H3; intros.
exists x0.
split.
elim H4; intros; assumption.
intros; case (Req_dec (f1 x) (f1 x1)); intro.
- rewrite H6; unfold Rminus in |- *; rewrite Rplus_opp_r; rewrite Rabs_R0;
+ rewrite H6; unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0;
assumption.
elim H4; intros; apply H8.
split.
- unfold Dgf, D_x, no_cond in |- *.
+ unfold Dgf, D_x, no_cond.
split.
split.
trivial.
- elim H5; unfold D_x, no_cond in |- *; intros.
+ elim H5; unfold D_x, no_cond; intros.
elim H9; intros; assumption.
split.
trivial.
@@ -198,44 +198,44 @@ Qed.
Lemma continuity_plus :
forall f1 f2, continuity f1 -> continuity f2 -> continuity (f1 + f2).
Proof.
- unfold continuity in |- *; intros;
+ unfold continuity; intros;
apply (continuity_pt_plus f1 f2 x (H x) (H0 x)).
Qed.
Lemma continuity_opp : forall f, continuity f -> continuity (- f).
Proof.
- unfold continuity in |- *; intros; apply (continuity_pt_opp f x (H x)).
+ unfold continuity; intros; apply (continuity_pt_opp f x (H x)).
Qed.
Lemma continuity_minus :
forall f1 f2, continuity f1 -> continuity f2 -> continuity (f1 - f2).
Proof.
- unfold continuity in |- *; intros;
+ unfold continuity; intros;
apply (continuity_pt_minus f1 f2 x (H x) (H0 x)).
Qed.
Lemma continuity_mult :
forall f1 f2, continuity f1 -> continuity f2 -> continuity (f1 * f2).
Proof.
- unfold continuity in |- *; intros;
+ unfold continuity; intros;
apply (continuity_pt_mult f1 f2 x (H x) (H0 x)).
Qed.
Lemma continuity_const : forall f, constant f -> continuity f.
Proof.
- unfold continuity in |- *; intros; apply (continuity_pt_const f x H).
+ unfold continuity; intros; apply (continuity_pt_const f x H).
Qed.
Lemma continuity_scal :
forall f (a:R), continuity f -> continuity (mult_real_fct a f).
Proof.
- unfold continuity in |- *; intros; apply (continuity_pt_scal f a x (H x)).
+ unfold continuity; intros; apply (continuity_pt_scal f a x (H x)).
Qed.
Lemma continuity_inv :
forall f, continuity f -> (forall x:R, f x <> 0) -> continuity (/ f).
Proof.
- unfold continuity in |- *; intros; apply (continuity_pt_inv f x (H x) (H0 x)).
+ unfold continuity; intros; apply (continuity_pt_inv f x (H x) (H0 x)).
Qed.
Lemma continuity_div :
@@ -243,14 +243,14 @@ Lemma continuity_div :
continuity f1 ->
continuity f2 -> (forall x:R, f2 x <> 0) -> continuity (f1 / f2).
Proof.
- unfold continuity in |- *; intros;
+ unfold continuity; intros;
apply (continuity_pt_div f1 f2 x (H x) (H0 x) (H1 x)).
Qed.
Lemma continuity_comp :
forall f1 f2, continuity f1 -> continuity f2 -> continuity (f2 o f1).
Proof.
- unfold continuity in |- *; intros.
+ unfold continuity; intros.
apply (continuity_pt_comp f1 f2 x (H x) (H0 (f1 x))).
Qed.
@@ -307,23 +307,23 @@ Proof.
apply
(single_limit (fun h:R => (f (x + h) - f x) / h) (
fun h:R => h <> 0) l1 l2 0); try assumption.
- unfold adhDa in |- *; intros; exists (alp / 2).
+ unfold adhDa; intros; exists (alp / 2).
split.
- unfold Rdiv in |- *; apply prod_neq_R0.
- red in |- *; intro; rewrite H2 in H1; elim (Rlt_irrefl _ H1).
+ unfold Rdiv; apply prod_neq_R0.
+ red; intro; rewrite H2 in H1; elim (Rlt_irrefl _ H1).
apply Rinv_neq_0_compat; discrR.
- unfold R_dist in |- *; unfold Rminus in |- *; rewrite Ropp_0;
- rewrite Rplus_0_r; unfold Rdiv in |- *; rewrite Rabs_mult.
+ unfold R_dist; unfold Rminus; rewrite Ropp_0;
+ rewrite Rplus_0_r; unfold Rdiv; rewrite Rabs_mult.
replace (Rabs (/ 2)) with (/ 2).
replace (Rabs alp) with alp.
apply Rmult_lt_reg_l with 2.
prove_sup0.
rewrite (Rmult_comm 2); rewrite Rmult_assoc; rewrite <- Rinv_l_sym;
[ idtac | discrR ]; rewrite Rmult_1_r; rewrite double;
- pattern alp at 1 in |- *; replace alp with (alp + 0);
+ pattern alp at 1; replace alp with (alp + 0);
[ idtac | ring ]; apply Rplus_lt_compat_l; assumption.
- symmetry in |- *; apply Rabs_right; left; assumption.
- symmetry in |- *; apply Rabs_right; left; change (0 < / 2) in |- *;
+ symmetry ; apply Rabs_right; left; assumption.
+ symmetry ; apply Rabs_right; left; change (0 < / 2);
apply Rinv_0_lt_compat; prove_sup0.
Qed.
@@ -332,14 +332,14 @@ Lemma uniqueness_step2 :
derivable_pt_lim f x l ->
limit1_in (fun h:R => (f (x + h) - f x) / h) (fun h:R => h <> 0) l 0.
Proof.
- unfold derivable_pt_lim in |- *; intros; unfold limit1_in in |- *;
- unfold limit_in in |- *; intros.
+ unfold derivable_pt_lim; intros; unfold limit1_in;
+ unfold limit_in; intros.
assert (H1 := H eps H0).
elim H1; intros.
exists (pos x0).
split.
apply (cond_pos x0).
- simpl in |- *; unfold R_dist in |- *; intros.
+ simpl; unfold R_dist; intros.
elim H3; intros.
apply H2;
[ assumption
@@ -352,15 +352,15 @@ Lemma uniqueness_step3 :
limit1_in (fun h:R => (f (x + h) - f x) / h) (fun h:R => h <> 0) l 0 ->
derivable_pt_lim f x l.
Proof.
- unfold limit1_in, derivable_pt_lim in |- *; unfold limit_in in |- *;
- unfold dist in |- *; simpl in |- *; intros.
+ unfold limit1_in, derivable_pt_lim; unfold limit_in;
+ unfold dist; simpl; intros.
elim (H eps H0).
intros; elim H1; intros.
exists (mkposreal x0 H2).
- simpl in |- *; intros; unfold R_dist in H3; apply (H3 h).
+ simpl; intros; unfold R_dist in H3; apply (H3 h).
split;
[ assumption
- | unfold Rminus in |- *; rewrite Ropp_0; rewrite Rplus_0_r; assumption ].
+ | unfold Rminus; rewrite Ropp_0; rewrite Rplus_0_r; assumption ].
Qed.
Lemma uniqueness_limite :
@@ -383,8 +383,8 @@ Proof.
assumption.
intro; assert (H1 := proj2_sig pr); unfold derivable_pt_abs in H1.
assert (H2 := uniqueness_limite _ _ _ _ H H1).
- unfold derive_pt in |- *; unfold derivable_pt_abs in |- *.
- symmetry in |- *; assumption.
+ unfold derive_pt; unfold derivable_pt_abs.
+ symmetry ; assumption.
Qed.
(**********)
@@ -414,25 +414,25 @@ Lemma derive_pt_D_in :
D_in f df no_cond x <-> derive_pt f x pr = df x.
Proof.
intros; split.
- unfold D_in in |- *; unfold limit1_in in |- *; unfold limit_in in |- *;
- simpl in |- *; unfold R_dist in |- *; intros.
+ unfold D_in; unfold limit1_in; unfold limit_in;
+ simpl; unfold R_dist; intros.
apply derive_pt_eq_0.
- unfold derivable_pt_lim in |- *.
+ unfold derivable_pt_lim.
intros; elim (H eps H0); intros alpha H1; elim H1; intros;
exists (mkposreal alpha H2); intros; generalize (H3 (x + h));
intro; cut (x + h - x = h);
[ intro; cut (D_x no_cond x (x + h) /\ Rabs (x + h - x) < alpha);
[ intro; generalize (H6 H8); rewrite H7; intro; assumption
| split;
- [ unfold D_x in |- *; split;
- [ unfold no_cond in |- *; trivial
+ [ unfold D_x; split;
+ [ unfold no_cond; trivial
| apply Rminus_not_eq_right; rewrite H7; assumption ]
| rewrite H7; assumption ] ]
| ring ].
intro.
assert (H0 := derive_pt_eq_1 f x (df x) pr H).
- unfold D_in in |- *; unfold limit1_in in |- *; unfold limit_in in |- *;
- unfold dist in |- *; simpl in |- *; unfold R_dist in |- *;
+ unfold D_in; unfold limit1_in; unfold limit_in;
+ unfold dist; simpl; unfold R_dist;
intros.
elim (H0 eps H1); intros alpha H2; exists (pos alpha); split.
apply (cond_pos alpha).
@@ -448,24 +448,24 @@ Lemma derivable_pt_lim_D_in :
D_in f df no_cond x <-> derivable_pt_lim f x (df x).
Proof.
intros; split.
- unfold D_in in |- *; unfold limit1_in in |- *; unfold limit_in in |- *;
- simpl in |- *; unfold R_dist in |- *; intros.
- unfold derivable_pt_lim in |- *.
+ unfold D_in; unfold limit1_in; unfold limit_in;
+ simpl; unfold R_dist; intros.
+ unfold derivable_pt_lim.
intros; elim (H eps H0); intros alpha H1; elim H1; intros;
exists (mkposreal alpha H2); intros; generalize (H3 (x + h));
intro; cut (x + h - x = h);
[ intro; cut (D_x no_cond x (x + h) /\ Rabs (x + h - x) < alpha);
[ intro; generalize (H6 H8); rewrite H7; intro; assumption
| split;
- [ unfold D_x in |- *; split;
- [ unfold no_cond in |- *; trivial
+ [ unfold D_x; split;
+ [ unfold no_cond; trivial
| apply Rminus_not_eq_right; rewrite H7; assumption ]
| rewrite H7; assumption ] ]
| ring ].
intro.
unfold derivable_pt_lim in H.
- unfold D_in in |- *; unfold limit1_in in |- *; unfold limit_in in |- *;
- unfold dist in |- *; simpl in |- *; unfold R_dist in |- *;
+ unfold D_in; unfold limit1_in; unfold limit_in;
+ unfold dist; simpl; unfold R_dist;
intros.
elim (H eps H0); intros alpha H2; exists (pos alpha); split.
apply (cond_pos alpha).
@@ -486,7 +486,7 @@ Lemma derivable_derive :
forall f (x:R) (pr:derivable_pt f x), exists l : R, derive_pt f x pr = l.
Proof.
intros; exists (proj1_sig pr).
- unfold derive_pt in |- *; reflexivity.
+ unfold derive_pt; reflexivity.
Qed.
Theorem derivable_continuous_pt :
@@ -501,14 +501,14 @@ Proof.
generalize (derive_pt_D_in f (fct_cte l) x); intro.
elim (H2 X); intros.
generalize (H4 H1); intro.
- unfold continuity_pt in |- *.
+ unfold continuity_pt.
apply (cont_deriv f (fct_cte l) no_cond x H5).
- unfold fct_cte in |- *; reflexivity.
+ unfold fct_cte; reflexivity.
Qed.
Theorem derivable_continuous : forall f, derivable f -> continuity f.
Proof.
- unfold derivable, continuity in |- *; intros f X x.
+ unfold derivable, continuity; intros f X x.
apply (derivable_continuous_pt f x (X x)).
Qed.
@@ -524,7 +524,7 @@ Lemma derivable_pt_lim_plus :
apply uniqueness_step3.
assert (H1 := uniqueness_step2 _ _ _ H).
assert (H2 := uniqueness_step2 _ _ _ H0).
- unfold plus_fct in |- *.
+ unfold plus_fct.
cut
(forall h:R,
(f1 (x + h) + f2 (x + h) - (f1 x + f2 x)) / h =
@@ -533,15 +533,15 @@ Lemma derivable_pt_lim_plus :
generalize
(limit_plus (fun h':R => (f1 (x + h') - f1 x) / h')
(fun h':R => (f2 (x + h') - f2 x) / h') (fun h:R => h <> 0) l1 l2 0 H1 H2).
- unfold limit1_in in |- *; unfold limit_in in |- *; unfold dist in |- *;
- simpl in |- *; unfold R_dist in |- *; intros.
+ unfold limit1_in; unfold limit_in; unfold dist;
+ simpl; unfold R_dist; intros.
elim (H4 eps H5); intros.
exists x0.
elim H6; intros.
split.
assumption.
intros; rewrite H3; apply H8; assumption.
- intro; unfold Rdiv in |- *; ring.
+ intro; unfold Rdiv; ring.
Qed.
Lemma derivable_pt_lim_opp :
@@ -550,20 +550,20 @@ Proof.
intros.
apply uniqueness_step3.
assert (H1 := uniqueness_step2 _ _ _ H).
- unfold opp_fct in |- *.
+ unfold opp_fct.
cut (forall h:R, (- f (x + h) - - f x) / h = - ((f (x + h) - f x) / h)).
intro.
generalize
(limit_Ropp (fun h:R => (f (x + h) - f x) / h) (fun h:R => h <> 0) l 0 H1).
- unfold limit1_in in |- *; unfold limit_in in |- *; unfold dist in |- *;
- simpl in |- *; unfold R_dist in |- *; intros.
+ unfold limit1_in; unfold limit_in; unfold dist;
+ simpl; unfold R_dist; intros.
elim (H2 eps H3); intros.
exists x0.
elim H4; intros.
split.
assumption.
intros; rewrite H0; apply H6; assumption.
- intro; unfold Rdiv in |- *; ring.
+ intro; unfold Rdiv; ring.
Qed.
Lemma derivable_pt_lim_minus :
@@ -575,7 +575,7 @@ Proof.
apply uniqueness_step3.
assert (H1 := uniqueness_step2 _ _ _ H).
assert (H2 := uniqueness_step2 _ _ _ H0).
- unfold minus_fct in |- *.
+ unfold minus_fct.
cut
(forall h:R,
(f1 (x + h) - f1 x) / h - (f2 (x + h) - f2 x) / h =
@@ -584,15 +584,15 @@ Proof.
generalize
(limit_minus (fun h':R => (f1 (x + h') - f1 x) / h')
(fun h':R => (f2 (x + h') - f2 x) / h') (fun h:R => h <> 0) l1 l2 0 H1 H2).
- unfold limit1_in in |- *; unfold limit_in in |- *; unfold dist in |- *;
- simpl in |- *; unfold R_dist in |- *; intros.
+ unfold limit1_in; unfold limit_in; unfold dist;
+ simpl; unfold R_dist; intros.
elim (H4 eps H5); intros.
exists x0.
elim H6; intros.
split.
assumption.
intros; rewrite <- H3; apply H8; assumption.
- intro; unfold Rdiv in |- *; ring.
+ intro; unfold Rdiv; ring.
Qed.
Lemma derivable_pt_lim_mult :
@@ -615,15 +615,15 @@ Proof.
elim H1; intros.
clear H1 H3.
apply H2.
- unfold mult_fct in |- *.
+ unfold mult_fct.
apply (Dmult no_cond (fun y:R => l1) (fun y:R => l2) f1 f2 x); assumption.
Qed.
Lemma derivable_pt_lim_const : forall a x:R, derivable_pt_lim (fct_cte a) x 0.
Proof.
- intros; unfold fct_cte, derivable_pt_lim in |- *.
- intros; exists (mkposreal 1 Rlt_0_1); intros; unfold Rminus in |- *;
- rewrite Rplus_opp_r; unfold Rdiv in |- *; rewrite Rmult_0_l;
+ intros; unfold fct_cte, derivable_pt_lim.
+ intros; exists (mkposreal 1 Rlt_0_1); intros; unfold Rminus;
+ rewrite Rplus_opp_r; unfold Rdiv; rewrite Rmult_0_l;
rewrite Rplus_opp_r; rewrite Rabs_R0; assumption.
Qed.
@@ -636,34 +636,34 @@ Proof.
replace (mult_real_fct a f) with (fct_cte a * f)%F.
replace (a * l) with (0 * f x + a * l); [ idtac | ring ].
apply (derivable_pt_lim_mult (fct_cte a) f x 0 l); assumption.
- unfold mult_real_fct, mult_fct, fct_cte in |- *; reflexivity.
+ unfold mult_real_fct, mult_fct, fct_cte; reflexivity.
Qed.
Lemma derivable_pt_lim_id : forall x:R, derivable_pt_lim id x 1.
Proof.
- intro; unfold derivable_pt_lim in |- *.
+ intro; unfold derivable_pt_lim.
intros eps Heps; exists (mkposreal eps Heps); intros h H1 H2;
- unfold id in |- *; replace ((x + h - x) / h - 1) with 0.
+ unfold id; replace ((x + h - x) / h - 1) with 0.
rewrite Rabs_R0; apply Rle_lt_trans with (Rabs h).
apply Rabs_pos.
assumption.
- unfold Rminus in |- *; rewrite Rplus_assoc; rewrite (Rplus_comm x);
+ unfold Rminus; rewrite Rplus_assoc; rewrite (Rplus_comm x);
rewrite Rplus_assoc.
- rewrite Rplus_opp_l; rewrite Rplus_0_r; unfold Rdiv in |- *;
+ rewrite Rplus_opp_l; rewrite Rplus_0_r; unfold Rdiv;
rewrite <- Rinv_r_sym.
- symmetry in |- *; apply Rplus_opp_r.
+ symmetry ; apply Rplus_opp_r.
assumption.
Qed.
Lemma derivable_pt_lim_Rsqr : forall x:R, derivable_pt_lim Rsqr x (2 * x).
Proof.
- intro; unfold derivable_pt_lim in |- *.
- unfold Rsqr in |- *; intros eps Heps; exists (mkposreal eps Heps);
+ intro; unfold derivable_pt_lim.
+ unfold Rsqr; intros eps Heps; exists (mkposreal eps Heps);
intros h H1 H2; replace (((x + h) * (x + h) - x * x) / h - 2 * x) with h.
assumption.
replace ((x + h) * (x + h) - x * x) with (2 * x * h + h * h);
[ idtac | ring ].
- unfold Rdiv in |- *; rewrite Rmult_plus_distr_r.
+ unfold Rdiv; rewrite Rmult_plus_distr_r.
repeat rewrite Rmult_assoc.
repeat rewrite <- Rinv_r_sym; [ idtac | assumption ].
ring.
@@ -684,7 +684,7 @@ Proof.
assert (H1 := derivable_pt_lim_D_in (f2 o f1)%F (fun y:R => l2 * l1) x).
elim H1; intros.
clear H1 H3; apply H2.
- unfold comp in |- *;
+ unfold comp;
cut
(D_in (fun x0:R => f2 (f1 x0)) (fun y:R => l2 * l1)
(Dgf no_cond no_cond f1) x ->
@@ -693,14 +693,14 @@ Proof.
rewrite Rmult_comm;
apply (Dcomp no_cond no_cond (fun y:R => l1) (fun y:R => l2) f1 f2 x);
assumption.
- unfold Dgf, D_in, no_cond in |- *; unfold limit1_in in |- *;
- unfold limit_in in |- *; unfold dist in |- *; simpl in |- *;
- unfold R_dist in |- *; intros.
+ unfold Dgf, D_in, no_cond; unfold limit1_in;
+ unfold limit_in; unfold dist; simpl;
+ unfold R_dist; intros.
elim (H1 eps H3); intros.
exists x0; intros; split.
elim H5; intros; assumption.
intros; elim H5; intros; apply H9; split.
- unfold D_x in |- *; split.
+ unfold D_x; split.
split; trivial.
elim H6; intros; unfold D_x in H10; elim H10; intros; assumption.
elim H6; intros; assumption.
@@ -710,7 +710,7 @@ Lemma derivable_pt_plus :
forall f1 f2 (x:R),
derivable_pt f1 x -> derivable_pt f2 x -> derivable_pt (f1 + f2) x.
Proof.
- unfold derivable_pt in |- *; intros f1 f2 x X X0.
+ unfold derivable_pt; intros f1 f2 x X X0.
elim X; intros.
elim X0; intros.
exists (x0 + x1).
@@ -720,7 +720,7 @@ Qed.
Lemma derivable_pt_opp :
forall f (x:R), derivable_pt f x -> derivable_pt (- f) x.
Proof.
- unfold derivable_pt in |- *; intros f x X.
+ unfold derivable_pt; intros f x X.
elim X; intros.
exists (- x0).
apply derivable_pt_lim_opp; assumption.
@@ -730,7 +730,7 @@ Lemma derivable_pt_minus :
forall f1 f2 (x:R),
derivable_pt f1 x -> derivable_pt f2 x -> derivable_pt (f1 - f2) x.
Proof.
- unfold derivable_pt in |- *; intros f1 f2 x X X0.
+ unfold derivable_pt; intros f1 f2 x X X0.
elim X; intros.
elim X0; intros.
exists (x0 - x1).
@@ -741,7 +741,7 @@ Lemma derivable_pt_mult :
forall f1 f2 (x:R),
derivable_pt f1 x -> derivable_pt f2 x -> derivable_pt (f1 * f2) x.
Proof.
- unfold derivable_pt in |- *; intros f1 f2 x X X0.
+ unfold derivable_pt; intros f1 f2 x X X0.
elim X; intros.
elim X0; intros.
exists (x0 * f2 x + f1 x * x1).
@@ -750,7 +750,7 @@ Qed.
Lemma derivable_pt_const : forall a x:R, derivable_pt (fct_cte a) x.
Proof.
- intros; unfold derivable_pt in |- *.
+ intros; unfold derivable_pt.
exists 0.
apply derivable_pt_lim_const.
Qed.
@@ -758,7 +758,7 @@ Qed.
Lemma derivable_pt_scal :
forall f (a x:R), derivable_pt f x -> derivable_pt (mult_real_fct a f) x.
Proof.
- unfold derivable_pt in |- *; intros f1 a x X.
+ unfold derivable_pt; intros f1 a x X.
elim X; intros.
exists (a * x0).
apply derivable_pt_lim_scal; assumption.
@@ -766,14 +766,14 @@ Qed.
Lemma derivable_pt_id : forall x:R, derivable_pt id x.
Proof.
- unfold derivable_pt in |- *; intro.
+ unfold derivable_pt; intro.
exists 1.
apply derivable_pt_lim_id.
Qed.
Lemma derivable_pt_Rsqr : forall x:R, derivable_pt Rsqr x.
Proof.
- unfold derivable_pt in |- *; intro; exists (2 * x).
+ unfold derivable_pt; intro; exists (2 * x).
apply derivable_pt_lim_Rsqr.
Qed.
@@ -781,7 +781,7 @@ Lemma derivable_pt_comp :
forall f1 f2 (x:R),
derivable_pt f1 x -> derivable_pt f2 (f1 x) -> derivable_pt (f2 o f1) x.
Proof.
- unfold derivable_pt in |- *; intros f1 f2 x X X0.
+ unfold derivable_pt; intros f1 f2 x X X0.
elim X; intros.
elim X0; intros.
exists (x1 * x0).
@@ -791,57 +791,57 @@ Qed.
Lemma derivable_plus :
forall f1 f2, derivable f1 -> derivable f2 -> derivable (f1 + f2).
Proof.
- unfold derivable in |- *; intros f1 f2 X X0 x.
+ unfold derivable; intros f1 f2 X X0 x.
apply (derivable_pt_plus _ _ x (X _) (X0 _)).
Qed.
Lemma derivable_opp : forall f, derivable f -> derivable (- f).
Proof.
- unfold derivable in |- *; intros f X x.
+ unfold derivable; intros f X x.
apply (derivable_pt_opp _ x (X _)).
Qed.
Lemma derivable_minus :
forall f1 f2, derivable f1 -> derivable f2 -> derivable (f1 - f2).
Proof.
- unfold derivable in |- *; intros f1 f2 X X0 x.
+ unfold derivable; intros f1 f2 X X0 x.
apply (derivable_pt_minus _ _ x (X _) (X0 _)).
Qed.
Lemma derivable_mult :
forall f1 f2, derivable f1 -> derivable f2 -> derivable (f1 * f2).
Proof.
- unfold derivable in |- *; intros f1 f2 X X0 x.
+ unfold derivable; intros f1 f2 X X0 x.
apply (derivable_pt_mult _ _ x (X _) (X0 _)).
Qed.
Lemma derivable_const : forall a:R, derivable (fct_cte a).
Proof.
- unfold derivable in |- *; intros.
+ unfold derivable; intros.
apply derivable_pt_const.
Qed.
Lemma derivable_scal :
forall f (a:R), derivable f -> derivable (mult_real_fct a f).
Proof.
- unfold derivable in |- *; intros f a X x.
+ unfold derivable; intros f a X x.
apply (derivable_pt_scal _ a x (X _)).
Qed.
Lemma derivable_id : derivable id.
Proof.
- unfold derivable in |- *; intro; apply derivable_pt_id.
+ unfold derivable; intro; apply derivable_pt_id.
Qed.
Lemma derivable_Rsqr : derivable Rsqr.
Proof.
- unfold derivable in |- *; intro; apply derivable_pt_Rsqr.
+ unfold derivable; intro; apply derivable_pt_Rsqr.
Qed.
Lemma derivable_comp :
forall f1 f2, derivable f1 -> derivable f2 -> derivable (f2 o f1).
Proof.
- unfold derivable in |- *; intros f1 f2 X X0 x.
+ unfold derivable; intros f1 f2 X X0 x.
apply (derivable_pt_comp _ _ x (X _) (X0 _)).
Qed.
@@ -996,13 +996,13 @@ Proof.
elim (lt_irrefl _ H).
cut (n = 0%nat \/ (0 < n)%nat).
intro; elim H0; intro.
- rewrite H1; simpl in |- *.
+ rewrite H1; simpl.
replace (fun y:R => y * 1) with (id * fct_cte 1)%F.
replace (1 * 1) with (1 * fct_cte 1 x + id x * 0).
apply derivable_pt_lim_mult.
apply derivable_pt_lim_id.
apply derivable_pt_lim_const.
- unfold fct_cte, id in |- *; ring.
+ unfold fct_cte, id; ring.
reflexivity.
replace (fun y:R => y ^ S n) with (fun y:R => y * y ^ n).
replace (pred (S n)) with n; [ idtac | reflexivity ].
@@ -1011,13 +1011,13 @@ Proof.
replace (INR (S n) * x ^ n) with (1 * f x + id x * (INR n * x ^ pred n)).
apply derivable_pt_lim_mult.
apply derivable_pt_lim_id.
- unfold f in |- *; apply Hrecn; assumption.
- unfold f in |- *.
- pattern n at 1 5 in |- *; replace n with (S (pred n)).
- unfold id in |- *; rewrite S_INR; simpl in |- *.
+ unfold f; apply Hrecn; assumption.
+ unfold f.
+ pattern n at 1 5; replace n with (S (pred n)).
+ unfold id; rewrite S_INR; simpl.
ring.
- symmetry in |- *; apply S_pred with 0%nat; assumption.
- unfold mult_fct, id in |- *; reflexivity.
+ symmetry ; apply S_pred with 0%nat; assumption.
+ unfold mult_fct, id; reflexivity.
reflexivity.
inversion H.
left; reflexivity.
@@ -1033,7 +1033,7 @@ Lemma derivable_pt_lim_pow :
Proof.
intros.
induction n as [| n Hrecn].
- simpl in |- *.
+ simpl.
rewrite Rmult_0_l.
replace (fun _:R => 1) with (fct_cte 1);
[ apply derivable_pt_lim_const | reflexivity ].
@@ -1044,14 +1044,14 @@ Qed.
Lemma derivable_pt_pow :
forall (n:nat) (x:R), derivable_pt (fun y:R => y ^ n) x.
Proof.
- intros; unfold derivable_pt in |- *.
+ intros; unfold derivable_pt.
exists (INR n * x ^ pred n).
apply derivable_pt_lim_pow.
Qed.
Lemma derivable_pow : forall n:nat, derivable (fun y:R => y ^ n).
Proof.
- intro; unfold derivable in |- *; intro; apply derivable_pt_pow.
+ intro; unfold derivable; intro; apply derivable_pt_pow.
Qed.
Lemma derive_pt_pow :
@@ -1073,7 +1073,7 @@ Proof.
elim pr2; intros.
unfold derivable_pt_abs in p.
unfold derivable_pt_abs in p0.
- simpl in |- *.
+ simpl.
apply (uniqueness_limite f x x0 x1 p p0).
Qed.
@@ -1094,7 +1094,7 @@ Proof.
assert (H5 := derive_pt_eq_1 f c l pr H4).
cut (0 < l / 2);
[ intro
- | unfold Rdiv in |- *; apply Rmult_lt_0_compat;
+ | unfold Rdiv; apply Rmult_lt_0_compat;
[ assumption | apply Rinv_0_lt_compat; prove_sup0 ] ].
elim (H5 (l / 2) H6); intros delta H7.
cut (0 < (b - c) / 2).
@@ -1119,7 +1119,7 @@ Proof.
(Rabs
((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) /
Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2).
- unfold Rabs in |- *;
+ unfold Rabs;
case
(Rcase_abs
((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) /
@@ -1157,7 +1157,7 @@ Proof.
(Rlt_le_trans 0
((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) /
Rmin (delta / 2) ((b + - c) / 2)) 0 H22 H16)).
- pattern l at 2 in |- *; rewrite double_var.
+ pattern l at 2; rewrite double_var.
ring.
ring.
intro.
@@ -1183,7 +1183,7 @@ Proof.
l +
-
((f (c + Rmin (delta / 2) ((b + - c) / 2)) - f c) /
- Rmin (delta / 2) ((b + - c) / 2))) in |- *; apply Rplus_lt_le_0_compat;
+ Rmin (delta / 2) ((b + - c) / 2))); apply Rplus_lt_le_0_compat;
[ assumption
| rewrite <- Ropp_0; apply Ropp_ge_le_contravar; apply Rle_ge; assumption ].
unfold Rminus; ring.
@@ -1195,13 +1195,13 @@ Proof.
((f c - f (c + Rmin (delta / 2) ((b - c) / 2))) /
Rmin (delta / 2) ((b - c) / 2))).
rewrite <- Ropp_0; apply Ropp_ge_le_contravar; apply Rle_ge;
- unfold Rdiv in |- *; apply Rmult_le_pos;
+ unfold Rdiv; apply Rmult_le_pos;
[ generalize
(Rplus_le_compat_r (- f (c + Rmin (delta * / 2) ((b - c) * / 2)))
(f (c + Rmin (delta * / 2) ((b - c) * / 2))) (
f c) H15); rewrite Rplus_opp_r; intro; assumption
| left; apply Rinv_0_lt_compat; assumption ].
- unfold Rdiv in |- *.
+ unfold Rdiv.
rewrite <- Ropp_mult_distr_l_reverse.
repeat rewrite <- (Rmult_comm (/ Rmin (delta * / 2) ((b - c) * / 2))).
apply Rmult_eq_reg_l with (Rmin (delta * / 2) ((b - c) * / 2)).
@@ -1209,9 +1209,9 @@ Proof.
rewrite <- Rinv_r_sym.
repeat rewrite Rmult_1_l.
ring.
- red in |- *; intro.
+ red; intro.
unfold Rdiv in H12; rewrite H16 in H12; elim (Rlt_irrefl 0 H12).
- red in |- *; intro.
+ red; intro.
unfold Rdiv in H12; rewrite H16 in H12; elim (Rlt_irrefl 0 H12).
assert (H14 := Rmin_r (delta / 2) ((b - c) / 2)).
assert
@@ -1225,7 +1225,7 @@ Proof.
replace (2 * b) with (b + b).
apply Rplus_lt_compat_r; assumption.
ring.
- unfold Rdiv in |- *; rewrite Rmult_plus_distr_l.
+ unfold Rdiv; rewrite Rmult_plus_distr_l.
repeat rewrite (Rmult_comm 2).
rewrite Rmult_assoc; rewrite <- Rinv_l_sym.
rewrite Rmult_1_r.
@@ -1233,51 +1233,51 @@ Proof.
discrR.
apply Rlt_trans with c.
assumption.
- pattern c at 1 in |- *; rewrite <- (Rplus_0_r c); apply Rplus_lt_compat_l;
+ pattern c at 1; rewrite <- (Rplus_0_r c); apply Rplus_lt_compat_l;
assumption.
cut (0 < delta / 2).
intro;
apply
(Rmin_stable_in_posreal (mkposreal (delta / 2) H12)
(mkposreal ((b - c) / 2) H8)).
- unfold Rdiv in |- *; apply Rmult_lt_0_compat;
+ unfold Rdiv; apply Rmult_lt_0_compat;
[ apply (cond_pos delta) | apply Rinv_0_lt_compat; prove_sup0 ].
- unfold Rabs in |- *; case (Rcase_abs (Rmin (delta / 2) ((b - c) / 2))).
+ unfold Rabs; case (Rcase_abs (Rmin (delta / 2) ((b - c) / 2))).
intro.
cut (0 < delta / 2).
intro.
generalize
(Rmin_stable_in_posreal (mkposreal (delta / 2) H10)
- (mkposreal ((b - c) / 2) H8)); simpl in |- *; intro;
+ (mkposreal ((b - c) / 2) H8)); simpl; intro;
elim (Rlt_irrefl 0 (Rlt_trans 0 (Rmin (delta / 2) ((b - c) / 2)) 0 H11 r)).
- unfold Rdiv in |- *; apply Rmult_lt_0_compat;
+ unfold Rdiv; apply Rmult_lt_0_compat;
[ apply (cond_pos delta) | apply Rinv_0_lt_compat; prove_sup0 ].
intro; apply Rle_lt_trans with (delta / 2).
apply Rmin_l.
- unfold Rdiv in |- *; apply Rmult_lt_reg_l with 2.
+ unfold Rdiv; apply Rmult_lt_reg_l with 2.
prove_sup0.
rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc; rewrite <- Rinv_r_sym.
rewrite Rmult_1_l.
replace (2 * delta) with (delta + delta).
- pattern delta at 2 in |- *; rewrite <- (Rplus_0_r delta);
+ pattern delta at 2; rewrite <- (Rplus_0_r delta);
apply Rplus_lt_compat_l.
rewrite Rplus_0_r; apply (cond_pos delta).
- symmetry in |- *; apply double.
+ symmetry ; apply double.
discrR.
cut (0 < delta / 2).
intro;
generalize
(Rmin_stable_in_posreal (mkposreal (delta / 2) H9)
- (mkposreal ((b - c) / 2) H8)); simpl in |- *;
- intro; red in |- *; intro; rewrite H11 in H10; elim (Rlt_irrefl 0 H10).
- unfold Rdiv in |- *; apply Rmult_lt_0_compat;
+ (mkposreal ((b - c) / 2) H8)); simpl;
+ intro; red; intro; rewrite H11 in H10; elim (Rlt_irrefl 0 H10).
+ unfold Rdiv; apply Rmult_lt_0_compat;
[ apply (cond_pos delta) | apply Rinv_0_lt_compat; prove_sup0 ].
- unfold Rdiv in |- *; apply Rmult_lt_0_compat.
+ unfold Rdiv; apply Rmult_lt_0_compat.
generalize (Rplus_lt_compat_r (- c) c b H0); rewrite Rplus_opp_r; intro;
assumption.
apply Rinv_0_lt_compat; prove_sup0.
elim H2; intro.
- symmetry in |- *; assumption.
+ symmetry ; assumption.
generalize (derivable_derive f c pr); intro; elim H4; intros l H5.
rewrite H5 in H3; generalize (derive_pt_eq_1 f c l pr H5); intro;
cut (0 < - (l / 2)).
@@ -1307,7 +1307,7 @@ Proof.
((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) /
Rmax (- (delta / 2)) ((a + - c) / 2) + - l) <
- (l / 2)).
- unfold Rabs in |- *;
+ unfold Rabs;
case
(Rcase_abs
((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) /
@@ -1339,12 +1339,12 @@ Proof.
Rmax (- (delta / 2)) ((a - c) / 2)) 0 H17 H23)).
rewrite <- (Ropp_involutive (l / 2)); rewrite <- Ropp_0;
apply Ropp_lt_gt_contravar; assumption.
- pattern l at 3 in |- *; rewrite double_var.
+ pattern l at 3; rewrite double_var.
ring.
assumption.
apply Rplus_le_lt_0_compat; assumption.
rewrite <- Ropp_0; apply Ropp_lt_gt_contravar; assumption.
- unfold Rdiv in |- *;
+ unfold Rdiv;
replace
((f (c + Rmax (- (delta * / 2)) ((a - c) * / 2)) - f c) *
/ Rmax (- (delta * / 2)) ((a - c) * / 2)) with
@@ -1361,7 +1361,7 @@ Proof.
ring.
left; apply Rinv_0_lt_compat; rewrite <- Ropp_0; apply Ropp_lt_gt_contravar;
assumption.
- unfold Rdiv in |- *.
+ unfold Rdiv.
rewrite <- Ropp_inv_permute.
rewrite Rmult_opp_opp.
reflexivity.
@@ -1380,7 +1380,7 @@ Proof.
apply Rplus_lt_compat_l; assumption.
field; discrR.
assumption.
- unfold Rabs in |- *; case (Rcase_abs (Rmax (- (delta / 2)) ((a - c) / 2))).
+ unfold Rabs; case (Rcase_abs (Rmax (- (delta / 2)) ((a - c) / 2))).
intro; generalize (RmaxLess1 (- (delta / 2)) ((a - c) / 2)); intro;
generalize
(Ropp_le_ge_contravar (- (delta / 2)) (Rmax (- (delta / 2)) ((a - c) / 2))
@@ -1390,10 +1390,10 @@ Proof.
assumption.
apply Rmult_lt_reg_l with 2.
prove_sup0.
- unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
+ unfold Rdiv; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
rewrite <- Rinv_r_sym.
rewrite Rmult_1_l; rewrite double.
- pattern delta at 2 in |- *; rewrite <- (Rplus_0_r delta);
+ pattern delta at 2; rewrite <- (Rplus_0_r delta);
apply Rplus_lt_compat_l; rewrite Rplus_0_r; apply (cond_pos delta).
discrR.
cut (- (delta / 2) < 0).
@@ -1401,7 +1401,7 @@ Proof.
intros;
generalize
(Rmax_stable_in_negreal (mknegreal (- (delta / 2)) H13)
- (mknegreal ((a - c) / 2) H12)); simpl in |- *;
+ (mknegreal ((a - c) / 2) H12)); simpl;
intro; generalize (Rge_le (Rmax (- (delta / 2)) ((a - c) / 2)) 0 r);
intro;
elim
@@ -1410,41 +1410,41 @@ Proof.
rewrite <- Ropp_0; rewrite <- (Ropp_involutive ((a - c) / 2));
apply Ropp_lt_gt_contravar; replace (- ((a - c) / 2)) with ((c - a) / 2).
assumption.
- unfold Rdiv in |- *.
+ unfold Rdiv.
rewrite <- Ropp_mult_distr_l_reverse.
rewrite (Ropp_minus_distr a c).
reflexivity.
- rewrite <- Ropp_0; apply Ropp_lt_gt_contravar; unfold Rdiv in |- *;
+ rewrite <- Ropp_0; apply Ropp_lt_gt_contravar; unfold Rdiv;
apply Rmult_lt_0_compat;
[ apply (cond_pos delta)
| assert (Hyp : 0 < 2); [ prove_sup0 | apply (Rinv_0_lt_compat 2 Hyp) ] ].
- red in |- *; intro; rewrite H11 in H10; elim (Rlt_irrefl 0 H10).
+ red; intro; rewrite H11 in H10; elim (Rlt_irrefl 0 H10).
cut ((a - c) / 2 < 0).
intro; cut (- (delta / 2) < 0).
intro;
apply
(Rmax_stable_in_negreal (mknegreal (- (delta / 2)) H11)
(mknegreal ((a - c) / 2) H10)).
- rewrite <- Ropp_0; apply Ropp_lt_gt_contravar; unfold Rdiv in |- *;
+ rewrite <- Ropp_0; apply Ropp_lt_gt_contravar; unfold Rdiv;
apply Rmult_lt_0_compat;
[ apply (cond_pos delta)
| assert (Hyp : 0 < 2); [ prove_sup0 | apply (Rinv_0_lt_compat 2 Hyp) ] ].
rewrite <- Ropp_0; rewrite <- (Ropp_involutive ((a - c) / 2));
apply Ropp_lt_gt_contravar; replace (- ((a - c) / 2)) with ((c - a) / 2).
assumption.
- unfold Rdiv in |- *.
+ unfold Rdiv.
rewrite <- Ropp_mult_distr_l_reverse.
rewrite (Ropp_minus_distr a c).
reflexivity.
- unfold Rdiv in |- *; apply Rmult_lt_0_compat;
+ unfold Rdiv; apply Rmult_lt_0_compat;
[ generalize (Rplus_lt_compat_r (- a) a c H); rewrite Rplus_opp_r; intro;
assumption
| assert (Hyp : 0 < 2); [ prove_sup0 | apply (Rinv_0_lt_compat 2 Hyp) ] ].
replace (- (l / 2)) with (- l / 2).
- unfold Rdiv in |- *; apply Rmult_lt_0_compat.
+ unfold Rdiv; apply Rmult_lt_0_compat.
rewrite <- Ropp_0; apply Ropp_lt_gt_contravar; assumption.
assert (Hyp : 0 < 2); [ prove_sup0 | apply (Rinv_0_lt_compat 2 Hyp) ].
- unfold Rdiv in |- *; apply Ropp_mult_distr_l_reverse.
+ unfold Rdiv; apply Ropp_mult_distr_l_reverse.
Qed.
Theorem deriv_minimum :
@@ -1460,7 +1460,7 @@ Proof.
cut (forall x:R, a < x -> x < b -> (- f)%F x <= (- f)%F c).
intro.
apply (deriv_maximum (- f)%F a b c (derivable_pt_opp _ _ pr) H H0 H2).
- intros; unfold opp_fct in |- *; apply Ropp_ge_le_contravar; apply Rle_ge.
+ intros; unfold opp_fct; apply Ropp_ge_le_contravar; apply Rle_ge.
apply (H1 x H2 H3).
Qed.
@@ -1493,7 +1493,7 @@ Proof.
intro; decompose [and] H7; intros; generalize (H6 (delta / 2) H8 H11);
cut (0 <= (f (x + delta / 2) - f x) / (delta / 2)).
intro; cut (0 <= (f (x + delta / 2) - f x) / (delta / 2) - l).
- intro; unfold Rabs in |- *;
+ intro; unfold Rabs;
case (Rcase_abs ((f (x + delta / 2) - f x) / (delta / 2) - l)).
intro;
elim
@@ -1502,7 +1502,7 @@ Proof.
intros;
generalize
(Rplus_lt_compat_r l ((f (x + delta / 2) - f x) / (delta / 2) - l)
- (- (l / 2)) H13); unfold Rminus in |- *;
+ (- (l / 2)) H13); unfold Rminus;
replace (- (l / 2) + l) with (l / 2).
rewrite Rplus_assoc; rewrite Rplus_opp_l; rewrite Rplus_0_r; intro;
generalize
@@ -1512,50 +1512,50 @@ Proof.
rewrite <- Ropp_0 in H5;
generalize (Ropp_lt_gt_contravar (-0) (- (l / 2)) H5);
repeat rewrite Ropp_involutive; intro; assumption.
- pattern l at 3 in |- *; rewrite double_var.
+ pattern l at 3; rewrite double_var.
ring.
- unfold Rminus in |- *; apply Rplus_le_le_0_compat.
- unfold Rdiv in |- *; apply Rmult_le_pos.
+ unfold Rminus; apply Rplus_le_le_0_compat.
+ unfold Rdiv; apply Rmult_le_pos.
cut (x <= x + delta * / 2).
intro; generalize (H x (x + delta * / 2) H12); intro;
generalize (Rplus_le_compat_l (- f x) (f x) (f (x + delta * / 2)) H13);
rewrite Rplus_opp_l; rewrite Rplus_comm; intro; assumption.
- pattern x at 1 in |- *; rewrite <- (Rplus_0_r x); apply Rplus_le_compat_l;
+ pattern x at 1; rewrite <- (Rplus_0_r x); apply Rplus_le_compat_l;
left; assumption.
left; apply Rinv_0_lt_compat; assumption.
left; rewrite <- Ropp_0; apply Ropp_lt_gt_contravar; assumption.
- unfold Rdiv in |- *; apply Rmult_le_pos.
+ unfold Rdiv; apply Rmult_le_pos.
cut (x <= x + delta * / 2).
intro; generalize (H x (x + delta * / 2) H9); intro;
generalize (Rplus_le_compat_l (- f x) (f x) (f (x + delta * / 2)) H12);
rewrite Rplus_opp_l; rewrite Rplus_comm; intro; assumption.
- pattern x at 1 in |- *; rewrite <- (Rplus_0_r x); apply Rplus_le_compat_l;
+ pattern x at 1; rewrite <- (Rplus_0_r x); apply Rplus_le_compat_l;
left; assumption.
left; apply Rinv_0_lt_compat; assumption.
split.
- unfold Rdiv in |- *; apply prod_neq_R0.
- generalize (cond_pos delta); intro; red in |- *; intro H9; rewrite H9 in H7;
+ unfold Rdiv; apply prod_neq_R0.
+ generalize (cond_pos delta); intro; red; intro H9; rewrite H9 in H7;
elim (Rlt_irrefl 0 H7).
apply Rinv_neq_0_compat; discrR.
split.
- unfold Rdiv in |- *; apply Rmult_lt_0_compat;
+ unfold Rdiv; apply Rmult_lt_0_compat;
[ apply (cond_pos delta) | apply Rinv_0_lt_compat; prove_sup0 ].
replace (Rabs (delta / 2)) with (delta / 2).
- unfold Rdiv in |- *; apply Rmult_lt_reg_l with 2.
+ unfold Rdiv; apply Rmult_lt_reg_l with 2.
prove_sup0.
rewrite (Rmult_comm 2).
rewrite Rmult_assoc; rewrite <- Rinv_l_sym; [ idtac | discrR ].
rewrite Rmult_1_r.
rewrite double.
- pattern (pos delta) at 1 in |- *; rewrite <- Rplus_0_r.
+ pattern (pos delta) at 1; rewrite <- Rplus_0_r.
apply Rplus_lt_compat_l; apply (cond_pos delta).
- symmetry in |- *; apply Rabs_right.
- left; change (0 < delta / 2) in |- *; unfold Rdiv in |- *;
+ symmetry ; apply Rabs_right.
+ left; change (0 < delta / 2); unfold Rdiv;
apply Rmult_lt_0_compat;
[ apply (cond_pos delta) | apply Rinv_0_lt_compat; prove_sup0 ].
- unfold Rdiv in |- *; rewrite <- Ropp_mult_distr_l_reverse;
+ unfold Rdiv; rewrite <- Ropp_mult_distr_l_reverse;
apply Rmult_lt_0_compat.
apply Rplus_lt_reg_r with l.
- unfold Rminus in |- *; rewrite Rplus_opp_r; rewrite Rplus_0_r; assumption.
+ unfold Rminus; rewrite Rplus_opp_r; rewrite Rplus_0_r; assumption.
apply Rinv_0_lt_compat; prove_sup0.
Qed.
diff --git a/theories/Reals/Ranalysis2.v b/theories/Reals/Ranalysis2.v
index 218f2a38f..971983987 100644
--- a/theories/Reals/Ranalysis2.v
+++ b/theories/Reals/Ranalysis2.v
@@ -24,7 +24,7 @@ Lemma formule :
f1 x / (f2 x * f2 (x + h)) * ((f2 (x + h) - f2 x) / h - l2) +
l2 * f1 x / (Rsqr (f2 x) * f2 (x + h)) * (f2 (x + h) - f2 x).
Proof.
- intros; unfold Rdiv, Rminus, Rsqr in |- *.
+ intros; unfold Rdiv, Rminus, Rsqr.
repeat rewrite Rmult_plus_distr_r; repeat rewrite Rmult_plus_distr_l;
repeat rewrite Rinv_mult_distr; try assumption.
replace (l1 * f2 x * (/ f2 x * / f2 x)) with (l1 * / f2 x * (f2 x * / f2 x));
@@ -81,10 +81,10 @@ Proof.
rewrite Rabs_Rinv; [ left; exact H7 | assumption ].
apply Rlt_le_trans with (2 / Rabs (f2 x) * Rabs (eps * f2 x / 8)).
apply Rmult_lt_compat_l.
- unfold Rdiv in |- *; apply Rmult_lt_0_compat;
+ unfold Rdiv; apply Rmult_lt_0_compat;
[ prove_sup0 | apply Rinv_0_lt_compat; apply Rabs_pos_lt; assumption ].
exact H8.
- right; unfold Rdiv in |- *.
+ right; unfold Rdiv.
repeat rewrite Rabs_mult.
rewrite Rabs_Rinv; discrR.
replace (Rabs 8) with 8.
@@ -96,8 +96,8 @@ Proof.
replace (Rabs eps) with eps.
repeat rewrite <- Rinv_r_sym; try discrR || (apply Rabs_no_R0; assumption).
ring.
- symmetry in |- *; apply Rabs_right; left; assumption.
- symmetry in |- *; apply Rabs_right; left; prove_sup.
+ symmetry ; apply Rabs_right; left; assumption.
+ symmetry ; apply Rabs_right; left; prove_sup.
Qed.
Lemma maj_term2 :
@@ -129,11 +129,11 @@ Proof.
(Rabs (2 * (l1 / (f2 x * f2 x))) * Rabs (eps * Rsqr (f2 x) / (8 * l1))).
apply Rmult_lt_compat_r.
apply Rabs_pos_lt.
- unfold Rdiv in |- *; unfold Rsqr in |- *; repeat apply prod_neq_R0;
+ unfold Rdiv; unfold Rsqr; repeat apply prod_neq_R0;
try assumption || discrR.
- red in |- *; intro H10; rewrite H10 in H; elim (Rlt_irrefl _ H).
+ red; intro H10; rewrite H10 in H; elim (Rlt_irrefl _ H).
apply Rinv_neq_0_compat; apply prod_neq_R0; try assumption || discrR.
- unfold Rdiv in |- *.
+ unfold Rdiv.
repeat rewrite Rinv_mult_distr; try assumption.
repeat rewrite Rabs_mult.
replace (Rabs 2) with 2.
@@ -147,9 +147,9 @@ Proof.
repeat rewrite Rabs_Rinv; try assumption.
rewrite <- (Rmult_comm 2).
unfold Rdiv in H8; exact H8.
- symmetry in |- *; apply Rabs_right; left; prove_sup0.
+ symmetry ; apply Rabs_right; left; prove_sup0.
right.
- unfold Rsqr, Rdiv in |- *.
+ unfold Rsqr, Rdiv.
do 1 rewrite Rinv_mult_distr; try assumption || discrR.
do 1 rewrite Rinv_mult_distr; try assumption || discrR.
repeat rewrite Rabs_mult.
@@ -166,9 +166,9 @@ Proof.
(Rabs (f2 x) * / Rabs (f2 x)) * (2 * / 2)); [ idtac | ring ].
repeat rewrite <- Rinv_r_sym; try (apply Rabs_no_R0; assumption) || discrR.
ring.
- symmetry in |- *; apply Rabs_right; left; prove_sup0.
- symmetry in |- *; apply Rabs_right; left; prove_sup.
- symmetry in |- *; apply Rabs_right; left; assumption.
+ symmetry ; apply Rabs_right; left; prove_sup0.
+ symmetry ; apply Rabs_right; left; prove_sup.
+ symmetry ; apply Rabs_right; left; assumption.
Qed.
Lemma maj_term3 :
@@ -204,11 +204,11 @@ Proof.
(Rabs (2 * (f1 x / (f2 x * f2 x))) * Rabs (Rsqr (f2 x) * eps / (8 * f1 x))).
apply Rmult_lt_compat_r.
apply Rabs_pos_lt.
- unfold Rdiv in |- *; unfold Rsqr in |- *; repeat apply prod_neq_R0;
+ unfold Rdiv; unfold Rsqr; repeat apply prod_neq_R0;
try assumption.
- red in |- *; intro H10; rewrite H10 in H; elim (Rlt_irrefl _ H).
+ red; intro H10; rewrite H10 in H; elim (Rlt_irrefl _ H).
apply Rinv_neq_0_compat; apply prod_neq_R0; discrR || assumption.
- unfold Rdiv in |- *.
+ unfold Rdiv.
repeat rewrite Rinv_mult_distr; try assumption.
repeat rewrite Rabs_mult.
replace (Rabs 2) with 2.
@@ -222,9 +222,9 @@ Proof.
repeat rewrite Rabs_Rinv; assumption || idtac.
rewrite <- (Rmult_comm 2).
unfold Rdiv in H9; exact H9.
- symmetry in |- *; apply Rabs_right; left; prove_sup0.
+ symmetry ; apply Rabs_right; left; prove_sup0.
right.
- unfold Rsqr, Rdiv in |- *.
+ unfold Rsqr, Rdiv.
rewrite Rinv_mult_distr; try assumption || discrR.
rewrite Rinv_mult_distr; try assumption || discrR.
repeat rewrite Rabs_mult.
@@ -241,9 +241,9 @@ Proof.
(Rabs (f1 x) * / Rabs (f1 x)) * (2 * / 2)); [ idtac | ring ].
repeat rewrite <- Rinv_r_sym; try discrR || (apply Rabs_no_R0; assumption).
ring.
- symmetry in |- *; apply Rabs_right; left; prove_sup0.
- symmetry in |- *; apply Rabs_right; left; prove_sup.
- symmetry in |- *; apply Rabs_right; left; assumption.
+ symmetry ; apply Rabs_right; left; prove_sup0.
+ symmetry ; apply Rabs_right; left; prove_sup.
+ symmetry ; apply Rabs_right; left; assumption.
Qed.
Lemma maj_term4 :
@@ -281,17 +281,17 @@ Proof.
Rabs (Rsqr (f2 x) * f2 x * eps / (8 * f1 x * l2))).
apply Rmult_lt_compat_r.
apply Rabs_pos_lt.
- unfold Rdiv in |- *; unfold Rsqr in |- *; repeat apply prod_neq_R0;
+ unfold Rdiv; unfold Rsqr; repeat apply prod_neq_R0;
assumption || idtac.
- red in |- *; intro H11; rewrite H11 in H; elim (Rlt_irrefl _ H).
+ red; intro H11; rewrite H11 in H; elim (Rlt_irrefl _ H).
apply Rinv_neq_0_compat; apply prod_neq_R0.
apply prod_neq_R0.
discrR.
assumption.
assumption.
- unfold Rdiv in |- *.
+ unfold Rdiv.
repeat rewrite Rinv_mult_distr;
- try assumption || (unfold Rsqr in |- *; apply prod_neq_R0; assumption).
+ try assumption || (unfold Rsqr; apply prod_neq_R0; assumption).
repeat rewrite Rabs_mult.
replace (Rabs 2) with 2.
replace
@@ -305,13 +305,13 @@ Proof.
repeat apply Rmult_lt_compat_l.
apply Rabs_pos_lt; assumption.
apply Rabs_pos_lt; assumption.
- apply Rabs_pos_lt; apply Rinv_neq_0_compat; unfold Rsqr in |- *;
+ apply Rabs_pos_lt; apply Rinv_neq_0_compat; unfold Rsqr;
apply prod_neq_R0; assumption.
repeat rewrite Rabs_Rinv; [ idtac | assumption | assumption ].
rewrite <- (Rmult_comm 2).
unfold Rdiv in H10; exact H10.
- symmetry in |- *; apply Rabs_right; left; prove_sup0.
- right; unfold Rsqr, Rdiv in |- *.
+ symmetry ; apply Rabs_right; left; prove_sup0.
+ right; unfold Rsqr, Rdiv.
rewrite Rinv_mult_distr; try assumption || discrR.
rewrite Rinv_mult_distr; try assumption || discrR.
rewrite Rinv_mult_distr; try assumption || discrR.
@@ -333,9 +333,9 @@ Proof.
(Rabs (f2 x) * / Rabs (f2 x)) * (2 * / 2)); [ idtac | ring ].
repeat rewrite <- Rinv_r_sym; try discrR || (apply Rabs_no_R0; assumption).
ring.
- symmetry in |- *; apply Rabs_right; left; prove_sup0.
- symmetry in |- *; apply Rabs_right; left; prove_sup.
- symmetry in |- *; apply Rabs_right; left; assumption.
+ symmetry ; apply Rabs_right; left; prove_sup0.
+ symmetry ; apply Rabs_right; left; prove_sup.
+ symmetry ; apply Rabs_right; left; assumption.
apply prod_neq_R0; assumption || discrR.
apply prod_neq_R0; assumption.
Qed.
@@ -343,11 +343,11 @@ Qed.
Lemma D_x_no_cond : forall x a:R, a <> 0 -> D_x no_cond x (x + a).
Proof.
intros.
- unfold D_x, no_cond in |- *.
+ unfold D_x, no_cond.
split.
trivial.
apply Rminus_not_eq.
- unfold Rminus in |- *.
+ unfold Rminus.
rewrite Ropp_plus_distr.
rewrite <- Rplus_assoc.
rewrite Rplus_opp_r.
@@ -394,7 +394,7 @@ Qed.
Lemma quadruple_var : forall x:R, x = x / 4 + x / 4 + x / 4 + x / 4.
Proof.
intro; rewrite <- quadruple.
- unfold Rdiv in |- *; rewrite <- Rmult_assoc; rewrite Rinv_r_simpl_m; discrR.
+ unfold Rdiv; rewrite <- Rmult_assoc; rewrite Rinv_r_simpl_m; discrR.
reflexivity.
Qed.
@@ -413,10 +413,10 @@ Proof.
cut
(dist R_met (x0 + h) x0 < x ->
dist R_met (f (x0 + h)) (f x0) < Rabs (f x0 / 2)).
- unfold dist in |- *; simpl in |- *; unfold R_dist in |- *;
+ unfold dist; simpl; unfold R_dist;
replace (x0 + h - x0) with h.
intros; assert (H7 := H6 H4).
- red in |- *; intro.
+ red; intro.
rewrite H8 in H7; unfold Rminus in H7; rewrite Rplus_0_l in H7;
rewrite Rabs_Ropp in H7; unfold Rdiv in H7; rewrite Rabs_mult in H7;
pattern (Rabs (f x0)) at 1 in H7; rewrite <- Rmult_1_r in H7.
@@ -429,10 +429,10 @@ Proof.
rewrite Rmult_1_r in H12; rewrite <- Rinv_r_sym in H12;
[ idtac | discrR ].
cut (IZR 1 < IZR 2).
- unfold IZR in |- *; unfold INR, Pos.to_nat in |- *; simpl in |- *; intro;
+ unfold IZR; unfold INR, Pos.to_nat; simpl; intro;
elim (Rlt_irrefl 1 (Rlt_trans _ _ _ H13 H12)).
apply IZR_lt; omega.
- unfold Rabs in |- *; case (Rcase_abs (/ 2)); intro.
+ unfold Rabs; case (Rcase_abs (/ 2)); intro.
assert (Hyp : 0 < 2).
prove_sup0.
assert (H11 := Rmult_lt_compat_l 2 _ _ Hyp r); rewrite Rmult_0_r in H11;
@@ -442,18 +442,18 @@ Proof.
apply (Rabs_pos_lt _ H0).
ring.
assert (H6 := Req_dec x0 (x0 + h)); elim H6; intro.
- intro; rewrite <- H7; unfold dist, R_met in |- *; unfold R_dist in |- *;
- unfold Rminus in |- *; rewrite Rplus_opp_r; rewrite Rabs_R0;
+ intro; rewrite <- H7; unfold dist, R_met; unfold R_dist;
+ unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0;
apply Rabs_pos_lt.
- unfold Rdiv in |- *; apply prod_neq_R0;
+ unfold Rdiv; apply prod_neq_R0;
[ assumption | apply Rinv_neq_0_compat; discrR ].
intro; apply H5.
split.
- unfold D_x, no_cond in |- *.
+ unfold D_x, no_cond.
split; trivial || assumption.
assumption.
- change (0 < Rabs (f x0 / 2)) in |- *.
- apply Rabs_pos_lt; unfold Rdiv in |- *; apply prod_neq_R0.
+ change (0 < Rabs (f x0 / 2)).
+ apply Rabs_pos_lt; unfold Rdiv; apply prod_neq_R0.
assumption.
apply Rinv_neq_0_compat; discrR.
Qed.
diff --git a/theories/Reals/Ranalysis3.v b/theories/Reals/Ranalysis3.v
index aa9e6bb35..82341fee3 100644
--- a/theories/Reals/Ranalysis3.v
+++ b/theories/Reals/Ranalysis3.v
@@ -22,17 +22,17 @@ Theorem derivable_pt_lim_div :
Proof.
intros f1 f2 x l1 l2 H H0 H1.
cut (derivable_pt f2 x);
- [ intro X | unfold derivable_pt in |- *; exists l2; exact H0 ].
+ [ intro X | unfold derivable_pt; exists l2; exact H0 ].
assert (H2 := continuous_neq_0 _ _ (derivable_continuous_pt _ _ X) H1).
elim H2; clear H2; intros eps_f2 H2.
- unfold div_fct in |- *.
+ unfold div_fct.
assert (H3 := derivable_continuous_pt _ _ X).
unfold continuity_pt in H3; unfold continue_in in H3; unfold limit1_in in H3;
unfold limit_in in H3; unfold dist in H3.
simpl in H3; unfold R_dist in H3.
elim (H3 (Rabs (f2 x) / 2));
[ idtac
- | unfold Rdiv in |- *; change (0 < Rabs (f2 x) * / 2) in |- *;
+ | unfold Rdiv; change (0 < Rabs (f2 x) * / 2);
apply Rmult_lt_0_compat;
[ apply Rabs_pos_lt; assumption | apply Rinv_0_lt_compat; prove_sup0 ] ].
clear H3; intros alp_f2 H3.
@@ -46,12 +46,12 @@ Proof.
(forall a:R,
Rabs a < Rmin eps_f2 alp_f2 -> / Rabs (f2 (x + a)) < 2 / Rabs (f2 x)).
intro Maj.
- unfold derivable_pt_lim in |- *; intros.
+ unfold derivable_pt_lim; intros.
elim (H (Rabs (eps * f2 x / 8)));
[ idtac
- | unfold Rdiv in |- *; change (0 < Rabs (eps * f2 x * / 8)) in |- *;
+ | unfold Rdiv; change (0 < Rabs (eps * f2 x * / 8));
apply Rabs_pos_lt; repeat apply prod_neq_R0;
- [ red in |- *; intro H7; rewrite H7 in H6; elim (Rlt_irrefl _ H6)
+ [ red; intro H7; rewrite H7 in H6; elim (Rlt_irrefl _ H6)
| assumption
| apply Rinv_neq_0_compat; discrR ] ].
intros alp_f1d H7.
@@ -68,7 +68,7 @@ Proof.
| elim H3; intros; assumption
| apply (cond_pos alp_f1d) ] ].
exists (mkposreal (Rmin eps_f2 (Rmin alp_f2 alp_f1d)) H10).
- simpl in |- *; intros.
+ simpl; intros.
assert (H13 := Rlt_le_trans _ _ _ H12 (Rmin_r _ _)).
assert (H14 := Rlt_le_trans _ _ _ H12 (Rmin_l _ _)).
assert (H15 := Rlt_le_trans _ _ _ H13 (Rmin_r _ _)).
@@ -80,7 +80,7 @@ Proof.
Rabs (l1 / (f2 x * f2 (x + h)) * (f2 x - f2 (x + h))) +
Rabs (f1 x / (f2 x * f2 (x + h)) * ((f2 (x + h) - f2 x) / h - l2)) +
Rabs (l2 * f1 x / (Rsqr (f2 x) * f2 (x + h)) * (f2 (x + h) - f2 x))).
- unfold Rminus in |- *.
+ unfold Rminus.
rewrite <-
(Rabs_Ropp (f1 x / (f2 x * f2 (x + h)) * ((f2 (x + h) + - f2 x) / h + - l2)))
.
@@ -98,15 +98,15 @@ Proof.
intros.
apply Rlt_4; assumption.
rewrite H8.
- unfold Rdiv in |- *; repeat rewrite Rmult_0_r || rewrite Rmult_0_l.
+ unfold Rdiv; repeat rewrite Rmult_0_r || rewrite Rmult_0_l.
rewrite Rabs_R0; rewrite Rmult_0_l.
apply Rmult_lt_0_compat; [ assumption | apply Rinv_0_lt_compat; prove_sup ].
rewrite H8.
- unfold Rdiv in |- *; repeat rewrite Rmult_0_r || rewrite Rmult_0_l.
+ unfold Rdiv; repeat rewrite Rmult_0_r || rewrite Rmult_0_l.
rewrite Rabs_R0; rewrite Rmult_0_l.
apply Rmult_lt_0_compat; [ assumption | apply Rinv_0_lt_compat; prove_sup ].
rewrite H9.
- unfold Rdiv in |- *; repeat rewrite Rmult_0_r || rewrite Rmult_0_l.
+ unfold Rdiv; repeat rewrite Rmult_0_r || rewrite Rmult_0_l.
rewrite Rabs_R0; rewrite Rmult_0_l.
apply Rmult_lt_0_compat; [ assumption | apply Rinv_0_lt_compat; prove_sup ].
rewrite <- Rabs_mult.
@@ -114,7 +114,7 @@ Proof.
try assumption || apply H2.
apply H14.
apply Rmin_2; assumption.
- right; symmetry in |- *; apply quadruple_var.
+ right; symmetry ; apply quadruple_var.
(***********************************)
(* Second case *)
(* (f1 x)=0 l1<>0 *)
@@ -137,7 +137,7 @@ Proof.
cut (0 < Rmin (Rmin eps_f2 alp_f1d) (Rmin alp_f2 alp_f2t2)).
intro.
exists (mkposreal (Rmin (Rmin eps_f2 alp_f1d) (Rmin alp_f2 alp_f2t2)) H12).
- simpl in |- *.
+ simpl.
intros.
assert (H15 := Rlt_le_trans _ _ _ H14 (Rmin_r _ _)).
assert (H16 := Rlt_le_trans _ _ _ H14 (Rmin_l _ _)).
@@ -152,7 +152,7 @@ Proof.
Rabs (l1 / (f2 x * f2 (x + h)) * (f2 x - f2 (x + h))) +
Rabs (f1 x / (f2 x * f2 (x + h)) * ((f2 (x + h) - f2 x) / h - l2)) +
Rabs (l2 * f1 x / (Rsqr (f2 x) * f2 (x + h)) * (f2 (x + h) - f2 x))).
- unfold Rminus in |- *.
+ unfold Rminus.
rewrite <-
(Rabs_Ropp (f1 x / (f2 x * f2 (x + h)) * ((f2 (x + h) + - f2 x) / h + - l2)))
.
@@ -170,11 +170,11 @@ Proof.
intros.
apply Rlt_4; assumption.
rewrite H8.
- unfold Rdiv in |- *; repeat rewrite Rmult_0_r || rewrite Rmult_0_l.
+ unfold Rdiv; repeat rewrite Rmult_0_r || rewrite Rmult_0_l.
rewrite Rabs_R0; rewrite Rmult_0_l.
apply Rmult_lt_0_compat; [ assumption | apply Rinv_0_lt_compat; prove_sup ].
rewrite H8.
- unfold Rdiv in |- *; repeat rewrite Rmult_0_r || rewrite Rmult_0_l.
+ unfold Rdiv; repeat rewrite Rmult_0_r || rewrite Rmult_0_l.
rewrite Rabs_R0; rewrite Rmult_0_l.
apply Rmult_lt_0_compat; [ assumption | apply Rinv_0_lt_compat; prove_sup ].
rewrite <- Rabs_mult.
@@ -185,7 +185,7 @@ Proof.
apply (maj_term1 x h eps l1 alp_f2 eps_f2 alp_f1d f1 f2); try assumption.
apply H2; assumption.
apply Rmin_2; assumption.
- right; symmetry in |- *; apply quadruple_var.
+ right; symmetry ; apply quadruple_var.
apply H2; assumption.
repeat apply Rmin_pos.
apply (cond_pos eps_f2).
@@ -196,21 +196,21 @@ Proof.
elim H10; intros.
case (Req_dec a 0); intro.
rewrite H14; rewrite Rplus_0_r.
- unfold Rminus in |- *; rewrite Rplus_opp_r.
+ unfold Rminus; rewrite Rplus_opp_r.
rewrite Rabs_R0.
apply Rabs_pos_lt.
- unfold Rdiv, Rsqr in |- *; repeat rewrite Rmult_assoc.
+ unfold Rdiv, Rsqr; repeat rewrite Rmult_assoc.
repeat apply prod_neq_R0; try assumption.
- red in |- *; intro; rewrite H15 in H6; elim (Rlt_irrefl _ H6).
+ red; intro; rewrite H15 in H6; elim (Rlt_irrefl _ H6).
apply Rinv_neq_0_compat; repeat apply prod_neq_R0; discrR || assumption.
apply H13.
split.
apply D_x_no_cond; assumption.
replace (x + a - x) with a; [ assumption | ring ].
- change (0 < Rabs (eps * Rsqr (f2 x) / (8 * l1))) in |- *.
- apply Rabs_pos_lt; unfold Rdiv, Rsqr in |- *; repeat rewrite Rmult_assoc;
+ change (0 < Rabs (eps * Rsqr (f2 x) / (8 * l1))).
+ apply Rabs_pos_lt; unfold Rdiv, Rsqr; repeat rewrite Rmult_assoc;
repeat apply prod_neq_R0.
- red in |- *; intro; rewrite H11 in H6; elim (Rlt_irrefl _ H6).
+ red; intro; rewrite H11 in H6; elim (Rlt_irrefl _ H6).
assumption.
assumption.
apply Rinv_neq_0_compat; repeat apply prod_neq_R0;
@@ -223,17 +223,17 @@ Proof.
case (Req_dec l2 0); intro.
elim (H0 (Rabs (Rsqr (f2 x) * eps / (8 * f1 x))));
[ idtac
- | apply Rabs_pos_lt; unfold Rdiv, Rsqr in |- *; repeat rewrite Rmult_assoc;
+ | apply Rabs_pos_lt; unfold Rdiv, Rsqr; repeat rewrite Rmult_assoc;
repeat apply prod_neq_R0;
[ assumption
| assumption
- | red in |- *; intro; rewrite H11 in H6; elim (Rlt_irrefl _ H6)
+ | red; intro; rewrite H11 in H6; elim (Rlt_irrefl _ H6)
| apply Rinv_neq_0_compat; repeat apply prod_neq_R0; discrR || assumption ] ].
intros alp_f2d H12.
cut (0 < Rmin (Rmin eps_f2 alp_f2) (Rmin alp_f1d alp_f2d)).
intro.
exists (mkposreal (Rmin (Rmin eps_f2 alp_f2) (Rmin alp_f1d alp_f2d)) H11).
- simpl in |- *.
+ simpl.
intros.
assert (H15 := Rlt_le_trans _ _ _ H14 (Rmin_l _ _)).
assert (H16 := Rlt_le_trans _ _ _ H14 (Rmin_r _ _)).
@@ -248,7 +248,7 @@ Proof.
Rabs (l1 / (f2 x * f2 (x + h)) * (f2 x - f2 (x + h))) +
Rabs (f1 x / (f2 x * f2 (x + h)) * ((f2 (x + h) - f2 x) / h - l2)) +
Rabs (l2 * f1 x / (Rsqr (f2 x) * f2 (x + h)) * (f2 (x + h) - f2 x))).
- unfold Rminus in |- *.
+ unfold Rminus.
rewrite <-
(Rabs_Ropp (f1 x / (f2 x * f2 (x + h)) * ((f2 (x + h) + - f2 x) / h + - l2)))
.
@@ -266,7 +266,7 @@ Proof.
intros.
apply Rlt_4; assumption.
rewrite H10.
- unfold Rdiv in |- *; repeat rewrite Rmult_0_r || rewrite Rmult_0_l.
+ unfold Rdiv; repeat rewrite Rmult_0_r || rewrite Rmult_0_l.
rewrite Rabs_R0; rewrite Rmult_0_l.
apply Rmult_lt_0_compat; [ assumption | apply Rinv_0_lt_compat; prove_sup ].
rewrite <- Rabs_mult.
@@ -274,14 +274,14 @@ Proof.
apply H2; assumption.
apply Rmin_2; assumption.
rewrite H9.
- unfold Rdiv in |- *; repeat rewrite Rmult_0_r || rewrite Rmult_0_l.
+ unfold Rdiv; repeat rewrite Rmult_0_r || rewrite Rmult_0_l.
rewrite Rabs_R0; rewrite Rmult_0_l.
apply Rmult_lt_0_compat; [ assumption | apply Rinv_0_lt_compat; prove_sup ].
rewrite <- Rabs_mult.
apply (maj_term1 x h eps l1 alp_f2 eps_f2 alp_f1d f1 f2); assumption || idtac.
apply H2; assumption.
apply Rmin_2; assumption.
- right; symmetry in |- *; apply quadruple_var.
+ right; symmetry ; apply quadruple_var.
apply H2; assumption.
repeat apply Rmin_pos.
apply (cond_pos eps_f2).
@@ -294,7 +294,7 @@ Proof.
(***********************************)
elim (H0 (Rabs (Rsqr (f2 x) * eps / (8 * f1 x))));
[ idtac
- | apply Rabs_pos_lt; unfold Rsqr, Rdiv in |- *;
+ | apply Rabs_pos_lt; unfold Rsqr, Rdiv;
repeat rewrite Rinv_mult_distr; repeat apply prod_neq_R0;
try assumption || discrR ].
intros alp_f2d H11.
@@ -313,7 +313,7 @@ Proof.
exists
(mkposreal (Rmin (Rmin eps_f2 alp_f2) (Rmin alp_f1d (Rmin alp_f2d alp_f2c)))
H14).
- simpl in |- *; intros.
+ simpl; intros.
assert (H17 := Rlt_le_trans _ _ _ H16 (Rmin_l _ _)).
assert (H18 := Rlt_le_trans _ _ _ H16 (Rmin_r _ _)).
assert (H19 := Rlt_le_trans _ _ _ H18 (Rmin_r _ _)).
@@ -335,7 +335,7 @@ Proof.
Rabs (l1 / (f2 x * f2 (x + h)) * (f2 x - f2 (x + h))) +
Rabs (f1 x / (f2 x * f2 (x + h)) * ((f2 (x + h) - f2 x) / h - l2)) +
Rabs (l2 * f1 x / (Rsqr (f2 x) * f2 (x + h)) * (f2 (x + h) - f2 x))).
- unfold Rminus in |- *.
+ unfold Rminus.
rewrite <-
(Rabs_Ropp (f1 x / (f2 x * f2 (x + h)) * ((f2 (x + h) + - f2 x) / h + - l2)))
.
@@ -361,24 +361,24 @@ Proof.
apply H2; assumption.
apply Rmin_2; assumption.
rewrite H9.
- unfold Rdiv in |- *; repeat rewrite Rmult_0_r || rewrite Rmult_0_l.
+ unfold Rdiv; repeat rewrite Rmult_0_r || rewrite Rmult_0_l.
rewrite Rabs_R0; rewrite Rmult_0_l.
apply Rmult_lt_0_compat; [ assumption | apply Rinv_0_lt_compat; prove_sup ].
rewrite <- Rabs_mult.
apply (maj_term1 x h eps l1 alp_f2 eps_f2 alp_f1d f1 f2); try assumption.
apply H2; assumption.
apply Rmin_2; assumption.
- right; symmetry in |- *; apply quadruple_var.
+ right; symmetry ; apply quadruple_var.
apply H2; assumption.
intros.
case (Req_dec a 0); intro.
rewrite H17; rewrite Rplus_0_r.
- unfold Rminus in |- *; rewrite Rplus_opp_r; rewrite Rabs_R0.
+ unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0.
apply Rabs_pos_lt.
- unfold Rdiv, Rsqr in |- *.
+ unfold Rdiv, Rsqr.
repeat rewrite Rinv_mult_distr; try assumption.
repeat apply prod_neq_R0; try assumption.
- red in |- *; intro H18; rewrite H18 in H6; elim (Rlt_irrefl _ H6).
+ red; intro H18; rewrite H18 in H6; elim (Rlt_irrefl _ H6).
apply Rinv_neq_0_compat; discrR.
apply Rinv_neq_0_compat; discrR.
apply Rinv_neq_0_compat; discrR.
@@ -401,19 +401,19 @@ Proof.
apply (cond_pos alp_f1d).
apply (cond_pos alp_f2d).
elim H13; intros; assumption.
- change (0 < Rabs (Rsqr (f2 x) * f2 x * eps / (8 * f1 x * l2))) in |- *.
+ change (0 < Rabs (Rsqr (f2 x) * f2 x * eps / (8 * f1 x * l2))).
apply Rabs_pos_lt.
- unfold Rsqr, Rdiv in |- *.
+ unfold Rsqr, Rdiv.
repeat rewrite Rinv_mult_distr; try assumption || discrR.
repeat apply prod_neq_R0; try assumption.
- red in |- *; intro H13; rewrite H13 in H6; elim (Rlt_irrefl _ H6).
+ red; intro H13; rewrite H13 in H6; elim (Rlt_irrefl _ H6).
apply Rinv_neq_0_compat; discrR.
apply Rinv_neq_0_compat; discrR.
apply Rinv_neq_0_compat; discrR.
apply Rinv_neq_0_compat; assumption.
apply Rinv_neq_0_compat; assumption.
apply prod_neq_R0; [ discrR | assumption ].
- red in |- *; intro H11; rewrite H11 in H6; elim (Rlt_irrefl _ H6).
+ red; intro H11; rewrite H11 in H6; elim (Rlt_irrefl _ H6).
apply Rinv_neq_0_compat; discrR.
apply Rinv_neq_0_compat; discrR.
apply Rinv_neq_0_compat; discrR.
@@ -440,7 +440,7 @@ Proof.
exists
(mkposreal
(Rmin (Rmin eps_f2 alp_f2) (Rmin alp_f1d (Rmin alp_f2d alp_f2t2))) H13).
- simpl in |- *.
+ simpl.
intros.
cut
(forall a:R,
@@ -462,7 +462,7 @@ Proof.
Rabs (l1 / (f2 x * f2 (x + h)) * (f2 x - f2 (x + h))) +
Rabs (f1 x / (f2 x * f2 (x + h)) * ((f2 (x + h) - f2 x) / h - l2)) +
Rabs (l2 * f1 x / (Rsqr (f2 x) * f2 (x + h)) * (f2 (x + h) - f2 x))).
- unfold Rminus in |- *.
+ unfold Rminus.
rewrite <-
(Rabs_Ropp (f1 x / (f2 x * f2 (x + h)) * ((f2 (x + h) + - f2 x) / h + - l2)))
.
@@ -480,7 +480,7 @@ Proof.
intros.
apply Rlt_4; assumption.
rewrite H10.
- unfold Rdiv in |- *; repeat rewrite Rmult_0_r || rewrite Rmult_0_l.
+ unfold Rdiv; repeat rewrite Rmult_0_r || rewrite Rmult_0_l.
rewrite Rabs_R0; rewrite Rmult_0_l.
apply Rmult_lt_0_compat; [ assumption | apply Rinv_0_lt_compat; prove_sup ].
rewrite <- Rabs_mult.
@@ -495,20 +495,20 @@ Proof.
apply (maj_term1 x h eps l1 alp_f2 eps_f2 alp_f1d f1 f2); try assumption.
apply H2; assumption.
apply Rmin_2; assumption.
- right; symmetry in |- *; apply quadruple_var.
+ right; symmetry ; apply quadruple_var.
apply H2; assumption.
intros.
case (Req_dec a 0); intro.
- rewrite H17; rewrite Rplus_0_r; unfold Rminus in |- *; rewrite Rplus_opp_r;
+ rewrite H17; rewrite Rplus_0_r; unfold Rminus; rewrite Rplus_opp_r;
rewrite Rabs_R0.
apply Rabs_pos_lt.
- unfold Rdiv in |- *; rewrite Rinv_mult_distr; try discrR || assumption.
- unfold Rsqr in |- *.
+ unfold Rdiv; rewrite Rinv_mult_distr; try discrR || assumption.
+ unfold Rsqr.
repeat apply prod_neq_R0;
assumption ||
(apply Rinv_neq_0_compat; assumption) ||
(apply Rinv_neq_0_compat; discrR) ||
- (red in |- *; intro H18; rewrite H18 in H6; elim (Rlt_irrefl _ H6)).
+ (red; intro H18; rewrite H18 in H6; elim (Rlt_irrefl _ H6)).
elim H11; intros.
apply H19.
split.
@@ -521,20 +521,20 @@ Proof.
apply (cond_pos alp_f2d).
elim H11; intros; assumption.
apply Rabs_pos_lt.
- unfold Rdiv, Rsqr in |- *; rewrite Rinv_mult_distr; try discrR || assumption.
+ unfold Rdiv, Rsqr; rewrite Rinv_mult_distr; try discrR || assumption.
repeat apply prod_neq_R0;
assumption ||
(apply Rinv_neq_0_compat; assumption) ||
(apply Rinv_neq_0_compat; discrR) ||
- (red in |- *; intro H12; rewrite H12 in H6; elim (Rlt_irrefl _ H6)).
- change (0 < Rabs (eps * Rsqr (f2 x) / (8 * l1))) in |- *.
+ (red; intro H12; rewrite H12 in H6; elim (Rlt_irrefl _ H6)).
+ change (0 < Rabs (eps * Rsqr (f2 x) / (8 * l1))).
apply Rabs_pos_lt.
- unfold Rdiv, Rsqr in |- *; rewrite Rinv_mult_distr; try discrR || assumption.
+ unfold Rdiv, Rsqr; rewrite Rinv_mult_distr; try discrR || assumption.
repeat apply prod_neq_R0;
assumption ||
(apply Rinv_neq_0_compat; assumption) ||
(apply Rinv_neq_0_compat; discrR) ||
- (red in |- *; intro H12; rewrite H12 in H6; elim (Rlt_irrefl _ H6)).
+ (red; intro H12; rewrite H12 in H6; elim (Rlt_irrefl _ H6)).
(***********************************)
(* Sixth case *)
(* (f1 x)<>0 l1<>0 l2<>0 *)
@@ -562,7 +562,7 @@ Proof.
(mkposreal
(Rmin (Rmin (Rmin eps_f2 alp_f2) (Rmin alp_f1d alp_f2d))
(Rmin alp_f2c alp_f2t2)) H15).
- simpl in |- *.
+ simpl.
intros.
assert (H18 := Rlt_le_trans _ _ _ H17 (Rmin_l _ _)).
assert (H19 := Rlt_le_trans _ _ _ H17 (Rmin_r _ _)).
@@ -591,7 +591,7 @@ Proof.
Rabs (l1 / (f2 x * f2 (x + h)) * (f2 x - f2 (x + h))) +
Rabs (f1 x / (f2 x * f2 (x + h)) * ((f2 (x + h) - f2 x) / h - l2)) +
Rabs (l2 * f1 x / (Rsqr (f2 x) * f2 (x + h)) * (f2 (x + h) - f2 x))).
- unfold Rminus in |- *.
+ unfold Rminus.
rewrite <-
(Rabs_Ropp (f1 x / (f2 x * f2 (x + h)) * ((f2 (x + h) + - f2 x) / h + - l2)))
.
@@ -624,18 +624,18 @@ Proof.
apply (maj_term1 x h eps l1 alp_f2 eps_f2 alp_f1d f1 f2); try assumption.
apply H2; assumption.
apply Rmin_2; assumption.
- right; symmetry in |- *; apply quadruple_var.
+ right; symmetry ; apply quadruple_var.
apply H2; assumption.
intros.
case (Req_dec a 0); intro.
- rewrite H18; rewrite Rplus_0_r; unfold Rminus in |- *; rewrite Rplus_opp_r;
+ rewrite H18; rewrite Rplus_0_r; unfold Rminus; rewrite Rplus_opp_r;
rewrite Rabs_R0; apply Rabs_pos_lt.
- unfold Rdiv, Rsqr in |- *; rewrite Rinv_mult_distr.
+ unfold Rdiv, Rsqr; rewrite Rinv_mult_distr.
repeat apply prod_neq_R0;
assumption ||
(apply Rinv_neq_0_compat; assumption) ||
(apply Rinv_neq_0_compat; discrR) ||
- (red in |- *; intro H28; rewrite H28 in H6; elim (Rlt_irrefl _ H6)).
+ (red; intro H28; rewrite H28 in H6; elim (Rlt_irrefl _ H6)).
apply prod_neq_R0; [ discrR | assumption ].
apply prod_neq_R0; [ discrR | assumption ].
assumption.
@@ -646,20 +646,20 @@ Proof.
replace (x + a - x) with a; [ assumption | ring ].
intros.
case (Req_dec a 0); intro.
- rewrite H18; rewrite Rplus_0_r; unfold Rminus in |- *; rewrite Rplus_opp_r;
+ rewrite H18; rewrite Rplus_0_r; unfold Rminus; rewrite Rplus_opp_r;
rewrite Rabs_R0; apply Rabs_pos_lt.
- unfold Rdiv, Rsqr in |- *; rewrite Rinv_mult_distr.
+ unfold Rdiv, Rsqr; rewrite Rinv_mult_distr.
repeat apply prod_neq_R0;
assumption ||
(apply Rinv_neq_0_compat; assumption) ||
(apply Rinv_neq_0_compat; discrR) ||
- (red in |- *; intro H28; rewrite H28 in H6; elim (Rlt_irrefl _ H6)).
+ (red; intro H28; rewrite H28 in H6; elim (Rlt_irrefl _ H6)).
discrR.
assumption.
elim H14; intros.
apply H20.
split.
- unfold D_x, no_cond in |- *; split.
+ unfold D_x, no_cond; split.
trivial.
apply Rminus_not_eq_right.
replace (x + a - x) with a; [ assumption | ring ].
@@ -671,34 +671,34 @@ Proof.
apply (cond_pos alp_f2d).
elim H13; intros; assumption.
elim H14; intros; assumption.
- change (0 < Rabs (eps * Rsqr (f2 x) / (8 * l1))) in |- *; apply Rabs_pos_lt.
- unfold Rdiv, Rsqr in |- *; rewrite Rinv_mult_distr; try discrR || assumption.
+ change (0 < Rabs (eps * Rsqr (f2 x) / (8 * l1))); apply Rabs_pos_lt.
+ unfold Rdiv, Rsqr; rewrite Rinv_mult_distr; try discrR || assumption.
repeat apply prod_neq_R0;
assumption ||
(apply Rinv_neq_0_compat; assumption) ||
(apply Rinv_neq_0_compat; discrR) ||
- (red in |- *; intro H14; rewrite H14 in H6; elim (Rlt_irrefl _ H6)).
- change (0 < Rabs (Rsqr (f2 x) * f2 x * eps / (8 * f1 x * l2))) in |- *;
+ (red; intro H14; rewrite H14 in H6; elim (Rlt_irrefl _ H6)).
+ change (0 < Rabs (Rsqr (f2 x) * f2 x * eps / (8 * f1 x * l2)));
apply Rabs_pos_lt.
- unfold Rdiv, Rsqr in |- *; rewrite Rinv_mult_distr.
+ unfold Rdiv, Rsqr; rewrite Rinv_mult_distr.
repeat apply prod_neq_R0;
assumption ||
(apply Rinv_neq_0_compat; assumption) ||
(apply Rinv_neq_0_compat; discrR) ||
- (red in |- *; intro H13; rewrite H13 in H6; elim (Rlt_irrefl _ H6)).
+ (red; intro H13; rewrite H13 in H6; elim (Rlt_irrefl _ H6)).
apply prod_neq_R0; [ discrR | assumption ].
apply prod_neq_R0; [ discrR | assumption ].
assumption.
apply Rabs_pos_lt.
- unfold Rdiv, Rsqr in |- *; rewrite Rinv_mult_distr;
+ unfold Rdiv, Rsqr; rewrite Rinv_mult_distr;
[ idtac | discrR | assumption ].
repeat apply prod_neq_R0;
assumption ||
(apply Rinv_neq_0_compat; assumption) ||
(apply Rinv_neq_0_compat; discrR) ||
- (red in |- *; intro H11; rewrite H11 in H6; elim (Rlt_irrefl _ H6)).
+ (red; intro H11; rewrite H11 in H6; elim (Rlt_irrefl _ H6)).
intros.
- unfold Rdiv in |- *.
+ unfold Rdiv.
apply Rmult_lt_reg_l with (Rabs (f2 (x + a))).
apply Rabs_pos_lt; apply H2.
apply Rlt_le_trans with (Rmin eps_f2 alp_f2).
@@ -739,13 +739,13 @@ Proof.
unfold Rminus in H7; assumption.
intros.
case (Req_dec x x0); intro.
- rewrite <- H5; unfold Rminus in |- *; rewrite Rplus_opp_r; rewrite Rabs_R0;
- unfold Rdiv in |- *; apply Rmult_lt_0_compat;
+ rewrite <- H5; unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0;
+ unfold Rdiv; apply Rmult_lt_0_compat;
[ apply Rabs_pos_lt; assumption | apply Rinv_0_lt_compat; prove_sup0 ].
elim H3; intros.
apply H7.
split.
- unfold D_x, no_cond in |- *; split.
+ unfold D_x, no_cond; split.
trivial.
assumption.
assumption.
@@ -756,7 +756,7 @@ Lemma derivable_pt_div :
derivable_pt f1 x ->
derivable_pt f2 x -> f2 x <> 0 -> derivable_pt (f1 / f2) x.
Proof.
- unfold derivable_pt in |- *.
+ unfold derivable_pt.
intros f1 f2 x X X0 H.
elim X; intros.
elim X0; intros.
@@ -769,7 +769,7 @@ Lemma derivable_div :
derivable f1 ->
derivable f2 -> (forall x:R, f2 x <> 0) -> derivable (f1 / f2).
Proof.
- unfold derivable in |- *; intros f1 f2 X X0 H x.
+ unfold derivable; intros f1 f2 X X0 H x.
apply (derivable_pt_div _ _ _ (X x) (X0 x) (H x)).
Qed.
diff --git a/theories/Reals/Ranalysis4.v b/theories/Reals/Ranalysis4.v
index 83bc28318..2a2b1b9b8 100644
--- a/theories/Reals/Ranalysis4.v
+++ b/theories/Reals/Ranalysis4.v
@@ -26,12 +26,12 @@ Proof.
apply derivable_pt_const.
assumption.
assumption.
- unfold div_fct, inv_fct, fct_cte in |- *; intro X0; elim X0; intros;
- unfold derivable_pt in |- *; exists x0;
- unfold derivable_pt_abs in |- *; unfold derivable_pt_lim in |- *;
+ unfold div_fct, inv_fct, fct_cte; intro X0; elim X0; intros;
+ unfold derivable_pt; exists x0;
+ unfold derivable_pt_abs; unfold derivable_pt_lim;
unfold derivable_pt_abs in p; unfold derivable_pt_lim in p;
intros; elim (p eps H0); intros; exists x1; intros;
- unfold Rdiv in H1; unfold Rdiv in |- *; rewrite <- (Rmult_1_l (/ f x));
+ unfold Rdiv in H1; unfold Rdiv; rewrite <- (Rmult_1_l (/ f x));
rewrite <- (Rmult_1_l (/ f (x + h))).
apply H1; assumption.
Qed.
@@ -41,10 +41,10 @@ Lemma pr_nu_var :
forall (f g:R -> R) (x:R) (pr1:derivable_pt f x) (pr2:derivable_pt g x),
f = g -> derive_pt f x pr1 = derive_pt g x pr2.
Proof.
- unfold derivable_pt, derive_pt in |- *; intros.
+ unfold derivable_pt, derive_pt; intros.
elim pr1; intros.
elim pr2; intros.
- simpl in |- *.
+ simpl.
rewrite H in p.
apply uniqueness_limite with g x; assumption.
Qed.
@@ -54,17 +54,17 @@ Lemma pr_nu_var2 :
forall (f g:R -> R) (x:R) (pr1:derivable_pt f x) (pr2:derivable_pt g x),
(forall h:R, f h = g h) -> derive_pt f x pr1 = derive_pt g x pr2.
Proof.
- unfold derivable_pt, derive_pt in |- *; intros.
+ unfold derivable_pt, derive_pt; intros.
elim pr1; intros.
elim pr2; intros.
- simpl in |- *.
+ simpl.
assert (H0 := uniqueness_step2 _ _ _ p).
assert (H1 := uniqueness_step2 _ _ _ p0).
cut (limit1_in (fun h:R => (f (x + h) - f x) / h) (fun h:R => h <> 0) x1 0).
intro; assert (H3 := uniqueness_step1 _ _ _ _ H0 H2).
assumption.
- unfold limit1_in in |- *; unfold limit_in in |- *; unfold dist in |- *;
- simpl in |- *; unfold R_dist in |- *; unfold limit1_in in H1;
+ unfold limit1_in; unfold limit_in; unfold dist;
+ simpl; unfold R_dist; unfold limit1_in in H1;
unfold limit_in in H1; unfold dist in H1; simpl in H1;
unfold R_dist in H1.
intros; elim (H1 eps H2); intros.
@@ -80,7 +80,7 @@ Lemma derivable_inv :
forall f:R -> R, (forall x:R, f x <> 0) -> derivable f -> derivable (/ f).
Proof.
intros f H X.
- unfold derivable in |- *; intro x.
+ unfold derivable; intro x.
apply derivable_pt_inv.
apply (H x).
apply (X x).
@@ -95,25 +95,25 @@ Proof.
replace (derive_pt (/ f) x (derivable_pt_inv f x na pr)) with
(derive_pt (fct_cte 1 / f) x
(derivable_pt_div (fct_cte 1) f x (derivable_pt_const 1 x) pr na)).
- rewrite derive_pt_div; rewrite derive_pt_const; unfold fct_cte in |- *;
- rewrite Rmult_0_l; rewrite Rmult_1_r; unfold Rminus in |- *;
+ rewrite derive_pt_div; rewrite derive_pt_const; unfold fct_cte;
+ rewrite Rmult_0_l; rewrite Rmult_1_r; unfold Rminus;
rewrite Rplus_0_l; reflexivity.
apply pr_nu_var2.
- intro; unfold div_fct, fct_cte, inv_fct in |- *.
- unfold Rdiv in |- *; ring.
+ intro; unfold div_fct, fct_cte, inv_fct.
+ unfold Rdiv; ring.
Qed.
(** Rabsolu *)
Lemma Rabs_derive_1 : forall x:R, 0 < x -> derivable_pt_lim Rabs x 1.
Proof.
intros.
- unfold derivable_pt_lim in |- *; intros.
+ unfold derivable_pt_lim; intros.
exists (mkposreal x H); intros.
rewrite (Rabs_right x).
rewrite (Rabs_right (x + h)).
rewrite Rplus_comm.
- unfold Rminus in |- *; rewrite Rplus_assoc; rewrite Rplus_opp_r.
- rewrite Rplus_0_r; unfold Rdiv in |- *; rewrite <- Rinv_r_sym.
+ unfold Rminus; rewrite Rplus_assoc; rewrite Rplus_opp_r.
+ rewrite Rplus_0_r; unfold Rdiv; rewrite <- Rinv_r_sym.
rewrite Rplus_opp_r; rewrite Rabs_R0; apply H0.
apply H1.
apply Rle_ge.
@@ -131,16 +131,16 @@ Qed.
Lemma Rabs_derive_2 : forall x:R, x < 0 -> derivable_pt_lim Rabs x (-1).
Proof.
intros.
- unfold derivable_pt_lim in |- *; intros.
+ unfold derivable_pt_lim; intros.
cut (0 < - x).
intro; exists (mkposreal (- x) H1); intros.
rewrite (Rabs_left x).
rewrite (Rabs_left (x + h)).
rewrite Rplus_comm.
rewrite Ropp_plus_distr.
- unfold Rminus in |- *; rewrite Ropp_involutive; rewrite Rplus_assoc;
+ unfold Rminus; rewrite Ropp_involutive; rewrite Rplus_assoc;
rewrite Rplus_opp_l.
- rewrite Rplus_0_r; unfold Rdiv in |- *.
+ rewrite Rplus_0_r; unfold Rdiv.
rewrite Ropp_mult_distr_l_reverse.
rewrite <- Rinv_r_sym.
rewrite Ropp_involutive; rewrite Rplus_opp_l; rewrite Rabs_R0; apply H0.
@@ -163,24 +163,24 @@ Proof.
intros.
case (total_order_T x 0); intro.
elim s; intro.
- unfold derivable_pt in |- *; exists (-1).
+ unfold derivable_pt; exists (-1).
apply (Rabs_derive_2 x a).
elim H; exact b.
- unfold derivable_pt in |- *; exists 1.
+ unfold derivable_pt; exists 1.
apply (Rabs_derive_1 x r).
Qed.
(** Rabsolu is continuous for all x *)
Lemma Rcontinuity_abs : continuity Rabs.
Proof.
- unfold continuity in |- *; intro.
+ unfold continuity; intro.
case (Req_dec x 0); intro.
- unfold continuity_pt in |- *; unfold continue_in in |- *;
- unfold limit1_in in |- *; unfold limit_in in |- *;
- simpl in |- *; unfold R_dist in |- *; intros; exists eps;
+ unfold continuity_pt; unfold continue_in;
+ unfold limit1_in; unfold limit_in;
+ simpl; unfold R_dist; intros; exists eps;
split.
apply H0.
- intros; rewrite H; rewrite Rabs_R0; unfold Rminus in |- *; rewrite Ropp_0;
+ intros; rewrite H; rewrite Rabs_R0; unfold Rminus; rewrite Ropp_0;
rewrite Rplus_0_r; rewrite Rabs_Rabsolu; elim H1;
intros; rewrite H in H3; unfold Rminus in H3; rewrite Ropp_0 in H3;
rewrite Rplus_0_r in H3; apply H3.
@@ -192,11 +192,11 @@ Lemma continuity_finite_sum :
forall (An:nat -> R) (N:nat),
continuity (fun y:R => sum_f_R0 (fun k:nat => An k * y ^ k) N).
Proof.
- intros; unfold continuity in |- *; intro.
+ intros; unfold continuity; intro.
induction N as [| N HrecN].
- simpl in |- *.
+ simpl.
apply continuity_pt_const.
- unfold constant in |- *; intros; reflexivity.
+ unfold constant; intros; reflexivity.
replace (fun y:R => sum_f_R0 (fun k:nat => An k * y ^ k) (S N)) with
((fun y:R => sum_f_R0 (fun k:nat => (An k * y ^ k)%R) N) +
(fun y:R => (An (S N) * y ^ S N)%R))%F.
@@ -222,7 +222,7 @@ Proof.
cut (N = 0%nat \/ (0 < N)%nat).
intro; elim H0; intro.
rewrite H1.
- simpl in |- *.
+ simpl.
replace (fun y:R => An 0%nat * 1 + An 1%nat * (y * 1)) with
(fct_cte (An 0%nat * 1) + mult_real_fct (An 1%nat) (id * fct_cte 1))%F.
replace (1 * An 1%nat * 1) with (0 + An 1%nat * (1 * fct_cte 1 x + id x * 0)).
@@ -232,7 +232,7 @@ Proof.
apply derivable_pt_lim_mult.
apply derivable_pt_lim_id.
apply derivable_pt_lim_const.
- unfold fct_cte, id in |- *; ring.
+ unfold fct_cte, id; ring.
reflexivity.
replace (fun y:R => sum_f_R0 (fun k:nat => An k * y ^ k) (S N)) with
((fun y:R => sum_f_R0 (fun k:nat => (An k * y ^ k)%R) N) +
@@ -248,7 +248,7 @@ Proof.
(mult_real_fct (An (S N)) (fun y:R => y ^ S N)).
apply derivable_pt_lim_scal.
replace (pred (S N)) with N; [ idtac | reflexivity ].
- pattern N at 3 in |- *; replace N with (pred (S N)).
+ pattern N at 3; replace N with (pred (S N)).
apply derivable_pt_lim_pow.
reflexivity.
reflexivity.
@@ -259,10 +259,10 @@ Proof.
rewrite <- H2.
replace (pred (S N)) with N; [ idtac | reflexivity ].
ring.
- simpl in |- *.
+ simpl.
apply S_pred with 0%nat; assumption.
- unfold plus_fct in |- *.
- simpl in |- *; reflexivity.
+ unfold plus_fct.
+ simpl; reflexivity.
inversion H.
left; reflexivity.
right; apply lt_le_trans with 1%nat; [ apply lt_O_Sn | assumption ].
@@ -278,7 +278,7 @@ Lemma derivable_pt_lim_finite_sum :
Proof.
intros.
induction N as [| N HrecN].
- simpl in |- *.
+ simpl.
rewrite Rmult_1_r.
replace (fun _:R => An 0%nat) with (fct_cte (An 0%nat));
[ apply derivable_pt_lim_const | reflexivity ].
@@ -290,7 +290,7 @@ Lemma derivable_pt_finite_sum :
derivable_pt (fun y:R => sum_f_R0 (fun k:nat => An k * y ^ k) N) x.
Proof.
intros.
- unfold derivable_pt in |- *.
+ unfold derivable_pt.
assert (H := derivable_pt_lim_finite_sum An x N).
induction N as [| N HrecN].
exists 0; apply H.
@@ -303,14 +303,14 @@ Lemma derivable_finite_sum :
forall (An:nat -> R) (N:nat),
derivable (fun y:R => sum_f_R0 (fun k:nat => An k * y ^ k) N).
Proof.
- intros; unfold derivable in |- *; intro; apply derivable_pt_finite_sum.
+ intros; unfold derivable; intro; apply derivable_pt_finite_sum.
Qed.
(** Regularity of hyperbolic functions *)
Lemma derivable_pt_lim_cosh : forall x:R, derivable_pt_lim cosh x (sinh x).
Proof.
intro.
- unfold cosh, sinh in |- *; unfold Rdiv in |- *.
+ unfold cosh, sinh; unfold Rdiv.
replace (fun x0:R => (exp x0 + exp (- x0)) * / 2) with
((exp + comp exp (- id)) * fct_cte (/ 2))%F; [ idtac | reflexivity ].
replace ((exp x - exp (- x)) * / 2) with
@@ -324,13 +324,13 @@ Proof.
apply derivable_pt_lim_id.
apply derivable_pt_lim_exp.
apply derivable_pt_lim_const.
- unfold plus_fct, mult_real_fct, comp, opp_fct, id, fct_cte in |- *; ring.
+ unfold plus_fct, mult_real_fct, comp, opp_fct, id, fct_cte; ring.
Qed.
Lemma derivable_pt_lim_sinh : forall x:R, derivable_pt_lim sinh x (cosh x).
Proof.
intro.
- unfold cosh, sinh in |- *; unfold Rdiv in |- *.
+ unfold cosh, sinh; unfold Rdiv.
replace (fun x0:R => (exp x0 - exp (- x0)) * / 2) with
((exp - comp exp (- id)) * fct_cte (/ 2))%F; [ idtac | reflexivity ].
replace ((exp x + exp (- x)) * / 2) with
@@ -344,13 +344,13 @@ Proof.
apply derivable_pt_lim_id.
apply derivable_pt_lim_exp.
apply derivable_pt_lim_const.
- unfold plus_fct, mult_real_fct, comp, opp_fct, id, fct_cte in |- *; ring.
+ unfold plus_fct, mult_real_fct, comp, opp_fct, id, fct_cte; ring.
Qed.
Lemma derivable_pt_exp : forall x:R, derivable_pt exp x.
Proof.
intro.
- unfold derivable_pt in |- *.
+ unfold derivable_pt.
exists (exp x).
apply derivable_pt_lim_exp.
Qed.
@@ -358,7 +358,7 @@ Qed.
Lemma derivable_pt_cosh : forall x:R, derivable_pt cosh x.
Proof.
intro.
- unfold derivable_pt in |- *.
+ unfold derivable_pt.
exists (sinh x).
apply derivable_pt_lim_cosh.
Qed.
@@ -366,24 +366,24 @@ Qed.
Lemma derivable_pt_sinh : forall x:R, derivable_pt sinh x.
Proof.
intro.
- unfold derivable_pt in |- *.
+ unfold derivable_pt.
exists (cosh x).
apply derivable_pt_lim_sinh.
Qed.
Lemma derivable_exp : derivable exp.
Proof.
- unfold derivable in |- *; apply derivable_pt_exp.
+ unfold derivable; apply derivable_pt_exp.
Qed.
Lemma derivable_cosh : derivable cosh.
Proof.
- unfold derivable in |- *; apply derivable_pt_cosh.
+ unfold derivable; apply derivable_pt_cosh.
Qed.
Lemma derivable_sinh : derivable sinh.
Proof.
- unfold derivable in |- *; apply derivable_pt_sinh.
+ unfold derivable; apply derivable_pt_sinh.
Qed.
Lemma derive_pt_exp :
diff --git a/theories/Reals/Rbasic_fun.v b/theories/Reals/Rbasic_fun.v
index ee9ea921c..15db598ad 100644
--- a/theories/Reals/Rbasic_fun.v
+++ b/theories/Reals/Rbasic_fun.v
@@ -45,10 +45,10 @@ Qed.
(*********)
Lemma Rmin_Rgt_l : forall r1 r2 r, Rmin r1 r2 > r -> r1 > r /\ r2 > r.
Proof.
- intros r1 r2 r; unfold Rmin in |- *; case (Rle_dec r1 r2); intros.
+ intros r1 r2 r; unfold Rmin; case (Rle_dec r1 r2); intros.
split.
assumption.
- unfold Rgt in |- *; unfold Rgt in H; exact (Rlt_le_trans r r1 r2 H r0).
+ unfold Rgt; unfold Rgt in H; exact (Rlt_le_trans r r1 r2 H r0).
split.
generalize (Rnot_le_lt r1 r2 n); intro; exact (Rgt_trans r1 r2 r H0 H).
assumption.
@@ -57,7 +57,7 @@ Qed.
(*********)
Lemma Rmin_Rgt_r : forall r1 r2 r, r1 > r /\ r2 > r -> Rmin r1 r2 > r.
Proof.
- intros; unfold Rmin in |- *; case (Rle_dec r1 r2); elim H; clear H; intros;
+ intros; unfold Rmin; case (Rle_dec r1 r2); elim H; clear H; intros;
assumption.
Qed.
@@ -72,14 +72,14 @@ Qed.
(*********)
Lemma Rmin_l : forall x y:R, Rmin x y <= x.
Proof.
- intros; unfold Rmin in |- *; case (Rle_dec x y); intro H1;
+ intros; unfold Rmin; case (Rle_dec x y); intro H1;
[ right; reflexivity | auto with real ].
Qed.
(*********)
Lemma Rmin_r : forall x y:R, Rmin x y <= y.
Proof.
- intros; unfold Rmin in |- *; case (Rle_dec x y); intro H1;
+ intros; unfold Rmin; case (Rle_dec x y); intro H1;
[ assumption | auto with real ].
Qed.
@@ -123,20 +123,20 @@ Qed.
(*********)
Lemma Rmin_pos : forall x y:R, 0 < x -> 0 < y -> 0 < Rmin x y.
Proof.
- intros; unfold Rmin in |- *.
+ intros; unfold Rmin.
case (Rle_dec x y); intro; assumption.
Qed.
(*********)
Lemma Rmin_glb : forall x y z:R, z <= x -> z <= y -> z <= Rmin x y.
Proof.
- intros; unfold Rmin in |- *; case (Rle_dec x y); intro; assumption.
+ intros; unfold Rmin; case (Rle_dec x y); intro; assumption.
Qed.
(*********)
Lemma Rmin_glb_lt : forall x y z:R, z < x -> z < y -> z < Rmin x y.
Proof.
- intros; unfold Rmin in |- *; case (Rle_dec x y); intro; assumption.
+ intros; unfold Rmin; case (Rle_dec x y); intro; assumption.
Qed.
(*******************************)
@@ -167,8 +167,8 @@ Qed.
Lemma Rmax_Rle : forall r1 r2 r, r <= Rmax r1 r2 <-> r <= r1 \/ r <= r2.
Proof.
intros; split.
- unfold Rmax in |- *; case (Rle_dec r1 r2); intros; auto.
- intro; unfold Rmax in |- *; case (Rle_dec r1 r2); elim H; clear H; intros;
+ unfold Rmax; case (Rle_dec r1 r2); intros; auto.
+ intro; unfold Rmax; case (Rle_dec r1 r2); elim H; clear H; intros;
auto.
apply (Rle_trans r r1 r2); auto.
generalize (Rnot_le_lt r1 r2 n); clear n; intro; unfold Rgt in H0;
@@ -177,7 +177,7 @@ Qed.
Lemma Rmax_comm : forall x y:R, Rmax x y = Rmax y x.
Proof.
- intros p q; unfold Rmax in |- *; case (Rle_dec p q); case (Rle_dec q p); auto;
+ intros p q; unfold Rmax; case (Rle_dec p q); case (Rle_dec q p); auto;
intros H1 H2; apply Rle_antisym; auto with real.
Qed.
@@ -188,14 +188,14 @@ Notation RmaxSym := Rmax_comm (only parsing).
(*********)
Lemma Rmax_l : forall x y:R, x <= Rmax x y.
Proof.
- intros; unfold Rmax in |- *; case (Rle_dec x y); intro H1;
+ intros; unfold Rmax; case (Rle_dec x y); intro H1;
[ assumption | auto with real ].
Qed.
(*********)
Lemma Rmax_r : forall x y:R, y <= Rmax x y.
Proof.
- intros; unfold Rmax in |- *; case (Rle_dec x y); intro H1;
+ intros; unfold Rmax; case (Rle_dec x y); intro H1;
[ right; reflexivity | auto with real ].
Qed.
@@ -232,7 +232,7 @@ Qed.
Lemma RmaxRmult :
forall (p q:R) r, 0 <= r -> Rmax (r * p) (r * q) = r * Rmax p q.
Proof.
- intros p q r H; unfold Rmax in |- *.
+ intros p q r H; unfold Rmax.
case (Rle_dec p q); case (Rle_dec (r * p) (r * q)); auto; intros H1 H2; auto.
case H; intros E1.
case H1; auto with real.
@@ -246,7 +246,7 @@ Qed.
(*********)
Lemma Rmax_stable_in_negreal : forall x y:negreal, Rmax x y < 0.
Proof.
- intros; unfold Rmax in |- *; case (Rle_dec x y); intro;
+ intros; unfold Rmax; case (Rle_dec x y); intro;
[ apply (cond_neg y) | apply (cond_neg x) ].
Qed.
@@ -265,7 +265,7 @@ Qed.
(*********)
Lemma Rmax_neg : forall x y:R, x < 0 -> y < 0 -> Rmax x y < 0.
Proof.
- intros; unfold Rmax in |- *.
+ intros; unfold Rmax.
case (Rle_dec x y); intro; assumption.
Qed.
@@ -278,7 +278,7 @@ Lemma Rcase_abs : forall r, {r < 0} + {r >= 0}.
Proof.
intro; generalize (Rle_dec 0 r); intro X; elim X; intro; clear X.
right; apply (Rle_ge 0 r a).
- left; fold (0 > r) in |- *; apply (Rnot_le_lt 0 r b).
+ left; fold (0 > r); apply (Rnot_le_lt 0 r b).
Qed.
(*********)
@@ -291,27 +291,27 @@ Definition Rabs r : R :=
(*********)
Lemma Rabs_R0 : Rabs 0 = 0.
Proof.
- unfold Rabs in |- *; case (Rcase_abs 0); auto; intro.
+ unfold Rabs; case (Rcase_abs 0); auto; intro.
generalize (Rlt_irrefl 0); intro; exfalso; auto.
Qed.
Lemma Rabs_R1 : Rabs 1 = 1.
Proof.
-unfold Rabs in |- *; case (Rcase_abs 1); auto with real.
+unfold Rabs; case (Rcase_abs 1); auto with real.
intros H; absurd (1 < 0); auto with real.
Qed.
(*********)
Lemma Rabs_no_R0 : forall r, r <> 0 -> Rabs r <> 0.
Proof.
- intros; unfold Rabs in |- *; case (Rcase_abs r); intro; auto.
+ intros; unfold Rabs; case (Rcase_abs r); intro; auto.
apply Ropp_neq_0_compat; auto.
Qed.
(*********)
Lemma Rabs_left : forall r, r < 0 -> Rabs r = - r.
Proof.
- intros; unfold Rabs in |- *; case (Rcase_abs r); trivial; intro;
+ intros; unfold Rabs; case (Rcase_abs r); trivial; intro;
absurd (r >= 0).
exact (Rlt_not_ge r 0 H).
assumption.
@@ -320,7 +320,7 @@ Qed.
(*********)
Lemma Rabs_right : forall r, r >= 0 -> Rabs r = r.
Proof.
- intros; unfold Rabs in |- *; case (Rcase_abs r); intro.
+ intros; unfold Rabs; case (Rcase_abs r); intro.
absurd (r >= 0).
exact (Rlt_not_ge r 0 r0).
assumption.
@@ -331,21 +331,21 @@ Lemma Rabs_left1 : forall a:R, a <= 0 -> Rabs a = - a.
Proof.
intros a H; case H; intros H1.
apply Rabs_left; auto.
- rewrite H1; simpl in |- *; rewrite Rabs_right; auto with real.
+ rewrite H1; simpl; rewrite Rabs_right; auto with real.
Qed.
(*********)
Lemma Rabs_pos : forall x:R, 0 <= Rabs x.
Proof.
- intros; unfold Rabs in |- *; case (Rcase_abs x); intro.
+ intros; unfold Rabs; case (Rcase_abs x); intro.
generalize (Ropp_lt_gt_contravar x 0 r); intro; unfold Rgt in H;
- rewrite Ropp_0 in H; unfold Rle in |- *; left; assumption.
+ rewrite Ropp_0 in H; unfold Rle; left; assumption.
apply Rge_le; assumption.
Qed.
Lemma Rle_abs : forall x:R, x <= Rabs x.
Proof.
- intro; unfold Rabs in |- *; case (Rcase_abs x); intros; fourier.
+ intro; unfold Rabs; case (Rcase_abs x); intros; fourier.
Qed.
Definition RRle_abs := Rle_abs.
@@ -353,7 +353,7 @@ Definition RRle_abs := Rle_abs.
(*********)
Lemma Rabs_pos_eq : forall x:R, 0 <= x -> Rabs x = x.
Proof.
- intros; unfold Rabs in |- *; case (Rcase_abs x); intro;
+ intros; unfold Rabs; case (Rcase_abs x); intro;
[ generalize (Rgt_not_le 0 x r); intro; exfalso; auto | trivial ].
Qed.
@@ -368,7 +368,7 @@ Lemma Rabs_pos_lt : forall x:R, x <> 0 -> 0 < Rabs x.
Proof.
intros; generalize (Rabs_pos x); intro; unfold Rle in H0; elim H0; intro;
auto.
- exfalso; clear H0; elim H; clear H; generalize H1; unfold Rabs in |- *;
+ exfalso; clear H0; elim H; clear H; generalize H1; unfold Rabs;
case (Rcase_abs x); intros; auto.
clear r H1; generalize (Rplus_eq_compat_l x 0 (- x) H0);
rewrite (let (H1, H2) := Rplus_ne x in H1); rewrite (Rplus_opp_r x);
@@ -378,7 +378,7 @@ Qed.
(*********)
Lemma Rabs_minus_sym : forall x y:R, Rabs (x - y) = Rabs (y - x).
Proof.
- intros; unfold Rabs in |- *; case (Rcase_abs (x - y));
+ intros; unfold Rabs; case (Rcase_abs (x - y));
case (Rcase_abs (y - x)); intros.
generalize (Rminus_lt y x r); generalize (Rminus_lt x y r0); intros;
generalize (Rlt_asym x y H); intro; exfalso;
@@ -397,7 +397,7 @@ Qed.
(*********)
Lemma Rabs_mult : forall x y:R, Rabs (x * y) = Rabs x * Rabs y.
Proof.
- intros; unfold Rabs in |- *; case (Rcase_abs (x * y)); case (Rcase_abs x);
+ intros; unfold Rabs; case (Rcase_abs (x * y)); case (Rcase_abs x);
case (Rcase_abs y); intros; auto.
generalize (Rmult_lt_gt_compat_neg_l y x 0 r r0); intro;
rewrite (Rmult_0_r y) in H; generalize (Rlt_asym (x * y) 0 r1);
@@ -448,7 +448,7 @@ Qed.
(*********)
Lemma Rabs_Rinv : forall r, r <> 0 -> Rabs (/ r) = / Rabs r.
Proof.
- intro; unfold Rabs in |- *; case (Rcase_abs r); case (Rcase_abs (/ r)); auto;
+ intro; unfold Rabs; case (Rcase_abs r); case (Rcase_abs (/ r)); auto;
intros.
apply Ropp_inv_permute; auto.
generalize (Rinv_lt_0_compat r r1); intro; unfold Rge in r0; elim r0; intros.
@@ -470,7 +470,7 @@ Proof.
cut (Rabs (-1) = 1).
intros; rewrite H0.
ring.
- unfold Rabs in |- *; case (Rcase_abs (-1)).
+ unfold Rabs; case (Rcase_abs (-1)).
intro; ring.
intro H0; generalize (Rge_le (-1) 0 H0); intros.
generalize (Ropp_le_ge_contravar 0 (-1) H1).
@@ -483,13 +483,13 @@ Qed.
(*********)
Lemma Rabs_triang : forall a b:R, Rabs (a + b) <= Rabs a + Rabs b.
Proof.
- intros a b; unfold Rabs in |- *; case (Rcase_abs (a + b)); case (Rcase_abs a);
+ intros a b; unfold Rabs; case (Rcase_abs (a + b)); case (Rcase_abs a);
case (Rcase_abs b); intros.
apply (Req_le (- (a + b)) (- a + - b)); rewrite (Ropp_plus_distr a b);
reflexivity.
(**)
rewrite (Ropp_plus_distr a b); apply (Rplus_le_compat_l (- a) (- b) b);
- unfold Rle in |- *; unfold Rge in r; elim r; intro.
+ unfold Rle; unfold Rge in r; elim r; intro.
left; unfold Rgt in H; generalize (Rplus_lt_compat_l (- b) 0 b H); intro;
elim (Rplus_ne (- b)); intros v w; rewrite v in H0;
clear v w; rewrite (Rplus_opp_l b) in H0; apply (Rlt_trans (- b) 0 b H0 H).
@@ -497,7 +497,7 @@ Proof.
(**)
rewrite (Ropp_plus_distr a b); rewrite (Rplus_comm (- a) (- b));
rewrite (Rplus_comm a (- b)); apply (Rplus_le_compat_l (- b) (- a) a);
- unfold Rle in |- *; unfold Rge in r0; elim r0; intro.
+ unfold Rle; unfold Rge in r0; elim r0; intro.
left; unfold Rgt in H; generalize (Rplus_lt_compat_l (- a) 0 a H); intro;
elim (Rplus_ne (- a)); intros v w; rewrite v in H0;
clear v w; rewrite (Rplus_opp_l a) in H0; apply (Rlt_trans (- a) 0 a H0 H).
@@ -521,27 +521,27 @@ Proof.
(**)
rewrite (Rplus_comm a b); rewrite (Rplus_comm (- a) b);
apply (Rplus_le_compat_l b a (- a)); apply (Rminus_le a (- a));
- unfold Rminus in |- *; rewrite (Ropp_involutive a);
+ unfold Rminus; rewrite (Ropp_involutive a);
generalize (Rplus_lt_compat_l a a 0 r0); clear r r1;
intro; elim (Rplus_ne a); intros v w; rewrite v in H;
clear v w; generalize (Rlt_trans (a + a) a 0 H r0);
intro; apply (Rlt_le (a + a) 0 H0).
(**)
apply (Rplus_le_compat_l a b (- b)); apply (Rminus_le b (- b));
- unfold Rminus in |- *; rewrite (Ropp_involutive b);
+ unfold Rminus; rewrite (Ropp_involutive b);
generalize (Rplus_lt_compat_l b b 0 r); clear r0 r1;
intro; elim (Rplus_ne b); intros v w; rewrite v in H;
clear v w; generalize (Rlt_trans (b + b) b 0 H r);
intro; apply (Rlt_le (b + b) 0 H0).
(**)
- unfold Rle in |- *; right; reflexivity.
+ unfold Rle; right; reflexivity.
Qed.
(*********)
Lemma Rabs_triang_inv : forall a b:R, Rabs a - Rabs b <= Rabs (a - b).
Proof.
intros; apply (Rplus_le_reg_l (Rabs b) (Rabs a - Rabs b) (Rabs (a - b)));
- unfold Rminus in |- *; rewrite <- (Rplus_assoc (Rabs b) (Rabs a) (- Rabs b));
+ unfold Rminus; rewrite <- (Rplus_assoc (Rabs b) (Rabs a) (- Rabs b));
rewrite (Rplus_comm (Rabs b) (Rabs a));
rewrite (Rplus_assoc (Rabs a) (Rabs b) (- Rabs b));
rewrite (Rplus_opp_r (Rabs b)); rewrite (proj1 (Rplus_ne (Rabs a)));
@@ -561,7 +561,7 @@ Proof.
rewrite <- (Rabs_Ropp (Rabs a - Rabs b)); rewrite <- (Rabs_Ropp (a - b));
do 2 rewrite Ropp_minus_distr.
apply H; left; assumption.
- rewrite Heq; unfold Rminus in |- *; rewrite Rplus_opp_r; rewrite Rabs_R0;
+ rewrite Heq; unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0;
apply Rabs_pos.
apply H; left; assumption.
intros; replace (Rabs (Rabs a - Rabs b)) with (Rabs a - Rabs b).
@@ -576,8 +576,8 @@ Qed.
(*********)
Lemma Rabs_def1 : forall x a:R, x < a -> - a < x -> Rabs x < a.
Proof.
- unfold Rabs in |- *; intros; case (Rcase_abs x); intro.
- generalize (Ropp_lt_gt_contravar (- a) x H0); unfold Rgt in |- *;
+ unfold Rabs; intros; case (Rcase_abs x); intro.
+ generalize (Ropp_lt_gt_contravar (- a) x H0); unfold Rgt;
rewrite Ropp_involutive; intro; assumption.
assumption.
Qed.
@@ -585,15 +585,15 @@ Qed.
(*********)
Lemma Rabs_def2 : forall x a:R, Rabs x < a -> x < a /\ - a < x.
Proof.
- unfold Rabs in |- *; intro x; case (Rcase_abs x); intros.
- generalize (Ropp_gt_lt_0_contravar x r); unfold Rgt in |- *; intro;
+ unfold Rabs; intro x; case (Rcase_abs x); intros.
+ generalize (Ropp_gt_lt_0_contravar x r); unfold Rgt; intro;
generalize (Rlt_trans 0 (- x) a H0 H); intro; split.
apply (Rlt_trans x 0 a r H1).
generalize (Ropp_lt_gt_contravar (- x) a H); rewrite (Ropp_involutive x);
- unfold Rgt in |- *; trivial.
+ unfold Rgt; trivial.
fold (a > x) in H; generalize (Rgt_ge_trans a x 0 H r); intro;
- generalize (Ropp_lt_gt_0_contravar a H0); intro; fold (0 > - a) in |- *;
- generalize (Rge_gt_trans x 0 (- a) r H1); unfold Rgt in |- *;
+ generalize (Ropp_lt_gt_0_contravar a H0); intro; fold (0 > - a);
+ generalize (Rge_gt_trans x 0 (- a) r H1); unfold Rgt;
intro; split; assumption.
Qed.
@@ -625,7 +625,7 @@ Qed.
Lemma Rabs_Zabs : forall z:Z, Rabs (IZR z) = IZR (Z.abs z).
Proof.
- intros z; case z; simpl in |- *; auto with real.
+ intros z; case z; simpl; auto with real.
apply Rabs_right; auto with real.
intros p0; apply Rabs_right; auto with real zarith.
intros p0; rewrite Rabs_Ropp.
diff --git a/theories/Reals/Rcomplete.v b/theories/Reals/Rcomplete.v
index 2841ac8e3..88747ee03 100644
--- a/theories/Reals/Rcomplete.v
+++ b/theories/Reals/Rcomplete.v
@@ -37,7 +37,7 @@ Proof.
intros.
exists x.
rewrite <- H2 in p0.
- unfold Un_cv in |- *.
+ unfold Un_cv.
intros.
unfold Un_cv in p; unfold Un_cv in p0.
cut (0 < eps / 3).
@@ -46,7 +46,7 @@ Proof.
elim (p0 (eps / 3) H4); intros.
exists (max x1 x2).
intros.
- unfold R_dist in |- *.
+ unfold R_dist.
apply Rle_lt_trans with (Rabs (Un n - Vn n) + Rabs (Vn n - x)).
replace (Un n - x) with (Un n - Vn n + (Vn n - x));
[ apply Rabs_triang | ring ].
@@ -54,14 +54,14 @@ Proof.
do 2 rewrite <- (Rplus_comm (Rabs (Vn n - x))).
apply Rplus_le_compat_l.
repeat rewrite Rabs_right.
- unfold Rminus in |- *; do 2 rewrite <- (Rplus_comm (- Vn n));
+ unfold Rminus; do 2 rewrite <- (Rplus_comm (- Vn n));
apply Rplus_le_compat_l.
assert (H8 := Vn_Un_Wn_order Un (cauchy_maj Un H) (cauchy_min Un H)).
fold Vn Wn in H8.
elim (H8 n); intros.
assumption.
apply Rle_ge.
- unfold Rminus in |- *; apply Rplus_le_reg_l with (Vn n).
+ unfold Rminus; apply Rplus_le_reg_l with (Vn n).
rewrite Rplus_0_r.
replace (Vn n + (Wn n + - Vn n)) with (Wn n); [ idtac | ring ].
assert (H8 := Vn_Un_Wn_order Un (cauchy_maj Un H) (cauchy_min Un H)).
@@ -69,7 +69,7 @@ Proof.
elim (H8 n); intros.
apply Rle_trans with (Un n); assumption.
apply Rle_ge.
- unfold Rminus in |- *; apply Rplus_le_reg_l with (Vn n).
+ unfold Rminus; apply Rplus_le_reg_l with (Vn n).
rewrite Rplus_0_r.
replace (Vn n + (Un n + - Vn n)) with (Un n); [ idtac | ring ].
assert (H8 := Vn_Un_Wn_order Un (cauchy_maj Un H) (cauchy_min Un H)).
@@ -85,26 +85,26 @@ Proof.
repeat apply Rplus_lt_compat.
unfold R_dist in H5.
apply H5.
- unfold ge in |- *; apply le_trans with (max x1 x2).
+ unfold ge; apply le_trans with (max x1 x2).
apply le_max_l.
assumption.
rewrite <- Rabs_Ropp.
replace (- (x - Vn n)) with (Vn n - x); [ idtac | ring ].
unfold R_dist in H6.
apply H6.
- unfold ge in |- *; apply le_trans with (max x1 x2).
+ unfold ge; apply le_trans with (max x1 x2).
apply le_max_r.
assumption.
unfold R_dist in H6.
apply H6.
- unfold ge in |- *; apply le_trans with (max x1 x2).
+ unfold ge; apply le_trans with (max x1 x2).
apply le_max_r.
assumption.
right.
- pattern eps at 4 in |- *; replace eps with (3 * (eps / 3)).
+ pattern eps at 4; replace eps with (3 * (eps / 3)).
ring.
- unfold Rdiv in |- *; rewrite <- Rmult_assoc; apply Rinv_r_simpl_m; discrR.
- unfold Rdiv in |- *; apply Rmult_lt_0_compat;
+ unfold Rdiv; rewrite <- Rmult_assoc; apply Rinv_r_simpl_m; discrR.
+ unfold Rdiv; apply Rmult_lt_0_compat;
[ assumption | apply Rinv_0_lt_compat; prove_sup0 ].
apply cond_eq.
intros.
@@ -130,10 +130,10 @@ Proof.
repeat apply Rplus_lt_compat.
rewrite <- Rabs_Ropp.
replace (- (x - Wn N)) with (Wn N - x); [ apply H4 | ring ].
- unfold ge, N in |- *.
+ unfold ge, N.
apply le_trans with (max N1 N2); apply le_max_l.
- unfold Wn, Vn in |- *.
- unfold sequence_majorant, sequence_minorant in |- *.
+ unfold Wn, Vn.
+ unfold sequence_majorant, sequence_minorant.
assert
(H7 :=
approx_maj (fun k:nat => Un (N + k)%nat) (maj_ss Un N (cauchy_maj Un H))).
@@ -169,13 +169,13 @@ Proof.
[ repeat apply Rplus_lt_compat | ring ].
assumption.
apply H6.
- unfold ge in |- *.
+ unfold ge.
apply le_trans with N.
- unfold N in |- *; apply le_max_r.
+ unfold N; apply le_max_r.
apply le_plus_l.
- unfold ge in |- *.
+ unfold ge.
apply le_trans with N.
- unfold N in |- *; apply le_max_r.
+ unfold N; apply le_max_r.
apply le_plus_l.
rewrite <- Rabs_Ropp.
replace (- (Un (N + k1)%nat - Vn N)) with (Vn N - Un (N + k1)%nat);
@@ -183,14 +183,14 @@ Proof.
reflexivity.
reflexivity.
apply H5.
- unfold ge in |- *; apply le_trans with (max N1 N2).
+ unfold ge; apply le_trans with (max N1 N2).
apply le_max_r.
- unfold N in |- *; apply le_max_l.
- pattern eps at 4 in |- *; replace eps with (5 * (eps / 5)).
+ unfold N; apply le_max_l.
+ pattern eps at 4; replace eps with (5 * (eps / 5)).
ring.
- unfold Rdiv in |- *; rewrite <- Rmult_assoc; apply Rinv_r_simpl_m.
+ unfold Rdiv; rewrite <- Rmult_assoc; apply Rinv_r_simpl_m.
discrR.
- unfold Rdiv in |- *; apply Rmult_lt_0_compat.
+ unfold Rdiv; apply Rmult_lt_0_compat.
assumption.
apply Rinv_0_lt_compat.
prove_sup0; try apply lt_O_Sn.
diff --git a/theories/Reals/Rderiv.v b/theories/Reals/Rderiv.v
index 0a6d728f5..1808acea8 100644
--- a/theories/Reals/Rderiv.v
+++ b/theories/Reals/Rderiv.v
@@ -34,18 +34,18 @@ Lemma cont_deriv :
forall (f d:R -> R) (D:R -> Prop) (x0:R),
D_in f d D x0 -> continue_in f D x0.
Proof.
- unfold continue_in in |- *; unfold D_in in |- *; unfold limit1_in in |- *;
- unfold limit_in in |- *; unfold Rdiv in |- *; simpl in |- *;
+ unfold continue_in; unfold D_in; unfold limit1_in;
+ unfold limit_in; unfold Rdiv; simpl;
intros; elim (H eps H0); clear H; intros; elim H;
clear H; intros; elim (Req_dec (d x0) 0); intro.
split with (Rmin 1 x); split.
elim (Rmin_Rgt 1 x 0); intros a b; apply (b (conj Rlt_0_1 H)).
intros; elim H3; clear H3; intros;
generalize (let (H1, H2) := Rmin_Rgt 1 x (R_dist x1 x0) in H1);
- unfold Rgt in |- *; intro; elim (H5 H4); clear H5;
+ unfold Rgt; intro; elim (H5 H4); clear H5;
intros; generalize (H1 x1 (conj H3 H6)); clear H1;
intro; unfold D_x in H3; elim H3; intros.
- rewrite H2 in H1; unfold R_dist in |- *; unfold R_dist in H1;
+ rewrite H2 in H1; unfold R_dist; unfold R_dist in H1;
cut (Rabs (f x1 - f x0) < eps * Rabs (x1 - x0)).
intro; unfold R_dist in H5;
generalize (Rmult_lt_compat_l eps (Rabs (x1 - x0)) 1 H0 H5);
@@ -68,7 +68,7 @@ Proof.
intros; elim (Rmin_Rgt (Rmin (/ 2) x) (eps * / Rabs (2 * d x0)) 0);
intros a b; apply (b (conj H4 H3)).
apply Rmult_gt_0_compat; auto.
- unfold Rgt in |- *; apply Rinv_0_lt_compat; apply Rabs_pos_lt;
+ unfold Rgt; apply Rinv_0_lt_compat; apply Rabs_pos_lt;
apply Rmult_integral_contrapositive; split.
discrR.
assumption.
@@ -80,17 +80,17 @@ Proof.
generalize
(let (H1, H2) :=
Rmin_Rgt (Rmin (/ 2) x) (eps * / Rabs (2 * d x0)) (R_dist x1 x0) in
- H1); unfold Rgt in |- *; intro; elim (H5 H4); clear H5;
+ H1); unfold Rgt; intro; elim (H5 H4); clear H5;
intros; generalize (let (H1, H2) := Rmin_Rgt (/ 2) x (R_dist x1 x0) in H1);
- unfold Rgt in |- *; intro; elim (H7 H5); clear H7;
+ unfold Rgt; intro; elim (H7 H5); clear H7;
intros; clear H4 H5; generalize (H1 x1 (conj H3 H8));
clear H1; intro; unfold D_x in H3; elim H3; intros;
generalize (not_eq_sym H5); clear H5; intro H5;
generalize (Rminus_eq_contra x1 x0 H5); intro; generalize H1;
- pattern (d x0) at 1 in |- *;
+ pattern (d x0) at 1;
rewrite <- (let (H1, H2) := Rmult_ne (d x0) in H2);
- rewrite <- (Rinv_l (x1 - x0) H9); unfold R_dist in |- *;
- unfold Rminus at 1 in |- *; rewrite (Rmult_comm (f x1 - f x0) (/ (x1 - x0)));
+ rewrite <- (Rinv_l (x1 - x0) H9); unfold R_dist;
+ unfold Rminus at 1; rewrite (Rmult_comm (f x1 - f x0) (/ (x1 - x0)));
rewrite (Rmult_comm (/ (x1 - x0) * (x1 - x0)) (d x0));
rewrite <- (Ropp_mult_distr_l_reverse (d x0) (/ (x1 - x0) * (x1 - x0)));
rewrite (Rmult_comm (- d x0) (/ (x1 - x0) * (x1 - x0)));
@@ -113,7 +113,7 @@ Proof.
; generalize (Rabs_triang_inv (f x1 - f x0) ((x1 - x0) * d x0));
intro; rewrite (Rmult_comm (x1 - x0) (- d x0));
rewrite (Ropp_mult_distr_l_reverse (d x0) (x1 - x0));
- fold (f x1 - f x0 - d x0 * (x1 - x0)) in |- *;
+ fold (f x1 - f x0 - d x0 * (x1 - x0));
rewrite (Rmult_comm (x1 - x0) (d x0)) in H10; clear H1;
intro;
generalize
@@ -123,7 +123,7 @@ Proof.
generalize
(Rplus_lt_compat_l (Rabs (d x0 * (x1 - x0)))
(Rabs (f x1 - f x0) - Rabs (d x0 * (x1 - x0))) (
- Rabs (x1 - x0) * eps) H1); unfold Rminus at 2 in |- *;
+ Rabs (x1 - x0) * eps) H1); unfold Rminus at 2;
rewrite (Rplus_comm (Rabs (f x1 - f x0)) (- Rabs (d x0 * (x1 - x0))));
rewrite <-
(Rplus_assoc (Rabs (d x0 * (x1 - x0))) (- Rabs (d x0 * (x1 - x0)))
@@ -162,7 +162,7 @@ Proof.
(Rplus_lt_compat (Rabs (d x0 * (x1 - x0))) (eps * / 2)
(Rabs (x1 - x0) * eps) (eps * / 2) H5 H3); intro;
rewrite eps2 in H10; assumption.
- unfold Rabs in |- *; case (Rcase_abs 2); auto.
+ unfold Rabs; case (Rcase_abs 2); auto.
intro; cut (0 < 2).
intro ; elim (Rlt_asym 0 2 H7 r).
fourier.
@@ -174,14 +174,14 @@ Qed.
Lemma Dconst :
forall (D:R -> Prop) (y x0:R), D_in (fun x:R => y) (fun x:R => 0) D x0.
Proof.
- unfold D_in in |- *; intros; unfold limit1_in in |- *;
- unfold limit_in in |- *; unfold Rdiv in |- *; intros;
- simpl in |- *; split with eps; split; auto.
+ unfold D_in; intros; unfold limit1_in;
+ unfold limit_in; unfold Rdiv; intros;
+ simpl; split with eps; split; auto.
intros; rewrite (Rminus_diag_eq y y (eq_refl y)); rewrite Rmult_0_l;
- unfold R_dist in |- *; rewrite (Rminus_diag_eq 0 0 (eq_refl 0));
- unfold Rabs in |- *; case (Rcase_abs 0); intro.
+ unfold R_dist; rewrite (Rminus_diag_eq 0 0 (eq_refl 0));
+ unfold Rabs; case (Rcase_abs 0); intro.
absurd (0 < 0); auto.
- red in |- *; intro; apply (Rlt_irrefl 0 H1).
+ red; intro; apply (Rlt_irrefl 0 H1).
unfold Rgt in H0; assumption.
Qed.
@@ -189,15 +189,15 @@ Qed.
Lemma Dx :
forall (D:R -> Prop) (x0:R), D_in (fun x:R => x) (fun x:R => 1) D x0.
Proof.
- unfold D_in in |- *; unfold Rdiv in |- *; intros; unfold limit1_in in |- *;
- unfold limit_in in |- *; intros; simpl in |- *; split with eps;
+ unfold D_in; unfold Rdiv; intros; unfold limit1_in;
+ unfold limit_in; intros; simpl; split with eps;
split; auto.
intros; elim H0; clear H0; intros; unfold D_x in H0; elim H0; intros;
rewrite (Rinv_r (x - x0) (Rminus_eq_contra x x0 (not_eq_sym H3)));
- unfold R_dist in |- *; rewrite (Rminus_diag_eq 1 1 (eq_refl 1));
- unfold Rabs in |- *; case (Rcase_abs 0); intro.
+ unfold R_dist; rewrite (Rminus_diag_eq 1 1 (eq_refl 1));
+ unfold Rabs; case (Rcase_abs 0); intro.
absurd (0 < 0); auto.
- red in |- *; intro; apply (Rlt_irrefl 0 r).
+ red; intro; apply (Rlt_irrefl 0 r).
unfold Rgt in H; assumption.
Qed.
@@ -208,12 +208,12 @@ Lemma Dadd :
D_in g dg D x0 ->
D_in (fun x:R => f x + g x) (fun x:R => df x + dg x) D x0.
Proof.
- unfold D_in in |- *; intros;
+ unfold D_in; intros;
generalize
(limit_plus (fun x:R => (f x - f x0) * / (x - x0))
(fun x:R => (g x - g x0) * / (x - x0)) (D_x D x0) (
- df x0) (dg x0) x0 H H0); clear H H0; unfold limit1_in in |- *;
- unfold limit_in in |- *; simpl in |- *; intros; elim (H eps H0);
+ df x0) (dg x0) x0 H H0); clear H H0; unfold limit1_in;
+ unfold limit_in; simpl; intros; elim (H eps H0);
clear H; intros; elim H; clear H; intros; split with x;
split; auto; intros; generalize (H1 x1 H2); clear H1;
intro; rewrite (Rmult_comm (f x1 - f x0) (/ (x1 - x0))) in H1;
@@ -233,8 +233,8 @@ Lemma Dmult :
D_in g dg D x0 ->
D_in (fun x:R => f x * g x) (fun x:R => df x * g x + f x * dg x) D x0.
Proof.
- intros; unfold D_in in |- *; generalize H H0; intros; unfold D_in in H, H0;
- generalize (cont_deriv f df D x0 H1); unfold continue_in in |- *;
+ intros; unfold D_in; generalize H H0; intros; unfold D_in in H, H0;
+ generalize (cont_deriv f df D x0 H1); unfold continue_in;
intro;
generalize
(limit_mul (fun x:R => (g x - g x0) * / (x - x0)) (
@@ -250,8 +250,8 @@ Proof.
(fun x:R => (g x - g x0) * / (x - x0) * f x) (
D_x D x0) (df x0 * g x0) (dg x0 * f x0) x0 H H4);
clear H4 H; intro; unfold limit1_in in H; unfold limit_in in H;
- simpl in H; unfold limit1_in in |- *; unfold limit_in in |- *;
- simpl in |- *; intros; elim (H eps H0); clear H; intros;
+ simpl in H; unfold limit1_in; unfold limit_in;
+ simpl; intros; elim (H eps H0); clear H; intros;
elim H; clear H; intros; split with x; split; auto;
intros; generalize (H1 x1 H2); clear H1; intro;
rewrite (Rmult_comm (f x1 - f x0) (/ (x1 - x0))) in H1;
@@ -268,7 +268,7 @@ Proof.
((f x1 - f x0) * g x0 + (g x1 - g x0) * f x1 = f x1 * g x1 - f x0 * g x0).
intro; rewrite H3 in H1; assumption.
ring.
- unfold limit1_in in |- *; unfold limit_in in |- *; simpl in |- *; intros;
+ unfold limit1_in; unfold limit_in; simpl; intros;
split with eps; split; auto; intros; elim (R_dist_refl (g x0) (g x0));
intros a b; rewrite (b (eq_refl (g x0))); unfold Rgt in H;
assumption.
@@ -281,7 +281,7 @@ Lemma Dmult_const :
Proof.
intros;
generalize (Dmult D (fun _:R => 0) df (fun _:R => a) f x0 (Dconst D a x0) H);
- unfold D_in in |- *; intros; rewrite (Rmult_0_l (f x0)) in H0;
+ unfold D_in; intros; rewrite (Rmult_0_l (f x0)) in H0;
rewrite (let (H1, H2) := Rplus_ne (a * df x0) in H2) in H0;
assumption.
Qed.
@@ -291,10 +291,10 @@ Lemma Dopp :
forall (D:R -> Prop) (f df:R -> R) (x0:R),
D_in f df D x0 -> D_in (fun x:R => - f x) (fun x:R => - df x) D x0.
Proof.
- intros; generalize (Dmult_const D f df x0 (-1) H); unfold D_in in |- *;
- unfold limit1_in in |- *; unfold limit_in in |- *;
+ intros; generalize (Dmult_const D f df x0 (-1) H); unfold D_in;
+ unfold limit1_in; unfold limit_in;
intros; generalize (H0 eps H1); clear H0; intro; elim H0;
- clear H0; intros; elim H0; clear H0; simpl in |- *;
+ clear H0; intros; elim H0; clear H0; simpl;
intros; split with x; split; auto.
intros; generalize (H2 x1 H3); clear H2; intro;
rewrite Ropp_mult_distr_l_reverse in H2;
@@ -313,7 +313,7 @@ Lemma Dminus :
D_in g dg D x0 ->
D_in (fun x:R => f x - g x) (fun x:R => df x - dg x) D x0.
Proof.
- unfold Rminus in |- *; intros; generalize (Dopp D g dg x0 H0); intro;
+ unfold Rminus; intros; generalize (Dopp D g dg x0 H0); intro;
apply (Dadd D df (fun x:R => - dg x) f (fun x:R => - g x) x0);
assumption.
Qed.
@@ -324,14 +324,14 @@ Lemma Dx_pow_n :
D_in (fun x:R => x ^ n) (fun x:R => INR n * x ^ (n - 1)) D x0.
Proof.
simple induction n; intros.
- simpl in |- *; rewrite Rmult_0_l; apply Dconst.
+ simpl; rewrite Rmult_0_l; apply Dconst.
intros; cut (n0 = (S n0 - 1)%nat);
- [ intro a; rewrite <- a; clear a | simpl in |- *; apply minus_n_O ].
+ [ intro a; rewrite <- a; clear a | simpl; apply minus_n_O ].
generalize
(Dmult D (fun _:R => 1) (fun x:R => INR n0 * x ^ (n0 - 1)) (
fun x:R => x) (fun x:R => x ^ n0) x0 (Dx D x0) (
- H D x0)); unfold D_in in |- *; unfold limit1_in in |- *;
- unfold limit_in in |- *; simpl in |- *; intros; elim (H0 eps H1);
+ H D x0)); unfold D_in; unfold limit1_in;
+ unfold limit_in; simpl; intros; elim (H0 eps H1);
clear H0; intros; elim H0; clear H0; intros; split with x;
split; auto.
intros; generalize (H2 x1 H3); clear H2 H3; intro;
@@ -340,7 +340,7 @@ Proof.
rewrite (Rmult_comm (INR n0) (x0 ^ (n0 - 1))) in H2;
rewrite <- (Rmult_assoc x0 (x0 ^ (n0 - 1)) (INR n0)) in H2;
rewrite (tech_pow_Rmult x0 (n0 - 1)) in H2; elim (Peano_dec.eq_nat_dec n0 0) ; intros cond.
- rewrite cond in H2; rewrite cond; simpl in H2; simpl in |- *;
+ rewrite cond in H2; rewrite cond; simpl in H2; simpl;
cut (1 + x0 * 1 * 0 = 1 * 1);
[ intro A; rewrite A in H2; assumption | ring ].
cut (n0 <> 0%nat -> S (n0 - 1) = n0); [ intro | omega ];
@@ -355,8 +355,8 @@ Lemma Dcomp :
D_in g dg Dg (f x0) ->
D_in (fun x:R => g (f x)) (fun x:R => df x * dg (f x)) (Dgf Df Dg f) x0.
Proof.
- intros Df Dg df dg f g x0 H H0; generalize H H0; unfold D_in in |- *;
- unfold Rdiv in |- *; intros;
+ intros Df Dg df dg f g x0 H H0; generalize H H0; unfold D_in;
+ unfold Rdiv; intros;
generalize
(limit_comp f (fun x:R => (g x - g (f x0)) * / (x - f x0)) (
D_x Df x0) (D_x Dg (f x0)) (f x0) (dg (f x0)) x0);
@@ -376,8 +376,8 @@ Proof.
(limit_mul (fun x:R => (f x - f x0) * / (x - x0)) (
fun x:R => dg (f x0)) (D_x Df x0) (df x0) (dg (f x0)) x0 H1
(limit_free (fun x:R => dg (f x0)) (D_x Df x0) x0 x0));
- intro; unfold limit1_in in |- *; unfold limit_in in |- *;
- simpl in |- *; unfold limit1_in in H5, H7; unfold limit_in in H5, H7;
+ intro; unfold limit1_in; unfold limit_in;
+ simpl; unfold limit1_in in H5, H7; unfold limit_in in H5, H7;
simpl in H5, H7; intros; elim (H5 eps H8); elim (H7 eps H8);
clear H5 H7; intros; elim H5; elim H7; clear H5 H7;
intros; split with (Rmin x x1); split.
@@ -405,8 +405,8 @@ Proof.
in H15; rewrite (Rinv_l (f x2 - f x0) H16) in H15;
rewrite (let (H1, H2) := Rmult_ne (/ (x2 - x0)) in H2) in H15;
rewrite (Rmult_comm (df x0) (dg (f x0))); assumption.
- clear H5 H3 H4 H2; unfold limit1_in in |- *; unfold limit_in in |- *;
- simpl in |- *; unfold limit1_in in H1; unfold limit_in in H1;
+ clear H5 H3 H4 H2; unfold limit1_in; unfold limit_in;
+ simpl; unfold limit1_in in H1; unfold limit_in in H1;
simpl in H1; intros; elim (H1 eps H2); clear H1; intros;
elim H1; clear H1; intros; split with x; split; auto;
intros; unfold D_x, Dgf in H4, H3; elim H4; clear H4;
@@ -425,8 +425,8 @@ Proof.
generalize
(Dcomp D D dexpr (fun x:R => INR n * x ^ (n - 1)) expr (
fun x:R => x ^ n) x0 H (Dx_pow_n n D (expr x0)));
- intro; unfold D_in in |- *; unfold limit1_in in |- *;
- unfold limit_in in |- *; simpl in |- *; intros; unfold D_in in H0;
+ intro; unfold D_in; unfold limit1_in;
+ unfold limit_in; simpl; intros; unfold D_in in H0;
unfold limit1_in in H0; unfold limit_in in H0; simpl in H0;
elim (H0 eps H1); clear H0; intros; elim H0; clear H0;
intros; split with x; split; intros; auto.
diff --git a/theories/Reals/Rgeom.v b/theories/Reals/Rgeom.v
index c00917b6b..c5363be5f 100644
--- a/theories/Reals/Rgeom.v
+++ b/theories/Reals/Rgeom.v
@@ -20,23 +20,23 @@ Definition dist_euc (x0 y0 x1 y1:R) : R :=
Lemma distance_refl : forall x0 y0:R, dist_euc x0 y0 x0 y0 = 0.
Proof.
- intros x0 y0; unfold dist_euc in |- *; apply Rsqr_inj;
+ intros x0 y0; unfold dist_euc; apply Rsqr_inj;
[ apply sqrt_positivity; apply Rplus_le_le_0_compat;
[ apply Rle_0_sqr | apply Rle_0_sqr ]
| right; reflexivity
| rewrite Rsqr_0; rewrite Rsqr_sqrt;
- [ unfold Rsqr in |- *; ring
+ [ unfold Rsqr; ring
| apply Rplus_le_le_0_compat; [ apply Rle_0_sqr | apply Rle_0_sqr ] ] ].
Qed.
Lemma distance_symm :
forall x0 y0 x1 y1:R, dist_euc x0 y0 x1 y1 = dist_euc x1 y1 x0 y0.
Proof.
- intros x0 y0 x1 y1; unfold dist_euc in |- *; apply Rsqr_inj;
+ intros x0 y0 x1 y1; unfold dist_euc; apply Rsqr_inj;
[ apply sqrt_positivity; apply Rplus_le_le_0_compat
| apply sqrt_positivity; apply Rplus_le_le_0_compat
| repeat rewrite Rsqr_sqrt;
- [ unfold Rsqr in |- *; ring
+ [ unfold Rsqr; ring
| apply Rplus_le_le_0_compat
| apply Rplus_le_le_0_compat ] ]; apply Rle_0_sqr.
Qed.
@@ -49,8 +49,8 @@ Lemma law_cosines :
a * c * cos ac = (x0 - x1) * (x2 - x1) + (y0 - y1) * (y2 - y1) ->
Rsqr b = Rsqr c + Rsqr a - 2 * (a * c * cos ac).
Proof.
- unfold dist_euc in |- *; intros; repeat rewrite Rsqr_sqrt;
- [ rewrite H; unfold Rsqr in |- *; ring
+ unfold dist_euc; intros; repeat rewrite Rsqr_sqrt;
+ [ rewrite H; unfold Rsqr; ring
| apply Rplus_le_le_0_compat
| apply Rplus_le_le_0_compat
| apply Rplus_le_le_0_compat ]; apply Rle_0_sqr.
@@ -60,7 +60,7 @@ Lemma triangle :
forall x0 y0 x1 y1 x2 y2:R,
dist_euc x0 y0 x1 y1 <= dist_euc x0 y0 x2 y2 + dist_euc x2 y2 x1 y1.
Proof.
- intros; unfold dist_euc in |- *; apply Rsqr_incr_0;
+ intros; unfold dist_euc; apply Rsqr_incr_0;
[ rewrite Rsqr_plus; repeat rewrite Rsqr_sqrt;
[ replace (Rsqr (x0 - x1)) with
(Rsqr (x0 - x2) + Rsqr (x2 - x1) + 2 * (x0 - x2) * (x2 - x1));
@@ -112,7 +112,7 @@ Definition yt (y ty:R) : R := y + ty.
Lemma translation_0 : forall x y:R, xt x 0 = x /\ yt y 0 = y.
Proof.
- intros x y; split; [ unfold xt in |- * | unfold yt in |- * ]; ring.
+ intros x y; split; [ unfold xt | unfold yt ]; ring.
Qed.
Lemma isometric_translation :
@@ -120,7 +120,7 @@ Lemma isometric_translation :
Rsqr (x1 - x2) + Rsqr (y1 - y2) =
Rsqr (xt x1 tx - xt x2 tx) + Rsqr (yt y1 ty - yt y2 ty).
Proof.
- intros; unfold Rsqr, xt, yt in |- *; ring.
+ intros; unfold Rsqr, xt, yt; ring.
Qed.
(******************************************************************)
@@ -132,13 +132,13 @@ Definition yr (x y theta:R) : R := - x * sin theta + y * cos theta.
Lemma rotation_0 : forall x y:R, xr x y 0 = x /\ yr x y 0 = y.
Proof.
- intros x y; unfold xr, yr in |- *; split; rewrite cos_0; rewrite sin_0; ring.
+ intros x y; unfold xr, yr; split; rewrite cos_0; rewrite sin_0; ring.
Qed.
Lemma rotation_PI2 :
forall x y:R, xr x y (PI / 2) = y /\ yr x y (PI / 2) = - x.
Proof.
- intros x y; unfold xr, yr in |- *; split; rewrite cos_PI2; rewrite sin_PI2;
+ intros x y; unfold xr, yr; split; rewrite cos_PI2; rewrite sin_PI2;
ring.
Qed.
@@ -148,7 +148,7 @@ Lemma isometric_rotation_0 :
Rsqr (xr x1 y1 theta - xr x2 y2 theta) +
Rsqr (yr x1 y1 theta - yr x2 y2 theta).
Proof.
- intros; unfold xr, yr in |- *;
+ intros; unfold xr, yr;
replace
(x1 * cos theta + y1 * sin theta - (x2 * cos theta + y2 * sin theta)) with
(cos theta * (x1 - x2) + sin theta * (y1 - y2));
@@ -168,7 +168,7 @@ Lemma isometric_rotation :
dist_euc (xr x1 y1 theta) (yr x1 y1 theta) (xr x2 y2 theta)
(yr x2 y2 theta).
Proof.
- unfold dist_euc in |- *; intros; apply Rsqr_inj;
+ unfold dist_euc; intros; apply Rsqr_inj;
[ apply sqrt_positivity; apply Rplus_le_le_0_compat
| apply sqrt_positivity; apply Rplus_le_le_0_compat
| repeat rewrite Rsqr_sqrt;
diff --git a/theories/Reals/RiemannInt.v b/theories/Reals/RiemannInt.v
index 9e4a5e4b1..83e059f53 100644
--- a/theories/Reals/RiemannInt.v
+++ b/theories/Reals/RiemannInt.v
@@ -51,19 +51,19 @@ Lemma RiemannInt_P1 :
forall (f:R -> R) (a b:R),
Riemann_integrable f a b -> Riemann_integrable f b a.
Proof.
- unfold Riemann_integrable in |- *; intros; elim (X eps); clear X; intros;
+ unfold Riemann_integrable; intros; elim (X eps); clear X; intros;
elim p; clear p; intros; exists (mkStepFun (StepFun_P6 (pre x)));
exists (mkStepFun (StepFun_P6 (pre x0)));
elim p; clear p; intros; split.
intros; apply (H t); elim H1; clear H1; intros; split;
[ apply Rle_trans with (Rmin b a); try assumption; right;
- unfold Rmin in |- *
+ unfold Rmin
| apply Rle_trans with (Rmax b a); try assumption; right;
- unfold Rmax in |- * ];
+ unfold Rmax ];
(case (Rle_dec a b); case (Rle_dec b a); intros;
try reflexivity || apply Rle_antisym;
[ assumption | assumption | auto with real | auto with real ]).
- generalize H0; unfold RiemannInt_SF in |- *; case (Rle_dec a b);
+ generalize H0; unfold RiemannInt_SF; case (Rle_dec a b);
case (Rle_dec b a); intros;
(replace
(Int_SF (subdivision_val (mkStepFun (StepFun_P6 (pre x0))))
@@ -89,11 +89,11 @@ Lemma RiemannInt_P2 :
Rabs (RiemannInt_SF (wn n)) < un n) ->
{ l:R | Un_cv (fun N:nat => RiemannInt_SF (vn N)) l }.
Proof.
- intros; apply R_complete; unfold Un_cv in H; unfold Cauchy_crit in |- *;
+ intros; apply R_complete; unfold Un_cv in H; unfold Cauchy_crit;
intros; assert (H3 : 0 < eps / 2).
- unfold Rdiv in |- *; apply Rmult_lt_0_compat;
+ unfold Rdiv; apply Rmult_lt_0_compat;
[ assumption | apply Rinv_0_lt_compat; prove_sup0 ].
- elim (H _ H3); intros N0 H4; exists N0; intros; unfold R_dist in |- *;
+ elim (H _ H3); intros N0 H4; exists N0; intros; unfold R_dist;
unfold R_dist in H4; elim (H1 n); elim (H1 m); intros;
replace (RiemannInt_SF (vn n) - RiemannInt_SF (vn m)) with
(RiemannInt_SF (vn n) + -1 * RiemannInt_SF (vn m));
@@ -105,15 +105,15 @@ Proof.
apply Rle_lt_trans with
(RiemannInt_SF (mkStepFun (StepFun_P28 1 (wn n) (wn m)))).
apply StepFun_P37; try assumption.
- intros; simpl in |- *;
+ intros; simpl;
apply Rle_trans with (Rabs (vn n x - f x) + Rabs (f x - vn m x)).
replace (vn n x + -1 * vn m x) with (vn n x - f x + (f x - vn m x));
[ apply Rabs_triang | ring ].
assert (H12 : Rmin a b = a).
- unfold Rmin in |- *; case (Rle_dec a b); intro;
+ unfold Rmin; case (Rle_dec a b); intro;
[ reflexivity | elim n0; assumption ].
assert (H13 : Rmax a b = b).
- unfold Rmax in |- *; case (Rle_dec a b); intro;
+ unfold Rmax; case (Rle_dec a b); intro;
[ reflexivity | elim n0; assumption ].
rewrite <- H12 in H11; pattern b at 2 in H11; rewrite <- H13 in H11;
rewrite Rmult_1_l; apply Rplus_le_compat.
@@ -156,14 +156,14 @@ Proof.
intro; elim (H0 n0); intros; split.
intros; apply (H2 t); elim H4; clear H4; intros; split;
[ apply Rle_trans with (Rmin b a); try assumption; right;
- unfold Rmin in |- *
+ unfold Rmin
| apply Rle_trans with (Rmax b a); try assumption; right;
- unfold Rmax in |- * ];
+ unfold Rmax ];
(case (Rle_dec a b); case (Rle_dec b a); intros;
try reflexivity || apply Rle_antisym;
[ assumption | assumption | auto with real | auto with real ]).
- generalize H3; unfold RiemannInt_SF in |- *; case (Rle_dec a b);
- case (Rle_dec b a); unfold wn' in |- *; intros;
+ generalize H3; unfold RiemannInt_SF; case (Rle_dec a b);
+ case (Rle_dec b a); unfold wn'; intros;
(replace
(Int_SF (subdivision_val (mkStepFun (StepFun_P6 (pre (wn n0)))))
(subdivision (mkStepFun (StepFun_P6 (pre (wn n0)))))) with
@@ -178,19 +178,19 @@ Proof.
rewrite Rabs_Ropp in H4; apply H4.
apply H4.
assert (H3 := RiemannInt_P2 _ _ _ _ H H1 H2); elim H3; intros;
- exists (- x); unfold Un_cv in |- *; unfold Un_cv in p;
+ exists (- x); unfold Un_cv; unfold Un_cv in p;
intros; elim (p _ H4); intros; exists x0; intros;
- generalize (H5 _ H6); unfold R_dist, RiemannInt_SF in |- *;
+ generalize (H5 _ H6); unfold R_dist, RiemannInt_SF;
case (Rle_dec b a); case (Rle_dec a b); intros.
elim n; assumption.
unfold vn' in H7;
replace (Int_SF (subdivision_val (vn n0)) (subdivision (vn n0))) with
(Int_SF (subdivision_val (mkStepFun (StepFun_P6 (pre (vn n0)))))
(subdivision (mkStepFun (StepFun_P6 (pre (vn n0))))));
- [ unfold Rminus in |- *; rewrite Ropp_involutive; rewrite <- Rabs_Ropp;
+ [ unfold Rminus; rewrite Ropp_involutive; rewrite <- Rabs_Ropp;
rewrite Ropp_plus_distr; rewrite Ropp_involutive;
apply H7
- | symmetry in |- *; apply StepFun_P17 with (fe (vn n0)) a b;
+ | symmetry ; apply StepFun_P17 with (fe (vn n0)) a b;
[ apply StepFun_P1
| apply StepFun_P2;
apply (StepFun_P1 (mkStepFun (StepFun_P6 (pre (vn n0))))) ] ].
@@ -218,9 +218,9 @@ Lemma RiemannInt_P4 :
Un_cv (fun N:nat => RiemannInt_SF (phi_sequence un pr1 N)) l ->
Un_cv (fun N:nat => RiemannInt_SF (phi_sequence vn pr2 N)) l.
Proof.
- unfold Un_cv in |- *; unfold R_dist in |- *; intros f; intros;
+ unfold Un_cv; unfold R_dist; intros f; intros;
assert (H3 : 0 < eps / 3).
- unfold Rdiv in |- *; apply Rmult_lt_0_compat;
+ unfold Rdiv; apply Rmult_lt_0_compat;
[ assumption | apply Rinv_0_lt_compat; prove_sup0 ].
elim (H _ H3); clear H; intros N0 H; elim (H0 _ H3); clear H0; intros N1 H0;
elim (H1 _ H3); clear H1; intros N2 H1; set (N := max (max N0 N1) N2);
@@ -255,7 +255,7 @@ Proof.
apply StepFun_P34; assumption.
apply Rle_lt_trans with
(RiemannInt_SF (mkStepFun (StepFun_P28 1 psi_un psi_vn))).
- apply StepFun_P37; try assumption; intros; simpl in |- *; rewrite Rmult_1_l;
+ apply StepFun_P37; try assumption; intros; simpl; rewrite Rmult_1_l;
apply Rle_trans with
(Rabs (phi_sequence vn pr2 n x - f x) +
Rabs (f x - phi_sequence un pr1 n x)).
@@ -263,10 +263,10 @@ Proof.
(phi_sequence vn pr2 n x - f x + (f x - phi_sequence un pr1 n x));
[ apply Rabs_triang | ring ].
assert (H10 : Rmin a b = a).
- unfold Rmin in |- *; case (Rle_dec a b); intro;
+ unfold Rmin; case (Rle_dec a b); intro;
[ reflexivity | elim n0; assumption ].
assert (H11 : Rmax a b = b).
- unfold Rmax in |- *; case (Rle_dec a b); intro;
+ unfold Rmax; case (Rle_dec a b); intro;
[ reflexivity | elim n0; assumption ].
rewrite (Rplus_comm (psi_un x)); apply Rplus_le_compat.
rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr; elim H5; intros; apply H8.
@@ -279,20 +279,20 @@ Proof.
apply RRle_abs.
assumption.
replace (pos (un n)) with (Rabs (un n - 0));
- [ apply H; unfold ge in |- *; apply le_trans with N; try assumption;
- unfold N in |- *; apply le_trans with (max N0 N1);
+ [ apply H; unfold ge; apply le_trans with N; try assumption;
+ unfold N; apply le_trans with (max N0 N1);
apply le_max_l
- | unfold Rminus in |- *; rewrite Ropp_0; rewrite Rplus_0_r; apply Rabs_right;
+ | unfold Rminus; rewrite Ropp_0; rewrite Rplus_0_r; apply Rabs_right;
apply Rle_ge; left; apply (cond_pos (un n)) ].
apply Rlt_trans with (pos (vn n)).
elim H5; intros; apply Rle_lt_trans with (Rabs (RiemannInt_SF psi_vn)).
apply RRle_abs; assumption.
assumption.
replace (pos (vn n)) with (Rabs (vn n - 0));
- [ apply H0; unfold ge in |- *; apply le_trans with N; try assumption;
- unfold N in |- *; apply le_trans with (max N0 N1);
+ [ apply H0; unfold ge; apply le_trans with N; try assumption;
+ unfold N; apply le_trans with (max N0 N1);
[ apply le_max_r | apply le_max_l ]
- | unfold Rminus in |- *; rewrite Ropp_0; rewrite Rplus_0_r; apply Rabs_right;
+ | unfold Rminus; rewrite Ropp_0; rewrite Rplus_0_r; apply Rabs_right;
apply Rle_ge; left; apply (cond_pos (vn n)) ].
rewrite StepFun_P39; rewrite Rabs_Ropp;
apply Rle_lt_trans with
@@ -311,7 +311,7 @@ Proof.
(mkStepFun (StepFun_P6 (pre (mkStepFun (StepFun_P28 1 psi_vn psi_un)))))).
apply StepFun_P37.
auto with real.
- intros; simpl in |- *; rewrite Rmult_1_l;
+ intros; simpl; rewrite Rmult_1_l;
apply Rle_trans with
(Rabs (phi_sequence vn pr2 n x - f x) +
Rabs (f x - phi_sequence un pr1 n x)).
@@ -319,10 +319,10 @@ Proof.
(phi_sequence vn pr2 n x - f x + (f x - phi_sequence un pr1 n x));
[ apply Rabs_triang | ring ].
assert (H10 : Rmin a b = b).
- unfold Rmin in |- *; case (Rle_dec a b); intro;
+ unfold Rmin; case (Rle_dec a b); intro;
[ elim n0; assumption | reflexivity ].
assert (H11 : Rmax a b = a).
- unfold Rmax in |- *; case (Rle_dec a b); intro;
+ unfold Rmax; case (Rle_dec a b); intro;
[ elim n0; assumption | reflexivity ].
apply Rplus_le_compat.
rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr; elim H5; intros; apply H8.
@@ -341,10 +341,10 @@ Proof.
rewrite <- Rabs_Ropp; apply RRle_abs.
assumption.
replace (pos (vn n)) with (Rabs (vn n - 0));
- [ apply H0; unfold ge in |- *; apply le_trans with N; try assumption;
- unfold N in |- *; apply le_trans with (max N0 N1);
+ [ apply H0; unfold ge; apply le_trans with N; try assumption;
+ unfold N; apply le_trans with (max N0 N1);
[ apply le_max_r | apply le_max_l ]
- | unfold R_dist in |- *; unfold Rminus in |- *; rewrite Ropp_0;
+ | unfold R_dist; unfold Rminus; rewrite Ropp_0;
rewrite Rplus_0_r; apply Rabs_right; apply Rle_ge;
left; apply (cond_pos (vn n)) ].
apply Rlt_trans with (pos (un n)).
@@ -352,15 +352,15 @@ Proof.
rewrite <- Rabs_Ropp; apply RRle_abs; assumption.
assumption.
replace (pos (un n)) with (Rabs (un n - 0));
- [ apply H; unfold ge in |- *; apply le_trans with N; try assumption;
- unfold N in |- *; apply le_trans with (max N0 N1);
+ [ apply H; unfold ge; apply le_trans with N; try assumption;
+ unfold N; apply le_trans with (max N0 N1);
apply le_max_l
- | unfold Rminus in |- *; rewrite Ropp_0; rewrite Rplus_0_r; apply Rabs_right;
+ | unfold Rminus; rewrite Ropp_0; rewrite Rplus_0_r; apply Rabs_right;
apply Rle_ge; left; apply (cond_pos (un n)) ].
- apply H1; unfold ge in |- *; apply le_trans with N; try assumption;
- unfold N in |- *; apply le_max_r.
+ apply H1; unfold ge; apply le_trans with N; try assumption;
+ unfold N; apply le_max_r.
apply Rmult_eq_reg_l with 3;
- [ unfold Rdiv in |- *; rewrite Rmult_plus_distr_l;
+ [ unfold Rdiv; rewrite Rmult_plus_distr_l;
do 2 rewrite (Rmult_comm 3); repeat rewrite Rmult_assoc;
rewrite <- Rinv_l_sym; [ ring | discrR ]
| discrR ].
@@ -376,17 +376,17 @@ Definition RinvN (N:nat) : posreal := mkposreal _ (RinvN_pos N).
Lemma RinvN_cv : Un_cv RinvN 0.
Proof.
- unfold Un_cv in |- *; intros; assert (H0 := archimed (/ eps)); elim H0;
+ unfold Un_cv; intros; assert (H0 := archimed (/ eps)); elim H0;
clear H0; intros; assert (H2 : (0 <= up (/ eps))%Z).
apply le_IZR; left; apply Rlt_trans with (/ eps);
[ apply Rinv_0_lt_compat; assumption | assumption ].
- elim (IZN _ H2); intros; exists x; intros; unfold R_dist in |- *;
- simpl in |- *; unfold Rminus in |- *; rewrite Ropp_0;
+ elim (IZN _ H2); intros; exists x; intros; unfold R_dist;
+ simpl; unfold Rminus; rewrite Ropp_0;
rewrite Rplus_0_r; assert (H5 : 0 < INR n + 1).
apply Rplus_le_lt_0_compat; [ apply pos_INR | apply Rlt_0_1 ].
rewrite Rabs_right;
[ idtac
- | left; change (0 < / (INR n + 1)) in |- *; apply Rinv_0_lt_compat;
+ | left; change (0 < / (INR n + 1)); apply Rinv_0_lt_compat;
assumption ]; apply Rle_lt_trans with (/ (INR x + 1)).
apply Rle_Rinv.
apply Rplus_le_lt_0_compat; [ apply pos_INR | apply Rlt_0_1 ].
@@ -400,9 +400,9 @@ Proof.
apply Rplus_le_lt_0_compat; [ apply pos_INR | apply Rlt_0_1 ].
apply Rlt_trans with (INR x);
[ rewrite INR_IZR_INZ; rewrite <- H3; apply H0
- | pattern (INR x) at 1 in |- *; rewrite <- Rplus_0_r;
+ | pattern (INR x) at 1; rewrite <- Rplus_0_r;
apply Rplus_lt_compat_l; apply Rlt_0_1 ].
- red in |- *; intro; rewrite H6 in H; elim (Rlt_irrefl _ H).
+ red; intro; rewrite H6 in H; elim (Rlt_irrefl _ H).
Qed.
(**********)
@@ -413,7 +413,7 @@ Lemma RiemannInt_P5 :
forall (f:R -> R) (a b:R) (pr1 pr2:Riemann_integrable f a b),
RiemannInt pr1 = RiemannInt pr2.
Proof.
- intros; unfold RiemannInt in |- *;
+ intros; unfold RiemannInt;
case (RiemannInt_exists pr1 RinvN RinvN_cv);
case (RiemannInt_exists pr2 RinvN RinvN_cv); intros;
eapply UL_sequence;
@@ -431,7 +431,7 @@ Lemma maxN :
Proof.
intros; set (I := fun n:nat => a + INR n * del < b);
assert (H0 : exists n : nat, I n).
- exists 0%nat; unfold I in |- *; rewrite Rmult_0_l; rewrite Rplus_0_r;
+ exists 0%nat; unfold I; rewrite Rmult_0_l; rewrite Rplus_0_r;
assumption.
cut (Nbound I).
intro; assert (H2 := Nzorn H0 H1); elim H2; intros; exists x; elim p; intros;
@@ -440,27 +440,27 @@ Proof.
case (total_order_T (a + INR (S x) * del) b); intro.
elim s; intro.
assert (H5 := H4 (S x) a0); elim (le_Sn_n _ H5).
- right; symmetry in |- *; assumption.
+ right; symmetry ; assumption.
left; apply r.
assert (H1 : 0 <= (b - a) / del).
- unfold Rdiv in |- *; apply Rmult_le_pos;
+ unfold Rdiv; apply Rmult_le_pos;
[ apply Rge_le; apply Rge_minus; apply Rle_ge; left; apply H
| left; apply Rinv_0_lt_compat; apply (cond_pos del) ].
elim (archimed ((b - a) / del)); intros;
assert (H4 : (0 <= up ((b - a) / del))%Z).
- apply le_IZR; simpl in |- *; left; apply Rle_lt_trans with ((b - a) / del);
+ apply le_IZR; simpl; left; apply Rle_lt_trans with ((b - a) / del);
assumption.
assert (H5 := IZN _ H4); elim H5; clear H5; intros N H5;
- unfold Nbound in |- *; exists N; intros; unfold I in H6;
+ unfold Nbound; exists N; intros; unfold I in H6;
apply INR_le; rewrite H5 in H2; rewrite <- INR_IZR_INZ in H2;
left; apply Rle_lt_trans with ((b - a) / del); try assumption;
apply Rmult_le_reg_l with (pos del);
[ apply (cond_pos del)
- | unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ del));
+ | unfold Rdiv; rewrite <- (Rmult_comm (/ del));
rewrite <- Rmult_assoc; rewrite <- Rinv_r_sym;
[ rewrite Rmult_1_l; rewrite Rmult_comm; apply Rplus_le_reg_l with a;
replace (a + (b - a)) with b; [ left; assumption | ring ]
- | assert (H7 := cond_pos del); red in |- *; intro; rewrite H8 in H7;
+ | assert (H7 := cond_pos del); red; intro; rewrite H8 in H7;
elim (Rlt_irrefl _ H7) ] ].
Qed.
@@ -496,15 +496,15 @@ Proof.
a <= x <= b ->
a <= y <= b -> Rabs (x - y) < l -> Rabs (f x - f y) < eps));
assert (H1 : bound E).
- unfold bound in |- *; exists (b - a); unfold is_upper_bound in |- *; intros;
+ unfold bound; exists (b - a); unfold is_upper_bound; intros;
unfold E in H1; elim H1; clear H1; intros H1 _; elim H1;
intros; assumption.
assert (H2 : exists x : R, E x).
assert (H2 := Heine f (fun x:R => a <= x <= b) (compact_P3 a b) H0 eps);
- elim H2; intros; exists (Rmin x (b - a)); unfold E in |- *;
+ elim H2; intros; exists (Rmin x (b - a)); unfold E;
split;
[ split;
- [ unfold Rmin in |- *; case (Rle_dec x (b - a)); intro;
+ [ unfold Rmin; case (Rle_dec x (b - a)); intro;
[ apply (cond_pos x) | apply Rlt_Rminus; assumption ]
| apply Rmin_r ]
| intros; apply H3; try assumption; apply Rlt_le_trans with (Rmin x (b - a));
@@ -519,7 +519,7 @@ Proof.
intros; apply H15; assumption.
assert (H12 := not_ex_all_not _ (fun y:R => D < y /\ E y) H11);
assert (H13 : is_upper_bound E D).
- unfold is_upper_bound in |- *; intros; assert (H14 := H12 x1);
+ unfold is_upper_bound; intros; assert (H14 := H12 x1);
elim (not_and_or (D < x1) (E x1) H14); intro.
case (Rle_dec x1 D); intro.
assumption.
@@ -551,7 +551,7 @@ Proof.
exists (mkposreal _ Rlt_0_1); intros; assert (H3 : x = y);
[ elim H0; elim H1; intros; rewrite b0 in H3; rewrite b0 in H5;
apply Rle_antisym; apply Rle_trans with b; assumption
- | rewrite H3; unfold Rminus in |- *; rewrite Rplus_opp_r; rewrite Rabs_R0;
+ | rewrite H3; unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0;
apply (cond_pos eps) ].
exists (mkposreal _ Rlt_0_1); intros; elim H0; intros;
elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ (Rle_trans _ _ _ H3 H4) r)).
@@ -560,14 +560,14 @@ Qed.
Lemma SubEqui_P1 :
forall (a b:R) (del:posreal) (h:a < b), pos_Rl (SubEqui del h) 0 = a.
Proof.
- intros; unfold SubEqui in |- *; case (maxN del h); intros; reflexivity.
+ intros; unfold SubEqui; case (maxN del h); intros; reflexivity.
Qed.
Lemma SubEqui_P2 :
forall (a b:R) (del:posreal) (h:a < b),
pos_Rl (SubEqui del h) (pred (Rlength (SubEqui del h))) = b.
Proof.
- intros; unfold SubEqui in |- *; case (maxN del h); intros; clear a0;
+ intros; unfold SubEqui; case (maxN del h); intros; clear a0;
cut
(forall (x:nat) (a:R) (del:posreal),
pos_Rl (SubEquiN (S x) a b del)
@@ -579,14 +579,14 @@ Proof.
change
(pos_Rl (SubEquiN (S n) (a0 + del0) b del0)
(pred (Rlength (SubEquiN (S n) (a0 + del0) b del0))) = b)
- in |- *; apply H ] ].
+ ; apply H ] ].
Qed.
Lemma SubEqui_P3 :
forall (N:nat) (a b:R) (del:posreal), Rlength (SubEquiN N a b del) = S N.
Proof.
simple induction N; intros;
- [ reflexivity | simpl in |- *; rewrite H; reflexivity ].
+ [ reflexivity | simpl; rewrite H; reflexivity ].
Qed.
Lemma SubEqui_P4 :
@@ -594,36 +594,36 @@ Lemma SubEqui_P4 :
(i < S N)%nat -> pos_Rl (SubEquiN (S N) a b del) i = a + INR i * del.
Proof.
simple induction N;
- [ intros; inversion H; [ simpl in |- *; ring | elim (le_Sn_O _ H1) ]
+ [ intros; inversion H; [ simpl; ring | elim (le_Sn_O _ H1) ]
| intros; induction i as [| i Hreci];
- [ simpl in |- *; ring
+ [ simpl; ring
| change
(pos_Rl (SubEquiN (S n) (a + del) b del) i = a + INR (S i) * del)
- in |- *; rewrite H; [ rewrite S_INR; ring | apply lt_S_n; apply H0 ] ] ].
+ ; rewrite H; [ rewrite S_INR; ring | apply lt_S_n; apply H0 ] ] ].
Qed.
Lemma SubEqui_P5 :
forall (a b:R) (del:posreal) (h:a < b),
Rlength (SubEqui del h) = S (S (max_N del h)).
Proof.
- intros; unfold SubEqui in |- *; apply SubEqui_P3.
+ intros; unfold SubEqui; apply SubEqui_P3.
Qed.
Lemma SubEqui_P6 :
forall (a b:R) (del:posreal) (h:a < b) (i:nat),
(i < S (max_N del h))%nat -> pos_Rl (SubEqui del h) i = a + INR i * del.
Proof.
- intros; unfold SubEqui in |- *; apply SubEqui_P4; assumption.
+ intros; unfold SubEqui; apply SubEqui_P4; assumption.
Qed.
Lemma SubEqui_P7 :
forall (a b:R) (del:posreal) (h:a < b), ordered_Rlist (SubEqui del h).
Proof.
- intros; unfold ordered_Rlist in |- *; intros; rewrite SubEqui_P5 in H;
+ intros; unfold ordered_Rlist; intros; rewrite SubEqui_P5 in H;
simpl in H; inversion H.
rewrite (SubEqui_P6 del h (i:=(max_N del h))).
replace (S (max_N del h)) with (pred (Rlength (SubEqui del h))).
- rewrite SubEqui_P2; unfold max_N in |- *; case (maxN del h); intros; left;
+ rewrite SubEqui_P2; unfold max_N; case (maxN del h); intros; left;
elim a0; intros; assumption.
rewrite SubEqui_P5; reflexivity.
apply lt_n_Sn.
@@ -631,7 +631,7 @@ Proof.
3: assumption.
2: apply le_lt_n_Sm; assumption.
apply Rplus_le_compat_l; rewrite S_INR; rewrite Rmult_plus_distr_r;
- pattern (INR i * del) at 1 in |- *; rewrite <- Rplus_0_r;
+ pattern (INR i * del) at 1; rewrite <- Rplus_0_r;
apply Rplus_le_compat_l; rewrite Rmult_1_l; left;
apply (cond_pos del).
Qed.
@@ -641,11 +641,11 @@ Lemma SubEqui_P8 :
(i < Rlength (SubEqui del h))%nat -> a <= pos_Rl (SubEqui del h) i <= b.
Proof.
intros; split.
- pattern a at 1 in |- *; rewrite <- (SubEqui_P1 del h); apply RList_P5.
+ pattern a at 1; rewrite <- (SubEqui_P1 del h); apply RList_P5.
apply SubEqui_P7.
elim (RList_P3 (SubEqui del h) (pos_Rl (SubEqui del h) i)); intros; apply H1;
exists i; split; [ reflexivity | assumption ].
- pattern b at 2 in |- *; rewrite <- (SubEqui_P2 del h); apply RList_P7;
+ pattern b at 2; rewrite <- (SubEqui_P2 del h); apply RList_P7;
[ apply SubEqui_P7
| elim (RList_P3 (SubEqui del h) (pos_Rl (SubEqui del h) i)); intros;
apply H1; exists i; split; [ reflexivity | assumption ] ].
@@ -671,42 +671,42 @@ Lemma RiemannInt_P6 :
a < b ->
(forall x:R, a <= x <= b -> continuity_pt f x) -> Riemann_integrable f a b.
Proof.
- intros; unfold Riemann_integrable in |- *; intro;
+ intros; unfold Riemann_integrable; intro;
assert (H1 : 0 < eps / (2 * (b - a))).
- unfold Rdiv in |- *; apply Rmult_lt_0_compat;
+ unfold Rdiv; apply Rmult_lt_0_compat;
[ apply (cond_pos eps)
| apply Rinv_0_lt_compat; apply Rmult_lt_0_compat;
[ prove_sup0 | apply Rlt_Rminus; assumption ] ].
assert (H2 : Rmin a b = a).
- unfold Rmin in |- *; case (Rle_dec a b); intro;
+ unfold Rmin; case (Rle_dec a b); intro;
[ reflexivity | elim n; left; assumption ].
assert (H3 : Rmax a b = b).
- unfold Rmax in |- *; case (Rle_dec a b); intro;
+ unfold Rmax; case (Rle_dec a b); intro;
[ reflexivity | elim n; left; assumption ].
elim (Heine_cor2 H0 (mkposreal _ H1)); intros del H4;
elim (SubEqui_P9 del f H); intros phi [H5 H6]; split with phi;
split with (mkStepFun (StepFun_P4 a b (eps / (2 * (b - a)))));
split.
- 2: rewrite StepFun_P18; unfold Rdiv in |- *; rewrite Rinv_mult_distr.
+ 2: rewrite StepFun_P18; unfold Rdiv; rewrite Rinv_mult_distr.
2: do 2 rewrite Rmult_assoc; rewrite <- Rinv_l_sym.
2: rewrite Rmult_1_r; rewrite Rabs_right.
2: apply Rmult_lt_reg_l with 2.
2: prove_sup0.
2: rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
rewrite <- Rinv_r_sym.
- 2: rewrite Rmult_1_l; pattern (pos eps) at 1 in |- *; rewrite <- Rplus_0_r;
+ 2: rewrite Rmult_1_l; pattern (pos eps) at 1; rewrite <- Rplus_0_r;
rewrite double; apply Rplus_lt_compat_l; apply (cond_pos eps).
2: discrR.
2: apply Rle_ge; left; apply Rmult_lt_0_compat.
2: apply (cond_pos eps).
2: apply Rinv_0_lt_compat; prove_sup0.
- 2: apply Rminus_eq_contra; red in |- *; intro; clear H6; rewrite H7 in H;
+ 2: apply Rminus_eq_contra; red; intro; clear H6; rewrite H7 in H;
elim (Rlt_irrefl _ H).
2: discrR.
- 2: apply Rminus_eq_contra; red in |- *; intro; clear H6; rewrite H7 in H;
+ 2: apply Rminus_eq_contra; red; intro; clear H6; rewrite H7 in H;
elim (Rlt_irrefl _ H).
- intros; rewrite H2 in H7; rewrite H3 in H7; simpl in |- *;
- unfold fct_cte in |- *;
+ intros; rewrite H2 in H7; rewrite H3 in H7; simpl;
+ unfold fct_cte;
cut
(forall t:R,
a <= t <= b ->
@@ -716,14 +716,14 @@ Proof.
co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))
t)).
intro; elim (H8 _ H7); intro.
- rewrite H9; rewrite H5; unfold Rminus in |- *; rewrite Rplus_opp_r;
+ rewrite H9; rewrite H5; unfold Rminus; rewrite Rplus_opp_r;
rewrite Rabs_R0; left; assumption.
elim H9; clear H9; intros I [H9 H10]; assert (H11 := H6 I H9 t H10);
rewrite H11; left; apply H4.
assumption.
apply SubEqui_P8; apply lt_trans with (pred (Rlength (SubEqui del H))).
assumption.
- apply lt_pred_n_n; apply neq_O_lt; red in |- *; intro; rewrite <- H12 in H9;
+ apply lt_pred_n_n; apply neq_O_lt; red; intro; rewrite <- H12 in H9;
elim (lt_n_O _ H9).
unfold co_interval in H10; elim H10; clear H10; intros; rewrite Rabs_right.
rewrite SubEqui_P5 in H9; simpl in H9; inversion H9.
@@ -738,7 +738,7 @@ Proof.
rewrite H13 in H12; rewrite SubEqui_P2 in H12; apply H12.
rewrite SubEqui_P6.
2: apply lt_n_Sn.
- unfold max_N in |- *; case (maxN del H); intros; elim a0; clear a0;
+ unfold max_N; case (maxN del H); intros; elim a0; clear a0;
intros _ H13; replace (a + INR x * del + del) with (a + INR (S x) * del);
[ assumption | rewrite S_INR; ring ].
apply Rplus_lt_reg_r with (pos_Rl (SubEqui del H) I);
@@ -755,10 +755,10 @@ Proof.
left; assumption.
right; set (I := fun j:nat => a + INR j * del <= t0);
assert (H1 : exists n : nat, I n).
- exists 0%nat; unfold I in |- *; rewrite Rmult_0_l; rewrite Rplus_0_r; elim H8;
+ exists 0%nat; unfold I; rewrite Rmult_0_l; rewrite Rplus_0_r; elim H8;
intros; assumption.
assert (H4 : Nbound I).
- unfold Nbound in |- *; exists (S (max_N del H)); intros; unfold max_N in |- *;
+ unfold Nbound; exists (S (max_N del H)); intros; unfold max_N;
case (maxN del H); intros; elim a0; clear a0; intros _ H5;
apply INR_le; apply Rmult_le_reg_l with (pos del).
apply (cond_pos del).
@@ -767,7 +767,7 @@ Proof.
apply Rle_trans with b; try assumption; elim H8; intros;
assumption.
elim (Nzorn H1 H4); intros N [H5 H6]; assert (H7 : (N < S (max_N del H))%nat).
- unfold max_N in |- *; case (maxN del H); intros; apply INR_lt;
+ unfold max_N; case (maxN del H); intros; apply INR_lt;
apply Rmult_lt_reg_l with (pos del).
apply (cond_pos del).
apply Rplus_lt_reg_r with a; do 2 rewrite (Rmult_comm del);
@@ -778,8 +778,8 @@ Proof.
assumption.
elim H0; assumption.
exists N; split.
- rewrite SubEqui_P5; simpl in |- *; assumption.
- unfold co_interval in |- *; split.
+ rewrite SubEqui_P5; simpl; assumption.
+ unfold co_interval; split.
rewrite SubEqui_P6.
apply H5.
assumption.
@@ -799,13 +799,13 @@ Qed.
Lemma RiemannInt_P7 : forall (f:R -> R) (a:R), Riemann_integrable f a a.
Proof.
- unfold Riemann_integrable in |- *; intro f; intros;
+ unfold Riemann_integrable; intro f; intros;
split with (mkStepFun (StepFun_P4 a a (f a)));
split with (mkStepFun (StepFun_P4 a a 0)); split.
- intros; simpl in |- *; unfold fct_cte in |- *; replace t with a.
- unfold Rminus in |- *; rewrite Rplus_opp_r; rewrite Rabs_R0; right;
+ intros; simpl; unfold fct_cte; replace t with a.
+ unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0; right;
reflexivity.
- generalize H; unfold Rmin, Rmax in |- *; case (Rle_dec a a); intros; elim H0;
+ generalize H; unfold Rmin, Rmax; case (Rle_dec a a); intros; elim H0;
intros; apply Rle_antisym; assumption.
rewrite StepFun_P18; rewrite Rmult_0_l; rewrite Rabs_R0; apply (cond_pos eps).
Qed.
@@ -826,9 +826,9 @@ Lemma RiemannInt_P8 :
(pr2:Riemann_integrable f b a), RiemannInt pr1 = - RiemannInt pr2.
Proof.
intro f; intros; eapply UL_sequence.
- unfold RiemannInt in |- *; case (RiemannInt_exists pr1 RinvN RinvN_cv);
+ unfold RiemannInt; case (RiemannInt_exists pr1 RinvN RinvN_cv);
intros; apply u.
- unfold RiemannInt in |- *; case (RiemannInt_exists pr2 RinvN RinvN_cv);
+ unfold RiemannInt; case (RiemannInt_exists pr2 RinvN RinvN_cv);
intros;
cut
(exists psi1 : nat -> StepFun a b,
@@ -845,9 +845,9 @@ Proof.
Rabs (f t - phi_sequence RinvN pr2 n t) <= psi2 n t) /\
Rabs (RiemannInt_SF (psi2 n)) < RinvN n)).
intros; elim H; clear H; intros psi2 H; elim H0; clear H0; intros psi1 H0;
- assert (H1 := RinvN_cv); unfold Un_cv in |- *; intros;
+ assert (H1 := RinvN_cv); unfold Un_cv; intros;
assert (H3 : 0 < eps / 3).
- unfold Rdiv in |- *; apply Rmult_lt_0_compat;
+ unfold Rdiv; apply Rmult_lt_0_compat;
[ assumption | apply Rinv_0_lt_compat; prove_sup0 ].
unfold Un_cv in H1; elim (H1 _ H3); clear H1; intros N0 H1;
unfold R_dist in H1; simpl in H1;
@@ -855,10 +855,10 @@ Proof.
intros; assert (H5 := H1 _ H4);
replace (pos (RinvN n)) with (Rabs (/ (INR n + 1) - 0));
[ assumption
- | unfold Rminus in |- *; rewrite Ropp_0; rewrite Rplus_0_r; apply Rabs_right;
+ | unfold Rminus; rewrite Ropp_0; rewrite Rplus_0_r; apply Rabs_right;
left; apply (cond_pos (RinvN n)) ].
clear H1; unfold Un_cv in u; elim (u _ H3); clear u; intros N1 H1;
- exists (max N0 N1); intros; unfold R_dist in |- *;
+ exists (max N0 N1); intros; unfold R_dist;
apply Rle_lt_trans with
(Rabs
(RiemannInt_SF (phi_sequence RinvN pr1 n) +
@@ -895,7 +895,7 @@ Proof.
(mkStepFun
(StepFun_P28 1 (psi1 n) (mkStepFun (StepFun_P6 (pre (psi2 n))))))).
apply StepFun_P37; try assumption.
- intros; simpl in |- *; rewrite Rmult_1_l;
+ intros; simpl; rewrite Rmult_1_l;
apply Rle_trans with
(Rabs (phi_sequence RinvN pr1 n x0 - f x0) +
Rabs (f x0 - phi_sequence RinvN pr2 n x0)).
@@ -903,10 +903,10 @@ Proof.
(phi_sequence RinvN pr1 n x0 - f x0 + (f x0 - phi_sequence RinvN pr2 n x0));
[ apply Rabs_triang | ring ].
assert (H7 : Rmin a b = a).
- unfold Rmin in |- *; case (Rle_dec a b); intro;
+ unfold Rmin; case (Rle_dec a b); intro;
[ reflexivity | elim n0; assumption ].
assert (H8 : Rmax a b = b).
- unfold Rmax in |- *; case (Rle_dec a b); intro;
+ unfold Rmax; case (Rle_dec a b); intro;
[ reflexivity | elim n0; assumption ].
apply Rplus_le_compat.
elim (H0 n); intros; rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr; apply H9;
@@ -919,7 +919,7 @@ Proof.
[ apply RRle_abs
| apply Rlt_trans with (pos (RinvN n));
[ assumption
- | apply H4; unfold ge in |- *; apply le_trans with (max N0 N1);
+ | apply H4; unfold ge; apply le_trans with (max N0 N1);
[ apply le_max_l | assumption ] ] ].
elim (H n); intros;
rewrite <-
@@ -929,7 +929,7 @@ Proof.
[ rewrite <- Rabs_Ropp; apply RRle_abs
| apply Rlt_trans with (pos (RinvN n));
[ assumption
- | apply H4; unfold ge in |- *; apply le_trans with (max N0 N1);
+ | apply H4; unfold ge; apply le_trans with (max N0 N1);
[ apply le_max_l | assumption ] ] ].
assert (Hyp : b <= a).
auto with real.
@@ -948,7 +948,7 @@ Proof.
(mkStepFun
(StepFun_P28 1 (mkStepFun (StepFun_P6 (pre (psi1 n)))) (psi2 n)))).
apply StepFun_P37; try assumption.
- intros; simpl in |- *; rewrite Rmult_1_l;
+ intros; simpl; rewrite Rmult_1_l;
apply Rle_trans with
(Rabs (phi_sequence RinvN pr1 n x0 - f x0) +
Rabs (f x0 - phi_sequence RinvN pr2 n x0)).
@@ -956,10 +956,10 @@ Proof.
(phi_sequence RinvN pr1 n x0 - f x0 + (f x0 - phi_sequence RinvN pr2 n x0));
[ apply Rabs_triang | ring ].
assert (H7 : Rmin a b = b).
- unfold Rmin in |- *; case (Rle_dec a b); intro;
+ unfold Rmin; case (Rle_dec a b); intro;
[ elim n0; assumption | reflexivity ].
assert (H8 : Rmax a b = a).
- unfold Rmax in |- *; case (Rle_dec a b); intro;
+ unfold Rmax; case (Rle_dec a b); intro;
[ elim n0; assumption | reflexivity ].
apply Rplus_le_compat.
elim (H0 n); intros; rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr; apply H9;
@@ -976,18 +976,18 @@ Proof.
[ rewrite <- Rabs_Ropp; apply RRle_abs
| apply Rlt_trans with (pos (RinvN n));
[ assumption
- | apply H4; unfold ge in |- *; apply le_trans with (max N0 N1);
+ | apply H4; unfold ge; apply le_trans with (max N0 N1);
[ apply le_max_l | assumption ] ] ].
elim (H n); intros; apply Rle_lt_trans with (Rabs (RiemannInt_SF (psi2 n)));
[ apply RRle_abs
| apply Rlt_trans with (pos (RinvN n));
[ assumption
- | apply H4; unfold ge in |- *; apply le_trans with (max N0 N1);
+ | apply H4; unfold ge; apply le_trans with (max N0 N1);
[ apply le_max_l | assumption ] ] ].
- unfold R_dist in H1; apply H1; unfold ge in |- *;
+ unfold R_dist in H1; apply H1; unfold ge;
apply le_trans with (max N0 N1); [ apply le_max_r | assumption ].
apply Rmult_eq_reg_l with 3;
- [ unfold Rdiv in |- *; rewrite Rmult_plus_distr_l;
+ [ unfold Rdiv; rewrite Rmult_plus_distr_l;
do 2 rewrite (Rmult_comm 3); repeat rewrite Rmult_assoc;
rewrite <- Rinv_l_sym; [ ring | discrR ]
| discrR ].
@@ -1002,7 +1002,7 @@ Lemma RiemannInt_P9 :
forall (f:R -> R) (a:R) (pr:Riemann_integrable f a a), RiemannInt pr = 0.
Proof.
intros; assert (H := RiemannInt_P8 pr pr); apply Rmult_eq_reg_l with 2;
- [ rewrite Rmult_0_r; rewrite double; pattern (RiemannInt pr) at 2 in |- *;
+ [ rewrite Rmult_0_r; rewrite double; pattern (RiemannInt pr) at 2;
rewrite H; apply Rplus_opp_r
| discrR ].
Qed.
@@ -1011,9 +1011,9 @@ Lemma Req_EM_T : forall r1 r2:R, {r1 = r2} + {r1 <> r2}.
Proof.
intros; elim (total_order_T r1 r2); intros;
[ elim a; intro;
- [ right; red in |- *; intro; rewrite H in a0; elim (Rlt_irrefl r2 a0)
+ [ right; red; intro; rewrite H in a0; elim (Rlt_irrefl r2 a0)
| left; assumption ]
- | right; red in |- *; intro; rewrite H in b; elim (Rlt_irrefl r2 b) ].
+ | right; red; intro; rewrite H in b; elim (Rlt_irrefl r2 b) ].
Qed.
(* L1([a,b]) is a vectorial space *)
@@ -1023,16 +1023,16 @@ Lemma RiemannInt_P10 :
Riemann_integrable g a b ->
Riemann_integrable (fun x:R => f x + l * g x) a b.
Proof.
- unfold Riemann_integrable in |- *; intros f g; intros; case (Req_EM_T l 0);
+ unfold Riemann_integrable; intros f g; intros; case (Req_EM_T l 0);
intro.
elim (X eps); intros; split with x; elim p; intros; split with x0; elim p0;
intros; split; try assumption; rewrite e; intros;
rewrite Rmult_0_l; rewrite Rplus_0_r; apply H; assumption.
assert (H : 0 < eps / 2).
- unfold Rdiv in |- *; apply Rmult_lt_0_compat;
+ unfold Rdiv; apply Rmult_lt_0_compat;
[ apply (cond_pos eps) | apply Rinv_0_lt_compat; prove_sup0 ].
assert (H0 : 0 < eps / (2 * Rabs l)).
- unfold Rdiv in |- *; apply Rmult_lt_0_compat;
+ unfold Rdiv; apply Rmult_lt_0_compat;
[ apply (cond_pos eps)
| apply Rinv_0_lt_compat; apply Rmult_lt_0_compat;
[ prove_sup0 | apply Rabs_pos_lt; assumption ] ].
@@ -1040,7 +1040,7 @@ Proof.
split with (mkStepFun (StepFun_P28 l x x0)); elim p0;
elim p; intros; split with (mkStepFun (StepFun_P28 (Rabs l) x1 x2));
elim p1; elim p2; clear p1 p2 p0 p X X0; intros; split.
- intros; simpl in |- *;
+ intros; simpl;
apply Rle_trans with (Rabs (f t - x t) + Rabs (l * (g t - x0 t))).
replace (f t + l * g t - (x t + l * x0 t)) with
(f t - x t + l * (g t - x0 t)); [ apply Rabs_triang | ring ].
@@ -1060,7 +1060,7 @@ Proof.
[ rewrite Rmult_1_l;
replace (/ Rabs l * (eps / 2)) with (eps / (2 * Rabs l));
[ apply H2
- | unfold Rdiv in |- *; rewrite Rinv_mult_distr;
+ | unfold Rdiv; rewrite Rinv_mult_distr;
[ ring | discrR | apply Rabs_no_R0; assumption ] ]
| apply Rabs_no_R0; assumption ].
Qed.
@@ -1080,14 +1080,14 @@ Lemma RiemannInt_P11 :
Un_cv (fun N:nat => RiemannInt_SF (phi1 N)) l ->
Un_cv (fun N:nat => RiemannInt_SF (phi2 N)) l.
Proof.
- unfold Un_cv in |- *; intro f; intros; intros.
+ unfold Un_cv; intro f; intros; intros.
case (Rle_dec a b); intro Hyp.
assert (H4 : 0 < eps / 3).
- unfold Rdiv in |- *; apply Rmult_lt_0_compat;
+ unfold Rdiv; apply Rmult_lt_0_compat;
[ assumption | apply Rinv_0_lt_compat; prove_sup0 ].
elim (H _ H4); clear H; intros N0 H.
elim (H2 _ H4); clear H2; intros N1 H2.
- set (N := max N0 N1); exists N; intros; unfold R_dist in |- *.
+ set (N := max N0 N1); exists N; intros; unfold R_dist.
apply Rle_lt_trans with
(Rabs (RiemannInt_SF (phi2 n) - RiemannInt_SF (phi1 n)) +
Rabs (RiemannInt_SF (phi1 n) - l)).
@@ -1106,24 +1106,24 @@ Proof.
apply StepFun_P34; assumption.
apply Rle_lt_trans with
(RiemannInt_SF (mkStepFun (StepFun_P28 1 (psi1 n) (psi2 n)))).
- apply StepFun_P37; try assumption; intros; simpl in |- *; rewrite Rmult_1_l.
+ apply StepFun_P37; try assumption; intros; simpl; rewrite Rmult_1_l.
apply Rle_trans with (Rabs (phi2 n x - f x) + Rabs (f x - phi1 n x)).
replace (phi2 n x + -1 * phi1 n x) with (phi2 n x - f x + (f x - phi1 n x));
[ apply Rabs_triang | ring ].
rewrite (Rplus_comm (psi1 n x)); apply Rplus_le_compat.
rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr; elim (H1 n); intros; apply H7.
assert (H10 : Rmin a b = a).
- unfold Rmin in |- *; case (Rle_dec a b); intro;
+ unfold Rmin; case (Rle_dec a b); intro;
[ reflexivity | elim n0; assumption ].
assert (H11 : Rmax a b = b).
- unfold Rmax in |- *; case (Rle_dec a b); intro;
+ unfold Rmax; case (Rle_dec a b); intro;
[ reflexivity | elim n0; assumption ].
rewrite H10; rewrite H11; elim H6; intros; split; left; assumption.
elim (H0 n); intros; apply H7; assert (H10 : Rmin a b = a).
- unfold Rmin in |- *; case (Rle_dec a b); intro;
+ unfold Rmin; case (Rle_dec a b); intro;
[ reflexivity | elim n0; assumption ].
assert (H11 : Rmax a b = b).
- unfold Rmax in |- *; case (Rle_dec a b); intro;
+ unfold Rmax; case (Rle_dec a b); intro;
[ reflexivity | elim n0; assumption ].
rewrite H10; rewrite H11; elim H6; intros; split; left; assumption.
rewrite StepFun_P30; rewrite Rmult_1_l; rewrite double; apply Rplus_lt_compat.
@@ -1132,9 +1132,9 @@ Proof.
apply RRle_abs.
assumption.
replace (pos (un n)) with (R_dist (un n) 0).
- apply H; unfold ge in |- *; apply le_trans with N; try assumption.
- unfold N in |- *; apply le_max_l.
- unfold R_dist in |- *; unfold Rminus in |- *; rewrite Ropp_0;
+ apply H; unfold ge; apply le_trans with N; try assumption.
+ unfold N; apply le_max_l.
+ unfold R_dist; unfold Rminus; rewrite Ropp_0;
rewrite Rplus_0_r; apply Rabs_right.
apply Rle_ge; left; apply (cond_pos (un n)).
apply Rlt_trans with (pos (un n)).
@@ -1142,24 +1142,24 @@ Proof.
apply RRle_abs; assumption.
assumption.
replace (pos (un n)) with (R_dist (un n) 0).
- apply H; unfold ge in |- *; apply le_trans with N; try assumption;
- unfold N in |- *; apply le_max_l.
- unfold R_dist in |- *; unfold Rminus in |- *; rewrite Ropp_0;
+ apply H; unfold ge; apply le_trans with N; try assumption;
+ unfold N; apply le_max_l.
+ unfold R_dist; unfold Rminus; rewrite Ropp_0;
rewrite Rplus_0_r; apply Rabs_right; apply Rle_ge;
left; apply (cond_pos (un n)).
- unfold R_dist in H2; apply H2; unfold ge in |- *; apply le_trans with N;
- try assumption; unfold N in |- *; apply le_max_r.
+ unfold R_dist in H2; apply H2; unfold ge; apply le_trans with N;
+ try assumption; unfold N; apply le_max_r.
apply Rmult_eq_reg_l with 3;
- [ unfold Rdiv in |- *; rewrite Rmult_plus_distr_l;
+ [ unfold Rdiv; rewrite Rmult_plus_distr_l;
do 2 rewrite (Rmult_comm 3); repeat rewrite Rmult_assoc;
rewrite <- Rinv_l_sym; [ ring | discrR ]
| discrR ].
assert (H4 : 0 < eps / 3).
- unfold Rdiv in |- *; apply Rmult_lt_0_compat;
+ unfold Rdiv; apply Rmult_lt_0_compat;
[ assumption | apply Rinv_0_lt_compat; prove_sup0 ].
elim (H _ H4); clear H; intros N0 H.
elim (H2 _ H4); clear H2; intros N1 H2.
- set (N := max N0 N1); exists N; intros; unfold R_dist in |- *.
+ set (N := max N0 N1); exists N; intros; unfold R_dist.
apply Rle_lt_trans with
(Rabs (RiemannInt_SF (phi2 n) - RiemannInt_SF (phi1 n)) +
Rabs (RiemannInt_SF (phi1 n) - l)).
@@ -1189,24 +1189,24 @@ Proof.
(mkStepFun
(StepFun_P6 (pre (mkStepFun (StepFun_P28 1 (psi1 n) (psi2 n))))))).
apply StepFun_P37; try assumption.
- intros; simpl in |- *; rewrite Rmult_1_l.
+ intros; simpl; rewrite Rmult_1_l.
apply Rle_trans with (Rabs (phi2 n x - f x) + Rabs (f x - phi1 n x)).
replace (phi2 n x + -1 * phi1 n x) with (phi2 n x - f x + (f x - phi1 n x));
[ apply Rabs_triang | ring ].
rewrite (Rplus_comm (psi1 n x)); apply Rplus_le_compat.
rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr; elim (H1 n); intros; apply H7.
assert (H10 : Rmin a b = b).
- unfold Rmin in |- *; case (Rle_dec a b); intro;
+ unfold Rmin; case (Rle_dec a b); intro;
[ elim Hyp; assumption | reflexivity ].
assert (H11 : Rmax a b = a).
- unfold Rmax in |- *; case (Rle_dec a b); intro;
+ unfold Rmax; case (Rle_dec a b); intro;
[ elim Hyp; assumption | reflexivity ].
rewrite H10; rewrite H11; elim H6; intros; split; left; assumption.
elim (H0 n); intros; apply H7; assert (H10 : Rmin a b = b).
- unfold Rmin in |- *; case (Rle_dec a b); intro;
+ unfold Rmin; case (Rle_dec a b); intro;
[ elim Hyp; assumption | reflexivity ].
assert (H11 : Rmax a b = a).
- unfold Rmax in |- *; case (Rle_dec a b); intro;
+ unfold Rmax; case (Rle_dec a b); intro;
[ elim Hyp; assumption | reflexivity ].
rewrite H10; rewrite H11; elim H6; intros; split; left; assumption.
rewrite <-
@@ -1224,9 +1224,9 @@ Proof.
rewrite <- Rabs_Ropp; apply RRle_abs.
assumption.
replace (pos (un n)) with (R_dist (un n) 0).
- apply H; unfold ge in |- *; apply le_trans with N; try assumption.
- unfold N in |- *; apply le_max_l.
- unfold R_dist in |- *; unfold Rminus in |- *; rewrite Ropp_0;
+ apply H; unfold ge; apply le_trans with N; try assumption.
+ unfold N; apply le_max_l.
+ unfold R_dist; unfold Rminus; rewrite Ropp_0;
rewrite Rplus_0_r; apply Rabs_right.
apply Rle_ge; left; apply (cond_pos (un n)).
apply Rlt_trans with (pos (un n)).
@@ -1234,15 +1234,15 @@ Proof.
rewrite <- Rabs_Ropp; apply RRle_abs; assumption.
assumption.
replace (pos (un n)) with (R_dist (un n) 0).
- apply H; unfold ge in |- *; apply le_trans with N; try assumption;
- unfold N in |- *; apply le_max_l.
- unfold R_dist in |- *; unfold Rminus in |- *; rewrite Ropp_0;
+ apply H; unfold ge; apply le_trans with N; try assumption;
+ unfold N; apply le_max_l.
+ unfold R_dist; unfold Rminus; rewrite Ropp_0;
rewrite Rplus_0_r; apply Rabs_right; apply Rle_ge;
left; apply (cond_pos (un n)).
- unfold R_dist in H2; apply H2; unfold ge in |- *; apply le_trans with N;
- try assumption; unfold N in |- *; apply le_max_r.
+ unfold R_dist in H2; apply H2; unfold ge; apply le_trans with N;
+ try assumption; unfold N; apply le_max_r.
apply Rmult_eq_reg_l with 3;
- [ unfold Rdiv in |- *; rewrite Rmult_plus_distr_l;
+ [ unfold Rdiv; rewrite Rmult_plus_distr_l;
do 2 rewrite (Rmult_comm 3); repeat rewrite Rmult_assoc;
rewrite <- Rinv_l_sym; [ ring | discrR ]
| discrR ].
@@ -1255,8 +1255,8 @@ Lemma RiemannInt_P12 :
a <= b -> RiemannInt pr3 = RiemannInt pr1 + l * RiemannInt pr2.
Proof.
intro f; intros; case (Req_dec l 0); intro.
- pattern l at 2 in |- *; rewrite H0; rewrite Rmult_0_l; rewrite Rplus_0_r;
- unfold RiemannInt in |- *; case (RiemannInt_exists pr3 RinvN RinvN_cv);
+ pattern l at 2; rewrite H0; rewrite Rmult_0_l; rewrite Rplus_0_r;
+ unfold RiemannInt; case (RiemannInt_exists pr3 RinvN RinvN_cv);
case (RiemannInt_exists pr1 RinvN RinvN_cv); intros;
eapply UL_sequence;
[ apply u0
@@ -1278,18 +1278,18 @@ Proof.
[ apply H2; assumption | rewrite H0; ring ] ]
| assumption ] ].
eapply UL_sequence.
- unfold RiemannInt in |- *; case (RiemannInt_exists pr3 RinvN RinvN_cv);
+ unfold RiemannInt; case (RiemannInt_exists pr3 RinvN RinvN_cv);
intros; apply u.
- unfold Un_cv in |- *; intros; unfold RiemannInt in |- *;
+ unfold Un_cv; intros; unfold RiemannInt;
case (RiemannInt_exists pr1 RinvN RinvN_cv);
- case (RiemannInt_exists pr2 RinvN RinvN_cv); unfold Un_cv in |- *;
+ case (RiemannInt_exists pr2 RinvN RinvN_cv); unfold Un_cv;
intros; assert (H2 : 0 < eps / 5).
- unfold Rdiv in |- *; apply Rmult_lt_0_compat;
+ unfold Rdiv; apply Rmult_lt_0_compat;
[ assumption | apply Rinv_0_lt_compat; prove_sup0 ].
elim (u0 _ H2); clear u0; intros N0 H3; assert (H4 := RinvN_cv);
unfold Un_cv in H4; elim (H4 _ H2); clear H4 H2; intros N1 H4;
assert (H5 : 0 < eps / (5 * Rabs l)).
- unfold Rdiv in |- *; apply Rmult_lt_0_compat;
+ unfold Rdiv; apply Rmult_lt_0_compat;
[ assumption
| apply Rinv_0_lt_compat; apply Rmult_lt_0_compat;
[ prove_sup0 | apply Rabs_pos_lt; assumption ] ].
@@ -1298,17 +1298,17 @@ Proof.
unfold R_dist in H3, H4, H5, H6; set (N := max (max N0 N1) (max N2 N3)).
assert (H7 : forall n:nat, (n >= N1)%nat -> RinvN n < eps / 5).
intros; replace (pos (RinvN n)) with (Rabs (RinvN n - 0));
- [ unfold RinvN in |- *; apply H4; assumption
- | unfold Rminus in |- *; rewrite Ropp_0; rewrite Rplus_0_r; apply Rabs_right;
+ [ unfold RinvN; apply H4; assumption
+ | unfold Rminus; rewrite Ropp_0; rewrite Rplus_0_r; apply Rabs_right;
left; apply (cond_pos (RinvN n)) ].
clear H4; assert (H4 := H7); clear H7;
assert (H7 : forall n:nat, (n >= N3)%nat -> RinvN n < eps / (5 * Rabs l)).
intros; replace (pos (RinvN n)) with (Rabs (RinvN n - 0));
- [ unfold RinvN in |- *; apply H5; assumption
- | unfold Rminus in |- *; rewrite Ropp_0; rewrite Rplus_0_r; apply Rabs_right;
+ [ unfold RinvN; apply H5; assumption
+ | unfold Rminus; rewrite Ropp_0; rewrite Rplus_0_r; apply Rabs_right;
left; apply (cond_pos (RinvN n)) ].
clear H5; assert (H5 := H7); clear H7; exists N; intros;
- unfold R_dist in |- *.
+ unfold R_dist.
apply Rle_lt_trans with
(Rabs
(RiemannInt_SF (phi_sequence RinvN pr3 n) -
@@ -1381,10 +1381,10 @@ Proof.
(RiemannInt_SF (phi_sequence RinvN pr1 n) +
l * RiemannInt_SF (phi_sequence RinvN pr2 n)));
[ idtac | ring ]; do 2 rewrite <- StepFun_P30; assert (H10 : Rmin a b = a).
- unfold Rmin in |- *; case (Rle_dec a b); intro;
+ unfold Rmin; case (Rle_dec a b); intro;
[ reflexivity | elim n0; assumption ].
assert (H11 : Rmax a b = b).
- unfold Rmax in |- *; case (Rle_dec a b); intro;
+ unfold Rmax; case (Rle_dec a b); intro;
[ reflexivity | elim n0; assumption ].
rewrite H10 in H7; rewrite H10 in H8; rewrite H10 in H9; rewrite H11 in H7;
rewrite H11 in H8; rewrite H11 in H9;
@@ -1404,7 +1404,7 @@ Proof.
(StepFun_P28 1 (psi3 n)
(mkStepFun (StepFun_P28 (Rabs l) (psi1 n) (psi2 n)))))).
apply StepFun_P37; try assumption.
- intros; simpl in |- *; rewrite Rmult_1_l.
+ intros; simpl; rewrite Rmult_1_l.
apply Rle_trans with
(Rabs (phi_sequence RinvN pr3 n x1 - (f x1 + l * g x1)) +
Rabs
@@ -1444,16 +1444,16 @@ Proof.
apply Rlt_trans with (pos (RinvN n));
[ apply Rle_lt_trans with (Rabs (RiemannInt_SF (psi3 n)));
[ apply RRle_abs | elim (H9 n); intros; assumption ]
- | apply H4; unfold ge in |- *; apply le_trans with N;
+ | apply H4; unfold ge; apply le_trans with N;
[ apply le_trans with (max N0 N1);
- [ apply le_max_r | unfold N in |- *; apply le_max_l ]
+ [ apply le_max_r | unfold N; apply le_max_l ]
| assumption ] ].
apply Rlt_trans with (pos (RinvN n));
[ apply Rle_lt_trans with (Rabs (RiemannInt_SF (psi1 n)));
[ apply RRle_abs | elim (H7 n); intros; assumption ]
- | apply H4; unfold ge in |- *; apply le_trans with N;
+ | apply H4; unfold ge; apply le_trans with N;
[ apply le_trans with (max N0 N1);
- [ apply le_max_r | unfold N in |- *; apply le_max_l ]
+ [ apply le_max_r | unfold N; apply le_max_l ]
| assumption ] ].
apply Rmult_lt_reg_l with (/ Rabs l).
apply Rinv_0_lt_compat; apply Rabs_pos_lt; assumption.
@@ -1462,28 +1462,28 @@ Proof.
apply Rlt_trans with (pos (RinvN n));
[ apply Rle_lt_trans with (Rabs (RiemannInt_SF (psi2 n)));
[ apply RRle_abs | elim (H8 n); intros; assumption ]
- | apply H5; unfold ge in |- *; apply le_trans with N;
+ | apply H5; unfold ge; apply le_trans with N;
[ apply le_trans with (max N2 N3);
- [ apply le_max_r | unfold N in |- *; apply le_max_r ]
+ [ apply le_max_r | unfold N; apply le_max_r ]
| assumption ] ].
- unfold Rdiv in |- *; rewrite Rinv_mult_distr;
+ unfold Rdiv; rewrite Rinv_mult_distr;
[ ring | discrR | apply Rabs_no_R0; assumption ].
apply Rabs_no_R0; assumption.
- apply H3; unfold ge in |- *; apply le_trans with (max N0 N1);
+ apply H3; unfold ge; apply le_trans with (max N0 N1);
[ apply le_max_l
- | apply le_trans with N; [ unfold N in |- *; apply le_max_l | assumption ] ].
+ | apply le_trans with N; [ unfold N; apply le_max_l | assumption ] ].
apply Rmult_lt_reg_l with (/ Rabs l).
apply Rinv_0_lt_compat; apply Rabs_pos_lt; assumption.
rewrite <- Rmult_assoc; rewrite <- Rinv_l_sym.
rewrite Rmult_1_l; replace (/ Rabs l * (eps / 5)) with (eps / (5 * Rabs l)).
- apply H6; unfold ge in |- *; apply le_trans with (max N2 N3);
+ apply H6; unfold ge; apply le_trans with (max N2 N3);
[ apply le_max_l
- | apply le_trans with N; [ unfold N in |- *; apply le_max_r | assumption ] ].
- unfold Rdiv in |- *; rewrite Rinv_mult_distr;
+ | apply le_trans with N; [ unfold N; apply le_max_r | assumption ] ].
+ unfold Rdiv; rewrite Rinv_mult_distr;
[ ring | discrR | apply Rabs_no_R0; assumption ].
apply Rabs_no_R0; assumption.
apply Rmult_eq_reg_l with 5;
- [ unfold Rdiv in |- *; do 2 rewrite Rmult_plus_distr_l;
+ [ unfold Rdiv; do 2 rewrite Rmult_plus_distr_l;
do 3 rewrite (Rmult_comm 5); repeat rewrite Rmult_assoc;
rewrite <- Rinv_l_sym; [ ring | discrR ]
| discrR ].
@@ -1500,11 +1500,11 @@ Proof.
| assert (H : b <= a);
[ auto with real
| replace (RiemannInt pr3) with (- RiemannInt (RiemannInt_P1 pr3));
- [ idtac | symmetry in |- *; apply RiemannInt_P8 ];
+ [ idtac | symmetry ; apply RiemannInt_P8 ];
replace (RiemannInt pr2) with (- RiemannInt (RiemannInt_P1 pr2));
- [ idtac | symmetry in |- *; apply RiemannInt_P8 ];
+ [ idtac | symmetry ; apply RiemannInt_P8 ];
replace (RiemannInt pr1) with (- RiemannInt (RiemannInt_P1 pr1));
- [ idtac | symmetry in |- *; apply RiemannInt_P8 ];
+ [ idtac | symmetry ; apply RiemannInt_P8 ];
rewrite
(RiemannInt_P12 (RiemannInt_P1 pr1) (RiemannInt_P1 pr2)
(RiemannInt_P1 pr3) H); ring ] ].
@@ -1512,11 +1512,11 @@ Qed.
Lemma RiemannInt_P14 : forall a b c:R, Riemann_integrable (fct_cte c) a b.
Proof.
- unfold Riemann_integrable in |- *; intros;
+ unfold Riemann_integrable; intros;
split with (mkStepFun (StepFun_P4 a b c));
split with (mkStepFun (StepFun_P4 a b 0)); split;
- [ intros; simpl in |- *; unfold Rminus in |- *; rewrite Rplus_opp_r;
- rewrite Rabs_R0; unfold fct_cte in |- *; right;
+ [ intros; simpl; unfold Rminus; rewrite Rplus_opp_r;
+ rewrite Rabs_R0; unfold fct_cte; right;
reflexivity
| rewrite StepFun_P18; rewrite Rmult_0_l; rewrite Rabs_R0;
apply (cond_pos eps) ].
@@ -1526,11 +1526,11 @@ Lemma RiemannInt_P15 :
forall (a b c:R) (pr:Riemann_integrable (fct_cte c) a b),
RiemannInt pr = c * (b - a).
Proof.
- intros; unfold RiemannInt in |- *; case (RiemannInt_exists pr RinvN RinvN_cv);
+ intros; unfold RiemannInt; case (RiemannInt_exists pr RinvN RinvN_cv);
intros; eapply UL_sequence.
apply u.
set (phi1 := fun N:nat => phi_sequence RinvN pr N);
- change (Un_cv (fun N:nat => RiemannInt_SF (phi1 N)) (c * (b - a))) in |- *;
+ change (Un_cv (fun N:nat => RiemannInt_SF (phi1 N)) (c * (b - a)));
set (f := fct_cte c);
assert
(H1 :
@@ -1549,13 +1549,13 @@ Proof.
try assumption.
apply RinvN_cv.
intro; split.
- intros; unfold f in |- *; simpl in |- *; unfold Rminus in |- *;
- rewrite Rplus_opp_r; rewrite Rabs_R0; unfold fct_cte in |- *;
+ intros; unfold f; simpl; unfold Rminus;
+ rewrite Rplus_opp_r; rewrite Rabs_R0; unfold fct_cte;
right; reflexivity.
- unfold psi2 in |- *; rewrite StepFun_P18; rewrite Rmult_0_l; rewrite Rabs_R0;
+ unfold psi2; rewrite StepFun_P18; rewrite Rmult_0_l; rewrite Rabs_R0;
apply (cond_pos (RinvN n)).
- unfold Un_cv in |- *; intros; split with 0%nat; intros; unfold R_dist in |- *;
- unfold phi2 in |- *; rewrite StepFun_P18; unfold Rminus in |- *;
+ unfold Un_cv; intros; split with 0%nat; intros; unfold R_dist;
+ unfold phi2; rewrite StepFun_P18; unfold Rminus;
rewrite Rplus_opp_r; rewrite Rabs_R0; apply H.
Qed.
@@ -1563,9 +1563,9 @@ Lemma RiemannInt_P16 :
forall (f:R -> R) (a b:R),
Riemann_integrable f a b -> Riemann_integrable (fun x:R => Rabs (f x)) a b.
Proof.
- unfold Riemann_integrable in |- *; intro f; intros; elim (X eps); clear X;
+ unfold Riemann_integrable; intro f; intros; elim (X eps); clear X;
intros phi [psi [H H0]]; split with (mkStepFun (StepFun_P32 phi));
- split with psi; split; try assumption; intros; simpl in |- *;
+ split with psi; split; try assumption; intros; simpl;
apply Rle_trans with (Rabs (f t - phi t));
[ apply Rabs_triang_inv2 | apply H; assumption ].
Qed.
@@ -1579,9 +1579,9 @@ Proof.
assert (H2 : l2 < l1).
auto with real.
clear n; assert (H3 : 0 < (l1 - l2) / 2).
- unfold Rdiv in |- *; apply Rmult_lt_0_compat;
+ unfold Rdiv; apply Rmult_lt_0_compat;
[ apply Rlt_Rminus; assumption | apply Rinv_0_lt_compat; prove_sup0 ].
- elim (H1 _ H3); elim (H0 _ H3); clear H0 H1; unfold R_dist in |- *; intros;
+ elim (H1 _ H3); elim (H0 _ H3); clear H0 H1; unfold R_dist; intros;
set (N := max x x0); cut (Vn N < Un N).
intro; elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ (H N) H4)).
apply Rlt_trans with ((l1 + l2) / 2).
@@ -1589,9 +1589,9 @@ Proof.
replace (- l2 + (l1 + l2) / 2) with ((l1 - l2) / 2).
rewrite Rplus_comm; apply Rle_lt_trans with (Rabs (Vn N - l2)).
apply RRle_abs.
- apply H1; unfold ge in |- *; unfold N in |- *; apply le_max_r.
+ apply H1; unfold ge; unfold N; apply le_max_r.
apply Rmult_eq_reg_l with 2;
- [ unfold Rdiv in |- *; do 2 rewrite (Rmult_comm 2);
+ [ unfold Rdiv; do 2 rewrite (Rmult_comm 2);
rewrite (Rmult_plus_distr_r (- l2) ((l1 + l2) * / 2) 2);
repeat rewrite Rmult_assoc; rewrite <- Rinv_l_sym;
[ ring | discrR ]
@@ -1600,9 +1600,9 @@ Proof.
replace (l1 + - ((l1 + l2) / 2)) with ((l1 - l2) / 2).
apply Rle_lt_trans with (Rabs (Un N - l1)).
rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr; apply RRle_abs.
- apply H0; unfold ge in |- *; unfold N in |- *; apply le_max_l.
+ apply H0; unfold ge; unfold N; apply le_max_l.
apply Rmult_eq_reg_l with 2;
- [ unfold Rdiv in |- *; do 2 rewrite (Rmult_comm 2);
+ [ unfold Rdiv; do 2 rewrite (Rmult_comm 2);
rewrite (Rmult_plus_distr_r l1 (- ((l1 + l2) * / 2)) 2);
rewrite <- Ropp_mult_distr_l_reverse; repeat rewrite Rmult_assoc;
rewrite <- Rinv_l_sym; [ ring | discrR ]
@@ -1614,7 +1614,7 @@ Lemma RiemannInt_P17 :
(pr2:Riemann_integrable (fun x:R => Rabs (f x)) a b),
a <= b -> Rabs (RiemannInt pr1) <= RiemannInt pr2.
Proof.
- intro f; intros; unfold RiemannInt in |- *;
+ intro f; intros; unfold RiemannInt;
case (RiemannInt_exists pr1 RinvN RinvN_cv);
case (RiemannInt_exists pr2 RinvN RinvN_cv); intros;
set (phi1 := phi_sequence RinvN pr1) in u0;
@@ -1622,7 +1622,7 @@ Proof.
apply Rle_cv_lim with
(fun N:nat => Rabs (RiemannInt_SF (phi1 N)))
(fun N:nat => RiemannInt_SF (phi2 N)).
- intro; unfold phi2 in |- *; apply StepFun_P34; assumption.
+ intro; unfold phi2; apply StepFun_P34; assumption.
apply (continuity_seq Rabs (fun N:nat => RiemannInt_SF (phi1 N)) x0);
try assumption.
apply Rcontinuity_abs.
@@ -1656,7 +1656,7 @@ Proof.
apply (proj2_sig (phi_sequence_prop RinvN pr1 n)).
elim H1; clear H1; intros psi2 H1; split with psi2; intros; elim (H1 n);
clear H1; intros; split; try assumption.
- intros; unfold phi2 in |- *; simpl in |- *;
+ intros; unfold phi2; simpl;
apply Rle_trans with (Rabs (f t - phi1 n t)).
apply Rabs_triang_inv2.
apply H1; assumption.
@@ -1671,13 +1671,13 @@ Lemma RiemannInt_P18 :
a <= b ->
(forall x:R, a < x < b -> f x = g x) -> RiemannInt pr1 = RiemannInt pr2.
Proof.
- intro f; intros; unfold RiemannInt in |- *;
+ intro f; intros; unfold RiemannInt;
case (RiemannInt_exists pr1 RinvN RinvN_cv);
case (RiemannInt_exists pr2 RinvN RinvN_cv); intros;
eapply UL_sequence.
apply u0.
set (phi1 := fun N:nat => phi_sequence RinvN pr1 N);
- change (Un_cv (fun N:nat => RiemannInt_SF (phi1 N)) x) in |- *;
+ change (Un_cv (fun N:nat => RiemannInt_SF (phi1 N)) x);
assert
(H1 :
exists psi1 : nat -> StepFun a b,
@@ -1717,45 +1717,45 @@ Proof.
try assumption.
apply RinvN_cv.
intro; elim (H2 n); intros; split; try assumption.
- intros; unfold phi2_m in |- *; simpl in |- *; unfold phi2_aux in |- *;
+ intros; unfold phi2_m; simpl; unfold phi2_aux;
case (Req_EM_T t a); case (Req_EM_T t b); intros.
- rewrite e0; unfold Rminus in |- *; rewrite Rplus_opp_r; rewrite Rabs_R0;
+ rewrite e0; unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0;
apply Rle_trans with (Rabs (g t - phi2 n t)).
apply Rabs_pos.
- pattern a at 3 in |- *; rewrite <- e0; apply H3; assumption.
- rewrite e; unfold Rminus in |- *; rewrite Rplus_opp_r; rewrite Rabs_R0;
+ pattern a at 3; rewrite <- e0; apply H3; assumption.
+ rewrite e; unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0;
apply Rle_trans with (Rabs (g t - phi2 n t)).
apply Rabs_pos.
- pattern a at 3 in |- *; rewrite <- e; apply H3; assumption.
- rewrite e; unfold Rminus in |- *; rewrite Rplus_opp_r; rewrite Rabs_R0;
+ pattern a at 3; rewrite <- e; apply H3; assumption.
+ rewrite e; unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0;
apply Rle_trans with (Rabs (g t - phi2 n t)).
apply Rabs_pos.
- pattern b at 3 in |- *; rewrite <- e; apply H3; assumption.
+ pattern b at 3; rewrite <- e; apply H3; assumption.
replace (f t) with (g t).
apply H3; assumption.
- symmetry in |- *; apply H0; elim H5; clear H5; intros.
+ symmetry ; apply H0; elim H5; clear H5; intros.
assert (H7 : Rmin a b = a).
- unfold Rmin in |- *; case (Rle_dec a b); intro;
+ unfold Rmin; case (Rle_dec a b); intro;
[ reflexivity | elim n2; assumption ].
assert (H8 : Rmax a b = b).
- unfold Rmax in |- *; case (Rle_dec a b); intro;
+ unfold Rmax; case (Rle_dec a b); intro;
[ reflexivity | elim n2; assumption ].
rewrite H7 in H5; rewrite H8 in H6; split.
- elim H5; intro; [ assumption | elim n1; symmetry in |- *; assumption ].
+ elim H5; intro; [ assumption | elim n1; symmetry ; assumption ].
elim H6; intro; [ assumption | elim n0; assumption ].
cut (forall N:nat, RiemannInt_SF (phi2_m N) = RiemannInt_SF (phi2 N)).
- intro; unfold Un_cv in |- *; intros; elim (u _ H4); intros; exists x1; intros;
+ intro; unfold Un_cv; intros; elim (u _ H4); intros; exists x1; intros;
rewrite (H3 n); apply H5; assumption.
intro; apply Rle_antisym.
apply StepFun_P37; try assumption.
- intros; unfold phi2_m in |- *; simpl in |- *; unfold phi2_aux in |- *;
+ intros; unfold phi2_m; simpl; unfold phi2_aux;
case (Req_EM_T x1 a); case (Req_EM_T x1 b); intros.
elim H3; intros; rewrite e0 in H4; elim (Rlt_irrefl _ H4).
elim H3; intros; rewrite e in H4; elim (Rlt_irrefl _ H4).
elim H3; intros; rewrite e in H5; elim (Rlt_irrefl _ H5).
right; reflexivity.
apply StepFun_P37; try assumption.
- intros; unfold phi2_m in |- *; simpl in |- *; unfold phi2_aux in |- *;
+ intros; unfold phi2_m; simpl; unfold phi2_aux;
case (Req_EM_T x1 a); case (Req_EM_T x1 b); intros.
elim H3; intros; rewrite e0 in H4; elim (Rlt_irrefl _ H4).
elim H3; intros; rewrite e in H4; elim (Rlt_irrefl _ H4).
@@ -1764,10 +1764,10 @@ Proof.
intro; assert (H2 := pre (phi2 N)); unfold IsStepFun in H2;
unfold is_subdivision in H2; elim H2; clear H2; intros l [lf H2];
split with l; split with lf; unfold adapted_couple in H2;
- decompose [and] H2; clear H2; unfold adapted_couple in |- *;
+ decompose [and] H2; clear H2; unfold adapted_couple;
repeat split; try assumption.
intros; assert (H9 := H8 i H2); unfold constant_D_eq, open_interval in H9;
- unfold constant_D_eq, open_interval in |- *; intros;
+ unfold constant_D_eq, open_interval; intros;
rewrite <- (H9 x1 H7); assert (H10 : a <= pos_Rl l i).
replace a with (Rmin a b).
rewrite <- H5; elim (RList_P6 l); intros; apply H10.
@@ -1775,7 +1775,7 @@ Proof.
apply le_O_n.
apply lt_trans with (pred (Rlength l)); [ assumption | apply lt_pred_n_n ].
apply neq_O_lt; intro; rewrite <- H12 in H6; discriminate.
- unfold Rmin in |- *; case (Rle_dec a b); intro;
+ unfold Rmin; case (Rle_dec a b); intro;
[ reflexivity | elim n; assumption ].
assert (H11 : pos_Rl l (S i) <= b).
replace b with (Rmax a b).
@@ -1783,9 +1783,9 @@ Proof.
assumption.
apply lt_le_S; assumption.
apply lt_pred_n_n; apply neq_O_lt; intro; rewrite <- H13 in H6; discriminate.
- unfold Rmax in |- *; case (Rle_dec a b); intro;
+ unfold Rmax; case (Rle_dec a b); intro;
[ reflexivity | elim n; assumption ].
- elim H7; clear H7; intros; unfold phi2_aux in |- *; case (Req_EM_T x1 a);
+ elim H7; clear H7; intros; unfold phi2_aux; case (Req_EM_T x1 a);
case (Req_EM_T x1 b); intros.
rewrite e in H12; elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H11 H12)).
rewrite e in H7; elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H10 H7)).
@@ -1852,12 +1852,12 @@ Proof.
intros; replace (primitive h pr a) with 0.
replace (RiemannInt pr0) with (primitive h pr b).
ring.
- unfold primitive in |- *; case (Rle_dec a b); case (Rle_dec b b); intros;
+ unfold primitive; case (Rle_dec a b); case (Rle_dec b b); intros;
[ apply RiemannInt_P5
| elim n; right; reflexivity
| elim n; assumption
| elim n0; assumption ].
- symmetry in |- *; unfold primitive in |- *; case (Rle_dec a a);
+ symmetry ; unfold primitive; case (Rle_dec a a);
case (Rle_dec a b); intros;
[ apply RiemannInt_P9
| elim n; assumption
@@ -1872,9 +1872,9 @@ Lemma RiemannInt_P21 :
Riemann_integrable f a b ->
Riemann_integrable f b c -> Riemann_integrable f a c.
Proof.
- unfold Riemann_integrable in |- *; intros f a b c Hyp1 Hyp2 X X0 eps.
+ unfold Riemann_integrable; intros f a b c Hyp1 Hyp2 X X0 eps.
assert (H : 0 < eps / 2).
- unfold Rdiv in |- *; apply Rmult_lt_0_compat;
+ unfold Rdiv; apply Rmult_lt_0_compat;
[ apply (cond_pos eps) | apply Rinv_0_lt_compat; prove_sup0 ].
elim (X (mkposreal _ H)); clear X; intros phi1 [psi1 H1];
elim (X0 (mkposreal _ H)); clear X0; intros phi2 [psi2 H2].
@@ -1904,35 +1904,35 @@ Proof.
intro; cut (IsStepFun psi3 a b).
intro; cut (IsStepFun psi3 b c).
intro; cut (IsStepFun psi3 a c).
- intro; split with (mkStepFun X); split with (mkStepFun X2); simpl in |- *;
+ intro; split with (mkStepFun X); split with (mkStepFun X2); simpl;
split.
- intros; unfold phi3, psi3 in |- *; case (Rle_dec t b); case (Rle_dec a t);
+ intros; unfold phi3, psi3; case (Rle_dec t b); case (Rle_dec a t);
intros.
elim H1; intros; apply H3.
replace (Rmin a b) with a.
replace (Rmax a b) with b.
split; assumption.
- unfold Rmax in |- *; case (Rle_dec a b); intro;
+ unfold Rmax; case (Rle_dec a b); intro;
[ reflexivity | elim n; assumption ].
- unfold Rmin in |- *; case (Rle_dec a b); intro;
+ unfold Rmin; case (Rle_dec a b); intro;
[ reflexivity | elim n; assumption ].
elim n; replace a with (Rmin a c).
elim H0; intros; assumption.
- unfold Rmin in |- *; case (Rle_dec a c); intro;
+ unfold Rmin; case (Rle_dec a c); intro;
[ reflexivity | elim n0; apply Rle_trans with b; assumption ].
elim H2; intros; apply H3.
replace (Rmax b c) with (Rmax a c).
elim H0; intros; split; try assumption.
replace (Rmin b c) with b.
auto with real.
- unfold Rmin in |- *; case (Rle_dec b c); intro;
+ unfold Rmin; case (Rle_dec b c); intro;
[ reflexivity | elim n0; assumption ].
- unfold Rmax in |- *; case (Rle_dec a c); case (Rle_dec b c); intros;
+ unfold Rmax; case (Rle_dec a c); case (Rle_dec b c); intros;
try (elim n0; assumption || elim n0; apply Rle_trans with b; assumption).
reflexivity.
elim n; replace a with (Rmin a c).
elim H0; intros; assumption.
- unfold Rmin in |- *; case (Rle_dec a c); intro;
+ unfold Rmin; case (Rle_dec a c); intro;
[ reflexivity | elim n1; apply Rle_trans with b; assumption ].
rewrite <- (StepFun_P43 X0 X1 X2).
apply Rle_lt_trans with
@@ -1946,14 +1946,14 @@ Proof.
elim H2; intros; assumption.
apply Rle_antisym.
apply StepFun_P37; try assumption.
- simpl in |- *; intros; unfold psi3 in |- *; elim H0; clear H0; intros;
+ simpl; intros; unfold psi3; elim H0; clear H0; intros;
case (Rle_dec a x); case (Rle_dec x b); intros;
[ elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ r H0))
| right; reflexivity
| elim n; apply Rle_trans with b; [ assumption | left; assumption ]
| elim n0; apply Rle_trans with b; [ assumption | left; assumption ] ].
apply StepFun_P37; try assumption.
- simpl in |- *; intros; unfold psi3 in |- *; elim H0; clear H0; intros;
+ simpl; intros; unfold psi3; elim H0; clear H0; intros;
case (Rle_dec a x); case (Rle_dec x b); intros;
[ elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ r H0))
| right; reflexivity
@@ -1961,14 +1961,14 @@ Proof.
| elim n0; apply Rle_trans with b; [ assumption | left; assumption ] ].
apply Rle_antisym.
apply StepFun_P37; try assumption.
- simpl in |- *; intros; unfold psi3 in |- *; elim H0; clear H0; intros;
+ simpl; intros; unfold psi3; elim H0; clear H0; intros;
case (Rle_dec a x); case (Rle_dec x b); intros;
[ right; reflexivity
| elim n; left; assumption
| elim n; left; assumption
| elim n0; left; assumption ].
apply StepFun_P37; try assumption.
- simpl in |- *; intros; unfold psi3 in |- *; elim H0; clear H0; intros;
+ simpl; intros; unfold psi3; elim H0; clear H0; intros;
case (Rle_dec a x); case (Rle_dec x b); intros;
[ right; reflexivity
| elim n; left; assumption
@@ -1978,19 +1978,19 @@ Proof.
assert (H3 := pre psi2); unfold IsStepFun in H3; unfold is_subdivision in H3;
elim H3; clear H3; intros l1 [lf1 H3]; split with l1;
split with lf1; unfold adapted_couple in H3; decompose [and] H3;
- clear H3; unfold adapted_couple in |- *; repeat split;
+ clear H3; unfold adapted_couple; repeat split;
try assumption.
- intros; assert (H9 := H8 i H3); unfold constant_D_eq, open_interval in |- *;
+ intros; assert (H9 := H8 i H3); unfold constant_D_eq, open_interval;
unfold constant_D_eq, open_interval in H9; intros;
- rewrite <- (H9 x H7); unfold psi3 in |- *; assert (H10 : b < x).
+ rewrite <- (H9 x H7); unfold psi3; assert (H10 : b < x).
apply Rle_lt_trans with (pos_Rl l1 i).
replace b with (Rmin b c).
rewrite <- H5; elim (RList_P6 l1); intros; apply H10; try assumption.
apply le_O_n.
apply lt_trans with (pred (Rlength l1)); try assumption; apply lt_pred_n_n;
- apply neq_O_lt; red in |- *; intro; rewrite <- H12 in H6;
+ apply neq_O_lt; red; intro; rewrite <- H12 in H6;
discriminate.
- unfold Rmin in |- *; case (Rle_dec b c); intro;
+ unfold Rmin; case (Rle_dec b c); intro;
[ reflexivity | elim n; assumption ].
elim H7; intros; assumption.
case (Rle_dec a x); case (Rle_dec x b); intros;
@@ -2001,18 +2001,18 @@ Proof.
assert (H3 := pre psi1); unfold IsStepFun in H3; unfold is_subdivision in H3;
elim H3; clear H3; intros l1 [lf1 H3]; split with l1;
split with lf1; unfold adapted_couple in H3; decompose [and] H3;
- clear H3; unfold adapted_couple in |- *; repeat split;
+ clear H3; unfold adapted_couple; repeat split;
try assumption.
- intros; assert (H9 := H8 i H3); unfold constant_D_eq, open_interval in |- *;
+ intros; assert (H9 := H8 i H3); unfold constant_D_eq, open_interval;
unfold constant_D_eq, open_interval in H9; intros;
- rewrite <- (H9 x H7); unfold psi3 in |- *; assert (H10 : x <= b).
+ rewrite <- (H9 x H7); unfold psi3; assert (H10 : x <= b).
apply Rle_trans with (pos_Rl l1 (S i)).
elim H7; intros; left; assumption.
replace b with (Rmax a b).
rewrite <- H4; elim (RList_P6 l1); intros; apply H10; try assumption.
- apply lt_pred_n_n; apply neq_O_lt; red in |- *; intro; rewrite <- H12 in H6;
+ apply lt_pred_n_n; apply neq_O_lt; red; intro; rewrite <- H12 in H6;
discriminate.
- unfold Rmax in |- *; case (Rle_dec a b); intro;
+ unfold Rmax; case (Rle_dec a b); intro;
[ reflexivity | elim n; assumption ].
assert (H11 : a <= x).
apply Rle_trans with (pos_Rl l1 i).
@@ -2020,9 +2020,9 @@ Proof.
rewrite <- H5; elim (RList_P6 l1); intros; apply H11; try assumption.
apply le_O_n.
apply lt_trans with (pred (Rlength l1)); try assumption; apply lt_pred_n_n;
- apply neq_O_lt; red in |- *; intro; rewrite <- H13 in H6;
+ apply neq_O_lt; red; intro; rewrite <- H13 in H6;
discriminate.
- unfold Rmin in |- *; case (Rle_dec a b); intro;
+ unfold Rmin; case (Rle_dec a b); intro;
[ reflexivity | elim n; assumption ].
left; elim H7; intros; assumption.
case (Rle_dec a x); case (Rle_dec x b); intros; reflexivity || elim n;
@@ -2031,18 +2031,18 @@ Proof.
assert (H3 := pre phi1); unfold IsStepFun in H3; unfold is_subdivision in H3;
elim H3; clear H3; intros l1 [lf1 H3]; split with l1;
split with lf1; unfold adapted_couple in H3; decompose [and] H3;
- clear H3; unfold adapted_couple in |- *; repeat split;
+ clear H3; unfold adapted_couple; repeat split;
try assumption.
- intros; assert (H9 := H8 i H3); unfold constant_D_eq, open_interval in |- *;
+ intros; assert (H9 := H8 i H3); unfold constant_D_eq, open_interval;
unfold constant_D_eq, open_interval in H9; intros;
- rewrite <- (H9 x H7); unfold psi3 in |- *; assert (H10 : x <= b).
+ rewrite <- (H9 x H7); unfold psi3; assert (H10 : x <= b).
apply Rle_trans with (pos_Rl l1 (S i)).
elim H7; intros; left; assumption.
replace b with (Rmax a b).
rewrite <- H4; elim (RList_P6 l1); intros; apply H10; try assumption.
- apply lt_pred_n_n; apply neq_O_lt; red in |- *; intro; rewrite <- H12 in H6;
+ apply lt_pred_n_n; apply neq_O_lt; red; intro; rewrite <- H12 in H6;
discriminate.
- unfold Rmax in |- *; case (Rle_dec a b); intro;
+ unfold Rmax; case (Rle_dec a b); intro;
[ reflexivity | elim n; assumption ].
assert (H11 : a <= x).
apply Rle_trans with (pos_Rl l1 i).
@@ -2050,32 +2050,32 @@ Proof.
rewrite <- H5; elim (RList_P6 l1); intros; apply H11; try assumption.
apply le_O_n.
apply lt_trans with (pred (Rlength l1)); try assumption; apply lt_pred_n_n;
- apply neq_O_lt; red in |- *; intro; rewrite <- H13 in H6;
+ apply neq_O_lt; red; intro; rewrite <- H13 in H6;
discriminate.
- unfold Rmin in |- *; case (Rle_dec a b); intro;
+ unfold Rmin; case (Rle_dec a b); intro;
[ reflexivity | elim n; assumption ].
left; elim H7; intros; assumption.
- unfold phi3 in |- *; case (Rle_dec a x); case (Rle_dec x b); intros;
+ unfold phi3; case (Rle_dec a x); case (Rle_dec x b); intros;
reflexivity || elim n; assumption.
assert (H3 := pre phi2); unfold IsStepFun in H3; unfold is_subdivision in H3;
elim H3; clear H3; intros l1 [lf1 H3]; split with l1;
split with lf1; unfold adapted_couple in H3; decompose [and] H3;
- clear H3; unfold adapted_couple in |- *; repeat split;
+ clear H3; unfold adapted_couple; repeat split;
try assumption.
- intros; assert (H9 := H8 i H3); unfold constant_D_eq, open_interval in |- *;
+ intros; assert (H9 := H8 i H3); unfold constant_D_eq, open_interval;
unfold constant_D_eq, open_interval in H9; intros;
- rewrite <- (H9 x H7); unfold psi3 in |- *; assert (H10 : b < x).
+ rewrite <- (H9 x H7); unfold psi3; assert (H10 : b < x).
apply Rle_lt_trans with (pos_Rl l1 i).
replace b with (Rmin b c).
rewrite <- H5; elim (RList_P6 l1); intros; apply H10; try assumption.
apply le_O_n.
apply lt_trans with (pred (Rlength l1)); try assumption; apply lt_pred_n_n;
- apply neq_O_lt; red in |- *; intro; rewrite <- H12 in H6;
+ apply neq_O_lt; red; intro; rewrite <- H12 in H6;
discriminate.
- unfold Rmin in |- *; case (Rle_dec b c); intro;
+ unfold Rmin; case (Rle_dec b c); intro;
[ reflexivity | elim n; assumption ].
elim H7; intros; assumption.
- unfold phi3 in |- *; case (Rle_dec a x); case (Rle_dec x b); intros;
+ unfold phi3; case (Rle_dec a x); case (Rle_dec x b); intros;
[ elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ r H10))
| reflexivity
| elim n; apply Rle_trans with b; [ assumption | left; assumption ]
@@ -2086,7 +2086,7 @@ Lemma RiemannInt_P22 :
forall (f:R -> R) (a b c:R),
Riemann_integrable f a b -> a <= c <= b -> Riemann_integrable f a c.
Proof.
- unfold Riemann_integrable in |- *; intros; elim (X eps); clear X;
+ unfold Riemann_integrable; intros; elim (X eps); clear X;
intros phi [psi H0]; elim H; elim H0; clear H H0;
intros; assert (H3 : IsStepFun phi a c).
apply StepFun_P44 with b.
@@ -2097,18 +2097,18 @@ Proof.
apply (pre psi).
split; assumption.
split with (mkStepFun H3); split with (mkStepFun H4); split.
- simpl in |- *; intros; apply H.
+ simpl; intros; apply H.
replace (Rmin a b) with (Rmin a c).
elim H5; intros; split; try assumption.
apply Rle_trans with (Rmax a c); try assumption.
replace (Rmax a b) with b.
replace (Rmax a c) with c.
assumption.
- unfold Rmax in |- *; case (Rle_dec a c); intro;
+ unfold Rmax; case (Rle_dec a c); intro;
[ reflexivity | elim n; assumption ].
- unfold Rmax in |- *; case (Rle_dec a b); intro;
+ unfold Rmax; case (Rle_dec a b); intro;
[ reflexivity | elim n; apply Rle_trans with c; assumption ].
- unfold Rmin in |- *; case (Rle_dec a c); case (Rle_dec a b); intros;
+ unfold Rmin; case (Rle_dec a c); case (Rle_dec a b); intros;
[ reflexivity
| elim n; apply Rle_trans with c; assumption
| elim n; assumption
@@ -2121,12 +2121,12 @@ Proof.
replace (RiemannInt_SF (mkStepFun H4)) with
(RiemannInt_SF psi - RiemannInt_SF (mkStepFun H5)).
apply Rle_lt_trans with (RiemannInt_SF psi).
- unfold Rminus in |- *; pattern (RiemannInt_SF psi) at 2 in |- *;
+ unfold Rminus; pattern (RiemannInt_SF psi) at 2;
rewrite <- Rplus_0_r; apply Rplus_le_compat_l; rewrite <- Ropp_0;
apply Ropp_ge_le_contravar; apply Rle_ge;
replace 0 with (RiemannInt_SF (mkStepFun (StepFun_P4 c b 0))).
apply StepFun_P37; try assumption.
- intros; simpl in |- *; unfold fct_cte in |- *;
+ intros; simpl; unfold fct_cte;
apply Rle_trans with (Rabs (f x - phi x)).
apply Rabs_pos.
apply H.
@@ -2135,9 +2135,9 @@ Proof.
elim H6; intros; split; left.
apply Rle_lt_trans with c; assumption.
assumption.
- unfold Rmax in |- *; case (Rle_dec a b); intro;
+ unfold Rmax; case (Rle_dec a b); intro;
[ reflexivity | elim n; apply Rle_trans with c; assumption ].
- unfold Rmin in |- *; case (Rle_dec a b); intro;
+ unfold Rmin; case (Rle_dec a b); intro;
[ reflexivity | elim n; apply Rle_trans with c; assumption ].
rewrite StepFun_P18; ring.
apply Rle_lt_trans with (Rabs (RiemannInt_SF psi)).
@@ -2147,16 +2147,16 @@ Proof.
apply (pre psi).
replace (RiemannInt_SF psi) with (RiemannInt_SF (mkStepFun H6)).
rewrite <- (StepFun_P43 H4 H5 H6); ring.
- unfold RiemannInt_SF in |- *; case (Rle_dec a b); intro.
+ unfold RiemannInt_SF; case (Rle_dec a b); intro.
eapply StepFun_P17.
apply StepFun_P1.
- simpl in |- *; apply StepFun_P1.
+ simpl; apply StepFun_P1.
apply Ropp_eq_compat; eapply StepFun_P17.
apply StepFun_P1.
- simpl in |- *; apply StepFun_P1.
+ simpl; apply StepFun_P1.
apply Rle_ge; replace 0 with (RiemannInt_SF (mkStepFun (StepFun_P4 a c 0))).
apply StepFun_P37; try assumption.
- intros; simpl in |- *; unfold fct_cte in |- *;
+ intros; simpl; unfold fct_cte;
apply Rle_trans with (Rabs (f x - phi x)).
apply Rabs_pos.
apply H.
@@ -2165,9 +2165,9 @@ Proof.
elim H5; intros; split; left.
assumption.
apply Rlt_le_trans with c; assumption.
- unfold Rmax in |- *; case (Rle_dec a b); intro;
+ unfold Rmax; case (Rle_dec a b); intro;
[ reflexivity | elim n; apply Rle_trans with c; assumption ].
- unfold Rmin in |- *; case (Rle_dec a b); intro;
+ unfold Rmin; case (Rle_dec a b); intro;
[ reflexivity | elim n; apply Rle_trans with c; assumption ].
rewrite StepFun_P18; ring.
Qed.
@@ -2176,7 +2176,7 @@ Lemma RiemannInt_P23 :
forall (f:R -> R) (a b c:R),
Riemann_integrable f a b -> a <= c <= b -> Riemann_integrable f c b.
Proof.
- unfold Riemann_integrable in |- *; intros; elim (X eps); clear X;
+ unfold Riemann_integrable; intros; elim (X eps); clear X;
intros phi [psi H0]; elim H; elim H0; clear H H0;
intros; assert (H3 : IsStepFun phi c b).
apply StepFun_P45 with a.
@@ -2187,18 +2187,18 @@ Proof.
apply (pre psi).
split; assumption.
split with (mkStepFun H3); split with (mkStepFun H4); split.
- simpl in |- *; intros; apply H.
+ simpl; intros; apply H.
replace (Rmax a b) with (Rmax c b).
elim H5; intros; split; try assumption.
apply Rle_trans with (Rmin c b); try assumption.
replace (Rmin a b) with a.
replace (Rmin c b) with c.
assumption.
- unfold Rmin in |- *; case (Rle_dec c b); intro;
+ unfold Rmin; case (Rle_dec c b); intro;
[ reflexivity | elim n; assumption ].
- unfold Rmin in |- *; case (Rle_dec a b); intro;
+ unfold Rmin; case (Rle_dec a b); intro;
[ reflexivity | elim n; apply Rle_trans with c; assumption ].
- unfold Rmax in |- *; case (Rle_dec c b); case (Rle_dec a b); intros;
+ unfold Rmax; case (Rle_dec c b); case (Rle_dec a b); intros;
[ reflexivity
| elim n; apply Rle_trans with c; assumption
| elim n; assumption
@@ -2211,12 +2211,12 @@ Proof.
replace (RiemannInt_SF (mkStepFun H4)) with
(RiemannInt_SF psi - RiemannInt_SF (mkStepFun H5)).
apply Rle_lt_trans with (RiemannInt_SF psi).
- unfold Rminus in |- *; pattern (RiemannInt_SF psi) at 2 in |- *;
+ unfold Rminus; pattern (RiemannInt_SF psi) at 2;
rewrite <- Rplus_0_r; apply Rplus_le_compat_l; rewrite <- Ropp_0;
apply Ropp_ge_le_contravar; apply Rle_ge;
replace 0 with (RiemannInt_SF (mkStepFun (StepFun_P4 a c 0))).
apply StepFun_P37; try assumption.
- intros; simpl in |- *; unfold fct_cte in |- *;
+ intros; simpl; unfold fct_cte;
apply Rle_trans with (Rabs (f x - phi x)).
apply Rabs_pos.
apply H.
@@ -2225,9 +2225,9 @@ Proof.
elim H6; intros; split; left.
assumption.
apply Rlt_le_trans with c; assumption.
- unfold Rmax in |- *; case (Rle_dec a b); intro;
+ unfold Rmax; case (Rle_dec a b); intro;
[ reflexivity | elim n; apply Rle_trans with c; assumption ].
- unfold Rmin in |- *; case (Rle_dec a b); intro;
+ unfold Rmin; case (Rle_dec a b); intro;
[ reflexivity | elim n; apply Rle_trans with c; assumption ].
rewrite StepFun_P18; ring.
apply Rle_lt_trans with (Rabs (RiemannInt_SF psi)).
@@ -2237,16 +2237,16 @@ Proof.
apply (pre psi).
replace (RiemannInt_SF psi) with (RiemannInt_SF (mkStepFun H6)).
rewrite <- (StepFun_P43 H5 H4 H6); ring.
- unfold RiemannInt_SF in |- *; case (Rle_dec a b); intro.
+ unfold RiemannInt_SF; case (Rle_dec a b); intro.
eapply StepFun_P17.
apply StepFun_P1.
- simpl in |- *; apply StepFun_P1.
+ simpl; apply StepFun_P1.
apply Ropp_eq_compat; eapply StepFun_P17.
apply StepFun_P1.
- simpl in |- *; apply StepFun_P1.
+ simpl; apply StepFun_P1.
apply Rle_ge; replace 0 with (RiemannInt_SF (mkStepFun (StepFun_P4 c b 0))).
apply StepFun_P37; try assumption.
- intros; simpl in |- *; unfold fct_cte in |- *;
+ intros; simpl; unfold fct_cte;
apply Rle_trans with (Rabs (f x - phi x)).
apply Rabs_pos.
apply H.
@@ -2255,9 +2255,9 @@ Proof.
elim H5; intros; split; left.
apply Rle_lt_trans with c; assumption.
assumption.
- unfold Rmax in |- *; case (Rle_dec a b); intro;
+ unfold Rmax; case (Rle_dec a b); intro;
[ reflexivity | elim n; apply Rle_trans with c; assumption ].
- unfold Rmin in |- *; case (Rle_dec a b); intro;
+ unfold Rmin; case (Rle_dec a b); intro;
[ reflexivity | elim n; apply Rle_trans with c; assumption ].
rewrite StepFun_P18; ring.
Qed.
@@ -2290,14 +2290,14 @@ Lemma RiemannInt_P25 :
(pr2:Riemann_integrable f b c) (pr3:Riemann_integrable f a c),
a <= b -> b <= c -> RiemannInt pr1 + RiemannInt pr2 = RiemannInt pr3.
Proof.
- intros f a b c pr1 pr2 pr3 Hyp1 Hyp2; unfold RiemannInt in |- *;
+ intros f a b c pr1 pr2 pr3 Hyp1 Hyp2; unfold RiemannInt;
case (RiemannInt_exists pr1 RinvN RinvN_cv);
case (RiemannInt_exists pr2 RinvN RinvN_cv);
case (RiemannInt_exists pr3 RinvN RinvN_cv); intros;
- symmetry in |- *; eapply UL_sequence.
+ symmetry ; eapply UL_sequence.
apply u.
- unfold Un_cv in |- *; intros; assert (H0 : 0 < eps / 3).
- unfold Rdiv in |- *; apply Rmult_lt_0_compat;
+ unfold Un_cv; intros; assert (H0 : 0 < eps / 3).
+ unfold Rdiv; apply Rmult_lt_0_compat;
[ assumption | apply Rinv_0_lt_compat; prove_sup0 ].
elim (u1 _ H0); clear u1; intros N1 H1; elim (u0 _ H0); clear u0;
intros N2 H2;
@@ -2309,7 +2309,7 @@ Proof.
RiemannInt_SF (phi_sequence RinvN pr2 n))) 0).
intro; elim (H3 _ H0); clear H3; intros N3 H3;
set (N0 := max (max N1 N2) N3); exists N0; intros;
- unfold R_dist in |- *;
+ unfold R_dist;
apply Rle_lt_trans with
(Rabs
(RiemannInt_SF (phi_sequence RinvN pr3 n) -
@@ -2330,8 +2330,8 @@ Proof.
unfold R_dist in H3; cut (n >= N3)%nat.
intro; assert (H6 := H3 _ H5); unfold Rminus in H6; rewrite Ropp_0 in H6;
rewrite Rplus_0_r in H6; apply H6.
- unfold ge in |- *; apply le_trans with N0;
- [ unfold N0 in |- *; apply le_max_r | assumption ].
+ unfold ge; apply le_trans with N0;
+ [ unfold N0; apply le_max_r | assumption ].
apply Rle_lt_trans with
(Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n) - x1) +
Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x0)).
@@ -2343,17 +2343,17 @@ Proof.
[ apply Rabs_triang | ring ].
apply Rplus_lt_compat.
unfold R_dist in H1; apply H1.
- unfold ge in |- *; apply le_trans with N0;
+ unfold ge; apply le_trans with N0;
[ apply le_trans with (max N1 N2);
- [ apply le_max_l | unfold N0 in |- *; apply le_max_l ]
+ [ apply le_max_l | unfold N0; apply le_max_l ]
| assumption ].
unfold R_dist in H2; apply H2.
- unfold ge in |- *; apply le_trans with N0;
+ unfold ge; apply le_trans with N0;
[ apply le_trans with (max N1 N2);
- [ apply le_max_r | unfold N0 in |- *; apply le_max_l ]
+ [ apply le_max_r | unfold N0; apply le_max_l ]
| assumption ].
apply Rmult_eq_reg_l with 3;
- [ unfold Rdiv in |- *; repeat rewrite Rmult_plus_distr_l;
+ [ unfold Rdiv; repeat rewrite Rmult_plus_distr_l;
do 2 rewrite (Rmult_comm 3); repeat rewrite Rmult_assoc;
rewrite <- Rinv_l_sym; [ ring | discrR ]
| discrR ].
@@ -2390,8 +2390,8 @@ Proof.
apply (proj2_sig (phi_sequence_prop RinvN pr3 n)).
elim H1; clear H1; intros psi1 H1; elim H2; clear H2; intros psi2 H2; elim H3;
clear H3; intros psi3 H3; assert (H := RinvN_cv);
- unfold Un_cv in |- *; intros; assert (H4 : 0 < eps / 3).
- unfold Rdiv in |- *; apply Rmult_lt_0_compat;
+ unfold Un_cv; intros; assert (H4 : 0 < eps / 3).
+ unfold Rdiv; apply Rmult_lt_0_compat;
[ assumption | apply Rinv_0_lt_compat; prove_sup0 ].
elim (H _ H4); clear H; intros N0 H;
assert (H5 : forall n:nat, (n >= N0)%nat -> RinvN n < eps / 3).
@@ -2399,11 +2399,11 @@ Proof.
replace (pos (RinvN n)) with
(R_dist (mkposreal (/ (INR n + 1)) (RinvN_pos n)) 0).
apply H; assumption.
- unfold R_dist in |- *; unfold Rminus in |- *; rewrite Ropp_0;
+ unfold R_dist; unfold Rminus; rewrite Ropp_0;
rewrite Rplus_0_r; apply Rabs_right; apply Rle_ge;
left; apply (cond_pos (RinvN n)).
exists N0; intros; elim (H1 n); elim (H2 n); elim (H3 n); clear H1 H2 H3;
- intros; unfold R_dist in |- *; unfold Rminus in |- *;
+ intros; unfold R_dist; unfold Rminus;
rewrite Ropp_0; rewrite Rplus_0_r;
set (phi1 := phi_sequence RinvN pr1 n) in H8 |- *;
set (phi2 := phi_sequence RinvN pr2 n) in H3 |- *;
@@ -2469,7 +2469,7 @@ Proof.
(StepFun_P32 (mkStepFun (StepFun_P28 (-1) (mkStepFun H10) phi1)))) +
RiemannInt_SF (mkStepFun (StepFun_P28 1 (mkStepFun H13) (psi2 n)))).
apply Rplus_le_compat_l; apply StepFun_P37; try assumption.
- intros; simpl in |- *; rewrite Rmult_1_l;
+ intros; simpl; rewrite Rmult_1_l;
apply Rle_trans with (Rabs (f x - phi3 x) + Rabs (f x - phi2 x)).
rewrite <- (Rabs_Ropp (f x - phi3 x)); rewrite Ropp_minus_distr;
replace (phi3 x + -1 * phi2 x) with (phi3 x - f x + (f x - phi2 x));
@@ -2480,28 +2480,28 @@ Proof.
replace (Rmin a c) with a.
apply Rle_trans with b; try assumption.
left; assumption.
- unfold Rmin in |- *; case (Rle_dec a c); intro;
+ unfold Rmin; case (Rle_dec a c); intro;
[ reflexivity | elim n0; apply Rle_trans with b; assumption ].
replace (Rmax a c) with c.
left; assumption.
- unfold Rmax in |- *; case (Rle_dec a c); intro;
+ unfold Rmax; case (Rle_dec a c); intro;
[ reflexivity | elim n0; apply Rle_trans with b; assumption ].
apply H3.
elim H14; intros; split.
replace (Rmin b c) with b.
left; assumption.
- unfold Rmin in |- *; case (Rle_dec b c); intro;
+ unfold Rmin; case (Rle_dec b c); intro;
[ reflexivity | elim n0; assumption ].
replace (Rmax b c) with c.
left; assumption.
- unfold Rmax in |- *; case (Rle_dec b c); intro;
+ unfold Rmax; case (Rle_dec b c); intro;
[ reflexivity | elim n0; assumption ].
do 2
rewrite <-
(Rplus_comm
(RiemannInt_SF (mkStepFun (StepFun_P28 1 (mkStepFun H13) (psi2 n)))))
; apply Rplus_le_compat_l; apply StepFun_P37; try assumption.
- intros; simpl in |- *; rewrite Rmult_1_l;
+ intros; simpl; rewrite Rmult_1_l;
apply Rle_trans with (Rabs (f x - phi3 x) + Rabs (f x - phi1 x)).
rewrite <- (Rabs_Ropp (f x - phi3 x)); rewrite Ropp_minus_distr;
replace (phi3 x + -1 * phi1 x) with (phi3 x - f x + (f x - phi1 x));
@@ -2511,23 +2511,23 @@ Proof.
elim H14; intros; split.
replace (Rmin a c) with a.
left; assumption.
- unfold Rmin in |- *; case (Rle_dec a c); intro;
+ unfold Rmin; case (Rle_dec a c); intro;
[ reflexivity | elim n0; apply Rle_trans with b; assumption ].
replace (Rmax a c) with c.
apply Rle_trans with b.
left; assumption.
assumption.
- unfold Rmax in |- *; case (Rle_dec a c); intro;
+ unfold Rmax; case (Rle_dec a c); intro;
[ reflexivity | elim n0; apply Rle_trans with b; assumption ].
apply H8.
elim H14; intros; split.
replace (Rmin a b) with a.
left; assumption.
- unfold Rmin in |- *; case (Rle_dec a b); intro;
+ unfold Rmin; case (Rle_dec a b); intro;
[ reflexivity | elim n0; assumption ].
replace (Rmax a b) with b.
left; assumption.
- unfold Rmax in |- *; case (Rle_dec a b); intro;
+ unfold Rmax; case (Rle_dec a b); intro;
[ reflexivity | elim n0; assumption ].
do 2 rewrite StepFun_P30.
do 2 rewrite Rmult_1_l;
@@ -2553,7 +2553,7 @@ Proof.
assumption.
apply H5; assumption.
apply Rmult_eq_reg_l with 3;
- [ unfold Rdiv in |- *; repeat rewrite Rmult_plus_distr_l;
+ [ unfold Rdiv; repeat rewrite Rmult_plus_distr_l;
do 2 rewrite (Rmult_comm 3); repeat rewrite Rmult_assoc;
rewrite <- Rinv_l_sym; [ ring | discrR ]
| discrR ].
@@ -2608,13 +2608,13 @@ Lemma RiemannInt_P27 :
Proof.
intro f; intros; elim H; clear H; intros; assert (H1 : continuity_pt f x).
apply C0; split; left; assumption.
- unfold derivable_pt_lim in |- *; intros; assert (Hyp : 0 < eps / 2).
- unfold Rdiv in |- *; apply Rmult_lt_0_compat;
+ unfold derivable_pt_lim; intros; assert (Hyp : 0 < eps / 2).
+ unfold Rdiv; apply Rmult_lt_0_compat;
[ assumption | apply Rinv_0_lt_compat; prove_sup0 ].
- elim (H1 _ Hyp); unfold dist, D_x, no_cond in |- *; simpl in |- *;
- unfold R_dist in |- *; intros; set (del := Rmin x0 (Rmin (b - x) (x - a)));
+ elim (H1 _ Hyp); unfold dist, D_x, no_cond; simpl;
+ unfold R_dist; intros; set (del := Rmin x0 (Rmin (b - x) (x - a)));
assert (H4 : 0 < del).
- unfold del in |- *; unfold Rmin in |- *; case (Rle_dec (b - x) (x - a));
+ unfold del; unfold Rmin; case (Rle_dec (b - x) (x - a));
intro.
case (Rle_dec x0 (b - x)); intro;
[ elim H3; intros; assumption | apply Rlt_Rminus; assumption ].
@@ -2631,22 +2631,22 @@ Proof.
left; apply Rlt_le_trans with (x + del).
apply Rplus_lt_compat_l; apply Rle_lt_trans with (Rabs h0);
[ apply RRle_abs | apply H6 ].
- unfold del in |- *; apply Rle_trans with (x + Rmin (b - x) (x - a)).
+ unfold del; apply Rle_trans with (x + Rmin (b - x) (x - a)).
apply Rplus_le_compat_l; apply Rmin_r.
- pattern b at 2 in |- *; replace b with (x + (b - x));
+ pattern b at 2; replace b with (x + (b - x));
[ apply Rplus_le_compat_l; apply Rmin_l | ring ].
apply RiemannInt_P1; apply continuity_implies_RiemannInt; auto with real.
intros; apply C0; elim H7; intros; split.
apply Rle_trans with (x + h0).
left; apply Rle_lt_trans with (x - del).
- unfold del in |- *; apply Rle_trans with (x - Rmin (b - x) (x - a)).
- pattern a at 1 in |- *; replace a with (x + (a - x)); [ idtac | ring ].
- unfold Rminus in |- *; apply Rplus_le_compat_l; apply Ropp_le_cancel.
+ unfold del; apply Rle_trans with (x - Rmin (b - x) (x - a)).
+ pattern a at 1; replace a with (x + (a - x)); [ idtac | ring ].
+ unfold Rminus; apply Rplus_le_compat_l; apply Ropp_le_cancel.
rewrite Ropp_involutive; rewrite Ropp_plus_distr; rewrite Ropp_involutive;
rewrite (Rplus_comm x); apply Rmin_r.
- unfold Rminus in |- *; apply Rplus_le_compat_l; apply Ropp_le_cancel.
+ unfold Rminus; apply Rplus_le_compat_l; apply Ropp_le_cancel.
do 2 rewrite Ropp_involutive; apply Rmin_r.
- unfold Rminus in |- *; apply Rplus_lt_compat_l; apply Ropp_lt_cancel.
+ unfold Rminus; apply Rplus_lt_compat_l; apply Ropp_lt_cancel.
rewrite Ropp_involutive; apply Rle_lt_trans with (Rabs h0);
[ rewrite <- Rabs_Ropp; apply RRle_abs | apply H6 ].
assumption.
@@ -2659,7 +2659,7 @@ Proof.
with ((RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))) / h0).
replace (RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))) with
(RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x)))).
- unfold Rdiv in |- *; rewrite Rabs_mult; case (Rle_dec x (x + h0)); intro.
+ unfold Rdiv; rewrite Rabs_mult; case (Rle_dec x (x + h0)); intro.
apply Rle_lt_trans with
(RiemannInt
(RiemannInt_P16
@@ -2678,8 +2678,8 @@ Proof.
apply Rabs_pos.
apply RiemannInt_P19; try assumption.
intros; replace (f x1 + -1 * fct_cte (f x) x1) with (f x1 - f x).
- unfold fct_cte in |- *; case (Req_dec x x1); intro.
- rewrite H9; unfold Rminus in |- *; rewrite Rplus_opp_r; rewrite Rabs_R0; left;
+ unfold fct_cte; case (Req_dec x x1); intro.
+ rewrite H9; unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0; left;
assumption.
elim H3; intros; left; apply H11.
repeat split.
@@ -2690,16 +2690,16 @@ Proof.
elim H8; intros; assumption.
apply Rplus_le_compat_l; apply Rle_trans with del.
left; apply Rle_lt_trans with (Rabs h0); [ apply RRle_abs | assumption ].
- unfold del in |- *; apply Rmin_l.
+ unfold del; apply Rmin_l.
apply Rge_minus; apply Rle_ge; left; elim H8; intros; assumption.
- unfold fct_cte in |- *; ring.
+ unfold fct_cte; ring.
rewrite RiemannInt_P15.
rewrite Rmult_assoc; replace ((x + h0 - x) * Rabs (/ h0)) with 1.
- rewrite Rmult_1_r; unfold Rdiv in |- *; apply Rmult_lt_reg_l with 2;
+ rewrite Rmult_1_r; unfold Rdiv; apply Rmult_lt_reg_l with 2;
[ prove_sup0
| rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
rewrite <- Rinv_r_sym;
- [ rewrite Rmult_1_l; pattern eps at 1 in |- *; rewrite <- Rplus_0_r;
+ [ rewrite Rmult_1_l; pattern eps at 1; rewrite <- Rplus_0_r;
rewrite double; apply Rplus_lt_compat_l; assumption
| discrR ] ].
rewrite Rabs_right.
@@ -2709,7 +2709,7 @@ Proof.
apply Rle_ge; left; apply Rinv_0_lt_compat.
elim r; intro.
apply Rplus_lt_reg_r with x; rewrite Rplus_0_r; assumption.
- elim H5; symmetry in |- *; apply Rplus_eq_reg_l with x; rewrite Rplus_0_r;
+ elim H5; symmetry ; apply Rplus_eq_reg_l with x; rewrite Rplus_0_r;
assumption.
apply Rle_lt_trans with
(RiemannInt
@@ -2733,7 +2733,7 @@ Proof.
(RiemannInt_P1
(RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))))));
auto with real.
- symmetry in |- *; apply RiemannInt_P8.
+ symmetry ; apply RiemannInt_P8.
apply Rle_lt_trans with
(RiemannInt (RiemannInt_P14 (x + h0) x (eps / 2)) * Rabs (/ h0)).
do 2 rewrite <- (Rmult_comm (Rabs (/ h0))); apply Rmult_le_compat_l.
@@ -2741,8 +2741,8 @@ Proof.
apply RiemannInt_P19.
auto with real.
intros; replace (f x1 + -1 * fct_cte (f x) x1) with (f x1 - f x).
- unfold fct_cte in |- *; case (Req_dec x x1); intro.
- rewrite H9; unfold Rminus in |- *; rewrite Rplus_opp_r; rewrite Rabs_R0; left;
+ unfold fct_cte; case (Req_dec x x1); intro.
+ rewrite H9; unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0; left;
assumption.
elim H3; intros; left; apply H11.
repeat split.
@@ -2752,22 +2752,22 @@ Proof.
[ idtac | ring ].
replace (x1 - x0 + - (x1 - x)) with (x - x0); [ idtac | ring ].
apply Rle_lt_trans with (x + h0).
- unfold Rminus in |- *; apply Rplus_le_compat_l; apply Ropp_le_cancel.
+ unfold Rminus; apply Rplus_le_compat_l; apply Ropp_le_cancel.
rewrite Ropp_involutive; apply Rle_trans with (Rabs h0).
rewrite <- Rabs_Ropp; apply RRle_abs.
apply Rle_trans with del;
- [ left; assumption | unfold del in |- *; apply Rmin_l ].
+ [ left; assumption | unfold del; apply Rmin_l ].
elim H8; intros; assumption.
apply Rplus_lt_reg_r with x; rewrite Rplus_0_r;
replace (x + (x1 - x)) with x1; [ elim H8; intros; assumption | ring ].
- unfold fct_cte in |- *; ring.
+ unfold fct_cte; ring.
rewrite RiemannInt_P15.
rewrite Rmult_assoc; replace ((x - (x + h0)) * Rabs (/ h0)) with 1.
- rewrite Rmult_1_r; unfold Rdiv in |- *; apply Rmult_lt_reg_l with 2;
+ rewrite Rmult_1_r; unfold Rdiv; apply Rmult_lt_reg_l with 2;
[ prove_sup0
| rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
rewrite <- Rinv_r_sym;
- [ rewrite Rmult_1_l; pattern eps at 1 in |- *; rewrite <- Rplus_0_r;
+ [ rewrite Rmult_1_l; pattern eps at 1; rewrite <- Rplus_0_r;
rewrite double; apply Rplus_lt_compat_l; assumption
| discrR ] ].
rewrite Rabs_left.
@@ -2784,14 +2784,14 @@ Proof.
(RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))))
.
ring.
- unfold Rdiv, Rminus in |- *; rewrite Rmult_plus_distr_r; ring.
+ unfold Rdiv, Rminus; rewrite Rmult_plus_distr_r; ring.
rewrite RiemannInt_P15; apply Rmult_eq_reg_l with h0;
- [ unfold Rdiv in |- *; rewrite (Rmult_comm h0); repeat rewrite Rmult_assoc;
+ [ unfold Rdiv; rewrite (Rmult_comm h0); repeat rewrite Rmult_assoc;
rewrite <- Rinv_l_sym; [ ring | assumption ]
| assumption ].
cut (a <= x + h0).
cut (x + h0 <= b).
- intros; unfold primitive in |- *.
+ intros; unfold primitive.
case (Rle_dec a (x + h0)); case (Rle_dec (x + h0) b); case (Rle_dec a x);
case (Rle_dec x b); intros; try (elim n; assumption || left; assumption).
rewrite <- (RiemannInt_P26 (FTC_P1 h C0 r0 r) H7 (FTC_P1 h C0 r2 r1)); ring.
@@ -2801,7 +2801,7 @@ Proof.
apply RRle_abs.
apply Rle_trans with del;
[ left; assumption
- | unfold del in |- *; apply Rle_trans with (Rmin (b - x) (x - a));
+ | unfold del; apply Rle_trans with (Rmin (b - x) (x - a));
[ apply Rmin_r | apply Rmin_l ] ].
apply Ropp_le_cancel; apply Rplus_le_reg_l with x;
replace (x + - (x + h0)) with (- h0); [ idtac | ring ].
@@ -2809,7 +2809,7 @@ Proof.
[ rewrite <- Rabs_Ropp; apply RRle_abs
| apply Rle_trans with del;
[ left; assumption
- | unfold del in |- *; apply Rle_trans with (Rmin (b - x) (x - a));
+ | unfold del; apply Rle_trans with (Rmin (b - x) (x - a));
apply Rmin_r ] ].
Qed.
@@ -2826,14 +2826,14 @@ Proof.
(f_b := fun x:R => f b * (x - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)));
rewrite H3.
assert (H4 : derivable_pt_lim f_b b (f b)).
- unfold f_b in |- *; pattern (f b) at 2 in |- *; replace (f b) with (f b + 0).
+ unfold f_b; pattern (f b) at 2; replace (f b) with (f b + 0).
change
(derivable_pt_lim
((fct_cte (f b) * (id - fct_cte b))%F +
fct_cte (RiemannInt (FTC_P1 h C0 h (Rle_refl b)))) b (
- f b + 0)) in |- *.
+ f b + 0)).
apply derivable_pt_lim_plus.
- pattern (f b) at 2 in |- *;
+ pattern (f b) at 2;
replace (f b) with (0 * (id - fct_cte b)%F b + fct_cte (f b) b * 1).
apply derivable_pt_lim_mult.
apply derivable_pt_lim_const.
@@ -2841,26 +2841,26 @@ Proof.
apply derivable_pt_lim_minus.
apply derivable_pt_lim_id.
apply derivable_pt_lim_const.
- unfold fct_cte in |- *; ring.
+ unfold fct_cte; ring.
apply derivable_pt_lim_const.
ring.
- unfold derivable_pt_lim in |- *; intros; elim (H4 _ H5); intros;
+ unfold derivable_pt_lim; intros; elim (H4 _ H5); intros;
assert (H7 : continuity_pt f b).
apply C0; split; [ left; assumption | right; reflexivity ].
assert (H8 : 0 < eps / 2).
- unfold Rdiv in |- *; apply Rmult_lt_0_compat;
+ unfold Rdiv; apply Rmult_lt_0_compat;
[ assumption | apply Rinv_0_lt_compat; prove_sup0 ].
- elim (H7 _ H8); unfold D_x, no_cond, dist in |- *; simpl in |- *;
- unfold R_dist in |- *; intros; set (del := Rmin x0 (Rmin x1 (b - a)));
+ elim (H7 _ H8); unfold D_x, no_cond, dist; simpl;
+ unfold R_dist; intros; set (del := Rmin x0 (Rmin x1 (b - a)));
assert (H10 : 0 < del).
- unfold del in |- *; unfold Rmin in |- *; case (Rle_dec x1 (b - a)); intros.
+ unfold del; unfold Rmin; case (Rle_dec x1 (b - a)); intros.
case (Rle_dec x0 x1); intro;
[ apply (cond_pos x0) | elim H9; intros; assumption ].
case (Rle_dec x0 (b - a)); intro;
[ apply (cond_pos x0) | apply Rlt_Rminus; assumption ].
split with (mkposreal _ H10); intros; case (Rcase_abs h0); intro.
assert (H14 : b + h0 < b).
- pattern b at 2 in |- *; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l;
+ pattern b at 2; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l;
assumption.
assert (H13 : Riemann_integrable f (b + h0) b).
apply continuity_implies_RiemannInt.
@@ -2874,11 +2874,11 @@ Proof.
apply Rle_trans with (Rabs h0).
rewrite <- Rabs_Ropp; apply RRle_abs.
left; assumption.
- unfold del in |- *; apply Rle_trans with (Rmin x1 (b - a)); apply Rmin_r.
+ unfold del; apply Rle_trans with (Rmin x1 (b - a)); apply Rmin_r.
replace (primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b)
with (- RiemannInt H13).
replace (f b) with (- RiemannInt (RiemannInt_P14 (b + h0) b (f b)) / h0).
- rewrite <- Rabs_Ropp; unfold Rminus in |- *; unfold Rdiv in |- *;
+ rewrite <- Rabs_Ropp; unfold Rminus; unfold Rdiv;
rewrite Ropp_mult_distr_l_reverse; rewrite Ropp_plus_distr;
repeat rewrite Ropp_involutive;
replace
@@ -2887,7 +2887,7 @@ Proof.
((RiemannInt H13 - RiemannInt (RiemannInt_P14 (b + h0) b (f b))) / h0).
replace (RiemannInt H13 - RiemannInt (RiemannInt_P14 (b + h0) b (f b))) with
(RiemannInt (RiemannInt_P10 (-1) H13 (RiemannInt_P14 (b + h0) b (f b)))).
- unfold Rdiv in |- *; rewrite Rabs_mult;
+ unfold Rdiv; rewrite Rabs_mult;
apply Rle_lt_trans with
(RiemannInt
(RiemannInt_P16
@@ -2907,8 +2907,8 @@ Proof.
apply RiemannInt_P19.
left; assumption.
intros; replace (f x2 + -1 * fct_cte (f b) x2) with (f x2 - f b).
- unfold fct_cte in |- *; case (Req_dec b x2); intro.
- rewrite H16; unfold Rminus in |- *; rewrite Rplus_opp_r; rewrite Rabs_R0;
+ unfold fct_cte; case (Req_dec b x2); intro.
+ rewrite H16; unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0;
left; assumption.
elim H9; intros; left; apply H18.
repeat split.
@@ -2919,22 +2919,22 @@ Proof.
replace (x2 - x1 + x1) with x2; [ idtac | ring ].
apply Rlt_le_trans with (b + h0).
2: elim H15; intros; left; assumption.
- unfold Rminus in |- *; apply Rplus_lt_compat_l; apply Ropp_lt_cancel;
+ unfold Rminus; apply Rplus_lt_compat_l; apply Ropp_lt_cancel;
rewrite Ropp_involutive; apply Rle_lt_trans with (Rabs h0).
rewrite <- Rabs_Ropp; apply RRle_abs.
apply Rlt_le_trans with del;
[ assumption
- | unfold del in |- *; apply Rle_trans with (Rmin x1 (b - a));
+ | unfold del; apply Rle_trans with (Rmin x1 (b - a));
[ apply Rmin_r | apply Rmin_l ] ].
apply Rle_ge; left; apply Rlt_Rminus; elim H15; intros; assumption.
- unfold fct_cte in |- *; ring.
+ unfold fct_cte; ring.
rewrite RiemannInt_P15.
rewrite Rmult_assoc; replace ((b - (b + h0)) * Rabs (/ h0)) with 1.
- rewrite Rmult_1_r; unfold Rdiv in |- *; apply Rmult_lt_reg_l with 2;
+ rewrite Rmult_1_r; unfold Rdiv; apply Rmult_lt_reg_l with 2;
[ prove_sup0
| rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
rewrite <- Rinv_r_sym;
- [ rewrite Rmult_1_l; pattern eps at 1 in |- *; rewrite <- Rplus_0_r;
+ [ rewrite Rmult_1_l; pattern eps at 1; rewrite <- Rplus_0_r;
rewrite double; apply Rplus_lt_compat_l; assumption
| discrR ] ].
rewrite Rabs_left.
@@ -2948,16 +2948,16 @@ Proof.
(RiemannInt_P13 H13 (RiemannInt_P14 (b + h0) b (f b))
(RiemannInt_P10 (-1) H13 (RiemannInt_P14 (b + h0) b (f b))))
; ring.
- unfold Rdiv, Rminus in |- *; rewrite Rmult_plus_distr_r; ring.
+ unfold Rdiv, Rminus; rewrite Rmult_plus_distr_r; ring.
rewrite RiemannInt_P15.
rewrite <- Ropp_mult_distr_l_reverse; apply Rmult_eq_reg_l with h0;
- [ repeat rewrite (Rmult_comm h0); unfold Rdiv in |- *;
+ [ repeat rewrite (Rmult_comm h0); unfold Rdiv;
repeat rewrite Rmult_assoc; rewrite <- Rinv_l_sym;
[ ring | assumption ]
| assumption ].
cut (a <= b + h0).
cut (b + h0 <= b).
- intros; unfold primitive in |- *; case (Rle_dec a (b + h0));
+ intros; unfold primitive; case (Rle_dec a (b + h0));
case (Rle_dec (b + h0) b); case (Rle_dec a b); case (Rle_dec b b);
intros; try (elim n; right; reflexivity) || (elim n; left; assumption).
rewrite <- (RiemannInt_P26 (FTC_P1 h C0 r3 r2) H13 (FTC_P1 h C0 r1 r0)); ring.
@@ -2970,26 +2970,26 @@ Proof.
apply Rle_trans with (Rabs h0).
rewrite <- Rabs_Ropp; apply RRle_abs.
left; assumption.
- unfold del in |- *; apply Rle_trans with (Rmin x1 (b - a)); apply Rmin_r.
+ unfold del; apply Rle_trans with (Rmin x1 (b - a)); apply Rmin_r.
cut (primitive h (FTC_P1 h C0) b = f_b b).
intro; cut (primitive h (FTC_P1 h C0) (b + h0) = f_b (b + h0)).
intro; rewrite H13; rewrite H14; apply H6.
assumption.
apply Rlt_le_trans with del;
- [ assumption | unfold del in |- *; apply Rmin_l ].
+ [ assumption | unfold del; apply Rmin_l ].
assert (H14 : b < b + h0).
- pattern b at 1 in |- *; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l.
+ pattern b at 1; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l.
assert (H14 := Rge_le _ _ r); elim H14; intro.
assumption.
- elim H11; symmetry in |- *; assumption.
- unfold primitive in |- *; case (Rle_dec a (b + h0));
+ elim H11; symmetry ; assumption.
+ unfold primitive; case (Rle_dec a (b + h0));
case (Rle_dec (b + h0) b); intros;
[ elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ r0 H14))
- | unfold f_b in |- *; reflexivity
+ | unfold f_b; reflexivity
| elim n; left; apply Rlt_trans with b; assumption
| elim n0; left; apply Rlt_trans with b; assumption ].
- unfold f_b in |- *; unfold Rminus in |- *; rewrite Rplus_opp_r;
- rewrite Rmult_0_r; rewrite Rplus_0_l; unfold primitive in |- *;
+ unfold f_b; unfold Rminus; rewrite Rplus_opp_r;
+ rewrite Rmult_0_r; rewrite Rplus_0_l; unfold primitive;
case (Rle_dec a b); case (Rle_dec b b); intros;
[ apply RiemannInt_P5
| elim n; right; reflexivity
@@ -2998,9 +2998,9 @@ Proof.
(*****)
set (f_a := fun x:R => f a * (x - a)); rewrite <- H2;
assert (H3 : derivable_pt_lim f_a a (f a)).
- unfold f_a in |- *;
+ unfold f_a;
change (derivable_pt_lim (fct_cte (f a) * (id - fct_cte a)%F) a (f a))
- in |- *; pattern (f a) at 2 in |- *;
+ ; pattern (f a) at 2;
replace (f a) with (0 * (id - fct_cte a)%F a + fct_cte (f a) a * 1).
apply derivable_pt_lim_mult.
apply derivable_pt_lim_const.
@@ -3008,18 +3008,18 @@ Proof.
apply derivable_pt_lim_minus.
apply derivable_pt_lim_id.
apply derivable_pt_lim_const.
- unfold fct_cte in |- *; ring.
- unfold derivable_pt_lim in |- *; intros; elim (H3 _ H4); intros.
+ unfold fct_cte; ring.
+ unfold derivable_pt_lim; intros; elim (H3 _ H4); intros.
assert (H6 : continuity_pt f a).
apply C0; split; [ right; reflexivity | left; assumption ].
assert (H7 : 0 < eps / 2).
- unfold Rdiv in |- *; apply Rmult_lt_0_compat;
+ unfold Rdiv; apply Rmult_lt_0_compat;
[ assumption | apply Rinv_0_lt_compat; prove_sup0 ].
- elim (H6 _ H7); unfold D_x, no_cond, dist in |- *; simpl in |- *;
- unfold R_dist in |- *; intros.
+ elim (H6 _ H7); unfold D_x, no_cond, dist; simpl;
+ unfold R_dist; intros.
set (del := Rmin x0 (Rmin x1 (b - a))).
assert (H9 : 0 < del).
- unfold del in |- *; unfold Rmin in |- *.
+ unfold del; unfold Rmin.
case (Rle_dec x1 (b - a)); intros.
case (Rle_dec x0 x1); intro.
apply (cond_pos x0).
@@ -3030,9 +3030,9 @@ Proof.
split with (mkposreal _ H9).
intros; case (Rcase_abs h0); intro.
assert (H12 : a + h0 < a).
- pattern a at 2 in |- *; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l;
+ pattern a at 2; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l;
assumption.
- unfold primitive in |- *.
+ unfold primitive.
case (Rle_dec a (a + h0)); case (Rle_dec (a + h0) b); case (Rle_dec a a);
case (Rle_dec a b); intros;
try (elim n; left; assumption) || (elim n; right; reflexivity).
@@ -3042,15 +3042,15 @@ Proof.
replace (f a * (a + h0 - a)) with (f_a (a + h0)).
apply H5; try assumption.
apply Rlt_le_trans with del;
- [ assumption | unfold del in |- *; apply Rmin_l ].
- unfold f_a in |- *; ring.
- unfold f_a in |- *; ring.
+ [ assumption | unfold del; apply Rmin_l ].
+ unfold f_a; ring.
+ unfold f_a; ring.
elim n; left; apply Rlt_trans with a; assumption.
assert (H12 : a < a + h0).
- pattern a at 1 in |- *; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l.
+ pattern a at 1; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l.
assert (H12 := Rge_le _ _ r); elim H12; intro.
assumption.
- elim H10; symmetry in |- *; assumption.
+ elim H10; symmetry ; assumption.
assert (H13 : Riemann_integrable f a (a + h0)).
apply continuity_implies_RiemannInt.
left; assumption.
@@ -3062,7 +3062,7 @@ Proof.
apply Ropp_le_cancel; rewrite Ropp_involutive; rewrite Ropp_minus_distr;
apply Rle_trans with del.
apply Rle_trans with (Rabs h0); [ apply RRle_abs | left; assumption ].
- unfold del in |- *; apply Rle_trans with (Rmin x1 (b - a)); apply Rmin_r.
+ unfold del; apply Rle_trans with (Rmin x1 (b - a)); apply Rmin_r.
replace (primitive h (FTC_P1 h C0) (a + h0) - primitive h (FTC_P1 h C0) a)
with (RiemannInt H13).
replace (f a) with (RiemannInt (RiemannInt_P14 a (a + h0) (f a)) / h0).
@@ -3071,7 +3071,7 @@ Proof.
with ((RiemannInt H13 - RiemannInt (RiemannInt_P14 a (a + h0) (f a))) / h0).
replace (RiemannInt H13 - RiemannInt (RiemannInt_P14 a (a + h0) (f a))) with
(RiemannInt (RiemannInt_P10 (-1) H13 (RiemannInt_P14 a (a + h0) (f a)))).
- unfold Rdiv in |- *; rewrite Rabs_mult;
+ unfold Rdiv; rewrite Rabs_mult;
apply Rle_lt_trans with
(RiemannInt
(RiemannInt_P16
@@ -3091,8 +3091,8 @@ Proof.
apply RiemannInt_P19.
left; assumption.
intros; replace (f x2 + -1 * fct_cte (f a) x2) with (f x2 - f a).
- unfold fct_cte in |- *; case (Req_dec a x2); intro.
- rewrite H15; unfold Rminus in |- *; rewrite Rplus_opp_r; rewrite Rabs_R0;
+ unfold fct_cte; case (Req_dec a x2); intro.
+ rewrite H15; unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0;
left; assumption.
elim H8; intros; left; apply H17; repeat split.
assumption.
@@ -3104,42 +3104,42 @@ Proof.
apply RRle_abs.
apply Rlt_le_trans with del;
[ assumption
- | unfold del in |- *; apply Rle_trans with (Rmin x1 (b - a));
+ | unfold del; apply Rle_trans with (Rmin x1 (b - a));
[ apply Rmin_r | apply Rmin_l ] ].
apply Rle_ge; left; apply Rlt_Rminus; elim H14; intros; assumption.
- unfold fct_cte in |- *; ring.
+ unfold fct_cte; ring.
rewrite RiemannInt_P15.
rewrite Rmult_assoc; replace ((a + h0 - a) * Rabs (/ h0)) with 1.
- rewrite Rmult_1_r; unfold Rdiv in |- *; apply Rmult_lt_reg_l with 2;
+ rewrite Rmult_1_r; unfold Rdiv; apply Rmult_lt_reg_l with 2;
[ prove_sup0
| rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
rewrite <- Rinv_r_sym;
- [ rewrite Rmult_1_l; pattern eps at 1 in |- *; rewrite <- Rplus_0_r;
+ [ rewrite Rmult_1_l; pattern eps at 1; rewrite <- Rplus_0_r;
rewrite double; apply Rplus_lt_compat_l; assumption
| discrR ] ].
rewrite Rabs_right.
- rewrite Rplus_comm; unfold Rminus in |- *; rewrite Rplus_assoc;
+ rewrite Rplus_comm; unfold Rminus; rewrite Rplus_assoc;
rewrite Rplus_opp_r; rewrite Rplus_0_r; rewrite <- Rinv_r_sym;
[ reflexivity | assumption ].
apply Rle_ge; left; apply Rinv_0_lt_compat; assert (H14 := Rge_le _ _ r);
elim H14; intro.
assumption.
- elim H10; symmetry in |- *; assumption.
+ elim H10; symmetry ; assumption.
rewrite
(RiemannInt_P13 H13 (RiemannInt_P14 a (a + h0) (f a))
(RiemannInt_P10 (-1) H13 (RiemannInt_P14 a (a + h0) (f a))))
; ring.
- unfold Rdiv, Rminus in |- *; rewrite Rmult_plus_distr_r; ring.
+ unfold Rdiv, Rminus; rewrite Rmult_plus_distr_r; ring.
rewrite RiemannInt_P15.
- rewrite Rplus_comm; unfold Rminus in |- *; rewrite Rplus_assoc;
- rewrite Rplus_opp_r; rewrite Rplus_0_r; unfold Rdiv in |- *;
+ rewrite Rplus_comm; unfold Rminus; rewrite Rplus_assoc;
+ rewrite Rplus_opp_r; rewrite Rplus_0_r; unfold Rdiv;
rewrite Rmult_assoc; rewrite <- Rinv_r_sym; [ ring | assumption ].
cut (a <= a + h0).
cut (a + h0 <= b).
- intros; unfold primitive in |- *; case (Rle_dec a (a + h0));
+ intros; unfold primitive; case (Rle_dec a (a + h0));
case (Rle_dec (a + h0) b); case (Rle_dec a a); case (Rle_dec a b);
intros; try (elim n; right; reflexivity) || (elim n; left; assumption).
- rewrite RiemannInt_P9; unfold Rminus in |- *; rewrite Ropp_0;
+ rewrite RiemannInt_P9; unfold Rminus; rewrite Ropp_0;
rewrite Rplus_0_r; apply RiemannInt_P5.
elim n; assumption.
elim n; assumption.
@@ -3148,15 +3148,15 @@ Proof.
[ idtac | ring ].
rewrite Rplus_comm; apply Rle_trans with del;
[ apply Rle_trans with (Rabs h0); [ apply RRle_abs | left; assumption ]
- | unfold del in |- *; apply Rle_trans with (Rmin x1 (b - a)); apply Rmin_r ].
+ | unfold del; apply Rle_trans with (Rmin x1 (b - a)); apply Rmin_r ].
(*****)
assert (H1 : x = a).
rewrite <- H0 in H; elim H; intros; apply Rle_antisym; assumption.
set (f_a := fun x:R => f a * (x - a)).
assert (H2 : derivable_pt_lim f_a a (f a)).
- unfold f_a in |- *;
+ unfold f_a;
change (derivable_pt_lim (fct_cte (f a) * (id - fct_cte a)%F) a (f a))
- in |- *; pattern (f a) at 2 in |- *;
+ ; pattern (f a) at 2;
replace (f a) with (0 * (id - fct_cte a)%F a + fct_cte (f a) a * 1).
apply derivable_pt_lim_mult.
apply derivable_pt_lim_const.
@@ -3164,18 +3164,18 @@ Proof.
apply derivable_pt_lim_minus.
apply derivable_pt_lim_id.
apply derivable_pt_lim_const.
- unfold fct_cte in |- *; ring.
+ unfold fct_cte; ring.
set
(f_b := fun x:R => f b * (x - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b))).
assert (H3 : derivable_pt_lim f_b b (f b)).
- unfold f_b in |- *; pattern (f b) at 2 in |- *; replace (f b) with (f b + 0).
+ unfold f_b; pattern (f b) at 2; replace (f b) with (f b + 0).
change
(derivable_pt_lim
((fct_cte (f b) * (id - fct_cte b))%F +
fct_cte (RiemannInt (FTC_P1 h C0 h (Rle_refl b)))) b (
- f b + 0)) in |- *.
+ f b + 0)).
apply derivable_pt_lim_plus.
- pattern (f b) at 2 in |- *;
+ pattern (f b) at 2;
replace (f b) with (0 * (id - fct_cte b)%F b + fct_cte (f b) b * 1).
apply derivable_pt_lim_mult.
apply derivable_pt_lim_const.
@@ -3183,20 +3183,20 @@ Proof.
apply derivable_pt_lim_minus.
apply derivable_pt_lim_id.
apply derivable_pt_lim_const.
- unfold fct_cte in |- *; ring.
+ unfold fct_cte; ring.
apply derivable_pt_lim_const.
ring.
- unfold derivable_pt_lim in |- *; intros; elim (H2 _ H4); intros;
+ unfold derivable_pt_lim; intros; elim (H2 _ H4); intros;
elim (H3 _ H4); intros; set (del := Rmin x0 x1).
assert (H7 : 0 < del).
- unfold del in |- *; unfold Rmin in |- *; case (Rle_dec x0 x1); intro.
+ unfold del; unfold Rmin; case (Rle_dec x0 x1); intro.
apply (cond_pos x0).
apply (cond_pos x1).
split with (mkposreal _ H7); intros; case (Rcase_abs h0); intro.
assert (H10 : a + h0 < a).
- pattern a at 2 in |- *; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l;
+ pattern a at 2; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l;
assumption.
- rewrite H1; unfold primitive in |- *; case (Rle_dec a (a + h0));
+ rewrite H1; unfold primitive; case (Rle_dec a (a + h0));
case (Rle_dec (a + h0) b); case (Rle_dec a a); case (Rle_dec a b);
intros; try (elim n; right; assumption || reflexivity).
elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ r3 H10)).
@@ -3205,27 +3205,27 @@ Proof.
replace (f a * (a + h0 - a)) with (f_a (a + h0)).
apply H5; try assumption.
apply Rlt_le_trans with del; try assumption.
- unfold del in |- *; apply Rmin_l.
- unfold f_a in |- *; ring.
- unfold f_a in |- *; ring.
+ unfold del; apply Rmin_l.
+ unfold f_a; ring.
+ unfold f_a; ring.
elim n; rewrite <- H0; left; assumption.
assert (H10 : a < a + h0).
- pattern a at 1 in |- *; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l.
+ pattern a at 1; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l.
assert (H10 := Rge_le _ _ r); elim H10; intro.
assumption.
- elim H8; symmetry in |- *; assumption.
- rewrite H0 in H1; rewrite H1; unfold primitive in |- *;
+ elim H8; symmetry ; assumption.
+ rewrite H0 in H1; rewrite H1; unfold primitive;
case (Rle_dec a (b + h0)); case (Rle_dec (b + h0) b);
case (Rle_dec a b); case (Rle_dec b b); intros;
try (elim n; right; assumption || reflexivity).
rewrite H0 in H10; elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ r2 H10)).
repeat rewrite RiemannInt_P9.
replace (RiemannInt (FTC_P1 h C0 r1 r0)) with (f_b b).
- fold (f_b (b + h0)) in |- *.
+ fold (f_b (b + h0)).
apply H6; try assumption.
apply Rlt_le_trans with del; try assumption.
- unfold del in |- *; apply Rmin_r.
- unfold f_b in |- *; unfold Rminus in |- *; rewrite Rplus_opp_r;
+ unfold del; apply Rmin_r.
+ unfold f_b; unfold Rminus; rewrite Rplus_opp_r;
rewrite Rmult_0_r; rewrite Rplus_0_l; apply RiemannInt_P5.
elim n; rewrite <- H0; left; assumption.
elim n0; rewrite <- H0; left; assumption.
@@ -3236,11 +3236,11 @@ Lemma RiemannInt_P29 :
(C0:forall x:R, a <= x <= b -> continuity_pt f x),
antiderivative f (primitive h (FTC_P1 h C0)) a b.
Proof.
- intro f; intros; unfold antiderivative in |- *; split; try assumption; intros;
+ intro f; intros; unfold antiderivative; split; try assumption; intros;
assert (H0 := RiemannInt_P28 h C0 H);
assert (H1 : derivable_pt (primitive h (FTC_P1 h C0)) x);
- [ unfold derivable_pt in |- *; split with (f x); apply H0
- | split with H1; symmetry in |- *; apply derive_pt_eq_0; apply H0 ].
+ [ unfold derivable_pt; split with (f x); apply H0
+ | split with H1; symmetry ; apply derive_pt_eq_0; apply H0 ].
Qed.
Lemma RiemannInt_P30 :
@@ -3259,7 +3259,7 @@ Lemma RiemannInt_P31 :
forall (f:C1_fun) (a b:R),
a <= b -> antiderivative (derive f (diff0 f)) f a b.
Proof.
- intro f; intros; unfold antiderivative in |- *; split; try assumption; intros;
+ intro f; intros; unfold antiderivative; split; try assumption; intros;
split with (diff0 f x); reflexivity.
Qed.
diff --git a/theories/Reals/RiemannInt_SF.v b/theories/Reals/RiemannInt_SF.v
index abcb8d6ff..1e4e83e7f 100644
--- a/theories/Reals/RiemannInt_SF.v
+++ b/theories/Reals/RiemannInt_SF.v
@@ -33,19 +33,19 @@ Lemma Nzorn :
Proof.
intros I H H0; set (E := fun x:R => exists i : nat, I i /\ INR i = x);
assert (H1 : bound E).
- unfold Nbound in H0; elim H0; intros N H1; unfold bound in |- *;
- exists (INR N); unfold is_upper_bound in |- *; intros;
+ unfold Nbound in H0; elim H0; intros N H1; unfold bound;
+ exists (INR N); unfold is_upper_bound; intros;
unfold E in H2; elim H2; intros; elim H3; intros;
rewrite <- H5; apply le_INR; apply H1; assumption.
assert (H2 : exists x : R, E x).
- elim H; intros; exists (INR x); unfold E in |- *; exists x; split;
+ elim H; intros; exists (INR x); unfold E; exists x; split;
[ assumption | reflexivity ].
assert (H3 := completeness E H1 H2); elim H3; intros; unfold is_lub in p;
elim p; clear p; intros; unfold is_upper_bound in H4, H5;
assert (H6 : 0 <= x).
elim H2; intros; unfold E in H6; elim H6; intros; elim H7; intros;
apply Rle_trans with x0;
- [ rewrite <- H9; change (INR 0 <= INR x1) in |- *; apply le_INR;
+ [ rewrite <- H9; change (INR 0 <= INR x1); apply le_INR;
apply le_O_n
| apply H4; assumption ].
assert (H7 := archimed x); elim H7; clear H7; intros;
@@ -88,7 +88,7 @@ Proof.
[ idtac | reflexivity ]; rewrite <- minus_INR.
replace (x0 - 1)%nat with (pred x0);
[ reflexivity
- | case x0; [ reflexivity | intro; simpl in |- *; apply minus_n_O ] ].
+ | case x0; [ reflexivity | intro; simpl; apply minus_n_O ] ].
induction x0 as [| x0 Hrecx0];
[ rewrite p in H7; rewrite <- INR_IZR_INZ in H7; simpl in H7;
elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H6 H7))
@@ -99,10 +99,10 @@ Proof.
assert (H16 : INR x0 = INR x1 + 1).
rewrite H15; ring.
rewrite <- S_INR in H16; assert (H17 := INR_eq _ _ H16); rewrite H17;
- simpl in |- *; split.
+ simpl; split.
assumption.
intros; apply INR_le; rewrite H15; rewrite <- H15; elim H12; intros;
- rewrite H20; apply H4; unfold E in |- *; exists i;
+ rewrite H20; apply H4; unfold E; exists i;
split; [ assumption | reflexivity ].
Qed.
@@ -173,7 +173,7 @@ Lemma StepFun_P1 :
forall (a b:R) (f:StepFun a b),
adapted_couple f a b (subdivision f) (subdivision_val f).
Proof.
- intros a b f; unfold subdivision_val in |- *; case (projT2 (pre f)); intros;
+ intros a b f; unfold subdivision_val; case (projT2 (pre f)); intros;
apply a0.
Qed.
@@ -181,13 +181,13 @@ Lemma StepFun_P2 :
forall (a b:R) (f:R -> R) (l lf:Rlist),
adapted_couple f a b l lf -> adapted_couple f b a l lf.
Proof.
- unfold adapted_couple in |- *; intros; decompose [and] H; clear H;
+ unfold adapted_couple; intros; decompose [and] H; clear H;
repeat split; try assumption.
- rewrite H2; unfold Rmin in |- *; case (Rle_dec a b); intro;
+ rewrite H2; unfold Rmin; case (Rle_dec a b); intro;
case (Rle_dec b a); intro; try reflexivity.
apply Rle_antisym; assumption.
apply Rle_antisym; auto with real.
- rewrite H1; unfold Rmax in |- *; case (Rle_dec a b); intro;
+ rewrite H1; unfold Rmax; case (Rle_dec a b); intro;
case (Rle_dec b a); intro; try reflexivity.
apply Rle_antisym; assumption.
apply Rle_antisym; auto with real.
@@ -198,23 +198,23 @@ Lemma StepFun_P3 :
a <= b ->
adapted_couple (fct_cte c) a b (cons a (cons b nil)) (cons c nil).
Proof.
- intros; unfold adapted_couple in |- *; repeat split.
- unfold ordered_Rlist in |- *; intros; simpl in H0; inversion H0;
- [ simpl in |- *; assumption | elim (le_Sn_O _ H2) ].
- simpl in |- *; unfold Rmin in |- *; case (Rle_dec a b); intro;
+ intros; unfold adapted_couple; repeat split.
+ unfold ordered_Rlist; intros; simpl in H0; inversion H0;
+ [ simpl; assumption | elim (le_Sn_O _ H2) ].
+ simpl; unfold Rmin; case (Rle_dec a b); intro;
[ reflexivity | elim n; assumption ].
- simpl in |- *; unfold Rmax in |- *; case (Rle_dec a b); intro;
+ simpl; unfold Rmax; case (Rle_dec a b); intro;
[ reflexivity | elim n; assumption ].
- unfold constant_D_eq, open_interval in |- *; intros; simpl in H0;
+ unfold constant_D_eq, open_interval; intros; simpl in H0;
inversion H0; [ reflexivity | elim (le_Sn_O _ H3) ].
Qed.
Lemma StepFun_P4 : forall a b c:R, IsStepFun (fct_cte c) a b.
Proof.
- intros; unfold IsStepFun in |- *; case (Rle_dec a b); intro.
- apply existT with (cons a (cons b nil)); unfold is_subdivision in |- *;
+ intros; unfold IsStepFun; case (Rle_dec a b); intro.
+ apply existT with (cons a (cons b nil)); unfold is_subdivision;
apply existT with (cons c nil); apply (StepFun_P3 c r).
- apply existT with (cons b (cons a nil)); unfold is_subdivision in |- *;
+ apply existT with (cons b (cons a nil)); unfold is_subdivision;
apply existT with (cons c nil); apply StepFun_P2;
apply StepFun_P3; auto with real.
Qed.
@@ -232,7 +232,7 @@ Qed.
Lemma StepFun_P6 :
forall (f:R -> R) (a b:R), IsStepFun f a b -> IsStepFun f b a.
Proof.
- unfold IsStepFun in |- *; intros; elim X; intros; apply existT with x;
+ unfold IsStepFun; intros; elim X; intros; apply existT with x;
apply StepFun_P5; assumption.
Qed.
@@ -242,26 +242,26 @@ Lemma StepFun_P7 :
adapted_couple f a b (cons r1 (cons r2 l)) (cons r3 lf) ->
adapted_couple f r2 b (cons r2 l) lf.
Proof.
- unfold adapted_couple in |- *; intros; decompose [and] H0; clear H0;
+ unfold adapted_couple; intros; decompose [and] H0; clear H0;
assert (H5 : Rmax a b = b).
- unfold Rmax in |- *; case (Rle_dec a b); intro;
+ unfold Rmax; case (Rle_dec a b); intro;
[ reflexivity | elim n; assumption ].
assert (H7 : r2 <= b).
rewrite H5 in H2; rewrite <- H2; apply RList_P7;
- [ assumption | simpl in |- *; right; left; reflexivity ].
+ [ assumption | simpl; right; left; reflexivity ].
repeat split.
apply RList_P4 with r1; assumption.
- rewrite H5 in H2; unfold Rmin in |- *; case (Rle_dec r2 b); intro;
+ rewrite H5 in H2; unfold Rmin; case (Rle_dec r2 b); intro;
[ reflexivity | elim n; assumption ].
- unfold Rmax in |- *; case (Rle_dec r2 b); intro;
+ unfold Rmax; case (Rle_dec r2 b); intro;
[ rewrite H5 in H2; rewrite <- H2; reflexivity | elim n; assumption ].
- simpl in H4; simpl in |- *; apply INR_eq; apply Rplus_eq_reg_l with 1;
+ simpl in H4; simpl; apply INR_eq; apply Rplus_eq_reg_l with 1;
do 2 rewrite (Rplus_comm 1); do 2 rewrite <- S_INR;
rewrite H4; reflexivity.
- intros; unfold constant_D_eq, open_interval in |- *; intros;
+ intros; unfold constant_D_eq, open_interval; intros;
unfold constant_D_eq, open_interval in H6;
assert (H9 : (S i < pred (Rlength (cons r1 (cons r2 l))))%nat).
- simpl in |- *; simpl in H0; apply lt_n_S; assumption.
+ simpl; simpl in H0; apply lt_n_S; assumption.
assert (H10 := H6 _ H9); apply H10; assumption.
Qed.
@@ -278,19 +278,19 @@ Proof.
discriminate.
intros; induction lf1 as [| r3 lf1 Hreclf1].
reflexivity.
- simpl in |- *; cut (r = r1).
+ simpl; cut (r = r1).
intro; rewrite H3; rewrite (H0 lf1 r b).
ring.
rewrite H3; apply StepFun_P7 with a r r3; [ right; assumption | assumption ].
clear H H0 Hreclf1 r0; unfold adapted_couple in H1; decompose [and] H1;
- intros; simpl in H4; rewrite H4; unfold Rmin in |- *;
+ intros; simpl in H4; rewrite H4; unfold Rmin;
case (Rle_dec a b); intro; [ assumption | reflexivity ].
unfold adapted_couple in H1; decompose [and] H1; intros; apply Rle_antisym.
- apply (H3 0%nat); simpl in |- *; apply lt_O_Sn.
+ apply (H3 0%nat); simpl; apply lt_O_Sn.
simpl in H5; rewrite H2 in H5; rewrite H5; replace (Rmin b b) with (Rmax a b);
[ rewrite <- H4; apply RList_P7;
- [ assumption | simpl in |- *; right; left; reflexivity ]
- | unfold Rmin, Rmax in |- *; case (Rle_dec b b); case (Rle_dec a b); intros;
+ [ assumption | simpl; right; left; reflexivity ]
+ | unfold Rmin, Rmax; case (Rle_dec b b); case (Rle_dec a b); intros;
try assumption || reflexivity ].
Qed.
@@ -303,10 +303,10 @@ Proof.
[ simpl in H4; discriminate
| induction l as [| r0 l Hrecl0];
[ simpl in H3; simpl in H2; generalize H3; generalize H2;
- unfold Rmin, Rmax in |- *; case (Rle_dec a b);
+ unfold Rmin, Rmax; case (Rle_dec a b);
intros; elim H0; rewrite <- H5; rewrite <- H7;
reflexivity
- | simpl in |- *; do 2 apply le_n_S; apply le_O_n ] ].
+ | simpl; do 2 apply le_n_S; apply le_O_n ] ].
Qed.
Lemma StepFun_P10 :
@@ -320,12 +320,12 @@ Proof.
intros; unfold adapted_couple in H0; decompose [and] H0; simpl in H4;
discriminate.
intros; case (Req_dec a b); intro.
- exists (cons a nil); exists nil; unfold adapted_couple_opt in |- *;
- unfold adapted_couple in |- *; unfold ordered_Rlist in |- *;
+ exists (cons a nil); exists nil; unfold adapted_couple_opt;
+ unfold adapted_couple; unfold ordered_Rlist;
repeat split; try (intros; simpl in H3; elim (lt_n_O _ H3)).
- simpl in |- *; rewrite <- H2; unfold Rmin in |- *; case (Rle_dec a a); intro;
+ simpl; rewrite <- H2; unfold Rmin; case (Rle_dec a a); intro;
reflexivity.
- simpl in |- *; rewrite <- H2; unfold Rmax in |- *; case (Rle_dec a a); intro;
+ simpl; rewrite <- H2; unfold Rmax; case (Rle_dec a a); intro;
reflexivity.
elim (RList_P20 _ (StepFun_P9 H1 H2)); intros t1 [t2 [t3 H3]];
induction lf as [| r1 lf Hreclf].
@@ -340,32 +340,32 @@ Proof.
apply H6.
rewrite <- Hyp_eq; rewrite H3 in H1; unfold adapted_couple in H1;
decompose [and] H1; clear H1; simpl in H9; rewrite H9;
- unfold Rmin in |- *; case (Rle_dec a b); intro;
+ unfold Rmin; case (Rle_dec a b); intro;
[ reflexivity | elim n; assumption ].
elim H6; clear H6; intros l' [lf' H6]; case (Req_dec t2 b); intro.
exists (cons a (cons b nil)); exists (cons r1 nil);
- unfold adapted_couple_opt in |- *; unfold adapted_couple in |- *;
+ unfold adapted_couple_opt; unfold adapted_couple;
repeat split.
- unfold ordered_Rlist in |- *; intros; simpl in H8; inversion H8;
- [ simpl in |- *; assumption | elim (le_Sn_O _ H10) ].
- simpl in |- *; unfold Rmin in |- *; case (Rle_dec a b); intro;
+ unfold ordered_Rlist; intros; simpl in H8; inversion H8;
+ [ simpl; assumption | elim (le_Sn_O _ H10) ].
+ simpl; unfold Rmin; case (Rle_dec a b); intro;
[ reflexivity | elim n; assumption ].
- simpl in |- *; unfold Rmax in |- *; case (Rle_dec a b); intro;
+ simpl; unfold Rmax; case (Rle_dec a b); intro;
[ reflexivity | elim n; assumption ].
intros; simpl in H8; inversion H8.
- unfold constant_D_eq, open_interval in |- *; intros; simpl in |- *;
+ unfold constant_D_eq, open_interval; intros; simpl;
simpl in H9; rewrite H3 in H1; unfold adapted_couple in H1;
decompose [and] H1; apply (H16 0%nat).
- simpl in |- *; apply lt_O_Sn.
- unfold open_interval in |- *; simpl in |- *; rewrite H7; simpl in H13;
- rewrite H13; unfold Rmin in |- *; case (Rle_dec a b);
+ simpl; apply lt_O_Sn.
+ unfold open_interval; simpl; rewrite H7; simpl in H13;
+ rewrite H13; unfold Rmin; case (Rle_dec a b);
intro; [ assumption | elim n; assumption ].
elim (le_Sn_O _ H10).
intros; simpl in H8; elim (lt_n_O _ H8).
intros; simpl in H8; inversion H8;
- [ simpl in |- *; assumption | elim (le_Sn_O _ H10) ].
+ [ simpl; assumption | elim (le_Sn_O _ H10) ].
assert (Hyp_min : Rmin t2 b = t2).
- unfold Rmin in |- *; case (Rle_dec t2 b); intro;
+ unfold Rmin; case (Rle_dec t2 b); intro;
[ reflexivity | elim n; assumption ].
unfold adapted_couple in H6; elim H6; clear H6; intros;
elim (RList_P20 _ (StepFun_P9 H6 H7)); intros s1 [s2 [s3 H9]];
@@ -377,141 +377,141 @@ Proof.
exists (cons t1 (cons s2 s3)); exists (cons r1 lf'); rewrite H3 in H1;
rewrite H9 in H6; unfold adapted_couple in H6, H1;
decompose [and] H1; decompose [and] H6; clear H1 H6;
- unfold adapted_couple_opt in |- *; unfold adapted_couple in |- *;
+ unfold adapted_couple_opt; unfold adapted_couple;
repeat split.
- unfold ordered_Rlist in |- *; intros; simpl in H1;
+ unfold ordered_Rlist; intros; simpl in H1;
induction i as [| i Hreci].
- simpl in |- *; apply Rle_trans with s1.
+ simpl; apply Rle_trans with s1.
replace s1 with t2.
apply (H12 0%nat).
- simpl in |- *; apply lt_O_Sn.
- simpl in H19; rewrite H19; symmetry in |- *; apply Hyp_min.
- apply (H16 0%nat); simpl in |- *; apply lt_O_Sn.
- change (pos_Rl (cons s2 s3) i <= pos_Rl (cons s2 s3) (S i)) in |- *;
- apply (H16 (S i)); simpl in |- *; assumption.
- simpl in |- *; simpl in H14; rewrite H14; reflexivity.
- simpl in |- *; simpl in H18; rewrite H18; unfold Rmax in |- *;
+ simpl; apply lt_O_Sn.
+ simpl in H19; rewrite H19; symmetry ; apply Hyp_min.
+ apply (H16 0%nat); simpl; apply lt_O_Sn.
+ change (pos_Rl (cons s2 s3) i <= pos_Rl (cons s2 s3) (S i));
+ apply (H16 (S i)); simpl; assumption.
+ simpl; simpl in H14; rewrite H14; reflexivity.
+ simpl; simpl in H18; rewrite H18; unfold Rmax;
case (Rle_dec a b); case (Rle_dec t2 b); intros; reflexivity || elim n;
assumption.
- simpl in |- *; simpl in H20; apply H20.
- intros; simpl in H1; unfold constant_D_eq, open_interval in |- *; intros;
+ simpl; simpl in H20; apply H20.
+ intros; simpl in H1; unfold constant_D_eq, open_interval; intros;
induction i as [| i Hreci].
- simpl in |- *; simpl in H6; case (total_order_T x t2); intro.
+ simpl; simpl in H6; case (total_order_T x t2); intro.
elim s; intro.
apply (H17 0%nat);
- [ simpl in |- *; apply lt_O_Sn
- | unfold open_interval in |- *; simpl in |- *; elim H6; intros; split;
+ [ simpl; apply lt_O_Sn
+ | unfold open_interval; simpl; elim H6; intros; split;
assumption ].
rewrite b0; assumption.
rewrite H10; apply (H22 0%nat);
- [ simpl in |- *; apply lt_O_Sn
- | unfold open_interval in |- *; simpl in |- *; replace s1 with t2;
+ [ simpl; apply lt_O_Sn
+ | unfold open_interval; simpl; replace s1 with t2;
[ elim H6; intros; split; assumption
| simpl in H19; rewrite H19; rewrite Hyp_min; reflexivity ] ].
- simpl in |- *; simpl in H6; apply (H22 (S i));
- [ simpl in |- *; assumption
- | unfold open_interval in |- *; simpl in |- *; apply H6 ].
+ simpl; simpl in H6; apply (H22 (S i));
+ [ simpl; assumption
+ | unfold open_interval; simpl; apply H6 ].
intros; simpl in H1; rewrite H10;
change
(pos_Rl (cons r2 lf') i <> pos_Rl (cons r2 lf') (S i) \/
f (pos_Rl (cons s1 (cons s2 s3)) (S i)) <> pos_Rl (cons r2 lf') i)
- in |- *; rewrite <- H9; elim H8; intros; apply H6;
- simpl in |- *; apply H1.
+ ; rewrite <- H9; elim H8; intros; apply H6;
+ simpl; apply H1.
intros; induction i as [| i Hreci].
- simpl in |- *; red in |- *; intro; elim Hyp_eq; apply Rle_antisym.
- apply (H12 0%nat); simpl in |- *; apply lt_O_Sn.
+ simpl; red; intro; elim Hyp_eq; apply Rle_antisym.
+ apply (H12 0%nat); simpl; apply lt_O_Sn.
rewrite <- Hyp_min; rewrite H6; simpl in H19; rewrite <- H19;
- apply (H16 0%nat); simpl in |- *; apply lt_O_Sn.
- elim H8; intros; rewrite H9 in H21; apply (H21 (S i)); simpl in |- *;
+ apply (H16 0%nat); simpl; apply lt_O_Sn.
+ elim H8; intros; rewrite H9 in H21; apply (H21 (S i)); simpl;
simpl in H1; apply H1.
exists (cons t1 l'); exists (cons r1 (cons r2 lf')); rewrite H9 in H6;
rewrite H3 in H1; unfold adapted_couple in H1, H6;
decompose [and] H6; decompose [and] H1; clear H6 H1;
- unfold adapted_couple_opt in |- *; unfold adapted_couple in |- *;
+ unfold adapted_couple_opt; unfold adapted_couple;
repeat split.
- rewrite H9; unfold ordered_Rlist in |- *; intros; simpl in H1;
+ rewrite H9; unfold ordered_Rlist; intros; simpl in H1;
induction i as [| i Hreci].
- simpl in |- *; replace s1 with t2.
- apply (H16 0%nat); simpl in |- *; apply lt_O_Sn.
+ simpl; replace s1 with t2.
+ apply (H16 0%nat); simpl; apply lt_O_Sn.
simpl in H14; rewrite H14; rewrite Hyp_min; reflexivity.
change
(pos_Rl (cons s1 (cons s2 s3)) i <= pos_Rl (cons s1 (cons s2 s3)) (S i))
- in |- *; apply (H12 i); simpl in |- *; apply lt_S_n;
+ ; apply (H12 i); simpl; apply lt_S_n;
assumption.
- simpl in |- *; simpl in H19; apply H19.
- rewrite H9; simpl in |- *; simpl in H13; rewrite H13; unfold Rmax in |- *;
+ simpl; simpl in H19; apply H19.
+ rewrite H9; simpl; simpl in H13; rewrite H13; unfold Rmax;
case (Rle_dec t2 b); case (Rle_dec a b); intros; reflexivity || elim n;
assumption.
- rewrite H9; simpl in |- *; simpl in H15; rewrite H15; reflexivity.
- intros; simpl in H1; unfold constant_D_eq, open_interval in |- *; intros;
+ rewrite H9; simpl; simpl in H15; rewrite H15; reflexivity.
+ intros; simpl in H1; unfold constant_D_eq, open_interval; intros;
induction i as [| i Hreci].
- simpl in |- *; rewrite H9 in H6; simpl in H6; apply (H22 0%nat).
- simpl in |- *; apply lt_O_Sn.
- unfold open_interval in |- *; simpl in |- *.
+ simpl; rewrite H9 in H6; simpl in H6; apply (H22 0%nat).
+ simpl; apply lt_O_Sn.
+ unfold open_interval; simpl.
replace t2 with s1.
assumption.
simpl in H14; rewrite H14; rewrite Hyp_min; reflexivity.
- change (f x = pos_Rl (cons r2 lf') i) in |- *; clear Hreci; apply (H17 i).
- simpl in |- *; rewrite H9 in H1; simpl in H1; apply lt_S_n; apply H1.
- rewrite H9 in H6; unfold open_interval in |- *; apply H6.
+ change (f x = pos_Rl (cons r2 lf') i); clear Hreci; apply (H17 i).
+ simpl; rewrite H9 in H1; simpl in H1; apply lt_S_n; apply H1.
+ rewrite H9 in H6; unfold open_interval; apply H6.
intros; simpl in H1; induction i as [| i Hreci].
- simpl in |- *; rewrite H9; right; simpl in |- *; replace s1 with t2.
+ simpl; rewrite H9; right; simpl; replace s1 with t2.
assumption.
simpl in H14; rewrite H14; rewrite Hyp_min; reflexivity.
elim H8; intros; apply (H6 i).
- simpl in |- *; apply lt_S_n; apply H1.
+ simpl; apply lt_S_n; apply H1.
intros; rewrite H9; induction i as [| i Hreci].
- simpl in |- *; red in |- *; intro; elim Hyp_eq; apply Rle_antisym.
- apply (H16 0%nat); simpl in |- *; apply lt_O_Sn.
+ simpl; red; intro; elim Hyp_eq; apply Rle_antisym.
+ apply (H16 0%nat); simpl; apply lt_O_Sn.
rewrite <- Hyp_min; rewrite H6; simpl in H14; rewrite <- H14; right;
reflexivity.
elim H8; intros; rewrite <- H9; apply (H21 i); rewrite H9; rewrite H9 in H1;
- simpl in |- *; simpl in H1; apply lt_S_n; apply H1.
+ simpl; simpl in H1; apply lt_S_n; apply H1.
exists (cons t1 l'); exists (cons r1 (cons r2 lf')); rewrite H9 in H6;
rewrite H3 in H1; unfold adapted_couple in H1, H6;
decompose [and] H6; decompose [and] H1; clear H6 H1;
- unfold adapted_couple_opt in |- *; unfold adapted_couple in |- *;
+ unfold adapted_couple_opt; unfold adapted_couple;
repeat split.
- rewrite H9; unfold ordered_Rlist in |- *; intros; simpl in H1;
+ rewrite H9; unfold ordered_Rlist; intros; simpl in H1;
induction i as [| i Hreci].
- simpl in |- *; replace s1 with t2.
- apply (H15 0%nat); simpl in |- *; apply lt_O_Sn.
+ simpl; replace s1 with t2.
+ apply (H15 0%nat); simpl; apply lt_O_Sn.
simpl in H13; rewrite H13; rewrite Hyp_min; reflexivity.
change
(pos_Rl (cons s1 (cons s2 s3)) i <= pos_Rl (cons s1 (cons s2 s3)) (S i))
- in |- *; apply (H11 i); simpl in |- *; apply lt_S_n;
+ ; apply (H11 i); simpl; apply lt_S_n;
assumption.
- simpl in |- *; simpl in H18; apply H18.
- rewrite H9; simpl in |- *; simpl in H12; rewrite H12; unfold Rmax in |- *;
+ simpl; simpl in H18; apply H18.
+ rewrite H9; simpl; simpl in H12; rewrite H12; unfold Rmax;
case (Rle_dec t2 b); case (Rle_dec a b); intros; reflexivity || elim n;
assumption.
- rewrite H9; simpl in |- *; simpl in H14; rewrite H14; reflexivity.
- intros; simpl in H1; unfold constant_D_eq, open_interval in |- *; intros;
+ rewrite H9; simpl; simpl in H14; rewrite H14; reflexivity.
+ intros; simpl in H1; unfold constant_D_eq, open_interval; intros;
induction i as [| i Hreci].
- simpl in |- *; rewrite H9 in H6; simpl in H6; apply (H21 0%nat).
- simpl in |- *; apply lt_O_Sn.
- unfold open_interval in |- *; simpl in |- *; replace t2 with s1.
+ simpl; rewrite H9 in H6; simpl in H6; apply (H21 0%nat).
+ simpl; apply lt_O_Sn.
+ unfold open_interval; simpl; replace t2 with s1.
assumption.
simpl in H13; rewrite H13; rewrite Hyp_min; reflexivity.
- change (f x = pos_Rl (cons r2 lf') i) in |- *; clear Hreci; apply (H16 i).
- simpl in |- *; rewrite H9 in H1; simpl in H1; apply lt_S_n; apply H1.
- rewrite H9 in H6; unfold open_interval in |- *; apply H6.
+ change (f x = pos_Rl (cons r2 lf') i); clear Hreci; apply (H16 i).
+ simpl; rewrite H9 in H1; simpl in H1; apply lt_S_n; apply H1.
+ rewrite H9 in H6; unfold open_interval; apply H6.
intros; simpl in H1; induction i as [| i Hreci].
- simpl in |- *; left; assumption.
+ simpl; left; assumption.
elim H8; intros; apply (H6 i).
- simpl in |- *; apply lt_S_n; apply H1.
+ simpl; apply lt_S_n; apply H1.
intros; rewrite H9; induction i as [| i Hreci].
- simpl in |- *; red in |- *; intro; elim Hyp_eq; apply Rle_antisym.
- apply (H15 0%nat); simpl in |- *; apply lt_O_Sn.
+ simpl; red; intro; elim Hyp_eq; apply Rle_antisym.
+ apply (H15 0%nat); simpl; apply lt_O_Sn.
rewrite <- Hyp_min; rewrite H6; simpl in H13; rewrite <- H13; right;
reflexivity.
elim H8; intros; rewrite <- H9; apply (H20 i); rewrite H9; rewrite H9 in H1;
- simpl in |- *; simpl in H1; apply lt_S_n; apply H1.
+ simpl; simpl in H1; apply lt_S_n; apply H1.
rewrite H3 in H1; clear H4; unfold adapted_couple in H1; decompose [and] H1;
clear H1; clear H H7 H9; cut (Rmax a b = b);
[ intro; rewrite H in H5; rewrite <- H5; apply RList_P7;
- [ assumption | simpl in |- *; right; left; reflexivity ]
- | unfold Rmax in |- *; case (Rle_dec a b); intro;
+ [ assumption | simpl; right; left; reflexivity ]
+ | unfold Rmax; case (Rle_dec a b); intro;
[ reflexivity | elim n; assumption ] ].
Qed.
@@ -534,7 +534,7 @@ Proof.
simpl in H9; rewrite H9 in H16; cut (r1 <= Rmax a b).
intro; elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H17 H16)).
rewrite <- H4; apply RList_P7;
- [ assumption | simpl in |- *; right; left; reflexivity ].
+ [ assumption | simpl; right; left; reflexivity ].
clear Hrecs3; induction lf2 as [| r5 lf2 Hreclf2].
simpl in H11; discriminate.
clear Hreclf2; assert (H17 : r3 = r4).
@@ -544,31 +544,31 @@ Proof.
simpl in H18; rewrite <- (H17 x).
rewrite <- (H18 x).
reflexivity.
- rewrite <- H12; unfold x in |- *; split.
+ rewrite <- H12; unfold x; split.
apply Rmult_lt_reg_l with 2;
[ prove_sup0
- | unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
+ | unfold Rdiv; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
rewrite <- Rinv_r_sym;
[ rewrite Rmult_1_l; rewrite double; apply Rplus_lt_compat_l; assumption
| discrR ] ].
apply Rmult_lt_reg_l with 2;
[ prove_sup0
- | unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
+ | unfold Rdiv; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
rewrite <- Rinv_r_sym;
[ rewrite Rmult_1_l; rewrite (Rplus_comm r); rewrite double;
apply Rplus_lt_compat_l; assumption
| discrR ] ].
- unfold x in |- *; split.
+ unfold x; split.
apply Rmult_lt_reg_l with 2;
[ prove_sup0
- | unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
+ | unfold Rdiv; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
rewrite <- Rinv_r_sym;
[ rewrite Rmult_1_l; rewrite double; apply Rplus_lt_compat_l; assumption
| discrR ] ].
apply Rlt_trans with s2;
[ apply Rmult_lt_reg_l with 2;
[ prove_sup0
- | unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2));
+ | unfold Rdiv; rewrite <- (Rmult_comm (/ 2));
rewrite <- Rmult_assoc; rewrite <- Rinv_r_sym;
[ rewrite Rmult_1_l; rewrite (Rplus_comm r); rewrite double;
apply Rplus_lt_compat_l; assumption
@@ -576,8 +576,8 @@ Proof.
| assumption ].
assert (H18 : f s2 = r3).
apply (H8 0%nat);
- [ simpl in |- *; apply lt_O_Sn
- | unfold open_interval in |- *; simpl in |- *; split; assumption ].
+ [ simpl; apply lt_O_Sn
+ | unfold open_interval; simpl; split; assumption ].
assert (H19 : r3 = r5).
assert (H19 := H7 1%nat); simpl in H19;
assert (H20 := H19 (lt_n_S _ _ (lt_O_Sn _))); elim H20;
@@ -587,18 +587,18 @@ Proof.
rewrite <- (H22 (lt_O_Sn _) x).
rewrite <- (H23 (lt_n_S _ _ (lt_O_Sn _)) x).
reflexivity.
- unfold open_interval in |- *; simpl in |- *; unfold x in |- *; split.
+ unfold open_interval; simpl; unfold x; split.
apply Rmult_lt_reg_l with 2;
[ prove_sup0
- | unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
+ | unfold Rdiv; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
rewrite <- Rinv_r_sym;
[ rewrite Rmult_1_l; rewrite double; apply Rplus_lt_compat_l;
- unfold Rmin in |- *; case (Rle_dec r1 r0); intro;
+ unfold Rmin; case (Rle_dec r1 r0); intro;
assumption
| discrR ] ].
apply Rmult_lt_reg_l with 2;
[ prove_sup0
- | unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
+ | unfold Rdiv; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
rewrite <- Rinv_r_sym;
[ rewrite Rmult_1_l; rewrite double;
apply Rlt_le_trans with (r0 + Rmin r1 r0);
@@ -606,20 +606,20 @@ Proof.
assumption
| apply Rplus_le_compat_l; apply Rmin_r ]
| discrR ] ].
- unfold open_interval in |- *; simpl in |- *; unfold x in |- *; split.
+ unfold open_interval; simpl; unfold x; split.
apply Rlt_trans with s2;
[ assumption
| apply Rmult_lt_reg_l with 2;
[ prove_sup0
- | unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2));
+ | unfold Rdiv; rewrite <- (Rmult_comm (/ 2));
rewrite <- Rmult_assoc; rewrite <- Rinv_r_sym;
[ rewrite Rmult_1_l; rewrite double; apply Rplus_lt_compat_l;
- unfold Rmin in |- *; case (Rle_dec r1 r0);
+ unfold Rmin; case (Rle_dec r1 r0);
intro; assumption
| discrR ] ] ].
apply Rmult_lt_reg_l with 2;
[ prove_sup0
- | unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
+ | unfold Rdiv; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
rewrite <- Rinv_r_sym;
[ rewrite Rmult_1_l; rewrite double;
apply Rlt_le_trans with (r1 + Rmin r1 r0);
@@ -636,20 +636,20 @@ Proof.
| elim H24; rewrite <- H17; assumption ].
elim H2; clear H2; intros; assert (H17 := H16 0%nat); simpl in H17;
elim (H17 (lt_O_Sn _)); assumption.
- rewrite <- H0; rewrite H12; apply (H7 0%nat); simpl in |- *; apply lt_O_Sn.
+ rewrite <- H0; rewrite H12; apply (H7 0%nat); simpl; apply lt_O_Sn.
Qed.
Lemma StepFun_P12 :
forall (a b:R) (f:R -> R) (l lf:Rlist),
adapted_couple_opt f a b l lf -> adapted_couple_opt f b a l lf.
Proof.
- unfold adapted_couple_opt in |- *; unfold adapted_couple in |- *; intros;
+ unfold adapted_couple_opt; unfold adapted_couple; intros;
decompose [and] H; clear H; repeat split; try assumption.
- rewrite H0; unfold Rmin in |- *; case (Rle_dec a b); intro;
+ rewrite H0; unfold Rmin; case (Rle_dec a b); intro;
case (Rle_dec b a); intro; try reflexivity.
apply Rle_antisym; assumption.
apply Rle_antisym; auto with real.
- rewrite H3; unfold Rmax in |- *; case (Rle_dec a b); intro;
+ rewrite H3; unfold Rmax; case (Rle_dec a b); intro;
case (Rle_dec b a); intro; try reflexivity.
apply Rle_antisym; assumption.
apply Rle_antisym; auto with real.
@@ -689,10 +689,10 @@ Proof.
case (Req_dec a b); intro.
rewrite (StepFun_P8 H2 H4); rewrite (StepFun_P8 H H4); reflexivity.
assert (Hyp_min : Rmin a b = a).
- unfold Rmin in |- *; case (Rle_dec a b); intro;
+ unfold Rmin; case (Rle_dec a b); intro;
[ reflexivity | elim n; assumption ].
assert (Hyp_max : Rmax a b = b).
- unfold Rmax in |- *; case (Rle_dec a b); intro;
+ unfold Rmax; case (Rle_dec a b); intro;
[ reflexivity | elim n; assumption ].
elim (RList_P20 _ (StepFun_P9 H H4)); intros s1 [s2 [s3 H5]]; rewrite H5 in H;
rewrite H5; induction lf1 as [| r3 lf1 Hreclf1].
@@ -716,34 +716,34 @@ Proof.
rewrite <- (H20 (lt_O_Sn _) x).
reflexivity.
assert (H21 := H13 0%nat (lt_O_Sn _)); simpl in H21; elim H21; intro;
- [ idtac | elim H7; assumption ]; unfold x in |- *;
+ [ idtac | elim H7; assumption ]; unfold x;
split.
apply Rmult_lt_reg_l with 2;
[ prove_sup0
- | unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
+ | unfold Rdiv; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
rewrite <- Rinv_r_sym;
[ rewrite Rmult_1_l; rewrite double; apply Rplus_lt_compat_l; apply H
| discrR ] ].
apply Rmult_lt_reg_l with 2;
[ prove_sup0
- | unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
+ | unfold Rdiv; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
rewrite <- Rinv_r_sym;
[ rewrite Rmult_1_l; rewrite <- (Rplus_comm r1); rewrite double;
apply Rplus_lt_compat_l; apply H
| discrR ] ].
rewrite <- H6; assert (H21 := H13 0%nat (lt_O_Sn _)); simpl in H21; elim H21;
- intro; [ idtac | elim H7; assumption ]; unfold x in |- *;
+ intro; [ idtac | elim H7; assumption ]; unfold x;
split.
apply Rmult_lt_reg_l with 2;
[ prove_sup0
- | unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
+ | unfold Rdiv; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
rewrite <- Rinv_r_sym;
[ rewrite Rmult_1_l; rewrite double; apply Rplus_lt_compat_l; apply H
| discrR ] ].
apply Rlt_le_trans with r1;
[ apply Rmult_lt_reg_l with 2;
[ prove_sup0
- | unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2));
+ | unfold Rdiv; rewrite <- (Rmult_comm (/ 2));
rewrite <- Rmult_assoc; rewrite <- Rinv_r_sym;
[ rewrite Rmult_1_l; rewrite <- (Rplus_comm r1); rewrite double;
apply Rplus_lt_compat_l; apply H
@@ -752,64 +752,64 @@ Proof.
eapply StepFun_P13.
apply H4.
apply H2.
- unfold adapted_couple_opt in |- *; split.
+ unfold adapted_couple_opt; split.
apply H.
rewrite H5 in H3; apply H3.
assert (H8 : r1 <= s2).
eapply StepFun_P13.
apply H4.
apply H2.
- unfold adapted_couple_opt in |- *; split.
+ unfold adapted_couple_opt; split.
apply H.
rewrite H5 in H3; apply H3.
elim H7; intro.
- simpl in |- *; elim H8; intro.
+ simpl; elim H8; intro.
replace (r4 * (s2 - s1)) with (r3 * (r1 - r) + r3 * (s2 - r1));
[ idtac | rewrite H9; rewrite H6; ring ].
rewrite Rplus_assoc; apply Rplus_eq_compat_l;
change
(Int_SF lf1 (cons r1 r2) = Int_SF (cons r3 lf2) (cons r1 (cons s2 s3)))
- in |- *; apply H0 with r1 b.
+ ; apply H0 with r1 b.
unfold adapted_couple in H2; decompose [and] H2; clear H2;
replace b with (Rmax a b).
rewrite <- H12; apply RList_P7;
- [ assumption | simpl in |- *; right; left; reflexivity ].
+ [ assumption | simpl; right; left; reflexivity ].
eapply StepFun_P7.
apply H1.
apply H2.
- unfold adapted_couple_opt in |- *; split.
+ unfold adapted_couple_opt; split.
apply StepFun_P7 with a a r3.
apply H1.
unfold adapted_couple in H2, H; decompose [and] H2; decompose [and] H;
clear H H2; assert (H20 : r = a).
simpl in H13; rewrite H13; apply Hyp_min.
- unfold adapted_couple in |- *; repeat split.
- unfold ordered_Rlist in |- *; intros; simpl in H; induction i as [| i Hreci].
- simpl in |- *; rewrite <- H20; apply (H11 0%nat).
- simpl in |- *; apply lt_O_Sn.
+ unfold adapted_couple; repeat split.
+ unfold ordered_Rlist; intros; simpl in H; induction i as [| i Hreci].
+ simpl; rewrite <- H20; apply (H11 0%nat).
+ simpl; apply lt_O_Sn.
induction i as [| i Hreci0].
- simpl in |- *; assumption.
- change (pos_Rl (cons s2 s3) i <= pos_Rl (cons s2 s3) (S i)) in |- *;
- apply (H15 (S i)); simpl in |- *; apply lt_S_n; assumption.
- simpl in |- *; symmetry in |- *; apply Hyp_min.
+ simpl; assumption.
+ change (pos_Rl (cons s2 s3) i <= pos_Rl (cons s2 s3) (S i));
+ apply (H15 (S i)); simpl; apply lt_S_n; assumption.
+ simpl; symmetry ; apply Hyp_min.
rewrite <- H17; reflexivity.
- simpl in H19; simpl in |- *; rewrite H19; reflexivity.
- intros; simpl in H; unfold constant_D_eq, open_interval in |- *; intros;
+ simpl in H19; simpl; rewrite H19; reflexivity.
+ intros; simpl in H; unfold constant_D_eq, open_interval; intros;
induction i as [| i Hreci].
- simpl in |- *; apply (H16 0%nat).
- simpl in |- *; apply lt_O_Sn.
- simpl in H2; rewrite <- H20 in H2; unfold open_interval in |- *;
- simpl in |- *; apply H2.
+ simpl; apply (H16 0%nat).
+ simpl; apply lt_O_Sn.
+ simpl in H2; rewrite <- H20 in H2; unfold open_interval;
+ simpl; apply H2.
clear Hreci; induction i as [| i Hreci].
- simpl in |- *; simpl in H2; rewrite H9; apply (H21 0%nat).
- simpl in |- *; apply lt_O_Sn.
- unfold open_interval in |- *; simpl in |- *; elim H2; intros; split.
+ simpl; simpl in H2; rewrite H9; apply (H21 0%nat).
+ simpl; apply lt_O_Sn.
+ unfold open_interval; simpl; elim H2; intros; split.
apply Rle_lt_trans with r1; try assumption; rewrite <- H6; apply (H11 0%nat);
- simpl in |- *; apply lt_O_Sn.
+ simpl; apply lt_O_Sn.
assumption.
- clear Hreci; simpl in |- *; apply (H21 (S i)).
- simpl in |- *; apply lt_S_n; assumption.
- unfold open_interval in |- *; apply H2.
+ clear Hreci; simpl; apply (H21 (S i)).
+ simpl; apply lt_S_n; assumption.
+ unfold open_interval; apply H2.
elim H3; clear H3; intros; split.
rewrite H9;
change
@@ -817,64 +817,64 @@ Proof.
(i < pred (Rlength (cons r4 lf2)))%nat ->
pos_Rl (cons r4 lf2) i <> pos_Rl (cons r4 lf2) (S i) \/
f (pos_Rl (cons s1 (cons s2 s3)) (S i)) <> pos_Rl (cons r4 lf2) i)
- in |- *; rewrite <- H5; apply H3.
+ ; rewrite <- H5; apply H3.
rewrite H5 in H11; intros; simpl in H12; induction i as [| i Hreci].
- simpl in |- *; red in |- *; intro; rewrite H13 in H10;
+ simpl; red; intro; rewrite H13 in H10;
elim (Rlt_irrefl _ H10).
- clear Hreci; apply (H11 (S i)); simpl in |- *; apply H12.
+ clear Hreci; apply (H11 (S i)); simpl; apply H12.
rewrite H9; rewrite H10; rewrite H6; apply Rplus_eq_compat_l; rewrite <- H10;
apply H0 with r1 b.
unfold adapted_couple in H2; decompose [and] H2; clear H2;
replace b with (Rmax a b).
rewrite <- H12; apply RList_P7;
- [ assumption | simpl in |- *; right; left; reflexivity ].
+ [ assumption | simpl; right; left; reflexivity ].
eapply StepFun_P7.
apply H1.
apply H2.
- unfold adapted_couple_opt in |- *; split.
+ unfold adapted_couple_opt; split.
apply StepFun_P7 with a a r3.
apply H1.
unfold adapted_couple in H2, H; decompose [and] H2; decompose [and] H;
clear H H2; assert (H20 : r = a).
simpl in H13; rewrite H13; apply Hyp_min.
- unfold adapted_couple in |- *; repeat split.
- unfold ordered_Rlist in |- *; intros; simpl in H; induction i as [| i Hreci].
- simpl in |- *; rewrite <- H20; apply (H11 0%nat); simpl in |- *;
+ unfold adapted_couple; repeat split.
+ unfold ordered_Rlist; intros; simpl in H; induction i as [| i Hreci].
+ simpl; rewrite <- H20; apply (H11 0%nat); simpl;
apply lt_O_Sn.
- rewrite H10; apply (H15 (S i)); simpl in |- *; assumption.
- simpl in |- *; symmetry in |- *; apply Hyp_min.
+ rewrite H10; apply (H15 (S i)); simpl; assumption.
+ simpl; symmetry ; apply Hyp_min.
rewrite <- H17; rewrite H10; reflexivity.
- simpl in H19; simpl in |- *; apply H19.
- intros; simpl in H; unfold constant_D_eq, open_interval in |- *; intros;
+ simpl in H19; simpl; apply H19.
+ intros; simpl in H; unfold constant_D_eq, open_interval; intros;
induction i as [| i Hreci].
- simpl in |- *; apply (H16 0%nat).
- simpl in |- *; apply lt_O_Sn.
- simpl in H2; rewrite <- H20 in H2; unfold open_interval in |- *;
- simpl in |- *; apply H2.
- clear Hreci; simpl in |- *; apply (H21 (S i)).
- simpl in |- *; assumption.
- rewrite <- H10; unfold open_interval in |- *; apply H2.
+ simpl; apply (H16 0%nat).
+ simpl; apply lt_O_Sn.
+ simpl in H2; rewrite <- H20 in H2; unfold open_interval;
+ simpl; apply H2.
+ clear Hreci; simpl; apply (H21 (S i)).
+ simpl; assumption.
+ rewrite <- H10; unfold open_interval; apply H2.
elim H3; clear H3; intros; split.
rewrite H5 in H3; intros; apply (H3 (S i)).
- simpl in |- *; replace (Rlength lf2) with (S (pred (Rlength lf2))).
+ simpl; replace (Rlength lf2) with (S (pred (Rlength lf2))).
apply lt_n_S; apply H12.
- symmetry in |- *; apply S_pred with 0%nat; apply neq_O_lt; red in |- *;
+ symmetry ; apply S_pred with 0%nat; apply neq_O_lt; red;
intro; rewrite <- H13 in H12; elim (lt_n_O _ H12).
intros; simpl in H12; rewrite H10; rewrite H5 in H11; apply (H11 (S i));
- simpl in |- *; apply lt_n_S; apply H12.
- simpl in |- *; rewrite H9; unfold Rminus in |- *; rewrite Rplus_opp_r;
+ simpl; apply lt_n_S; apply H12.
+ simpl; rewrite H9; unfold Rminus; rewrite Rplus_opp_r;
rewrite Rmult_0_r; rewrite Rplus_0_l;
change
(Int_SF lf1 (cons r1 r2) = Int_SF (cons r4 lf2) (cons s1 (cons s2 s3)))
- in |- *; eapply H0.
+ ; eapply H0.
apply H1.
- 2: rewrite H5 in H3; unfold adapted_couple_opt in |- *; split; assumption.
+ 2: rewrite H5 in H3; unfold adapted_couple_opt; split; assumption.
assert (H10 : r = a).
unfold adapted_couple in H2; decompose [and] H2; clear H2; simpl in H12;
rewrite H12; apply Hyp_min.
rewrite <- H9; rewrite H10; apply StepFun_P7 with a r r3;
[ apply H1
- | pattern a at 2 in |- *; rewrite <- H10; pattern r at 2 in |- *; rewrite H9;
+ | pattern a at 2; rewrite <- H10; pattern r at 2; rewrite H9;
apply H2 ].
Qed.
@@ -918,12 +918,12 @@ Qed.
Lemma StepFun_P18 :
forall a b c:R, RiemannInt_SF (mkStepFun (StepFun_P4 a b c)) = c * (b - a).
Proof.
- intros; unfold RiemannInt_SF in |- *; case (Rle_dec a b); intro.
+ intros; unfold RiemannInt_SF; case (Rle_dec a b); intro.
replace
(Int_SF (subdivision_val (mkStepFun (StepFun_P4 a b c)))
(subdivision (mkStepFun (StepFun_P4 a b c)))) with
(Int_SF (cons c nil) (cons a (cons b nil)));
- [ simpl in |- *; ring
+ [ simpl; ring
| apply StepFun_P17 with (fct_cte c) a b;
[ apply StepFun_P3; assumption
| apply (StepFun_P1 (mkStepFun (StepFun_P4 a b c))) ] ].
@@ -931,7 +931,7 @@ Proof.
(Int_SF (subdivision_val (mkStepFun (StepFun_P4 a b c)))
(subdivision (mkStepFun (StepFun_P4 a b c)))) with
(Int_SF (cons c nil) (cons b (cons a nil)));
- [ simpl in |- *; ring
+ [ simpl; ring
| apply StepFun_P17 with (fct_cte c) a b;
[ apply StepFun_P2; apply StepFun_P3; auto with real
| apply (StepFun_P1 (mkStepFun (StepFun_P4 a b c))) ] ].
@@ -943,8 +943,8 @@ Lemma StepFun_P19 :
Int_SF (FF l1 f) l1 + l * Int_SF (FF l1 g) l1.
Proof.
intros; induction l1 as [| r l1 Hrecl1];
- [ simpl in |- *; ring
- | induction l1 as [| r0 l1 Hrecl0]; simpl in |- *;
+ [ simpl; ring
+ | induction l1 as [| r0 l1 Hrecl0]; simpl;
[ ring | simpl in Hrecl1; rewrite Hrecl1; ring ] ].
Qed.
@@ -954,38 +954,38 @@ Lemma StepFun_P20 :
Proof.
intros l f H; induction l;
[ elim (lt_irrefl _ H)
- | simpl in |- *; rewrite RList_P18; rewrite RList_P14; reflexivity ].
+ | simpl; rewrite RList_P18; rewrite RList_P14; reflexivity ].
Qed.
Lemma StepFun_P21 :
forall (a b:R) (f:R -> R) (l:Rlist),
is_subdivision f a b l -> adapted_couple f a b l (FF l f).
Proof.
- intros; unfold adapted_couple in |- *; unfold is_subdivision in X;
+ intros; unfold adapted_couple; unfold is_subdivision in X;
unfold adapted_couple in X; elim X; clear X; intros;
decompose [and] p; clear p; repeat split; try assumption.
apply StepFun_P20; rewrite H2; apply lt_O_Sn.
intros; assert (H5 := H4 _ H3); unfold constant_D_eq, open_interval in H5;
- unfold constant_D_eq, open_interval in |- *; intros;
+ unfold constant_D_eq, open_interval; intros;
induction l as [| r l Hrecl].
discriminate.
- unfold FF in |- *; rewrite RList_P12.
- simpl in |- *;
- change (f x0 = f (pos_Rl (mid_Rlist (cons r l) r) (S i))) in |- *;
+ unfold FF; rewrite RList_P12.
+ simpl;
+ change (f x0 = f (pos_Rl (mid_Rlist (cons r l) r) (S i)));
rewrite RList_P13; try assumption; rewrite (H5 x0 H6);
rewrite H5.
reflexivity.
split.
apply Rmult_lt_reg_l with 2;
[ prove_sup0
- | unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
+ | unfold Rdiv; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
rewrite <- Rinv_r_sym;
[ rewrite Rmult_1_l; rewrite double; apply Rplus_lt_compat_l; elim H6;
intros; apply Rlt_trans with x0; assumption
| discrR ] ].
apply Rmult_lt_reg_l with 2;
[ prove_sup0
- | unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
+ | unfold Rdiv; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
rewrite <- Rinv_r_sym;
[ rewrite Rmult_1_l; rewrite double;
rewrite (Rplus_comm (pos_Rl (cons r l) i));
@@ -1001,22 +1001,22 @@ Lemma StepFun_P22 :
is_subdivision f a b lf ->
is_subdivision g a b lg -> is_subdivision f a b (cons_ORlist lf lg).
Proof.
- unfold is_subdivision in |- *; intros a b f g lf lg Hyp X X0; elim X; elim X0;
+ unfold is_subdivision; intros a b f g lf lg Hyp X X0; elim X; elim X0;
clear X X0; intros lg0 p lf0 p0; assert (Hyp_min : Rmin a b = a).
- unfold Rmin in |- *; case (Rle_dec a b); intro;
+ unfold Rmin; case (Rle_dec a b); intro;
[ reflexivity | elim n; assumption ].
assert (Hyp_max : Rmax a b = b).
- unfold Rmax in |- *; case (Rle_dec a b); intro;
+ unfold Rmax; case (Rle_dec a b); intro;
[ reflexivity | elim n; assumption ].
apply existT with (FF (cons_ORlist lf lg) f); unfold adapted_couple in p, p0;
decompose [and] p; decompose [and] p0; clear p p0;
rewrite Hyp_min in H6; rewrite Hyp_min in H1; rewrite Hyp_max in H0;
- rewrite Hyp_max in H5; unfold adapted_couple in |- *;
+ rewrite Hyp_max in H5; unfold adapted_couple;
repeat split.
apply RList_P2; assumption.
- rewrite Hyp_min; symmetry in |- *; apply Rle_antisym.
+ rewrite Hyp_min; symmetry ; apply Rle_antisym.
induction lf as [| r lf Hreclf].
- simpl in |- *; right; symmetry in |- *; assumption.
+ simpl; right; symmetry ; assumption.
assert
(H10 :
In (pos_Rl (cons_ORlist (cons r lf) lg) 0) (cons_ORlist (cons r lf) lg)).
@@ -1024,7 +1024,7 @@ Proof.
(RList_P3 (cons_ORlist (cons r lf) lg)
(pos_Rl (cons_ORlist (cons r lf) lg) 0)); intros _ H10;
apply H10; exists 0%nat; split;
- [ reflexivity | rewrite RList_P11; simpl in |- *; apply lt_O_Sn ].
+ [ reflexivity | rewrite RList_P11; simpl; apply lt_O_Sn ].
elim (RList_P9 (cons r lf) lg (pos_Rl (cons_ORlist (cons r lf) lg) 0));
intros H12 _; assert (H13 := H12 H10); elim H13; intro.
elim (RList_P3 (cons r lf) (pos_Rl (cons_ORlist (cons r lf) lg) 0));
@@ -1037,16 +1037,16 @@ Proof.
clear H15; intros; rewrite H15; rewrite <- H1; elim (RList_P6 lg);
intros; apply H17; [ assumption | apply le_O_n | assumption ].
induction lf as [| r lf Hreclf].
- simpl in |- *; right; assumption.
+ simpl; right; assumption.
assert (H8 : In a (cons_ORlist (cons r lf) lg)).
elim (RList_P9 (cons r lf) lg a); intros; apply H10; left;
elim (RList_P3 (cons r lf) a); intros; apply H12;
exists 0%nat; split;
- [ symmetry in |- *; assumption | simpl in |- *; apply lt_O_Sn ].
+ [ symmetry ; assumption | simpl; apply lt_O_Sn ].
apply RList_P5; [ apply RList_P2; assumption | assumption ].
rewrite Hyp_max; apply Rle_antisym.
induction lf as [| r lf Hreclf].
- simpl in |- *; right; assumption.
+ simpl; right; assumption.
assert
(H8 :
In
@@ -1059,7 +1059,7 @@ Proof.
(pred (Rlength (cons_ORlist (cons r lf) lg)))));
intros _ H10; apply H10;
exists (pred (Rlength (cons_ORlist (cons r lf) lg)));
- split; [ reflexivity | rewrite RList_P11; simpl in |- *; apply lt_n_Sn ].
+ split; [ reflexivity | rewrite RList_P11; simpl; apply lt_n_Sn ].
elim
(RList_P9 (cons r lf) lg
(pos_Rl (cons_ORlist (cons r lf) lg)
@@ -1074,8 +1074,8 @@ Proof.
elim H15; clear H15; intros; rewrite H15; rewrite <- H5;
elim (RList_P6 (cons r lf)); intros; apply H17;
[ assumption
- | simpl in |- *; simpl in H14; apply lt_n_Sm_le; assumption
- | simpl in |- *; apply lt_n_Sn ].
+ | simpl; simpl in H14; apply lt_n_Sm_le; assumption
+ | simpl; apply lt_n_Sn ].
elim
(RList_P3 lg
(pos_Rl (cons_ORlist (cons r lf) lg)
@@ -1083,23 +1083,23 @@ Proof.
intros H13 _; assert (H14 := H13 H12); elim H14; intros;
elim H15; clear H15; intros.
rewrite H15; assert (H17 : Rlength lg = S (pred (Rlength lg))).
- apply S_pred with 0%nat; apply neq_O_lt; red in |- *; intro;
+ apply S_pred with 0%nat; apply neq_O_lt; red; intro;
rewrite <- H17 in H16; elim (lt_n_O _ H16).
rewrite <- H0; elim (RList_P6 lg); intros; apply H18;
[ assumption
| rewrite H17 in H16; apply lt_n_Sm_le; assumption
| apply lt_pred_n_n; rewrite H17; apply lt_O_Sn ].
induction lf as [| r lf Hreclf].
- simpl in |- *; right; symmetry in |- *; assumption.
+ simpl; right; symmetry ; assumption.
assert (H8 : In b (cons_ORlist (cons r lf) lg)).
elim (RList_P9 (cons r lf) lg b); intros; apply H10; left;
elim (RList_P3 (cons r lf) b); intros; apply H12;
exists (pred (Rlength (cons r lf))); split;
- [ symmetry in |- *; assumption | simpl in |- *; apply lt_n_Sn ].
+ [ symmetry ; assumption | simpl; apply lt_n_Sn ].
apply RList_P7; [ apply RList_P2; assumption | assumption ].
- apply StepFun_P20; rewrite RList_P11; rewrite H2; rewrite H7; simpl in |- *;
+ apply StepFun_P20; rewrite RList_P11; rewrite H2; rewrite H7; simpl;
apply lt_O_Sn.
- intros; unfold constant_D_eq, open_interval in |- *; intros;
+ intros; unfold constant_D_eq, open_interval; intros;
cut
(exists l : R,
constant_D_eq f
@@ -1109,10 +1109,10 @@ Proof.
assert
(Hyp_cons :
exists r : R, (exists r0 : Rlist, cons_ORlist lf lg = cons r r0)).
- apply RList_P19; red in |- *; intro; rewrite H13 in H8; elim (lt_n_O _ H8).
+ apply RList_P19; red; intro; rewrite H13 in H8; elim (lt_n_O _ H8).
elim Hyp_cons; clear Hyp_cons; intros r [r0 Hyp_cons]; rewrite Hyp_cons;
- unfold FF in |- *; rewrite RList_P12.
- change (f x = f (pos_Rl (mid_Rlist (cons r r0) r) (S i))) in |- *;
+ unfold FF; rewrite RList_P12.
+ change (f x = f (pos_Rl (mid_Rlist (cons r r0) r) (S i)));
rewrite <- Hyp_cons; rewrite RList_P13.
assert (H13 := RList_P2 _ _ H _ H8); elim H13; intro.
unfold constant_D_eq, open_interval in H11, H12; rewrite (H11 x H10);
@@ -1124,13 +1124,13 @@ Proof.
split.
apply Rmult_lt_reg_l with 2;
[ prove_sup0
- | unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
+ | unfold Rdiv; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
rewrite <- Rinv_r_sym;
[ rewrite Rmult_1_l; rewrite double; apply Rplus_lt_compat_l; assumption
| discrR ] ].
apply Rmult_lt_reg_l with 2;
[ prove_sup0
- | unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
+ | unfold Rdiv; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
rewrite <- Rinv_r_sym;
[ rewrite Rmult_1_l; rewrite double;
rewrite (Rplus_comm (pos_Rl (cons_ORlist lf lg) i));
@@ -1149,7 +1149,7 @@ Proof.
apply le_O_n.
apply lt_trans with (pred (Rlength (cons_ORlist lf lg)));
[ assumption
- | apply lt_pred_n_n; apply neq_O_lt; red in |- *; intro;
+ | apply lt_pred_n_n; apply neq_O_lt; red; intro;
rewrite <- H13 in H8; elim (lt_n_O _ H8) ].
assumption.
assumption.
@@ -1160,7 +1160,7 @@ Proof.
elim (RList_P6 (cons_ORlist lf lg)); intros; apply H11.
apply RList_P2; assumption.
apply lt_n_Sm_le; apply lt_n_S; assumption.
- apply lt_pred_n_n; apply neq_O_lt; red in |- *; intro; rewrite <- H13 in H8;
+ apply lt_pred_n_n; apply neq_O_lt; red; intro; rewrite <- H13 in H8;
elim (lt_n_O _ H8).
rewrite H0; assumption.
set
@@ -1168,24 +1168,24 @@ Proof.
fun j:nat =>
pos_Rl lf j <= pos_Rl (cons_ORlist lf lg) i /\ (j < Rlength lf)%nat);
assert (H12 : Nbound I).
- unfold Nbound in |- *; exists (Rlength lf); intros; unfold I in H12; elim H12;
+ unfold Nbound; exists (Rlength lf); intros; unfold I in H12; elim H12;
intros; apply lt_le_weak; assumption.
assert (H13 : exists n : nat, I n).
- exists 0%nat; unfold I in |- *; split.
+ exists 0%nat; unfold I; split.
apply Rle_trans with (pos_Rl (cons_ORlist lf lg) 0).
- right; symmetry in |- *.
+ right; symmetry .
apply RList_P15; try assumption; rewrite H1; assumption.
elim (RList_P6 (cons_ORlist lf lg)); intros; apply H13.
apply RList_P2; assumption.
apply le_O_n.
apply lt_trans with (pred (Rlength (cons_ORlist lf lg))).
assumption.
- apply lt_pred_n_n; apply neq_O_lt; red in |- *; intro; rewrite <- H15 in H8;
+ apply lt_pred_n_n; apply neq_O_lt; red; intro; rewrite <- H15 in H8;
elim (lt_n_O _ H8).
- apply neq_O_lt; red in |- *; intro; rewrite <- H13 in H5;
+ apply neq_O_lt; red; intro; rewrite <- H13 in H5;
rewrite <- H6 in H11; rewrite <- H5 in H11; elim (Rlt_irrefl _ H11).
assert (H14 := Nzorn H13 H12); elim H14; clear H14; intros x0 H14;
- exists (pos_Rl lf0 x0); unfold constant_D_eq, open_interval in |- *;
+ exists (pos_Rl lf0 x0); unfold constant_D_eq, open_interval;
intros; assert (H16 := H9 x0); assert (H17 : (x0 < pred (Rlength lf))%nat).
elim H14; clear H14; intros; unfold I in H14; elim H14; clear H14; intros;
apply lt_S_n; replace (S (pred (Rlength lf))) with (Rlength lf).
@@ -1203,11 +1203,11 @@ Proof.
elim (RList_P6 (cons_ORlist lf lg)); intros; apply H21.
apply RList_P2; assumption.
apply lt_n_Sm_le; apply lt_n_S; assumption.
- apply lt_pred_n_n; apply neq_O_lt; red in |- *; intro; rewrite <- H23 in H8;
+ apply lt_pred_n_n; apply neq_O_lt; red; intro; rewrite <- H23 in H8;
elim (lt_n_O _ H8).
right; apply RList_P16; try assumption; rewrite H0; assumption.
rewrite <- H20; reflexivity.
- apply S_pred with 0%nat; apply neq_O_lt; red in |- *; intro;
+ apply S_pred with 0%nat; apply neq_O_lt; red; intro;
rewrite <- H19 in H18; elim (lt_n_O _ H18).
assert (H18 := H16 H17); unfold constant_D_eq, open_interval in H18;
rewrite (H18 x1).
@@ -1219,11 +1219,11 @@ Proof.
assert (H22 : (S x0 < Rlength lf)%nat).
replace (Rlength lf) with (S (pred (Rlength lf)));
[ apply lt_n_S; assumption
- | symmetry in |- *; apply S_pred with 0%nat; apply neq_O_lt; red in |- *;
+ | symmetry ; apply S_pred with 0%nat; apply neq_O_lt; red;
intro; rewrite <- H22 in H21; elim (lt_n_O _ H21) ].
elim (Rle_dec (pos_Rl lf (S x0)) (pos_Rl (cons_ORlist lf lg) i)); intro.
assert (H23 : (S x0 <= x0)%nat).
- apply H20; unfold I in |- *; split; assumption.
+ apply H20; unfold I; split; assumption.
elim (le_Sn_n _ H23).
assert (H23 : pos_Rl (cons_ORlist lf lg) i < pos_Rl lf (S x0)).
auto with real.
@@ -1253,22 +1253,22 @@ Lemma StepFun_P24 :
is_subdivision f a b lf ->
is_subdivision g a b lg -> is_subdivision g a b (cons_ORlist lf lg).
Proof.
- unfold is_subdivision in |- *; intros a b f g lf lg Hyp X X0; elim X; elim X0;
+ unfold is_subdivision; intros a b f g lf lg Hyp X X0; elim X; elim X0;
clear X X0; intros lg0 p lf0 p0; assert (Hyp_min : Rmin a b = a).
- unfold Rmin in |- *; case (Rle_dec a b); intro;
+ unfold Rmin; case (Rle_dec a b); intro;
[ reflexivity | elim n; assumption ].
assert (Hyp_max : Rmax a b = b).
- unfold Rmax in |- *; case (Rle_dec a b); intro;
+ unfold Rmax; case (Rle_dec a b); intro;
[ reflexivity | elim n; assumption ].
apply existT with (FF (cons_ORlist lf lg) g); unfold adapted_couple in p, p0;
decompose [and] p; decompose [and] p0; clear p p0;
rewrite Hyp_min in H1; rewrite Hyp_min in H6; rewrite Hyp_max in H0;
- rewrite Hyp_max in H5; unfold adapted_couple in |- *;
+ rewrite Hyp_max in H5; unfold adapted_couple;
repeat split.
apply RList_P2; assumption.
- rewrite Hyp_min; symmetry in |- *; apply Rle_antisym.
+ rewrite Hyp_min; symmetry ; apply Rle_antisym.
induction lf as [| r lf Hreclf].
- simpl in |- *; right; symmetry in |- *; assumption.
+ simpl; right; symmetry ; assumption.
assert
(H10 :
In (pos_Rl (cons_ORlist (cons r lf) lg) 0) (cons_ORlist (cons r lf) lg)).
@@ -1276,7 +1276,7 @@ Proof.
(RList_P3 (cons_ORlist (cons r lf) lg)
(pos_Rl (cons_ORlist (cons r lf) lg) 0)); intros _ H10;
apply H10; exists 0%nat; split;
- [ reflexivity | rewrite RList_P11; simpl in |- *; apply lt_O_Sn ].
+ [ reflexivity | rewrite RList_P11; simpl; apply lt_O_Sn ].
elim (RList_P9 (cons r lf) lg (pos_Rl (cons_ORlist (cons r lf) lg) 0));
intros H12 _; assert (H13 := H12 H10); elim H13; intro.
elim (RList_P3 (cons r lf) (pos_Rl (cons_ORlist (cons r lf) lg) 0));
@@ -1289,16 +1289,16 @@ Proof.
clear H15; intros; rewrite H15; rewrite <- H1; elim (RList_P6 lg);
intros; apply H17; [ assumption | apply le_O_n | assumption ].
induction lf as [| r lf Hreclf].
- simpl in |- *; right; assumption.
+ simpl; right; assumption.
assert (H8 : In a (cons_ORlist (cons r lf) lg)).
elim (RList_P9 (cons r lf) lg a); intros; apply H10; left;
elim (RList_P3 (cons r lf) a); intros; apply H12;
exists 0%nat; split;
- [ symmetry in |- *; assumption | simpl in |- *; apply lt_O_Sn ].
+ [ symmetry ; assumption | simpl; apply lt_O_Sn ].
apply RList_P5; [ apply RList_P2; assumption | assumption ].
rewrite Hyp_max; apply Rle_antisym.
induction lf as [| r lf Hreclf].
- simpl in |- *; right; assumption.
+ simpl; right; assumption.
assert
(H8 :
In
@@ -1311,7 +1311,7 @@ Proof.
(pred (Rlength (cons_ORlist (cons r lf) lg)))));
intros _ H10; apply H10;
exists (pred (Rlength (cons_ORlist (cons r lf) lg)));
- split; [ reflexivity | rewrite RList_P11; simpl in |- *; apply lt_n_Sn ].
+ split; [ reflexivity | rewrite RList_P11; simpl; apply lt_n_Sn ].
elim
(RList_P9 (cons r lf) lg
(pos_Rl (cons_ORlist (cons r lf) lg)
@@ -1325,8 +1325,8 @@ Proof.
elim H15; clear H15; intros; rewrite H15; rewrite <- H5;
elim (RList_P6 (cons r lf)); intros; apply H17;
[ assumption
- | simpl in |- *; simpl in H14; apply lt_n_Sm_le; assumption
- | simpl in |- *; apply lt_n_Sn ].
+ | simpl; simpl in H14; apply lt_n_Sm_le; assumption
+ | simpl; apply lt_n_Sn ].
elim
(RList_P3 lg
(pos_Rl (cons_ORlist (cons r lf) lg)
@@ -1334,23 +1334,23 @@ Proof.
intros H13 _; assert (H14 := H13 H12); elim H14; intros;
elim H15; clear H15; intros; rewrite H15;
assert (H17 : Rlength lg = S (pred (Rlength lg))).
- apply S_pred with 0%nat; apply neq_O_lt; red in |- *; intro;
+ apply S_pred with 0%nat; apply neq_O_lt; red; intro;
rewrite <- H17 in H16; elim (lt_n_O _ H16).
rewrite <- H0; elim (RList_P6 lg); intros; apply H18;
[ assumption
| rewrite H17 in H16; apply lt_n_Sm_le; assumption
| apply lt_pred_n_n; rewrite H17; apply lt_O_Sn ].
induction lf as [| r lf Hreclf].
- simpl in |- *; right; symmetry in |- *; assumption.
+ simpl; right; symmetry ; assumption.
assert (H8 : In b (cons_ORlist (cons r lf) lg)).
elim (RList_P9 (cons r lf) lg b); intros; apply H10; left;
elim (RList_P3 (cons r lf) b); intros; apply H12;
exists (pred (Rlength (cons r lf))); split;
- [ symmetry in |- *; assumption | simpl in |- *; apply lt_n_Sn ].
+ [ symmetry ; assumption | simpl; apply lt_n_Sn ].
apply RList_P7; [ apply RList_P2; assumption | assumption ].
- apply StepFun_P20; rewrite RList_P11; rewrite H7; rewrite H2; simpl in |- *;
+ apply StepFun_P20; rewrite RList_P11; rewrite H7; rewrite H2; simpl;
apply lt_O_Sn.
- unfold constant_D_eq, open_interval in |- *; intros;
+ unfold constant_D_eq, open_interval; intros;
cut
(exists l : R,
constant_D_eq g
@@ -1360,10 +1360,10 @@ Proof.
assert
(Hyp_cons :
exists r : R, (exists r0 : Rlist, cons_ORlist lf lg = cons r r0)).
- apply RList_P19; red in |- *; intro; rewrite H13 in H8; elim (lt_n_O _ H8).
+ apply RList_P19; red; intro; rewrite H13 in H8; elim (lt_n_O _ H8).
elim Hyp_cons; clear Hyp_cons; intros r [r0 Hyp_cons]; rewrite Hyp_cons;
- unfold FF in |- *; rewrite RList_P12.
- change (g x = g (pos_Rl (mid_Rlist (cons r r0) r) (S i))) in |- *;
+ unfold FF; rewrite RList_P12.
+ change (g x = g (pos_Rl (mid_Rlist (cons r r0) r) (S i)));
rewrite <- Hyp_cons; rewrite RList_P13.
assert (H13 := RList_P2 _ _ H _ H8); elim H13; intro.
unfold constant_D_eq, open_interval in H11, H12; rewrite (H11 x H10);
@@ -1375,13 +1375,13 @@ Proof.
split.
apply Rmult_lt_reg_l with 2;
[ prove_sup0
- | unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
+ | unfold Rdiv; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
rewrite <- Rinv_r_sym;
[ rewrite Rmult_1_l; rewrite double; apply Rplus_lt_compat_l; assumption
| discrR ] ].
apply Rmult_lt_reg_l with 2;
[ prove_sup0
- | unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
+ | unfold Rdiv; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
rewrite <- Rinv_r_sym;
[ rewrite Rmult_1_l; rewrite double;
rewrite (Rplus_comm (pos_Rl (cons_ORlist lf lg) i));
@@ -1400,7 +1400,7 @@ Proof.
apply le_O_n.
apply lt_trans with (pred (Rlength (cons_ORlist lf lg)));
[ assumption
- | apply lt_pred_n_n; apply neq_O_lt; red in |- *; intro;
+ | apply lt_pred_n_n; apply neq_O_lt; red; intro;
rewrite <- H13 in H8; elim (lt_n_O _ H8) ].
rewrite H1; assumption.
apply Rlt_le_trans with (pos_Rl (cons_ORlist lf lg) (S i)).
@@ -1409,7 +1409,7 @@ Proof.
elim (RList_P6 (cons_ORlist lf lg)); intros; apply H11.
apply RList_P2; assumption.
apply lt_n_Sm_le; apply lt_n_S; assumption.
- apply lt_pred_n_n; apply neq_O_lt; red in |- *; intro; rewrite <- H13 in H8;
+ apply lt_pred_n_n; apply neq_O_lt; red; intro; rewrite <- H13 in H8;
elim (lt_n_O _ H8).
rewrite H0; assumption.
set
@@ -1417,24 +1417,24 @@ Proof.
fun j:nat =>
pos_Rl lg j <= pos_Rl (cons_ORlist lf lg) i /\ (j < Rlength lg)%nat);
assert (H12 : Nbound I).
- unfold Nbound in |- *; exists (Rlength lg); intros; unfold I in H12; elim H12;
+ unfold Nbound; exists (Rlength lg); intros; unfold I in H12; elim H12;
intros; apply lt_le_weak; assumption.
assert (H13 : exists n : nat, I n).
- exists 0%nat; unfold I in |- *; split.
+ exists 0%nat; unfold I; split.
apply Rle_trans with (pos_Rl (cons_ORlist lf lg) 0).
- right; symmetry in |- *; rewrite H1; rewrite <- H6; apply RList_P15;
+ right; symmetry ; rewrite H1; rewrite <- H6; apply RList_P15;
try assumption; rewrite H1; assumption.
elim (RList_P6 (cons_ORlist lf lg)); intros; apply H13;
[ apply RList_P2; assumption
| apply le_O_n
| apply lt_trans with (pred (Rlength (cons_ORlist lf lg)));
[ assumption
- | apply lt_pred_n_n; apply neq_O_lt; red in |- *; intro;
+ | apply lt_pred_n_n; apply neq_O_lt; red; intro;
rewrite <- H15 in H8; elim (lt_n_O _ H8) ] ].
- apply neq_O_lt; red in |- *; intro; rewrite <- H13 in H0;
+ apply neq_O_lt; red; intro; rewrite <- H13 in H0;
rewrite <- H1 in H11; rewrite <- H0 in H11; elim (Rlt_irrefl _ H11).
assert (H14 := Nzorn H13 H12); elim H14; clear H14; intros x0 H14;
- exists (pos_Rl lg0 x0); unfold constant_D_eq, open_interval in |- *;
+ exists (pos_Rl lg0 x0); unfold constant_D_eq, open_interval;
intros; assert (H16 := H4 x0); assert (H17 : (x0 < pred (Rlength lg))%nat).
elim H14; clear H14; intros; unfold I in H14; elim H14; clear H14; intros;
apply lt_S_n; replace (S (pred (Rlength lg))) with (Rlength lg).
@@ -1452,12 +1452,12 @@ Proof.
elim (RList_P6 (cons_ORlist lf lg)); intros; apply H21.
apply RList_P2; assumption.
apply lt_n_Sm_le; apply lt_n_S; assumption.
- apply lt_pred_n_n; apply neq_O_lt; red in |- *; intro; rewrite <- H23 in H8;
+ apply lt_pred_n_n; apply neq_O_lt; red; intro; rewrite <- H23 in H8;
elim (lt_n_O _ H8).
right; rewrite H0; rewrite <- H5; apply RList_P16; try assumption.
rewrite H0; assumption.
rewrite <- H20; reflexivity.
- apply S_pred with 0%nat; apply neq_O_lt; red in |- *; intro;
+ apply S_pred with 0%nat; apply neq_O_lt; red; intro;
rewrite <- H19 in H18; elim (lt_n_O _ H18).
assert (H18 := H16 H17); unfold constant_D_eq, open_interval in H18;
rewrite (H18 x1).
@@ -1469,11 +1469,11 @@ Proof.
assert (H22 : (S x0 < Rlength lg)%nat).
replace (Rlength lg) with (S (pred (Rlength lg))).
apply lt_n_S; assumption.
- symmetry in |- *; apply S_pred with 0%nat; apply neq_O_lt; red in |- *;
+ symmetry ; apply S_pred with 0%nat; apply neq_O_lt; red;
intro; rewrite <- H22 in H21; elim (lt_n_O _ H21).
elim (Rle_dec (pos_Rl lg (S x0)) (pos_Rl (cons_ORlist lf lg) i)); intro.
assert (H23 : (S x0 <= x0)%nat);
- [ apply H20; unfold I in |- *; split; assumption | elim (le_Sn_n _ H23) ].
+ [ apply H20; unfold I; split; assumption | elim (le_Sn_n _ H23) ].
assert (H23 : pos_Rl (cons_ORlist lf lg) i < pos_Rl lg (S x0)).
auto with real.
clear b0; apply RList_P17; try assumption;
@@ -1509,35 +1509,35 @@ Proof.
intros i H8 x1 H10; unfold open_interval in H10, H9, H4;
rewrite (H9 _ H8 _ H10); rewrite (H4 _ H8 _ H10);
assert (H11 : l1 <> nil).
- red in |- *; intro H11; rewrite H11 in H8; elim (lt_n_O _ H8).
+ red; intro H11; rewrite H11 in H8; elim (lt_n_O _ H8).
destruct (RList_P19 _ H11) as (r,(r0,H12));
- rewrite H12; unfold FF in |- *;
+ rewrite H12; unfold FF;
change
(pos_Rl x0 i + l * pos_Rl x i =
pos_Rl
(app_Rlist (mid_Rlist (cons r r0) r) (fun x2:R => f x2 + l * g x2))
- (S i)) in |- *; rewrite RList_P12.
+ (S i)); rewrite RList_P12.
rewrite RList_P13.
rewrite <- H12; rewrite (H9 _ H8); try rewrite (H4 _ H8);
reflexivity ||
(elim H10; clear H10; intros; split;
[ apply Rmult_lt_reg_l with 2;
[ prove_sup0
- | unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2));
+ | unfold Rdiv; rewrite <- (Rmult_comm (/ 2));
rewrite <- Rmult_assoc; rewrite <- Rinv_r_sym;
[ rewrite Rmult_1_l; rewrite double; apply Rplus_lt_compat_l;
apply Rlt_trans with x1; assumption
| discrR ] ]
| apply Rmult_lt_reg_l with 2;
[ prove_sup0
- | unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2));
+ | unfold Rdiv; rewrite <- (Rmult_comm (/ 2));
rewrite <- Rmult_assoc; rewrite <- Rinv_r_sym;
[ rewrite Rmult_1_l; rewrite double;
rewrite (Rplus_comm (pos_Rl l1 i)); apply Rplus_lt_compat_l;
apply Rlt_trans with x1; assumption
| discrR ] ] ]).
rewrite <- H12; assumption.
- rewrite RList_P14; simpl in |- *; rewrite H12 in H8; simpl in H8;
+ rewrite RList_P14; simpl; rewrite H12 in H8; simpl in H8;
apply lt_n_S; apply H8.
Qed.
@@ -1556,7 +1556,7 @@ Qed.
Lemma StepFun_P28 :
forall (a b l:R) (f g:StepFun a b), IsStepFun (fun x:R => f x + l * g x) a b.
Proof.
- intros a b l f g; unfold IsStepFun in |- *; assert (H := pre f);
+ intros a b l f g; unfold IsStepFun; assert (H := pre f);
assert (H0 := pre g); unfold IsStepFun in H, H0; elim H;
elim H0; intros; apply existT with (cons_ORlist x0 x);
apply StepFun_P27; assumption.
@@ -1565,7 +1565,7 @@ Qed.
Lemma StepFun_P29 :
forall (a b:R) (f:StepFun a b), is_subdivision f a b (subdivision f).
Proof.
- intros a b f; unfold is_subdivision in |- *;
+ intros a b f; unfold is_subdivision;
apply existT with (subdivision_val f); apply StepFun_P1.
Qed.
@@ -1574,7 +1574,7 @@ Lemma StepFun_P30 :
RiemannInt_SF (mkStepFun (StepFun_P28 l f g)) =
RiemannInt_SF f + l * RiemannInt_SF g.
Proof.
- intros a b l f g; unfold RiemannInt_SF in |- *; case (Rle_dec a b);
+ intros a b l f g; unfold RiemannInt_SF; case (Rle_dec a b);
(intro;
replace
(Int_SF (subdivision_val (mkStepFun (StepFun_P28 l f g)))
@@ -1611,10 +1611,10 @@ Lemma StepFun_P31 :
adapted_couple f a b l lf ->
adapted_couple (fun x:R => Rabs (f x)) a b l (app_Rlist lf Rabs).
Proof.
- unfold adapted_couple in |- *; intros; decompose [and] H; clear H;
+ unfold adapted_couple; intros; decompose [and] H; clear H;
repeat split; try assumption.
- symmetry in |- *; rewrite H3; rewrite RList_P18; reflexivity.
- intros; unfold constant_D_eq, open_interval in |- *;
+ symmetry ; rewrite H3; rewrite RList_P18; reflexivity.
+ intros; unfold constant_D_eq, open_interval;
unfold constant_D_eq, open_interval in H5; intros;
rewrite (H5 _ H _ H4); rewrite RList_P12;
[ reflexivity | rewrite H3 in H; simpl in H; apply H ].
@@ -1623,8 +1623,8 @@ Qed.
Lemma StepFun_P32 :
forall (a b:R) (f:StepFun a b), IsStepFun (fun x:R => Rabs (f x)) a b.
Proof.
- intros a b f; unfold IsStepFun in |- *; apply existT with (subdivision f);
- unfold is_subdivision in |- *;
+ intros a b f; unfold IsStepFun; apply existT with (subdivision f);
+ unfold is_subdivision;
apply existT with (app_Rlist (subdivision_val f) Rabs);
apply StepFun_P31; apply StepFun_P1.
Qed.
@@ -1634,8 +1634,8 @@ Lemma StepFun_P33 :
ordered_Rlist l1 -> Rabs (Int_SF l2 l1) <= Int_SF (app_Rlist l2 Rabs) l1.
Proof.
simple induction l2; intros.
- simpl in |- *; rewrite Rabs_R0; right; reflexivity.
- simpl in |- *; induction l1 as [| r1 l1 Hrecl1].
+ simpl; rewrite Rabs_R0; right; reflexivity.
+ simpl; induction l1 as [| r1 l1 Hrecl1].
rewrite Rabs_R0; right; reflexivity.
induction l1 as [| r2 l1 Hrecl0].
rewrite Rabs_R0; right; reflexivity.
@@ -1643,7 +1643,7 @@ Proof.
apply Rabs_triang.
rewrite Rabs_mult; rewrite (Rabs_right (r2 - r1));
[ apply Rplus_le_compat_l; apply H; apply RList_P4 with r1; assumption
- | apply Rge_minus; apply Rle_ge; apply (H0 0%nat); simpl in |- *;
+ | apply Rge_minus; apply Rle_ge; apply (H0 0%nat); simpl;
apply lt_O_Sn ].
Qed.
@@ -1652,7 +1652,7 @@ Lemma StepFun_P34 :
a <= b ->
Rabs (RiemannInt_SF f) <= RiemannInt_SF (mkStepFun (StepFun_P32 f)).
Proof.
- intros; unfold RiemannInt_SF in |- *; case (Rle_dec a b); intro.
+ intros; unfold RiemannInt_SF; case (Rle_dec a b); intro.
replace
(Int_SF (subdivision_val (mkStepFun (StepFun_P32 f)))
(subdivision (mkStepFun (StepFun_P32 f)))) with
@@ -1676,18 +1676,18 @@ Lemma StepFun_P35 :
Proof.
simple induction l; intros.
right; reflexivity.
- simpl in |- *; induction r0 as [| r0 r1 Hrecr0].
+ simpl; induction r0 as [| r0 r1 Hrecr0].
right; reflexivity.
- simpl in |- *; apply Rplus_le_compat.
+ simpl; apply Rplus_le_compat.
case (Req_dec r r0); intro.
rewrite H4; right; ring.
do 2 rewrite <- (Rmult_comm (r0 - r)); apply Rmult_le_compat_l.
- apply Rge_le; apply Rge_minus; apply Rle_ge; apply (H0 0%nat); simpl in |- *;
+ apply Rge_le; apply Rge_minus; apply Rle_ge; apply (H0 0%nat); simpl;
apply lt_O_Sn.
apply H3; split.
apply Rmult_lt_reg_l with 2.
prove_sup0.
- unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
+ unfold Rdiv; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
rewrite <- Rinv_r_sym.
assert (H5 : r = a).
apply H1.
@@ -1700,7 +1700,7 @@ Proof.
discrR.
apply Rmult_lt_reg_l with 2.
prove_sup0.
- unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
+ unfold Rdiv; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
rewrite <- Rinv_r_sym.
rewrite Rmult_1_l; rewrite double; assert (H5 : r0 <= b).
replace b with
@@ -1708,9 +1708,9 @@ Proof.
replace r0 with (pos_Rl (cons r (cons r0 r1)) 1).
elim (RList_P6 (cons r (cons r0 r1))); intros; apply H5.
assumption.
- simpl in |- *; apply le_n_S.
+ simpl; apply le_n_S.
apply le_O_n.
- simpl in |- *; apply lt_n_Sn.
+ simpl; apply lt_n_Sn.
reflexivity.
apply Rle_lt_trans with (r + b).
apply Rplus_le_compat_l; assumption.
@@ -1730,7 +1730,7 @@ Proof.
intros; apply H3; elim H4; intros; split; try assumption.
apply Rle_lt_trans with r0; try assumption.
rewrite <- H1.
- simpl in |- *; apply (H0 0%nat); simpl in |- *; apply lt_O_Sn.
+ simpl; apply (H0 0%nat); simpl; apply lt_O_Sn.
Qed.
Lemma StepFun_P36 :
@@ -1741,16 +1741,16 @@ Lemma StepFun_P36 :
(forall x:R, a < x < b -> f x <= g x) ->
RiemannInt_SF f <= RiemannInt_SF g.
Proof.
- intros; unfold RiemannInt_SF in |- *; case (Rle_dec a b); intro.
+ intros; unfold RiemannInt_SF; case (Rle_dec a b); intro.
replace (Int_SF (subdivision_val f) (subdivision f)) with (Int_SF (FF l f) l).
replace (Int_SF (subdivision_val g) (subdivision g)) with (Int_SF (FF l g) l).
unfold is_subdivision in X; elim X; clear X; intros;
unfold adapted_couple in p; decompose [and] p; clear p;
assert (H5 : Rmin a b = a);
- [ unfold Rmin in |- *; case (Rle_dec a b); intro;
+ [ unfold Rmin; case (Rle_dec a b); intro;
[ reflexivity | elim n; assumption ]
| assert (H7 : Rmax a b = b);
- [ unfold Rmax in |- *; case (Rle_dec a b); intro;
+ [ unfold Rmax; case (Rle_dec a b); intro;
[ reflexivity | elim n; assumption ]
| rewrite H5 in H3; rewrite H7 in H2; eapply StepFun_P35 with a b;
assumption ] ].
@@ -1809,27 +1809,27 @@ Proof.
assert (H7 : r1 <= b).
rewrite <- H4; apply RList_P7; [ assumption | left; reflexivity ].
assert (H8 : IsStepFun g' a b).
- unfold IsStepFun in |- *; assert (H8 := pre g); unfold IsStepFun in H8;
+ unfold IsStepFun; assert (H8 := pre g); unfold IsStepFun in H8;
elim H8; intros lg H9; unfold is_subdivision in H9;
elim H9; clear H9; intros lg2 H9; split with (cons a lg);
- unfold is_subdivision in |- *; split with (cons (f a) lg2);
+ unfold is_subdivision; split with (cons (f a) lg2);
unfold adapted_couple in H9; decompose [and] H9; clear H9;
- unfold adapted_couple in |- *; repeat split.
- unfold ordered_Rlist in |- *; intros; simpl in H9;
+ unfold adapted_couple; repeat split.
+ unfold ordered_Rlist; intros; simpl in H9;
induction i as [| i Hreci].
- simpl in |- *; rewrite H12; replace (Rmin r1 b) with r1.
- simpl in H0; rewrite <- H0; apply (H 0%nat); simpl in |- *; apply lt_O_Sn.
- unfold Rmin in |- *; case (Rle_dec r1 b); intro;
+ simpl; rewrite H12; replace (Rmin r1 b) with r1.
+ simpl in H0; rewrite <- H0; apply (H 0%nat); simpl; apply lt_O_Sn.
+ unfold Rmin; case (Rle_dec r1 b); intro;
[ reflexivity | elim n; assumption ].
apply (H10 i); apply lt_S_n.
replace (S (pred (Rlength lg))) with (Rlength lg).
apply H9.
apply S_pred with 0%nat; apply neq_O_lt; intro; rewrite <- H14 in H9;
elim (lt_n_O _ H9).
- simpl in |- *; assert (H14 : a <= b).
+ simpl; assert (H14 : a <= b).
rewrite <- H1; simpl in H0; rewrite <- H0; apply RList_P7;
[ assumption | left; reflexivity ].
- unfold Rmin in |- *; case (Rle_dec a b); intro;
+ unfold Rmin; case (Rle_dec a b); intro;
[ reflexivity | elim n; assumption ].
assert (H14 : a <= b).
rewrite <- H1; simpl in H0; rewrite <- H0; apply RList_P7;
@@ -1838,30 +1838,30 @@ Proof.
rewrite <- H11; induction lg as [| r0 lg Hreclg].
simpl in H13; discriminate.
reflexivity.
- unfold Rmax in |- *; case (Rle_dec a b); case (Rle_dec r1 b); intros;
+ unfold Rmax; case (Rle_dec a b); case (Rle_dec r1 b); intros;
reflexivity || elim n; assumption.
- simpl in |- *; rewrite H13; reflexivity.
+ simpl; rewrite H13; reflexivity.
intros; simpl in H9; induction i as [| i Hreci].
- unfold constant_D_eq, open_interval in |- *; simpl in |- *; intros;
+ unfold constant_D_eq, open_interval; simpl; intros;
assert (H16 : Rmin r1 b = r1).
- unfold Rmin in |- *; case (Rle_dec r1 b); intro;
+ unfold Rmin; case (Rle_dec r1 b); intro;
[ reflexivity | elim n; assumption ].
rewrite H16 in H12; rewrite H12 in H14; elim H14; clear H14; intros _ H14;
- unfold g' in |- *; case (Rle_dec r1 x); intro r3.
+ unfold g'; case (Rle_dec r1 x); intro r3.
elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ r3 H14)).
reflexivity.
change
(constant_D_eq g' (open_interval (pos_Rl lg i) (pos_Rl lg (S i)))
- (pos_Rl lg2 i)) in |- *; clear Hreci; assert (H16 := H15 i);
+ (pos_Rl lg2 i)); clear Hreci; assert (H16 := H15 i);
assert (H17 : (i < pred (Rlength lg))%nat).
apply lt_S_n.
replace (S (pred (Rlength lg))) with (Rlength lg).
assumption.
- apply S_pred with 0%nat; apply neq_O_lt; red in |- *; intro;
+ apply S_pred with 0%nat; apply neq_O_lt; red; intro;
rewrite <- H14 in H9; elim (lt_n_O _ H9).
assert (H18 := H16 H17); unfold constant_D_eq, open_interval in H18;
- unfold constant_D_eq, open_interval in |- *; intros;
- assert (H19 := H18 _ H14); rewrite <- H19; unfold g' in |- *;
+ unfold constant_D_eq, open_interval; intros;
+ assert (H19 := H18 _ H14); rewrite <- H19; unfold g';
case (Rle_dec r1 x); intro.
reflexivity.
elim n; replace r1 with (Rmin r1 b).
@@ -1872,17 +1872,17 @@ Proof.
elim (RList_P3 lg (pos_Rl lg i)); intros; apply H21; exists i; split.
reflexivity.
apply lt_trans with (pred (Rlength lg)); try assumption.
- apply lt_pred_n_n; apply neq_O_lt; red in |- *; intro; rewrite <- H22 in H17;
+ apply lt_pred_n_n; apply neq_O_lt; red; intro; rewrite <- H22 in H17;
elim (lt_n_O _ H17).
- unfold Rmin in |- *; case (Rle_dec r1 b); intro;
+ unfold Rmin; case (Rle_dec r1 b); intro;
[ reflexivity | elim n0; assumption ].
exists (mkStepFun H8); split.
- simpl in |- *; unfold g' in |- *; case (Rle_dec r1 b); intro.
+ simpl; unfold g'; case (Rle_dec r1 b); intro.
assumption.
elim n; assumption.
intros; simpl in H9; induction i as [| i Hreci].
- unfold constant_D_eq, co_interval in |- *; simpl in |- *; intros; simpl in H0;
- rewrite H0; elim H10; clear H10; intros; unfold g' in |- *;
+ unfold constant_D_eq, co_interval; simpl; intros; simpl in H0;
+ rewrite H0; elim H10; clear H10; intros; unfold g';
case (Rle_dec r1 x); intro r3.
elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ r3 H11)).
reflexivity.
@@ -1890,21 +1890,21 @@ Proof.
change
(constant_D_eq (mkStepFun H8)
(co_interval (pos_Rl (cons r1 l) i) (pos_Rl (cons r1 l) (S i)))
- (f (pos_Rl (cons r1 l) i))) in |- *; assert (H10 := H6 i);
+ (f (pos_Rl (cons r1 l) i))); assert (H10 := H6 i);
assert (H11 : (i < pred (Rlength (cons r1 l)))%nat).
- simpl in |- *; apply lt_S_n; assumption.
+ simpl; apply lt_S_n; assumption.
assert (H12 := H10 H11); unfold constant_D_eq, co_interval in H12;
- unfold constant_D_eq, co_interval in |- *; intros;
- rewrite <- (H12 _ H13); simpl in |- *; unfold g' in |- *;
+ unfold constant_D_eq, co_interval; intros;
+ rewrite <- (H12 _ H13); simpl; unfold g';
case (Rle_dec r1 x); intro.
reflexivity.
elim n; elim H13; clear H13; intros;
apply Rle_trans with (pos_Rl (cons r1 l) i); try assumption;
- change (pos_Rl (cons r1 l) 0 <= pos_Rl (cons r1 l) i) in |- *;
+ change (pos_Rl (cons r1 l) 0 <= pos_Rl (cons r1 l) i);
elim (RList_P6 (cons r1 l)); intros; apply H15;
[ assumption
| apply le_O_n
- | simpl in |- *; apply lt_trans with (Rlength l);
+ | simpl; apply lt_trans with (Rlength l);
[ apply lt_S_n; assumption | apply lt_n_Sn ] ].
Qed.
@@ -1912,7 +1912,7 @@ Lemma StepFun_P39 :
forall (a b:R) (f:StepFun a b),
RiemannInt_SF f = - RiemannInt_SF (mkStepFun (StepFun_P6 (pre f))).
Proof.
- intros; unfold RiemannInt_SF in |- *; case (Rle_dec a b); case (Rle_dec b a);
+ intros; unfold RiemannInt_SF; case (Rle_dec a b); case (Rle_dec b a);
intros.
assert (H : adapted_couple f a b (subdivision f) (subdivision_val f));
[ apply StepFun_P1
@@ -1925,16 +1925,16 @@ Proof.
| assert (H1 : a = b);
[ apply Rle_antisym; assumption
| rewrite (StepFun_P8 H H1); assert (H2 : b = a);
- [ symmetry in |- *; apply H1 | rewrite (StepFun_P8 H0 H2); ring ] ] ] ].
+ [ symmetry ; apply H1 | rewrite (StepFun_P8 H0 H2); ring ] ] ] ].
rewrite Ropp_involutive; eapply StepFun_P17;
[ apply StepFun_P1
| apply StepFun_P2; set (H := StepFun_P6 (pre f)); unfold IsStepFun in H;
- elim H; intros; unfold is_subdivision in |- *;
+ elim H; intros; unfold is_subdivision;
elim p; intros; apply p0 ].
apply Ropp_eq_compat; eapply StepFun_P17;
[ apply StepFun_P1
| apply StepFun_P2; set (H := StepFun_P6 (pre f)); unfold IsStepFun in H;
- elim H; intros; unfold is_subdivision in |- *;
+ elim H; intros; unfold is_subdivision;
elim p; intros; apply p0 ].
assert (H : a < b);
[ auto with real
@@ -1951,34 +1951,34 @@ Lemma StepFun_P40 :
adapted_couple f a c (cons_Rlist l1 l2) (FF (cons_Rlist l1 l2) f).
Proof.
intros f a b c l1 l2 lf1 lf2 H H0 H1 H2; unfold adapted_couple in H1, H2;
- unfold adapted_couple in |- *; decompose [and] H1;
+ unfold adapted_couple; decompose [and] H1;
decompose [and] H2; clear H1 H2; repeat split.
apply RList_P25; try assumption.
- rewrite H10; rewrite H4; unfold Rmin, Rmax in |- *; case (Rle_dec a b);
+ rewrite H10; rewrite H4; unfold Rmin, Rmax; case (Rle_dec a b);
case (Rle_dec b c); intros;
(right; reflexivity) || (elim n; left; assumption).
rewrite RList_P22.
- rewrite H5; unfold Rmin, Rmax in |- *; case (Rle_dec a b); case (Rle_dec a c);
+ rewrite H5; unfold Rmin, Rmax; case (Rle_dec a b); case (Rle_dec a c);
intros;
[ reflexivity
| elim n; apply Rle_trans with b; left; assumption
| elim n; left; assumption
| elim n0; left; assumption ].
- red in |- *; intro; rewrite H1 in H6; discriminate.
+ red; intro; rewrite H1 in H6; discriminate.
rewrite RList_P24.
- rewrite H9; unfold Rmin, Rmax in |- *; case (Rle_dec b c); case (Rle_dec a c);
+ rewrite H9; unfold Rmin, Rmax; case (Rle_dec b c); case (Rle_dec a c);
intros;
[ reflexivity
| elim n; apply Rle_trans with b; left; assumption
| elim n; left; assumption
| elim n0; left; assumption ].
- red in |- *; intro; rewrite H1 in H11; discriminate.
+ red; intro; rewrite H1 in H11; discriminate.
apply StepFun_P20.
- rewrite RList_P23; apply neq_O_lt; red in |- *; intro.
+ rewrite RList_P23; apply neq_O_lt; red; intro.
assert (H2 : (Rlength l1 + Rlength l2)%nat = 0%nat).
- symmetry in |- *; apply H1.
+ symmetry ; apply H1.
elim (plus_is_O _ _ H2); intros; rewrite H12 in H6; discriminate.
- unfold constant_D_eq, open_interval in |- *; intros;
+ unfold constant_D_eq, open_interval; intros;
elim (le_or_lt (S (S i)) (Rlength l1)); intro.
assert (H14 : pos_Rl (cons_Rlist l1 l2) i = pos_Rl l1 i).
apply RList_P26; apply lt_S_n; apply le_lt_n_Sm; apply le_S_n;
@@ -1991,28 +1991,28 @@ Proof.
elim (RList_P20 _ H16); intros r1 [r2 [r3 H17]]; rewrite H17;
change
(f x = pos_Rl (app_Rlist (mid_Rlist (cons_Rlist (cons r2 r3) l2) r1) f) i)
- in |- *; rewrite RList_P12.
+ ; rewrite RList_P12.
induction i as [| i Hreci].
- simpl in |- *; assert (H18 := H8 0%nat);
+ simpl; assert (H18 := H8 0%nat);
unfold constant_D_eq, open_interval in H18;
assert (H19 : (0 < pred (Rlength l1))%nat).
- rewrite H17; simpl in |- *; apply lt_O_Sn.
+ rewrite H17; simpl; apply lt_O_Sn.
assert (H20 := H18 H19); repeat rewrite H20.
reflexivity.
assert (H21 : r1 <= r2).
rewrite H17 in H3; apply (H3 0%nat).
- simpl in |- *; apply lt_O_Sn.
+ simpl; apply lt_O_Sn.
elim H21; intro.
split.
- rewrite H17; simpl in |- *; apply Rmult_lt_reg_l with 2;
+ rewrite H17; simpl; apply Rmult_lt_reg_l with 2;
[ prove_sup0
- | unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
+ | unfold Rdiv; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
rewrite <- Rinv_r_sym;
[ rewrite Rmult_1_l; rewrite double; apply Rplus_lt_compat_l; assumption
| discrR ] ].
- rewrite H17; simpl in |- *; apply Rmult_lt_reg_l with 2;
+ rewrite H17; simpl; apply Rmult_lt_reg_l with 2;
[ prove_sup0
- | unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
+ | unfold Rdiv; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
rewrite <- Rinv_r_sym;
[ rewrite Rmult_1_l; rewrite (Rplus_comm r1); rewrite double;
apply Rplus_lt_compat_l; assumption
@@ -2041,13 +2041,13 @@ Proof.
split.
apply Rmult_lt_reg_l with 2;
[ prove_sup0
- | unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
+ | unfold Rdiv; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
rewrite <- Rinv_r_sym;
[ rewrite Rmult_1_l; rewrite double; apply Rplus_lt_compat_l; assumption
| discrR ] ].
apply Rmult_lt_reg_l with 2;
[ prove_sup0
- | unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
+ | unfold Rdiv; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
rewrite <- Rinv_r_sym;
[ rewrite Rmult_1_l; rewrite (Rplus_comm (pos_Rl l1 (S i)));
rewrite double; apply Rplus_lt_compat_l; assumption
@@ -2055,21 +2055,21 @@ Proof.
elim H2; intros; rewrite H22 in H23;
elim (Rlt_irrefl _ (Rlt_trans _ _ _ H23 H24)).
assumption.
- simpl in |- *; rewrite H17 in H1; simpl in H1; apply lt_S_n; assumption.
+ simpl; rewrite H17 in H1; simpl in H1; apply lt_S_n; assumption.
rewrite RList_P14; rewrite H17 in H1; simpl in H1; apply H1.
inversion H12.
assert (H16 : pos_Rl (cons_Rlist l1 l2) (S i) = b).
rewrite RList_P29.
- rewrite H15; rewrite <- minus_n_n; rewrite H10; unfold Rmin in |- *;
+ rewrite H15; rewrite <- minus_n_n; rewrite H10; unfold Rmin;
case (Rle_dec b c); intro; [ reflexivity | elim n; left; assumption ].
rewrite H15; apply le_n.
induction l1 as [| r l1 Hrecl1].
simpl in H15; discriminate.
- clear Hrecl1; simpl in H1; simpl in |- *; apply lt_n_S; assumption.
+ clear Hrecl1; simpl in H1; simpl; apply lt_n_S; assumption.
assert (H17 : pos_Rl (cons_Rlist l1 l2) i = b).
rewrite RList_P26.
replace i with (pred (Rlength l1));
- [ rewrite H4; unfold Rmax in |- *; case (Rle_dec a b); intro;
+ [ rewrite H4; unfold Rmax; case (Rle_dec a b); intro;
[ reflexivity | elim n; left; assumption ]
| rewrite H15; reflexivity ].
rewrite H15; apply lt_n_Sn.
@@ -2087,22 +2087,22 @@ Proof.
apply le_S_n; apply le_trans with (S i); [ assumption | apply le_n_Sn ].
induction l1 as [| r l1 Hrecl1].
simpl in H6; discriminate.
- clear Hrecl1; simpl in H1; simpl in |- *; apply lt_n_S; assumption.
- symmetry in |- *; apply minus_Sn_m; apply le_S_n; assumption.
+ clear Hrecl1; simpl in H1; simpl; apply lt_n_S; assumption.
+ symmetry ; apply minus_Sn_m; apply le_S_n; assumption.
assert (H18 : (2 <= Rlength l1)%nat).
clear f c l2 lf2 H0 H3 H8 H7 H10 H9 H11 H13 i H1 x H2 H12 m H14 H15 H16 H17;
induction l1 as [| r l1 Hrecl1].
discriminate.
clear Hrecl1; induction l1 as [| r0 l1 Hrecl1].
simpl in H5; simpl in H4; assert (H0 : Rmin a b < Rmax a b).
- unfold Rmin, Rmax in |- *; case (Rle_dec a b); intro;
+ unfold Rmin, Rmax; case (Rle_dec a b); intro;
[ assumption | elim n; left; assumption ].
rewrite <- H5 in H0; rewrite <- H4 in H0; elim (Rlt_irrefl _ H0).
- clear Hrecl1; simpl in |- *; repeat apply le_n_S; apply le_O_n.
+ clear Hrecl1; simpl; repeat apply le_n_S; apply le_O_n.
elim (RList_P20 _ H18); intros r1 [r2 [r3 H19]]; rewrite H19;
change
(f x = pos_Rl (app_Rlist (mid_Rlist (cons_Rlist (cons r2 r3) l2) r1) f) i)
- in |- *; rewrite RList_P12.
+ ; rewrite RList_P12.
induction i as [| i Hreci].
assert (H20 := le_S_n _ _ H15); assert (H21 := le_trans _ _ _ H18 H20);
elim (le_Sn_O _ H21).
@@ -2120,7 +2120,7 @@ Proof.
assert (H21 : (S i - Rlength l1 < pred (Rlength l2))%nat).
apply lt_pred; rewrite minus_Sn_m.
apply plus_lt_reg_l with (Rlength l1); rewrite <- le_plus_minus.
- rewrite H19 in H1; simpl in H1; rewrite H19; simpl in |- *;
+ rewrite H19 in H1; simpl in H1; rewrite H19; simpl;
rewrite RList_P23 in H1; apply lt_n_S; assumption.
apply le_trans with (S i); [ apply le_S_n; assumption | apply le_n_Sn ].
apply le_S_n; assumption.
@@ -2132,7 +2132,7 @@ Proof.
apply H7; apply lt_pred.
rewrite minus_Sn_m.
apply plus_lt_reg_l with (Rlength l1); rewrite <- le_plus_minus.
- rewrite H19 in H1; simpl in H1; rewrite H19; simpl in |- *;
+ rewrite H19 in H1; simpl in H1; rewrite H19; simpl;
rewrite RList_P23 in H1; apply lt_n_S; assumption.
apply le_trans with (S i); [ apply le_S_n; assumption | apply le_n_Sn ].
apply le_S_n; assumption.
@@ -2140,13 +2140,13 @@ Proof.
split.
apply Rmult_lt_reg_l with 2;
[ prove_sup0
- | unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
+ | unfold Rdiv; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
rewrite <- Rinv_r_sym;
[ rewrite Rmult_1_l; rewrite double; apply Rplus_lt_compat_l; assumption
| discrR ] ].
apply Rmult_lt_reg_l with 2;
[ prove_sup0
- | unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
+ | unfold Rdiv; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
rewrite <- Rinv_r_sym;
[ rewrite Rmult_1_l; rewrite (Rplus_comm (pos_Rl l2 (S i - Rlength l1)));
rewrite double; apply Rplus_lt_compat_l; assumption
@@ -2157,14 +2157,14 @@ Proof.
rewrite H17 in H26; simpl in H24; rewrite H24 in H25;
elim (Rlt_irrefl _ (Rlt_trans _ _ _ H25 H26)).
assert (H23 : pos_Rl (cons_Rlist l1 l2) (S i) = pos_Rl l2 (S i - Rlength l1)).
- rewrite H19; simpl in |- *; simpl in H16; apply H16.
+ rewrite H19; simpl; simpl in H16; apply H16.
assert
(H24 :
pos_Rl (cons_Rlist l1 l2) (S (S i)) = pos_Rl l2 (S (S i - Rlength l1))).
- rewrite H19; simpl in |- *; simpl in H17; apply H17.
+ rewrite H19; simpl; simpl in H17; apply H17.
rewrite <- H23; rewrite <- H24; assumption.
- simpl in |- *; rewrite H19 in H1; simpl in H1; apply lt_S_n; assumption.
- rewrite RList_P14; rewrite H19 in H1; simpl in H1; simpl in |- *; apply H1.
+ simpl; rewrite H19 in H1; simpl in H1; apply lt_S_n; assumption.
+ rewrite RList_P14; rewrite H19 in H1; simpl in H1; simpl; apply H1.
Qed.
Lemma StepFun_P41 :
@@ -2189,11 +2189,11 @@ Lemma StepFun_P42 :
Int_SF (FF l1 f) l1 + Int_SF (FF l2 f) l2.
Proof.
intros l1 l2 f; induction l1 as [| r l1 IHl1]; intros H;
- [ simpl in |- *; ring
+ [ simpl; ring
| destruct l1 as [| r0 r1];
- [ simpl in H; simpl in |- *; destruct l2 as [| r0 r1];
- [ simpl in |- *; ring | simpl in |- *; simpl in H; rewrite H; ring ]
- | simpl in |- *; rewrite Rplus_assoc; apply Rplus_eq_compat_l; apply IHl1;
+ [ simpl in H; simpl; destruct l2 as [| r0 r1];
+ [ simpl; ring | simpl; simpl in H; rewrite H; ring ]
+ | simpl; rewrite Rplus_assoc; apply Rplus_eq_compat_l; apply IHl1;
rewrite <- H; reflexivity ] ].
Qed.
@@ -2229,27 +2229,27 @@ Proof.
(Int_SF (FF (cons_Rlist l1 l2) f) (cons_Rlist l1 l2)).
replace (Int_SF lf1 l1) with (Int_SF (FF l1 f) l1).
replace (Int_SF lf2 l2) with (Int_SF (FF l2 f) l2).
- symmetry in |- *; apply StepFun_P42.
+ symmetry ; apply StepFun_P42.
unfold adapted_couple in H1, H2; decompose [and] H1; decompose [and] H2;
- clear H1 H2; rewrite H11; rewrite H5; unfold Rmax, Rmin in |- *;
+ clear H1 H2; rewrite H11; rewrite H5; unfold Rmax, Rmin;
case (Rle_dec a b); case (Rle_dec b c); intros; reflexivity || elim n;
assumption.
eapply StepFun_P17;
- [ apply StepFun_P21; unfold is_subdivision in |- *; split with lf2; apply H2;
+ [ apply StepFun_P21; unfold is_subdivision; split with lf2; apply H2;
assumption
| assumption ].
eapply StepFun_P17;
- [ apply StepFun_P21; unfold is_subdivision in |- *; split with lf1; apply H1
+ [ apply StepFun_P21; unfold is_subdivision; split with lf1; apply H1
| assumption ].
eapply StepFun_P17; [ apply (StepFun_P40 H H0 H1 H2) | apply H3 ].
replace (Int_SF lf2 l2) with 0.
rewrite Rplus_0_r; eapply StepFun_P17;
[ apply H1 | rewrite <- H0 in H3; apply H3 ].
- symmetry in |- *; eapply StepFun_P8; [ apply H2 | assumption ].
+ symmetry ; eapply StepFun_P8; [ apply H2 | assumption ].
replace (Int_SF lf1 l1) with 0.
rewrite Rplus_0_l; eapply StepFun_P17;
[ apply H2 | rewrite H in H3; apply H3 ].
- symmetry in |- *; eapply StepFun_P8; [ apply H1 | assumption ].
+ symmetry ; eapply StepFun_P8; [ apply H1 | assumption ].
elim n; apply Rle_trans with b; assumption.
apply Rplus_eq_reg_l with (Int_SF lf2 l2);
replace (Int_SF lf2 l2 + (Int_SF lf1 l1 + - Int_SF lf2 l2)) with
@@ -2264,24 +2264,24 @@ Proof.
replace (Int_SF lf2 l2) with (Int_SF (FF l2 f) l2).
apply StepFun_P42.
unfold adapted_couple in H2, H3; decompose [and] H2; decompose [and] H3;
- clear H3 H2; rewrite H10; rewrite H6; unfold Rmax, Rmin in |- *;
+ clear H3 H2; rewrite H10; rewrite H6; unfold Rmax, Rmin;
case (Rle_dec a c); case (Rle_dec b c); intros;
[ elim n; assumption
| reflexivity
| elim n0; assumption
| elim n1; assumption ].
eapply StepFun_P17;
- [ apply StepFun_P21; unfold is_subdivision in |- *; split with lf2; apply H2
+ [ apply StepFun_P21; unfold is_subdivision; split with lf2; apply H2
| assumption ].
eapply StepFun_P17;
- [ apply StepFun_P21; unfold is_subdivision in |- *; split with lf3; apply H3
+ [ apply StepFun_P21; unfold is_subdivision; split with lf3; apply H3
| assumption ].
eapply StepFun_P17;
[ apply (StepFun_P40 H0 H H3 (StepFun_P2 H2)) | apply H1 ].
replace (Int_SF lf3 l3) with 0.
rewrite Rplus_0_r; eapply StepFun_P17;
[ apply H1 | apply StepFun_P2; rewrite <- H0 in H2; apply H2 ].
- symmetry in |- *; eapply StepFun_P8; [ apply H3 | assumption ].
+ symmetry ; eapply StepFun_P8; [ apply H3 | assumption ].
replace (Int_SF lf2 l2) with (Int_SF lf3 l3 + Int_SF lf1 l1).
ring.
elim r; intro.
@@ -2289,19 +2289,19 @@ Proof.
(Int_SF (FF (cons_Rlist l3 l1) f) (cons_Rlist l3 l1)).
replace (Int_SF lf3 l3) with (Int_SF (FF l3 f) l3).
replace (Int_SF lf1 l1) with (Int_SF (FF l1 f) l1).
- symmetry in |- *; apply StepFun_P42.
+ symmetry ; apply StepFun_P42.
unfold adapted_couple in H1, H3; decompose [and] H1; decompose [and] H3;
- clear H3 H1; rewrite H9; rewrite H5; unfold Rmax, Rmin in |- *;
+ clear H3 H1; rewrite H9; rewrite H5; unfold Rmax, Rmin;
case (Rle_dec a c); case (Rle_dec a b); intros;
[ elim n; assumption
| elim n1; assumption
| reflexivity
| elim n1; assumption ].
eapply StepFun_P17;
- [ apply StepFun_P21; unfold is_subdivision in |- *; split with lf1; apply H1
+ [ apply StepFun_P21; unfold is_subdivision; split with lf1; apply H1
| assumption ].
eapply StepFun_P17;
- [ apply StepFun_P21; unfold is_subdivision in |- *; split with lf3; apply H3
+ [ apply StepFun_P21; unfold is_subdivision; split with lf3; apply H3
| assumption ].
eapply StepFun_P17.
assert (H0 : c < a).
@@ -2311,7 +2311,7 @@ Proof.
replace (Int_SF lf1 l1) with 0.
rewrite Rplus_0_r; eapply StepFun_P17;
[ apply H3 | rewrite <- H in H2; apply H2 ].
- symmetry in |- *; eapply StepFun_P8; [ apply H1 | assumption ].
+ symmetry ; eapply StepFun_P8; [ apply H1 | assumption ].
assert (H : b < a).
auto with real.
replace (Int_SF lf2 l2) with (Int_SF lf3 l3 + Int_SF lf1 l1).
@@ -2321,19 +2321,19 @@ Proof.
(Int_SF (FF (cons_Rlist l1 l3) f) (cons_Rlist l1 l3)).
replace (Int_SF lf3 l3) with (Int_SF (FF l3 f) l3).
replace (Int_SF lf1 l1) with (Int_SF (FF l1 f) l1).
- symmetry in |- *; apply StepFun_P42.
+ symmetry ; apply StepFun_P42.
unfold adapted_couple in H1, H3; decompose [and] H1; decompose [and] H3;
- clear H3 H1; rewrite H11; rewrite H5; unfold Rmax, Rmin in |- *;
+ clear H3 H1; rewrite H11; rewrite H5; unfold Rmax, Rmin;
case (Rle_dec a c); case (Rle_dec a b); intros;
[ elim n; assumption
| reflexivity
| elim n0; assumption
| elim n1; assumption ].
eapply StepFun_P17;
- [ apply StepFun_P21; unfold is_subdivision in |- *; split with lf1; apply H1
+ [ apply StepFun_P21; unfold is_subdivision; split with lf1; apply H1
| assumption ].
eapply StepFun_P17;
- [ apply StepFun_P21; unfold is_subdivision in |- *; split with lf3; apply H3
+ [ apply StepFun_P21; unfold is_subdivision; split with lf3; apply H3
| assumption ].
eapply StepFun_P17.
apply (StepFun_P40 H H0 (StepFun_P2 H1) H3).
@@ -2341,7 +2341,7 @@ Proof.
replace (Int_SF lf3 l3) with 0.
rewrite Rplus_0_r; eapply StepFun_P17;
[ apply H1 | rewrite <- H0 in H2; apply StepFun_P2; apply H2 ].
- symmetry in |- *; eapply StepFun_P8; [ apply H3 | assumption ].
+ symmetry ; eapply StepFun_P8; [ apply H3 | assumption ].
assert (H : c < a).
auto with real.
replace (Int_SF lf1 l1) with (Int_SF lf2 l2 + Int_SF lf3 l3).
@@ -2351,19 +2351,19 @@ Proof.
(Int_SF (FF (cons_Rlist l2 l3) f) (cons_Rlist l2 l3)).
replace (Int_SF lf3 l3) with (Int_SF (FF l3 f) l3).
replace (Int_SF lf2 l2) with (Int_SF (FF l2 f) l2).
- symmetry in |- *; apply StepFun_P42.
+ symmetry ; apply StepFun_P42.
unfold adapted_couple in H2, H3; decompose [and] H2; decompose [and] H3;
- clear H3 H2; rewrite H11; rewrite H5; unfold Rmax, Rmin in |- *;
+ clear H3 H2; rewrite H11; rewrite H5; unfold Rmax, Rmin;
case (Rle_dec a c); case (Rle_dec b c); intros;
[ elim n; assumption
| elim n1; assumption
| reflexivity
| elim n1; assumption ].
eapply StepFun_P17;
- [ apply StepFun_P21; unfold is_subdivision in |- *; split with lf2; apply H2
+ [ apply StepFun_P21; unfold is_subdivision; split with lf2; apply H2
| assumption ].
eapply StepFun_P17;
- [ apply StepFun_P21; unfold is_subdivision in |- *; split with lf3; apply H3
+ [ apply StepFun_P21; unfold is_subdivision; split with lf3; apply H3
| assumption ].
eapply StepFun_P17.
apply (StepFun_P40 H0 H H2 (StepFun_P2 H3)).
@@ -2371,7 +2371,7 @@ Proof.
replace (Int_SF lf2 l2) with 0.
rewrite Rplus_0_l; eapply StepFun_P17;
[ apply H3 | rewrite H0 in H1; apply H1 ].
- symmetry in |- *; eapply StepFun_P8; [ apply H2 | assumption ].
+ symmetry ; eapply StepFun_P8; [ apply H2 | assumption ].
elim n; apply Rle_trans with a; try assumption.
auto with real.
assert (H : c < b).
@@ -2384,56 +2384,56 @@ Proof.
(Int_SF (FF (cons_Rlist l2 l1) f) (cons_Rlist l2 l1)).
replace (Int_SF lf1 l1) with (Int_SF (FF l1 f) l1).
replace (Int_SF lf2 l2) with (Int_SF (FF l2 f) l2).
- symmetry in |- *; apply StepFun_P42.
+ symmetry ; apply StepFun_P42.
unfold adapted_couple in H2, H1; decompose [and] H2; decompose [and] H1;
- clear H1 H2; rewrite H11; rewrite H5; unfold Rmax, Rmin in |- *;
+ clear H1 H2; rewrite H11; rewrite H5; unfold Rmax, Rmin;
case (Rle_dec a b); case (Rle_dec b c); intros;
[ elim n1; assumption
| elim n1; assumption
| elim n0; assumption
| reflexivity ].
eapply StepFun_P17;
- [ apply StepFun_P21; unfold is_subdivision in |- *; split with lf2; apply H2
+ [ apply StepFun_P21; unfold is_subdivision; split with lf2; apply H2
| assumption ].
eapply StepFun_P17;
- [ apply StepFun_P21; unfold is_subdivision in |- *; split with lf1; apply H1
+ [ apply StepFun_P21; unfold is_subdivision; split with lf1; apply H1
| assumption ].
eapply StepFun_P17.
apply (StepFun_P40 H H0 (StepFun_P2 H2) (StepFun_P2 H1)).
apply StepFun_P2; apply H3.
- unfold RiemannInt_SF in |- *; case (Rle_dec a c); intro.
+ unfold RiemannInt_SF; case (Rle_dec a c); intro.
eapply StepFun_P17.
apply H3.
change
(adapted_couple (mkStepFun pr3) a c (subdivision (mkStepFun pr3))
- (subdivision_val (mkStepFun pr3))) in |- *; apply StepFun_P1.
+ (subdivision_val (mkStepFun pr3))); apply StepFun_P1.
apply Ropp_eq_compat; eapply StepFun_P17.
apply H3.
change
(adapted_couple (mkStepFun pr3) a c (subdivision (mkStepFun pr3))
- (subdivision_val (mkStepFun pr3))) in |- *; apply StepFun_P1.
- unfold RiemannInt_SF in |- *; case (Rle_dec b c); intro.
+ (subdivision_val (mkStepFun pr3))); apply StepFun_P1.
+ unfold RiemannInt_SF; case (Rle_dec b c); intro.
eapply StepFun_P17.
apply H2.
change
(adapted_couple (mkStepFun pr2) b c (subdivision (mkStepFun pr2))
- (subdivision_val (mkStepFun pr2))) in |- *; apply StepFun_P1.
+ (subdivision_val (mkStepFun pr2))); apply StepFun_P1.
apply Ropp_eq_compat; eapply StepFun_P17.
apply H2.
change
(adapted_couple (mkStepFun pr2) b c (subdivision (mkStepFun pr2))
- (subdivision_val (mkStepFun pr2))) in |- *; apply StepFun_P1.
- unfold RiemannInt_SF in |- *; case (Rle_dec a b); intro.
+ (subdivision_val (mkStepFun pr2))); apply StepFun_P1.
+ unfold RiemannInt_SF; case (Rle_dec a b); intro.
eapply StepFun_P17.
apply H1.
change
(adapted_couple (mkStepFun pr1) a b (subdivision (mkStepFun pr1))
- (subdivision_val (mkStepFun pr1))) in |- *; apply StepFun_P1.
+ (subdivision_val (mkStepFun pr1))); apply StepFun_P1.
apply Ropp_eq_compat; eapply StepFun_P17.
apply H1.
change
(adapted_couple (mkStepFun pr1) a b (subdivision (mkStepFun pr1))
- (subdivision_val (mkStepFun pr1))) in |- *; apply StepFun_P1.
+ (subdivision_val (mkStepFun pr1))); apply StepFun_P1.
Qed.
Lemma StepFun_P44 :
@@ -2449,7 +2449,7 @@ Proof.
adapted_couple f a b l1 lf1 ->
a <= c <= b ->
{ l:Rlist & { l0:Rlist & adapted_couple f a c l l0 } }).
- intro X; unfold IsStepFun in |- *; unfold is_subdivision in |- *; eapply X.
+ intro X; unfold IsStepFun; unfold is_subdivision; eapply X.
apply H2.
split; assumption.
clear f a b c H0 H H1 H2 l1 lf1; simple induction l1.
@@ -2461,11 +2461,11 @@ Proof.
simpl in H2; assert (H7 : a <= b).
elim H0; intros; apply Rle_trans with c; assumption.
replace a with (Rmin a b).
- pattern b at 2 in |- *; replace b with (Rmax a b).
+ pattern b at 2; replace b with (Rmax a b).
rewrite <- H2; rewrite H3; reflexivity.
- unfold Rmax in |- *; case (Rle_dec a b); intro;
+ unfold Rmax; case (Rle_dec a b); intro;
[ reflexivity | elim n; assumption ].
- unfold Rmin in |- *; case (Rle_dec a b); intro;
+ unfold Rmin; case (Rle_dec a b); intro;
[ reflexivity | elim n; assumption ].
split with (cons r nil); split with lf1; assert (H2 : c = b).
rewrite H1 in H0; elim H0; intros; apply Rle_antisym; assumption.
@@ -2479,22 +2479,22 @@ Proof.
split with (cons r (cons c nil)); split with (cons r3 nil);
unfold adapted_couple in H; decompose [and] H; clear H;
assert (H6 : r = a).
- simpl in H4; rewrite H4; unfold Rmin in |- *; case (Rle_dec a b); intro;
+ simpl in H4; rewrite H4; unfold Rmin; case (Rle_dec a b); intro;
[ reflexivity
| elim n; elim H0; intros; apply Rle_trans with c; assumption ].
- elim H0; clear H0; intros; unfold adapted_couple in |- *; repeat split.
- rewrite H6; unfold ordered_Rlist in |- *; intros; simpl in H8; inversion H8;
- [ simpl in |- *; assumption | elim (le_Sn_O _ H10) ].
- simpl in |- *; unfold Rmin in |- *; case (Rle_dec a c); intro;
+ elim H0; clear H0; intros; unfold adapted_couple; repeat split.
+ rewrite H6; unfold ordered_Rlist; intros; simpl in H8; inversion H8;
+ [ simpl; assumption | elim (le_Sn_O _ H10) ].
+ simpl; unfold Rmin; case (Rle_dec a c); intro;
[ assumption | elim n; assumption ].
- simpl in |- *; unfold Rmax in |- *; case (Rle_dec a c); intro;
+ simpl; unfold Rmax; case (Rle_dec a c); intro;
[ reflexivity | elim n; assumption ].
- unfold constant_D_eq, open_interval in |- *; intros; simpl in H8;
+ unfold constant_D_eq, open_interval; intros; simpl in H8;
inversion H8.
- simpl in |- *; assert (H10 := H7 0%nat);
+ simpl; assert (H10 := H7 0%nat);
assert (H12 : (0 < pred (Rlength (cons r (cons r1 r2))))%nat).
- simpl in |- *; apply lt_O_Sn.
- apply (H10 H12); unfold open_interval in |- *; simpl in |- *;
+ simpl; apply lt_O_Sn.
+ apply (H10 H12); unfold open_interval; simpl;
rewrite H11 in H9; simpl in H9; elim H9; clear H9;
intros; split; try assumption.
apply Rlt_le_trans with c; assumption.
@@ -2508,42 +2508,42 @@ Proof.
assert (H14 : a <= b).
elim H0; intros; apply Rle_trans with c; assumption.
assert (H16 : r = a).
- simpl in H7; rewrite H7; unfold Rmin in |- *; case (Rle_dec a b); intro;
+ simpl in H7; rewrite H7; unfold Rmin; case (Rle_dec a b); intro;
[ reflexivity | elim n; assumption ].
induction l1' as [| r4 l1' Hrecl1'].
simpl in H13; discriminate.
- clear Hrecl1'; unfold adapted_couple in |- *; repeat split.
- unfold ordered_Rlist in |- *; intros; simpl in H; induction i as [| i Hreci].
- simpl in |- *; replace r4 with r1.
+ clear Hrecl1'; unfold adapted_couple; repeat split.
+ unfold ordered_Rlist; intros; simpl in H; induction i as [| i Hreci].
+ simpl; replace r4 with r1.
apply (H5 0%nat).
- simpl in |- *; apply lt_O_Sn.
- simpl in H12; rewrite H12; unfold Rmin in |- *; case (Rle_dec r1 c); intro;
+ simpl; apply lt_O_Sn.
+ simpl in H12; rewrite H12; unfold Rmin; case (Rle_dec r1 c); intro;
[ reflexivity | elim n; left; assumption ].
- apply (H9 i); simpl in |- *; apply lt_S_n; assumption.
- simpl in |- *; unfold Rmin in |- *; case (Rle_dec a c); intro;
+ apply (H9 i); simpl; apply lt_S_n; assumption.
+ simpl; unfold Rmin; case (Rle_dec a c); intro;
[ assumption | elim n; elim H0; intros; assumption ].
replace (Rmax a c) with (Rmax r1 c).
rewrite <- H11; reflexivity.
- unfold Rmax in |- *; case (Rle_dec r1 c); case (Rle_dec a c); intros;
+ unfold Rmax; case (Rle_dec r1 c); case (Rle_dec a c); intros;
[ reflexivity
| elim n; elim H0; intros; assumption
| elim n; left; assumption
| elim n0; left; assumption ].
- simpl in |- *; simpl in H13; rewrite H13; reflexivity.
- intros; simpl in H; unfold constant_D_eq, open_interval in |- *; intros;
+ simpl; simpl in H13; rewrite H13; reflexivity.
+ intros; simpl in H; unfold constant_D_eq, open_interval; intros;
induction i as [| i Hreci].
- simpl in |- *; assert (H17 := H10 0%nat);
+ simpl; assert (H17 := H10 0%nat);
assert (H18 : (0 < pred (Rlength (cons r (cons r1 r2))))%nat).
- simpl in |- *; apply lt_O_Sn.
- apply (H17 H18); unfold open_interval in |- *; simpl in |- *; simpl in H4;
+ simpl; apply lt_O_Sn.
+ apply (H17 H18); unfold open_interval; simpl; simpl in H4;
elim H4; clear H4; intros; split; try assumption;
replace r1 with r4.
assumption.
- simpl in H12; rewrite H12; unfold Rmin in |- *; case (Rle_dec r1 c); intro;
+ simpl in H12; rewrite H12; unfold Rmin; case (Rle_dec r1 c); intro;
[ reflexivity | elim n; left; assumption ].
- clear Hreci; simpl in |- *; apply H15.
- simpl in |- *; apply lt_S_n; assumption.
- unfold open_interval in |- *; apply H4.
+ clear Hreci; simpl; apply H15.
+ simpl; apply lt_S_n; assumption.
+ unfold open_interval; apply H4.
split.
left; assumption.
elim H0; intros; assumption.
@@ -2565,7 +2565,7 @@ Proof.
adapted_couple f a b l1 lf1 ->
a <= c <= b ->
{ l:Rlist & { l0:Rlist & adapted_couple f c b l l0 } }).
- intro X; unfold IsStepFun in |- *; unfold is_subdivision in |- *; eapply X;
+ intro X; unfold IsStepFun; unfold is_subdivision; eapply X;
[ apply H2 | split; assumption ].
clear f a b c H0 H H1 H2 l1 lf1; simple induction l1.
intros; unfold adapted_couple in H; decompose [and] H; clear H; simpl in H4;
@@ -2576,11 +2576,11 @@ Proof.
simpl in H2; assert (H7 : a <= b).
elim H0; intros; apply Rle_trans with c; assumption.
replace a with (Rmin a b).
- pattern b at 2 in |- *; replace b with (Rmax a b).
+ pattern b at 2; replace b with (Rmax a b).
rewrite <- H2; rewrite H3; reflexivity.
- unfold Rmax in |- *; case (Rle_dec a b); intro;
+ unfold Rmax; case (Rle_dec a b); intro;
[ reflexivity | elim n; assumption ].
- unfold Rmin in |- *; case (Rle_dec a b); intro;
+ unfold Rmin; case (Rle_dec a b); intro;
[ reflexivity | elim n; assumption ].
split with (cons r nil); split with lf1; assert (H2 : c = b).
rewrite H1 in H0; elim H0; intros; apply Rle_antisym; assumption.
@@ -2593,32 +2593,32 @@ Proof.
elim H1; intro.
split with (cons c (cons r1 r2)); split with (cons r3 lf1);
unfold adapted_couple in H; decompose [and] H; clear H;
- unfold adapted_couple in |- *; repeat split.
- unfold ordered_Rlist in |- *; intros; simpl in H; induction i as [| i Hreci].
- simpl in |- *; assumption.
- clear Hreci; apply (H2 (S i)); simpl in |- *; assumption.
- simpl in |- *; unfold Rmin in |- *; case (Rle_dec c b); intro;
+ unfold adapted_couple; repeat split.
+ unfold ordered_Rlist; intros; simpl in H; induction i as [| i Hreci].
+ simpl; assumption.
+ clear Hreci; apply (H2 (S i)); simpl; assumption.
+ simpl; unfold Rmin; case (Rle_dec c b); intro;
[ reflexivity | elim n; elim H0; intros; assumption ].
replace (Rmax c b) with (Rmax a b).
rewrite <- H3; reflexivity.
- unfold Rmax in |- *; case (Rle_dec a b); case (Rle_dec c b); intros;
+ unfold Rmax; case (Rle_dec a b); case (Rle_dec c b); intros;
[ reflexivity
| elim n; elim H0; intros; assumption
| elim n; elim H0; intros; apply Rle_trans with c; assumption
| elim n0; elim H0; intros; apply Rle_trans with c; assumption ].
- simpl in |- *; simpl in H5; apply H5.
+ simpl; simpl in H5; apply H5.
intros; simpl in H; induction i as [| i Hreci].
- unfold constant_D_eq, open_interval in |- *; intros; simpl in |- *;
+ unfold constant_D_eq, open_interval; intros; simpl;
apply (H7 0%nat).
- simpl in |- *; apply lt_O_Sn.
- unfold open_interval in |- *; simpl in |- *; simpl in H6; elim H6; clear H6;
+ simpl; apply lt_O_Sn.
+ unfold open_interval; simpl; simpl in H6; elim H6; clear H6;
intros; split; try assumption; apply Rle_lt_trans with c;
try assumption; replace r with a.
elim H0; intros; assumption.
- simpl in H4; rewrite H4; unfold Rmin in |- *; case (Rle_dec a b); intros;
+ simpl in H4; rewrite H4; unfold Rmin; case (Rle_dec a b); intros;
[ reflexivity
| elim n; elim H0; intros; apply Rle_trans with c; assumption ].
- clear Hreci; apply (H7 (S i)); simpl in |- *; assumption.
+ clear Hreci; apply (H7 (S i)); simpl; assumption.
cut (adapted_couple f r1 b (cons r1 r2) lf1).
cut (r1 <= c <= b).
intros; elim (X0 _ _ _ _ _ H3 H2); intros l1' [lf1' H4]; split with l1';
diff --git a/theories/Reals/Rlimit.v b/theories/Reals/Rlimit.v
index d2fee1fde..bacf42bb1 100644
--- a/theories/Reals/Rlimit.v
+++ b/theories/Reals/Rlimit.v
@@ -31,7 +31,7 @@ Proof.
intro esp.
assert (H := double_var esp).
unfold Rdiv in H.
- symmetry in |- *; exact H.
+ symmetry ; exact H.
Qed.
(*********)
@@ -39,9 +39,9 @@ Lemma eps4 : forall eps:R, eps * / (2 + 2) + eps * / (2 + 2) = eps * / 2.
Proof.
intro eps.
replace (2 + 2) with 4.
- pattern eps at 3 in |- *; rewrite double_var.
+ pattern eps at 3; rewrite double_var.
rewrite (Rmult_plus_distr_r (eps / 2) (eps / 2) (/ 2)).
- unfold Rdiv in |- *.
+ unfold Rdiv.
repeat rewrite Rmult_assoc.
rewrite <- Rinv_mult_distr.
reflexivity.
@@ -54,7 +54,7 @@ Qed.
Lemma Rlt_eps2_eps : forall eps:R, eps > 0 -> eps * / 2 < eps.
Proof.
intros.
- pattern eps at 2 in |- *; rewrite <- Rmult_1_r.
+ pattern eps at 2; rewrite <- Rmult_1_r.
repeat rewrite (Rmult_comm eps).
apply Rmult_lt_compat_r.
exact H.
@@ -70,7 +70,7 @@ Lemma Rlt_eps4_eps : forall eps:R, eps > 0 -> eps * / (2 + 2) < eps.
Proof.
intros.
replace (2 + 2) with 4.
- pattern eps at 2 in |- *; rewrite <- Rmult_1_r.
+ pattern eps at 2; rewrite <- Rmult_1_r.
repeat rewrite (Rmult_comm eps).
apply Rmult_lt_compat_r.
exact H.
@@ -113,10 +113,10 @@ Qed.
(*********)
Lemma mul_factor_gt : forall eps l l':R, eps > 0 -> eps * mul_factor l l' > 0.
Proof.
- intros; unfold Rgt in |- *; rewrite <- (Rmult_0_r eps);
+ intros; unfold Rgt; rewrite <- (Rmult_0_r eps);
apply Rmult_lt_compat_l.
assumption.
- unfold mul_factor in |- *; apply Rinv_0_lt_compat;
+ unfold mul_factor; apply Rinv_0_lt_compat;
cut (1 <= 1 + (Rabs l + Rabs l')).
cut (0 < 1).
exact (Rlt_le_trans _ _ _).
@@ -210,7 +210,7 @@ Qed.
(*********)
Lemma lim_x : forall (D:R -> Prop) (x0:R), limit1_in (fun x:R => x) D x0 x0.
Proof.
- unfold limit1_in in |- *; unfold limit_in in |- *; simpl in |- *; intros;
+ unfold limit1_in; unfold limit_in; simpl; intros;
split with eps; split; auto; intros; elim H0; intros;
auto.
Qed.
@@ -221,9 +221,9 @@ Lemma limit_plus :
limit1_in f D l x0 ->
limit1_in g D l' x0 -> limit1_in (fun x:R => f x + g x) D (l + l') x0.
Proof.
- intros; unfold limit1_in in |- *; unfold limit_in in |- *; simpl in |- *;
+ intros; unfold limit1_in; unfold limit_in; simpl;
intros; elim (H (eps * / 2) (eps2_Rgt_R0 eps H1));
- elim (H0 (eps * / 2) (eps2_Rgt_R0 eps H1)); simpl in |- *;
+ elim (H0 (eps * / 2) (eps2_Rgt_R0 eps H1)); simpl;
clear H H0; intros; elim H; elim H0; clear H H0; intros;
split with (Rmin x1 x); split.
exact (Rmin_Rgt_r x1 x 0 (conj H H2)).
@@ -244,12 +244,12 @@ Lemma limit_Ropp :
forall (f:R -> R) (D:R -> Prop) (l x0:R),
limit1_in f D l x0 -> limit1_in (fun x:R => - f x) D (- l) x0.
Proof.
- unfold limit1_in in |- *; unfold limit_in in |- *; simpl in |- *; intros;
+ unfold limit1_in; unfold limit_in; simpl; intros;
elim (H eps H0); clear H; intros; elim H; clear H;
intros; split with x; split; auto; intros; generalize (H1 x1 H2);
- clear H1; intro; unfold R_dist in |- *; unfold Rminus in |- *;
+ clear H1; intro; unfold R_dist; unfold Rminus;
rewrite (Ropp_involutive l); rewrite (Rplus_comm (- f x1) l);
- fold (l - f x1) in |- *; fold (R_dist l (f x1)) in |- *;
+ fold (l - f x1); fold (R_dist l (f x1));
rewrite R_dist_sym; assumption.
Qed.
@@ -259,7 +259,7 @@ Lemma limit_minus :
limit1_in f D l x0 ->
limit1_in g D l' x0 -> limit1_in (fun x:R => f x - g x) D (l - l') x0.
Proof.
- intros; unfold Rminus in |- *; generalize (limit_Ropp g D l' x0 H0); intro;
+ intros; unfold Rminus; generalize (limit_Ropp g D l' x0 H0); intro;
exact (limit_plus f (fun x:R => - g x) D l (- l') x0 H H1).
Qed.
@@ -268,7 +268,7 @@ Lemma limit_free :
forall (f:R -> R) (D:R -> Prop) (x x0:R),
limit1_in (fun h:R => f x) D (f x) x0.
Proof.
- unfold limit1_in in |- *; unfold limit_in in |- *; simpl in |- *; intros;
+ unfold limit1_in; unfold limit_in; simpl; intros;
split with eps; split; auto; intros; elim (R_dist_refl (f x) (f x));
intros a b; rewrite (b (eq_refl (f x))); unfold Rgt in H;
assumption.
@@ -280,14 +280,14 @@ Lemma limit_mul :
limit1_in f D l x0 ->
limit1_in g D l' x0 -> limit1_in (fun x:R => f x * g x) D (l * l') x0.
Proof.
- intros; unfold limit1_in in |- *; unfold limit_in in |- *; simpl in |- *;
+ intros; unfold limit1_in; unfold limit_in; simpl;
intros;
elim (H (Rmin 1 (eps * mul_factor l l')) (mul_factor_gt_f eps l l' H1));
elim (H0 (eps * mul_factor l l') (mul_factor_gt eps l l' H1));
- clear H H0; simpl in |- *; intros; elim H; elim H0;
+ clear H H0; simpl; intros; elim H; elim H0;
clear H H0; intros; split with (Rmin x1 x); split.
exact (Rmin_Rgt_r x1 x 0 (conj H H2)).
- intros; elim H4; clear H4; intros; unfold R_dist in |- *;
+ intros; elim H4; clear H4; intros; unfold R_dist;
replace (f x2 * g x2 - l * l') with (f x2 * (g x2 - l') + l' * (f x2 - l)).
cut (Rabs (f x2 * (g x2 - l')) + Rabs (l' * (f x2 - l)) < eps).
cut
@@ -309,7 +309,7 @@ Proof.
apply Rmult_ge_0_gt_0_lt_compat.
apply Rle_ge.
exact (Rabs_pos (g x2 - l')).
- rewrite (Rplus_comm 1 (Rabs l)); unfold Rgt in |- *; apply Rle_lt_0_plus_1;
+ rewrite (Rplus_comm 1 (Rabs l)); unfold Rgt; apply Rle_lt_0_plus_1;
exact (Rabs_pos l).
unfold R_dist in H9;
apply (Rplus_lt_reg_r (- Rabs l) (Rabs (f x2)) (1 + Rabs l)).
@@ -323,13 +323,13 @@ Proof.
generalize (H3 x2 (conj H4 H6)); trivial.
apply Rmult_le_compat_l.
exact (Rabs_pos l').
- unfold Rle in |- *; left; assumption.
+ unfold Rle; left; assumption.
rewrite (Rmult_comm (1 + Rabs l) (eps * mul_factor l l'));
rewrite (Rmult_comm (Rabs l') (eps * mul_factor l l'));
rewrite <-
(Rmult_plus_distr_l (eps * mul_factor l l') (1 + Rabs l) (Rabs l'))
; rewrite (Rmult_assoc eps (mul_factor l l') (1 + Rabs l + Rabs l'));
- rewrite (Rplus_assoc 1 (Rabs l) (Rabs l')); unfold mul_factor in |- *;
+ rewrite (Rplus_assoc 1 (Rabs l) (Rabs l')); unfold mul_factor;
rewrite (Rinv_l (1 + (Rabs l + Rabs l')) (mul_factor_wd l l'));
rewrite (proj1 (Rmult_ne eps)); apply Req_le; trivial.
ring.
@@ -344,10 +344,10 @@ Lemma single_limit :
forall (f:R -> R) (D:R -> Prop) (l l' x0:R),
adhDa D x0 -> limit1_in f D l x0 -> limit1_in f D l' x0 -> l = l'.
Proof.
- unfold limit1_in in |- *; unfold limit_in in |- *; intros.
+ unfold limit1_in; unfold limit_in; intros.
cut (forall eps:R, eps > 0 -> dist R_met l l' < 2 * eps).
- clear H0 H1; unfold dist in |- *; unfold R_met in |- *; unfold R_dist in |- *;
- unfold Rabs in |- *; case (Rcase_abs (l - l')); intros.
+ clear H0 H1; unfold dist; unfold R_met; unfold R_dist;
+ unfold Rabs; case (Rcase_abs (l - l')); intros.
cut (forall eps:R, eps > 0 -> - (l - l') < eps).
intro; generalize (prop_eps (- (l - l')) H1); intro;
generalize (Ropp_gt_lt_0_contravar (l - l') r); intro;
@@ -358,10 +358,10 @@ Proof.
rewrite <- (Rmult_assoc 2 (/ 2) eps); rewrite (Rinv_r 2).
elim (Rmult_ne eps); intros a b; rewrite b; clear a b; trivial.
apply (Rlt_dichotomy_converse 2 0); right; generalize Rlt_0_1; intro;
- unfold Rgt in |- *; generalize (Rplus_lt_compat_l 1 0 1 H3);
+ unfold Rgt; generalize (Rplus_lt_compat_l 1 0 1 H3);
intro; elim (Rplus_ne 1); intros a b; rewrite a in H4;
clear a b; apply (Rlt_trans 0 1 2 H3 H4).
- unfold Rgt in |- *; unfold Rgt in H1; rewrite (Rmult_comm eps (/ 2));
+ unfold Rgt; unfold Rgt in H1; rewrite (Rmult_comm eps (/ 2));
rewrite <- (Rmult_0_r (/ 2)); apply (Rmult_lt_compat_l (/ 2) 0 eps);
auto.
apply (Rinv_0_lt_compat 2); cut (1 < 2).
@@ -380,10 +380,10 @@ Proof.
rewrite <- (Rmult_assoc 2 (/ 2) eps); rewrite (Rinv_r 2).
elim (Rmult_ne eps); intros a b; rewrite b; clear a b; trivial.
apply (Rlt_dichotomy_converse 2 0); right; generalize Rlt_0_1; intro;
- unfold Rgt in |- *; generalize (Rplus_lt_compat_l 1 0 1 H3);
+ unfold Rgt; generalize (Rplus_lt_compat_l 1 0 1 H3);
intro; elim (Rplus_ne 1); intros a b; rewrite a in H4;
clear a b; apply (Rlt_trans 0 1 2 H3 H4).
- unfold Rgt in |- *; unfold Rgt in H1; rewrite (Rmult_comm eps (/ 2));
+ unfold Rgt; unfold Rgt in H1; rewrite (Rmult_comm eps (/ 2));
rewrite <- (Rmult_0_r (/ 2)); apply (Rmult_lt_compat_l (/ 2) 0 eps);
auto.
apply (Rinv_0_lt_compat 2); cut (1 < 2).
@@ -393,7 +393,7 @@ Proof.
(**)
intros; unfold adhDa in H; elim (H0 eps H2); intros; elim (H1 eps H2); intros;
clear H0 H1; elim H3; elim H4; clear H3 H4; intros;
- simpl in |- *; simpl in H1, H4; generalize (Rmin_Rgt x x1 0);
+ simpl; simpl in H1, H4; generalize (Rmin_Rgt x x1 0);
intro; elim H5; intros; clear H5; elim (H (Rmin x x1) (H7 (conj H3 H0)));
intros; elim H5; intros; clear H5 H H6 H7;
generalize (Rmin_Rgt x x1 (R_dist x2 x0)); intro;
@@ -403,10 +403,10 @@ Proof.
intros;
generalize
(Rplus_lt_compat (R_dist (f x2) l) eps (R_dist (f x2) l') eps H H0);
- unfold R_dist in |- *; intros; rewrite (Rabs_minus_sym (f x2) l) in H1;
+ unfold R_dist; intros; rewrite (Rabs_minus_sym (f x2) l) in H1;
rewrite (Rmult_comm 2 eps); rewrite (Rmult_plus_distr_l eps 1 1);
elim (Rmult_ne eps); intros a b; rewrite a; clear a b;
- generalize (R_dist_tri l l' (f x2)); unfold R_dist in |- *;
+ generalize (R_dist_tri l l' (f x2)); unfold R_dist;
intros;
apply
(Rle_lt_trans (Rabs (l - l')) (Rabs (l - f x2) + Rabs (f x2 - l'))
@@ -419,7 +419,7 @@ Lemma limit_comp :
limit1_in f Df l x0 ->
limit1_in g Dg l' l -> limit1_in (fun x:R => g (f x)) (Dgf Df Dg f) l' x0.
Proof.
- unfold limit1_in, limit_in, Dgf in |- *; simpl in |- *.
+ unfold limit1_in, limit_in, Dgf; simpl.
intros f g Df Dg l l' x0 Hf Hg eps eps_pos.
elim (Hg eps eps_pos).
intros alpg lg.
@@ -436,12 +436,12 @@ Lemma limit_inv :
forall (f:R -> R) (D:R -> Prop) (l x0:R),
limit1_in f D l x0 -> l <> 0 -> limit1_in (fun x:R => / f x) D (/ l) x0.
Proof.
- unfold limit1_in in |- *; unfold limit_in in |- *; simpl in |- *;
- unfold R_dist in |- *; intros; elim (H (Rabs l / 2)).
+ unfold limit1_in; unfold limit_in; simpl;
+ unfold R_dist; intros; elim (H (Rabs l / 2)).
intros delta1 H2; elim (H (eps * (Rsqr l / 2))).
intros delta2 H3; elim H2; elim H3; intros; exists (Rmin delta1 delta2);
split.
- unfold Rmin in |- *; case (Rle_dec delta1 delta2); intro; assumption.
+ unfold Rmin; case (Rle_dec delta1 delta2); intro; assumption.
intro; generalize (H5 x); clear H5; intro H5; generalize (H7 x); clear H7;
intro H7; intro H10; elim H10; intros; cut (D x /\ Rabs (x - x0) < delta1).
cut (D x /\ Rabs (x - x0) < delta2).
@@ -455,7 +455,7 @@ Proof.
(Rplus_lt_compat_l (Rabs (f x) - Rabs l / 2) (Rabs l - Rabs (f x))
(Rabs l / 2) H14);
replace (Rabs (f x) - Rabs l / 2 + (Rabs l - Rabs (f x))) with (Rabs l / 2).
- unfold Rminus in |- *; rewrite Rplus_assoc; rewrite Rplus_opp_l;
+ unfold Rminus; rewrite Rplus_assoc; rewrite Rplus_opp_l;
rewrite Rplus_0_r; intro; cut (f x <> 0).
intro; replace (/ f x + - / l) with ((l - f x) * / (l * f x)).
rewrite Rabs_mult; rewrite Rabs_Rinv.
@@ -467,7 +467,7 @@ Proof.
(/ Rabs (l * f x)) (2 / Rsqr l) (Rabs_pos (l - f x)) H18 H5 H17);
replace (eps * (Rsqr l / 2) * (2 / Rsqr l)) with eps.
intro; assumption.
- unfold Rdiv in |- *; unfold Rsqr in |- *; rewrite Rinv_mult_distr.
+ unfold Rdiv; unfold Rsqr; rewrite Rinv_mult_distr.
repeat rewrite Rmult_assoc.
rewrite (Rmult_comm l).
repeat rewrite Rmult_assoc.
@@ -487,7 +487,7 @@ Proof.
left; apply Rinv_0_lt_compat; apply Rabs_pos_lt; apply prod_neq_R0;
assumption.
rewrite Rmult_comm; rewrite Rabs_mult; rewrite Rinv_mult_distr.
- rewrite (Rsqr_abs l); unfold Rsqr in |- *; unfold Rdiv in |- *;
+ rewrite (Rsqr_abs l); unfold Rsqr; unfold Rdiv;
rewrite Rinv_mult_distr.
repeat rewrite <- Rmult_assoc; apply Rmult_lt_compat_r.
apply Rinv_0_lt_compat; apply Rabs_pos_lt; assumption.
@@ -496,7 +496,7 @@ Proof.
apply Rabs_pos_lt; assumption.
apply Rabs_pos_lt; assumption.
apply Rinv_0_lt_compat; cut (0%nat <> 2%nat);
- [ intro H17; generalize (lt_INR_0 2 (neq_O_lt 2 H17)); unfold INR in |- *;
+ [ intro H17; generalize (lt_INR_0 2 (neq_O_lt 2 H17)); unfold INR;
intro H18; assumption
| discriminate ].
replace (Rabs (f x) * Rabs l * / 2 * / Rabs (f x)) with (Rabs l / 2).
@@ -512,7 +512,7 @@ Proof.
discrR.
apply Rabs_no_R0.
assumption.
- unfold Rdiv in |- *.
+ unfold Rdiv.
repeat rewrite Rmult_assoc.
rewrite (Rmult_comm (Rabs (f x))).
repeat rewrite Rmult_assoc.
@@ -526,7 +526,7 @@ Proof.
apply Rabs_no_R0; assumption.
apply prod_neq_R0; assumption.
rewrite (Rinv_mult_distr _ _ H0 H16).
- unfold Rminus in |- *; rewrite Rmult_plus_distr_r.
+ unfold Rminus; rewrite Rmult_plus_distr_r.
rewrite <- Rmult_assoc.
rewrite <- Rinv_r_sym.
rewrite Rmult_1_l.
@@ -538,16 +538,16 @@ Proof.
reflexivity.
assumption.
assumption.
- red in |- *; intro; rewrite H16 in H15; rewrite Rabs_R0 in H15;
+ red; intro; rewrite H16 in H15; rewrite Rabs_R0 in H15;
cut (0 < Rabs l / 2).
intro; elim (Rlt_irrefl 0 (Rlt_trans 0 (Rabs l / 2) 0 H17 H15)).
- unfold Rdiv in |- *; apply Rmult_lt_0_compat.
+ unfold Rdiv; apply Rmult_lt_0_compat.
apply Rabs_pos_lt; assumption.
apply Rinv_0_lt_compat; cut (0%nat <> 2%nat);
- [ intro H17; generalize (lt_INR_0 2 (neq_O_lt 2 H17)); unfold INR in |- *;
+ [ intro H17; generalize (lt_INR_0 2 (neq_O_lt 2 H17)); unfold INR;
intro; assumption
| discriminate ].
- pattern (Rabs l) at 3 in |- *; rewrite double_var.
+ pattern (Rabs l) at 3; rewrite double_var.
ring.
split;
[ assumption
@@ -557,18 +557,18 @@ Proof.
[ assumption
| apply Rlt_le_trans with (Rmin delta1 delta2);
[ assumption | apply Rmin_l ] ].
- change (0 < eps * (Rsqr l / 2)) in |- *; unfold Rdiv in |- *;
+ change (0 < eps * (Rsqr l / 2)); unfold Rdiv;
repeat rewrite Rmult_assoc; apply Rmult_lt_0_compat.
assumption.
apply Rmult_lt_0_compat. apply Rsqr_pos_lt; assumption.
apply Rinv_0_lt_compat; cut (0%nat <> 2%nat);
- [ intro H3; generalize (lt_INR_0 2 (neq_O_lt 2 H3)); unfold INR in |- *;
+ [ intro H3; generalize (lt_INR_0 2 (neq_O_lt 2 H3)); unfold INR;
intro; assumption
| discriminate ].
- change (0 < Rabs l / 2) in |- *; unfold Rdiv in |- *; apply Rmult_lt_0_compat;
+ change (0 < Rabs l / 2); unfold Rdiv; apply Rmult_lt_0_compat;
[ apply Rabs_pos_lt; assumption
| apply Rinv_0_lt_compat; cut (0%nat <> 2%nat);
- [ intro H3; generalize (lt_INR_0 2 (neq_O_lt 2 H3)); unfold INR in |- *;
+ [ intro H3; generalize (lt_INR_0 2 (neq_O_lt 2 H3)); unfold INR;
intro; assumption
| discriminate ] ].
Qed.
diff --git a/theories/Reals/Rlogic.v b/theories/Reals/Rlogic.v
index 2237ea6ef..5cb0a2ffb 100644
--- a/theories/Reals/Rlogic.v
+++ b/theories/Reals/Rlogic.v
@@ -271,10 +271,10 @@ assert (H2 : ~ is_upper_bound E M').
intro H5.
assert (M <= M')%R by (apply H4; exact H5).
apply (Rlt_not_le M M').
- unfold M' in |- *.
- pattern M at 2 in |- *.
+ unfold M'.
+ pattern M at 2.
rewrite <- Rplus_0_l.
- pattern (0 + M)%R in |- *.
+ pattern (0 + M)%R.
rewrite Rplus_comm.
rewrite <- (Rplus_opp_r 1).
apply Rplus_lt_compat_l.
@@ -284,7 +284,7 @@ assert (H2 : ~ is_upper_bound E M').
apply H2.
intros N (n,H7).
rewrite H7.
-unfold M' in |- *.
+unfold M'.
assert (H5 : (INR (S n) <= M)%R) by (apply H3; exists (S n); reflexivity).
rewrite S_INR in H5.
assert (H6 : (INR n + 1 + -1 <= M + -1)%R).
diff --git a/theories/Reals/Rpower.v b/theories/Reals/Rpower.v
index 019a2d96e..0e4101aa9 100644
--- a/theories/Reals/Rpower.v
+++ b/theories/Reals/Rpower.v
@@ -26,14 +26,14 @@ Local Open Scope R_scope.
Lemma P_Rmin : forall (P:R -> Prop) (x y:R), P x -> P y -> P (Rmin x y).
Proof.
- intros P x y H1 H2; unfold Rmin in |- *; case (Rle_dec x y); intro;
+ intros P x y H1 H2; unfold Rmin; case (Rle_dec x y); intro;
assumption.
Qed.
Lemma exp_le_3 : exp 1 <= 3.
Proof.
assert (exp_1 : exp 1 <> 0).
- assert (H0 := exp_pos 1); red in |- *; intro; rewrite H in H0;
+ assert (H0 := exp_pos 1); red; intro; rewrite H in H0;
elim (Rlt_irrefl _ H0).
apply Rmult_le_reg_l with (/ exp 1).
apply Rinv_0_lt_compat; apply exp_pos.
@@ -43,7 +43,7 @@ Proof.
rewrite Rmult_1_r; rewrite <- (Rmult_comm 3); rewrite <- Rmult_assoc;
rewrite <- Rinv_l_sym.
rewrite Rmult_1_l; replace (/ exp 1) with (exp (-1)).
- unfold exp in |- *; case (exist_exp (-1)); intros; simpl in |- *;
+ unfold exp; case (exist_exp (-1)); intros; simpl;
unfold exp_in in e;
assert (H := alternated_series_ineq (fun i:nat => / INR (fact i)) x 1).
cut
@@ -73,7 +73,7 @@ Proof.
ring.
discrR.
apply H.
- unfold Un_decreasing in |- *; intros;
+ unfold Un_decreasing; intros;
apply Rmult_le_reg_l with (INR (fact n)).
apply INR_fact_lt_0.
apply Rmult_le_reg_l with (INR (fact (S n))).
@@ -84,13 +84,13 @@ Proof.
rewrite Rmult_1_r; apply le_INR; apply fact_le; apply le_n_Sn.
apply INR_fact_neq_0.
apply INR_fact_neq_0.
- assert (H0 := cv_speed_pow_fact 1); unfold Un_cv in |- *; unfold Un_cv in H0;
+ assert (H0 := cv_speed_pow_fact 1); unfold Un_cv; unfold Un_cv in H0;
intros; elim (H0 _ H1); intros; exists x0; intros;
- unfold R_dist in H2; unfold R_dist in |- *;
+ unfold R_dist in H2; unfold R_dist;
replace (/ INR (fact n)) with (1 ^ n / INR (fact n)).
apply (H2 _ H3).
- unfold Rdiv in |- *; rewrite pow1; rewrite Rmult_1_l; reflexivity.
- unfold infinite_sum in e; unfold Un_cv, tg_alt in |- *; intros; elim (e _ H0);
+ unfold Rdiv; rewrite pow1; rewrite Rmult_1_l; reflexivity.
+ unfold infinite_sum in e; unfold Un_cv, tg_alt; intros; elim (e _ H0);
intros; exists x0; intros;
replace (sum_f_R0 (fun i:nat => (-1) ^ i * / INR (fact i)) n) with
(sum_f_R0 (fun i:nat => / INR (fact i) * (-1) ^ i) n).
@@ -121,7 +121,7 @@ Proof.
intro.
replace (derive_pt exp x0 (H0 x0)) with (exp x0).
apply exp_pos.
- symmetry in |- *; apply derive_pt_eq_0.
+ symmetry ; apply derive_pt_eq_0.
apply (derivable_pt_lim_exp x0).
apply H.
Qed.
@@ -143,11 +143,11 @@ Proof.
rewrite Ropp_0; rewrite Rplus_0_r;
replace (derive_pt exp x0 (derivable_exp x0)) with (exp x0).
rewrite exp_0; rewrite <- Rplus_assoc; rewrite Rplus_opp_l; rewrite Rplus_0_l;
- pattern x at 1 in |- *; rewrite <- Rmult_1_r; rewrite (Rmult_comm (exp x0));
+ pattern x at 1; rewrite <- Rmult_1_r; rewrite (Rmult_comm (exp x0));
apply Rmult_lt_compat_l.
apply H.
rewrite <- exp_0; apply exp_increasing; elim H3; intros; assumption.
- symmetry in |- *; apply derive_pt_eq_0; apply derivable_pt_lim_exp.
+ symmetry ; apply derive_pt_eq_0; apply derivable_pt_lim_exp.
Qed.
Lemma ln_exists1 : forall y:R, 1 <= y -> { z:R | y = exp z }.
@@ -160,18 +160,18 @@ Proof.
cut (f 0 * f y <= 0); [intro H4|].
pose proof (IVT_cor f 0 y H2 (Rlt_le _ _ H0) H4) as (t,(_,H7));
exists t; unfold f in H7; apply Rminus_diag_uniq_sym; exact H7.
- pattern 0 at 2 in |- *; rewrite <- (Rmult_0_r (f y));
+ pattern 0 at 2; rewrite <- (Rmult_0_r (f y));
rewrite (Rmult_comm (f 0)); apply Rmult_le_compat_l;
assumption.
- unfold f in |- *; apply Rplus_le_reg_l with y; left;
+ unfold f; apply Rplus_le_reg_l with y; left;
apply Rlt_trans with (1 + y).
rewrite <- (Rplus_comm y); apply Rplus_lt_compat_l; apply Rlt_0_1.
replace (y + (exp y - y)) with (exp y); [ apply (exp_ineq1 y H0) | ring ].
- unfold f in |- *; change (continuity (exp - fct_cte y)) in |- *;
+ unfold f; change (continuity (exp - fct_cte y));
apply continuity_minus;
[ apply derivable_continuous; apply derivable_exp
| apply derivable_continuous; apply derivable_const ].
- unfold f in |- *; rewrite exp_0; apply Rplus_le_reg_l with y;
+ unfold f; rewrite exp_0; apply Rplus_le_reg_l with y;
rewrite Rplus_0_r; replace (y + (1 - y)) with 1; [ apply H | ring ].
Qed.
@@ -185,18 +185,18 @@ Proof.
apply H.
rewrite <- Rinv_r_sym.
rewrite Rmult_1_r; left; apply (Rnot_le_lt _ _ n).
- red in |- *; intro; rewrite H0 in H; elim (Rlt_irrefl _ H).
+ red; intro; rewrite H0 in H; elim (Rlt_irrefl _ H).
destruct (ln_exists1 _ H0) as (x,p); exists (- x);
apply Rmult_eq_reg_l with (exp x / y).
- unfold Rdiv in |- *; rewrite Rmult_assoc; rewrite <- Rinv_l_sym.
+ unfold Rdiv; rewrite Rmult_assoc; rewrite <- Rinv_l_sym.
rewrite Rmult_1_r; rewrite <- (Rmult_comm (/ y)); rewrite Rmult_assoc;
rewrite <- exp_plus; rewrite Rplus_opp_r; rewrite exp_0;
- rewrite Rmult_1_r; symmetry in |- *; apply p.
- red in |- *; intro H3; rewrite H3 in H; elim (Rlt_irrefl _ H).
- unfold Rdiv in |- *; apply prod_neq_R0.
- assert (H3 := exp_pos x); red in |- *; intro H4; rewrite H4 in H3;
+ rewrite Rmult_1_r; symmetry ; apply p.
+ red; intro H3; rewrite H3 in H; elim (Rlt_irrefl _ H).
+ unfold Rdiv; apply prod_neq_R0.
+ assert (H3 := exp_pos x); red; intro H4; rewrite H4 in H3;
elim (Rlt_irrefl _ H3).
- apply Rinv_neq_0_compat; red in |- *; intro H3; rewrite H3 in H;
+ apply Rinv_neq_0_compat; red; intro H3; rewrite H3 in H;
elim (Rlt_irrefl _ H).
Qed.
@@ -213,11 +213,11 @@ Definition ln (x:R) : R :=
Lemma exp_ln : forall x:R, 0 < x -> exp (ln x) = x.
Proof.
- intros; unfold ln in |- *; case (Rlt_dec 0 x); intro.
- unfold Rln in |- *;
+ intros; unfold ln; case (Rlt_dec 0 x); intro.
+ unfold Rln;
case (ln_exists (mkposreal x r) (cond_pos (mkposreal x r)));
intros.
- simpl in e; symmetry in |- *; apply e.
+ simpl in e; symmetry ; apply e.
elim n; apply H.
Qed.
@@ -231,7 +231,7 @@ Qed.
Theorem exp_Ropp : forall x:R, exp (- x) = / exp x.
Proof.
intros x; assert (H : exp x <> 0).
- assert (H := exp_pos x); red in |- *; intro; rewrite H0 in H;
+ assert (H := exp_pos x); red; intro; rewrite H0 in H;
elim (Rlt_irrefl _ H).
apply Rmult_eq_reg_l with (r := exp x).
rewrite <- exp_plus; rewrite Rplus_opp_r; rewrite exp_0.
@@ -306,11 +306,11 @@ Theorem ln_continue :
forall y:R, 0 < y -> continue_in ln (fun x:R => 0 < x) y.
Proof.
intros y H.
- unfold continue_in, limit1_in, limit_in in |- *; intros eps Heps.
+ unfold continue_in, limit1_in, limit_in; intros eps Heps.
cut (1 < exp eps); [ intros H1 | idtac ].
cut (exp (- eps) < 1); [ intros H2 | idtac ].
exists (Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))); split.
- red in |- *; apply P_Rmin.
+ red; apply P_Rmin.
apply Rmult_lt_0_compat.
assumption.
apply Rplus_lt_reg_r with 1.
@@ -321,7 +321,7 @@ Proof.
apply Rplus_lt_reg_r with (exp (- eps)).
rewrite Rplus_0_r; replace (exp (- eps) + (1 - exp (- eps))) with 1;
[ apply H2 | ring ].
- unfold dist, R_met, R_dist in |- *; simpl in |- *.
+ unfold dist, R_met, R_dist; simpl.
intros x [[H3 H4] H5].
cut (y * (x * / y) = x).
intro Hxyy.
@@ -351,7 +351,7 @@ Proof.
rewrite Hxyy; rewrite Rmult_1_r; apply Hxy.
rewrite Hxy; rewrite Rinv_r.
rewrite ln_1; rewrite Rabs_R0; apply Heps.
- red in |- *; intro; rewrite H0 in H; elim (Rlt_irrefl _ H).
+ red; intro; rewrite H0 in H; elim (Rlt_irrefl _ H).
rewrite Rabs_right.
apply exp_lt_inv.
rewrite exp_ln.
@@ -366,7 +366,7 @@ Proof.
left; apply (Rgt_minus _ _ Hxy).
apply Rmult_lt_0_compat; [ apply H3 | apply (Rinv_0_lt_compat _ H) ].
rewrite <- ln_1.
- apply Rgt_ge; red in |- *; apply ln_increasing.
+ apply Rgt_ge; red; apply ln_increasing.
apply Rlt_0_1.
apply Rmult_lt_reg_l with (r := y).
apply H.
@@ -379,7 +379,7 @@ Proof.
apply Rinv_0_lt_compat; assumption.
rewrite (Rmult_comm x); rewrite <- Rmult_assoc; rewrite <- Rinv_r_sym.
ring.
- red in |- *; intro; rewrite H0 in H; elim (Rlt_irrefl _ H).
+ red; intro; rewrite H0 in H; elim (Rlt_irrefl _ H).
apply Rmult_lt_reg_l with (exp eps).
apply exp_pos.
rewrite <- exp_plus; rewrite Rmult_1_r; rewrite Rplus_opp_r; rewrite exp_0;
@@ -412,13 +412,13 @@ Local Infix "^R" := Rpower (at level 30, right associativity) : R_scope.
Theorem Rpower_plus : forall x y z:R, z ^R (x + y) = z ^R x * z ^R y.
Proof.
- intros x y z; unfold Rpower in |- *.
+ intros x y z; unfold Rpower.
rewrite Rmult_plus_distr_r; rewrite exp_plus; auto.
Qed.
Theorem Rpower_mult : forall x y z:R, (x ^R y) ^R z = x ^R (y * z).
Proof.
- intros x y z; unfold Rpower in |- *.
+ intros x y z; unfold Rpower.
rewrite ln_exp.
replace (z * (y * ln x)) with (y * z * ln x).
reflexivity.
@@ -427,22 +427,22 @@ Qed.
Theorem Rpower_O : forall x:R, 0 < x -> x ^R 0 = 1.
Proof.
- intros x _; unfold Rpower in |- *.
+ intros x _; unfold Rpower.
rewrite Rmult_0_l; apply exp_0.
Qed.
Theorem Rpower_1 : forall x:R, 0 < x -> x ^R 1 = x.
Proof.
- intros x H; unfold Rpower in |- *.
+ intros x H; unfold Rpower.
rewrite Rmult_1_l; apply exp_ln; apply H.
Qed.
Theorem Rpower_pow : forall (n:nat) (x:R), 0 < x -> x ^R INR n = x ^ n.
Proof.
- intros n; elim n; simpl in |- *; auto; fold INR in |- *.
+ intros n; elim n; simpl; auto; fold INR.
intros x H; apply Rpower_O; auto.
intros n1; case n1.
- intros H x H0; simpl in |- *; rewrite Rmult_1_r; apply Rpower_1; auto.
+ intros H x H0; simpl; rewrite Rmult_1_r; apply Rpower_1; auto.
intros n0 H x H0; rewrite Rpower_plus; rewrite H; try rewrite Rpower_1;
try apply Rmult_comm || assumption.
Qed.
@@ -451,7 +451,7 @@ Theorem Rpower_lt :
forall x y z:R, 1 < x -> 0 <= y -> y < z -> x ^R y < x ^R z.
Proof.
intros x y z H H0 H1.
- unfold Rpower in |- *.
+ unfold Rpower.
apply exp_increasing.
apply Rmult_lt_compat_r.
rewrite <- ln_1; apply ln_increasing.
@@ -464,18 +464,18 @@ Theorem Rpower_sqrt : forall x:R, 0 < x -> x ^R (/ 2) = sqrt x.
Proof.
intros x H.
apply ln_inv.
- unfold Rpower in |- *; apply exp_pos.
+ unfold Rpower; apply exp_pos.
apply sqrt_lt_R0; apply H.
apply Rmult_eq_reg_l with (INR 2).
apply exp_inv.
- fold Rpower in |- *.
+ fold Rpower.
cut ((x ^R (/ INR 2)) ^R INR 2 = sqrt x ^R INR 2).
- unfold Rpower in |- *; auto.
+ unfold Rpower; auto.
rewrite Rpower_mult.
rewrite Rinv_l.
replace 1 with (INR 1); auto.
- repeat rewrite Rpower_pow; simpl in |- *.
- pattern x at 1 in |- *; rewrite <- (sqrt_sqrt x (Rlt_le _ _ H)).
+ repeat rewrite Rpower_pow; simpl.
+ pattern x at 1; rewrite <- (sqrt_sqrt x (Rlt_le _ _ H)).
ring.
apply sqrt_lt_R0; apply H.
apply H.
@@ -485,7 +485,7 @@ Qed.
Theorem Rpower_Ropp : forall x y:R, x ^R (- y) = / x ^R y.
Proof.
- unfold Rpower in |- *.
+ unfold Rpower.
intros x y; rewrite Ropp_mult_distr_l_reverse.
apply exp_Ropp.
Qed.
@@ -505,11 +505,11 @@ Proof.
rewrite Rinv_r.
apply exp_lt_inv.
apply Rle_lt_trans with (1 := exp_le_3).
- change (3 < 2 ^R 2) in |- *.
+ change (3 < 2 ^R 2).
repeat rewrite Rpower_plus; repeat rewrite Rpower_1.
repeat rewrite Rmult_plus_distr_r; repeat rewrite Rmult_plus_distr_l;
repeat rewrite Rmult_1_l.
- pattern 3 at 1 in |- *; rewrite <- Rplus_0_r; replace (2 + 2) with (3 + 1);
+ pattern 3 at 1; rewrite <- Rplus_0_r; replace (2 + 2) with (3 + 1);
[ apply Rplus_lt_compat_l; apply Rlt_0_1 | ring ].
prove_sup0.
discrR.
@@ -523,7 +523,7 @@ Theorem limit1_ext :
forall (f g:R -> R) (D:R -> Prop) (l x:R),
(forall x:R, D x -> f x = g x) -> limit1_in f D l x -> limit1_in g D l x.
Proof.
- intros f g D l x H; unfold limit1_in, limit_in in |- *.
+ intros f g D l x H; unfold limit1_in, limit_in.
intros H0 eps H1; case (H0 eps); auto.
intros x0 [H2 H3]; exists x0; split; auto.
intros x1 [H4 H5]; rewrite <- H; auto.
@@ -533,7 +533,7 @@ Theorem limit1_imp :
forall (f:R -> R) (D D1:R -> Prop) (l x:R),
(forall x:R, D1 x -> D x) -> limit1_in f D l x -> limit1_in f D1 l x.
Proof.
- intros f D D1 l x H; unfold limit1_in, limit_in in |- *.
+ intros f D D1 l x H; unfold limit1_in, limit_in.
intros H0 eps H1; case (H0 eps H1); auto.
intros alpha [H2 H3]; exists alpha; split; auto.
intros d [H4 H5]; apply H3; split; auto.
@@ -541,7 +541,7 @@ Qed.
Theorem Rinv_Rdiv : forall x y:R, x <> 0 -> y <> 0 -> / (x / y) = y / x.
Proof.
- intros x y H1 H2; unfold Rdiv in |- *; rewrite Rinv_mult_distr.
+ intros x y H1 H2; unfold Rdiv; rewrite Rinv_mult_distr.
rewrite Rinv_involutive.
apply Rmult_comm.
assumption.
@@ -551,18 +551,18 @@ Qed.
Theorem Dln : forall y:R, 0 < y -> D_in ln Rinv (fun x:R => 0 < x) y.
Proof.
- intros y Hy; unfold D_in in |- *.
+ intros y Hy; unfold D_in.
apply limit1_ext with
(f := fun x:R => / ((exp (ln x) - exp (ln y)) / (ln x - ln y))).
intros x [HD1 HD2]; repeat rewrite exp_ln.
- unfold Rdiv in |- *; rewrite Rinv_mult_distr.
+ unfold Rdiv; rewrite Rinv_mult_distr.
rewrite Rinv_involutive.
apply Rmult_comm.
apply Rminus_eq_contra.
- red in |- *; intros H2; case HD2.
- symmetry in |- *; apply (ln_inv _ _ HD1 Hy H2).
+ red; intros H2; case HD2.
+ symmetry ; apply (ln_inv _ _ HD1 Hy H2).
apply Rminus_eq_contra; apply (not_eq_sym HD2).
- apply Rinv_neq_0_compat; apply Rminus_eq_contra; red in |- *; intros H2;
+ apply Rinv_neq_0_compat; apply Rminus_eq_contra; red; intros H2;
case HD2; apply ln_inv; auto.
assumption.
assumption.
@@ -574,17 +574,17 @@ Proof.
intros x [H1 H2]; split.
split; auto.
split; auto.
- red in |- *; intros H3; case H2; apply ln_inv; auto.
+ red; intros H3; case H2; apply ln_inv; auto.
apply limit_comp with
(l := ln y) (g := fun x:R => (exp x - exp (ln y)) / (x - ln y)) (f := ln).
apply ln_continue; auto.
assert (H0 := derivable_pt_lim_exp (ln y)); unfold derivable_pt_lim in H0;
- unfold limit1_in in |- *; unfold limit_in in |- *;
- simpl in |- *; unfold R_dist in |- *; intros; elim (H0 _ H);
+ unfold limit1_in; unfold limit_in;
+ simpl; unfold R_dist; intros; elim (H0 _ H);
intros; exists (pos x); split.
apply (cond_pos x).
- intros; pattern y at 3 in |- *; rewrite <- exp_ln.
- pattern x0 at 1 in |- *; replace x0 with (ln y + (x0 - ln y));
+ intros; pattern y at 3; rewrite <- exp_ln.
+ pattern x0 at 1; replace x0 with (ln y + (x0 - ln y));
[ idtac | ring ].
apply H1.
elim H2; intros H3 _; unfold D_x in H3; elim H3; clear H3; intros _ H3;
@@ -592,36 +592,36 @@ Proof.
apply H3.
elim H2; clear H2; intros _ H2; apply H2.
assumption.
- red in |- *; intro; rewrite H in Hy; elim (Rlt_irrefl _ Hy).
+ red; intro; rewrite H in Hy; elim (Rlt_irrefl _ Hy).
Qed.
Lemma derivable_pt_lim_ln : forall x:R, 0 < x -> derivable_pt_lim ln x (/ x).
Proof.
intros; assert (H0 := Dln x H); unfold D_in in H0; unfold limit1_in in H0;
unfold limit_in in H0; simpl in H0; unfold R_dist in H0;
- unfold derivable_pt_lim in |- *; intros; elim (H0 _ H1);
+ unfold derivable_pt_lim; intros; elim (H0 _ H1);
intros; elim H2; clear H2; intros; set (alp := Rmin x0 (x / 2));
assert (H4 : 0 < alp).
- unfold alp in |- *; unfold Rmin in |- *; case (Rle_dec x0 (x / 2)); intro.
+ unfold alp; unfold Rmin; case (Rle_dec x0 (x / 2)); intro.
apply H2.
- unfold Rdiv in |- *; apply Rmult_lt_0_compat;
+ unfold Rdiv; apply Rmult_lt_0_compat;
[ assumption | apply Rinv_0_lt_compat; prove_sup0 ].
- exists (mkposreal _ H4); intros; pattern h at 2 in |- *;
+ exists (mkposreal _ H4); intros; pattern h at 2;
replace h with (x + h - x); [ idtac | ring ].
apply H3; split.
- unfold D_x in |- *; split.
+ unfold D_x; split.
case (Rcase_abs h); intro.
assert (H7 : Rabs h < x / 2).
apply Rlt_le_trans with alp.
apply H6.
- unfold alp in |- *; apply Rmin_r.
+ unfold alp; apply Rmin_r.
apply Rlt_trans with (x / 2).
- unfold Rdiv in |- *; apply Rmult_lt_0_compat;
+ unfold Rdiv; apply Rmult_lt_0_compat;
[ assumption | apply Rinv_0_lt_compat; prove_sup0 ].
rewrite Rabs_left in H7.
apply Rplus_lt_reg_r with (- h - x / 2).
replace (- h - x / 2 + x / 2) with (- h); [ idtac | ring ].
- pattern x at 2 in |- *; rewrite double_var.
+ pattern x at 2; rewrite double_var.
replace (- h - x / 2 + (x / 2 + x / 2 + h)) with (x / 2); [ apply H7 | ring ].
apply r.
apply Rplus_lt_le_0_compat; [ assumption | apply Rge_le; apply r ].
@@ -629,7 +629,7 @@ Proof.
[ apply H5 | ring ].
replace (x + h - x) with h;
[ apply Rlt_le_trans with alp;
- [ apply H6 | unfold alp in |- *; apply Rmin_l ]
+ [ apply H6 | unfold alp; apply Rmin_l ]
| ring ].
Qed.
@@ -637,7 +637,7 @@ Theorem D_in_imp :
forall (f g:R -> R) (D D1:R -> Prop) (x:R),
(forall x:R, D1 x -> D x) -> D_in f g D x -> D_in f g D1 x.
Proof.
- intros f g D D1 x H; unfold D_in in |- *.
+ intros f g D D1 x H; unfold D_in.
intros H0; apply limit1_imp with (D := D_x D x); auto.
intros x1 [H1 H2]; split; auto.
Qed.
@@ -646,7 +646,7 @@ Theorem D_in_ext :
forall (f g h:R -> R) (D:R -> Prop) (x:R),
f x = g x -> D_in h f D x -> D_in h g D x.
Proof.
- intros f g h D x H; unfold D_in in |- *.
+ intros f g h D x H; unfold D_in.
rewrite H; auto.
Qed.
@@ -661,7 +661,7 @@ Proof.
intros x H0; repeat split.
assumption.
apply D_in_ext with (f := fun x:R => / x * (z * exp (z * ln x))).
- unfold Rminus in |- *; rewrite Rpower_plus; rewrite Rpower_Ropp;
+ unfold Rminus; rewrite Rpower_plus; rewrite Rpower_Ropp;
rewrite (Rpower_1 _ H); unfold Rpower; ring.
apply Dcomp with
(f := ln)
@@ -674,7 +674,7 @@ Proof.
intros x H1; repeat split; auto.
apply
(Dcomp (fun _:R => True) (fun _:R => True) (fun x => z) exp
- (fun x:R => z * x) exp); simpl in |- *.
+ (fun x:R => z * x) exp); simpl.
apply D_in_ext with (f := fun x:R => z * 1).
apply Rmult_1_r.
apply (Dmult_const (fun x => True) (fun x => x) (fun x => 1)); apply Dx.
@@ -687,16 +687,16 @@ Theorem derivable_pt_lim_power :
0 < x -> derivable_pt_lim (fun x => x ^R y) x (y * x ^R (y - 1)).
Proof.
intros x y H.
- unfold Rminus in |- *; rewrite Rpower_plus.
+ unfold Rminus; rewrite Rpower_plus.
rewrite Rpower_Ropp.
rewrite Rpower_1; auto.
rewrite <- Rmult_assoc.
- unfold Rpower in |- *.
+ unfold Rpower.
apply derivable_pt_lim_comp with (f1 := ln) (f2 := fun x => exp (y * x)).
apply derivable_pt_lim_ln; assumption.
rewrite (Rmult_comm y).
apply derivable_pt_lim_comp with (f1 := fun x => y * x) (f2 := exp).
- pattern y at 2 in |- *; replace y with (0 * ln x + y * 1).
+ pattern y at 2; replace y with (0 * ln x + y * 1).
apply derivable_pt_lim_mult with (f1 := fun x:R => y) (f2 := fun x:R => x).
apply derivable_pt_lim_const with (a := y).
apply derivable_pt_lim_id.
diff --git a/theories/Reals/Rprod.v b/theories/Reals/Rprod.v
index 6bcf4bd4c..e97894af3 100644
--- a/theories/Reals/Rprod.v
+++ b/theories/Reals/Rprod.v
@@ -36,7 +36,7 @@ Proof.
replace (S n - k - 1)%nat with O; [rewrite H1; simpl|omega].
replace (n+1+0)%nat with (S n); ring.
replace (S n - k-1)%nat with (S (n - k-1));[idtac|omega].
- simpl in |- *; replace (k + S (n - k))%nat with (S n).
+ simpl; replace (k + S (n - k))%nat with (S n).
replace (k + 1 + S (n - k - 1))%nat with (S n).
rewrite Hrecn; [ ring | assumption ].
omega.
@@ -49,8 +49,8 @@ Lemma prod_SO_pos :
(forall n:nat, (n <= N)%nat -> 0 <= An n) -> 0 <= prod_f_R0 An N.
Proof.
intros; induction N as [| N HrecN].
- simpl in |- *; apply H; trivial.
- simpl in |- *; apply Rmult_le_pos.
+ simpl; apply H; trivial.
+ simpl; apply Rmult_le_pos.
apply HrecN; intros; apply H; apply le_trans with N;
[ assumption | apply le_n_Sn ].
apply H; apply le_n.
@@ -64,7 +64,7 @@ Lemma prod_SO_Rle :
Proof.
intros; induction N as [| N HrecN].
elim H with O; trivial.
- simpl in |- *; apply Rle_trans with (prod_f_R0 An N * Bn (S N)).
+ simpl; apply Rle_trans with (prod_f_R0 An N * Bn (S N)).
apply Rmult_le_compat_l.
apply prod_SO_pos; intros; elim (H n (le_trans _ _ _ H0 (le_n_Sn N))); intros;
assumption.
@@ -114,7 +114,7 @@ Proof.
(if eq_nat_dec n 0 then 1 else INR n) = INR n).
intros n; case (eq_nat_dec n 0); auto with real.
intros; absurd (0 < n)%nat; omega.
- intros; unfold Rsqr in |- *; repeat rewrite fact_prodSO.
+ intros; unfold Rsqr; repeat rewrite fact_prodSO.
cut ((k=N)%nat \/ (k < N)%nat \/ (N < k)%nat).
intro H2; elim H2; intro H3.
rewrite H3; replace (2*N-N)%nat with N;[right; ring|omega].
@@ -164,14 +164,14 @@ Qed.
(**********)
Lemma INR_fact_lt_0 : forall n:nat, 0 < INR (fact n).
Proof.
- intro; apply lt_INR_0; apply neq_O_lt; red in |- *; intro;
- elim (fact_neq_0 n); symmetry in |- *; assumption.
+ intro; apply lt_INR_0; apply neq_O_lt; red; intro;
+ elim (fact_neq_0 n); symmetry ; assumption.
Qed.
(** We have the following inequality : (C 2N k) <= (C 2N N) forall k in [|O;2N|] *)
Lemma C_maj : forall N k:nat, (k <= 2 * N)%nat -> C (2 * N) k <= C (2 * N) N.
Proof.
- intros; unfold C in |- *; unfold Rdiv in |- *; apply Rmult_le_compat_l.
+ intros; unfold C; unfold Rdiv; apply Rmult_le_compat_l.
apply pos_INR.
replace (2 * N - N)%nat with N.
apply Rmult_le_reg_l with (INR (fact N) * INR (fact N)).
diff --git a/theories/Reals/Rseries.v b/theories/Reals/Rseries.v
index e67f118f6..2f80ac13d 100644
--- a/theories/Reals/Rseries.v
+++ b/theories/Reals/Rseries.v
@@ -54,20 +54,20 @@ Section sequence.
(*********)
Lemma EUn_noempty : exists r : R, EUn r.
Proof.
- unfold EUn in |- *; split with (Un 0); split with 0%nat; trivial.
+ unfold EUn; split with (Un 0); split with 0%nat; trivial.
Qed.
(*********)
Lemma Un_in_EUn : forall n:nat, EUn (Un n).
Proof.
- intro; unfold EUn in |- *; split with n; trivial.
+ intro; unfold EUn; split with n; trivial.
Qed.
(*********)
Lemma Un_bound_imp :
forall x:R, (forall n:nat, Un n <= x) -> is_upper_bound EUn x.
Proof.
- intros; unfold is_upper_bound in |- *; intros; unfold EUn in H0; elim H0;
+ intros; unfold is_upper_bound; intros; unfold EUn in H0; elim H0;
clear H0; intros; generalize (H x1); intro; rewrite <- H0 in H1;
trivial.
Qed.
@@ -77,7 +77,7 @@ Section sequence.
forall n m:nat, Un_growing -> (n >= m)%nat -> Un n >= Un m.
Proof.
double induction n m; intros.
- unfold Rge in |- *; right; trivial.
+ unfold Rge; right; trivial.
exfalso; unfold ge in H1; generalize (le_Sn_O n0); intro; auto.
cut (n0 >= 0)%nat.
generalize H0; intros; unfold Un_growing in H0;
@@ -89,7 +89,7 @@ Section sequence.
elim y; clear y; intro y.
unfold ge in H2; generalize (le_not_lt n0 n1 (le_S_n n0 n1 H2)); intro;
exfalso; auto.
- rewrite y; unfold Rge in |- *; right; trivial.
+ rewrite y; unfold Rge; right; trivial.
unfold ge in H0; generalize (H0 (S n0) H1 (lt_le_S n0 n1 y)); intro;
unfold Un_growing in H1;
apply
@@ -285,7 +285,7 @@ Section sequence.
(*********)
Lemma cauchy_bound : Cauchy_crit -> bound EUn.
Proof.
- unfold Cauchy_crit, bound in |- *; intros; unfold is_upper_bound in |- *;
+ unfold Cauchy_crit, bound; intros; unfold is_upper_bound;
unfold Rgt in H; elim (H 1 Rlt_0_1); clear H; intros;
generalize (H x); intro; generalize (le_dec x); intro;
elim (finite_greater x); intros; split with (Rmax x0 (Un x + 1));
@@ -324,12 +324,12 @@ End Isequence.
Lemma GP_infinite :
forall x:R, Rabs x < 1 -> Pser (fun n:nat => 1) x (/ (1 - x)).
Proof.
- intros; unfold Pser in |- *; unfold infinite_sum in |- *; intros;
+ intros; unfold Pser; unfold infinite_sum; intros;
elim (Req_dec x 0).
intros; exists 0%nat; intros; rewrite H1; rewrite Rminus_0_r; rewrite Rinv_1;
cut (sum_f_R0 (fun n0:nat => 1 * 0 ^ n0) n = 1).
intros; rewrite H3; rewrite R_dist_eq; auto.
- elim n; simpl in |- *.
+ elim n; simpl.
ring.
intros; rewrite H3; ring.
intro; cut (0 < eps * (Rabs (1 - x) * Rabs (/ x))).
@@ -344,11 +344,11 @@ Proof.
apply Rabs_pos_lt.
apply Rminus_eq_contra.
apply Rlt_dichotomy_converse.
- right; unfold Rgt in |- *.
+ right; unfold Rgt.
apply (Rle_lt_trans x (Rabs x) 1).
apply RRle_abs.
assumption.
- unfold R_dist in |- *; rewrite <- Rabs_mult.
+ unfold R_dist; rewrite <- Rabs_mult.
rewrite Rmult_minus_distr_l.
cut
((1 - x) * sum_f_R0 (fun n0:nat => x ^ n0) n =
@@ -359,7 +359,7 @@ Proof.
cut (- (x ^ (n + 1) - 1) - 1 = - x ^ (n + 1)).
intro; rewrite H7.
rewrite Rabs_Ropp; cut ((n + 1)%nat = S n); auto.
- intro H8; rewrite H8; simpl in |- *; rewrite Rabs_mult;
+ intro H8; rewrite H8; simpl; rewrite Rabs_mult;
apply
(Rlt_le_trans (Rabs x * Rabs (x ^ n))
(Rabs x * (eps * (Rabs (1 - x) * Rabs (/ x)))) (
@@ -373,7 +373,7 @@ Proof.
Rabs x * Rabs (/ x) * (eps * Rabs (1 - x))).
clear H8; intros; rewrite H8; rewrite <- Rabs_mult; rewrite Rinv_r.
rewrite Rabs_R1; cut (1 * (eps * Rabs (1 - x)) = Rabs (1 - x) * eps).
- intros; rewrite H9; unfold Rle in |- *; right; reflexivity.
+ intros; rewrite H9; unfold Rle; right; reflexivity.
ring.
assumption.
ring.
@@ -381,12 +381,12 @@ Proof.
ring.
apply Rminus_eq_contra.
apply Rlt_dichotomy_converse.
- right; unfold Rgt in |- *.
+ right; unfold Rgt.
apply (Rle_lt_trans x (Rabs x) 1).
apply RRle_abs.
assumption.
ring; ring.
- elim n; simpl in |- *.
+ elim n; simpl.
ring.
intros; rewrite H5.
ring.
@@ -396,7 +396,7 @@ Proof.
apply Rabs_pos_lt.
apply Rminus_eq_contra.
apply Rlt_dichotomy_converse.
- right; unfold Rgt in |- *.
+ right; unfold Rgt.
apply (Rle_lt_trans x (Rabs x) 1).
apply RRle_abs.
assumption.
diff --git a/theories/Reals/Rsigma.v b/theories/Reals/Rsigma.v
index d26dcde21..9810c6117 100644
--- a/theories/Reals/Rsigma.v
+++ b/theories/Reals/Rsigma.v
@@ -28,8 +28,8 @@ Section Sigma.
Proof.
intros; induction k as [| k Hreck].
cut (low = 0%nat).
- intro; rewrite H1; unfold sigma in |- *; rewrite <- minus_n_n;
- rewrite <- minus_n_O; simpl in |- *; replace (high - 1)%nat with (pred high).
+ intro; rewrite H1; unfold sigma; rewrite <- minus_n_n;
+ rewrite <- minus_n_O; simpl; replace (high - 1)%nat with (pred high).
apply (decomp_sum (fun k:nat => f k)).
assumption.
apply pred_of_minus.
@@ -42,8 +42,8 @@ Section Sigma.
apply Hreck.
assumption.
apply lt_trans with (S k); [ apply lt_n_Sn | assumption ].
- unfold sigma in |- *; replace (high - S (S k))%nat with (pred (high - S k)).
- pattern (S k) at 3 in |- *; replace (S k) with (S k + 0)%nat;
+ unfold sigma; replace (high - S (S k))%nat with (pred (high - S k)).
+ pattern (S k) at 3; replace (S k) with (S k + 0)%nat;
[ idtac | ring ].
replace (sum_f_R0 (fun k0:nat => f (S (S k) + k0)) (pred (high - S k))) with
(sum_f_R0 (fun k0:nat => f (S k + S k0)) (pred (high - S k))).
@@ -55,12 +55,12 @@ Section Sigma.
replace (high - S (S k))%nat with (high - S k - 1)%nat.
apply pred_of_minus.
omega.
- unfold sigma in |- *; replace (S k - low)%nat with (S (k - low)).
- pattern (S k) at 1 in |- *; replace (S k) with (low + S (k - low))%nat.
- symmetry in |- *; apply (tech5 (fun i:nat => f (low + i))).
+ unfold sigma; replace (S k - low)%nat with (S (k - low)).
+ pattern (S k) at 1; replace (S k) with (low + S (k - low))%nat.
+ symmetry ; apply (tech5 (fun i:nat => f (low + i))).
omega.
omega.
- rewrite <- H2; unfold sigma in |- *; rewrite <- minus_n_n; simpl in |- *;
+ rewrite <- H2; unfold sigma; rewrite <- minus_n_n; simpl;
replace (high - S low)%nat with (pred (high - low)).
replace (sum_f_R0 (fun k0:nat => f (S (low + k0))) (pred (high - low))) with
(sum_f_R0 (fun k0:nat => f (low + S k0)) (pred (high - low))).
@@ -79,7 +79,7 @@ Section Sigma.
(low <= k)%nat ->
(k < high)%nat -> sigma low high - sigma low k = sigma (S k) high.
Proof.
- intros low high k H1 H2; symmetry in |- *; rewrite (sigma_split H1 H2); ring.
+ intros low high k H1 H2; symmetry ; rewrite (sigma_split H1 H2); ring.
Qed.
Theorem sigma_diff_neg :
@@ -100,8 +100,8 @@ Section Sigma.
apply sigma_split.
apply le_n.
assumption.
- unfold sigma in |- *; rewrite <- minus_n_n.
- simpl in |- *.
+ unfold sigma; rewrite <- minus_n_n.
+ simpl.
replace (low + 0)%nat with low; [ reflexivity | ring ].
Qed.
@@ -113,20 +113,20 @@ Section Sigma.
generalize (lt_le_weak low high H1); intro H3;
replace (f high) with (sigma high high).
rewrite Rplus_comm; cut (high = S (pred high)).
- intro; pattern high at 3 in |- *; rewrite H.
+ intro; pattern high at 3; rewrite H.
apply sigma_split.
apply le_S_n; rewrite <- H; apply lt_le_S; assumption.
apply lt_pred_n_n; apply le_lt_trans with low; [ apply le_O_n | assumption ].
apply S_pred with 0%nat; apply le_lt_trans with low;
[ apply le_O_n | assumption ].
- unfold sigma in |- *; rewrite <- minus_n_n; simpl in |- *;
+ unfold sigma; rewrite <- minus_n_n; simpl;
replace (high + 0)%nat with high; [ reflexivity | ring ].
Qed.
Theorem sigma_eq_arg : forall low:nat, sigma low low = f low.
Proof.
- intro; unfold sigma in |- *; rewrite <- minus_n_n.
- simpl in |- *; replace (low + 0)%nat with low; [ reflexivity | ring ].
+ intro; unfold sigma; rewrite <- minus_n_n.
+ simpl; replace (low + 0)%nat with low; [ reflexivity | ring ].
Qed.
End Sigma.
diff --git a/theories/Reals/Rsqrt_def.v b/theories/Reals/Rsqrt_def.v
index ecde4f8bb..d5e5f0905 100644
--- a/theories/Reals/Rsqrt_def.v
+++ b/theories/Reals/Rsqrt_def.v
@@ -41,18 +41,18 @@ Lemma dicho_comp :
Proof.
intros.
induction n as [| n Hrecn].
- simpl in |- *; assumption.
- simpl in |- *.
+ simpl; assumption.
+ simpl.
case (P ((Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2)).
- unfold Rdiv in |- *; apply Rmult_le_reg_l with 2.
+ unfold Rdiv; apply Rmult_le_reg_l with 2.
prove_sup0.
- pattern 2 at 1 in |- *; rewrite Rmult_comm.
+ pattern 2 at 1; rewrite Rmult_comm.
rewrite Rmult_assoc; rewrite <- Rinv_l_sym; [ idtac | discrR ].
rewrite Rmult_1_r.
rewrite double.
apply Rplus_le_compat_l.
assumption.
- unfold Rdiv in |- *; apply Rmult_le_reg_l with 2.
+ unfold Rdiv; apply Rmult_le_reg_l with 2.
prove_sup0.
rewrite Rmult_comm.
rewrite Rmult_assoc; rewrite <- Rinv_l_sym; [ idtac | discrR ].
@@ -67,14 +67,14 @@ Lemma dicho_lb_growing :
forall (x y:R) (P:R -> bool), x <= y -> Un_growing (dicho_lb x y P).
Proof.
intros.
- unfold Un_growing in |- *.
+ unfold Un_growing.
intro.
- simpl in |- *.
+ simpl.
case (P ((Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2)).
right; reflexivity.
- unfold Rdiv in |- *; apply Rmult_le_reg_l with 2.
+ unfold Rdiv; apply Rmult_le_reg_l with 2.
prove_sup0.
- pattern 2 at 1 in |- *; rewrite Rmult_comm.
+ pattern 2 at 1; rewrite Rmult_comm.
rewrite Rmult_assoc; rewrite <- Rinv_l_sym; [ idtac | discrR ].
rewrite Rmult_1_r.
rewrite double.
@@ -87,11 +87,11 @@ Lemma dicho_up_decreasing :
forall (x y:R) (P:R -> bool), x <= y -> Un_decreasing (dicho_up x y P).
Proof.
intros.
- unfold Un_decreasing in |- *.
+ unfold Un_decreasing.
intro.
- simpl in |- *.
+ simpl.
case (P ((Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2)).
- unfold Rdiv in |- *; apply Rmult_le_reg_l with 2.
+ unfold Rdiv; apply Rmult_le_reg_l with 2.
prove_sup0.
rewrite Rmult_comm.
rewrite Rmult_assoc; rewrite <- Rinv_l_sym; [ idtac | discrR ].
@@ -112,17 +112,17 @@ Lemma dicho_lb_maj_y :
Proof.
intros.
induction n as [| n Hrecn].
- simpl in |- *; assumption.
- simpl in |- *.
+ simpl; assumption.
+ simpl.
case (P ((Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2)).
assumption.
- unfold Rdiv in |- *; apply Rmult_le_reg_l with 2.
+ unfold Rdiv; apply Rmult_le_reg_l with 2.
prove_sup0.
rewrite Rmult_comm.
rewrite Rmult_assoc; rewrite <- Rinv_l_sym; [ rewrite Rmult_1_r | discrR ].
rewrite double; apply Rplus_le_compat.
assumption.
- pattern y at 2 in |- *; replace y with (Dichotomy_ub x y P 0);
+ pattern y at 2; replace y with (Dichotomy_ub x y P 0);
[ idtac | reflexivity ].
apply decreasing_prop.
assert (H0 := dicho_up_decreasing x y P H).
@@ -136,10 +136,10 @@ Proof.
intros.
cut (forall n:nat, dicho_lb x y P n <= y).
intro.
- unfold has_ub in |- *.
- unfold bound in |- *.
+ unfold has_ub.
+ unfold bound.
exists y.
- unfold is_upper_bound in |- *.
+ unfold is_upper_bound.
intros.
elim H1; intros.
rewrite H2; apply H0.
@@ -151,15 +151,15 @@ Lemma dicho_up_min_x :
Proof.
intros.
induction n as [| n Hrecn].
- simpl in |- *; assumption.
- simpl in |- *.
+ simpl; assumption.
+ simpl.
case (P ((Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2)).
- unfold Rdiv in |- *; apply Rmult_le_reg_l with 2.
+ unfold Rdiv; apply Rmult_le_reg_l with 2.
prove_sup0.
- pattern 2 at 1 in |- *; rewrite Rmult_comm.
+ pattern 2 at 1; rewrite Rmult_comm.
rewrite Rmult_assoc; rewrite <- Rinv_l_sym; [ rewrite Rmult_1_r | discrR ].
rewrite double; apply Rplus_le_compat.
- pattern x at 1 in |- *; replace x with (Dichotomy_lb x y P 0);
+ pattern x at 1; replace x with (Dichotomy_lb x y P 0);
[ idtac | reflexivity ].
apply tech9.
assert (H0 := dicho_lb_growing x y P H).
@@ -175,14 +175,14 @@ Proof.
intros.
cut (forall n:nat, x <= dicho_up x y P n).
intro.
- unfold has_lb in |- *.
- unfold bound in |- *.
+ unfold has_lb.
+ unfold bound.
exists (- x).
- unfold is_upper_bound in |- *.
+ unfold is_upper_bound.
intros.
elim H1; intros.
rewrite H2.
- unfold opp_seq in |- *.
+ unfold opp_seq.
apply Ropp_le_contravar.
apply H0.
apply dicho_up_min_x; assumption.
@@ -214,35 +214,35 @@ Lemma dicho_lb_dicho_up :
Proof.
intros.
induction n as [| n Hrecn].
- simpl in |- *.
- unfold Rdiv in |- *; rewrite Rinv_1; ring.
- simpl in |- *.
+ simpl.
+ unfold Rdiv; rewrite Rinv_1; ring.
+ simpl.
case (P ((Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2)).
- unfold Rdiv in |- *.
+ unfold Rdiv.
replace
((Dichotomy_lb x y P n + Dichotomy_ub x y P n) * / 2 - Dichotomy_lb x y P n)
with ((dicho_up x y P n - dicho_lb x y P n) / 2).
- unfold Rdiv in |- *; rewrite Hrecn.
- unfold Rdiv in |- *.
+ unfold Rdiv; rewrite Hrecn.
+ unfold Rdiv.
rewrite Rinv_mult_distr.
ring.
discrR.
apply pow_nonzero; discrR.
- pattern (Dichotomy_lb x y P n) at 2 in |- *;
+ pattern (Dichotomy_lb x y P n) at 2;
rewrite (double_var (Dichotomy_lb x y P n));
- unfold dicho_up, dicho_lb, Rminus, Rdiv in |- *; ring.
+ unfold dicho_up, dicho_lb, Rminus, Rdiv; ring.
replace
(Dichotomy_ub x y P n - (Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2)
with ((dicho_up x y P n - dicho_lb x y P n) / 2).
- unfold Rdiv in |- *; rewrite Hrecn.
- unfold Rdiv in |- *.
+ unfold Rdiv; rewrite Hrecn.
+ unfold Rdiv.
rewrite Rinv_mult_distr.
ring.
discrR.
apply pow_nonzero; discrR.
- pattern (Dichotomy_ub x y P n) at 1 in |- *;
+ pattern (Dichotomy_ub x y P n) at 1;
rewrite (double_var (Dichotomy_ub x y P n));
- unfold dicho_up, dicho_lb, Rminus, Rdiv in |- *; ring.
+ unfold dicho_up, dicho_lb, Rminus, Rdiv; ring.
Qed.
Definition pow_2_n (n:nat) := 2 ^ n.
@@ -250,23 +250,23 @@ Definition pow_2_n (n:nat) := 2 ^ n.
Lemma pow_2_n_neq_R0 : forall n:nat, pow_2_n n <> 0.
Proof.
intro.
- unfold pow_2_n in |- *.
+ unfold pow_2_n.
apply pow_nonzero.
discrR.
Qed.
Lemma pow_2_n_growing : Un_growing pow_2_n.
Proof.
- unfold Un_growing in |- *.
+ unfold Un_growing.
intro.
replace (S n) with (n + 1)%nat;
- [ unfold pow_2_n in |- *; rewrite pow_add | ring ].
- pattern (2 ^ n) at 1 in |- *; rewrite <- Rmult_1_r.
+ [ unfold pow_2_n; rewrite pow_add | ring ].
+ pattern (2 ^ n) at 1; rewrite <- Rmult_1_r.
apply Rmult_le_compat_l.
left; apply pow_lt; prove_sup0.
- simpl in |- *.
+ simpl.
rewrite Rmult_1_r.
- pattern 1 at 1 in |- *; rewrite <- Rplus_0_r; apply Rplus_le_compat_l; left;
+ pattern 1 at 1; rewrite <- Rplus_0_r; apply Rplus_le_compat_l; left;
apply Rlt_0_1.
Qed.
@@ -274,7 +274,7 @@ Lemma pow_2_n_infty : cv_infty pow_2_n.
Proof.
cut (forall N:nat, INR N <= 2 ^ N).
intros.
- unfold cv_infty in |- *.
+ unfold cv_infty.
intro.
case (total_order_T 0 M); intro.
elim s; intro.
@@ -287,41 +287,41 @@ Proof.
apply Rlt_le_trans with (INR N0).
rewrite INR_IZR_INZ.
rewrite <- H1.
- unfold N in |- *.
+ unfold N.
assert (H3 := archimed M).
elim H3; intros; assumption.
apply Rle_trans with (pow_2_n N0).
- unfold pow_2_n in |- *; apply H.
+ unfold pow_2_n; apply H.
apply Rge_le.
apply growing_prop.
apply pow_2_n_growing.
assumption.
apply le_IZR.
- unfold N in |- *.
- simpl in |- *.
+ unfold N.
+ simpl.
assert (H0 := archimed M); elim H0; intros.
left; apply Rlt_trans with M; assumption.
exists 0%nat; intros.
rewrite <- b.
- unfold pow_2_n in |- *; apply pow_lt; prove_sup0.
+ unfold pow_2_n; apply pow_lt; prove_sup0.
exists 0%nat; intros.
apply Rlt_trans with 0.
assumption.
- unfold pow_2_n in |- *; apply pow_lt; prove_sup0.
+ unfold pow_2_n; apply pow_lt; prove_sup0.
simple induction N.
- simpl in |- *.
+ simpl.
left; apply Rlt_0_1.
intros.
- pattern (S n) at 2 in |- *; replace (S n) with (n + 1)%nat; [ idtac | ring ].
+ pattern (S n) at 2; replace (S n) with (n + 1)%nat; [ idtac | ring ].
rewrite S_INR; rewrite pow_add.
- simpl in |- *.
+ simpl.
rewrite Rmult_1_r.
apply Rle_trans with (2 ^ n).
rewrite <- (Rplus_comm 1).
rewrite <- (Rmult_1_r (INR n)).
apply (poly n 1).
apply Rlt_0_1.
- pattern (2 ^ n) at 1 in |- *; rewrite <- Rplus_0_r.
+ pattern (2 ^ n) at 1; rewrite <- Rplus_0_r.
rewrite <- (Rmult_comm 2).
rewrite double.
apply Rplus_le_compat_l.
@@ -338,8 +338,8 @@ Proof.
cut (Un_cv (fun i:nat => dicho_lb x y P i - dicho_up x y P i) 0).
intro.
assert (H4 := UL_sequence _ _ _ H2 H3).
- symmetry in |- *; apply Rminus_diag_uniq_sym; assumption.
- unfold Un_cv in |- *; unfold R_dist in |- *.
+ symmetry ; apply Rminus_diag_uniq_sym; assumption.
+ unfold Un_cv; unfold R_dist.
intros.
assert (H4 := cv_infty_cv_R0 pow_2_n pow_2_n_neq_R0 pow_2_n_infty).
case (total_order_T x y); intro.
@@ -356,7 +356,7 @@ Proof.
rewrite <- Rabs_Ropp.
rewrite Ropp_minus_distr'.
rewrite dicho_lb_dicho_up.
- unfold Rdiv in |- *; rewrite Rabs_mult.
+ unfold Rdiv; rewrite Rabs_mult.
rewrite (Rabs_right (y - x)).
apply Rmult_lt_reg_l with (/ (y - x)).
apply Rinv_0_lt_compat; assumption.
@@ -366,12 +366,12 @@ Proof.
[ unfold pow_2_n, Rdiv in H6; rewrite <- (Rmult_comm eps); apply H6;
assumption
| ring ].
- red in |- *; intro; rewrite H8 in Hyp; elim (Rlt_irrefl _ Hyp).
+ red; intro; rewrite H8 in Hyp; elim (Rlt_irrefl _ Hyp).
apply Rle_ge.
apply Rplus_le_reg_l with x; rewrite Rplus_0_r.
replace (x + (y - x)) with y; [ assumption | ring ].
assumption.
- unfold Rdiv in |- *; apply Rmult_lt_0_compat;
+ unfold Rdiv; apply Rmult_lt_0_compat;
[ assumption | apply Rinv_0_lt_compat; assumption ].
apply Rplus_lt_reg_r with x; rewrite Rplus_0_r.
replace (x + (y - x)) with y; [ assumption | ring ].
@@ -382,7 +382,7 @@ Proof.
rewrite Ropp_minus_distr'.
rewrite dicho_lb_dicho_up.
rewrite b.
- unfold Rminus, Rdiv in |- *; rewrite Rplus_opp_r; rewrite Rmult_0_l;
+ unfold Rminus, Rdiv; rewrite Rplus_opp_r; rewrite Rmult_0_l;
rewrite Rabs_R0; assumption.
assumption.
elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H r)).
@@ -399,23 +399,23 @@ Lemma continuity_seq :
forall (f:R -> R) (Un:nat -> R) (l:R),
continuity_pt f l -> Un_cv Un l -> Un_cv (fun i:nat => f (Un i)) (f l).
Proof.
- unfold continuity_pt, Un_cv in |- *; unfold continue_in in |- *.
- unfold limit1_in in |- *.
- unfold limit_in in |- *.
- unfold dist in |- *.
- simpl in |- *.
- unfold R_dist in |- *.
+ unfold continuity_pt, Un_cv; unfold continue_in.
+ unfold limit1_in.
+ unfold limit_in.
+ unfold dist.
+ simpl.
+ unfold R_dist.
intros.
elim (H eps H1); intros alp H2.
elim H2; intros.
elim (H0 alp H3); intros N H5.
exists N; intros.
case (Req_dec (Un n) l); intro.
- rewrite H7; unfold Rminus in |- *; rewrite Rplus_opp_r; rewrite Rabs_R0;
+ rewrite H7; unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0;
assumption.
apply H4.
split.
- unfold D_x, no_cond in |- *.
+ unfold D_x, no_cond.
split.
trivial.
apply (not_eq_sym (A:=R)); assumption.
@@ -428,9 +428,9 @@ Lemma dicho_lb_car :
Proof.
intros.
induction n as [| n Hrecn].
- simpl in |- *.
+ simpl.
assumption.
- simpl in |- *.
+ simpl.
assert
(X :=
sumbool_of_bool (P ((Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2))).
@@ -447,9 +447,9 @@ Lemma dicho_up_car :
Proof.
intros.
induction n as [| n Hrecn].
- simpl in |- *.
+ simpl.
assumption.
- simpl in |- *.
+ simpl.
assert
(X :=
sumbool_of_bool (P ((Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2))).
@@ -480,7 +480,7 @@ Proof.
split.
split.
apply Rle_trans with (dicho_lb x y (fun z:R => cond_positivity (f z)) 0).
- simpl in |- *.
+ simpl.
right; reflexivity.
apply growing_ineq.
apply dicho_lb_growing; assumption.
@@ -503,7 +503,7 @@ Proof.
assert (H10 := H5 H7).
apply Rle_antisym; assumption.
intro.
- unfold Wn in |- *.
+ unfold Wn.
cut (forall z:R, cond_positivity z = true <-> 0 <= z).
intro.
assert (H8 := dicho_up_car x y (fun z:R => cond_positivity (f z)) n).
@@ -514,7 +514,7 @@ Proof.
apply H12.
left; assumption.
intro.
- unfold cond_positivity in |- *.
+ unfold cond_positivity.
case (Rle_dec 0 z); intro.
split.
intro; assumption.
@@ -523,7 +523,7 @@ Proof.
intro feqt;discriminate feqt.
intro.
elim n0; assumption.
- unfold Vn in |- *.
+ unfold Vn.
cut (forall z:R, cond_positivity z = false <-> z < 0).
intros.
assert (H8 := dicho_lb_car x y (fun z:R => cond_positivity (f z)) n).
@@ -535,7 +535,7 @@ Proof.
apply H12.
assumption.
intro.
- unfold cond_positivity in |- *.
+ unfold cond_positivity.
case (Rle_dec 0 z); intro.
split.
intro feqt; discriminate feqt.
@@ -554,7 +554,7 @@ Proof.
cut (0 < - f x0).
intro.
elim (H7 (- f x0) H8); intros.
- cut (x2 >= x2)%nat; [ intro | unfold ge in |- *; apply le_n ].
+ cut (x2 >= x2)%nat; [ intro | unfold ge; apply le_n ].
assert (H11 := H9 x2 H10).
rewrite Rabs_right in H11.
pattern (- f x0) at 1 in H11; rewrite <- Rplus_0_r in H11.
@@ -562,11 +562,11 @@ Proof.
assert (H12 := Rplus_lt_reg_r _ _ _ H11).
assert (H13 := H6 x2).
elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H13 H12)).
- apply Rle_ge; left; unfold Rminus in |- *; apply Rplus_le_lt_0_compat.
+ apply Rle_ge; left; unfold Rminus; apply Rplus_le_lt_0_compat.
apply H6.
exact H8.
apply Ropp_0_gt_lt_contravar; assumption.
- unfold Wn in |- *; assumption.
+ unfold Wn; assumption.
cut (Un_cv Vn x0).
intros.
assert (H7 := continuity_seq f Vn x0 (H x0) H5).
@@ -574,7 +574,7 @@ Proof.
elim s; intro.
unfold Un_cv in H7; unfold R_dist in H7.
elim (H7 (f x0) a); intros.
- cut (x2 >= x2)%nat; [ intro | unfold ge in |- *; apply le_n ].
+ cut (x2 >= x2)%nat; [ intro | unfold ge; apply le_n ].
assert (H10 := H8 x2 H9).
rewrite Rabs_left in H10.
pattern (f x0) at 2 in H10; rewrite <- Rplus_0_r in H10.
@@ -589,12 +589,12 @@ Proof.
apply Ropp_0_gt_lt_contravar; assumption.
apply Rplus_lt_reg_r with (f x0 - f (Vn x2)).
rewrite Rplus_0_r; replace (f x0 - f (Vn x2) + (f (Vn x2) - f x0)) with 0;
- [ unfold Rminus in |- *; apply Rplus_lt_le_0_compat | ring ].
+ [ unfold Rminus; apply Rplus_lt_le_0_compat | ring ].
assumption.
apply Ropp_0_ge_le_contravar; apply Rle_ge; apply H6.
right; rewrite <- b; reflexivity.
left; assumption.
- unfold Vn in |- *; assumption.
+ unfold Vn; assumption.
Qed.
Lemma IVT_cor :
@@ -613,11 +613,11 @@ Proof.
exists y.
split.
split; [ assumption | right; reflexivity ].
- symmetry in |- *; exact b.
+ symmetry ; exact b.
exists x.
split.
split; [ right; reflexivity | assumption ].
- symmetry in |- *; exact b.
+ symmetry ; exact b.
elim s; intro.
cut (x < y).
intro.
@@ -633,8 +633,8 @@ Proof.
unfold opp_fct in H7.
rewrite <- (Ropp_involutive (f x0)).
apply Ropp_eq_0_compat; assumption.
- unfold opp_fct in |- *; apply Ropp_0_gt_lt_contravar; assumption.
- unfold opp_fct in |- *.
+ unfold opp_fct; apply Ropp_0_gt_lt_contravar; assumption.
+ unfold opp_fct.
apply Rplus_lt_reg_r with (f x); rewrite Rplus_opp_r; rewrite Rplus_0_r;
assumption.
inversion H0.
@@ -644,7 +644,7 @@ Proof.
exists x.
split.
split; [ right; reflexivity | assumption ].
- symmetry in |- *; assumption.
+ symmetry ; assumption.
case (total_order_T 0 (f y)); intro.
elim s; intro.
cut (x < y).
@@ -657,7 +657,7 @@ Proof.
exists y.
split.
split; [ assumption | right; reflexivity ].
- symmetry in |- *; assumption.
+ symmetry ; assumption.
cut (0 < f x * f y).
intro.
elim (Rlt_irrefl _ (Rlt_le_trans _ _ _ H2 H1)).
@@ -690,18 +690,18 @@ Proof.
elim H5; intros; assumption.
unfold f in H6.
apply Rminus_diag_uniq_sym; exact H6.
- rewrite Rmult_comm; pattern 0 at 2 in |- *; rewrite <- (Rmult_0_r (f 1)).
+ rewrite Rmult_comm; pattern 0 at 2; rewrite <- (Rmult_0_r (f 1)).
apply Rmult_le_compat_l; assumption.
- unfold f in |- *.
+ unfold f.
rewrite Rsqr_1.
apply Rplus_le_reg_l with y.
- rewrite Rplus_0_r; rewrite Rplus_comm; unfold Rminus in |- *;
+ rewrite Rplus_0_r; rewrite Rplus_comm; unfold Rminus;
rewrite Rplus_assoc; rewrite Rplus_opp_l; rewrite Rplus_0_r;
left; assumption.
exists 1.
split.
left; apply Rlt_0_1.
- rewrite b; symmetry in |- *; apply Rsqr_1.
+ rewrite b; symmetry ; apply Rsqr_1.
cut (0 <= f y).
intro.
cut (f 0 * f y <= 0).
@@ -714,14 +714,14 @@ Proof.
elim H5; intros; assumption.
unfold f in H6.
apply Rminus_diag_uniq_sym; exact H6.
- rewrite Rmult_comm; pattern 0 at 2 in |- *; rewrite <- (Rmult_0_r (f y)).
+ rewrite Rmult_comm; pattern 0 at 2; rewrite <- (Rmult_0_r (f y)).
apply Rmult_le_compat_l; assumption.
- unfold f in |- *.
+ unfold f.
apply Rplus_le_reg_l with y.
- rewrite Rplus_0_r; rewrite Rplus_comm; unfold Rminus in |- *;
+ rewrite Rplus_0_r; rewrite Rplus_comm; unfold Rminus;
rewrite Rplus_assoc; rewrite Rplus_opp_l; rewrite Rplus_0_r.
- pattern y at 1 in |- *; rewrite <- Rmult_1_r.
- unfold Rsqr in |- *; apply Rmult_le_compat_l.
+ pattern y at 1; rewrite <- Rmult_1_r.
+ unfold Rsqr; apply Rmult_le_compat_l.
assumption.
left; exact r.
replace f with (Rsqr - fct_cte y)%F.
@@ -729,8 +729,8 @@ Proof.
apply derivable_continuous; apply derivable_Rsqr.
apply derivable_continuous; apply derivable_const.
reflexivity.
- unfold f in |- *; rewrite Rsqr_0.
- unfold Rminus in |- *; rewrite Rplus_0_l.
+ unfold f; rewrite Rsqr_0.
+ unfold Rminus; rewrite Rplus_0_l.
apply Rge_le.
apply Ropp_0_le_ge_contravar; assumption.
Qed.
@@ -749,7 +749,7 @@ Proof.
intros.
elim p; intros.
rewrite H in H0; assumption.
- unfold Rsqrt in |- *.
+ unfold Rsqrt.
case (Rsqrt_exists x (cond_nonneg x)).
intros.
elim p; elim a; intros.
@@ -770,7 +770,7 @@ Proof.
rewrite <- H.
elim p; intros.
rewrite H1; reflexivity.
- unfold Rsqrt in |- *.
+ unfold Rsqrt.
case (Rsqrt_exists x (cond_nonneg x)).
intros.
elim p; elim a; intros.
diff --git a/theories/Reals/Rtopology.v b/theories/Reals/Rtopology.v
index 77a4d5fbb..f1ca105da 100644
--- a/theories/Reals/Rtopology.v
+++ b/theories/Reals/Rtopology.v
@@ -30,16 +30,16 @@ Definition interior (D:R -> Prop) (x:R) : Prop := neighbourhood D x.
Lemma interior_P1 : forall D:R -> Prop, included (interior D) D.
Proof.
- intros; unfold included in |- *; unfold interior in |- *; intros;
+ intros; unfold included; unfold interior; intros;
unfold neighbourhood in H; elim H; intros; unfold included in H0;
- apply H0; unfold disc in |- *; unfold Rminus in |- *;
+ apply H0; unfold disc; unfold Rminus;
rewrite Rplus_opp_r; rewrite Rabs_R0; apply (cond_pos x0).
Qed.
Lemma interior_P2 : forall D:R -> Prop, open_set D -> included D (interior D).
Proof.
- intros; unfold open_set in H; unfold included in |- *; intros;
- assert (H1 := H _ H0); unfold interior in |- *; apply H1.
+ intros; unfold open_set in H; unfold included; intros;
+ assert (H1 := H _ H0); unfold interior; apply H1.
Qed.
Definition point_adherent (D:R -> Prop) (x:R) : Prop :=
@@ -49,11 +49,11 @@ Definition adherence (D:R -> Prop) (x:R) : Prop := point_adherent D x.
Lemma adherence_P1 : forall D:R -> Prop, included D (adherence D).
Proof.
- intro; unfold included in |- *; intros; unfold adherence in |- *;
- unfold point_adherent in |- *; intros; exists x;
- unfold intersection_domain in |- *; split.
+ intro; unfold included; intros; unfold adherence;
+ unfold point_adherent; intros; exists x;
+ unfold intersection_domain; split.
unfold neighbourhood in H0; elim H0; intros; unfold included in H1; apply H1;
- unfold disc in |- *; unfold Rminus in |- *; rewrite Rplus_opp_r;
+ unfold disc; unfold Rminus; rewrite Rplus_opp_r;
rewrite Rabs_R0; apply (cond_pos x0).
apply H.
Qed.
@@ -62,29 +62,29 @@ Lemma included_trans :
forall D1 D2 D3:R -> Prop,
included D1 D2 -> included D2 D3 -> included D1 D3.
Proof.
- unfold included in |- *; intros; apply H0; apply H; apply H1.
+ unfold included; intros; apply H0; apply H; apply H1.
Qed.
Lemma interior_P3 : forall D:R -> Prop, open_set (interior D).
Proof.
- intro; unfold open_set, interior in |- *; unfold neighbourhood in |- *;
+ intro; unfold open_set, interior; unfold neighbourhood;
intros; elim H; intros.
- exists x0; unfold included in |- *; intros.
+ exists x0; unfold included; intros.
set (del := x0 - Rabs (x - x1)).
cut (0 < del).
intro; exists (mkposreal del H2); intros.
cut (included (disc x1 (mkposreal del H2)) (disc x x0)).
intro; assert (H5 := included_trans _ _ _ H4 H0).
apply H5; apply H3.
- unfold included in |- *; unfold disc in |- *; intros.
+ unfold included; unfold disc; intros.
apply Rle_lt_trans with (Rabs (x3 - x1) + Rabs (x1 - x)).
replace (x3 - x) with (x3 - x1 + (x1 - x)); [ apply Rabs_triang | ring ].
replace (pos x0) with (del + Rabs (x1 - x)).
do 2 rewrite <- (Rplus_comm (Rabs (x1 - x))); apply Rplus_lt_compat_l;
apply H4.
- unfold del in |- *; rewrite <- (Rabs_Ropp (x - x1)); rewrite Ropp_minus_distr;
+ unfold del; rewrite <- (Rabs_Ropp (x - x1)); rewrite Ropp_minus_distr;
ring.
- unfold del in |- *; apply Rplus_lt_reg_r with (Rabs (x - x1));
+ unfold del; apply Rplus_lt_reg_r with (Rabs (x - x1));
rewrite Rplus_0_r;
replace (Rabs (x - x1) + (x0 - Rabs (x - x1))) with (pos x0);
[ idtac | ring ].
@@ -95,7 +95,7 @@ Lemma complementary_P1 :
forall D:R -> Prop,
~ (exists y : R, intersection_domain D (complementary D) y).
Proof.
- intro; red in |- *; intro; elim H; intros;
+ intro; red; intro; elim H; intros;
unfold intersection_domain, complementary in H0; elim H0;
intros; elim H2; assumption.
Qed.
@@ -103,8 +103,8 @@ Qed.
Lemma adherence_P2 :
forall D:R -> Prop, closed_set D -> included (adherence D) D.
Proof.
- unfold closed_set in |- *; unfold open_set, complementary in |- *; intros;
- unfold included, adherence in |- *; intros; assert (H1 := classic (D x));
+ unfold closed_set; unfold open_set, complementary; intros;
+ unfold included, adherence; intros; assert (H1 := classic (D x));
elim H1; intro.
assumption.
assert (H3 := H _ H2); assert (H4 := H0 _ H3); elim H4; intros;
@@ -114,8 +114,8 @@ Qed.
Lemma adherence_P3 : forall D:R -> Prop, closed_set (adherence D).
Proof.
- intro; unfold closed_set, adherence in |- *;
- unfold open_set, complementary, point_adherent in |- *;
+ intro; unfold closed_set, adherence;
+ unfold open_set, complementary, point_adherent;
intros;
set
(P :=
@@ -123,21 +123,21 @@ Proof.
neighbourhood V x -> exists y : R, intersection_domain V D y);
assert (H0 := not_all_ex_not _ P H); elim H0; intros V0 H1;
unfold P in H1; assert (H2 := imply_to_and _ _ H1);
- unfold neighbourhood in |- *; elim H2; intros; unfold neighbourhood in H3;
- elim H3; intros; exists x0; unfold included in |- *;
- intros; red in |- *; intro.
+ unfold neighbourhood; elim H2; intros; unfold neighbourhood in H3;
+ elim H3; intros; exists x0; unfold included;
+ intros; red; intro.
assert (H8 := H7 V0);
cut (exists delta : posreal, (forall x:R, disc x1 delta x -> V0 x)).
intro; assert (H10 := H8 H9); elim H4; assumption.
cut (0 < x0 - Rabs (x - x1)).
intro; set (del := mkposreal _ H9); exists del; intros;
- unfold included in H5; apply H5; unfold disc in |- *;
+ unfold included in H5; apply H5; unfold disc;
apply Rle_lt_trans with (Rabs (x2 - x1) + Rabs (x1 - x)).
replace (x2 - x) with (x2 - x1 + (x1 - x)); [ apply Rabs_triang | ring ].
replace (pos x0) with (del + Rabs (x1 - x)).
do 2 rewrite <- (Rplus_comm (Rabs (x1 - x))); apply Rplus_lt_compat_l;
apply H10.
- unfold del in |- *; simpl in |- *; rewrite <- (Rabs_Ropp (x - x1));
+ unfold del; simpl; rewrite <- (Rabs_Ropp (x - x1));
rewrite Ropp_minus_distr; ring.
apply Rplus_lt_reg_r with (Rabs (x - x1)); rewrite Rplus_0_r;
replace (Rabs (x - x1) + (x0 - Rabs (x - x1))) with (pos x0);
@@ -152,10 +152,10 @@ Infix "=_D" := eq_Dom (at level 70, no associativity).
Lemma open_set_P1 : forall D:R -> Prop, open_set D <-> D =_D interior D.
Proof.
intro; split.
- intro; unfold eq_Dom in |- *; split.
+ intro; unfold eq_Dom; split.
apply interior_P2; assumption.
apply interior_P1.
- intro; unfold eq_Dom in H; elim H; clear H; intros; unfold open_set in |- *;
+ intro; unfold eq_Dom in H; elim H; clear H; intros; unfold open_set;
intros; unfold included, interior in H; unfold included in H0;
apply (H _ H1).
Qed.
@@ -163,20 +163,20 @@ Qed.
Lemma closed_set_P1 : forall D:R -> Prop, closed_set D <-> D =_D adherence D.
Proof.
intro; split.
- intro; unfold eq_Dom in |- *; split.
+ intro; unfold eq_Dom; split.
apply adherence_P1.
apply adherence_P2; assumption.
- unfold eq_Dom in |- *; unfold included in |- *; intros;
+ unfold eq_Dom; unfold included; intros;
assert (H0 := adherence_P3 D); unfold closed_set in H0;
- unfold closed_set in |- *; unfold open_set in |- *;
+ unfold closed_set; unfold open_set;
unfold open_set in H0; intros; assert (H2 : complementary (adherence D) x).
- unfold complementary in |- *; unfold complementary in H1; red in |- *; intro;
+ unfold complementary; unfold complementary in H1; red; intro;
elim H; clear H; intros _ H; elim H1; apply (H _ H2).
- assert (H3 := H0 _ H2); unfold neighbourhood in |- *;
+ assert (H3 := H0 _ H2); unfold neighbourhood;
unfold neighbourhood in H3; elim H3; intros; exists x0;
- unfold included in |- *; unfold included in H4; intros;
+ unfold included; unfold included in H4; intros;
assert (H6 := H4 _ H5); unfold complementary in H6;
- unfold complementary in |- *; red in |- *; intro;
+ unfold complementary; red; intro;
elim H; clear H; intros H _; elim H6; apply (H _ H7).
Qed.
@@ -184,8 +184,8 @@ Lemma neighbourhood_P1 :
forall (D1 D2:R -> Prop) (x:R),
included D1 D2 -> neighbourhood D1 x -> neighbourhood D2 x.
Proof.
- unfold included, neighbourhood in |- *; intros; elim H0; intros; exists x0;
- intros; unfold included in |- *; unfold included in H1;
+ unfold included, neighbourhood; intros; elim H0; intros; exists x0;
+ intros; unfold included; unfold included in H1;
intros; apply (H _ (H1 _ H2)).
Qed.
@@ -193,12 +193,12 @@ Lemma open_set_P2 :
forall D1 D2:R -> Prop,
open_set D1 -> open_set D2 -> open_set (union_domain D1 D2).
Proof.
- unfold open_set in |- *; intros; unfold union_domain in H1; elim H1; intro.
+ unfold open_set; intros; unfold union_domain in H1; elim H1; intro.
apply neighbourhood_P1 with D1.
- unfold included, union_domain in |- *; tauto.
+ unfold included, union_domain; tauto.
apply H; assumption.
apply neighbourhood_P1 with D2.
- unfold included, union_domain in |- *; tauto.
+ unfold included, union_domain; tauto.
apply H0; assumption.
Qed.
@@ -206,53 +206,53 @@ Lemma open_set_P3 :
forall D1 D2:R -> Prop,
open_set D1 -> open_set D2 -> open_set (intersection_domain D1 D2).
Proof.
- unfold open_set in |- *; intros; unfold intersection_domain in H1; elim H1;
+ unfold open_set; intros; unfold intersection_domain in H1; elim H1;
intros.
assert (H4 := H _ H2); assert (H5 := H0 _ H3);
- unfold intersection_domain in |- *; unfold neighbourhood in H4, H5;
+ unfold intersection_domain; unfold neighbourhood in H4, H5;
elim H4; clear H; intros del1 H; elim H5; clear H0;
intros del2 H0; cut (0 < Rmin del1 del2).
intro; set (del := mkposreal _ H6).
- exists del; unfold included in |- *; intros; unfold included in H, H0;
+ exists del; unfold included; intros; unfold included in H, H0;
unfold disc in H, H0, H7.
split.
apply H; apply Rlt_le_trans with (pos del).
apply H7.
- unfold del in |- *; simpl in |- *; apply Rmin_l.
+ unfold del; simpl; apply Rmin_l.
apply H0; apply Rlt_le_trans with (pos del).
apply H7.
- unfold del in |- *; simpl in |- *; apply Rmin_r.
- unfold Rmin in |- *; case (Rle_dec del1 del2); intro.
+ unfold del; simpl; apply Rmin_r.
+ unfold Rmin; case (Rle_dec del1 del2); intro.
apply (cond_pos del1).
apply (cond_pos del2).
Qed.
Lemma open_set_P4 : open_set (fun x:R => False).
Proof.
- unfold open_set in |- *; intros; elim H.
+ unfold open_set; intros; elim H.
Qed.
Lemma open_set_P5 : open_set (fun x:R => True).
Proof.
- unfold open_set in |- *; intros; unfold neighbourhood in |- *.
- exists (mkposreal 1 Rlt_0_1); unfold included in |- *; intros; trivial.
+ unfold open_set; intros; unfold neighbourhood.
+ exists (mkposreal 1 Rlt_0_1); unfold included; intros; trivial.
Qed.
Lemma disc_P1 : forall (x:R) (del:posreal), open_set (disc x del).
Proof.
intros; assert (H := open_set_P1 (disc x del)).
elim H; intros; apply H1.
- unfold eq_Dom in |- *; split.
- unfold included, interior, disc in |- *; intros;
+ unfold eq_Dom; split.
+ unfold included, interior, disc; intros;
cut (0 < del - Rabs (x - x0)).
intro; set (del2 := mkposreal _ H3).
- exists del2; unfold included in |- *; intros.
+ exists del2; unfold included; intros.
apply Rle_lt_trans with (Rabs (x1 - x0) + Rabs (x0 - x)).
replace (x1 - x) with (x1 - x0 + (x0 - x)); [ apply Rabs_triang | ring ].
replace (pos del) with (del2 + Rabs (x0 - x)).
do 2 rewrite <- (Rplus_comm (Rabs (x0 - x))); apply Rplus_lt_compat_l.
apply H4.
- unfold del2 in |- *; simpl in |- *; rewrite <- (Rabs_Ropp (x - x0));
+ unfold del2; simpl; rewrite <- (Rabs_Ropp (x - x0));
rewrite Ropp_minus_distr; ring.
apply Rplus_lt_reg_r with (Rabs (x - x0)); rewrite Rplus_0_r;
replace (Rabs (x - x0) + (del - Rabs (x - x0))) with (pos del);
@@ -278,19 +278,19 @@ Proof.
elim H3; intros.
exists (disc x (mkposreal del2 H4)).
intros; unfold included in H1; split.
- unfold neighbourhood, disc in |- *.
+ unfold neighbourhood, disc.
exists (mkposreal del2 H4).
- unfold included in |- *; intros; assumption.
- intros; apply H1; unfold disc in |- *; case (Req_dec y x); intro.
- rewrite H7; unfold Rminus in |- *; rewrite Rplus_opp_r; rewrite Rabs_R0;
+ unfold included; intros; assumption.
+ intros; apply H1; unfold disc; case (Req_dec y x); intro.
+ rewrite H7; unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0;
apply (cond_pos del1).
apply H5; split.
- unfold D_x, no_cond in |- *; split.
+ unfold D_x, no_cond; split.
trivial.
apply (not_eq_sym (A:=R)); apply H7.
unfold disc in H6; apply H6.
- intros; unfold continuity_pt in |- *; unfold continue_in in |- *;
- unfold limit1_in in |- *; unfold limit_in in |- *;
+ intros; unfold continuity_pt; unfold continue_in;
+ unfold limit1_in; unfold limit_in;
intros.
assert (H1 := H (disc (f x) (mkposreal eps H0))).
cut (neighbourhood (disc (f x) (mkposreal eps H0)) (f x)).
@@ -299,10 +299,10 @@ Proof.
intros del1 H7.
exists (pos del1); split.
apply (cond_pos del1).
- intros; elim H8; intros; simpl in H10; unfold R_dist in H10; simpl in |- *;
- unfold R_dist in |- *; apply (H6 _ (H7 _ H10)).
- unfold neighbourhood, disc in |- *; exists (mkposreal eps H0);
- unfold included in |- *; intros; assumption.
+ intros; elim H8; intros; simpl in H10; unfold R_dist in H10; simpl;
+ unfold R_dist; apply (H6 _ (H7 _ H10)).
+ unfold neighbourhood, disc; exists (mkposreal eps H0);
+ unfold included; intros; assumption.
Qed.
Definition image_rec (f:R -> R) (D:R -> Prop) (x:R) : Prop := D (f x).
@@ -312,13 +312,13 @@ Lemma continuity_P2 :
forall (f:R -> R) (D:R -> Prop),
continuity f -> open_set D -> open_set (image_rec f D).
Proof.
- intros; unfold open_set in H0; unfold open_set in |- *; intros;
+ intros; unfold open_set in H0; unfold open_set; intros;
assert (H2 := continuity_P1 f x); elim H2; intros H3 _;
- assert (H4 := H3 (H x)); unfold neighbourhood, image_rec in |- *;
+ assert (H4 := H3 (H x)); unfold neighbourhood, image_rec;
unfold image_rec in H1; assert (H5 := H4 D (H0 (f x) H1));
elim H5; intros V0 H6; elim H6; intros; unfold neighbourhood in H7;
elim H7; intros del H9; exists del; unfold included in H9;
- unfold included in |- *; intros; apply (H8 _ (H9 _ H10)).
+ unfold included; intros; apply (H8 _ (H9 _ H10)).
Qed.
(**********)
@@ -329,9 +329,9 @@ Lemma continuity_P3 :
Proof.
intros; split.
intros; apply continuity_P2; assumption.
- intros; unfold continuity in |- *; unfold continuity_pt in |- *;
- unfold continue_in in |- *; unfold limit1_in in |- *;
- unfold limit_in in |- *; simpl in |- *; unfold R_dist in |- *;
+ intros; unfold continuity; unfold continuity_pt;
+ unfold continue_in; unfold limit1_in;
+ unfold limit_in; simpl; unfold R_dist;
intros; cut (open_set (disc (f x) (mkposreal _ H0))).
intro; assert (H2 := H _ H1).
unfold open_set, image_rec in H2; cut (disc (f x) (mkposreal _ H0) (f x)).
@@ -340,7 +340,7 @@ Proof.
exists (pos del); split.
apply (cond_pos del).
intros; unfold included in H5; apply H5; elim H6; intros; apply H8.
- unfold disc in |- *; unfold Rminus in |- *; rewrite Rplus_opp_r;
+ unfold disc; unfold Rminus; rewrite Rplus_opp_r;
rewrite Rabs_R0; apply H0.
apply disc_P1.
Qed.
@@ -358,23 +358,23 @@ Proof.
cut (0 < D / 2).
intro; exists (disc x (mkposreal _ H)).
exists (disc y (mkposreal _ H)); split.
- unfold neighbourhood in |- *; exists (mkposreal _ H); unfold included in |- *;
+ unfold neighbourhood; exists (mkposreal _ H); unfold included;
tauto.
split.
- unfold neighbourhood in |- *; exists (mkposreal _ H); unfold included in |- *;
+ unfold neighbourhood; exists (mkposreal _ H); unfold included;
tauto.
- red in |- *; intro; elim H0; intros; unfold intersection_domain in H1;
+ red; intro; elim H0; intros; unfold intersection_domain in H1;
elim H1; intros.
cut (D < D).
intro; elim (Rlt_irrefl _ H4).
- change (Rabs (x - y) < D) in |- *;
+ change (Rabs (x - y) < D);
apply Rle_lt_trans with (Rabs (x - x0) + Rabs (x0 - y)).
replace (x - y) with (x - x0 + (x0 - y)); [ apply Rabs_triang | ring ].
rewrite (double_var D); apply Rplus_lt_compat.
rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr; apply H2.
apply H3.
- unfold Rdiv in |- *; apply Rmult_lt_0_compat.
- unfold D in |- *; apply Rabs_pos_lt; apply (Rminus_eq_contra _ _ Hsep).
+ unfold Rdiv; apply Rmult_lt_0_compat.
+ unfold D; apply Rabs_pos_lt; apply (Rminus_eq_contra _ _ Hsep).
apply Rinv_0_lt_compat; prove_sup0.
Qed.
@@ -404,7 +404,7 @@ Lemma restriction_family :
(exists y : R, (fun z1 z2:R => f z1 z2 /\ D z1) x y) ->
intersection_domain (ind f) D x.
Proof.
- intros; elim H; intros; unfold intersection_domain in |- *; elim H0; intros;
+ intros; elim H; intros; unfold intersection_domain; elim H0; intros;
split.
apply (cond_fam f0); exists x0; assumption.
assumption.
@@ -424,19 +424,19 @@ Lemma family_P1 :
forall (f:family) (D:R -> Prop),
family_open_set f -> family_open_set (subfamily f D).
Proof.
- unfold family_open_set in |- *; intros; unfold subfamily in |- *;
- simpl in |- *; assert (H0 := classic (D x)).
+ unfold family_open_set; intros; unfold subfamily;
+ simpl; assert (H0 := classic (D x)).
elim H0; intro.
cut (open_set (f0 x) -> open_set (fun y:R => f0 x y /\ D x)).
intro; apply H2; apply H.
- unfold open_set in |- *; unfold neighbourhood in |- *; intros; elim H3;
+ unfold open_set; unfold neighbourhood; intros; elim H3;
intros; assert (H6 := H2 _ H4); elim H6; intros; exists x1;
- unfold included in |- *; intros; split.
+ unfold included; intros; split.
apply (H7 _ H8).
assumption.
cut (open_set (fun y:R => False) -> open_set (fun y:R => f0 x y /\ D x)).
intro; apply H2; apply open_set_P4.
- unfold open_set in |- *; unfold neighbourhood in |- *; intros; elim H3;
+ unfold open_set; unfold neighbourhood; intros; elim H3;
intros; elim H1; assumption.
Qed.
@@ -446,7 +446,7 @@ Definition bounded (D:R -> Prop) : Prop :=
Lemma open_set_P6 :
forall D1 D2:R -> Prop, open_set D1 -> D1 =_D D2 -> open_set D2.
Proof.
- unfold open_set in |- *; unfold neighbourhood in |- *; intros.
+ unfold open_set; unfold neighbourhood; intros.
unfold eq_Dom in H0; elim H0; intros.
assert (H4 := H _ (H3 _ H1)).
elim H4; intros.
@@ -465,7 +465,7 @@ Proof.
intro; assert (H3 := H1 H2); elim H3; intros D' H4;
unfold covering_finite in H4; elim H4; intros; unfold family_finite in H6;
unfold domain_finite in H6; elim H6; intros l H7;
- unfold bounded in |- *; set (r := MaxRlist l).
+ unfold bounded; set (r := MaxRlist l).
exists (- r); exists r; intros.
unfold covering in H5; assert (H9 := H5 _ H8); elim H9; intros;
unfold subfamily in H10; simpl in H10; elim H10; intros;
@@ -484,25 +484,25 @@ Proof.
left; apply H11.
assumption.
apply (MaxRlist_P1 l x0 H16).
- unfold intersection_domain, D in |- *; tauto.
- unfold covering_open_set in |- *; split.
- unfold covering in |- *; intros; simpl in |- *; exists (Rabs x + 1);
- unfold g in |- *; pattern (Rabs x) at 1 in |- *; rewrite <- Rplus_0_r;
+ unfold intersection_domain, D; tauto.
+ unfold covering_open_set; split.
+ unfold covering; intros; simpl; exists (Rabs x + 1);
+ unfold g; pattern (Rabs x) at 1; rewrite <- Rplus_0_r;
apply Rplus_lt_compat_l; apply Rlt_0_1.
- unfold family_open_set in |- *; intro; case (Rtotal_order 0 x); intro.
+ unfold family_open_set; intro; case (Rtotal_order 0 x); intro.
apply open_set_P6 with (disc 0 (mkposreal _ H2)).
apply disc_P1.
- unfold eq_Dom in |- *; unfold f0 in |- *; simpl in |- *;
- unfold g, disc in |- *; split.
- unfold included in |- *; intros; unfold Rminus in H3; rewrite Ropp_0 in H3;
+ unfold eq_Dom; unfold f0; simpl;
+ unfold g, disc; split.
+ unfold included; intros; unfold Rminus in H3; rewrite Ropp_0 in H3;
rewrite Rplus_0_r in H3; apply H3.
- unfold included in |- *; intros; unfold Rminus in |- *; rewrite Ropp_0;
+ unfold included; intros; unfold Rminus; rewrite Ropp_0;
rewrite Rplus_0_r; apply H3.
apply open_set_P6 with (fun x:R => False).
apply open_set_P4.
- unfold eq_Dom in |- *; split.
- unfold included in |- *; intros; elim H3.
- unfold included, f0 in |- *; simpl in |- *; unfold g in |- *; intros; elim H2;
+ unfold eq_Dom; split.
+ unfold included; intros; elim H3.
+ unfold included, f0; simpl; unfold g; intros; elim H2;
intro;
[ rewrite <- H4 in H3; assert (H5 := Rabs_pos x0);
elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H5 H3))
@@ -515,10 +515,10 @@ Lemma compact_P2 : forall X:R -> Prop, compact X -> closed_set X.
Proof.
intros; assert (H0 := closed_set_P1 X); elim H0; clear H0; intros _ H0;
apply H0; clear H0.
- unfold eq_Dom in |- *; split.
+ unfold eq_Dom; split.
apply adherence_P1.
- unfold included in |- *; unfold adherence in |- *;
- unfold point_adherent in |- *; intros; unfold compact in H;
+ unfold included; unfold adherence;
+ unfold point_adherent; intros; unfold compact in H;
assert (H1 := classic (X x)); elim H1; clear H1; intro.
assumption.
cut (forall y:R, X y -> 0 < Rabs (y - x) / 2).
@@ -548,44 +548,44 @@ Proof.
replace (y0 - x) with (y0 - y + (y - x)); [ apply Rabs_triang | ring ].
rewrite (double_var (Rabs (y0 - x))); apply Rplus_lt_compat; assumption.
apply (MinRlist_P1 (AbsList l x) (Rabs (y0 - x) / 2)); apply AbsList_P1;
- elim (H8 y0); clear H8; intros; apply H8; unfold intersection_domain in |- *;
+ elim (H8 y0); clear H8; intros; apply H8; unfold intersection_domain;
split; assumption.
assert (H11 := disc_P1 x (mkposreal alp H9)); unfold open_set in H11;
apply H11.
- unfold disc in |- *; unfold Rminus in |- *; rewrite Rplus_opp_r;
+ unfold disc; unfold Rminus; rewrite Rplus_opp_r;
rewrite Rabs_R0; apply H9.
- unfold alp in |- *; apply MinRlist_P2; intros;
+ unfold alp; apply MinRlist_P2; intros;
assert (H10 := AbsList_P2 _ _ _ H9); elim H10; clear H10;
intros z H10; elim H10; clear H10; intros; rewrite H11;
apply H2; elim (H8 z); clear H8; intros; assert (H13 := H12 H10);
unfold intersection_domain, D in H13; elim H13; clear H13;
intros; assumption.
- unfold covering_open_set in |- *; split.
- unfold covering in |- *; intros; exists x0; simpl in |- *; unfold g in |- *;
+ unfold covering_open_set; split.
+ unfold covering; intros; exists x0; simpl; unfold g;
split.
- unfold Rminus in |- *; rewrite Rplus_opp_r; rewrite Rabs_R0;
+ unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0;
unfold Rminus in H2; apply (H2 _ H5).
apply H5.
- unfold family_open_set in |- *; intro; simpl in |- *; unfold g in |- *;
+ unfold family_open_set; intro; simpl; unfold g;
elim (classic (D x0)); intro.
apply open_set_P6 with (disc x0 (mkposreal _ (H2 _ H5))).
apply disc_P1.
- unfold eq_Dom in |- *; split.
- unfold included, disc in |- *; simpl in |- *; intros; split.
+ unfold eq_Dom; split.
+ unfold included, disc; simpl; intros; split.
rewrite <- (Rabs_Ropp (x0 - x1)); rewrite Ropp_minus_distr; apply H6.
apply H5.
- unfold included, disc in |- *; simpl in |- *; intros; elim H6; intros;
+ unfold included, disc; simpl; intros; elim H6; intros;
rewrite <- (Rabs_Ropp (x1 - x0)); rewrite Ropp_minus_distr;
apply H7.
apply open_set_P6 with (fun z:R => False).
apply open_set_P4.
- unfold eq_Dom in |- *; split.
- unfold included in |- *; intros; elim H6.
- unfold included in |- *; intros; elim H6; intros; elim H5; assumption.
+ unfold eq_Dom; split.
+ unfold included; intros; elim H6.
+ unfold included; intros; elim H6; intros; elim H5; assumption.
intros; elim H3; intros; unfold g in H4; elim H4; clear H4; intros _ H4;
apply H4.
- intros; unfold Rdiv in |- *; apply Rmult_lt_0_compat.
- apply Rabs_pos_lt; apply Rminus_eq_contra; red in |- *; intro;
+ intros; unfold Rdiv; apply Rmult_lt_0_compat.
+ apply Rabs_pos_lt; apply Rminus_eq_contra; red; intro;
rewrite H3 in H2; elim H1; apply H2.
apply Rinv_0_lt_compat; prove_sup0.
Qed.
@@ -593,29 +593,29 @@ Qed.
(**********)
Lemma compact_EMP : compact (fun _:R => False).
Proof.
- unfold compact in |- *; intros; exists (fun x:R => False);
- unfold covering_finite in |- *; split.
- unfold covering in |- *; intros; elim H0.
- unfold family_finite in |- *; unfold domain_finite in |- *; exists nil; intro.
+ unfold compact; intros; exists (fun x:R => False);
+ unfold covering_finite; split.
+ unfold covering; intros; elim H0.
+ unfold family_finite; unfold domain_finite; exists nil; intro.
split.
- simpl in |- *; unfold intersection_domain in |- *; intros; elim H0.
+ simpl; unfold intersection_domain; intros; elim H0.
elim H0; clear H0; intros _ H0; elim H0.
- simpl in |- *; intro; elim H0.
+ simpl; intro; elim H0.
Qed.
Lemma compact_eqDom :
forall X1 X2:R -> Prop, compact X1 -> X1 =_D X2 -> compact X2.
Proof.
- unfold compact in |- *; intros; unfold eq_Dom in H0; elim H0; clear H0;
- unfold included in |- *; intros; assert (H3 : covering_open_set X1 f0).
- unfold covering_open_set in |- *; unfold covering_open_set in H1; elim H1;
+ unfold compact; intros; unfold eq_Dom in H0; elim H0; clear H0;
+ unfold included; intros; assert (H3 : covering_open_set X1 f0).
+ unfold covering_open_set; unfold covering_open_set in H1; elim H1;
clear H1; intros; split.
- unfold covering in H1; unfold covering in |- *; intros;
+ unfold covering in H1; unfold covering; intros;
apply (H1 _ (H0 _ H4)).
apply H3.
- elim (H _ H3); intros D H4; exists D; unfold covering_finite in |- *;
+ elim (H _ H3); intros D H4; exists D; unfold covering_finite;
unfold covering_finite in H4; elim H4; intros; split.
- unfold covering in H5; unfold covering in |- *; intros;
+ unfold covering in H5; unfold covering; intros;
apply (H5 _ (H2 _ H7)).
apply H6.
Qed.
@@ -624,7 +624,7 @@ Qed.
Lemma compact_P3 : forall a b:R, compact (fun c:R => a <= c <= b).
Proof.
intros; case (Rle_dec a b); intro.
- unfold compact in |- *; intros;
+ unfold compact; intros;
set
(A :=
fun x:R =>
@@ -647,92 +647,92 @@ Proof.
rewrite H11 in H10; rewrite H11 in H8; unfold A in H9; elim H9; clear H9;
intros; elim H12; clear H12; intros Dx H12;
set (Db := fun x:R => Dx x \/ x = y0); exists Db;
- unfold covering_finite in |- *; split.
- unfold covering in |- *; unfold covering_finite in H12; elim H12; clear H12;
+ unfold covering_finite; split.
+ unfold covering; unfold covering_finite in H12; elim H12; clear H12;
intros; unfold covering in H12; case (Rle_dec x0 x);
intro.
cut (a <= x0 <= x).
intro; assert (H16 := H12 x0 H15); elim H16; clear H16; intros; exists x1;
- simpl in H16; simpl in |- *; unfold Db in |- *; elim H16;
+ simpl in H16; simpl; unfold Db; elim H16;
clear H16; intros; split; [ apply H16 | left; apply H17 ].
split.
elim H14; intros; assumption.
assumption.
- exists y0; simpl in |- *; split.
- apply H8; unfold disc in |- *; rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr;
+ exists y0; simpl; split.
+ apply H8; unfold disc; rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr;
rewrite Rabs_right.
apply Rlt_trans with (b - x).
- unfold Rminus in |- *; apply Rplus_lt_compat_l; apply Ropp_lt_gt_contravar;
+ unfold Rminus; apply Rplus_lt_compat_l; apply Ropp_lt_gt_contravar;
auto with real.
elim H10; intros H15 _; apply Rplus_lt_reg_r with (x - eps);
replace (x - eps + (b - x)) with (b - eps);
[ replace (x - eps + eps) with x; [ apply H15 | ring ] | ring ].
apply Rge_minus; apply Rle_ge; elim H14; intros _ H15; apply H15.
- unfold Db in |- *; right; reflexivity.
- unfold family_finite in |- *; unfold domain_finite in |- *;
+ unfold Db; right; reflexivity.
+ unfold family_finite; unfold domain_finite;
unfold covering_finite in H12; elim H12; clear H12;
intros; unfold family_finite in H13; unfold domain_finite in H13;
elim H13; clear H13; intros l H13; exists (cons y0 l);
intro; split.
intro; simpl in H14; unfold intersection_domain in H14; elim (H13 x0);
clear H13; intros; case (Req_dec x0 y0); intro.
- simpl in |- *; left; apply H16.
- simpl in |- *; right; apply H13.
- simpl in |- *; unfold intersection_domain in |- *; unfold Db in H14;
+ simpl; left; apply H16.
+ simpl; right; apply H13.
+ simpl; unfold intersection_domain; unfold Db in H14;
decompose [and or] H14.
split; assumption.
elim H16; assumption.
- intro; simpl in H14; elim H14; intro; simpl in |- *;
- unfold intersection_domain in |- *.
+ intro; simpl in H14; elim H14; intro; simpl;
+ unfold intersection_domain.
split.
apply (cond_fam f0); rewrite H15; exists m; apply H6.
- unfold Db in |- *; right; assumption.
- simpl in |- *; unfold intersection_domain in |- *; elim (H13 x0).
+ unfold Db; right; assumption.
+ simpl; unfold intersection_domain; elim (H13 x0).
intros _ H16; assert (H17 := H16 H15); simpl in H17;
unfold intersection_domain in H17; split.
elim H17; intros; assumption.
- unfold Db in |- *; left; elim H17; intros; assumption.
+ unfold Db; left; elim H17; intros; assumption.
set (m' := Rmin (m + eps / 2) b); cut (A m').
intro; elim H3; intros; unfold is_upper_bound in H13;
assert (H15 := H13 m' H12); cut (m < m').
intro; elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H15 H16)).
- unfold m' in |- *; unfold Rmin in |- *; case (Rle_dec (m + eps / 2) b); intro.
- pattern m at 1 in |- *; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l;
- unfold Rdiv in |- *; apply Rmult_lt_0_compat;
+ unfold m'; unfold Rmin; case (Rle_dec (m + eps / 2) b); intro.
+ pattern m at 1; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l;
+ unfold Rdiv; apply Rmult_lt_0_compat;
[ apply (cond_pos eps) | apply Rinv_0_lt_compat; prove_sup0 ].
elim H4; intros.
elim H17; intro.
assumption.
elim H11; assumption.
- unfold A in |- *; split.
+ unfold A; split.
split.
apply Rle_trans with m.
elim H4; intros; assumption.
- unfold m' in |- *; unfold Rmin in |- *; case (Rle_dec (m + eps / 2) b); intro.
- pattern m at 1 in |- *; rewrite <- Rplus_0_r; apply Rplus_le_compat_l; left;
- unfold Rdiv in |- *; apply Rmult_lt_0_compat;
+ unfold m'; unfold Rmin; case (Rle_dec (m + eps / 2) b); intro.
+ pattern m at 1; rewrite <- Rplus_0_r; apply Rplus_le_compat_l; left;
+ unfold Rdiv; apply Rmult_lt_0_compat;
[ apply (cond_pos eps) | apply Rinv_0_lt_compat; prove_sup0 ].
elim H4; intros.
elim H13; intro.
assumption.
elim H11; assumption.
- unfold m' in |- *; apply Rmin_r.
+ unfold m'; apply Rmin_r.
unfold A in H9; elim H9; clear H9; intros; elim H12; clear H12; intros Dx H12;
set (Db := fun x:R => Dx x \/ x = y0); exists Db;
- unfold covering_finite in |- *; split.
- unfold covering in |- *; unfold covering_finite in H12; elim H12; clear H12;
+ unfold covering_finite; split.
+ unfold covering; unfold covering_finite in H12; elim H12; clear H12;
intros; unfold covering in H12; case (Rle_dec x0 x);
intro.
cut (a <= x0 <= x).
intro; assert (H16 := H12 x0 H15); elim H16; clear H16; intros; exists x1;
- simpl in H16; simpl in |- *; unfold Db in |- *.
+ simpl in H16; simpl; unfold Db.
elim H16; clear H16; intros; split; [ apply H16 | left; apply H17 ].
elim H14; intros; split; assumption.
- exists y0; simpl in |- *; split.
- apply H8; unfold disc in |- *; unfold Rabs in |- *; case (Rcase_abs (x0 - m));
+ exists y0; simpl; split.
+ apply H8; unfold disc; unfold Rabs; case (Rcase_abs (x0 - m));
intro.
rewrite Ropp_minus_distr; apply Rlt_trans with (m - x).
- unfold Rminus in |- *; apply Rplus_lt_compat_l; apply Ropp_lt_gt_contravar;
+ unfold Rminus; apply Rplus_lt_compat_l; apply Ropp_lt_gt_contravar;
auto with real.
apply Rplus_lt_reg_r with (x - eps);
replace (x - eps + (m - x)) with (m - eps).
@@ -741,56 +741,56 @@ Proof.
ring.
ring.
apply Rle_lt_trans with (m' - m).
- unfold Rminus in |- *; do 2 rewrite <- (Rplus_comm (- m));
+ unfold Rminus; do 2 rewrite <- (Rplus_comm (- m));
apply Rplus_le_compat_l; elim H14; intros; assumption.
apply Rplus_lt_reg_r with m; replace (m + (m' - m)) with m'.
apply Rle_lt_trans with (m + eps / 2).
- unfold m' in |- *; apply Rmin_l.
+ unfold m'; apply Rmin_l.
apply Rplus_lt_compat_l; apply Rmult_lt_reg_l with 2.
prove_sup0.
- unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
+ unfold Rdiv; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
rewrite <- Rinv_r_sym.
- rewrite Rmult_1_l; pattern (pos eps) at 1 in |- *; rewrite <- Rplus_0_r;
+ rewrite Rmult_1_l; pattern (pos eps) at 1; rewrite <- Rplus_0_r;
rewrite double; apply Rplus_lt_compat_l; apply (cond_pos eps).
discrR.
ring.
- unfold Db in |- *; right; reflexivity.
- unfold family_finite in |- *; unfold domain_finite in |- *;
+ unfold Db; right; reflexivity.
+ unfold family_finite; unfold domain_finite;
unfold covering_finite in H12; elim H12; clear H12;
intros; unfold family_finite in H13; unfold domain_finite in H13;
elim H13; clear H13; intros l H13; exists (cons y0 l);
intro; split.
intro; simpl in H14; unfold intersection_domain in H14; elim (H13 x0);
clear H13; intros; case (Req_dec x0 y0); intro.
- simpl in |- *; left; apply H16.
- simpl in |- *; right; apply H13; simpl in |- *;
- unfold intersection_domain in |- *; unfold Db in H14;
+ simpl; left; apply H16.
+ simpl; right; apply H13; simpl;
+ unfold intersection_domain; unfold Db in H14;
decompose [and or] H14.
split; assumption.
elim H16; assumption.
- intro; simpl in H14; elim H14; intro; simpl in |- *;
- unfold intersection_domain in |- *.
+ intro; simpl in H14; elim H14; intro; simpl;
+ unfold intersection_domain.
split.
apply (cond_fam f0); rewrite H15; exists m; apply H6.
- unfold Db in |- *; right; assumption.
+ unfold Db; right; assumption.
elim (H13 x0); intros _ H16.
assert (H17 := H16 H15).
simpl in H17.
unfold intersection_domain in H17.
split.
elim H17; intros; assumption.
- unfold Db in |- *; left; elim H17; intros; assumption.
+ unfold Db; left; elim H17; intros; assumption.
elim (classic (exists x : R, A x /\ m - eps < x <= m)); intro.
assumption.
elim H3; intros; cut (is_upper_bound A (m - eps)).
intro; assert (H13 := H11 _ H12); cut (m - eps < m).
intro; elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H13 H14)).
- pattern m at 2 in |- *; rewrite <- Rplus_0_r; unfold Rminus in |- *;
+ pattern m at 2; rewrite <- Rplus_0_r; unfold Rminus;
apply Rplus_lt_compat_l; apply Ropp_lt_cancel; rewrite Ropp_involutive;
rewrite Ropp_0; apply (cond_pos eps).
set (P := fun n:R => A n /\ m - eps < n <= m);
assert (H12 := not_ex_all_not _ P H9); unfold P in H12;
- unfold is_upper_bound in |- *; intros;
+ unfold is_upper_bound; intros;
assert (H14 := not_and_or _ _ (H12 x)); elim H14;
intro.
elim H15; apply H13.
@@ -803,44 +803,44 @@ Proof.
unfold is_upper_bound in H3.
split.
apply (H3 _ H0).
- apply (H4 b); unfold is_upper_bound in |- *; intros; unfold A in H5; elim H5;
+ apply (H4 b); unfold is_upper_bound; intros; unfold A in H5; elim H5;
clear H5; intros H5 _; elim H5; clear H5; intros _ H5;
apply H5.
exists a; apply H0.
- unfold bound in |- *; exists b; unfold is_upper_bound in |- *; intros;
+ unfold bound; exists b; unfold is_upper_bound; intros;
unfold A in H1; elim H1; clear H1; intros H1 _; elim H1;
clear H1; intros _ H1; apply H1.
- unfold A in |- *; split.
+ unfold A; split.
split; [ right; reflexivity | apply r ].
unfold covering_open_set in H; elim H; clear H; intros; unfold covering in H;
cut (a <= a <= b).
intro; elim (H _ H1); intros y0 H2; set (D' := fun x:R => x = y0); exists D';
- unfold covering_finite in |- *; split.
- unfold covering in |- *; simpl in |- *; intros; cut (x = a).
+ unfold covering_finite; split.
+ unfold covering; simpl; intros; cut (x = a).
intro; exists y0; split.
rewrite H4; apply H2.
- unfold D' in |- *; reflexivity.
+ unfold D'; reflexivity.
elim H3; intros; apply Rle_antisym; assumption.
- unfold family_finite in |- *; unfold domain_finite in |- *;
+ unfold family_finite; unfold domain_finite;
exists (cons y0 nil); intro; split.
- simpl in |- *; unfold intersection_domain in |- *; intro; elim H3; clear H3;
+ simpl; unfold intersection_domain; intro; elim H3; clear H3;
intros; unfold D' in H4; left; apply H4.
- simpl in |- *; unfold intersection_domain in |- *; intro; elim H3; intro.
+ simpl; unfold intersection_domain; intro; elim H3; intro.
split; [ rewrite H4; apply (cond_fam f0); exists a; apply H2 | apply H4 ].
elim H4.
split; [ right; reflexivity | apply r ].
apply compact_eqDom with (fun c:R => False).
apply compact_EMP.
- unfold eq_Dom in |- *; split.
- unfold included in |- *; intros; elim H.
- unfold included in |- *; intros; elim H; clear H; intros;
+ unfold eq_Dom; split.
+ unfold included; intros; elim H.
+ unfold included; intros; elim H; clear H; intros;
assert (H1 := Rle_trans _ _ _ H H0); elim n; apply H1.
Qed.
Lemma compact_P4 :
forall X F:R -> Prop, compact X -> closed_set F -> included F X -> compact F.
Proof.
- unfold compact in |- *; intros; elim (classic (exists z : R, F z));
+ unfold compact; intros; elim (classic (exists z : R, F z));
intro Hyp_F_NE.
set (D := ind f0); set (g := f f0); unfold closed_set in H0.
set (g' := fun x y:R => f0 x y \/ complementary F y /\ D x).
@@ -848,61 +848,61 @@ Proof.
cut (forall x:R, (exists y : R, g' x y) -> D' x).
intro; set (f' := mkfamily D' g' H3); cut (covering_open_set X f').
intro; elim (H _ H4); intros DX H5; exists DX.
- unfold covering_finite in |- *; unfold covering_finite in H5; elim H5;
+ unfold covering_finite; unfold covering_finite in H5; elim H5;
clear H5; intros.
split.
- unfold covering in |- *; unfold covering in H5; intros.
- elim (H5 _ (H1 _ H7)); intros y0 H8; exists y0; simpl in H8; simpl in |- *;
+ unfold covering; unfold covering in H5; intros.
+ elim (H5 _ (H1 _ H7)); intros y0 H8; exists y0; simpl in H8; simpl;
elim H8; clear H8; intros.
split.
unfold g' in H8; elim H8; intro.
apply H10.
elim H10; intros H11 _; unfold complementary in H11; elim H11; apply H7.
apply H9.
- unfold family_finite in |- *; unfold domain_finite in |- *;
+ unfold family_finite; unfold domain_finite;
unfold family_finite in H6; unfold domain_finite in H6;
elim H6; clear H6; intros l H6; exists l; intro; assert (H7 := H6 x);
elim H7; clear H7; intros.
split.
- intro; apply H7; simpl in |- *; unfold intersection_domain in |- *;
- simpl in H9; unfold intersection_domain in H9; unfold D' in |- *;
+ intro; apply H7; simpl; unfold intersection_domain;
+ simpl in H9; unfold intersection_domain in H9; unfold D';
apply H9.
intro; assert (H10 := H8 H9); simpl in H10; unfold intersection_domain in H10;
- simpl in |- *; unfold intersection_domain in |- *;
+ simpl; unfold intersection_domain;
unfold D' in H10; apply H10.
- unfold covering_open_set in |- *; unfold covering_open_set in H2; elim H2;
+ unfold covering_open_set; unfold covering_open_set in H2; elim H2;
clear H2; intros.
split.
- unfold covering in |- *; unfold covering in H2; intros.
+ unfold covering; unfold covering in H2; intros.
elim (classic (F x)); intro.
- elim (H2 _ H6); intros y0 H7; exists y0; simpl in |- *; unfold g' in |- *;
+ elim (H2 _ H6); intros y0 H7; exists y0; simpl; unfold g';
left; assumption.
cut (exists z : R, D z).
- intro; elim H7; clear H7; intros x0 H7; exists x0; simpl in |- *;
- unfold g' in |- *; right.
+ intro; elim H7; clear H7; intros x0 H7; exists x0; simpl;
+ unfold g'; right.
split.
- unfold complementary in |- *; apply H6.
+ unfold complementary; apply H6.
apply H7.
elim Hyp_F_NE; intros z0 H7.
assert (H8 := H2 _ H7).
elim H8; clear H8; intros t H8; exists t; apply (cond_fam f0); exists z0;
apply H8.
- unfold family_open_set in |- *; intro; simpl in |- *; unfold g' in |- *;
+ unfold family_open_set; intro; simpl; unfold g';
elim (classic (D x)); intro.
apply open_set_P6 with (union_domain (f0 x) (complementary F)).
apply open_set_P2.
unfold family_open_set in H4; apply H4.
apply H0.
- unfold eq_Dom in |- *; split.
- unfold included, union_domain, complementary in |- *; intros.
+ unfold eq_Dom; split.
+ unfold included, union_domain, complementary; intros.
elim H6; intro; [ left; apply H7 | right; split; assumption ].
- unfold included, union_domain, complementary in |- *; intros.
+ unfold included, union_domain, complementary; intros.
elim H6; intro; [ left; apply H7 | right; elim H7; intros; apply H8 ].
apply open_set_P6 with (f0 x).
unfold family_open_set in H4; apply H4.
- unfold eq_Dom in |- *; split.
- unfold included, complementary in |- *; intros; left; apply H6.
- unfold included, complementary in |- *; intros.
+ unfold eq_Dom; split.
+ unfold included, complementary; intros; left; apply H6.
+ unfold included, complementary; intros.
elim H6; intro.
apply H7.
elim H7; intros _ H8; elim H5; apply H8.
@@ -914,9 +914,9 @@ Proof.
intro; apply (H3 f0 H2).
apply compact_eqDom with (fun _:R => False).
apply compact_EMP.
- unfold eq_Dom in |- *; split.
- unfold included in |- *; intros; elim H3.
- assert (H3 := not_ex_all_not _ _ Hyp_F_NE); unfold included in |- *; intros;
+ unfold eq_Dom; split.
+ unfold included; intros; elim H3.
+ assert (H3 := not_ex_all_not _ _ Hyp_F_NE); unfold included; intros;
elim (H3 x); apply H4.
Qed.
@@ -947,7 +947,7 @@ Lemma continuity_compact :
forall (f:R -> R) (X:R -> Prop),
(forall x:R, continuity_pt f x) -> compact X -> compact (image_dir f X).
Proof.
- unfold compact in |- *; intros; unfold covering_open_set in H1.
+ unfold compact; intros; unfold covering_open_set in H1.
elim H1; clear H1; intros.
set (D := ind f1).
set (g := fun x y:R => image_rec f0 (f1 x) y).
@@ -956,24 +956,24 @@ Proof.
cut (covering_open_set X f').
intro; elim (H0 f' H4); intros D' H5; exists D'.
unfold covering_finite in H5; elim H5; clear H5; intros;
- unfold covering_finite in |- *; split.
- unfold covering, image_dir in |- *; simpl in |- *; unfold covering in H5;
+ unfold covering_finite; split.
+ unfold covering, image_dir; simpl; unfold covering in H5;
intros; elim H7; intros y H8; elim H8; intros; assert (H11 := H5 _ H10);
simpl in H11; elim H11; intros z H12; exists z; unfold g in H12;
unfold image_rec in H12; rewrite H9; apply H12.
unfold family_finite in H6; unfold domain_finite in H6;
- unfold family_finite in |- *; unfold domain_finite in |- *;
+ unfold family_finite; unfold domain_finite;
elim H6; intros l H7; exists l; intro; elim (H7 x);
intros; split; intro.
- apply H8; simpl in H10; simpl in |- *; apply H10.
+ apply H8; simpl in H10; simpl; apply H10.
apply (H9 H10).
- unfold covering_open_set in |- *; split.
- unfold covering in |- *; intros; simpl in |- *; unfold covering in H1;
- unfold image_dir in H1; unfold g in |- *; unfold image_rec in |- *;
+ unfold covering_open_set; split.
+ unfold covering; intros; simpl; unfold covering in H1;
+ unfold image_dir in H1; unfold g; unfold image_rec;
apply H1.
exists x; split; [ reflexivity | apply H4 ].
- unfold family_open_set in |- *; unfold family_open_set in H2; intro;
- simpl in |- *; unfold g in |- *;
+ unfold family_open_set; unfold family_open_set in H2; intro;
+ simpl; unfold g;
cut ((fun y:R => image_rec f0 (f1 x) y) = image_rec f0 (f1 x)).
intro; rewrite H4.
apply (continuity_P2 f0 (f1 x) H (H2 x)).
@@ -1010,16 +1010,16 @@ Proof.
assert (H2 : 0 < b - a).
apply Rlt_Rminus; assumption.
exists h; split.
- unfold continuity in |- *; intro; case (Rtotal_order x a); intro.
- unfold continuity_pt in |- *; unfold continue_in in |- *;
- unfold limit1_in in |- *; unfold limit_in in |- *;
- simpl in |- *; unfold R_dist in |- *; intros; exists (a - x);
+ unfold continuity; intro; case (Rtotal_order x a); intro.
+ unfold continuity_pt; unfold continue_in;
+ unfold limit1_in; unfold limit_in;
+ simpl; unfold R_dist; intros; exists (a - x);
split.
- change (0 < a - x) in |- *; apply Rlt_Rminus; assumption.
- intros; elim H5; clear H5; intros _ H5; unfold h in |- *.
+ change (0 < a - x); apply Rlt_Rminus; assumption.
+ intros; elim H5; clear H5; intros _ H5; unfold h.
case (Rle_dec x a); intro.
case (Rle_dec x0 a); intro.
- unfold Rminus in |- *; rewrite Rplus_opp_r; rewrite Rabs_R0; assumption.
+ unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0; assumption.
elim n; left; apply Rplus_lt_reg_r with (- x);
do 2 rewrite (Rplus_comm (- x)); apply Rle_lt_trans with (Rabs (x0 - x)).
apply RRle_abs.
@@ -1030,23 +1030,23 @@ Proof.
split; [ right; reflexivity | left; assumption ].
assert (H6 := H0 _ H5); unfold continuity_pt in H6; unfold continue_in in H6;
unfold limit1_in in H6; unfold limit_in in H6; simpl in H6;
- unfold R_dist in H6; unfold continuity_pt in |- *;
- unfold continue_in in |- *; unfold limit1_in in |- *;
- unfold limit_in in |- *; simpl in |- *; unfold R_dist in |- *;
+ unfold R_dist in H6; unfold continuity_pt;
+ unfold continue_in; unfold limit1_in;
+ unfold limit_in; simpl; unfold R_dist;
intros; elim (H6 _ H7); intros; exists (Rmin x0 (b - a));
split.
- unfold Rmin in |- *; case (Rle_dec x0 (b - a)); intro.
+ unfold Rmin; case (Rle_dec x0 (b - a)); intro.
elim H8; intros; assumption.
- change (0 < b - a) in |- *; apply Rlt_Rminus; assumption.
+ change (0 < b - a); apply Rlt_Rminus; assumption.
intros; elim H9; clear H9; intros _ H9; cut (x1 < b).
- intro; unfold h in |- *; case (Rle_dec x a); intro.
+ intro; unfold h; case (Rle_dec x a); intro.
case (Rle_dec x1 a); intro.
- unfold Rminus in |- *; rewrite Rplus_opp_r; rewrite Rabs_R0; assumption.
+ unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0; assumption.
case (Rle_dec x1 b); intro.
elim H8; intros; apply H12; split.
- unfold D_x, no_cond in |- *; split.
+ unfold D_x, no_cond; split.
trivial.
- red in |- *; intro; elim n; right; symmetry in |- *; assumption.
+ red; intro; elim n; right; symmetry ; assumption.
apply Rlt_le_trans with (Rmin x0 (b - a)).
rewrite H4 in H9; apply H9.
apply Rmin_l.
@@ -1063,9 +1063,9 @@ Proof.
split; left; assumption.
assert (H7 := H0 _ H6); unfold continuity_pt in H7; unfold continue_in in H7;
unfold limit1_in in H7; unfold limit_in in H7; simpl in H7;
- unfold R_dist in H7; unfold continuity_pt in |- *;
- unfold continue_in in |- *; unfold limit1_in in |- *;
- unfold limit_in in |- *; simpl in |- *; unfold R_dist in |- *;
+ unfold R_dist in H7; unfold continuity_pt;
+ unfold continue_in; unfold limit1_in;
+ unfold limit_in; simpl; unfold R_dist;
intros; elim (H7 _ H8); intros; elim H9; clear H9;
intros.
assert (H11 : 0 < x - a).
@@ -1073,7 +1073,7 @@ Proof.
assert (H12 : 0 < b - x).
apply Rlt_Rminus; assumption.
exists (Rmin x0 (Rmin (x - a) (b - x))); split.
- unfold Rmin in |- *; case (Rle_dec (x - a) (b - x)); intro.
+ unfold Rmin; case (Rle_dec (x - a) (b - x)); intro.
case (Rle_dec x0 (x - a)); intro.
assumption.
assumption.
@@ -1081,7 +1081,7 @@ Proof.
assumption.
assumption.
intros; elim H13; clear H13; intros; cut (a < x1 < b).
- intro; elim H15; clear H15; intros; unfold h in |- *; case (Rle_dec x a);
+ intro; elim H15; clear H15; intros; unfold h; case (Rle_dec x a);
intro.
elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ r H4)).
case (Rle_dec x b); intro.
@@ -1115,16 +1115,16 @@ Proof.
split; [ left; assumption | right; reflexivity ].
assert (H8 := H0 _ H7); unfold continuity_pt in H8; unfold continue_in in H8;
unfold limit1_in in H8; unfold limit_in in H8; simpl in H8;
- unfold R_dist in H8; unfold continuity_pt in |- *;
- unfold continue_in in |- *; unfold limit1_in in |- *;
- unfold limit_in in |- *; simpl in |- *; unfold R_dist in |- *;
+ unfold R_dist in H8; unfold continuity_pt;
+ unfold continue_in; unfold limit1_in;
+ unfold limit_in; simpl; unfold R_dist;
intros; elim (H8 _ H9); intros; exists (Rmin x0 (b - a));
split.
- unfold Rmin in |- *; case (Rle_dec x0 (b - a)); intro.
+ unfold Rmin; case (Rle_dec x0 (b - a)); intro.
elim H10; intros; assumption.
- change (0 < b - a) in |- *; apply Rlt_Rminus; assumption.
+ change (0 < b - a); apply Rlt_Rminus; assumption.
intros; elim H11; clear H11; intros _ H11; cut (a < x1).
- intro; unfold h in |- *; case (Rle_dec x a); intro.
+ intro; unfold h; case (Rle_dec x a); intro.
elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ r H4)).
case (Rle_dec x1 a); intro.
elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ r H12)).
@@ -1132,15 +1132,15 @@ Proof.
case (Rle_dec x1 b); intro.
rewrite H6; elim H10; intros; elim r0; intro.
apply H14; split.
- unfold D_x, no_cond in |- *; split.
+ unfold D_x, no_cond; split.
trivial.
- red in |- *; intro; rewrite <- H16 in H15; elim (Rlt_irrefl _ H15).
+ red; intro; rewrite <- H16 in H15; elim (Rlt_irrefl _ H15).
rewrite H6 in H11; apply Rlt_le_trans with (Rmin x0 (b - a)).
apply H11.
apply Rmin_l.
- rewrite H15; unfold Rminus in |- *; rewrite Rplus_opp_r; rewrite Rabs_R0;
+ rewrite H15; unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0;
assumption.
- rewrite H6; unfold Rminus in |- *; rewrite Rplus_opp_r; rewrite Rabs_R0;
+ rewrite H6; unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0;
assumption.
elim n1; right; assumption.
rewrite H6 in H11; apply Ropp_lt_cancel; apply Rplus_lt_reg_r with b;
@@ -1149,18 +1149,18 @@ Proof.
apply Rlt_le_trans with (Rmin x0 (b - a)).
assumption.
apply Rmin_r.
- unfold continuity_pt in |- *; unfold continue_in in |- *;
- unfold limit1_in in |- *; unfold limit_in in |- *;
- simpl in |- *; unfold R_dist in |- *; intros; exists (x - b);
+ unfold continuity_pt; unfold continue_in;
+ unfold limit1_in; unfold limit_in;
+ simpl; unfold R_dist; intros; exists (x - b);
split.
- change (0 < x - b) in |- *; apply Rlt_Rminus; assumption.
+ change (0 < x - b); apply Rlt_Rminus; assumption.
intros; elim H8; clear H8; intros.
assert (H10 : b < x0).
apply Ropp_lt_cancel; apply Rplus_lt_reg_r with x;
apply Rle_lt_trans with (Rabs (x0 - x)).
rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr; apply RRle_abs.
assumption.
- unfold h in |- *; case (Rle_dec x a); intro.
+ unfold h; case (Rle_dec x a); intro.
elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ r H4)).
case (Rle_dec x b); intro.
elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ r H6)).
@@ -1168,8 +1168,8 @@ Proof.
elim (Rlt_irrefl _ (Rlt_trans _ _ _ H1 (Rlt_le_trans _ _ _ H10 r))).
case (Rle_dec x0 b); intro.
elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ r H10)).
- unfold Rminus in |- *; rewrite Rplus_opp_r; rewrite Rabs_R0; assumption.
- intros; elim H3; intros; unfold h in |- *; case (Rle_dec c a); intro.
+ unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0; assumption.
+ intros; elim H3; intros; unfold h; case (Rle_dec c a); intro.
elim r; intro.
elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H4 H6)).
rewrite H6; reflexivity.
@@ -1210,7 +1210,7 @@ Proof.
intros; rewrite <- (Heq c H10); rewrite <- (Heq Mxx H9); intros;
rewrite <- H8; unfold is_lub in H7; elim H7; clear H7;
intros H7 _; unfold is_upper_bound in H7; apply H7;
- unfold image_dir in |- *; exists c; split; [ reflexivity | apply H10 ].
+ unfold image_dir; exists c; split; [ reflexivity | apply H10 ].
apply H9.
elim (classic (image_dir g (fun c:R => a <= c <= b) M)); intro.
assumption.
@@ -1225,13 +1225,13 @@ Proof.
cut (is_upper_bound (image_dir g (fun c:R => a <= c <= b)) (M - eps)).
intro; assert (H12 := H10 _ H11); cut (M - eps < M).
intro; elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H12 H13)).
- pattern M at 2 in |- *; rewrite <- Rplus_0_r; unfold Rminus in |- *;
+ pattern M at 2; rewrite <- Rplus_0_r; unfold Rminus;
apply Rplus_lt_compat_l; apply Ropp_lt_cancel; rewrite Ropp_0;
rewrite Ropp_involutive; apply (cond_pos eps).
- unfold is_upper_bound, image_dir in |- *; intros; cut (x <= M).
+ unfold is_upper_bound, image_dir; intros; cut (x <= M).
intro; case (Rle_dec x (M - eps)); intro.
apply r.
- elim (H9 x); unfold intersection_domain, disc, image_dir in |- *; split.
+ elim (H9 x); unfold intersection_domain, disc, image_dir; split.
rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr; rewrite Rabs_right.
apply Rplus_lt_reg_r with (x - eps);
replace (x - eps + (M - x)) with (M - eps).
@@ -1249,8 +1249,8 @@ Proof.
~ intersection_domain V (image_dir g (fun c:R => a <= c <= b)) y)).
intro; elim H9; intros V H10; elim H10; clear H10; intros.
unfold neighbourhood in H10; elim H10; intros del H12; exists del; intros;
- red in |- *; intro; elim (H11 y).
- unfold intersection_domain in |- *; unfold intersection_domain in H13;
+ red; intro; elim (H11 y).
+ unfold intersection_domain; unfold intersection_domain in H13;
elim H13; clear H13; intros; split.
apply (H12 _ H13).
apply H14.
@@ -1268,18 +1268,18 @@ Proof.
split.
apply H12.
apply (not_ex_all_not _ _ H13).
- red in |- *; intro; cut (adherence (image_dir g (fun c:R => a <= c <= b)) M).
+ red; intro; cut (adherence (image_dir g (fun c:R => a <= c <= b)) M).
intro; elim (closed_set_P1 (image_dir g (fun c:R => a <= c <= b)));
intros H11 _; assert (H12 := H11 H3).
elim H8.
unfold eq_Dom in H12; elim H12; clear H12; intros.
apply (H13 _ H10).
apply H9.
- exists (g a); unfold image_dir in |- *; exists a; split.
+ exists (g a); unfold image_dir; exists a; split.
reflexivity.
split; [ right; reflexivity | apply H ].
- unfold bound in |- *; unfold bounded in H4; elim H4; clear H4; intros m H4;
- elim H4; clear H4; intros M H4; exists M; unfold is_upper_bound in |- *;
+ unfold bound; unfold bounded in H4; elim H4; clear H4; intros m H4;
+ elim H4; clear H4; intros M H4; exists M; unfold is_upper_bound;
intros; elim (H4 _ H5); intros _ H6; apply H6.
apply prolongement_C0; assumption.
Qed.
@@ -1327,8 +1327,8 @@ Proof.
intros; elim H; intros; unfold f in H0; unfold adherence in H0;
unfold point_adherent in H0;
assert (H1 : neighbourhood (disc x0 (mkposreal _ Rlt_0_1)) x0).
- unfold neighbourhood, disc in |- *; exists (mkposreal _ Rlt_0_1);
- unfold included in |- *; trivial.
+ unfold neighbourhood, disc; exists (mkposreal _ Rlt_0_1);
+ unfold included; trivial.
elim (H0 _ H1); intros; unfold intersection_domain in H2; elim H2; intros;
elim H4; intros; apply H6.
Qed.
@@ -1345,17 +1345,17 @@ Lemma ValAdh_un_prop :
forall (un:nat -> R) (x:R), ValAdh un x <-> ValAdh_un un x.
Proof.
intros; split; intro.
- unfold ValAdh in H; unfold ValAdh_un in |- *;
- unfold intersection_family in |- *; simpl in |- *;
- intros; elim H0; intros N H1; unfold adherence in |- *;
- unfold point_adherent in |- *; intros; elim (H V N H2);
- intros; exists (un x0); unfold intersection_domain in |- *;
+ unfold ValAdh in H; unfold ValAdh_un;
+ unfold intersection_family; simpl;
+ intros; elim H0; intros N H1; unfold adherence;
+ unfold point_adherent; intros; elim (H V N H2);
+ intros; exists (un x0); unfold intersection_domain;
elim H3; clear H3; intros; split.
assumption.
split.
exists x0; split; [ reflexivity | rewrite H1; apply (le_INR _ _ H3) ].
exists N; assumption.
- unfold ValAdh in |- *; intros; unfold ValAdh_un in H;
+ unfold ValAdh; intros; unfold ValAdh_un in H;
unfold intersection_family in H; simpl in H;
assert
(H1 :
@@ -1376,8 +1376,8 @@ Qed.
Lemma adherence_P4 :
forall F G:R -> Prop, included F G -> included (adherence F) (adherence G).
Proof.
- unfold adherence, included in |- *; unfold point_adherent in |- *; intros;
- elim (H0 _ H1); unfold intersection_domain in |- *;
+ unfold adherence, included; unfold point_adherent; intros;
+ elim (H0 _ H1); unfold intersection_domain;
intros; elim H2; clear H2; intros; exists x0; split;
[ assumption | apply (H _ H3) ].
Qed.
@@ -1410,36 +1410,36 @@ Proof.
intros; elim H2; intros; unfold f' in H3; elim H3; intros; assumption.
set (f0 := mkfamily D' f' H2).
unfold compact in H; assert (H3 : covering_open_set X f0).
- unfold covering_open_set in |- *; split.
- unfold covering in |- *; intros; unfold intersection_vide_in in H1;
+ unfold covering_open_set; split.
+ unfold covering; intros; unfold intersection_vide_in in H1;
elim (H1 x); intros; unfold intersection_family in H5;
assert
(H6 := not_ex_all_not _ (fun y:R => forall y0:R, ind g y0 -> g y0 y) H5 x);
assert (H7 := not_all_ex_not _ (fun y0:R => ind g y0 -> g y0 x) H6);
elim H7; intros; exists x0; elim (imply_to_and _ _ H8);
- intros; unfold f0 in |- *; simpl in |- *; unfold f' in |- *;
+ intros; unfold f0; simpl; unfold f';
split; [ apply H10 | apply H9 ].
- unfold family_open_set in |- *; intro; elim (classic (D' x)); intro.
+ unfold family_open_set; intro; elim (classic (D' x)); intro.
apply open_set_P6 with (complementary (g x)).
unfold family_closed_set in H0; unfold closed_set in H0; apply H0.
- unfold f0 in |- *; simpl in |- *; unfold f' in |- *; unfold eq_Dom in |- *;
+ unfold f0; simpl; unfold f'; unfold eq_Dom;
split.
- unfold included in |- *; intros; split; [ apply H4 | apply H3 ].
- unfold included in |- *; intros; elim H4; intros; assumption.
+ unfold included; intros; split; [ apply H4 | apply H3 ].
+ unfold included; intros; elim H4; intros; assumption.
apply open_set_P6 with (fun _:R => False).
apply open_set_P4.
- unfold eq_Dom in |- *; unfold included in |- *; split; intros;
+ unfold eq_Dom; unfold included; split; intros;
[ elim H4
| simpl in H4; unfold f' in H4; elim H4; intros; elim H3; assumption ].
elim (H _ H3); intros SF H4; exists SF;
- unfold intersection_vide_finite_in in |- *; split.
- unfold intersection_vide_in in |- *; simpl in |- *; intros; split.
- intros; unfold included in |- *; intros; unfold intersection_vide_in in H1;
+ unfold intersection_vide_finite_in; split.
+ unfold intersection_vide_in; simpl; intros; split.
+ intros; unfold included; intros; unfold intersection_vide_in in H1;
elim (H1 x); intros; elim H6; intros; apply H7.
unfold intersection_domain in H5; elim H5; intros; assumption.
assumption.
elim (classic (exists y : R, intersection_domain (ind g) SF y)); intro Hyp'.
- red in |- *; intro; elim H5; intros; unfold intersection_family in H6;
+ red; intro; elim H5; intros; unfold intersection_family in H6;
simpl in H6.
cut (X x0).
intro; unfold covering_finite in H4; elim H4; clear H4; intros H4 _;
@@ -1462,16 +1462,16 @@ Proof.
cut (exists z : R, X z).
intro; elim H5; clear H5; intros; unfold covering in H4; elim (H4 x0 H5);
intros; simpl in H6; elim Hyp'; exists x1; elim H6;
- intros; unfold intersection_domain in |- *; split.
+ intros; unfold intersection_domain; split.
apply (cond_fam f0); exists x0; apply H7.
apply H8.
apply Hyp.
unfold covering_finite in H4; elim H4; clear H4; intros;
unfold family_finite in H5; unfold domain_finite in H5;
- unfold family_finite in |- *; unfold domain_finite in |- *;
+ unfold family_finite; unfold domain_finite;
elim H5; clear H5; intros l H5; exists l; intro; elim (H5 x);
intros; split; intro;
- [ apply H6; simpl in |- *; simpl in H8; apply H8 | apply (H7 H8) ].
+ [ apply H6; simpl; simpl in H8; apply H8 | apply (H7 H8) ].
Qed.
Theorem Bolzano_Weierstrass :
@@ -1492,8 +1492,8 @@ Proof.
intros; elim H2; intros; unfold g in H3; unfold adherence in H3;
unfold point_adherent in H3.
assert (H4 : neighbourhood (disc x0 (mkposreal _ Rlt_0_1)) x0).
- unfold neighbourhood in |- *; exists (mkposreal _ Rlt_0_1);
- unfold included in |- *; trivial.
+ unfold neighbourhood; exists (mkposreal _ Rlt_0_1);
+ unfold included; trivial.
elim (H3 _ H4); intros; unfold intersection_domain in H5; decompose [and] H5;
assumption.
set (f0 := mkfamily D g H2).
@@ -1509,19 +1509,19 @@ Proof.
unfold domain_finite in H9; elim H9; clear H9; intros l H9;
set (r := MaxRlist l); cut (D r).
intro; unfold D in H11; elim H11; intros; exists (un x);
- unfold intersection_family in |- *; simpl in |- *;
- unfold intersection_domain in |- *; intros; split.
- unfold g in |- *; apply adherence_P1; split.
+ unfold intersection_family; simpl;
+ unfold intersection_domain; intros; split.
+ unfold g; apply adherence_P1; split.
exists x; split;
[ reflexivity
- | rewrite <- H12; unfold r in |- *; apply MaxRlist_P1; elim (H9 y); intros;
- apply H14; simpl in |- *; apply H13 ].
+ | rewrite <- H12; unfold r; apply MaxRlist_P1; elim (H9 y); intros;
+ apply H14; simpl; apply H13 ].
elim H13; intros; assumption.
elim H13; intros; assumption.
elim (H9 r); intros.
simpl in H12; unfold intersection_domain in H12; cut (In r l).
intro; elim (H12 H13); intros; assumption.
- unfold r in |- *; apply MaxRlist_P2;
+ unfold r; apply MaxRlist_P2;
cut (exists z : R, intersection_domain (ind f0) SF z).
intro; elim H13; intros; elim (H9 x); intros; simpl in H15;
assert (H17 := H15 H14); exists x; apply H17.
@@ -1541,16 +1541,16 @@ Proof.
not_all_ex_not _ (fun y:R => intersection_domain D SF y -> g y x /\ SF y)
H18); elim H19; intros; assert (H21 := imply_to_and _ _ H20);
elim (H17 x0); elim H21; intros; assumption.
- unfold intersection_vide_in in |- *; intros; split.
- intro; simpl in H6; unfold f0 in |- *; simpl in |- *; unfold g in |- *;
+ unfold intersection_vide_in; intros; split.
+ intro; simpl in H6; unfold f0; simpl; unfold g;
apply included_trans with (adherence X).
apply adherence_P4.
- unfold included in |- *; intros; elim H7; intros; elim H8; intros; elim H10;
+ unfold included; intros; elim H7; intros; elim H8; intros; elim H10;
intros; rewrite H11; apply H0.
apply adherence_P2; apply compact_P2; assumption.
apply H4.
- unfold family_closed_set in |- *; unfold f0 in |- *; simpl in |- *;
- unfold g in |- *; intro; apply adherence_P3.
+ unfold family_closed_set; unfold f0; simpl;
+ unfold g; intro; apply adherence_P3.
Qed.
(********************************************************)
@@ -1566,7 +1566,7 @@ Definition uniform_continuity (f:R -> R) (X:R -> Prop) : Prop :=
Lemma is_lub_u :
forall (E:R -> Prop) (x y:R), is_lub E x -> is_lub E y -> x = y.
Proof.
- unfold is_lub in |- *; intros; elim H; elim H0; intros; apply Rle_antisym;
+ unfold is_lub; intros; elim H; elim H0; intros; apply Rle_antisym;
[ apply (H4 _ H1) | apply (H2 _ H3) ].
Qed.
@@ -1597,14 +1597,14 @@ Theorem Heine :
Proof.
intros f0 X H0 H; elim (domain_P1 X); intro Hyp.
(* X is empty *)
- unfold uniform_continuity in |- *; intros; exists (mkposreal _ Rlt_0_1);
+ unfold uniform_continuity; intros; exists (mkposreal _ Rlt_0_1);
intros; elim Hyp; exists x; assumption.
elim Hyp; clear Hyp; intro Hyp.
(* X has only one element *)
- unfold uniform_continuity in |- *; intros; exists (mkposreal _ Rlt_0_1);
+ unfold uniform_continuity; intros; exists (mkposreal _ Rlt_0_1);
intros; elim Hyp; clear Hyp; intros; elim H4; clear H4;
intros; assert (H6 := H5 _ H1); assert (H7 := H5 _ H2);
- rewrite H6; rewrite H7; unfold Rminus in |- *; rewrite Rplus_opp_r;
+ rewrite H6; rewrite H7; unfold Rminus; rewrite Rplus_opp_r;
rewrite Rabs_R0; apply (cond_pos eps).
(* X has at least two distinct elements *)
assert
@@ -1624,9 +1624,9 @@ Proof.
elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ (Rle_trans _ _ _ H13 H14) r)).
elim X_enc; clear X_enc; intros m X_enc; elim X_enc; clear X_enc;
intros M X_enc; elim X_enc; clear X_enc Hyp; intros X_enc Hyp;
- unfold uniform_continuity in |- *; intro;
+ unfold uniform_continuity; intro;
assert (H1 : forall t:posreal, 0 < t / 2).
- intro; unfold Rdiv in |- *; apply Rmult_lt_0_compat;
+ intro; unfold Rdiv; apply Rmult_lt_0_compat;
[ apply (cond_pos t) | apply Rinv_0_lt_compat; prove_sup0 ].
set
(g :=
@@ -1644,8 +1644,8 @@ Proof.
apply H3.
set (f' := mkfamily X g H2); unfold compact in H0;
assert (H3 : covering_open_set X f').
- unfold covering_open_set in |- *; split.
- unfold covering in |- *; intros; exists x; simpl in |- *; unfold g in |- *;
+ unfold covering_open_set; split.
+ unfold covering; intros; exists x; simpl; unfold g;
split.
assumption.
assert (H4 := H _ H3); unfold continuity_pt in H4; unfold continue_in in H4;
@@ -1658,22 +1658,22 @@ Proof.
0 < zeta <= M - m /\
(forall z:R, Rabs (z - x) < zeta -> Rabs (f0 z - f0 x) < eps / 2));
assert (H6 : bound E).
- unfold bound in |- *; exists (M - m); unfold is_upper_bound in |- *;
- unfold E in |- *; intros; elim H6; clear H6; intros H6 _;
+ unfold bound; exists (M - m); unfold is_upper_bound;
+ unfold E; intros; elim H6; clear H6; intros H6 _;
elim H6; clear H6; intros _ H6; apply H6.
assert (H7 : exists x : R, E x).
- elim H5; clear H5; intros; exists (Rmin x0 (M - m)); unfold E in |- *; intros;
+ elim H5; clear H5; intros; exists (Rmin x0 (M - m)); unfold E; intros;
split.
split.
- unfold Rmin in |- *; case (Rle_dec x0 (M - m)); intro.
+ unfold Rmin; case (Rle_dec x0 (M - m)); intro.
apply H5.
apply Rlt_Rminus; apply Hyp.
apply Rmin_r.
intros; case (Req_dec x z); intro.
- rewrite H9; unfold Rminus in |- *; rewrite Rplus_opp_r; rewrite Rabs_R0;
+ rewrite H9; unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0;
apply (H1 eps).
apply H7; split.
- unfold D_x, no_cond in |- *; split; [ trivial | assumption ].
+ unfold D_x, no_cond; split; [ trivial | assumption ].
apply Rlt_le_trans with (Rmin x0 (M - m)); [ apply H8 | apply Rmin_l ].
assert (H8 := completeness _ H6 H7); elim H8; clear H8; intros;
cut (0 < x1 <= M - m).
@@ -1690,15 +1690,15 @@ Proof.
unfold is_lub in p; elim p; intros; cut (is_upper_bound E (Rabs (z - x))).
intro; assert (H16 := H14 _ H15);
elim (Rlt_irrefl _ (Rlt_le_trans _ _ _ H10 H16)).
- unfold is_upper_bound in |- *; intros; unfold is_upper_bound in H13;
+ unfold is_upper_bound; intros; unfold is_upper_bound in H13;
assert (H16 := H13 _ H15); case (Rle_dec x2 (Rabs (z - x)));
intro.
assumption.
elim (H12 x2); split; [ split; [ auto with real | assumption ] | assumption ].
split.
apply p.
- unfold disc in |- *; unfold Rminus in |- *; rewrite Rplus_opp_r;
- rewrite Rabs_R0; simpl in |- *; unfold Rdiv in |- *;
+ unfold disc; unfold Rminus; rewrite Rplus_opp_r;
+ rewrite Rabs_R0; simpl; unfold Rdiv;
apply Rmult_lt_0_compat; [ apply H8 | apply Rinv_0_lt_compat; prove_sup0 ].
elim H7; intros; unfold E in H8; elim H8; intros H9 _; elim H9; intros H10 _;
unfold is_lub in p; elim p; intros; unfold is_upper_bound in H12;
@@ -1706,13 +1706,13 @@ Proof.
apply Rlt_le_trans with x2; [ assumption | apply (H11 _ H8) ].
apply H12; intros; unfold E in H13; elim H13; intros; elim H14; intros;
assumption.
- unfold family_open_set in |- *; intro; simpl in |- *; elim (classic (X x));
+ unfold family_open_set; intro; simpl; elim (classic (X x));
intro.
- unfold g in |- *; unfold open_set in |- *; intros; elim H4; clear H4;
+ unfold g; unfold open_set; intros; elim H4; clear H4;
intros _ H4; elim H4; clear H4; intros; elim H4; clear H4;
- intros; unfold neighbourhood in |- *; case (Req_dec x x0);
+ intros; unfold neighbourhood; case (Req_dec x x0);
intro.
- exists (mkposreal _ (H1 x1)); rewrite <- H6; unfold included in |- *; intros;
+ exists (mkposreal _ (H1 x1)); rewrite <- H6; unfold included; intros;
split.
assumption.
exists x1; split.
@@ -1721,24 +1721,24 @@ Proof.
elim H5; intros; apply H8.
apply H7.
set (d := x1 / 2 - Rabs (x0 - x)); assert (H7 : 0 < d).
- unfold d in |- *; apply Rlt_Rminus; elim H5; clear H5; intros;
+ unfold d; apply Rlt_Rminus; elim H5; clear H5; intros;
unfold disc in H7; apply H7.
- exists (mkposreal _ H7); unfold included in |- *; intros; split.
+ exists (mkposreal _ H7); unfold included; intros; split.
assumption.
exists x1; split.
apply H4.
elim H5; intros; split.
assumption.
- unfold disc in H8; simpl in H8; unfold disc in |- *; simpl in |- *;
+ unfold disc in H8; simpl in H8; unfold disc; simpl;
unfold disc in H10; simpl in H10;
apply Rle_lt_trans with (Rabs (x2 - x0) + Rabs (x0 - x)).
replace (x2 - x) with (x2 - x0 + (x0 - x)); [ apply Rabs_triang | ring ].
- replace (x1 / 2) with (d + Rabs (x0 - x)); [ idtac | unfold d in |- *; ring ].
+ replace (x1 / 2) with (d + Rabs (x0 - x)); [ idtac | unfold d; ring ].
do 2 rewrite <- (Rplus_comm (Rabs (x0 - x))); apply Rplus_lt_compat_l;
apply H8.
apply open_set_P6 with (fun _:R => False).
apply open_set_P4.
- unfold eq_Dom in |- *; unfold included in |- *; intros; split.
+ unfold eq_Dom; unfold included; intros; split.
intros; elim H4.
intros; unfold g in H4; elim H4; clear H4; intros H4 _; elim H3; apply H4.
elim (H0 _ H3); intros DF H4; unfold covering_finite in H4; elim H4; clear H4;
@@ -1776,10 +1776,10 @@ Proof.
apply Rlt_trans with (pos_Rl l' i / 2).
apply H21.
elim H13; clear H13; intros; assumption.
- unfold Rdiv in |- *; apply Rmult_lt_reg_l with 2.
+ unfold Rdiv; apply Rmult_lt_reg_l with 2.
prove_sup0.
rewrite Rmult_comm; rewrite Rmult_assoc; rewrite <- Rinv_l_sym.
- rewrite Rmult_1_r; pattern (pos_Rl l' i) at 1 in |- *; rewrite <- Rplus_0_r;
+ rewrite Rmult_1_r; pattern (pos_Rl l' i) at 1; rewrite <- Rplus_0_r;
rewrite double; apply Rplus_lt_compat_l; apply H19.
discrR.
assert (H19 := H8 i H17); elim H19; clear H19; intros; rewrite <- H18 in H20;
@@ -1791,15 +1791,15 @@ Proof.
rewrite (double_var (pos_Rl l' i)); apply Rplus_lt_compat.
apply Rlt_le_trans with (D / 2).
rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr; apply H12.
- unfold Rdiv in |- *; do 2 rewrite <- (Rmult_comm (/ 2));
+ unfold Rdiv; do 2 rewrite <- (Rmult_comm (/ 2));
apply Rmult_le_compat_l.
left; apply Rinv_0_lt_compat; prove_sup0.
- unfold D in |- *; apply MinRlist_P1; elim (pos_Rl_P2 l' (pos_Rl l' i));
+ unfold D; apply MinRlist_P1; elim (pos_Rl_P2 l' (pos_Rl l' i));
intros; apply H26; exists i; split;
[ rewrite <- H7; assumption | reflexivity ].
assumption.
- unfold Rdiv in |- *; apply Rmult_lt_0_compat;
- [ unfold D in |- *; apply MinRlist_P2; intros; elim (pos_Rl_P2 l' y); intros;
+ unfold Rdiv; apply Rmult_lt_0_compat;
+ [ unfold D; apply MinRlist_P2; intros; elim (pos_Rl_P2 l' y); intros;
elim (H10 H9); intros; elim H12; intros; rewrite H14;
rewrite <- H7 in H13; elim (H8 x H13); intros;
apply H15
@@ -1811,25 +1811,25 @@ Proof.
0 < zeta <= M - m /\
(forall z:R, Rabs (z - x) < zeta -> Rabs (f0 z - f0 x) < eps / 2));
assert (H11 : bound E).
- unfold bound in |- *; exists (M - m); unfold is_upper_bound in |- *;
- unfold E in |- *; intros; elim H11; clear H11; intros H11 _;
+ unfold bound; exists (M - m); unfold is_upper_bound;
+ unfold E; intros; elim H11; clear H11; intros H11 _;
elim H11; clear H11; intros _ H11; apply H11.
assert (H12 : exists x : R, E x).
assert (H13 := H _ H9); unfold continuity_pt in H13;
unfold continue_in in H13; unfold limit1_in in H13;
unfold limit_in in H13; simpl in H13; unfold R_dist in H13;
elim (H13 _ (H1 eps)); intros; elim H12; clear H12;
- intros; exists (Rmin x0 (M - m)); unfold E in |- *;
+ intros; exists (Rmin x0 (M - m)); unfold E;
intros; split.
split;
- [ unfold Rmin in |- *; case (Rle_dec x0 (M - m)); intro;
+ [ unfold Rmin; case (Rle_dec x0 (M - m)); intro;
[ apply H12 | apply Rlt_Rminus; apply Hyp ]
| apply Rmin_r ].
intros; case (Req_dec x z); intro.
- rewrite H16; unfold Rminus in |- *; rewrite Rplus_opp_r; rewrite Rabs_R0;
+ rewrite H16; unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0;
apply (H1 eps).
apply H14; split;
- [ unfold D_x, no_cond in |- *; split; [ trivial | assumption ]
+ [ unfold D_x, no_cond; split; [ trivial | assumption ]
| apply Rlt_le_trans with (Rmin x0 (M - m)); [ apply H15 | apply Rmin_l ] ].
assert (H13 := completeness _ H11 H12); elim H13; clear H13; intros;
cut (0 < x0 <= M - m).
@@ -1847,14 +1847,14 @@ Proof.
unfold is_lub in p; elim p; intros; cut (is_upper_bound E (Rabs (z - x))).
intro; assert (H21 := H19 _ H20);
elim (Rlt_irrefl _ (Rlt_le_trans _ _ _ H15 H21)).
- unfold is_upper_bound in |- *; intros; unfold is_upper_bound in H18;
+ unfold is_upper_bound; intros; unfold is_upper_bound in H18;
assert (H21 := H18 _ H20); case (Rle_dec x1 (Rabs (z - x)));
intro.
assumption.
elim (H17 x1); split.
split; [ auto with real | assumption ].
assumption.
- unfold included, g in |- *; intros; elim H15; intros; elim H17; intros;
+ unfold included, g; intros; elim H15; intros; elim H17; intros;
decompose [and] H18; cut (x0 = x2).
intro; rewrite H20; apply H22.
unfold E in p; eapply is_lub_u.
diff --git a/theories/Reals/Rtrigo_alt.v b/theories/Reals/Rtrigo_alt.v
index 3bb07fe0c..2d79a929f 100644
--- a/theories/Reals/Rtrigo_alt.v
+++ b/theories/Reals/Rtrigo_alt.v
@@ -46,12 +46,12 @@ Theorem pre_sin_bound :
a <= 4 -> sin_approx a (2 * n + 1) <= sin a <= sin_approx a (2 * (n + 1)).
Proof.
intros; case (Req_dec a 0); intro Hyp_a.
- rewrite Hyp_a; rewrite sin_0; split; right; unfold sin_approx in |- *;
- apply sum_eq_R0 || (symmetry in |- *; apply sum_eq_R0);
- intros; unfold sin_term in |- *; rewrite pow_add;
- simpl in |- *; unfold Rdiv in |- *; rewrite Rmult_0_l;
+ rewrite Hyp_a; rewrite sin_0; split; right; unfold sin_approx;
+ apply sum_eq_R0 || (symmetry ; apply sum_eq_R0);
+ intros; unfold sin_term; rewrite pow_add;
+ simpl; unfold Rdiv; rewrite Rmult_0_l;
ring.
- unfold sin_approx in |- *; cut (0 < a).
+ unfold sin_approx; cut (0 < a).
intro Hyp_a_pos.
rewrite (decomp_sum (sin_term a) (2 * n + 1)).
rewrite (decomp_sum (sin_term a) (2 * (n + 1))).
@@ -76,14 +76,14 @@ Proof.
- sum_f_R0 (tg_alt Un) (S (2 * n))).
intro; apply H2.
apply alternated_series_ineq.
- unfold Un_decreasing, Un in |- *; intro;
+ unfold Un_decreasing, Un; intro;
cut ((2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))).
intro; rewrite H3.
replace (a ^ S (S (2 * S n0 + 1))) with (a ^ (2 * S n0 + 1) * (a * a)).
- unfold Rdiv in |- *; rewrite Rmult_assoc; apply Rmult_le_compat_l.
+ unfold Rdiv; rewrite Rmult_assoc; apply Rmult_le_compat_l.
left; apply pow_lt; assumption.
apply Rmult_le_reg_l with (INR (fact (S (S (2 * S n0 + 1))))).
- rewrite <- H3; apply lt_INR_0; apply neq_O_lt; red in |- *; intro;
+ rewrite <- H3; apply lt_INR_0; apply neq_O_lt; red; intro;
assert (H5 := eq_sym H4); elim (fact_neq_0 _ H5).
rewrite <- H3; rewrite (Rmult_comm (INR (fact (2 * S (S n0) + 1))));
rewrite Rmult_assoc; rewrite <- Rinv_l_sym.
@@ -91,7 +91,7 @@ Proof.
repeat rewrite Rmult_assoc; rewrite <- Rinv_r_sym.
rewrite Rmult_1_r.
do 2 rewrite S_INR; rewrite plus_INR; rewrite mult_INR; repeat rewrite S_INR;
- simpl in |- *;
+ simpl;
replace
(((0 + 1 + 1) * (INR n0 + 1) + (0 + 1) + 1 + 1) *
((0 + 1 + 1) * (INR n0 + 1) + (0 + 1) + 1)) with
@@ -106,7 +106,7 @@ Proof.
left; prove_sup0.
rewrite <- (Rplus_0_r 16); replace 20 with (16 + 4);
[ apply Rplus_le_compat_l; left; prove_sup0 | ring ].
- rewrite <- (Rplus_comm 20); pattern 20 at 1 in |- *; rewrite <- Rplus_0_r;
+ rewrite <- (Rplus_comm 20); pattern 20 at 1; rewrite <- Rplus_0_r;
apply Rplus_le_compat_l.
apply Rplus_le_le_0_compat.
repeat apply Rmult_le_pos.
@@ -119,14 +119,14 @@ Proof.
replace 0 with (INR 0); [ apply le_INR; apply le_O_n | reflexivity ].
apply INR_fact_neq_0.
apply INR_fact_neq_0.
- simpl in |- *; ring.
+ simpl; ring.
ring.
- assert (H3 := cv_speed_pow_fact a); unfold Un in |- *; unfold Un_cv in H3;
- unfold R_dist in H3; unfold Un_cv in |- *; unfold R_dist in |- *;
+ assert (H3 := cv_speed_pow_fact a); unfold Un; unfold Un_cv in H3;
+ unfold R_dist in H3; unfold Un_cv; unfold R_dist;
intros; elim (H3 eps H4); intros N H5.
exists N; intros; apply H5.
replace (2 * S n0 + 1)%nat with (S (2 * S n0)).
- unfold ge in |- *; apply le_trans with (2 * S n0)%nat.
+ unfold ge; apply le_trans with (2 * S n0)%nat.
apply le_trans with (2 * S N)%nat.
apply le_trans with (2 * N)%nat.
apply le_n_2n.
@@ -137,49 +137,49 @@ Proof.
assert (X := exist_sin (Rsqr a)); elim X; intros.
cut (x = sin a / a).
intro; rewrite H3 in p; unfold sin_in in p; unfold infinite_sum in p;
- unfold R_dist in p; unfold Un_cv in |- *; unfold R_dist in |- *;
+ unfold R_dist in p; unfold Un_cv; unfold R_dist;
intros.
cut (0 < eps / Rabs a).
intro; elim (p _ H5); intros N H6.
exists N; intros.
replace (sum_f_R0 (tg_alt Un) n0) with
(a * (1 - sum_f_R0 (fun i:nat => sin_n i * Rsqr a ^ i) (S n0))).
- unfold Rminus in |- *; rewrite Rmult_plus_distr_l; rewrite Rmult_1_r;
+ unfold Rminus; rewrite Rmult_plus_distr_l; rewrite Rmult_1_r;
rewrite Ropp_plus_distr; rewrite Ropp_involutive;
repeat rewrite Rplus_assoc; rewrite (Rplus_comm a);
rewrite (Rplus_comm (- a)); repeat rewrite Rplus_assoc;
rewrite Rplus_opp_l; rewrite Rplus_0_r; apply Rmult_lt_reg_l with (/ Rabs a).
apply Rinv_0_lt_compat; apply Rabs_pos_lt; assumption.
- pattern (/ Rabs a) at 1 in |- *; rewrite <- (Rabs_Rinv a Hyp_a).
+ pattern (/ Rabs a) at 1; rewrite <- (Rabs_Rinv a Hyp_a).
rewrite <- Rabs_mult; rewrite Rmult_plus_distr_l; rewrite <- Rmult_assoc;
rewrite <- Rinv_l_sym; [ rewrite Rmult_1_l | assumption ];
rewrite (Rmult_comm (/ a)); rewrite (Rmult_comm (/ Rabs a));
rewrite <- Rabs_Ropp; rewrite Ropp_plus_distr; rewrite Ropp_involutive;
- unfold Rminus, Rdiv in H6; apply H6; unfold ge in |- *;
+ unfold Rminus, Rdiv in H6; apply H6; unfold ge;
apply le_trans with n0; [ exact H7 | apply le_n_Sn ].
rewrite (decomp_sum (fun i:nat => sin_n i * Rsqr a ^ i) (S n0)).
replace (sin_n 0) with 1.
- simpl in |- *; rewrite Rmult_1_r; unfold Rminus in |- *;
+ simpl; rewrite Rmult_1_r; unfold Rminus;
rewrite Ropp_plus_distr; rewrite <- Rplus_assoc; rewrite Rplus_opp_r;
rewrite Rplus_0_l; rewrite Ropp_mult_distr_r_reverse;
rewrite <- Ropp_mult_distr_l_reverse; rewrite scal_sum;
apply sum_eq.
- intros; unfold sin_n, Un, tg_alt in |- *;
+ intros; unfold sin_n, Un, tg_alt;
replace ((-1) ^ S i) with (- (-1) ^ i).
replace (a ^ (2 * S i + 1)) with (Rsqr a * Rsqr a ^ i * a).
- unfold Rdiv in |- *; ring.
- rewrite pow_add; rewrite pow_Rsqr; simpl in |- *; ring.
- simpl in |- *; ring.
- unfold sin_n in |- *; unfold Rdiv in |- *; simpl in |- *; rewrite Rinv_1;
+ unfold Rdiv; ring.
+ rewrite pow_add; rewrite pow_Rsqr; simpl; ring.
+ simpl; ring.
+ unfold sin_n; unfold Rdiv; simpl; rewrite Rinv_1;
rewrite Rmult_1_r; reflexivity.
apply lt_O_Sn.
- unfold Rdiv in |- *; apply Rmult_lt_0_compat.
+ unfold Rdiv; apply Rmult_lt_0_compat.
assumption.
apply Rinv_0_lt_compat; apply Rabs_pos_lt; assumption.
- unfold sin in |- *; case (exist_sin (Rsqr a)).
+ unfold sin; case (exist_sin (Rsqr a)).
intros; cut (x = x0).
- intro; rewrite H3; unfold Rdiv in |- *.
- symmetry in |- *; apply Rinv_r_simpl_m; assumption.
+ intro; rewrite H3; unfold Rdiv.
+ symmetry ; apply Rinv_r_simpl_m; assumption.
unfold sin_in in p; unfold sin_in in s; eapply uniqueness_sum.
apply p.
apply s.
@@ -188,16 +188,16 @@ Proof.
split; apply Ropp_le_contravar; assumption.
replace (- sum_f_R0 (tg_alt Un) (S (2 * n))) with
(-1 * sum_f_R0 (tg_alt Un) (S (2 * n))); [ rewrite scal_sum | ring ].
- apply sum_eq; intros; unfold sin_term, Un, tg_alt in |- *;
+ apply sum_eq; intros; unfold sin_term, Un, tg_alt;
replace ((-1) ^ S i) with (-1 * (-1) ^ i).
- unfold Rdiv in |- *; ring.
+ unfold Rdiv; ring.
reflexivity.
replace (- sum_f_R0 (tg_alt Un) (2 * n)) with
(-1 * sum_f_R0 (tg_alt Un) (2 * n)); [ rewrite scal_sum | ring ].
apply sum_eq; intros.
- unfold sin_term, Un, tg_alt in |- *;
+ unfold sin_term, Un, tg_alt;
replace ((-1) ^ S i) with (-1 * (-1) ^ i).
- unfold Rdiv in |- *; ring.
+ unfold Rdiv; ring.
reflexivity.
replace (2 * (n + 1))%nat with (S (S (2 * n))).
reflexivity.
@@ -213,7 +213,7 @@ Proof.
apply Rplus_le_reg_l with (- a).
rewrite <- Rplus_assoc; rewrite Rplus_opp_l; rewrite Rplus_0_l;
rewrite (Rplus_comm (- a)); apply H3.
- unfold sin_term in |- *; simpl in |- *; unfold Rdiv in |- *; rewrite Rinv_1;
+ unfold sin_term; simpl; unfold Rdiv; rewrite Rinv_1;
ring.
replace (2 * (n + 1))%nat with (S (S (2 * n))).
apply lt_O_Sn.
@@ -221,7 +221,7 @@ Proof.
replace (2 * n + 1)%nat with (S (2 * n)).
apply lt_O_Sn.
ring.
- inversion H; [ assumption | elim Hyp_a; symmetry in |- *; assumption ].
+ inversion H; [ assumption | elim Hyp_a; symmetry ; assumption ].
Qed.
(**********)
@@ -240,7 +240,7 @@ Proof.
a <= 2 ->
cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))).
intros H a n; apply H.
- intros; unfold cos_approx in |- *.
+ intros; unfold cos_approx.
rewrite (decomp_sum (cos_term a0) (2 * n0 + 1)).
rewrite (decomp_sum (cos_term a0) (2 * (n0 + 1))).
replace (cos_term a0 0) with 1.
@@ -266,21 +266,21 @@ Proof.
- sum_f_R0 (tg_alt Un) (S (2 * n0))).
intro; apply H3.
apply alternated_series_ineq.
- unfold Un_decreasing in |- *; intro; unfold Un in |- *.
+ unfold Un_decreasing; intro; unfold Un.
cut ((2 * S (S n1))%nat = S (S (2 * S n1))).
intro; rewrite H4;
replace (a0 ^ S (S (2 * S n1))) with (a0 ^ (2 * S n1) * (a0 * a0)).
- unfold Rdiv in |- *; rewrite Rmult_assoc; apply Rmult_le_compat_l.
+ unfold Rdiv; rewrite Rmult_assoc; apply Rmult_le_compat_l.
apply pow_le; assumption.
apply Rmult_le_reg_l with (INR (fact (S (S (2 * S n1))))).
- rewrite <- H4; apply lt_INR_0; apply neq_O_lt; red in |- *; intro;
+ rewrite <- H4; apply lt_INR_0; apply neq_O_lt; red; intro;
assert (H6 := eq_sym H5); elim (fact_neq_0 _ H6).
rewrite <- H4; rewrite (Rmult_comm (INR (fact (2 * S (S n1)))));
rewrite Rmult_assoc; rewrite <- Rinv_l_sym.
rewrite Rmult_1_r; rewrite H4; do 2 rewrite fact_simpl; do 2 rewrite mult_INR;
repeat rewrite Rmult_assoc; rewrite <- Rinv_r_sym.
rewrite Rmult_1_r; do 2 rewrite S_INR; rewrite mult_INR; repeat rewrite S_INR;
- simpl in |- *;
+ simpl;
replace
(((0 + 1 + 1) * (INR n1 + 1) + 1 + 1) * ((0 + 1 + 1) * (INR n1 + 1) + 1))
with (4 * INR n1 * INR n1 + 14 * INR n1 + 12); [ idtac | ring ].
@@ -293,9 +293,9 @@ Proof.
discrR.
assumption.
left; prove_sup0.
- pattern 4 at 1 in |- *; rewrite <- Rplus_0_r; replace 12 with (4 + 8);
+ pattern 4 at 1; rewrite <- Rplus_0_r; replace 12 with (4 + 8);
[ apply Rplus_le_compat_l; left; prove_sup0 | ring ].
- rewrite <- (Rplus_comm 12); pattern 12 at 1 in |- *; rewrite <- Rplus_0_r;
+ rewrite <- (Rplus_comm 12); pattern 12 at 1; rewrite <- Rplus_0_r;
apply Rplus_le_compat_l.
apply Rplus_le_le_0_compat.
repeat apply Rmult_le_pos.
@@ -308,12 +308,12 @@ Proof.
replace 0 with (INR 0); [ apply le_INR; apply le_O_n | reflexivity ].
apply INR_fact_neq_0.
apply INR_fact_neq_0.
- simpl in |- *; ring.
+ simpl; ring.
ring.
- assert (H4 := cv_speed_pow_fact a0); unfold Un in |- *; unfold Un_cv in H4;
- unfold R_dist in H4; unfold Un_cv in |- *; unfold R_dist in |- *;
+ assert (H4 := cv_speed_pow_fact a0); unfold Un; unfold Un_cv in H4;
+ unfold R_dist in H4; unfold Un_cv; unfold R_dist;
intros; elim (H4 eps H5); intros N H6; exists N; intros.
- apply H6; unfold ge in |- *; apply le_trans with (2 * S N)%nat.
+ apply H6; unfold ge; apply le_trans with (2 * S N)%nat.
apply le_trans with (2 * N)%nat.
apply le_n_2n.
apply (fun m n p:nat => mult_le_compat_l p n m); apply le_n_Sn.
@@ -321,40 +321,40 @@ Proof.
assert (X := exist_cos (Rsqr a0)); elim X; intros.
cut (x = cos a0).
intro; rewrite H4 in p; unfold cos_in in p; unfold infinite_sum in p;
- unfold R_dist in p; unfold Un_cv in |- *; unfold R_dist in |- *;
+ unfold R_dist in p; unfold Un_cv; unfold R_dist;
intros.
elim (p _ H5); intros N H6.
exists N; intros.
replace (sum_f_R0 (tg_alt Un) n1) with
(1 - sum_f_R0 (fun i:nat => cos_n i * Rsqr a0 ^ i) (S n1)).
- unfold Rminus in |- *; rewrite Ropp_plus_distr; rewrite Ropp_involutive;
+ unfold Rminus; rewrite Ropp_plus_distr; rewrite Ropp_involutive;
repeat rewrite Rplus_assoc; rewrite (Rplus_comm 1);
rewrite (Rplus_comm (-1)); repeat rewrite Rplus_assoc;
rewrite Rplus_opp_l; rewrite Rplus_0_r; rewrite <- Rabs_Ropp;
rewrite Ropp_plus_distr; rewrite Ropp_involutive;
unfold Rminus in H6; apply H6.
- unfold ge in |- *; apply le_trans with n1.
+ unfold ge; apply le_trans with n1.
exact H7.
apply le_n_Sn.
rewrite (decomp_sum (fun i:nat => cos_n i * Rsqr a0 ^ i) (S n1)).
replace (cos_n 0) with 1.
- simpl in |- *; rewrite Rmult_1_r; unfold Rminus in |- *;
+ simpl; rewrite Rmult_1_r; unfold Rminus;
rewrite Ropp_plus_distr; rewrite <- Rplus_assoc; rewrite Rplus_opp_r;
rewrite Rplus_0_l;
replace (- sum_f_R0 (fun i:nat => cos_n (S i) * (Rsqr a0 * Rsqr a0 ^ i)) n1)
with
(-1 * sum_f_R0 (fun i:nat => cos_n (S i) * (Rsqr a0 * Rsqr a0 ^ i)) n1);
[ idtac | ring ]; rewrite scal_sum; apply sum_eq;
- intros; unfold cos_n, Un, tg_alt in |- *.
+ intros; unfold cos_n, Un, tg_alt.
replace ((-1) ^ S i) with (- (-1) ^ i).
replace (a0 ^ (2 * S i)) with (Rsqr a0 * Rsqr a0 ^ i).
- unfold Rdiv in |- *; ring.
+ unfold Rdiv; ring.
rewrite pow_Rsqr; reflexivity.
- simpl in |- *; ring.
- unfold cos_n in |- *; unfold Rdiv in |- *; simpl in |- *; rewrite Rinv_1;
+ simpl; ring.
+ unfold cos_n; unfold Rdiv; simpl; rewrite Rinv_1;
rewrite Rmult_1_r; reflexivity.
apply lt_O_Sn.
- unfold cos in |- *; case (exist_cos (Rsqr a0)); intros; unfold cos_in in p;
+ unfold cos; case (exist_cos (Rsqr a0)); intros; unfold cos_in in p;
unfold cos_in in c; eapply uniqueness_sum.
apply p.
apply c.
@@ -363,15 +363,15 @@ Proof.
split; apply Ropp_le_contravar; assumption.
replace (- sum_f_R0 (tg_alt Un) (S (2 * n0))) with
(-1 * sum_f_R0 (tg_alt Un) (S (2 * n0))); [ rewrite scal_sum | ring ].
- apply sum_eq; intros; unfold cos_term, Un, tg_alt in |- *;
+ apply sum_eq; intros; unfold cos_term, Un, tg_alt;
replace ((-1) ^ S i) with (-1 * (-1) ^ i).
- unfold Rdiv in |- *; ring.
+ unfold Rdiv; ring.
reflexivity.
replace (- sum_f_R0 (tg_alt Un) (2 * n0)) with
(-1 * sum_f_R0 (tg_alt Un) (2 * n0)); [ rewrite scal_sum | ring ];
- apply sum_eq; intros; unfold cos_term, Un, tg_alt in |- *;
+ apply sum_eq; intros; unfold cos_term, Un, tg_alt;
replace ((-1) ^ S i) with (-1 * (-1) ^ i).
- unfold Rdiv in |- *; ring.
+ unfold Rdiv; ring.
reflexivity.
replace (2 * (n0 + 1))%nat with (S (S (2 * n0))).
reflexivity.
@@ -386,7 +386,7 @@ Proof.
apply Rplus_le_reg_l with (-1).
rewrite <- Rplus_assoc; rewrite Rplus_opp_l; rewrite Rplus_0_l;
rewrite (Rplus_comm (-1)); apply H4.
- unfold cos_term in |- *; simpl in |- *; unfold Rdiv in |- *; rewrite Rinv_1;
+ unfold cos_term; simpl; unfold Rdiv; rewrite Rinv_1;
ring.
replace (2 * (n0 + 1))%nat with (S (S (2 * n0))).
apply lt_O_Sn.
@@ -403,8 +403,8 @@ Proof.
intro; rewrite H3; rewrite (H3 a (2 * (n + 1))%nat); rewrite cos_sym; apply H.
left; assumption.
rewrite <- (Ropp_involutive 2); apply Ropp_le_contravar; exact H0.
- intros; unfold cos_approx in |- *; apply sum_eq; intros;
- unfold cos_term in |- *; do 2 rewrite pow_Rsqr; rewrite Rsqr_neg;
- unfold Rdiv in |- *; reflexivity.
+ intros; unfold cos_approx; apply sum_eq; intros;
+ unfold cos_term; do 2 rewrite pow_Rsqr; rewrite Rsqr_neg;
+ unfold Rdiv; reflexivity.
apply Ropp_0_gt_lt_contravar; assumption.
Qed.
diff --git a/theories/Reals/Rtrigo_calc.v b/theories/Reals/Rtrigo_calc.v
index e77ea6e2d..2691364b6 100644
--- a/theories/Reals/Rtrigo_calc.v
+++ b/theories/Reals/Rtrigo_calc.v
@@ -15,7 +15,7 @@ Local Open Scope R_scope.
Lemma tan_PI : tan PI = 0.
Proof.
- unfold tan in |- *; rewrite sin_PI; rewrite cos_PI; unfold Rdiv in |- *;
+ unfold tan; rewrite sin_PI; rewrite cos_PI; unfold Rdiv;
apply Rmult_0_l.
Qed.
@@ -23,12 +23,12 @@ Lemma sin_3PI2 : sin (3 * (PI / 2)) = -1.
Proof.
replace (3 * (PI / 2)) with (PI + PI / 2).
rewrite sin_plus; rewrite sin_PI; rewrite cos_PI; rewrite sin_PI2; ring.
- pattern PI at 1 in |- *; rewrite (double_var PI); ring.
+ pattern PI at 1; rewrite (double_var PI); ring.
Qed.
Lemma tan_2PI : tan (2 * PI) = 0.
Proof.
- unfold tan in |- *; rewrite sin_2PI; unfold Rdiv in |- *; apply Rmult_0_l.
+ unfold tan; rewrite sin_2PI; unfold Rdiv; apply Rmult_0_l.
Qed.
Lemma sin_cos_PI4 : sin (PI / 4) = cos (PI / 4).
@@ -37,9 +37,9 @@ Proof with trivial.
replace (PI / 2 + PI / 4) with (- (PI / 4) + PI)...
rewrite neg_sin; rewrite sin_neg; ring...
cut (PI = PI / 2 + PI / 2); [ intro | apply double_var ]...
- pattern PI at 2 3 in |- *; rewrite H; pattern PI at 2 3 in |- *; rewrite H...
+ pattern PI at 2 3; rewrite H; pattern PI at 2 3; rewrite H...
assert (H0 : 2 <> 0);
- [ discrR | unfold Rdiv in |- *; rewrite Rinv_mult_distr; try ring ]...
+ [ discrR | unfold Rdiv; rewrite Rinv_mult_distr; try ring ]...
Qed.
Lemma sin_PI3_cos_PI6 : sin (PI / 3) = cos (PI / 6).
@@ -51,7 +51,7 @@ Proof with trivial.
assert (H2 : 2 <> 0); [ discrR | idtac ]...
apply Rmult_eq_reg_l with 6...
rewrite Rmult_minus_distr_l; repeat rewrite (Rmult_comm 6)...
- unfold Rdiv in |- *; repeat rewrite Rmult_assoc...
+ unfold Rdiv; repeat rewrite Rmult_assoc...
rewrite <- Rinv_l_sym...
rewrite (Rmult_comm (/ 3)); repeat rewrite Rmult_assoc; rewrite <- Rinv_r_sym...
rewrite (Rmult_comm PI); repeat rewrite Rmult_1_r;
@@ -68,7 +68,7 @@ Proof with trivial.
assert (H2 : 2 <> 0); [ discrR | idtac ]...
apply Rmult_eq_reg_l with 6...
rewrite Rmult_minus_distr_l; repeat rewrite (Rmult_comm 6)...
- unfold Rdiv in |- *; repeat rewrite Rmult_assoc...
+ unfold Rdiv; repeat rewrite Rmult_assoc...
rewrite <- Rinv_l_sym...
rewrite (Rmult_comm (/ 3)); repeat rewrite Rmult_assoc; rewrite <- Rinv_r_sym...
rewrite (Rmult_comm PI); repeat rewrite Rmult_1_r;
@@ -78,13 +78,13 @@ Qed.
Lemma PI6_RGT_0 : 0 < PI / 6.
Proof.
- unfold Rdiv in |- *; apply Rmult_lt_0_compat;
+ unfold Rdiv; apply Rmult_lt_0_compat;
[ apply PI_RGT_0 | apply Rinv_0_lt_compat; prove_sup0 ].
Qed.
Lemma PI6_RLT_PI2 : PI / 6 < PI / 2.
Proof.
- unfold Rdiv in |- *; apply Rmult_lt_compat_l.
+ unfold Rdiv; apply Rmult_lt_compat_l.
apply PI_RGT_0.
apply Rinv_lt_contravar; prove_sup.
Qed.
@@ -97,11 +97,11 @@ Proof with trivial.
(2 * sin (PI / 6) * cos (PI / 6))...
rewrite <- sin_2a; replace (2 * (PI / 6)) with (PI / 3)...
rewrite sin_PI3_cos_PI6...
- unfold Rdiv in |- *; rewrite Rmult_1_l; rewrite Rmult_assoc;
- pattern 2 at 2 in |- *; rewrite (Rmult_comm 2); rewrite Rmult_assoc;
+ unfold Rdiv; rewrite Rmult_1_l; rewrite Rmult_assoc;
+ pattern 2 at 2; rewrite (Rmult_comm 2); rewrite Rmult_assoc;
rewrite <- Rinv_l_sym...
rewrite Rmult_1_r...
- unfold Rdiv in |- *; rewrite Rinv_mult_distr...
+ unfold Rdiv; rewrite Rinv_mult_distr...
rewrite (Rmult_comm (/ 2)); rewrite (Rmult_comm 2);
repeat rewrite Rmult_assoc; rewrite <- Rinv_l_sym...
rewrite Rmult_1_r...
@@ -119,7 +119,7 @@ Lemma sqrt2_neq_0 : sqrt 2 <> 0.
Proof.
assert (Hyp : 0 < 2);
[ prove_sup0
- | generalize (Rlt_le 0 2 Hyp); intro H1; red in |- *; intro H2;
+ | generalize (Rlt_le 0 2 Hyp); intro H1; red; intro H2;
generalize (sqrt_eq_0 2 H1 H2); intro H; absurd (2 = 0);
[ discrR | assumption ] ].
Qed.
@@ -137,7 +137,7 @@ Proof.
[ discrR
| assert (Hyp : 0 < 3);
[ prove_sup0
- | generalize (Rlt_le 0 3 Hyp); intro H1; red in |- *; intro H2;
+ | generalize (Rlt_le 0 3 Hyp); intro H1; red; intro H2;
generalize (sqrt_eq_0 3 H1 H2); intro H; absurd (3 = 0);
[ discrR | assumption ] ] ].
Qed.
@@ -162,7 +162,7 @@ Proof.
[ prove_sup0
| generalize (Rlt_le 0 3 Hyp2); intro H2;
generalize (lt_INR_0 1 (neq_O_lt 1 H0));
- unfold INR in |- *; intro H3;
+ unfold INR; intro H3;
generalize (Rplus_lt_compat_l 2 0 1 H3);
rewrite Rplus_comm; rewrite Rplus_0_l; replace (2 + 1) with 3;
[ intro H4; generalize (sqrt_lt_1 2 3 H1 H2 H4); clear H3; intro H3;
@@ -173,7 +173,7 @@ Qed.
Lemma PI4_RGT_0 : 0 < PI / 4.
Proof.
- unfold Rdiv in |- *; apply Rmult_lt_0_compat;
+ unfold Rdiv; apply Rmult_lt_0_compat;
[ apply PI_RGT_0 | apply Rinv_0_lt_compat; prove_sup0 ].
Qed.
@@ -189,17 +189,17 @@ Proof with trivial.
rewrite Rsqr_div...
rewrite Rsqr_1; rewrite Rsqr_sqrt...
assert (H : 2 <> 0); [ discrR | idtac ]...
- unfold Rsqr in |- *; pattern (cos (PI / 4)) at 1 in |- *;
+ unfold Rsqr; pattern (cos (PI / 4)) at 1;
rewrite <- sin_cos_PI4;
replace (sin (PI / 4) * cos (PI / 4)) with
(1 / 2 * (2 * sin (PI / 4) * cos (PI / 4)))...
rewrite <- sin_2a; replace (2 * (PI / 4)) with (PI / 2)...
rewrite sin_PI2...
apply Rmult_1_r...
- unfold Rdiv in |- *; rewrite (Rmult_comm 2); rewrite Rinv_mult_distr...
+ unfold Rdiv; rewrite (Rmult_comm 2); rewrite Rinv_mult_distr...
repeat rewrite Rmult_assoc; rewrite <- Rinv_l_sym...
rewrite Rmult_1_r...
- unfold Rdiv in |- *; rewrite Rmult_1_l; repeat rewrite <- Rmult_assoc...
+ unfold Rdiv; rewrite Rmult_1_l; repeat rewrite <- Rmult_assoc...
rewrite <- Rinv_l_sym...
rewrite Rmult_1_l...
left; prove_sup...
@@ -213,18 +213,18 @@ Qed.
Lemma tan_PI4 : tan (PI / 4) = 1.
Proof.
- unfold tan in |- *; rewrite sin_cos_PI4.
- unfold Rdiv in |- *; apply Rinv_r.
- change (cos (PI / 4) <> 0) in |- *; rewrite cos_PI4; apply R1_sqrt2_neq_0.
+ unfold tan; rewrite sin_cos_PI4.
+ unfold Rdiv; apply Rinv_r.
+ change (cos (PI / 4) <> 0); rewrite cos_PI4; apply R1_sqrt2_neq_0.
Qed.
Lemma cos3PI4 : cos (3 * (PI / 4)) = -1 / sqrt 2.
Proof with trivial.
replace (3 * (PI / 4)) with (PI / 2 - - (PI / 4))...
rewrite cos_shift; rewrite sin_neg; rewrite sin_PI4...
- unfold Rdiv in |- *; rewrite Ropp_mult_distr_l_reverse...
- unfold Rminus in |- *; rewrite Ropp_involutive; pattern PI at 1 in |- *;
- rewrite double_var; unfold Rdiv in |- *; rewrite Rmult_plus_distr_r;
+ unfold Rdiv; rewrite Ropp_mult_distr_l_reverse...
+ unfold Rminus; rewrite Ropp_involutive; pattern PI at 1;
+ rewrite double_var; unfold Rdiv; rewrite Rmult_plus_distr_r;
repeat rewrite Rmult_assoc; rewrite <- Rinv_mult_distr;
[ ring | discrR | discrR ]...
Qed.
@@ -233,8 +233,8 @@ Lemma sin3PI4 : sin (3 * (PI / 4)) = 1 / sqrt 2.
Proof with trivial.
replace (3 * (PI / 4)) with (PI / 2 - - (PI / 4))...
rewrite sin_shift; rewrite cos_neg; rewrite cos_PI4...
- unfold Rminus in |- *; rewrite Ropp_involutive; pattern PI at 1 in |- *;
- rewrite double_var; unfold Rdiv in |- *; rewrite Rmult_plus_distr_r;
+ unfold Rminus; rewrite Ropp_involutive; pattern PI at 1;
+ rewrite double_var; unfold Rdiv; rewrite Rmult_plus_distr_r;
repeat rewrite Rmult_assoc; rewrite <- Rinv_mult_distr;
[ ring | discrR | discrR ]...
Qed.
@@ -251,8 +251,8 @@ Proof with trivial.
assert (H : 2 <> 0); [ discrR | idtac ]...
assert (H1 : 4 <> 0); [ apply prod_neq_R0 | idtac ]...
rewrite Rsqr_div...
- rewrite cos2; unfold Rsqr in |- *; rewrite sin_PI6; rewrite sqrt_def...
- unfold Rdiv in |- *; rewrite Rmult_1_l; apply Rmult_eq_reg_l with 4...
+ rewrite cos2; unfold Rsqr; rewrite sin_PI6; rewrite sqrt_def...
+ unfold Rdiv; rewrite Rmult_1_l; apply Rmult_eq_reg_l with 4...
rewrite Rmult_minus_distr_l; rewrite (Rmult_comm 3);
repeat rewrite <- Rmult_assoc; rewrite <- Rinv_r_sym...
rewrite Rmult_1_l; rewrite Rmult_1_r...
@@ -265,14 +265,14 @@ Qed.
Lemma tan_PI6 : tan (PI / 6) = 1 / sqrt 3.
Proof.
- unfold tan in |- *; rewrite sin_PI6; rewrite cos_PI6; unfold Rdiv in |- *;
+ unfold tan; rewrite sin_PI6; rewrite cos_PI6; unfold Rdiv;
repeat rewrite Rmult_1_l; rewrite Rinv_mult_distr.
rewrite Rinv_involutive.
rewrite (Rmult_comm (/ 2)); rewrite Rmult_assoc; rewrite <- Rinv_r_sym.
apply Rmult_1_r.
discrR.
discrR.
- red in |- *; intro; assert (H1 := Rlt_sqrt3_0); rewrite H in H1;
+ red; intro; assert (H1 := Rlt_sqrt3_0); rewrite H in H1;
elim (Rlt_irrefl 0 H1).
apply Rinv_neq_0_compat; discrR.
Qed.
@@ -289,7 +289,7 @@ Qed.
Lemma tan_PI3 : tan (PI / 3) = sqrt 3.
Proof.
- unfold tan in |- *; rewrite sin_PI3; rewrite cos_PI3; unfold Rdiv in |- *;
+ unfold tan; rewrite sin_PI3; rewrite cos_PI3; unfold Rdiv;
rewrite Rmult_1_l; rewrite Rinv_involutive.
rewrite Rmult_assoc; rewrite <- Rinv_l_sym.
apply Rmult_1_r.
@@ -300,7 +300,7 @@ Qed.
Lemma sin_2PI3 : sin (2 * (PI / 3)) = sqrt 3 / 2.
Proof.
rewrite double; rewrite sin_plus; rewrite sin_PI3; rewrite cos_PI3;
- unfold Rdiv in |- *; repeat rewrite Rmult_1_l; rewrite (Rmult_comm (/ 2));
+ unfold Rdiv; repeat rewrite Rmult_1_l; rewrite (Rmult_comm (/ 2));
repeat rewrite <- Rmult_assoc; rewrite double_var;
reflexivity.
Qed.
@@ -310,12 +310,12 @@ Proof with trivial.
assert (H : 2 <> 0); [ discrR | idtac ]...
assert (H0 : 4 <> 0); [ apply prod_neq_R0 | idtac ]...
rewrite double; rewrite cos_plus; rewrite sin_PI3; rewrite cos_PI3;
- unfold Rdiv in |- *; rewrite Rmult_1_l; apply Rmult_eq_reg_l with 4...
+ unfold Rdiv; rewrite Rmult_1_l; apply Rmult_eq_reg_l with 4...
rewrite Rmult_minus_distr_l; repeat rewrite Rmult_assoc;
rewrite (Rmult_comm 2)...
repeat rewrite Rmult_assoc; rewrite <- Rinv_l_sym...
rewrite Rmult_1_r; rewrite <- Rinv_r_sym...
- pattern 2 at 4 in |- *; rewrite (Rmult_comm 2); repeat rewrite Rmult_assoc;
+ pattern 2 at 4; rewrite (Rmult_comm 2); repeat rewrite Rmult_assoc;
rewrite <- Rinv_l_sym...
rewrite Rmult_1_r; rewrite Ropp_mult_distr_r_reverse; rewrite Rmult_1_r...
rewrite (Rmult_comm 2); repeat rewrite Rmult_assoc; rewrite <- Rinv_l_sym...
@@ -329,7 +329,7 @@ Qed.
Lemma tan_2PI3 : tan (2 * (PI / 3)) = - sqrt 3.
Proof with trivial.
assert (H : 2 <> 0); [ discrR | idtac ]...
- unfold tan in |- *; rewrite sin_2PI3; rewrite cos_2PI3; unfold Rdiv in |- *;
+ unfold tan; rewrite sin_2PI3; rewrite cos_2PI3; unfold Rdiv;
rewrite Ropp_mult_distr_l_reverse; rewrite Rmult_1_l;
rewrite <- Ropp_inv_permute...
rewrite Rinv_involutive...
@@ -341,21 +341,21 @@ Qed.
Lemma cos_5PI4 : cos (5 * (PI / 4)) = -1 / sqrt 2.
Proof with trivial.
replace (5 * (PI / 4)) with (PI / 4 + PI)...
- rewrite neg_cos; rewrite cos_PI4; unfold Rdiv in |- *;
+ rewrite neg_cos; rewrite cos_PI4; unfold Rdiv;
rewrite Ropp_mult_distr_l_reverse...
- pattern PI at 2 in |- *; rewrite double_var; pattern PI at 2 3 in |- *;
+ pattern PI at 2; rewrite double_var; pattern PI at 2 3;
rewrite double_var; assert (H : 2 <> 0);
- [ discrR | unfold Rdiv in |- *; repeat rewrite Rinv_mult_distr; try ring ]...
+ [ discrR | unfold Rdiv; repeat rewrite Rinv_mult_distr; try ring ]...
Qed.
Lemma sin_5PI4 : sin (5 * (PI / 4)) = -1 / sqrt 2.
Proof with trivial.
replace (5 * (PI / 4)) with (PI / 4 + PI)...
- rewrite neg_sin; rewrite sin_PI4; unfold Rdiv in |- *;
+ rewrite neg_sin; rewrite sin_PI4; unfold Rdiv;
rewrite Ropp_mult_distr_l_reverse...
- pattern PI at 2 in |- *; rewrite double_var; pattern PI at 2 3 in |- *;
+ pattern PI at 2; rewrite double_var; pattern PI at 2 3;
rewrite double_var; assert (H : 2 <> 0);
- [ discrR | unfold Rdiv in |- *; repeat rewrite Rinv_mult_distr; try ring ]...
+ [ discrR | unfold Rdiv; repeat rewrite Rinv_mult_distr; try ring ]...
Qed.
Lemma sin_cos5PI4 : cos (5 * (PI / 4)) = sin (5 * (PI / 4)).
@@ -367,7 +367,7 @@ Lemma Rgt_3PI2_0 : 0 < 3 * (PI / 2).
Proof.
apply Rmult_lt_0_compat;
[ prove_sup0
- | unfold Rdiv in |- *; apply Rmult_lt_0_compat;
+ | unfold Rdiv; apply Rmult_lt_0_compat;
[ apply PI_RGT_0 | apply Rinv_0_lt_compat; prove_sup0 ] ].
Qed.
@@ -382,7 +382,7 @@ Proof.
generalize (Rplus_lt_compat_l PI 0 (PI / 2) H1);
replace (PI + PI / 2) with (3 * (PI / 2)).
rewrite Rplus_0_r; intro H2; assumption.
- pattern PI at 2 in |- *; rewrite double_var; ring.
+ pattern PI at 2; rewrite double_var; ring.
Qed.
Lemma Rlt_3PI2_2PI : 3 * (PI / 2) < 2 * PI.
@@ -391,7 +391,7 @@ Proof.
generalize (Rplus_lt_compat_l (3 * (PI / 2)) 0 (PI / 2) H1);
replace (3 * (PI / 2) + PI / 2) with (2 * PI).
rewrite Rplus_0_r; intro H2; assumption.
- rewrite double; pattern PI at 1 2 in |- *; rewrite double_var; ring.
+ rewrite double; pattern PI at 1 2; rewrite double_var; ring.
Qed.
(***************************************************************)
@@ -404,13 +404,13 @@ Definition toDeg (x:R) : R := x * plat * / PI.
Lemma rad_deg : forall x:R, toRad (toDeg x) = x.
Proof.
- intro; unfold toRad, toDeg in |- *;
+ intro; unfold toRad, toDeg;
replace (x * plat * / PI * PI * / plat) with
(x * (plat * / plat) * (PI * / PI)); [ idtac | ring ].
repeat rewrite <- Rinv_r_sym.
ring.
apply PI_neq0.
- unfold plat in |- *; discrR.
+ unfold plat; discrR.
Qed.
Lemma toRad_inj : forall x y:R, toRad x = toRad y -> x = y.
@@ -420,7 +420,7 @@ Proof.
apply Rmult_eq_reg_l with (/ plat).
rewrite <- (Rmult_comm (x * PI)); rewrite <- (Rmult_comm (y * PI));
assumption.
- apply Rinv_neq_0_compat; unfold plat in |- *; discrR.
+ apply Rinv_neq_0_compat; unfold plat; discrR.
apply PI_neq0.
Qed.
@@ -435,7 +435,7 @@ Definition tand (x:R) : R := tan (toRad x).
Lemma Rsqr_sin_cos_d_one : forall x:R, Rsqr (sind x) + Rsqr (cosd x) = 1.
Proof.
- intro x; unfold sind in |- *; unfold cosd in |- *; apply sin2_cos2.
+ intro x; unfold sind; unfold cosd; apply sin2_cos2.
Qed.
(***************************************************)
@@ -447,10 +447,10 @@ Proof.
intros; case (Rtotal_order 0 a); intro.
left; apply sin_lb_gt_0; assumption.
elim H1; intro.
- rewrite <- H2; unfold sin_lb in |- *; unfold sin_approx in |- *;
- unfold sum_f_R0 in |- *; unfold sin_term in |- *;
+ rewrite <- H2; unfold sin_lb; unfold sin_approx;
+ unfold sum_f_R0; unfold sin_term;
repeat rewrite pow_ne_zero.
- unfold Rdiv in |- *; repeat rewrite Rmult_0_l; repeat rewrite Rmult_0_r;
+ unfold Rdiv; repeat rewrite Rmult_0_l; repeat rewrite Rmult_0_r;
repeat rewrite Rplus_0_r; right; reflexivity.
discriminate.
discriminate.
diff --git a/theories/Reals/Rtrigo_def.v b/theories/Reals/Rtrigo_def.v
index 2486e140f..6cd9ce67b 100644
--- a/theories/Reals/Rtrigo_def.v
+++ b/theories/Reals/Rtrigo_def.v
@@ -27,7 +27,7 @@ Proof.
intro;
generalize
(Alembert_C3 (fun n:nat => / INR (fact n)) x exp_cof_no_R0 Alembert_exp).
- unfold Pser, exp_in in |- *.
+ unfold Pser, exp_in.
trivial.
Defined.
@@ -36,24 +36,24 @@ Definition exp (x:R) : R := proj1_sig (exist_exp x).
Lemma pow_i : forall i:nat, (0 < i)%nat -> 0 ^ i = 0.
Proof.
intros; apply pow_ne_zero.
- red in |- *; intro; rewrite H0 in H; elim (lt_irrefl _ H).
+ red; intro; rewrite H0 in H; elim (lt_irrefl _ H).
Qed.
Lemma exist_exp0 : { l:R | exp_in 0 l }.
Proof.
exists 1.
- unfold exp_in in |- *; unfold infinite_sum in |- *; intros.
+ unfold exp_in; unfold infinite_sum; intros.
exists 0%nat.
intros; replace (sum_f_R0 (fun i:nat => / INR (fact i) * 0 ^ i) n) with 1.
- unfold R_dist in |- *; replace (1 - 1) with 0;
+ unfold R_dist; replace (1 - 1) with 0;
[ rewrite Rabs_R0; assumption | ring ].
induction n as [| n Hrecn].
- simpl in |- *; rewrite Rinv_1; ring.
+ simpl; rewrite Rinv_1; ring.
rewrite tech5.
rewrite <- Hrecn.
- simpl in |- *.
+ simpl.
ring.
- unfold ge in |- *; apply le_O_n.
+ unfold ge; apply le_O_n.
Defined.
(* Value of [exp 0] *)
@@ -61,7 +61,7 @@ Lemma exp_0 : exp 0 = 1.
Proof.
cut (exp_in 0 (exp 0)).
cut (exp_in 0 1).
- unfold exp_in in |- *; intros; eapply uniqueness_sum.
+ unfold exp_in; intros; eapply uniqueness_sum.
apply H0.
apply H.
exact (proj2_sig exist_exp0).
@@ -77,14 +77,14 @@ Definition tanh (x:R) : R := sinh x / cosh x.
Lemma cosh_0 : cosh 0 = 1.
Proof.
- unfold cosh in |- *; rewrite Ropp_0; rewrite exp_0.
- unfold Rdiv in |- *; rewrite <- Rinv_r_sym; [ reflexivity | discrR ].
+ unfold cosh; rewrite Ropp_0; rewrite exp_0.
+ unfold Rdiv; rewrite <- Rinv_r_sym; [ reflexivity | discrR ].
Qed.
Lemma sinh_0 : sinh 0 = 0.
Proof.
- unfold sinh in |- *; rewrite Ropp_0; rewrite exp_0.
- unfold Rminus, Rdiv in |- *; rewrite Rplus_opp_r; apply Rmult_0_l.
+ unfold sinh; rewrite Ropp_0; rewrite exp_0.
+ unfold Rminus, Rdiv; rewrite Rplus_opp_r; apply Rmult_0_l.
Qed.
Definition cos_n (n:nat) : R := (-1) ^ n / INR (fact (2 * n)).
@@ -92,8 +92,8 @@ Definition cos_n (n:nat) : R := (-1) ^ n / INR (fact (2 * n)).
Lemma simpl_cos_n :
forall n:nat, cos_n (S n) / cos_n n = - / INR (2 * S n * (2 * n + 1)).
Proof.
- intro; unfold cos_n in |- *; replace (S n) with (n + 1)%nat; [ idtac | ring ].
- rewrite pow_add; unfold Rdiv in |- *; rewrite Rinv_mult_distr.
+ intro; unfold cos_n; replace (S n) with (n + 1)%nat; [ idtac | ring ].
+ rewrite pow_add; unfold Rdiv; rewrite Rinv_mult_distr.
rewrite Rinv_involutive.
replace
((-1) ^ n * (-1) ^ 1 * / INR (fact (2 * (n + 1))) *
@@ -101,7 +101,7 @@ Proof.
((-1) ^ n * / (-1) ^ n * / INR (fact (2 * (n + 1))) * INR (fact (2 * n)) *
(-1) ^ 1); [ idtac | ring ].
rewrite <- Rinv_r_sym.
- rewrite Rmult_1_l; unfold pow in |- *; rewrite Rmult_1_r.
+ rewrite Rmult_1_l; unfold pow; rewrite Rmult_1_r.
replace (2 * (n + 1))%nat with (S (S (2 * n))); [ idtac | ring ].
do 2 rewrite fact_simpl; do 2 rewrite mult_INR;
repeat rewrite Rinv_mult_distr; try (apply not_O_INR; discriminate).
@@ -135,7 +135,7 @@ Proof.
apply Rmult_le_reg_l with (IZR (Z.of_nat x)).
assumption.
rewrite <- Rinv_r_sym;
- [ idtac | red in |- *; intro; rewrite H5 in H4; elim (Rlt_irrefl _ H4) ].
+ [ idtac | red; intro; rewrite H5 in H4; elim (Rlt_irrefl _ H4) ].
apply Rmult_le_reg_l with (IZR (Z.of_nat (max x 1))).
apply Rlt_le_trans with (IZR (Z.of_nat x)).
assumption.
@@ -145,14 +145,14 @@ Proof.
rewrite Rmult_1_r; repeat rewrite <- INR_IZR_INZ; apply le_INR;
apply le_max_l.
rewrite <- INR_IZR_INZ; apply not_O_INR.
- red in |- *; intro; assert (H6 := le_max_r x 1); cut (0 < 1)%nat;
+ red; intro; assert (H6 := le_max_r x 1); cut (0 < 1)%nat;
[ intro | apply lt_O_Sn ]; assert (H8 := lt_le_trans _ _ _ H7 H6);
rewrite H5 in H8; elim (lt_irrefl _ H8).
- pattern eps at 1 in |- *; rewrite <- Rinv_involutive.
+ pattern eps at 1; rewrite <- Rinv_involutive.
apply Rinv_lt_contravar.
apply Rmult_lt_0_compat; [ apply Rinv_0_lt_compat; assumption | assumption ].
rewrite H3 in H0; assumption.
- red in |- *; intro; rewrite H5 in H; elim (Rlt_irrefl _ H).
+ red; intro; rewrite H5 in H; elim (Rlt_irrefl _ H).
apply Rlt_trans with (/ eps).
apply Rinv_0_lt_compat; assumption.
rewrite H3 in H0; assumption.
@@ -166,10 +166,10 @@ Qed.
Lemma Alembert_cos : Un_cv (fun n:nat => Rabs (cos_n (S n) / cos_n n)) 0.
Proof.
- unfold Un_cv in |- *; intros.
+ unfold Un_cv; intros.
assert (H0 := archimed_cor1 eps H).
elim H0; intros; exists x.
- intros; rewrite simpl_cos_n; unfold R_dist in |- *; unfold Rminus in |- *;
+ intros; rewrite simpl_cos_n; unfold R_dist; unfold Rminus;
rewrite Ropp_0; rewrite Rplus_0_r; rewrite Rabs_Rabsolu;
rewrite Rabs_Ropp; rewrite Rabs_right.
rewrite mult_INR; rewrite Rinv_mult_distr.
@@ -177,7 +177,7 @@ Proof.
intro; cut (/ INR (2 * n + 1) < eps).
intro; rewrite <- (Rmult_1_l eps).
apply Rmult_gt_0_lt_compat; try assumption.
- change (0 < / INR (2 * n + 1)) in |- *; apply Rinv_0_lt_compat;
+ change (0 < / INR (2 * n + 1)); apply Rinv_0_lt_compat;
apply lt_INR_0.
replace (2 * n + 1)%nat with (S (2 * n)); [ apply lt_O_Sn | ring ].
apply Rlt_0_1.
@@ -221,7 +221,7 @@ Proof.
Qed.
Lemma cosn_no_R0 : forall n:nat, cos_n n <> 0.
- intro; unfold cos_n in |- *; unfold Rdiv in |- *; apply prod_neq_R0.
+ intro; unfold cos_n; unfold Rdiv; apply prod_neq_R0.
apply pow_nonzero; discrR.
apply Rinv_neq_0_compat.
apply INR_fact_neq_0.
@@ -234,7 +234,7 @@ Definition cos_in (x l:R) : Prop :=
(**********)
Lemma exist_cos : forall x:R, { l:R | cos_in x l }.
intro; generalize (Alembert_C3 cos_n x cosn_no_R0 Alembert_cos).
- unfold Pser, cos_in in |- *; trivial.
+ unfold Pser, cos_in; trivial.
Qed.
@@ -246,8 +246,8 @@ Definition sin_n (n:nat) : R := (-1) ^ n / INR (fact (2 * n + 1)).
Lemma simpl_sin_n :
forall n:nat, sin_n (S n) / sin_n n = - / INR ((2 * S n + 1) * (2 * S n)).
Proof.
- intro; unfold sin_n in |- *; replace (S n) with (n + 1)%nat; [ idtac | ring ].
- rewrite pow_add; unfold Rdiv in |- *; rewrite Rinv_mult_distr.
+ intro; unfold sin_n; replace (S n) with (n + 1)%nat; [ idtac | ring ].
+ rewrite pow_add; unfold Rdiv; rewrite Rinv_mult_distr.
rewrite Rinv_involutive.
replace
((-1) ^ n * (-1) ^ 1 * / INR (fact (2 * (n + 1) + 1)) *
@@ -255,7 +255,7 @@ Proof.
((-1) ^ n * / (-1) ^ n * / INR (fact (2 * (n + 1) + 1)) *
INR (fact (2 * n + 1)) * (-1) ^ 1); [ idtac | ring ].
rewrite <- Rinv_r_sym.
- rewrite Rmult_1_l; unfold pow in |- *; rewrite Rmult_1_r;
+ rewrite Rmult_1_l; unfold pow; rewrite Rmult_1_r;
replace (2 * (n + 1) + 1)%nat with (S (S (2 * n + 1))).
do 2 rewrite fact_simpl; do 2 rewrite mult_INR;
repeat rewrite Rinv_mult_distr.
@@ -291,9 +291,9 @@ Qed.
Lemma Alembert_sin : Un_cv (fun n:nat => Rabs (sin_n (S n) / sin_n n)) 0.
Proof.
- unfold Un_cv in |- *; intros; assert (H0 := archimed_cor1 eps H).
+ unfold Un_cv; intros; assert (H0 := archimed_cor1 eps H).
elim H0; intros; exists x.
- intros; rewrite simpl_sin_n; unfold R_dist in |- *; unfold Rminus in |- *;
+ intros; rewrite simpl_sin_n; unfold R_dist; unfold Rminus;
rewrite Ropp_0; rewrite Rplus_0_r; rewrite Rabs_Rabsolu;
rewrite Rabs_Ropp; rewrite Rabs_right.
rewrite mult_INR; rewrite Rinv_mult_distr.
@@ -301,7 +301,7 @@ Proof.
intro; cut (/ INR (2 * S n + 1) < eps).
intro; rewrite <- (Rmult_1_l eps); rewrite (Rmult_comm (/ INR (2 * S n + 1)));
apply Rmult_gt_0_lt_compat; try assumption.
- change (0 < / INR (2 * S n + 1)) in |- *; apply Rinv_0_lt_compat;
+ change (0 < / INR (2 * S n + 1)); apply Rinv_0_lt_compat;
apply lt_INR_0; replace (2 * S n + 1)%nat with (S (2 * S n));
[ apply lt_O_Sn | ring ].
apply Rlt_0_1.
@@ -329,7 +329,7 @@ Proof.
apply not_O_INR; discriminate.
apply not_O_INR; discriminate.
apply not_O_INR; discriminate.
- left; change (0 < / INR ((2 * S n + 1) * (2 * S n))) in |- *;
+ left; change (0 < / INR ((2 * S n + 1) * (2 * S n)));
apply Rinv_0_lt_compat.
apply lt_INR_0.
replace ((2 * S n + 1) * (2 * S n))%nat with
@@ -342,7 +342,7 @@ Defined.
Lemma sin_no_R0 : forall n:nat, sin_n n <> 0.
Proof.
- intro; unfold sin_n in |- *; unfold Rdiv in |- *; apply prod_neq_R0.
+ intro; unfold sin_n; unfold Rdiv; apply prod_neq_R0.
apply pow_nonzero; discrR.
apply Rinv_neq_0_compat; apply INR_fact_neq_0.
Qed.
@@ -355,7 +355,7 @@ Definition sin_in (x l:R) : Prop :=
Lemma exist_sin : forall x:R, { l:R | sin_in x l }.
Proof.
intro; generalize (Alembert_C3 sin_n x sin_no_R0 Alembert_sin).
- unfold Pser, sin_n in |- *; trivial.
+ unfold Pser, sin_n; trivial.
Defined.
(***********************)
@@ -368,40 +368,40 @@ Definition sin (x:R) : R := let (a,_) := exist_sin (Rsqr x) in x * a.
Lemma cos_sym : forall x:R, cos x = cos (- x).
Proof.
- intros; unfold cos in |- *; replace (Rsqr (- x)) with (Rsqr x).
+ intros; unfold cos; replace (Rsqr (- x)) with (Rsqr x).
reflexivity.
apply Rsqr_neg.
Qed.
Lemma sin_antisym : forall x:R, sin (- x) = - sin x.
Proof.
- intro; unfold sin in |- *; replace (Rsqr (- x)) with (Rsqr x);
+ intro; unfold sin; replace (Rsqr (- x)) with (Rsqr x);
[ idtac | apply Rsqr_neg ].
case (exist_sin (Rsqr x)); intros; ring.
Qed.
Lemma sin_0 : sin 0 = 0.
Proof.
- unfold sin in |- *; case (exist_sin (Rsqr 0)).
+ unfold sin; case (exist_sin (Rsqr 0)).
intros; ring.
Qed.
Lemma exist_cos0 : { l:R | cos_in 0 l }.
Proof.
exists 1.
- unfold cos_in in |- *; unfold infinite_sum in |- *; intros; exists 0%nat.
+ unfold cos_in; unfold infinite_sum; intros; exists 0%nat.
intros.
- unfold R_dist in |- *.
+ unfold R_dist.
induction n as [| n Hrecn].
- unfold cos_n in |- *; simpl in |- *.
- unfold Rdiv in |- *; rewrite Rinv_1.
+ unfold cos_n; simpl.
+ unfold Rdiv; rewrite Rinv_1.
do 2 rewrite Rmult_1_r.
- unfold Rminus in |- *; rewrite Rplus_opp_r; rewrite Rabs_R0; assumption.
+ unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0; assumption.
rewrite tech5.
replace (cos_n (S n) * 0 ^ S n) with 0.
rewrite Rplus_0_r.
- apply Hrecn; unfold ge in |- *; apply le_O_n.
- simpl in |- *; ring.
+ apply Hrecn; unfold ge; apply le_O_n.
+ simpl; ring.
Defined.
(* Value of [cos 0] *)
@@ -409,10 +409,10 @@ Lemma cos_0 : cos 0 = 1.
Proof.
cut (cos_in 0 (cos 0)).
cut (cos_in 0 1).
- unfold cos_in in |- *; intros; eapply uniqueness_sum.
+ unfold cos_in; intros; eapply uniqueness_sum.
apply H0.
apply H.
exact (proj2_sig exist_cos0).
- assert (H := proj2_sig (exist_cos (Rsqr 0))); unfold cos in |- *;
- pattern 0 at 1 in |- *; replace 0 with (Rsqr 0); [ exact H | apply Rsqr_0 ].
+ assert (H := proj2_sig (exist_cos (Rsqr 0))); unfold cos;
+ pattern 0 at 1; replace 0 with (Rsqr 0); [ exact H | apply Rsqr_0 ].
Qed.
diff --git a/theories/Reals/Rtrigo_fun.v b/theories/Reals/Rtrigo_fun.v
index a946bc462..ca3cb0108 100644
--- a/theories/Reals/Rtrigo_fun.v
+++ b/theories/Reals/Rtrigo_fun.v
@@ -20,8 +20,8 @@ Local Open Scope R_scope.
Lemma Alembert_exp :
Un_cv (fun n:nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0.
Proof.
- unfold Un_cv in |- *; intros; elim (Rgt_dec eps 1); intro.
- split with 0%nat; intros; rewrite (simpl_fact n); unfold R_dist in |- *;
+ unfold Un_cv; intros; elim (Rgt_dec eps 1); intro.
+ split with 0%nat; intros; rewrite (simpl_fact n); unfold R_dist;
rewrite (Rminus_0_r (Rabs (/ INR (S n))));
rewrite (Rabs_Rabsolu (/ INR (S n))); cut (/ INR (S n) > 0).
intro; rewrite (Rabs_pos_eq (/ INR (S n))).
@@ -47,11 +47,11 @@ Proof.
rewrite (let (H1, H2) := Rmult_ne eps in H2); unfold Rgt in H;
assumption.
unfold Rgt in H1; apply Rlt_le; assumption.
- unfold Rgt in |- *; apply Rinv_0_lt_compat; apply lt_INR_0; apply lt_O_Sn.
+ unfold Rgt; apply Rinv_0_lt_compat; apply lt_INR_0; apply lt_O_Sn.
(**)
cut (0 <= up (/ eps - 1))%Z.
intro; elim (IZN (up (/ eps - 1)) H0); intros; split with x; intros;
- rewrite (simpl_fact n); unfold R_dist in |- *;
+ rewrite (simpl_fact n); unfold R_dist;
rewrite (Rminus_0_r (Rabs (/ INR (S n))));
rewrite (Rabs_Rabsolu (/ INR (S n))); cut (/ INR (S n) > 0).
intro; rewrite (Rabs_pos_eq (/ INR (S n))).
@@ -80,10 +80,10 @@ Proof.
elim (archimed (/ eps - 1)); intros; clear H6; unfold Rgt in H5;
rewrite H4 in H5; rewrite INR_IZR_INZ; assumption.
unfold Rgt in H1; apply Rlt_le; assumption.
- unfold Rgt in |- *; apply Rinv_0_lt_compat; apply lt_INR_0; apply lt_O_Sn.
+ unfold Rgt; apply Rinv_0_lt_compat; apply lt_INR_0; apply lt_O_Sn.
apply (le_O_IZR (up (/ eps - 1)));
apply (Rle_trans 0 (/ eps - 1) (IZR (up (/ eps - 1)))).
- generalize (Rnot_gt_le eps 1 b); clear b; unfold Rle in |- *; intro; elim H0;
+ generalize (Rnot_gt_le eps 1 b); clear b; unfold Rle; intro; elim H0;
clear H0; intro.
left; unfold Rgt in H;
generalize (Rmult_lt_compat_l (/ eps) eps 1 (Rinv_0_lt_compat eps H) H0);
@@ -91,8 +91,8 @@ Proof.
(Rinv_l eps
(not_eq_sym (Rlt_dichotomy_converse 0 eps (or_introl (0 > eps) H))))
; rewrite (let (H1, H2) := Rmult_ne (/ eps) in H1);
- intro; fold (/ eps - 1 > 0) in |- *; apply Rgt_minus;
- unfold Rgt in |- *; assumption.
+ intro; fold (/ eps - 1 > 0); apply Rgt_minus;
+ unfold Rgt; assumption.
right; rewrite H0; rewrite Rinv_1; symmetry; apply Rminus_diag_eq; auto.
elim (archimed (/ eps - 1)); intros; clear H1; unfold Rgt in H0; apply Rlt_le;
assumption.
diff --git a/theories/Reals/Rtrigo_reg.v b/theories/Reals/Rtrigo_reg.v
index a369d5ae2..93a889202 100644
--- a/theories/Reals/Rtrigo_reg.v
+++ b/theories/Reals/Rtrigo_reg.v
@@ -19,13 +19,13 @@ Local Open Scope R_scope.
(**********)
Lemma continuity_sin : continuity sin.
Proof.
- unfold continuity in |- *; intro.
+ unfold continuity; intro.
assert (H0 := continuity_cos (PI / 2 - x)).
unfold continuity_pt in H0; unfold continue_in in H0; unfold limit1_in in H0;
unfold limit_in in H0; simpl in H0; unfold R_dist in H0;
- unfold continuity_pt in |- *; unfold continue_in in |- *;
- unfold limit1_in in |- *; unfold limit_in in |- *;
- simpl in |- *; unfold R_dist in |- *; intros.
+ unfold continuity_pt; unfold continue_in;
+ unfold limit1_in; unfold limit_in;
+ simpl; unfold R_dist; intros.
elim (H0 _ H); intros.
exists x0; intros.
elim H1; intros.
@@ -34,9 +34,9 @@ Proof.
intros; rewrite <- (cos_shift x); rewrite <- (cos_shift x1); apply H3.
elim H4; intros.
split.
- unfold D_x, no_cond in |- *; split.
+ unfold D_x, no_cond; split.
trivial.
- red in |- *; intro; unfold D_x, no_cond in H5; elim H5; intros _ H8; elim H8;
+ red; intro; unfold D_x, no_cond in H5; elim H5; intros _ H8; elim H8;
rewrite <- (Ropp_involutive x); rewrite <- (Ropp_involutive x1);
apply Ropp_eq_compat; apply Rplus_eq_reg_l with (PI / 2);
apply H7.
@@ -50,7 +50,7 @@ Lemma CVN_R_sin :
(fun (N:nat) (x:R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N)) ->
CVN_R fn.
Proof.
- unfold CVN_R in |- *; unfold CVN_r in |- *; intros fn H r.
+ unfold CVN_R; unfold CVN_r; intros fn H r.
exists (fun n:nat => / INR (fact (2 * n + 1)) * r ^ (2 * n)).
cut
{ l:R |
@@ -63,7 +63,7 @@ Proof.
exists x.
split.
apply p.
- intros; rewrite H; unfold Rdiv in |- *; do 2 rewrite Rabs_mult;
+ intros; rewrite H; unfold Rdiv; do 2 rewrite Rabs_mult;
rewrite pow_1_abs; rewrite Rmult_1_l.
cut (0 < / INR (fact (2 * n + 1))).
intro; rewrite (Rabs_right _ (Rle_ge _ _ (Rlt_le _ _ H1))).
@@ -80,11 +80,11 @@ Proof.
apply Rinv_neq_0_compat; apply INR_fact_neq_0.
apply pow_nonzero; assumption.
assert (H1 := Alembert_sin).
- unfold sin_n in H1; unfold Un_cv in H1; unfold Un_cv in |- *; intros.
+ unfold sin_n in H1; unfold Un_cv in H1; unfold Un_cv; intros.
cut (0 < eps / Rsqr r).
intro; elim (H1 _ H3); intros N0 H4.
exists N0; intros.
- unfold R_dist in |- *; assert (H6 := H4 _ H5).
+ unfold R_dist; assert (H6 := H4 _ H5).
unfold R_dist in H5;
replace
(Rabs
@@ -96,15 +96,15 @@ Proof.
((-1) ^ n / INR (fact (2 * n + 1))))).
apply Rmult_lt_reg_l with (/ Rsqr r).
apply Rinv_0_lt_compat; apply Rsqr_pos_lt; assumption.
- pattern (/ Rsqr r) at 1 in |- *; rewrite <- (Rabs_right (/ Rsqr r)).
+ pattern (/ Rsqr r) at 1; rewrite <- (Rabs_right (/ Rsqr r)).
rewrite <- Rabs_mult.
rewrite Rmult_minus_distr_l.
rewrite Rmult_0_r; rewrite <- Rmult_assoc; rewrite <- Rinv_l_sym.
rewrite Rmult_1_l; rewrite <- (Rmult_comm eps).
apply H6.
- unfold Rsqr in |- *; apply prod_neq_R0; assumption.
+ unfold Rsqr; apply prod_neq_R0; assumption.
apply Rle_ge; left; apply Rinv_0_lt_compat; apply Rsqr_pos_lt; assumption.
- unfold Rdiv in |- *; rewrite (Rmult_comm (Rsqr r)); repeat rewrite Rabs_mult;
+ unfold Rdiv; rewrite (Rmult_comm (Rsqr r)); repeat rewrite Rabs_mult;
rewrite Rabs_Rabsolu; rewrite pow_1_abs.
rewrite Rmult_1_l.
repeat rewrite Rmult_assoc; apply Rmult_eq_compat_l.
@@ -126,10 +126,10 @@ Proof.
replace (r ^ (2 * S n)) with (r ^ (2 * n) * r * r).
do 2 rewrite <- Rmult_assoc.
rewrite <- Rinv_l_sym.
- unfold Rsqr in |- *; ring.
+ unfold Rsqr; ring.
apply pow_nonzero; assumption.
replace (2 * S n)%nat with (S (S (2 * n))).
- simpl in |- *; ring.
+ simpl; ring.
ring.
apply Rle_ge; apply pow_le; left; apply (cond_pos r).
apply Rle_ge; apply pow_le; left; apply (cond_pos r).
@@ -142,16 +142,16 @@ Proof.
apply INR_fact_neq_0.
apply pow_nonzero; discrR.
apply Rinv_neq_0_compat; apply INR_fact_neq_0.
- unfold Rdiv in |- *; apply Rmult_lt_0_compat;
+ unfold Rdiv; apply Rmult_lt_0_compat;
[ assumption | apply Rinv_0_lt_compat; apply Rsqr_pos_lt; assumption ].
- assert (H0 := cond_pos r); red in |- *; intro; rewrite H1 in H0;
+ assert (H0 := cond_pos r); red; intro; rewrite H1 in H0;
elim (Rlt_irrefl _ H0).
Qed.
(** (sin h)/h -> 1 when h -> 0 *)
Lemma derivable_pt_lim_sin_0 : derivable_pt_lim sin 0 1.
Proof.
- unfold derivable_pt_lim in |- *; intros.
+ unfold derivable_pt_lim; intros.
set
(fn := fun (N:nat) (x:R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N)).
cut (CVN_R fn).
@@ -167,58 +167,58 @@ Proof.
elim (H2 _ H); intros alp H3.
elim H3; intros.
exists (mkposreal _ H4).
- simpl in |- *; intros.
- rewrite sin_0; rewrite Rplus_0_l; unfold Rminus in |- *; rewrite Ropp_0;
+ simpl; intros.
+ rewrite sin_0; rewrite Rplus_0_l; unfold Rminus; rewrite Ropp_0;
rewrite Rplus_0_r.
cut (Rabs (SFL fn cv h - SFL fn cv 0) < eps).
intro; cut (SFL fn cv 0 = 1).
intro; cut (SFL fn cv h = sin h / h).
intro; rewrite H9 in H8; rewrite H10 in H8.
apply H8.
- unfold SFL, sin in |- *.
+ unfold SFL, sin.
case (cv h); intros.
case (exist_sin (Rsqr h)); intros.
- unfold Rdiv in |- *; rewrite (Rinv_r_simpl_m h x0 H6).
+ unfold Rdiv; rewrite (Rinv_r_simpl_m h x0 H6).
eapply UL_sequence.
apply u.
unfold sin_in in s; unfold sin_n, infinite_sum in s;
- unfold SP, fn, Un_cv in |- *; intros.
+ unfold SP, fn, Un_cv; intros.
elim (s _ H10); intros N0 H11.
exists N0; intros.
- unfold R_dist in |- *; unfold R_dist in H11.
+ unfold R_dist; unfold R_dist in H11.
replace
(sum_f_R0 (fun k:nat => (-1) ^ k / INR (fact (2 * k + 1)) * h ^ (2 * k)) n)
with
(sum_f_R0 (fun i:nat => (-1) ^ i / INR (fact (2 * i + 1)) * Rsqr h ^ i) n).
apply H11; assumption.
- apply sum_eq; intros; apply Rmult_eq_compat_l; unfold Rsqr in |- *;
+ apply sum_eq; intros; apply Rmult_eq_compat_l; unfold Rsqr;
rewrite pow_sqr; reflexivity.
- unfold SFL, sin in |- *.
+ unfold SFL, sin.
case (cv 0); intros.
eapply UL_sequence.
apply u.
- unfold SP, fn in |- *; unfold Un_cv in |- *; intros; exists 1%nat; intros.
- unfold R_dist in |- *;
+ unfold SP, fn; unfold Un_cv; intros; exists 1%nat; intros.
+ unfold R_dist;
replace
(sum_f_R0 (fun k:nat => (-1) ^ k / INR (fact (2 * k + 1)) * 0 ^ (2 * k)) n)
with 1.
- unfold Rminus in |- *; rewrite Rplus_opp_r; rewrite Rabs_R0; assumption.
+ unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0; assumption.
rewrite decomp_sum.
- simpl in |- *; rewrite Rmult_1_r; unfold Rdiv in |- *; rewrite Rinv_1;
- rewrite Rmult_1_r; pattern 1 at 1 in |- *; rewrite <- Rplus_0_r;
+ simpl; rewrite Rmult_1_r; unfold Rdiv; rewrite Rinv_1;
+ rewrite Rmult_1_r; pattern 1 at 1; rewrite <- Rplus_0_r;
apply Rplus_eq_compat_l.
- symmetry in |- *; apply sum_eq_R0; intros.
+ symmetry ; apply sum_eq_R0; intros.
rewrite Rmult_0_l; rewrite Rmult_0_r; reflexivity.
unfold ge in H10; apply lt_le_trans with 1%nat; [ apply lt_n_Sn | apply H10 ].
apply H5.
split.
- unfold D_x, no_cond in |- *; split.
+ unfold D_x, no_cond; split.
trivial.
apply (not_eq_sym (A:=R)); apply H6.
- unfold Rminus in |- *; rewrite Ropp_0; rewrite Rplus_0_r; apply H7.
- unfold Boule in |- *; unfold Rminus in |- *; rewrite Ropp_0;
+ unfold Rminus; rewrite Ropp_0; rewrite Rplus_0_r; apply H7.
+ unfold Boule; unfold Rminus; rewrite Ropp_0;
rewrite Rplus_0_r; rewrite Rabs_R0; apply (cond_pos r).
- intros; unfold fn in |- *;
+ intros; unfold fn;
replace (fun x:R => (-1) ^ n / INR (fact (2 * n + 1)) * x ^ (2 * n)) with
(fct_cte ((-1) ^ n / INR (fact (2 * n + 1))) * pow_fct (2 * n))%F;
[ idtac | reflexivity ].
@@ -229,13 +229,13 @@ Proof.
apply (derivable_pt_pow (2 * n) y).
apply (X r).
apply (CVN_R_CVS _ X).
- apply CVN_R_sin; unfold fn in |- *; reflexivity.
+ apply CVN_R_sin; unfold fn; reflexivity.
Qed.
(** ((cos h)-1)/h -> 0 when h -> 0 *)
Lemma derivable_pt_lim_cos_0 : derivable_pt_lim cos 0 0.
Proof.
- unfold derivable_pt_lim in |- *; intros.
+ unfold derivable_pt_lim; intros.
assert (H0 := derivable_pt_lim_sin_0).
unfold derivable_pt_lim in H0.
cut (0 < eps / 2).
@@ -250,8 +250,8 @@ Proof.
intro; set (delta := mkposreal _ H6).
exists delta; intros.
rewrite Rplus_0_l; replace (cos h - cos 0) with (-2 * Rsqr (sin (h / 2))).
- unfold Rminus in |- *; rewrite Ropp_0; rewrite Rplus_0_r.
- unfold Rdiv in |- *; do 2 rewrite Ropp_mult_distr_l_reverse.
+ unfold Rminus; rewrite Ropp_0; rewrite Rplus_0_r.
+ unfold Rdiv; do 2 rewrite Ropp_mult_distr_l_reverse.
rewrite Rabs_Ropp.
replace (2 * Rsqr (sin (h * / 2)) * / h) with
(sin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2)).
@@ -261,12 +261,12 @@ Proof.
rewrite (double_var eps); apply Rplus_lt_compat.
apply Rle_lt_trans with (Rabs (sin (h / 2) / (h / 2) - 1)).
rewrite Rabs_mult; rewrite Rmult_comm;
- pattern (Rabs (sin (h / 2) / (h / 2) - 1)) at 2 in |- *;
+ pattern (Rabs (sin (h / 2) / (h / 2) - 1)) at 2;
rewrite <- Rmult_1_r; apply Rmult_le_compat_l.
apply Rabs_pos.
assert (H9 := SIN_bound (h / 2)).
- unfold Rabs in |- *; case (Rcase_abs (sin (h / 2))); intro.
- pattern 1 at 3 in |- *; rewrite <- (Ropp_involutive 1).
+ unfold Rabs; case (Rcase_abs (sin (h / 2))); intro.
+ pattern 1 at 3; rewrite <- (Ropp_involutive 1).
apply Ropp_le_contravar.
elim H9; intros; assumption.
elim H9; intros; assumption.
@@ -275,50 +275,50 @@ Proof.
intro; assert (H11 := H2 _ H10 H9).
rewrite Rplus_0_l in H11; rewrite sin_0 in H11.
rewrite Rminus_0_r in H11; apply H11.
- unfold Rdiv in |- *; apply prod_neq_R0.
+ unfold Rdiv; apply prod_neq_R0.
apply H7.
apply Rinv_neq_0_compat; discrR.
apply Rlt_trans with (del / 2).
- unfold Rdiv in |- *; rewrite Rabs_mult.
+ unfold Rdiv; rewrite Rabs_mult.
rewrite (Rabs_right (/ 2)).
do 2 rewrite <- (Rmult_comm (/ 2)); apply Rmult_lt_compat_l.
apply Rinv_0_lt_compat; prove_sup0.
apply Rlt_le_trans with (pos delta).
apply H8.
- unfold delta in |- *; simpl in |- *; apply Rmin_l.
+ unfold delta; simpl; apply Rmin_l.
apply Rle_ge; left; apply Rinv_0_lt_compat; prove_sup0.
- rewrite <- (Rplus_0_r (del / 2)); pattern del at 1 in |- *;
+ rewrite <- (Rplus_0_r (del / 2)); pattern del at 1;
rewrite (double_var del); apply Rplus_lt_compat_l;
- unfold Rdiv in |- *; apply Rmult_lt_0_compat.
+ unfold Rdiv; apply Rmult_lt_0_compat.
apply (cond_pos del).
apply Rinv_0_lt_compat; prove_sup0.
elim H5; intros; assert (H11 := H10 (h / 2)).
rewrite sin_0 in H11; do 2 rewrite Rminus_0_r in H11.
apply H11.
split.
- unfold D_x, no_cond in |- *; split.
+ unfold D_x, no_cond; split.
trivial.
- apply (not_eq_sym (A:=R)); unfold Rdiv in |- *; apply prod_neq_R0.
+ apply (not_eq_sym (A:=R)); unfold Rdiv; apply prod_neq_R0.
apply H7.
apply Rinv_neq_0_compat; discrR.
apply Rlt_trans with (del_c / 2).
- unfold Rdiv in |- *; rewrite Rabs_mult.
+ unfold Rdiv; rewrite Rabs_mult.
rewrite (Rabs_right (/ 2)).
do 2 rewrite <- (Rmult_comm (/ 2)).
apply Rmult_lt_compat_l.
apply Rinv_0_lt_compat; prove_sup0.
apply Rlt_le_trans with (pos delta).
apply H8.
- unfold delta in |- *; simpl in |- *; apply Rmin_r.
+ unfold delta; simpl; apply Rmin_r.
apply Rle_ge; left; apply Rinv_0_lt_compat; prove_sup0.
- rewrite <- (Rplus_0_r (del_c / 2)); pattern del_c at 2 in |- *;
+ rewrite <- (Rplus_0_r (del_c / 2)); pattern del_c at 2;
rewrite (double_var del_c); apply Rplus_lt_compat_l.
- unfold Rdiv in |- *; apply Rmult_lt_0_compat.
+ unfold Rdiv; apply Rmult_lt_0_compat.
apply H9.
apply Rinv_0_lt_compat; prove_sup0.
- rewrite Rmult_minus_distr_l; rewrite Rmult_1_r; unfold Rminus in |- *;
+ rewrite Rmult_minus_distr_l; rewrite Rmult_1_r; unfold Rminus;
rewrite Rplus_assoc; rewrite Rplus_opp_l; rewrite Rplus_0_r;
- rewrite (Rmult_comm 2); unfold Rdiv, Rsqr in |- *.
+ rewrite (Rmult_comm 2); unfold Rdiv, Rsqr.
repeat rewrite Rmult_assoc.
repeat apply Rmult_eq_compat_l.
rewrite Rinv_mult_distr.
@@ -327,16 +327,16 @@ Proof.
discrR.
apply H7.
apply Rinv_neq_0_compat; discrR.
- pattern h at 2 in |- *; replace h with (2 * (h / 2)).
+ pattern h at 2; replace h with (2 * (h / 2)).
rewrite (cos_2a_sin (h / 2)).
- rewrite cos_0; unfold Rsqr in |- *; ring.
- unfold Rdiv in |- *; rewrite <- Rmult_assoc; apply Rinv_r_simpl_m.
+ rewrite cos_0; unfold Rsqr; ring.
+ unfold Rdiv; rewrite <- Rmult_assoc; apply Rinv_r_simpl_m.
discrR.
- unfold Rmin in |- *; case (Rle_dec del del_c); intro.
+ unfold Rmin; case (Rle_dec del del_c); intro.
apply (cond_pos del).
elim H5; intros; assumption.
apply continuity_sin.
- unfold Rdiv in |- *; apply Rmult_lt_0_compat;
+ unfold Rdiv; apply Rmult_lt_0_compat;
[ assumption | apply Rinv_0_lt_compat; prove_sup0 ].
Qed.
@@ -346,10 +346,10 @@ Proof.
intro; assert (H0 := derivable_pt_lim_sin_0).
assert (H := derivable_pt_lim_cos_0).
unfold derivable_pt_lim in H0, H.
- unfold derivable_pt_lim in |- *; intros.
+ unfold derivable_pt_lim; intros.
cut (0 < eps / 2);
[ intro
- | unfold Rdiv in |- *; apply Rmult_lt_0_compat;
+ | unfold Rdiv; apply Rmult_lt_0_compat;
[ apply H1 | apply Rinv_0_lt_compat; prove_sup0 ] ].
elim (H0 _ H2); intros alp1 H3.
elim (H _ H2); intros alp2 H4.
@@ -364,11 +364,11 @@ Proof.
rewrite (double_var eps); apply Rplus_lt_compat.
apply Rle_lt_trans with (Rabs ((cos h - 1) / h)).
rewrite Rabs_mult; rewrite Rmult_comm;
- pattern (Rabs ((cos h - 1) / h)) at 2 in |- *; rewrite <- Rmult_1_r;
+ pattern (Rabs ((cos h - 1) / h)) at 2; rewrite <- Rmult_1_r;
apply Rmult_le_compat_l.
apply Rabs_pos.
assert (H8 := SIN_bound x); elim H8; intros.
- unfold Rabs in |- *; case (Rcase_abs (sin x)); intro.
+ unfold Rabs; case (Rcase_abs (sin x)); intro.
rewrite <- (Ropp_involutive 1).
apply Ropp_le_contravar; assumption.
assumption.
@@ -378,14 +378,14 @@ Proof.
apply H9.
apply Rlt_le_trans with alp.
apply H7.
- unfold alp in |- *; apply Rmin_r.
+ unfold alp; apply Rmin_r.
apply Rle_lt_trans with (Rabs (sin h / h - 1)).
rewrite Rabs_mult; rewrite Rmult_comm;
- pattern (Rabs (sin h / h - 1)) at 2 in |- *; rewrite <- Rmult_1_r;
+ pattern (Rabs (sin h / h - 1)) at 2; rewrite <- Rmult_1_r;
apply Rmult_le_compat_l.
apply Rabs_pos.
assert (H8 := COS_bound x); elim H8; intros.
- unfold Rabs in |- *; case (Rcase_abs (cos x)); intro.
+ unfold Rabs; case (Rcase_abs (cos x)); intro.
rewrite <- (Ropp_involutive 1); apply Ropp_le_contravar; assumption.
assumption.
cut (Rabs h < alp1).
@@ -394,8 +394,8 @@ Proof.
apply H9.
apply Rlt_le_trans with alp.
apply H7.
- unfold alp in |- *; apply Rmin_l.
- rewrite sin_plus; unfold Rminus, Rdiv in |- *;
+ unfold alp; apply Rmin_l.
+ rewrite sin_plus; unfold Rminus, Rdiv;
repeat rewrite Rmult_plus_distr_r; repeat rewrite Rmult_plus_distr_l;
repeat rewrite Rmult_assoc; repeat rewrite Rplus_assoc;
apply Rplus_eq_compat_l.
@@ -404,7 +404,7 @@ Proof.
rewrite Ropp_mult_distr_r_reverse; rewrite Ropp_mult_distr_l_reverse;
rewrite Rmult_1_r; rewrite Rmult_1_l; rewrite Ropp_mult_distr_r_reverse;
rewrite <- Ropp_mult_distr_l_reverse; apply Rplus_comm.
- unfold alp in |- *; unfold Rmin in |- *; case (Rle_dec alp1 alp2); intro.
+ unfold alp; unfold Rmin; case (Rle_dec alp1 alp2); intro.
apply (cond_pos alp1).
apply (cond_pos alp2).
Qed.
@@ -419,7 +419,7 @@ Proof.
intros; generalize (H0 _ _ _ H2 H1);
replace (comp sin (id + fct_cte (PI / 2))%F) with
(fun x:R => sin (x + PI / 2)); [ idtac | reflexivity ].
- unfold derivable_pt_lim in |- *; intros.
+ unfold derivable_pt_lim; intros.
elim (H3 eps H4); intros.
exists x0.
intros; rewrite <- (H (x + h)); rewrite <- (H x); apply H5; assumption.
@@ -433,26 +433,26 @@ Qed.
Lemma derivable_pt_sin : forall x:R, derivable_pt sin x.
Proof.
- unfold derivable_pt in |- *; intro.
+ unfold derivable_pt; intro.
exists (cos x).
apply derivable_pt_lim_sin.
Qed.
Lemma derivable_pt_cos : forall x:R, derivable_pt cos x.
Proof.
- unfold derivable_pt in |- *; intro.
+ unfold derivable_pt; intro.
exists (- sin x).
apply derivable_pt_lim_cos.
Qed.
Lemma derivable_sin : derivable sin.
Proof.
- unfold derivable in |- *; intro; apply derivable_pt_sin.
+ unfold derivable; intro; apply derivable_pt_sin.
Qed.
Lemma derivable_cos : derivable cos.
Proof.
- unfold derivable in |- *; intro; apply derivable_pt_cos.
+ unfold derivable; intro; apply derivable_pt_cos.
Qed.
Lemma derive_pt_sin :
diff --git a/theories/Reals/SeqProp.v b/theories/Reals/SeqProp.v
index fb1b81ac3..b7f0d7ae3 100644
--- a/theories/Reals/SeqProp.v
+++ b/theories/Reals/SeqProp.v
@@ -36,7 +36,7 @@ Lemma decreasing_growing :
forall Un:nat -> R, Un_decreasing Un -> Un_growing (opp_seq Un).
Proof.
intro.
- unfold Un_growing, opp_seq, Un_decreasing in |- *.
+ unfold Un_growing, opp_seq, Un_decreasing.
intros.
apply Ropp_le_contravar.
apply H.
@@ -58,8 +58,8 @@ Proof.
unfold Un_cv in p.
unfold R_dist in p.
unfold opp_seq in p.
- unfold Un_cv in |- *.
- unfold R_dist in |- *.
+ unfold Un_cv.
+ unfold R_dist.
intros.
elim (p eps H1); intros.
exists x0; intros.
@@ -77,7 +77,7 @@ Proof.
apply completeness.
assumption.
exists (Un 0%nat).
- unfold EUn in |- *.
+ unfold EUn.
exists 0%nat; reflexivity.
Qed.
@@ -114,9 +114,9 @@ Proof.
unfold bound in H.
elim H; intros.
unfold is_upper_bound in H0.
- unfold has_ub in |- *.
+ unfold has_ub.
exists x.
- unfold is_upper_bound in |- *.
+ unfold is_upper_bound.
intros.
apply H0.
elim H1; intros.
@@ -132,9 +132,9 @@ Proof.
unfold bound in H.
elim H; intros.
unfold is_upper_bound in H0.
- unfold has_lb in |- *.
+ unfold has_lb.
exists x.
- unfold is_upper_bound in |- *.
+ unfold is_upper_bound.
intros.
apply H0.
elim H1; intros.
@@ -155,9 +155,9 @@ Lemma Wn_decreasing :
forall (Un:nat -> R) (pr:has_ub Un), Un_decreasing (sequence_ub Un pr).
Proof.
intros.
- unfold Un_decreasing in |- *.
+ unfold Un_decreasing.
intro.
- unfold sequence_ub in |- *.
+ unfold sequence_ub.
assert (H := ub_to_lub (fun k:nat => Un (S n + k)%nat) (maj_ss Un (S n) pr)).
assert (H0 := ub_to_lub (fun k:nat => Un (n + k)%nat) (maj_ss Un n pr)).
elim H; intros.
@@ -171,7 +171,7 @@ Proof.
elim p; intros.
apply H2.
elim p0; intros.
- unfold is_upper_bound in |- *.
+ unfold is_upper_bound.
intros.
unfold is_upper_bound in H3.
apply H3.
@@ -190,7 +190,7 @@ Proof.
assert
(H7 := H3 (lub (fun k:nat => Un (n + k)%nat) (maj_ss Un n pr)) H4).
apply Rle_antisym; assumption.
- unfold lub in |- *.
+ unfold lub.
case (ub_to_lub (fun k:nat => Un (n + k)%nat) (maj_ss Un n pr)).
trivial.
cut
@@ -204,7 +204,7 @@ Proof.
(H7 :=
H3 (lub (fun k:nat => Un (S n + k)%nat) (maj_ss Un (S n) pr)) H4).
apply Rle_antisym; assumption.
- unfold lub in |- *.
+ unfold lub.
case (ub_to_lub (fun k:nat => Un (S n + k)%nat) (maj_ss Un (S n) pr)).
trivial.
Qed.
@@ -213,9 +213,9 @@ Lemma Vn_growing :
forall (Un:nat -> R) (pr:has_lb Un), Un_growing (sequence_lb Un pr).
Proof.
intros.
- unfold Un_growing in |- *.
+ unfold Un_growing.
intro.
- unfold sequence_lb in |- *.
+ unfold sequence_lb.
assert (H := lb_to_glb (fun k:nat => Un (S n + k)%nat) (min_ss Un (S n) pr)).
assert (H0 := lb_to_glb (fun k:nat => Un (n + k)%nat) (min_ss Un n pr)).
elim H; intros.
@@ -230,14 +230,14 @@ Proof.
apply Ropp_le_contravar.
apply H2.
elim p0; intros.
- unfold is_upper_bound in |- *.
+ unfold is_upper_bound.
intros.
unfold is_upper_bound in H3.
apply H3.
elim H5; intros.
exists (1 + x2)%nat.
unfold opp_seq in H6.
- unfold opp_seq in |- *.
+ unfold opp_seq.
replace (n + (1 + x2))%nat with (S n + x2)%nat.
assumption.
replace (S n) with (1 + n)%nat; [ ring | ring ].
@@ -254,7 +254,7 @@ Proof.
(Ropp_involutive (glb (fun k:nat => Un (n + k)%nat) (min_ss Un n pr)))
.
apply Ropp_eq_compat; apply Rle_antisym; assumption.
- unfold glb in |- *.
+ unfold glb.
case (lb_to_glb (fun k:nat => Un (n + k)%nat) (min_ss Un n pr)); simpl.
intro; rewrite Ropp_involutive.
trivial.
@@ -273,7 +273,7 @@ Proof.
(glb (fun k:nat => Un (S n + k)%nat) (min_ss Un (S n) pr)))
.
apply Ropp_eq_compat; apply Rle_antisym; assumption.
- unfold glb in |- *.
+ unfold glb.
case (lb_to_glb (fun k:nat => Un (S n + k)%nat) (min_ss Un (S n) pr)); simpl.
intro; rewrite Ropp_involutive.
trivial.
@@ -286,7 +286,7 @@ Lemma Vn_Un_Wn_order :
Proof.
intros.
split.
- unfold sequence_lb in |- *.
+ unfold sequence_lb.
cut { l:R | is_lub (EUn (opp_seq (fun i:nat => Un (n + i)%nat))) l }.
intro X.
elim X; intros.
@@ -298,7 +298,7 @@ Proof.
apply Ropp_le_contravar.
apply H.
exists 0%nat.
- unfold opp_seq in |- *.
+ unfold opp_seq.
replace (n + 0)%nat with n; [ reflexivity | ring ].
cut
(is_lub (EUn (opp_seq (fun k:nat => Un (n + k)%nat)))
@@ -313,13 +313,13 @@ Proof.
(Ropp_involutive (glb (fun k:nat => Un (n + k)%nat) (min_ss Un n pr2)))
.
apply Ropp_eq_compat; apply Rle_antisym; assumption.
- unfold glb in |- *.
+ unfold glb.
case (lb_to_glb (fun k:nat => Un (n + k)%nat) (min_ss Un n pr2)); simpl.
intro; rewrite Ropp_involutive.
trivial.
apply lb_to_glb.
apply min_ss; assumption.
- unfold sequence_ub in |- *.
+ unfold sequence_ub.
cut { l:R | is_lub (EUn (fun i:nat => Un (n + i)%nat)) l }.
intro X.
elim X; intros.
@@ -340,7 +340,7 @@ Proof.
assert
(H5 := H1 (lub (fun k:nat => Un (n + k)%nat) (maj_ss Un n pr1)) H2).
apply Rle_antisym; assumption.
- unfold lub in |- *.
+ unfold lub.
case (ub_to_lub (fun k:nat => Un (n + k)%nat) (maj_ss Un n pr1)).
intro; trivial.
apply ub_to_lub.
@@ -353,13 +353,13 @@ Lemma min_maj :
Proof.
intros.
assert (H := Vn_Un_Wn_order Un pr1 pr2).
- unfold has_ub in |- *.
- unfold bound in |- *.
+ unfold has_ub.
+ unfold bound.
unfold has_ub in pr1.
unfold bound in pr1.
elim pr1; intros.
exists x.
- unfold is_upper_bound in |- *.
+ unfold is_upper_bound.
intros.
unfold is_upper_bound in H0.
elim H1; intros.
@@ -376,20 +376,20 @@ Lemma maj_min :
Proof.
intros.
assert (H := Vn_Un_Wn_order Un pr1 pr2).
- unfold has_lb in |- *.
- unfold bound in |- *.
+ unfold has_lb.
+ unfold bound.
unfold has_lb in pr2.
unfold bound in pr2.
elim pr2; intros.
exists x.
- unfold is_upper_bound in |- *.
+ unfold is_upper_bound.
intros.
unfold is_upper_bound in H0.
elim H1; intros.
rewrite H2.
apply Rle_trans with (opp_seq Un x1).
assert (H3 := H x1); elim H3; intros.
- unfold opp_seq in |- *; apply Ropp_le_contravar.
+ unfold opp_seq; apply Ropp_le_contravar.
assumption.
apply H0.
exists x1; reflexivity.
@@ -399,7 +399,7 @@ Qed.
Lemma cauchy_maj : forall Un:nat -> R, Cauchy_crit Un -> has_ub Un.
Proof.
intros.
- unfold has_ub in |- *.
+ unfold has_ub.
apply cauchy_bound.
assumption.
Qed.
@@ -409,12 +409,12 @@ Lemma cauchy_opp :
forall Un:nat -> R, Cauchy_crit Un -> Cauchy_crit (opp_seq Un).
Proof.
intro.
- unfold Cauchy_crit in |- *.
- unfold R_dist in |- *.
+ unfold Cauchy_crit.
+ unfold R_dist.
intros.
elim (H eps H0); intros.
exists x; intros.
- unfold opp_seq in |- *.
+ unfold opp_seq.
rewrite <- Rabs_Ropp.
replace (- (- Un n - - Un m)) with (Un n - Un m);
[ apply H1; assumption | ring ].
@@ -424,7 +424,7 @@ Qed.
Lemma cauchy_min : forall Un:nat -> R, Cauchy_crit Un -> has_lb Un.
Proof.
intros.
- unfold has_lb in |- *.
+ unfold has_lb.
assert (H0 := cauchy_opp _ H).
apply cauchy_bound.
assumption.
@@ -485,7 +485,7 @@ Qed.
Lemma not_Rlt : forall r1 r2:R, ~ r1 < r2 -> r1 >= r2.
Proof.
- intros r1 r2; generalize (Rtotal_order r1 r2); unfold Rge in |- *.
+ intros r1 r2; generalize (Rtotal_order r1 r2); unfold Rge.
tauto.
Qed.
@@ -595,11 +595,11 @@ Qed.
Lemma UL_sequence :
forall (Un:nat -> R) (l1 l2:R), Un_cv Un l1 -> Un_cv Un l2 -> l1 = l2.
Proof.
- intros Un l1 l2; unfold Un_cv in |- *; unfold R_dist in |- *; intros.
+ intros Un l1 l2; unfold Un_cv; unfold R_dist; intros.
apply cond_eq.
intros; cut (0 < eps / 2);
[ intro
- | unfold Rdiv in |- *; apply Rmult_lt_0_compat;
+ | unfold Rdiv; apply Rmult_lt_0_compat;
[ assumption | apply Rinv_0_lt_compat; prove_sup0 ] ].
elim (H (eps / 2) H2); intros.
elim (H0 (eps / 2) H2); intros.
@@ -609,8 +609,8 @@ Proof.
[ apply Rabs_triang | ring ].
rewrite (double_var eps); apply Rplus_lt_compat.
rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr; apply H3;
- unfold ge, N in |- *; apply le_max_l.
- apply H4; unfold ge, N in |- *; apply le_max_r.
+ unfold ge, N; apply le_max_l.
+ apply H4; unfold ge, N; apply le_max_r.
Qed.
(**********)
@@ -618,10 +618,10 @@ Lemma CV_plus :
forall (An Bn:nat -> R) (l1 l2:R),
Un_cv An l1 -> Un_cv Bn l2 -> Un_cv (fun i:nat => An i + Bn i) (l1 + l2).
Proof.
- unfold Un_cv in |- *; unfold R_dist in |- *; intros.
+ unfold Un_cv; unfold R_dist; intros.
cut (0 < eps / 2);
[ intro
- | unfold Rdiv in |- *; apply Rmult_lt_0_compat;
+ | unfold Rdiv; apply Rmult_lt_0_compat;
[ assumption | apply Rinv_0_lt_compat; prove_sup0 ] ].
elim (H (eps / 2) H2); intros.
elim (H0 (eps / 2) H2); intros.
@@ -632,10 +632,10 @@ Proof.
apply Rle_lt_trans with (Rabs (An n - l1) + Rabs (Bn n - l2)).
apply Rabs_triang.
rewrite (double_var eps); apply Rplus_lt_compat.
- apply H3; unfold ge in |- *; apply le_trans with N;
- [ unfold N in |- *; apply le_max_l | assumption ].
- apply H4; unfold ge in |- *; apply le_trans with N;
- [ unfold N in |- *; apply le_max_r | assumption ].
+ apply H3; unfold ge; apply le_trans with N;
+ [ unfold N; apply le_max_l | assumption ].
+ apply H4; unfold ge; apply le_trans with N;
+ [ unfold N; apply le_max_r | assumption ].
Qed.
(**********)
@@ -643,7 +643,7 @@ Lemma cv_cvabs :
forall (Un:nat -> R) (l:R),
Un_cv Un l -> Un_cv (fun i:nat => Rabs (Un i)) (Rabs l).
Proof.
- unfold Un_cv in |- *; unfold R_dist in |- *; intros.
+ unfold Un_cv; unfold R_dist; intros.
elim (H eps H0); intros.
exists x; intros.
apply Rle_lt_trans with (Rabs (Un n - l)).
@@ -656,15 +656,15 @@ Lemma CV_Cauchy :
forall Un:nat -> R, { l:R | Un_cv Un l } -> Cauchy_crit Un.
Proof.
intros Un X; elim X; intros.
- unfold Cauchy_crit in |- *; intros.
+ unfold Cauchy_crit; intros.
unfold Un_cv in p; unfold R_dist in p.
cut (0 < eps / 2);
[ intro
- | unfold Rdiv in |- *; apply Rmult_lt_0_compat;
+ | unfold Rdiv; apply Rmult_lt_0_compat;
[ assumption | apply Rinv_0_lt_compat; prove_sup0 ] ].
elim (p (eps / 2) H0); intros.
exists x0; intros.
- unfold R_dist in |- *;
+ unfold R_dist;
apply Rle_lt_trans with (Rabs (Un n - x) + Rabs (x - Un m)).
replace (Un n - Un m) with (Un n - x + (x - Un m));
[ apply Rabs_triang | ring ].
@@ -695,7 +695,7 @@ Proof.
unfold is_upper_bound in H1.
apply H1.
exists n; reflexivity.
- pattern x0 at 1 in |- *; rewrite <- Rplus_0_r; apply Rplus_le_compat_l; left;
+ pattern x0 at 1; rewrite <- Rplus_0_r; apply Rplus_le_compat_l; left;
apply Rlt_0_1.
apply Rle_trans with (Rabs (Un 0%nat)).
apply Rabs_pos.
@@ -717,7 +717,7 @@ Proof.
assert (H1 := maj_by_pos An X).
elim H1; intros M H2.
elim H2; intros.
- unfold Un_cv in |- *; unfold R_dist in |- *; intros.
+ unfold Un_cv; unfold R_dist; intros.
cut (0 < eps / (2 * M)).
intro.
case (Req_dec l2 0); intro.
@@ -744,24 +744,24 @@ Proof.
rewrite Rmult_1_l; rewrite (Rmult_comm (/ M)).
apply Rlt_trans with (eps / (2 * M)).
apply H8; assumption.
- unfold Rdiv in |- *; rewrite Rinv_mult_distr.
+ unfold Rdiv; rewrite Rinv_mult_distr.
apply Rmult_lt_reg_l with 2.
prove_sup0.
replace (2 * (eps * (/ 2 * / M))) with (2 * / 2 * (eps * / M));
[ idtac | ring ].
rewrite <- Rinv_r_sym.
rewrite Rmult_1_l; rewrite double.
- pattern (eps * / M) at 1 in |- *; rewrite <- Rplus_0_r.
+ pattern (eps * / M) at 1; rewrite <- Rplus_0_r.
apply Rplus_lt_compat_l; apply Rmult_lt_0_compat;
[ assumption | apply Rinv_0_lt_compat; assumption ].
discrR.
discrR.
- red in |- *; intro; rewrite H10 in H3; elim (Rlt_irrefl _ H3).
- red in |- *; intro; rewrite H10 in H3; elim (Rlt_irrefl _ H3).
- rewrite H7; do 2 rewrite Rmult_0_r; unfold Rminus in |- *;
+ red; intro; rewrite H10 in H3; elim (Rlt_irrefl _ H3).
+ red; intro; rewrite H10 in H3; elim (Rlt_irrefl _ H3).
+ rewrite H7; do 2 rewrite Rmult_0_r; unfold Rminus;
rewrite Rplus_opp_r; rewrite Rabs_R0; reflexivity.
replace (An n * Bn n - An n * l2) with (An n * (Bn n - l2)); [ idtac | ring ].
- symmetry in |- *; apply Rabs_mult.
+ symmetry ; apply Rabs_mult.
cut (0 < eps / (2 * Rabs l2)).
intro.
unfold Un_cv in H; unfold R_dist in H; unfold Un_cv in H0;
@@ -790,36 +790,36 @@ Proof.
rewrite Rmult_1_l; rewrite (Rmult_comm (/ M)).
apply Rlt_le_trans with (eps / (2 * M)).
apply H10.
- unfold ge in |- *; apply le_trans with N.
- unfold N in |- *; apply le_max_r.
+ unfold ge; apply le_trans with N.
+ unfold N; apply le_max_r.
assumption.
- unfold Rdiv in |- *; rewrite Rinv_mult_distr.
+ unfold Rdiv; rewrite Rinv_mult_distr.
right; ring.
discrR.
- red in |- *; intro; rewrite H12 in H3; elim (Rlt_irrefl _ H3).
- red in |- *; intro; rewrite H12 in H3; elim (Rlt_irrefl _ H3).
+ red; intro; rewrite H12 in H3; elim (Rlt_irrefl _ H3).
+ red; intro; rewrite H12 in H3; elim (Rlt_irrefl _ H3).
apply Rmult_lt_reg_l with (/ Rabs l2).
apply Rinv_0_lt_compat; apply Rabs_pos_lt; assumption.
rewrite <- Rmult_assoc; rewrite <- Rinv_l_sym.
rewrite Rmult_1_l; apply Rlt_le_trans with (eps / (2 * Rabs l2)).
apply H9.
- unfold ge in |- *; apply le_trans with N.
- unfold N in |- *; apply le_max_l.
+ unfold ge; apply le_trans with N.
+ unfold N; apply le_max_l.
assumption.
- unfold Rdiv in |- *; right; rewrite Rinv_mult_distr.
+ unfold Rdiv; right; rewrite Rinv_mult_distr.
ring.
discrR.
apply Rabs_no_R0; assumption.
apply Rabs_no_R0; assumption.
replace (An n * l2 - l1 * l2) with (l2 * (An n - l1));
- [ symmetry in |- *; apply Rabs_mult | ring ].
+ [ symmetry ; apply Rabs_mult | ring ].
replace (An n * Bn n - An n * l2) with (An n * (Bn n - l2));
- [ symmetry in |- *; apply Rabs_mult | ring ].
- unfold Rdiv in |- *; apply Rmult_lt_0_compat.
+ [ symmetry ; apply Rabs_mult | ring ].
+ unfold Rdiv; apply Rmult_lt_0_compat.
assumption.
apply Rinv_0_lt_compat; apply Rmult_lt_0_compat;
[ prove_sup0 | apply Rabs_pos_lt; assumption ].
- unfold Rdiv in |- *; apply Rmult_lt_0_compat;
+ unfold Rdiv; apply Rmult_lt_0_compat;
[ assumption
| apply Rinv_0_lt_compat; apply Rmult_lt_0_compat;
[ prove_sup0 | assumption ] ].
@@ -858,15 +858,15 @@ Proof.
intros; exists (k + (1 - k) / 2).
split.
split.
- pattern k at 1 in |- *; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l.
- unfold Rdiv in |- *; apply Rmult_lt_0_compat.
+ pattern k at 1; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l.
+ unfold Rdiv; apply Rmult_lt_0_compat.
apply Rplus_lt_reg_r with k; rewrite Rplus_0_r; replace (k + (1 - k)) with 1;
[ elim H; intros; assumption | ring ].
apply Rinv_0_lt_compat; prove_sup0.
apply Rmult_lt_reg_l with 2.
prove_sup0.
- unfold Rdiv in |- *; rewrite Rmult_1_r; rewrite Rmult_plus_distr_l;
- pattern 2 at 1 in |- *; rewrite Rmult_comm; rewrite Rmult_assoc;
+ unfold Rdiv; rewrite Rmult_1_r; rewrite Rmult_plus_distr_l;
+ pattern 2 at 1; rewrite Rmult_comm; rewrite Rmult_assoc;
rewrite <- Rinv_l_sym; [ idtac | discrR ]; rewrite Rmult_1_r;
replace (2 * k + (1 - k)) with (1 + k); [ idtac | ring ].
elim H; intros.
@@ -885,7 +885,7 @@ Proof.
repeat rewrite <- Rplus_assoc; rewrite Rplus_opp_l;
repeat rewrite Rplus_0_l; apply H4.
apply Rle_ge; elim H; intros; assumption.
- unfold Rdiv in |- *; apply Rmult_lt_0_compat.
+ unfold Rdiv; apply Rmult_lt_0_compat.
apply Rplus_lt_reg_r with k; rewrite Rplus_0_r; elim H; intros;
replace (k + (1 - k)) with 1; [ assumption | ring ].
apply Rinv_0_lt_compat; prove_sup0.
@@ -910,12 +910,12 @@ Proof.
apply Rle_lt_trans with (Rabs (Un N - l)).
apply RRle_abs.
apply H2.
- unfold ge, N in |- *; apply le_max_r.
- unfold Rminus in |- *; do 2 rewrite <- (Rplus_comm (- l));
+ unfold ge, N; apply le_max_r.
+ unfold Rminus; do 2 rewrite <- (Rplus_comm (- l));
apply Rplus_le_compat_l.
apply tech9.
assumption.
- unfold N in |- *; apply le_max_l.
+ unfold N; apply le_max_l.
apply Rplus_lt_reg_r with l.
rewrite Rplus_0_r.
replace (l + (Un n - l)) with (Un n); [ assumption | ring ].
@@ -926,10 +926,10 @@ Lemma CV_opp :
forall (An:nat -> R) (l:R), Un_cv An l -> Un_cv (opp_seq An) (- l).
Proof.
intros An l.
- unfold Un_cv in |- *; unfold R_dist in |- *; intros.
+ unfold Un_cv; unfold R_dist; intros.
elim (H eps H0); intros.
exists x; intros.
- unfold opp_seq in |- *; replace (- An n - - l) with (- (An n - l));
+ unfold opp_seq; replace (- An n - - l) with (- (An n - l));
[ rewrite Rabs_Ropp | ring ].
apply H1; assumption.
Qed.
@@ -954,10 +954,10 @@ Lemma CV_minus :
Proof.
intros.
replace (fun i:nat => An i - Bn i) with (fun i:nat => An i + opp_seq Bn i).
- unfold Rminus in |- *; apply CV_plus.
+ unfold Rminus; apply CV_plus.
assumption.
apply CV_opp; assumption.
- unfold Rminus, opp_seq in |- *; reflexivity.
+ unfold Rminus, opp_seq; reflexivity.
Qed.
(** Un -> +oo *)
@@ -969,10 +969,10 @@ Lemma cv_infty_cv_R0 :
forall Un:nat -> R,
(forall n:nat, Un n <> 0) -> cv_infty Un -> Un_cv (fun n:nat => / Un n) 0.
Proof.
- unfold cv_infty, Un_cv in |- *; unfold R_dist in |- *; intros.
+ unfold cv_infty, Un_cv; unfold R_dist; intros.
elim (H0 (/ eps)); intros N0 H2.
exists N0; intros.
- unfold Rminus in |- *; rewrite Ropp_0; rewrite Rplus_0_r;
+ unfold Rminus; rewrite Ropp_0; rewrite Rplus_0_r;
rewrite (Rabs_Rinv _ (H n)).
apply Rmult_lt_reg_l with (Rabs (Un n)).
apply Rabs_pos_lt; apply H.
@@ -984,7 +984,7 @@ Proof.
rewrite Rmult_1_r; apply Rlt_le_trans with (Un n).
apply H2; assumption.
apply RRle_abs.
- red in |- *; intro; rewrite H4 in H1; elim (Rlt_irrefl _ H1).
+ red; intro; rewrite H4 in H1; elim (Rlt_irrefl _ H1).
apply Rabs_no_R0; apply H.
Qed.
@@ -993,7 +993,7 @@ Lemma decreasing_prop :
forall (Un:nat -> R) (m n:nat),
Un_decreasing Un -> (m <= n)%nat -> Un n <= Un m.
Proof.
- unfold Un_decreasing in |- *; intros.
+ unfold Un_decreasing; intros.
induction n as [| n Hrecn].
induction m as [| m Hrecm].
right; reflexivity.
@@ -1016,17 +1016,17 @@ Proof.
(Un_cv (fun n:nat => Rabs x ^ n / INR (fact n)) 0 ->
Un_cv (fun n:nat => x ^ n / INR (fact n)) 0).
intro; apply H.
- unfold Un_cv in |- *; unfold R_dist in |- *; intros; case (Req_dec x 0);
+ unfold Un_cv; unfold R_dist; intros; case (Req_dec x 0);
intro.
exists 1%nat; intros.
- rewrite H1; unfold Rminus in |- *; rewrite Ropp_0; rewrite Rplus_0_r;
+ rewrite H1; unfold Rminus; rewrite Ropp_0; rewrite Rplus_0_r;
rewrite Rabs_R0; rewrite pow_ne_zero;
- [ unfold Rdiv in |- *; rewrite Rmult_0_l; rewrite Rabs_R0; assumption
- | red in |- *; intro; rewrite H3 in H2; elim (le_Sn_n _ H2) ].
+ [ unfold Rdiv; rewrite Rmult_0_l; rewrite Rabs_R0; assumption
+ | red; intro; rewrite H3 in H2; elim (le_Sn_n _ H2) ].
assert (H2 := Rabs_pos_lt x H1); set (M := up (Rabs x)); cut (0 <= M)%Z.
intro; elim (IZN M H3); intros M_nat H4.
set (Un := fun n:nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n))).
- cut (Un_cv Un 0); unfold Un_cv in |- *; unfold R_dist in |- *; intros.
+ cut (Un_cv Un 0); unfold Un_cv; unfold R_dist; intros.
elim (H5 eps H0); intros N H6.
exists (M_nat + N)%nat; intros;
cut (exists p : nat, (p >= N)%nat /\ n = (M_nat + p)%nat).
@@ -1034,7 +1034,7 @@ Proof.
elim H9; intros; rewrite H11; unfold Un in H6; apply H6; assumption.
exists (n - M_nat)%nat.
split.
- unfold ge in |- *; apply (fun p n m:nat => plus_le_reg_l n m p) with M_nat;
+ unfold ge; apply (fun p n m:nat => plus_le_reg_l n m p) with M_nat;
rewrite <- le_plus_minus.
assumption.
apply le_trans with (M_nat + N)%nat.
@@ -1048,43 +1048,43 @@ Proof.
intro; cut (Un_decreasing Un).
intro; cut (forall n:nat, Un (S n) <= Vn n).
intro; cut (Un_cv Vn 0).
- unfold Un_cv in |- *; unfold R_dist in |- *; intros.
+ unfold Un_cv; unfold R_dist; intros.
elim (H10 eps0 H5); intros N1 H11.
exists (S N1); intros.
cut (forall n:nat, 0 < Vn n).
intro; apply Rle_lt_trans with (Rabs (Vn (pred n) - 0)).
repeat rewrite Rabs_right.
- unfold Rminus in |- *; rewrite Ropp_0; do 2 rewrite Rplus_0_r;
+ unfold Rminus; rewrite Ropp_0; do 2 rewrite Rplus_0_r;
replace n with (S (pred n)).
apply H9.
- inversion H12; simpl in |- *; reflexivity.
- apply Rle_ge; unfold Rminus in |- *; rewrite Ropp_0; rewrite Rplus_0_r; left;
+ inversion H12; simpl; reflexivity.
+ apply Rle_ge; unfold Rminus; rewrite Ropp_0; rewrite Rplus_0_r; left;
apply H13.
- apply Rle_ge; unfold Rminus in |- *; rewrite Ropp_0; rewrite Rplus_0_r; left;
+ apply Rle_ge; unfold Rminus; rewrite Ropp_0; rewrite Rplus_0_r; left;
apply H7.
- apply H11; unfold ge in |- *; apply le_S_n; replace (S (pred n)) with n;
- [ unfold ge in H12; exact H12 | inversion H12; simpl in |- *; reflexivity ].
+ apply H11; unfold ge; apply le_S_n; replace (S (pred n)) with n;
+ [ unfold ge in H12; exact H12 | inversion H12; simpl; reflexivity ].
intro; apply Rlt_le_trans with (Un (S n0)); [ apply H7 | apply H9 ].
cut (cv_infty (fun n:nat => INR (S n))).
intro; cut (Un_cv (fun n:nat => / INR (S n)) 0).
- unfold Un_cv, R_dist in |- *; intros; unfold Vn in |- *.
+ unfold Un_cv, R_dist; intros; unfold Vn.
cut (0 < eps1 / (Rabs x * Un 0%nat)).
intro; elim (H11 _ H13); intros N H14.
exists N; intros;
replace (Rabs x * (Un 0%nat / INR (S n)) - 0) with
(Rabs x * Un 0%nat * (/ INR (S n) - 0));
- [ idtac | unfold Rdiv in |- *; ring ].
+ [ idtac | unfold Rdiv; ring ].
rewrite Rabs_mult; apply Rmult_lt_reg_l with (/ Rabs (Rabs x * Un 0%nat)).
apply Rinv_0_lt_compat; apply Rabs_pos_lt.
apply prod_neq_R0.
apply Rabs_no_R0; assumption.
- assert (H16 := H7 0%nat); red in |- *; intro; rewrite H17 in H16;
+ assert (H16 := H7 0%nat); red; intro; rewrite H17 in H16;
elim (Rlt_irrefl _ H16).
rewrite <- Rmult_assoc; rewrite <- Rinv_l_sym.
rewrite Rmult_1_l.
replace (/ Rabs (Rabs x * Un 0%nat) * eps1) with (eps1 / (Rabs x * Un 0%nat)).
apply H14; assumption.
- unfold Rdiv in |- *; rewrite (Rabs_right (Rabs x * Un 0%nat)).
+ unfold Rdiv; rewrite (Rabs_right (Rabs x * Un 0%nat)).
apply Rmult_comm.
apply Rle_ge; apply Rmult_le_pos.
apply Rabs_pos.
@@ -1092,9 +1092,9 @@ Proof.
apply Rabs_no_R0.
apply prod_neq_R0;
[ apply Rabs_no_R0; assumption
- | assert (H16 := H7 0%nat); red in |- *; intro; rewrite H17 in H16;
+ | assert (H16 := H7 0%nat); red; intro; rewrite H17 in H16;
elim (Rlt_irrefl _ H16) ].
- unfold Rdiv in |- *; apply Rmult_lt_0_compat.
+ unfold Rdiv; apply Rmult_lt_0_compat.
assumption.
apply Rinv_0_lt_compat; apply Rmult_lt_0_compat.
apply Rabs_pos_lt; assumption.
@@ -1102,7 +1102,7 @@ Proof.
apply (cv_infty_cv_R0 (fun n:nat => INR (S n))).
intro; apply not_O_INR; discriminate.
assumption.
- unfold cv_infty in |- *; intro; case (total_order_T M0 0); intro.
+ unfold cv_infty; intro; case (total_order_T M0 0); intro.
elim s; intro.
exists 0%nat; intros.
apply Rlt_trans with 0; [ assumption | apply lt_INR_0; apply lt_O_Sn ].
@@ -1116,13 +1116,13 @@ Proof.
elim H10; intros; assumption.
rewrite H12; rewrite <- INR_IZR_INZ; apply le_INR.
apply le_trans with n; [ assumption | apply le_n_Sn ].
- apply le_IZR; left; simpl in |- *; unfold M0_z in |- *;
+ apply le_IZR; left; simpl; unfold M0_z;
apply Rlt_trans with M0; [ assumption | elim H10; intros; assumption ].
intro; apply Rle_trans with (Rabs x * Un n * / INR (S n)).
- unfold Un in |- *; replace (M_nat + S n)%nat with (M_nat + n + 1)%nat.
+ unfold Un; replace (M_nat + S n)%nat with (M_nat + n + 1)%nat.
rewrite pow_add; replace (Rabs x ^ 1) with (Rabs x);
- [ idtac | simpl in |- *; ring ].
- unfold Rdiv in |- *; rewrite <- (Rmult_comm (Rabs x));
+ [ idtac | simpl; ring ].
+ unfold Rdiv; rewrite <- (Rmult_comm (Rabs x));
repeat rewrite Rmult_assoc; repeat apply Rmult_le_compat_l.
apply Rabs_pos.
left; apply pow_lt; assumption.
@@ -1130,30 +1130,30 @@ Proof.
rewrite fact_simpl; rewrite mult_comm; rewrite mult_INR;
rewrite Rinv_mult_distr.
apply Rmult_le_compat_l.
- left; apply Rinv_0_lt_compat; apply lt_INR_0; apply neq_O_lt; red in |- *;
+ left; apply Rinv_0_lt_compat; apply lt_INR_0; apply neq_O_lt; red;
intro; assert (H10 := eq_sym H9); elim (fact_neq_0 _ H10).
left; apply Rinv_lt_contravar.
apply Rmult_lt_0_compat; apply lt_INR_0; apply lt_O_Sn.
apply lt_INR; apply lt_n_S.
- pattern n at 1 in |- *; replace n with (0 + n)%nat; [ idtac | reflexivity ].
+ pattern n at 1; replace n with (0 + n)%nat; [ idtac | reflexivity ].
apply plus_lt_compat_r.
apply lt_le_trans with 1%nat; [ apply lt_O_Sn | assumption ].
apply INR_fact_neq_0.
apply not_O_INR; discriminate.
ring.
ring.
- unfold Vn in |- *; rewrite Rmult_assoc; unfold Rdiv in |- *;
+ unfold Vn; rewrite Rmult_assoc; unfold Rdiv;
rewrite (Rmult_comm (Un 0%nat)); rewrite (Rmult_comm (Un n)).
repeat apply Rmult_le_compat_l.
apply Rabs_pos.
left; apply Rinv_0_lt_compat; apply lt_INR_0; apply lt_O_Sn.
apply decreasing_prop; [ assumption | apply le_O_n ].
- unfold Un_decreasing in |- *; intro; unfold Un in |- *.
+ unfold Un_decreasing; intro; unfold Un.
replace (M_nat + S n)%nat with (M_nat + n + 1)%nat.
- rewrite pow_add; unfold Rdiv in |- *; rewrite Rmult_assoc;
+ rewrite pow_add; unfold Rdiv; rewrite Rmult_assoc;
apply Rmult_le_compat_l.
left; apply pow_lt; assumption.
- replace (Rabs x ^ 1) with (Rabs x); [ idtac | simpl in |- *; ring ].
+ replace (Rabs x ^ 1) with (Rabs x); [ idtac | simpl; ring ].
replace (M_nat + n + 1)%nat with (S (M_nat + n)).
apply Rmult_le_reg_l with (INR (fact (S (M_nat + n)))).
apply lt_INR_0; apply neq_O_lt; red; intro; assert (H9 := eq_sym H8);
@@ -1170,37 +1170,37 @@ Proof.
apply INR_fact_neq_0.
ring.
ring.
- intro; unfold Un in |- *; unfold Rdiv in |- *; apply Rmult_lt_0_compat.
+ intro; unfold Un; unfold Rdiv; apply Rmult_lt_0_compat.
apply pow_lt; assumption.
- apply Rinv_0_lt_compat; apply lt_INR_0; apply neq_O_lt; red in |- *; intro;
+ apply Rinv_0_lt_compat; apply lt_INR_0; apply neq_O_lt; red; intro;
assert (H8 := eq_sym H7); elim (fact_neq_0 _ H8).
- clear Un Vn; apply INR_le; simpl in |- *.
+ clear Un Vn; apply INR_le; simpl.
induction M_nat as [| M_nat HrecM_nat].
assert (H6 := archimed (Rabs x)); fold M in H6; elim H6; intros.
rewrite H4 in H7; rewrite <- INR_IZR_INZ in H7.
simpl in H7; elim (Rlt_irrefl _ (Rlt_trans _ _ _ H2 H7)).
replace 1 with (INR 1); [ apply le_INR | reflexivity ]; apply le_n_S;
apply le_O_n.
- apply le_IZR; simpl in |- *; left; apply Rlt_trans with (Rabs x).
+ apply le_IZR; simpl; left; apply Rlt_trans with (Rabs x).
assumption.
elim (archimed (Rabs x)); intros; assumption.
- unfold Un_cv in |- *; unfold R_dist in |- *; intros; elim (H eps H0); intros.
+ unfold Un_cv; unfold R_dist; intros; elim (H eps H0); intros.
exists x0; intros;
apply Rle_lt_trans with (Rabs (Rabs x ^ n / INR (fact n) - 0)).
- unfold Rminus in |- *; rewrite Ropp_0; do 2 rewrite Rplus_0_r;
+ unfold Rminus; rewrite Ropp_0; do 2 rewrite Rplus_0_r;
rewrite (Rabs_right (Rabs x ^ n / INR (fact n))).
- unfold Rdiv in |- *; rewrite Rabs_mult; rewrite (Rabs_right (/ INR (fact n))).
+ unfold Rdiv; rewrite Rabs_mult; rewrite (Rabs_right (/ INR (fact n))).
rewrite RPow_abs; right; reflexivity.
apply Rle_ge; left; apply Rinv_0_lt_compat; apply lt_INR_0; apply neq_O_lt;
red; intro; assert (H4 := eq_sym H3); elim (fact_neq_0 _ H4).
- apply Rle_ge; unfold Rdiv in |- *; apply Rmult_le_pos.
+ apply Rle_ge; unfold Rdiv; apply Rmult_le_pos.
case (Req_dec x 0); intro.
rewrite H3; rewrite Rabs_R0.
induction n as [| n Hrecn];
- [ simpl in |- *; left; apply Rlt_0_1
- | simpl in |- *; rewrite Rmult_0_l; right; reflexivity ].
+ [ simpl; left; apply Rlt_0_1
+ | simpl; rewrite Rmult_0_l; right; reflexivity ].
left; apply pow_lt; apply Rabs_pos_lt; assumption.
- left; apply Rinv_0_lt_compat; apply lt_INR_0; apply neq_O_lt; red in |- *;
+ left; apply Rinv_0_lt_compat; apply lt_INR_0; apply neq_O_lt; red;
intro; assert (H4 := eq_sym H3); elim (fact_neq_0 _ H4).
apply H1; assumption.
Qed.
diff --git a/theories/Reals/SeqSeries.v b/theories/Reals/SeqSeries.v
index 3085d0200..08bf54d6f 100644
--- a/theories/Reals/SeqSeries.v
+++ b/theories/Reals/SeqSeries.v
@@ -41,21 +41,21 @@ Proof.
intro; rewrite H4; rewrite H5.
apply sum_cv_maj with
(fun l:nat => An (S N + l)%nat) (fun (l:nat) (x:R) => fn (S N + l)%nat x) x.
- unfold SP in |- *; apply H2.
+ unfold SP; apply H2.
apply H3.
intros; apply H1.
- symmetry in |- *; eapply UL_sequence.
+ symmetry ; eapply UL_sequence.
apply H3.
- unfold Un_cv in H0; unfold Un_cv in |- *; intros; elim (H0 eps H5);
+ unfold Un_cv in H0; unfold Un_cv; intros; elim (H0 eps H5);
intros N0 H6.
unfold R_dist in H6; exists N0; intros.
- unfold R_dist in |- *;
+ unfold R_dist;
replace (sum_f_R0 (fun l:nat => An (S N + l)%nat) n - (l2 - sum_f_R0 An N))
with (sum_f_R0 An N + sum_f_R0 (fun l:nat => An (S N + l)%nat) n - l2);
[ idtac | ring ].
replace (sum_f_R0 An N + sum_f_R0 (fun l:nat => An (S N + l)%nat) n) with
(sum_f_R0 An (S (N + n))).
- apply H6; unfold ge in |- *; apply le_trans with n.
+ apply H6; unfold ge; apply le_trans with n.
apply H7.
apply le_trans with (N + n)%nat.
apply le_plus_r.
@@ -80,12 +80,12 @@ Proof.
reflexivity.
apply le_lt_n_Sm; apply le_plus_l.
apply le_O_n.
- symmetry in |- *; eapply UL_sequence.
+ symmetry ; eapply UL_sequence.
apply H2.
- unfold Un_cv in H; unfold Un_cv in |- *; intros.
+ unfold Un_cv in H; unfold Un_cv; intros.
elim (H eps H4); intros N0 H5.
unfold R_dist in H5; exists N0; intros.
- unfold R_dist, SP in |- *;
+ unfold R_dist, SP;
replace
(sum_f_R0 (fun l:nat => fn (S N + l)%nat x) n -
(l1 - sum_f_R0 (fun k:nat => fn k x) N)) with
@@ -96,7 +96,7 @@ Proof.
(sum_f_R0 (fun k:nat => fn k x) N +
sum_f_R0 (fun l:nat => fn (S N + l)%nat x) n) with
(sum_f_R0 (fun k:nat => fn k x) (S (N + n))).
- unfold SP in H5; apply H5; unfold ge in |- *; apply le_trans with n.
+ unfold SP in H5; apply H5; unfold ge; apply le_trans with n.
apply H6.
apply le_trans with (N + n)%nat.
apply le_plus_r.
@@ -124,16 +124,16 @@ Proof.
apply le_plus_l.
apply le_O_n.
exists (l2 - sum_f_R0 An N).
- unfold Un_cv in H0; unfold Un_cv in |- *; intros.
+ unfold Un_cv in H0; unfold Un_cv; intros.
elim (H0 eps H2); intros N0 H3.
unfold R_dist in H3; exists N0; intros.
- unfold R_dist in |- *;
+ unfold R_dist;
replace (sum_f_R0 (fun l:nat => An (S N + l)%nat) n - (l2 - sum_f_R0 An N))
with (sum_f_R0 An N + sum_f_R0 (fun l:nat => An (S N + l)%nat) n - l2);
[ idtac | ring ].
replace (sum_f_R0 An N + sum_f_R0 (fun l:nat => An (S N + l)%nat) n) with
(sum_f_R0 An (S (N + n))).
- apply H3; unfold ge in |- *; apply le_trans with n.
+ apply H3; unfold ge; apply le_trans with n.
apply H4.
apply le_trans with (N + n)%nat.
apply le_plus_r.
@@ -160,10 +160,10 @@ Proof.
apply le_plus_l.
apply le_O_n.
exists (l1 - SP fn N x).
- unfold Un_cv in H; unfold Un_cv in |- *; intros.
+ unfold Un_cv in H; unfold Un_cv; intros.
elim (H eps H2); intros N0 H3.
unfold R_dist in H3; exists N0; intros.
- unfold R_dist, SP in |- *.
+ unfold R_dist, SP.
replace
(sum_f_R0 (fun l:nat => fn (S N + l)%nat x) n -
(l1 - sum_f_R0 (fun k:nat => fn k x) N)) with
@@ -175,7 +175,7 @@ Proof.
sum_f_R0 (fun l:nat => fn (S N + l)%nat x) n) with
(sum_f_R0 (fun k:nat => fn k x) (S (N + n))).
unfold SP in H3; apply H3.
- unfold ge in |- *; apply le_trans with n.
+ unfold ge; apply le_trans with n.
apply H4.
apply le_trans with (N + n)%nat.
apply le_plus_r.
@@ -213,7 +213,7 @@ Lemma Rseries_CV_comp :
Proof.
intros An Bn H X; apply cv_cauchy_2.
assert (H0 := cv_cauchy_1 _ X).
- unfold Cauchy_crit_series in |- *; unfold Cauchy_crit in |- *.
+ unfold Cauchy_crit_series; unfold Cauchy_crit.
intros; elim (H0 eps H1); intros.
exists x; intros.
cut
@@ -227,7 +227,7 @@ Proof.
elim a; intro.
rewrite (tech2 An n m); [ idtac | assumption ].
rewrite (tech2 Bn n m); [ idtac | assumption ].
- unfold R_dist in |- *; unfold Rminus in |- *; do 2 rewrite Ropp_plus_distr;
+ unfold R_dist; unfold Rminus; do 2 rewrite Ropp_plus_distr;
do 2 rewrite <- Rplus_assoc; do 2 rewrite Rplus_opp_r;
do 2 rewrite Rplus_0_l; do 2 rewrite Rabs_Ropp; repeat rewrite Rabs_right.
apply sum_Rle; intros.
@@ -238,12 +238,12 @@ Proof.
apply Rle_trans with (An (S n + n0)%nat); assumption.
apply Rle_ge; apply cond_pos_sum; intro.
elim (H (S n + n0)%nat); intros; assumption.
- rewrite b; unfold R_dist in |- *; unfold Rminus in |- *;
+ rewrite b; unfold R_dist; unfold Rminus;
do 2 rewrite Rplus_opp_r; rewrite Rabs_R0; right;
reflexivity.
rewrite (tech2 An m n); [ idtac | assumption ].
rewrite (tech2 Bn m n); [ idtac | assumption ].
- unfold R_dist in |- *; unfold Rminus in |- *; do 2 rewrite Rplus_assoc;
+ unfold R_dist; unfold Rminus; do 2 rewrite Rplus_assoc;
rewrite (Rplus_comm (sum_f_R0 An m)); rewrite (Rplus_comm (sum_f_R0 Bn m));
do 2 rewrite Rplus_assoc; do 2 rewrite Rplus_opp_l;
do 2 rewrite Rplus_0_r; repeat rewrite Rabs_right.
@@ -266,13 +266,13 @@ Lemma Cesaro :
Un_cv (fun n:nat => sum_f_R0 (fun k:nat => An k * Bn k) n / sum_f_R0 An n)
l.
Proof with trivial.
- unfold Un_cv in |- *; intros; assert (H3 : forall n:nat, 0 < sum_f_R0 An n)...
+ unfold Un_cv; intros; assert (H3 : forall n:nat, 0 < sum_f_R0 An n)...
intro; apply tech1...
assert (H4 : forall n:nat, sum_f_R0 An n <> 0)...
- intro; red in |- *; intro; assert (H5 := H3 n); rewrite H4 in H5;
+ intro; red; intro; assert (H5 := H3 n); rewrite H4 in H5;
elim (Rlt_irrefl _ H5)...
assert (H5 := cv_infty_cv_R0 _ H4 H1); assert (H6 : 0 < eps / 2)...
- unfold Rdiv in |- *; apply Rmult_lt_0_compat...
+ unfold Rdiv; apply Rmult_lt_0_compat...
apply Rinv_0_lt_compat; prove_sup...
elim (H _ H6); clear H; intros N1 H;
set (C := Rabs (sum_f_R0 (fun k:nat => An k * (Bn k - l)) N1));
@@ -282,10 +282,10 @@ Proof with trivial.
(forall n:nat, (N <= n)%nat -> C / sum_f_R0 An n < eps / 2))...
case (Req_dec C 0); intro...
exists 0%nat; intros...
- rewrite H7; unfold Rdiv in |- *; rewrite Rmult_0_l; apply Rmult_lt_0_compat...
+ rewrite H7; unfold Rdiv; rewrite Rmult_0_l; apply Rmult_lt_0_compat...
apply Rinv_0_lt_compat; prove_sup...
assert (H8 : 0 < eps / (2 * Rabs C))...
- unfold Rdiv in |- *; apply Rmult_lt_0_compat...
+ unfold Rdiv; apply Rmult_lt_0_compat...
apply Rinv_0_lt_compat; apply Rmult_lt_0_compat...
prove_sup...
apply Rabs_pos_lt...
@@ -294,23 +294,23 @@ Proof with trivial.
rewrite Rplus_0_r in H11...
apply Rle_lt_trans with (Rabs (C / sum_f_R0 An n))...
apply RRle_abs...
- unfold Rdiv in |- *; rewrite Rabs_mult; apply Rmult_lt_reg_l with (/ Rabs C)...
+ unfold Rdiv; rewrite Rabs_mult; apply Rmult_lt_reg_l with (/ Rabs C)...
apply Rinv_0_lt_compat; apply Rabs_pos_lt...
rewrite <- Rmult_assoc; rewrite <- Rinv_l_sym...
rewrite Rmult_1_l; replace (/ Rabs C * (eps * / 2)) with (eps / (2 * Rabs C))...
- unfold Rdiv in |- *; rewrite Rinv_mult_distr...
+ unfold Rdiv; rewrite Rinv_mult_distr...
ring...
discrR...
apply Rabs_no_R0...
apply Rabs_no_R0...
elim H7; clear H7; intros N2 H7; set (N := max N1 N2); exists (S N); intros;
- unfold R_dist in |- *;
+ unfold R_dist;
replace (sum_f_R0 (fun k:nat => An k * Bn k) n / sum_f_R0 An n - l) with
(sum_f_R0 (fun k:nat => An k * (Bn k - l)) n / sum_f_R0 An n)...
assert (H9 : (N1 < n)%nat)...
apply lt_le_trans with (S N)...
- apply le_lt_n_Sm; unfold N in |- *; apply le_max_l...
- rewrite (tech2 (fun k:nat => An k * (Bn k - l)) _ _ H9); unfold Rdiv in |- *;
+ apply le_lt_n_Sm; unfold N; apply le_max_l...
+ rewrite (tech2 (fun k:nat => An k * (Bn k - l)) _ _ H9); unfold Rdiv;
rewrite Rmult_plus_distr_r;
apply Rle_lt_trans with
(Rabs (sum_f_R0 (fun k:nat => An k * (Bn k - l)) N1 / sum_f_R0 An n) +
@@ -319,12 +319,12 @@ Proof with trivial.
(n - S N1) / sum_f_R0 An n))...
apply Rabs_triang...
rewrite (double_var eps); apply Rplus_lt_compat...
- unfold Rdiv in |- *; rewrite Rabs_mult; fold C in |- *; rewrite Rabs_right...
+ unfold Rdiv; rewrite Rabs_mult; fold C; rewrite Rabs_right...
apply (H7 n); apply le_trans with (S N)...
- apply le_trans with N; [ unfold N in |- *; apply le_max_r | apply le_n_Sn ]...
+ apply le_trans with N; [ unfold N; apply le_max_r | apply le_n_Sn ]...
apply Rle_ge; left; apply Rinv_0_lt_compat...
- unfold R_dist in H; unfold Rdiv in |- *; rewrite Rabs_mult;
+ unfold R_dist in H; unfold Rdiv; rewrite Rabs_mult;
rewrite (Rabs_right (/ sum_f_R0 An n))...
apply Rle_lt_trans with
(sum_f_R0 (fun i:nat => Rabs (An (S N1 + i)%nat * (Bn (S N1 + i)%nat - l)))
@@ -340,22 +340,22 @@ Proof with trivial.
do 2 rewrite <- (Rmult_comm (/ sum_f_R0 An n)); apply Rmult_le_compat_l...
left; apply Rinv_0_lt_compat...
apply sum_Rle; intros; rewrite Rabs_mult;
- pattern (An (S N1 + n0)%nat) at 2 in |- *;
+ pattern (An (S N1 + n0)%nat) at 2;
rewrite <- (Rabs_right (An (S N1 + n0)%nat))...
apply Rmult_le_compat_l...
apply Rabs_pos...
- left; apply H; unfold ge in |- *; apply le_trans with (S N1);
+ left; apply H; unfold ge; apply le_trans with (S N1);
[ apply le_n_Sn | apply le_plus_l ]...
apply Rle_ge; left...
rewrite <- (scal_sum (fun i:nat => An (S N1 + i)%nat) (n - S N1) (eps / 2));
- unfold Rdiv in |- *; repeat rewrite Rmult_assoc; apply Rmult_lt_compat_l...
- pattern (/ 2) at 2 in |- *; rewrite <- Rmult_1_r; apply Rmult_lt_compat_l...
+ unfold Rdiv; repeat rewrite Rmult_assoc; apply Rmult_lt_compat_l...
+ pattern (/ 2) at 2; rewrite <- Rmult_1_r; apply Rmult_lt_compat_l...
apply Rinv_0_lt_compat; prove_sup...
rewrite Rmult_comm; apply Rmult_lt_reg_l with (sum_f_R0 An n)...
rewrite <- Rmult_assoc; rewrite <- Rinv_r_sym...
rewrite Rmult_1_l; rewrite Rmult_1_r; rewrite (tech2 An N1 n)...
rewrite Rplus_comm;
- pattern (sum_f_R0 (fun i:nat => An (S N1 + i)%nat) (n - S N1)) at 1 in |- *;
+ pattern (sum_f_R0 (fun i:nat => An (S N1 + i)%nat) (n - S N1)) at 1;
rewrite <- Rplus_0_r; apply Rplus_lt_compat_l...
apply Rle_ge; left; apply Rinv_0_lt_compat...
replace (sum_f_R0 (fun k:nat => An k * (Bn k - l)) n) with
@@ -371,41 +371,41 @@ Lemma Cesaro_1 :
Proof with trivial.
intros Bn l H; set (An := fun _:nat => 1)...
assert (H0 : forall n:nat, 0 < An n)...
- intro; unfold An in |- *; apply Rlt_0_1...
+ intro; unfold An; apply Rlt_0_1...
assert (H1 : forall n:nat, 0 < sum_f_R0 An n)...
intro; apply tech1...
assert (H2 : cv_infty (fun n:nat => sum_f_R0 An n))...
- unfold cv_infty in |- *; intro; case (Rle_dec M 0); intro...
+ unfold cv_infty; intro; case (Rle_dec M 0); intro...
exists 0%nat; intros; apply Rle_lt_trans with 0...
assert (H2 : 0 < M)...
auto with real...
clear n; set (m := up M); elim (archimed M); intros;
assert (H5 : (0 <= m)%Z)...
- apply le_IZR; unfold m in |- *; simpl in |- *; left; apply Rlt_trans with M...
- elim (IZN _ H5); intros; exists x; intros; unfold An in |- *; rewrite sum_cte;
+ apply le_IZR; unfold m; simpl; left; apply Rlt_trans with M...
+ elim (IZN _ H5); intros; exists x; intros; unfold An; rewrite sum_cte;
rewrite Rmult_1_l; apply Rlt_trans with (IZR (up M))...
apply Rle_lt_trans with (INR x)...
- rewrite INR_IZR_INZ; fold m in |- *; rewrite <- H6; right...
+ rewrite INR_IZR_INZ; fold m; rewrite <- H6; right...
apply lt_INR; apply le_lt_n_Sm...
assert (H3 := Cesaro _ _ _ H H0 H2)...
- unfold Un_cv in |- *; unfold Un_cv in H3; intros; elim (H3 _ H4); intros;
- exists (S x); intros; unfold R_dist in |- *; unfold R_dist in H5;
+ unfold Un_cv; unfold Un_cv in H3; intros; elim (H3 _ H4); intros;
+ exists (S x); intros; unfold R_dist; unfold R_dist in H5;
apply Rle_lt_trans with
(Rabs
(sum_f_R0 (fun k:nat => An k * Bn k) (pred n) / sum_f_R0 An (pred n) - l))...
right;
replace (sum_f_R0 Bn (pred n) / INR n - l) with
(sum_f_R0 (fun k:nat => An k * Bn k) (pred n) / sum_f_R0 An (pred n) - l)...
- unfold Rminus in |- *; do 2 rewrite <- (Rplus_comm (- l));
+ unfold Rminus; do 2 rewrite <- (Rplus_comm (- l));
apply Rplus_eq_compat_l...
- unfold An in |- *;
+ unfold An;
replace (sum_f_R0 (fun k:nat => 1 * Bn k) (pred n)) with
(sum_f_R0 Bn (pred n))...
rewrite sum_cte; rewrite Rmult_1_l; replace (S (pred n)) with n...
apply S_pred with 0%nat; apply lt_le_trans with (S x)...
apply lt_O_Sn...
apply sum_eq; intros; ring...
- apply H5; unfold ge in |- *; apply le_S_n; replace (S (pred n)) with n...
+ apply H5; unfold ge; apply le_S_n; replace (S (pred n)) with n...
apply S_pred with 0%nat; apply lt_le_trans with (S x)...
apply lt_O_Sn...
Qed.
diff --git a/theories/Reals/SplitAbsolu.v b/theories/Reals/SplitAbsolu.v
index 819606c46..f6ddf03a0 100644
--- a/theories/Reals/SplitAbsolu.v
+++ b/theories/Reals/SplitAbsolu.v
@@ -19,5 +19,5 @@ Ltac split_Rabs :=
match goal with
| id:context [(Rabs _)] |- _ => generalize id; clear id; try split_Rabs
| |- context [(Rabs ?X1)] =>
- unfold Rabs in |- *; try split_case_Rabs; intros
+ unfold Rabs; try split_case_Rabs; intros
end.
diff --git a/theories/Reals/Sqrt_reg.v b/theories/Reals/Sqrt_reg.v
index c429567fe..a2e746c2f 100644
--- a/theories/Reals/Sqrt_reg.v
+++ b/theories/Reals/Sqrt_reg.v
@@ -21,67 +21,67 @@ Proof.
case (total_order_T h 0); intro.
elim s; intro.
repeat rewrite Rabs_left.
- unfold Rminus in |- *; do 2 rewrite <- (Rplus_comm (-1)).
+ unfold Rminus; do 2 rewrite <- (Rplus_comm (-1)).
do 2 rewrite Ropp_plus_distr; rewrite Ropp_involutive;
apply Rplus_le_compat_l.
apply Ropp_le_contravar; apply sqrt_le_1.
apply Rle_0_sqr.
apply H0.
- pattern (1 + h) at 2 in |- *; rewrite <- Rmult_1_r; unfold Rsqr in |- *;
+ pattern (1 + h) at 2; rewrite <- Rmult_1_r; unfold Rsqr;
apply Rmult_le_compat_l.
apply H0.
- pattern 1 at 2 in |- *; rewrite <- Rplus_0_r; apply Rplus_le_compat_l; left;
+ pattern 1 at 2; rewrite <- Rplus_0_r; apply Rplus_le_compat_l; left;
assumption.
apply Rplus_lt_reg_r with 1; rewrite Rplus_0_r; rewrite Rplus_comm;
- unfold Rminus in |- *; rewrite Rplus_assoc; rewrite Rplus_opp_l;
+ unfold Rminus; rewrite Rplus_assoc; rewrite Rplus_opp_l;
rewrite Rplus_0_r.
- pattern 1 at 2 in |- *; rewrite <- sqrt_1; apply sqrt_lt_1.
+ pattern 1 at 2; rewrite <- sqrt_1; apply sqrt_lt_1.
apply Rle_0_sqr.
left; apply Rlt_0_1.
- pattern 1 at 2 in |- *; rewrite <- Rsqr_1; apply Rsqr_incrst_1.
- pattern 1 at 2 in |- *; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l;
+ pattern 1 at 2; rewrite <- Rsqr_1; apply Rsqr_incrst_1.
+ pattern 1 at 2; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l;
assumption.
apply H0.
left; apply Rlt_0_1.
apply Rplus_lt_reg_r with 1; rewrite Rplus_0_r; rewrite Rplus_comm;
- unfold Rminus in |- *; rewrite Rplus_assoc; rewrite Rplus_opp_l;
+ unfold Rminus; rewrite Rplus_assoc; rewrite Rplus_opp_l;
rewrite Rplus_0_r.
- pattern 1 at 2 in |- *; rewrite <- sqrt_1; apply sqrt_lt_1.
+ pattern 1 at 2; rewrite <- sqrt_1; apply sqrt_lt_1.
apply H0.
left; apply Rlt_0_1.
- pattern 1 at 2 in |- *; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l;
+ pattern 1 at 2; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l;
assumption.
rewrite b; rewrite Rplus_0_r; rewrite Rsqr_1; rewrite sqrt_1; right;
reflexivity.
repeat rewrite Rabs_right.
- unfold Rminus in |- *; do 2 rewrite <- (Rplus_comm (-1));
+ unfold Rminus; do 2 rewrite <- (Rplus_comm (-1));
apply Rplus_le_compat_l.
apply sqrt_le_1.
apply H0.
apply Rle_0_sqr.
- pattern (1 + h) at 1 in |- *; rewrite <- Rmult_1_r; unfold Rsqr in |- *;
+ pattern (1 + h) at 1; rewrite <- Rmult_1_r; unfold Rsqr;
apply Rmult_le_compat_l.
apply H0.
- pattern 1 at 1 in |- *; rewrite <- Rplus_0_r; apply Rplus_le_compat_l; left;
+ pattern 1 at 1; rewrite <- Rplus_0_r; apply Rplus_le_compat_l; left;
assumption.
apply Rle_ge; apply Rplus_le_reg_l with 1.
- rewrite Rplus_0_r; rewrite Rplus_comm; unfold Rminus in |- *;
+ rewrite Rplus_0_r; rewrite Rplus_comm; unfold Rminus;
rewrite Rplus_assoc; rewrite Rplus_opp_l; rewrite Rplus_0_r.
- pattern 1 at 1 in |- *; rewrite <- sqrt_1; apply sqrt_le_1.
+ pattern 1 at 1; rewrite <- sqrt_1; apply sqrt_le_1.
left; apply Rlt_0_1.
apply Rle_0_sqr.
- pattern 1 at 1 in |- *; rewrite <- Rsqr_1; apply Rsqr_incr_1.
- pattern 1 at 1 in |- *; rewrite <- Rplus_0_r; apply Rplus_le_compat_l; left;
+ pattern 1 at 1; rewrite <- Rsqr_1; apply Rsqr_incr_1.
+ pattern 1 at 1; rewrite <- Rplus_0_r; apply Rplus_le_compat_l; left;
assumption.
left; apply Rlt_0_1.
apply H0.
apply Rle_ge; left; apply Rplus_lt_reg_r with 1.
- rewrite Rplus_0_r; rewrite Rplus_comm; unfold Rminus in |- *;
+ rewrite Rplus_0_r; rewrite Rplus_comm; unfold Rminus;
rewrite Rplus_assoc; rewrite Rplus_opp_l; rewrite Rplus_0_r.
- pattern 1 at 1 in |- *; rewrite <- sqrt_1; apply sqrt_lt_1.
+ pattern 1 at 1; rewrite <- sqrt_1; apply sqrt_lt_1.
left; apply Rlt_0_1.
apply H0.
- pattern 1 at 1 in |- *; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l;
+ pattern 1 at 1; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l;
assumption.
rewrite sqrt_Rsqr.
replace (1 + h - 1) with h; [ right; reflexivity | ring ].
@@ -101,14 +101,14 @@ Qed.
(** sqrt is continuous in 1 *)
Lemma sqrt_continuity_pt_R1 : continuity_pt sqrt 1.
Proof.
- unfold continuity_pt in |- *; unfold continue_in in |- *;
- unfold limit1_in in |- *; unfold limit_in in |- *;
- unfold dist in |- *; simpl in |- *; unfold R_dist in |- *;
+ unfold continuity_pt; unfold continue_in;
+ unfold limit1_in; unfold limit_in;
+ unfold dist; simpl; unfold R_dist;
intros.
set (alpha := Rmin eps 1).
exists alpha; intros.
split.
- unfold alpha in |- *; unfold Rmin in |- *; case (Rle_dec eps 1); intro.
+ unfold alpha; unfold Rmin; case (Rle_dec eps 1); intro.
assumption.
apply Rlt_0_1.
intros; elim H0; intros.
@@ -117,18 +117,18 @@ Proof.
apply sqrt_var_maj.
apply Rle_trans with alpha.
left; apply H2.
- unfold alpha in |- *; apply Rmin_r.
+ unfold alpha; apply Rmin_r.
apply Rlt_le_trans with alpha;
- [ apply H2 | unfold alpha in |- *; apply Rmin_l ].
+ [ apply H2 | unfold alpha; apply Rmin_l ].
Qed.
(** sqrt is continuous forall x>0 *)
Lemma sqrt_continuity_pt : forall x:R, 0 < x -> continuity_pt sqrt x.
Proof.
intros; generalize sqrt_continuity_pt_R1.
- unfold continuity_pt in |- *; unfold continue_in in |- *;
- unfold limit1_in in |- *; unfold limit_in in |- *;
- unfold dist in |- *; simpl in |- *; unfold R_dist in |- *;
+ unfold continuity_pt; unfold continue_in;
+ unfold limit1_in; unfold limit_in;
+ unfold dist; simpl; unfold R_dist;
intros.
cut (0 < eps / sqrt x).
intro; elim (H0 _ H2); intros alp_1 H3.
@@ -136,9 +136,9 @@ Proof.
set (alpha := alp_1 * x).
exists (Rmin alpha x); intros.
split.
- change (0 < Rmin alpha x) in |- *; unfold Rmin in |- *;
+ change (0 < Rmin alpha x); unfold Rmin;
case (Rle_dec alpha x); intro.
- unfold alpha in |- *; apply Rmult_lt_0_compat; assumption.
+ unfold alpha; apply Rmult_lt_0_compat; assumption.
apply H.
intros; replace x0 with (x + (x0 - x)); [ idtac | ring ];
replace (sqrt (x + (x0 - x)) - sqrt x) with
@@ -150,7 +150,7 @@ Proof.
rewrite Rmult_1_l; rewrite Rmult_comm.
unfold Rdiv in H5.
case (Req_dec x x0); intro.
- rewrite H7; unfold Rminus, Rdiv in |- *; rewrite Rplus_opp_r;
+ rewrite H7; unfold Rminus, Rdiv; rewrite Rplus_opp_r;
rewrite Rmult_0_l; rewrite Rplus_0_r; rewrite Rplus_opp_r;
rewrite Rabs_R0.
apply Rmult_lt_0_compat.
@@ -158,10 +158,10 @@ Proof.
apply Rinv_0_lt_compat; rewrite <- H7; apply sqrt_lt_R0; assumption.
apply H5.
split.
- unfold D_x, no_cond in |- *.
+ unfold D_x, no_cond.
split.
trivial.
- red in |- *; intro.
+ red; intro.
cut ((x0 - x) * / x = 0).
intro.
elim (Rmult_integral _ _ H9); intro.
@@ -170,35 +170,35 @@ Proof.
assert (H11 := Rmult_eq_0_compat_r _ x H10).
rewrite <- Rinv_l_sym in H11.
elim R1_neq_R0; exact H11.
- red in |- *; intro; rewrite H12 in H; elim (Rlt_irrefl _ H).
- symmetry in |- *; apply Rplus_eq_reg_l with 1; rewrite Rplus_0_r;
+ red; intro; rewrite H12 in H; elim (Rlt_irrefl _ H).
+ symmetry ; apply Rplus_eq_reg_l with 1; rewrite Rplus_0_r;
unfold Rdiv in H8; exact H8.
- unfold Rminus in |- *; rewrite Rplus_comm; rewrite <- Rplus_assoc;
+ unfold Rminus; rewrite Rplus_comm; rewrite <- Rplus_assoc;
rewrite Rplus_opp_l; rewrite Rplus_0_l; elim H6; intros.
- unfold Rdiv in |- *; rewrite Rabs_mult.
+ unfold Rdiv; rewrite Rabs_mult.
rewrite Rabs_Rinv.
rewrite (Rabs_right x).
rewrite Rmult_comm; apply Rmult_lt_reg_l with x.
apply H.
rewrite <- Rmult_assoc; rewrite <- Rinv_r_sym.
- rewrite Rmult_1_l; rewrite Rmult_comm; fold alpha in |- *.
+ rewrite Rmult_1_l; rewrite Rmult_comm; fold alpha.
apply Rlt_le_trans with (Rmin alpha x).
apply H9.
apply Rmin_l.
- red in |- *; intro; rewrite H10 in H; elim (Rlt_irrefl _ H).
+ red; intro; rewrite H10 in H; elim (Rlt_irrefl _ H).
apply Rle_ge; left; apply H.
- red in |- *; intro; rewrite H10 in H; elim (Rlt_irrefl _ H).
+ red; intro; rewrite H10 in H; elim (Rlt_irrefl _ H).
assert (H7 := sqrt_lt_R0 x H).
- red in |- *; intro; rewrite H8 in H7; elim (Rlt_irrefl _ H7).
+ red; intro; rewrite H8 in H7; elim (Rlt_irrefl _ H7).
apply Rle_ge; apply sqrt_positivity.
left; apply H.
- unfold Rminus in |- *; rewrite Rmult_plus_distr_l;
+ unfold Rminus; rewrite Rmult_plus_distr_l;
rewrite Ropp_mult_distr_r_reverse; repeat rewrite <- sqrt_mult.
rewrite Rmult_1_r; rewrite Rmult_plus_distr_l; rewrite Rmult_1_r;
- unfold Rdiv in |- *; rewrite Rmult_comm; rewrite Rmult_assoc;
+ unfold Rdiv; rewrite Rmult_comm; rewrite Rmult_assoc;
rewrite <- Rinv_l_sym.
rewrite Rmult_1_r; reflexivity.
- red in |- *; intro; rewrite H7 in H; elim (Rlt_irrefl _ H).
+ red; intro; rewrite H7 in H; elim (Rlt_irrefl _ H).
left; apply H.
left; apply Rlt_0_1.
left; apply H.
@@ -208,7 +208,7 @@ Proof.
rewrite Rplus_comm.
apply Rplus_le_reg_l with (- ((x0 - x) / x)).
rewrite Rplus_0_r; rewrite <- Rplus_assoc; rewrite Rplus_opp_l;
- rewrite Rplus_0_l; unfold Rdiv in |- *; rewrite <- Ropp_mult_distr_l_reverse.
+ rewrite Rplus_0_l; unfold Rdiv; rewrite <- Ropp_mult_distr_l_reverse.
apply Rmult_le_reg_l with x.
apply H.
rewrite Rmult_1_r; rewrite Rmult_comm; rewrite Rmult_assoc;
@@ -216,13 +216,13 @@ Proof.
rewrite Rmult_1_r; left; apply Rlt_le_trans with (Rmin alpha x).
apply H8.
apply Rmin_r.
- red in |- *; intro; rewrite H9 in H; elim (Rlt_irrefl _ H).
+ red; intro; rewrite H9 in H; elim (Rlt_irrefl _ H).
apply Rplus_le_le_0_compat.
left; apply Rlt_0_1.
- unfold Rdiv in |- *; apply Rmult_le_pos.
+ unfold Rdiv; apply Rmult_le_pos.
apply Rge_le; exact r.
left; apply Rinv_0_lt_compat; apply H.
- unfold Rdiv in |- *; apply Rmult_lt_0_compat.
+ unfold Rdiv; apply Rmult_lt_0_compat.
apply H1.
apply Rinv_0_lt_compat; apply sqrt_lt_R0; apply H.
Qed.
@@ -235,7 +235,7 @@ Proof.
cut (continuity_pt g 0).
intro; cut (g 0 <> 0).
intro; assert (H2 := continuity_pt_inv g 0 H0 H1).
- unfold derivable_pt_lim in |- *; intros; unfold continuity_pt in H2;
+ unfold derivable_pt_lim; intros; unfold continuity_pt in H2;
unfold continue_in in H2; unfold limit1_in in H2;
unfold limit_in in H2; simpl in H2; unfold R_dist in H2.
elim (H2 eps H3); intros alpha H4.
@@ -247,29 +247,29 @@ Proof.
unfold inv_fct, g in H6; replace (2 * sqrt x) with (sqrt x + sqrt (x + 0)).
apply H6.
split.
- unfold D_x, no_cond in |- *.
+ unfold D_x, no_cond.
split.
trivial.
apply (not_eq_sym (A:=R)); exact H8.
- unfold Rminus in |- *; rewrite Ropp_0; rewrite Rplus_0_r;
+ unfold Rminus; rewrite Ropp_0; rewrite Rplus_0_r;
apply Rlt_le_trans with alpha1.
exact H9.
- unfold alpha1 in |- *; apply Rmin_l.
+ unfold alpha1; apply Rmin_l.
rewrite Rplus_0_r; ring.
cut (0 <= x + h).
intro; cut (0 < sqrt x + sqrt (x + h)).
intro; apply Rmult_eq_reg_l with (sqrt x + sqrt (x + h)).
rewrite <- Rinv_r_sym.
- rewrite Rplus_comm; unfold Rdiv in |- *; rewrite <- Rmult_assoc;
+ rewrite Rplus_comm; unfold Rdiv; rewrite <- Rmult_assoc;
rewrite Rsqr_plus_minus; repeat rewrite Rsqr_sqrt.
- rewrite Rplus_comm; unfold Rminus in |- *; rewrite Rplus_assoc;
+ rewrite Rplus_comm; unfold Rminus; rewrite Rplus_assoc;
rewrite Rplus_opp_r; rewrite Rplus_0_r; rewrite <- Rinv_r_sym.
reflexivity.
apply H8.
left; apply H.
assumption.
- red in |- *; intro; rewrite H12 in H11; elim (Rlt_irrefl _ H11).
- red in |- *; intro; rewrite H12 in H11; elim (Rlt_irrefl _ H11).
+ red; intro; rewrite H12 in H11; elim (Rlt_irrefl _ H11).
+ red; intro; rewrite H12 in H11; elim (Rlt_irrefl _ H11).
apply Rplus_lt_le_0_compat.
apply sqrt_lt_R0; apply H.
apply sqrt_positivity; apply H10.
@@ -279,35 +279,35 @@ Proof.
rewrite Rplus_0_r; rewrite Rplus_comm; rewrite Rplus_assoc;
rewrite Rplus_opp_r; rewrite Rplus_0_r; left; apply Rlt_le_trans with alpha1.
apply H9.
- unfold alpha1 in |- *; apply Rmin_r.
+ unfold alpha1; apply Rmin_r.
apply Rplus_le_le_0_compat.
left; assumption.
apply Rge_le; apply r.
- unfold alpha1 in |- *; unfold Rmin in |- *; case (Rle_dec alpha x); intro.
+ unfold alpha1; unfold Rmin; case (Rle_dec alpha x); intro.
apply H5.
apply H.
- unfold g in |- *; rewrite Rplus_0_r.
+ unfold g; rewrite Rplus_0_r.
cut (0 < sqrt x + sqrt x).
- intro; red in |- *; intro; rewrite H2 in H1; elim (Rlt_irrefl _ H1).
+ intro; red; intro; rewrite H2 in H1; elim (Rlt_irrefl _ H1).
apply Rplus_lt_0_compat; apply sqrt_lt_R0; apply H.
replace g with (fct_cte (sqrt x) + comp sqrt (fct_cte x + id))%F;
[ idtac | reflexivity ].
apply continuity_pt_plus.
- apply continuity_pt_const; unfold constant, fct_cte in |- *; intro;
+ apply continuity_pt_const; unfold constant, fct_cte; intro;
reflexivity.
apply continuity_pt_comp.
apply continuity_pt_plus.
- apply continuity_pt_const; unfold constant, fct_cte in |- *; intro;
+ apply continuity_pt_const; unfold constant, fct_cte; intro;
reflexivity.
apply derivable_continuous_pt; apply derivable_pt_id.
apply sqrt_continuity_pt.
- unfold plus_fct, fct_cte, id in |- *; rewrite Rplus_0_r; apply H.
+ unfold plus_fct, fct_cte, id; rewrite Rplus_0_r; apply H.
Qed.
(**********)
Lemma derivable_pt_sqrt : forall x:R, 0 < x -> derivable_pt sqrt x.
Proof.
- unfold derivable_pt in |- *; intros.
+ unfold derivable_pt; intros.
exists (/ (2 * sqrt x)).
apply derivable_pt_lim_sqrt; assumption.
Qed.
@@ -330,19 +330,19 @@ Proof.
intros; case (Rtotal_order 0 x); intro.
apply (sqrt_continuity_pt x H0).
elim H0; intro.
- unfold continuity_pt in |- *; unfold continue_in in |- *;
- unfold limit1_in in |- *; unfold limit_in in |- *;
- simpl in |- *; unfold R_dist in |- *; intros.
+ unfold continuity_pt; unfold continue_in;
+ unfold limit1_in; unfold limit_in;
+ simpl; unfold R_dist; intros.
exists (Rsqr eps); intros.
split.
- change (0 < Rsqr eps) in |- *; apply Rsqr_pos_lt.
- red in |- *; intro; rewrite H3 in H2; elim (Rlt_irrefl _ H2).
+ change (0 < Rsqr eps); apply Rsqr_pos_lt.
+ red; intro; rewrite H3 in H2; elim (Rlt_irrefl _ H2).
intros; elim H3; intros.
- rewrite <- H1; rewrite sqrt_0; unfold Rminus in |- *; rewrite Ropp_0;
+ rewrite <- H1; rewrite sqrt_0; unfold Rminus; rewrite Ropp_0;
rewrite Rplus_0_r; rewrite <- H1 in H5; unfold Rminus in H5;
rewrite Ropp_0 in H5; rewrite Rplus_0_r in H5.
case (Rcase_abs x0); intro.
- unfold sqrt in |- *; case (Rcase_abs x0); intro.
+ unfold sqrt; case (Rcase_abs x0); intro.
rewrite Rabs_R0; apply H2.
assert (H6 := Rge_le _ _ r0); elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H6 r)).
rewrite Rabs_right.
diff --git a/theories/Relations/Operators_Properties.v b/theories/Relations/Operators_Properties.v
index f7f5512e7..3f3810083 100644
--- a/theories/Relations/Operators_Properties.v
+++ b/theories/Relations/Operators_Properties.v
@@ -50,7 +50,7 @@ Section Properties.
Lemma clos_rt_idempotent : inclusion (R*)* R*.
Proof.
- red in |- *.
+ red.
induction 1; auto with sets.
intros.
apply rt_trans with y; auto with sets.
@@ -66,7 +66,7 @@ Section Properties.
Lemma clos_rt_clos_rst :
inclusion (clos_refl_trans R) (clos_refl_sym_trans R).
Proof.
- red in |- *.
+ red.
induction 1; auto with sets.
apply rst_trans with y; auto with sets.
Qed.
@@ -87,7 +87,7 @@ Section Properties.
inclusion (clos_refl_sym_trans (clos_refl_sym_trans R))
(clos_refl_sym_trans R).
Proof.
- red in |- *.
+ red.
induction 1; auto with sets.
apply rst_trans with y; auto with sets.
Qed.
diff --git a/theories/Relations/Relations.v b/theories/Relations/Relations.v
index f9fb2c442..ed2567396 100644
--- a/theories/Relations/Relations.v
+++ b/theories/Relations/Relations.v
@@ -14,16 +14,16 @@ Lemma inverse_image_of_equivalence :
forall (A B:Type) (f:A -> B) (r:relation B),
equivalence B r -> equivalence A (fun x y:A => r (f x) (f y)).
Proof.
- intros; split; elim H; red in |- *; auto.
+ intros; split; elim H; red; auto.
intros _ equiv_trans _ x y z H0 H1; apply equiv_trans with (f y); assumption.
Qed.
Lemma inverse_image_of_eq :
forall (A B:Type) (f:A -> B), equivalence A (fun x y:A => f x = f y).
Proof.
- split; red in |- *;
+ split; red;
[ (* reflexivity *) reflexivity
| (* transitivity *) intros; transitivity (f y); assumption
- | (* symmetry *) intros; symmetry in |- *; assumption ].
+ | (* symmetry *) intros; symmetry ; assumption ].
Qed.
diff --git a/theories/Sets/Classical_sets.v b/theories/Sets/Classical_sets.v
index f93631c7e..bf7b52b22 100644
--- a/theories/Sets/Classical_sets.v
+++ b/theories/Sets/Classical_sets.v
@@ -38,8 +38,8 @@ Section Ensembles_classical.
elim (not_all_ex_not U (fun x:U => ~ In U A x)).
intros x H; apply Inhabited_intro with x.
apply NNPP; auto with sets.
- red in |- *; intro.
- apply NI; red in |- *.
+ red; intro.
+ apply NI; red.
intros x H'; elim (H x); trivial with sets.
Qed.
@@ -47,7 +47,7 @@ Section Ensembles_classical.
forall A:Ensemble U, A <> Empty_set U -> Inhabited U A.
Proof.
intros; apply not_included_empty_Inhabited.
- red in |- *; auto with sets.
+ red; auto with sets.
Qed.
Lemma Inhabited_Setminus :
@@ -73,7 +73,7 @@ Section Ensembles_classical.
Lemma Subtract_intro :
forall (A:Ensemble U) (x y:U), In U A y -> x <> y -> In U (Subtract U A x) y.
Proof.
- unfold Subtract at 1 in |- *; auto with sets.
+ unfold Subtract at 1; auto with sets.
Qed.
Hint Resolve Subtract_intro : sets.
@@ -103,7 +103,7 @@ Section Ensembles_classical.
Lemma not_SIncl_empty :
forall X:Ensemble U, ~ Strict_Included U X (Empty_set U).
Proof.
- intro X; red in |- *; intro H'; try exact H'.
+ intro X; red; intro H'; try exact H'.
lapply (Strict_Included_inv X (Empty_set U)); auto with sets.
intro H'0; elim H'0; intros H'1 H'2; elim H'2; clear H'0.
intros x H'0; elim H'0.
@@ -113,10 +113,10 @@ Section Ensembles_classical.
Lemma Complement_Complement :
forall A:Ensemble U, Complement U (Complement U A) = A.
Proof.
- unfold Complement in |- *; intros; apply Extensionality_Ensembles;
+ unfold Complement; intros; apply Extensionality_Ensembles;
auto with sets.
- red in |- *; split; auto with sets.
- red in |- *; intros; apply NNPP; auto with sets.
+ red; split; auto with sets.
+ red; intros; apply NNPP; auto with sets.
Qed.
End Ensembles_classical.
diff --git a/theories/Sets/Constructive_sets.v b/theories/Sets/Constructive_sets.v
index e6dd83810..324255f6d 100644
--- a/theories/Sets/Constructive_sets.v
+++ b/theories/Sets/Constructive_sets.v
@@ -36,24 +36,24 @@ Section Ensembles_facts.
Lemma Noone_in_empty : forall x:U, ~ In U (Empty_set U) x.
Proof.
- red in |- *; destruct 1.
+ red; destruct 1.
Qed.
Lemma Included_Empty : forall A:Ensemble U, Included U (Empty_set U) A.
Proof.
- intro; red in |- *.
+ intro; red.
intros x H; elim (Noone_in_empty x); auto with sets.
Qed.
Lemma Add_intro1 :
forall (A:Ensemble U) (x y:U), In U A y -> In U (Add U A x) y.
Proof.
- unfold Add at 1 in |- *; auto with sets.
+ unfold Add at 1; auto with sets.
Qed.
Lemma Add_intro2 : forall (A:Ensemble U) (x:U), In U (Add U A x) x.
Proof.
- unfold Add at 1 in |- *; auto with sets.
+ unfold Add at 1; auto with sets.
Qed.
Lemma Inhabited_add : forall (A:Ensemble U) (x:U), Inhabited U (Add U A x).
@@ -66,7 +66,7 @@ Section Ensembles_facts.
forall X:Ensemble U, Inhabited U X -> X <> Empty_set U.
Proof.
intros X H'; elim H'.
- intros x H'0; red in |- *; intro H'1.
+ intros x H'0; red; intro H'1.
absurd (In U X x); auto with sets.
rewrite H'1; auto using Noone_in_empty with sets.
Qed.
@@ -78,7 +78,7 @@ Section Ensembles_facts.
Lemma not_Empty_Add : forall (A:Ensemble U) (x:U), Empty_set U <> Add U A x.
Proof.
- intros; red in |- *; intro H; generalize (Add_not_Empty A x); auto with sets.
+ intros; red; intro H; generalize (Add_not_Empty A x); auto with sets.
Qed.
Lemma Singleton_inv : forall x y:U, In U (Singleton U x) y -> x = y.
@@ -121,7 +121,7 @@ Section Ensembles_facts.
forall (A B:Ensemble U) (x:U),
In U A x -> ~ In U B x -> In U (Setminus U A B) x.
Proof.
- unfold Setminus at 1 in |- *; red in |- *; auto with sets.
+ unfold Setminus at 1; red; auto with sets.
Qed.
Lemma Strict_Included_intro :
@@ -132,7 +132,7 @@ Section Ensembles_facts.
Lemma Strict_Included_strict : forall X:Ensemble U, ~ Strict_Included U X X.
Proof.
- intro X; red in |- *; intro H'; elim H'.
+ intro X; red; intro H'; elim H'.
intros H'0 H'1; elim H'1; auto with sets.
Qed.
diff --git a/theories/Sets/Finite_sets.v b/theories/Sets/Finite_sets.v
index f08436754..07543276b 100644
--- a/theories/Sets/Finite_sets.v
+++ b/theories/Sets/Finite_sets.v
@@ -61,7 +61,7 @@ Section Ensembles_finis_facts.
(exists x : _, X = Add U A x /\ ~ In U A x /\ cardinal U A n)
end.
Proof.
- induction 1; simpl in |- *; auto.
+ induction 1; simpl; auto.
exists A; exists x; auto.
Qed.
@@ -73,7 +73,7 @@ Section Ensembles_finis_facts.
| S n => Inhabited U X
end.
Proof.
- intros X p C; elim C; simpl in |- *; trivial with sets.
+ intros X p C; elim C; simpl; trivial with sets.
Qed.
End Ensembles_finis_facts.
diff --git a/theories/Sets/Finite_sets_facts.v b/theories/Sets/Finite_sets_facts.v
index 350cd783c..8895e4569 100644
--- a/theories/Sets/Finite_sets_facts.v
+++ b/theories/Sets/Finite_sets_facts.v
@@ -62,7 +62,7 @@ Section Finite_sets_facts.
Theorem Singleton_is_finite : forall x:U, Finite U (Singleton U x).
Proof.
intro x; rewrite <- (Empty_set_zero U (Singleton U x)).
- change (Finite U (Add U (Empty_set U) x)) in |- *; auto with sets.
+ change (Finite U (Add U (Empty_set U) x)); auto with sets.
Qed.
Theorem Union_preserves_Finite :
@@ -134,15 +134,15 @@ Section Finite_sets_facts.
cut (S (pred n) = pred (S n)).
intro H'5; rewrite <- H'5.
apply card_add; auto with sets.
- red in |- *; intro H'6; elim H'6.
+ red; intro H'6; elim H'6.
intros H'7 H'8; try assumption.
elim H'1; auto with sets.
- unfold pred at 2 in |- *; symmetry in |- *.
+ unfold pred at 2; symmetry .
apply S_pred with (m := 0).
- change (n > 0) in |- *.
+ change (n > 0).
apply inh_card_gt_O with (X := X); auto with sets.
apply Inhabited_intro with (x := x0); auto with sets.
- red in |- *; intro H'3.
+ red; intro H'3.
apply H'1.
elim H'3; auto with sets.
rewrite H'3; auto with sets.
@@ -152,7 +152,7 @@ Section Finite_sets_facts.
intro H'4; rewrite H'4; auto with sets.
intros H'3 H'4; try assumption.
absurd (In U (Add U X x) x0); auto with sets.
- red in |- *; intro H'5; try exact H'5.
+ red; intro H'5; try exact H'5.
lapply (Add_inv U X x x0); tauto.
Qed.
@@ -183,11 +183,11 @@ Section Finite_sets_facts.
intros H'6 H'7; apply f_equal.
apply H'0 with (Y := X0); auto with sets.
apply Simplify_add with (x := x); auto with sets.
- pattern x at 2 in |- *; rewrite H'6; auto with sets.
+ pattern x at 2; rewrite H'6; auto with sets.
intros H'6 H'7.
absurd (Add U X x = Add U X0 x0); auto with sets.
clear H'0 H' H'3 n H'5 H'4 H'2 H'1 c2.
- red in |- *; intro H'.
+ red; intro H'.
lapply (Extension U (Add U X x) (Add U X0 x0)); auto with sets.
clear H'.
intro H'; red in H'.
@@ -254,7 +254,7 @@ Section Finite_sets_facts.
apply H'0 with (Y := X0); auto with sets arith.
apply sincl_add_x with (x := x0).
rewrite <- H'6; auto with sets arith.
- pattern x0 at 1 in |- *; rewrite <- H'6; trivial with sets arith.
+ pattern x0 at 1; rewrite <- H'6; trivial with sets arith.
intros H'6 H'7; red in H'5.
elim H'5; intros H'8 H'9; try exact H'8; clear H'5.
red in H'8.
diff --git a/theories/Sets/Image.v b/theories/Sets/Image.v
index 24facb6f6..440e636cb 100644
--- a/theories/Sets/Image.v
+++ b/theories/Sets/Image.v
@@ -55,7 +55,7 @@ Section Image.
Proof.
intros X x f.
apply Extensionality_Ensembles.
- split; red in |- *; intros x0 H'.
+ split; red; intros x0 H'.
elim H'; intros.
rewrite H0.
elim Add_inv with U X x x1; auto using Im_def with sets.
@@ -72,7 +72,7 @@ Section Image.
intro f; try assumption.
apply Extensionality_Ensembles.
split; auto with sets.
- red in |- *.
+ red.
intros x H'; elim H'.
intros x0 H'0; elim H'0; auto with sets.
Qed.
@@ -102,7 +102,7 @@ Section Image.
forall f:U -> V,
~ injective f -> exists x : _, (exists y : _, f x = f y /\ x <> y).
Proof.
- unfold injective in |- *; intros f H.
+ unfold injective; intros f H.
cut (exists x : _, ~ (forall y:U, f x = f y -> x = y)).
2: apply not_all_ex_not with (P := fun x:U => forall y:U, f x = f y -> x = y);
trivial with sets.
@@ -153,7 +153,7 @@ Section Image.
apply cardinal_unicity with V (Add _ (Im A f) (f x)); trivial with sets.
apply card_add; auto with sets.
rewrite <- H1; trivial with sets.
- red in |- *; intro; apply H'2.
+ red; intro; apply H'2.
apply In_Image_elim with f; trivial with sets.
Qed.
@@ -180,7 +180,7 @@ Section Image.
cardinal U A n ->
forall n':nat, cardinal V (Im A f) n' -> n' < n -> ~ injective f.
Proof.
- unfold not in |- *; intros A f n CAn n' CIfn' ltn'n I.
+ unfold not; intros A f n CAn n' CIfn' ltn'n I.
cut (n' = n).
intro E; generalize ltn'n; rewrite E; exact (lt_irrefl n).
apply injective_preserves_cardinal with (A := A) (f := f) (n := n);
diff --git a/theories/Sets/Infinite_sets.v b/theories/Sets/Infinite_sets.v
index a21fe880c..f2862e14e 100644
--- a/theories/Sets/Infinite_sets.v
+++ b/theories/Sets/Infinite_sets.v
@@ -56,7 +56,7 @@ Section Infinite_sets.
intros A X H' H'0.
elim H'0; intros H'1 H'2.
apply Strict_super_set_contains_new_element; auto with sets.
- red in |- *; intro H'3; apply H'.
+ red; intro H'3; apply H'.
rewrite <- H'3; auto with sets.
Qed.
@@ -76,7 +76,7 @@ Section Infinite_sets.
split.
apply card_add; auto with sets.
cut (In U A x).
- intro H'4; red in |- *; auto with sets.
+ intro H'4; red; auto with sets.
intros x0 H'5; elim H'5; auto with sets.
intros x1 H'6; elim H'6; auto with sets.
elim H'3; auto with sets.
@@ -91,7 +91,7 @@ Section Infinite_sets.
split.
apply card_add; auto with sets.
elim H'2; auto with sets.
- red in |- *.
+ red.
intros x2 H'9; elim H'9; auto with sets.
intros x3 H'10; elim H'10; auto with sets.
elim H'2; auto with sets.
@@ -167,11 +167,11 @@ Section Infinite_sets.
apply ex_intro with (x := Add U x0 x1).
split; [ split; [ try assumption | idtac ] | idtac ].
apply card_add; auto with sets.
- red in |- *; intro H'9; try exact H'9.
+ red; intro H'9; try exact H'9.
apply H'1.
elim H'4; intros H'10 H'11; rewrite <- H'11; clear H'4; auto with sets.
elim H'4; intros H'9 H'10; try exact H'9; clear H'4; auto with sets.
- red in |- *; auto with sets.
+ red; auto with sets.
intros x2 H'4; elim H'4; auto with sets.
intros x3 H'11; elim H'11; auto with sets.
elim H'4; intros H'9 H'10; rewrite <- H'10; clear H'4; auto with sets.
@@ -235,7 +235,7 @@ Section Infinite_sets.
Proof.
intros A f H' H'0 H'1.
apply NNPP.
- red in |- *; intro H'2.
+ red; intro H'2.
elim (Pigeonhole_bis A f); auto with sets.
Qed.
diff --git a/theories/Sets/Integers.v b/theories/Sets/Integers.v
index 2c94a2e16..5ba7856eb 100644
--- a/theories/Sets/Integers.v
+++ b/theories/Sets/Integers.v
@@ -49,17 +49,17 @@ Section Integers_sect.
Lemma le_reflexive : Reflexive nat le.
Proof.
- red in |- *; auto with arith.
+ red; auto with arith.
Qed.
Lemma le_antisym : Antisymmetric nat le.
Proof.
- red in |- *; intros x y H H'; rewrite (le_antisym x y); auto.
+ red; intros x y H H'; rewrite (le_antisym x y); auto.
Qed.
Lemma le_trans : Transitive nat le.
Proof.
- red in |- *; intros; apply le_trans with y; auto.
+ red; intros; apply le_trans with y; auto.
Qed.
Lemma le_Order : Order nat le.
@@ -83,7 +83,7 @@ Section Integers_sect.
Lemma le_total_order : Totally_ordered nat nat_po Integers.
Proof.
apply Totally_ordered_definition.
- simpl in |- *.
+ simpl.
intros H' x y H'0.
elim le_or_lt with (n := x) (m := y).
intro H'1; left; auto with sets arith.
@@ -103,7 +103,7 @@ Section Integers_sect.
intros A H'0 H'1 x H'2; try assumption.
elim H'1; intros x0 H'3; clear H'1.
elim le_total_order.
- simpl in |- *.
+ simpl.
intro H'1; try assumption.
lapply H'1; [ intro H'4; idtac | try assumption ]; auto with sets arith.
generalize (H'4 x0 x).
@@ -114,28 +114,28 @@ Section Integers_sect.
[ intro H'5; try exact H'5; clear H'4 H'1 | intro H'5; clear H'4 H'1 ]
| clear H'1 ].
exists x.
- apply Upper_Bound_definition. simpl in |- *. apply triv_nat.
+ apply Upper_Bound_definition. simpl. apply triv_nat.
intros y H'1; elim H'1.
generalize le_trans.
intro H'4; red in H'4.
intros x1 H'6; try assumption.
- apply H'4 with (y := x0). elim H'3; simpl in |- *; auto with sets arith. trivial.
+ apply H'4 with (y := x0). elim H'3; simpl; auto with sets arith. trivial.
intros x1 H'4; elim H'4. unfold nat_po; simpl; trivial.
exists x0.
apply Upper_Bound_definition.
unfold nat_po. simpl. apply triv_nat.
intros y H'1; elim H'1.
intros x1 H'4; try assumption.
- elim H'3; simpl in |- *; auto with sets arith.
+ elim H'3; simpl; auto with sets arith.
intros x1 H'4; elim H'4; auto with sets arith.
- red in |- *.
+ red.
intros x1 H'1; elim H'1; apply triv_nat.
Qed.
Lemma Integers_has_no_ub :
~ (exists m : nat, Upper_Bound nat nat_po Integers m).
Proof.
- red in |- *; intro H'; elim H'.
+ red; intro H'; elim H'.
intros x H'0.
elim H'0; intros H'1 H'2.
cut (In nat Integers (S x)).
@@ -150,7 +150,7 @@ Section Integers_sect.
Lemma Integers_infinite : ~ Finite nat Integers.
Proof.
generalize Integers_has_no_ub.
- intro H'; red in |- *; intro H'0; try exact H'0.
+ intro H'; red; intro H'0; try exact H'0.
apply H'.
apply Finite_subset_has_lub; auto with sets arith.
Qed.
diff --git a/theories/Sets/Multiset.v b/theories/Sets/Multiset.v
index 5f21335fd..4159d3877 100644
--- a/theories/Sets/Multiset.v
+++ b/theories/Sets/Multiset.v
@@ -42,14 +42,14 @@ Section multiset_defs.
Lemma meq_trans : forall x y z:multiset, meq x y -> meq y z -> meq x z.
Proof.
- unfold meq in |- *.
+ unfold meq.
destruct x; destruct y; destruct z.
intros; rewrite H; auto.
Qed.
Lemma meq_sym : forall x y:multiset, meq x y -> meq y x.
Proof.
- unfold meq in |- *.
+ unfold meq.
destruct x; destruct y; auto.
Qed.
@@ -59,12 +59,12 @@ Section multiset_defs.
Lemma munion_empty_left : forall x:multiset, meq x (munion EmptyBag x).
Proof.
- unfold meq in |- *; unfold munion in |- *; simpl in |- *; auto.
+ unfold meq; unfold munion; simpl; auto.
Qed.
Lemma munion_empty_right : forall x:multiset, meq x (munion x EmptyBag).
Proof.
- unfold meq in |- *; unfold munion in |- *; simpl in |- *; auto.
+ unfold meq; unfold munion; simpl; auto.
Qed.
@@ -72,21 +72,21 @@ Section multiset_defs.
Lemma munion_comm : forall x y:multiset, meq (munion x y) (munion y x).
Proof.
- unfold meq in |- *; unfold multiplicity in |- *; unfold munion in |- *.
+ unfold meq; unfold multiplicity; unfold munion.
destruct x; destruct y; auto with arith.
Qed.
Lemma munion_ass :
forall x y z:multiset, meq (munion (munion x y) z) (munion x (munion y z)).
Proof.
- unfold meq in |- *; unfold munion in |- *; unfold multiplicity in |- *.
+ unfold meq; unfold munion; unfold multiplicity.
destruct x; destruct y; destruct z; auto with arith.
Qed.
Lemma meq_left :
forall x y z:multiset, meq x y -> meq (munion x z) (munion y z).
Proof.
- unfold meq in |- *; unfold munion in |- *; unfold multiplicity in |- *.
+ unfold meq; unfold munion; unfold multiplicity.
destruct x; destruct y; destruct z.
intros; elim H; auto with arith.
Qed.
@@ -94,7 +94,7 @@ Section multiset_defs.
Lemma meq_right :
forall x y z:multiset, meq x y -> meq (munion z x) (munion z y).
Proof.
- unfold meq in |- *; unfold munion in |- *; unfold multiplicity in |- *.
+ unfold meq; unfold munion; unfold multiplicity.
destruct x; destruct y; destruct z.
intros; elim H; auto.
Qed.
diff --git a/theories/Sets/Partial_Order.v b/theories/Sets/Partial_Order.v
index a319b9832..bb1cf7083 100644
--- a/theories/Sets/Partial_Order.v
+++ b/theories/Sets/Partial_Order.v
@@ -63,13 +63,13 @@ Section Partial_order_facts.
forall x y z:U,
Strict_Rel_of U D x y -> Rel_of U D y z -> Strict_Rel_of U D x z.
Proof.
- unfold Strict_Rel_of at 1 in |- *.
- red in |- *.
- elim D; simpl in |- *.
+ unfold Strict_Rel_of at 1.
+ red.
+ elim D; simpl.
intros C R H' H'0; elim H'0.
intros H'1 H'2 H'3 x y z H'4 H'5; split.
apply H'2 with (y := y); tauto.
- red in |- *; intro H'6.
+ red; intro H'6.
elim H'4; intros H'7 H'8; apply H'8; clear H'4.
apply H'3; auto.
rewrite H'6; tauto.
@@ -79,20 +79,20 @@ Section Partial_order_facts.
forall x y z:U,
Rel_of U D x y -> Strict_Rel_of U D y z -> Strict_Rel_of U D x z.
Proof.
- unfold Strict_Rel_of at 1 in |- *.
- red in |- *.
- elim D; simpl in |- *.
+ unfold Strict_Rel_of at 1.
+ red.
+ elim D; simpl.
intros C R H' H'0; elim H'0.
intros H'1 H'2 H'3 x y z H'4 H'5; split.
apply H'2 with (y := y); tauto.
- red in |- *; intro H'6.
+ red; intro H'6.
elim H'5; intros H'7 H'8; apply H'8; clear H'5.
apply H'3; auto.
rewrite <- H'6; auto.
Qed.
Lemma Strict_Rel_Transitive : Transitive U (Strict_Rel_of U D).
- red in |- *.
+ red.
intros x y z H' H'0.
apply Strict_Rel_Transitive_with_Rel with (y := y);
[ intuition | unfold Strict_Rel_of in H', H'0; intuition ].
diff --git a/theories/Sets/Powerset.v b/theories/Sets/Powerset.v
index f8b24e747..f3b7c4deb 100644
--- a/theories/Sets/Powerset.v
+++ b/theories/Sets/Powerset.v
@@ -39,7 +39,7 @@ Inductive Power_set (A:Ensemble U) : Ensemble (Ensemble U) :=
Hint Resolve Definition_of_Power_set.
Theorem Empty_set_minimal : forall X:Ensemble U, Included U (Empty_set U) X.
-intro X; red in |- *.
+intro X; red.
intros x H'; elim H'.
Qed.
Hint Resolve Empty_set_minimal.
@@ -79,7 +79,7 @@ Lemma Strict_inclusion_is_transitive_with_inclusion :
Strict_Included U x y -> Included U y z -> Strict_Included U x z.
intros x y z H' H'0; try assumption.
elim Strict_Rel_is_Strict_Included.
-unfold contains in |- *.
+unfold contains.
intros H'1 H'2; try assumption.
apply H'1.
apply Strict_Rel_Transitive_with_Rel with (y := y); auto with sets.
@@ -90,7 +90,7 @@ Lemma Strict_inclusion_is_transitive_with_inclusion_left :
Included U x y -> Strict_Included U y z -> Strict_Included U x z.
intros x y z H' H'0; try assumption.
elim Strict_Rel_is_Strict_Included.
-unfold contains in |- *.
+unfold contains.
intros H'1 H'2; try assumption.
apply H'1.
apply Strict_Rel_Transitive_with_Rel_left with (y := y); auto with sets.
@@ -105,14 +105,14 @@ Qed.
Theorem Empty_set_is_Bottom :
forall A:Ensemble U, Bottom (Ensemble U) (Power_set_PO A) (Empty_set U).
-intro A; apply Bottom_definition; simpl in |- *; auto with sets.
+intro A; apply Bottom_definition; simpl; auto with sets.
Qed.
Hint Resolve Empty_set_is_Bottom.
Theorem Union_minimal :
forall a b X:Ensemble U,
Included U a X -> Included U b X -> Included U (Union U a b) X.
-intros a b X H' H'0; red in |- *.
+intros a b X H' H'0; red.
intros x H'1; elim H'1; auto with sets.
Qed.
Hint Resolve Union_minimal.
@@ -133,13 +133,13 @@ Qed.
Theorem Intersection_decreases_l :
forall a b:Ensemble U, Included U (Intersection U a b) a.
-intros a b; red in |- *.
+intros a b; red.
intros x H'; elim H'; auto with sets.
Qed.
Theorem Intersection_decreases_r :
forall a b:Ensemble U, Included U (Intersection U a b) b.
-intros a b; red in |- *.
+intros a b; red.
intros x H'; elim H'; auto with sets.
Qed.
Hint Resolve Union_increases_l Union_increases_r Intersection_decreases_l
@@ -151,10 +151,10 @@ Theorem Union_is_Lub :
Included U b A ->
Lub (Ensemble U) (Power_set_PO A) (Couple (Ensemble U) a b) (Union U a b).
intros A a b H' H'0.
-apply Lub_definition; simpl in |- *.
-apply Upper_Bound_definition; simpl in |- *; auto with sets.
+apply Lub_definition; simpl.
+apply Upper_Bound_definition; simpl; auto with sets.
intros y H'1; elim H'1; auto with sets.
-intros y H'1; elim H'1; simpl in |- *; auto with sets.
+intros y H'1; elim H'1; simpl; auto with sets.
Qed.
Theorem Intersection_is_Glb :
@@ -164,13 +164,13 @@ Theorem Intersection_is_Glb :
Glb (Ensemble U) (Power_set_PO A) (Couple (Ensemble U) a b)
(Intersection U a b).
intros A a b H' H'0.
-apply Glb_definition; simpl in |- *.
-apply Lower_Bound_definition; simpl in |- *; auto with sets.
+apply Glb_definition; simpl.
+apply Lower_Bound_definition; simpl; auto with sets.
apply Definition_of_Power_set.
generalize Inclusion_is_transitive; intro IT; red in IT; apply IT with a;
auto with sets.
intros y H'1; elim H'1; auto with sets.
-intros y H'1; elim H'1; simpl in |- *; auto with sets.
+intros y H'1; elim H'1; simpl; auto with sets.
Qed.
End The_power_set_partial_order.
diff --git a/theories/Sets/Powerset_Classical_facts.v b/theories/Sets/Powerset_Classical_facts.v
index 09fc20948..a7601aaaf 100644
--- a/theories/Sets/Powerset_Classical_facts.v
+++ b/theories/Sets/Powerset_Classical_facts.v
@@ -44,13 +44,13 @@ Section Sets_as_an_algebra.
~ In U A x ->
Strict_Included U (Add U A x) (Add U B x) -> Strict_Included U A B.
Proof.
- intros A B x H' H'0; red in |- *.
+ intros A B x H' H'0; red.
lapply (Strict_Included_inv U (Add U A x) (Add U B x)); auto with sets.
clear H'0; intro H'0; split.
apply incl_add_x with (x := x); tauto.
elim H'0; intros H'1 H'2; elim H'2; clear H'0 H'2.
intros x0 H'0.
- red in |- *; intro H'2.
+ red; intro H'2.
elim H'0; clear H'0.
rewrite <- H'2; auto with sets.
Qed.
@@ -58,7 +58,7 @@ Section Sets_as_an_algebra.
Lemma incl_soustr_in :
forall (X:Ensemble U) (x:U), In U X x -> Included U (Subtract U X x) X.
Proof.
- intros X x H'; red in |- *.
+ intros X x H'; red.
intros x0 H'0; elim H'0; auto with sets.
Qed.
@@ -66,7 +66,7 @@ Section Sets_as_an_algebra.
forall (X Y:Ensemble U) (x:U),
Included U X Y -> Included U (Subtract U X x) (Subtract U Y x).
Proof.
- intros X Y x H'; red in |- *.
+ intros X Y x H'; red.
intros x0 H'0; elim H'0.
intros H'1 H'2.
apply Subtract_intro; auto with sets.
@@ -75,7 +75,7 @@ Section Sets_as_an_algebra.
Lemma incl_soustr_add_l :
forall (X:Ensemble U) (x:U), Included U (Subtract U (Add U X x) x) X.
Proof.
- intros X x; red in |- *.
+ intros X x; red.
intros x0 H'; elim H'; auto with sets.
intro H'0; elim H'0; auto with sets.
intros t H'1 H'2; elim H'2; auto with sets.
@@ -85,10 +85,10 @@ Section Sets_as_an_algebra.
forall (X:Ensemble U) (x:U),
~ In U X x -> Included U X (Subtract U (Add U X x) x).
Proof.
- intros X x H'; red in |- *.
+ intros X x H'; red.
intros x0 H'0; try assumption.
apply Subtract_intro; auto with sets.
- red in |- *; intro H'1; apply H'; rewrite H'1; auto with sets.
+ red; intro H'1; apply H'; rewrite H'1; auto with sets.
Qed.
Hint Resolve incl_soustr_add_r: sets v62.
@@ -96,7 +96,7 @@ Section Sets_as_an_algebra.
forall (X:Ensemble U) (x:U),
In U X x -> Included U X (Add U (Subtract U X x) x).
Proof.
- intros X x H'; red in |- *.
+ intros X x H'; red.
intros x0 H'0; try assumption.
elim (classic (x = x0)); intro K; auto with sets.
elim K; auto with sets.
@@ -106,7 +106,7 @@ Section Sets_as_an_algebra.
forall (X:Ensemble U) (x:U),
In U X x -> Included U (Add U (Subtract U X x) x) X.
Proof.
- intros X x H'; red in |- *.
+ intros X x H'; red.
intros x0 H'0; elim H'0; auto with sets.
intros y H'1; elim H'1; auto with sets.
intros t H'1; try assumption.
@@ -118,7 +118,7 @@ Section Sets_as_an_algebra.
x <> y -> Subtract U (Add U X x) y = Add U (Subtract U X y) x.
Proof.
intros X x y H'; apply Extensionality_Ensembles.
- split; red in |- *.
+ split; red.
intros x0 H'0; elim H'0; auto with sets.
intro H'1; elim H'1.
intros u H'2 H'3; try assumption.
@@ -146,7 +146,7 @@ Section Sets_as_an_algebra.
apply H'4 with (y := Y); auto using add_soustr_2 with sets.
red in H'0.
elim H'0; intros H'1 H'2; try exact H'1; clear H'0. (* PB *)
- red in |- *; intro H'0; apply H'2.
+ red; intro H'0; apply H'2.
rewrite H'0; auto 8 using add_soustr_xy, add_soustr_1, add_soustr_2 with sets.
Qed.
@@ -177,7 +177,7 @@ Section Sets_as_an_algebra.
exists (Subtract U X x).
split; auto using incl_soustr_in, add_soustr_xy, add_soustr_1, add_soustr_2 with sets.
red in H'0.
- red in |- *.
+ red.
intros x0 H'2; try assumption.
lapply (Subtract_inv U X x x0); auto with sets.
intro H'3; elim H'3; intros K K'; clear H'3.
@@ -189,7 +189,7 @@ Section Sets_as_an_algebra.
elim K'; auto with sets.
intro H'1; left; try assumption.
red in H'0.
- red in |- *.
+ red.
intros x0 H'2; try assumption.
lapply (H'0 x0); auto with sets.
intro H'3; try assumption.
@@ -207,7 +207,7 @@ Section Sets_as_an_algebra.
(forall z:Ensemble U, Included U x z -> Included U z y -> x = z \/ z = y).
Proof.
intros A x y H'; elim H'.
- unfold Strict_Rel_of in |- *; simpl in |- *.
+ unfold Strict_Rel_of; simpl.
intros H'0 H'1; split; [ auto with sets | idtac ].
intros z H'2 H'3; try assumption.
elim (classic (x = z)); auto with sets.
@@ -227,11 +227,11 @@ Section Sets_as_an_algebra.
Proof.
intros A a H' x H'0 H'1; try assumption.
apply setcover_intro; auto with sets.
- red in |- *.
- split; [ idtac | red in |- *; intro H'2; try exact H'2 ]; auto with sets.
+ red.
+ split; [ idtac | red; intro H'2; try exact H'2 ]; auto with sets.
apply H'1.
rewrite H'2; auto with sets.
- red in |- *; intro H'2; elim H'2; clear H'2.
+ red; intro H'2; elim H'2; clear H'2.
intros z H'2; elim H'2; intros H'3 H'4; try exact H'3; clear H'2.
lapply (Strict_Included_inv U a z); auto with sets; clear H'3.
intro H'2; elim H'2; intros H'3 H'5; elim H'5; clear H'2 H'5.
@@ -249,7 +249,7 @@ Section Sets_as_an_algebra.
red in K.
elim K; intros H'11 H'12; apply H'12; clear K; auto with sets.
rewrite H'15.
- red in |- *.
+ red.
intros x1 H'10; elim H'10; auto with sets.
intros x2 H'11; elim H'11; auto with sets.
Qed.
@@ -275,11 +275,11 @@ Section Sets_as_an_algebra.
elim (H'7 (Add U a x)); auto with sets.
intro H'1.
absurd (a = Add U a x); auto with sets.
- red in |- *; intro H'8; try exact H'8.
+ red; intro H'8; try exact H'8.
apply H'3.
rewrite H'8; auto with sets.
auto with sets.
- red in |- *.
+ red.
intros x0 H'1; elim H'1; auto with sets.
intros x1 H'8; elim H'8; auto with sets.
split; [ idtac | try assumption ].
diff --git a/theories/Sets/Powerset_facts.v b/theories/Sets/Powerset_facts.v
index f756f9854..14a2d25cc 100644
--- a/theories/Sets/Powerset_facts.v
+++ b/theories/Sets/Powerset_facts.v
@@ -42,7 +42,7 @@ Section Sets_as_an_algebra.
Theorem Empty_set_zero' : forall x:U, Add U (Empty_set U) x = Singleton U x.
Proof.
- unfold Add at 1 in |- *; auto using Empty_set_zero with sets.
+ unfold Add at 1; auto using Empty_set_zero with sets.
Qed.
Lemma less_than_empty :
@@ -76,7 +76,7 @@ Section Sets_as_an_algebra.
Theorem Couple_as_union :
forall x y:U, Union U (Singleton U x) (Singleton U y) = Couple U x y.
Proof.
- intros x y; apply Extensionality_Ensembles; split; red in |- *.
+ intros x y; apply Extensionality_Ensembles; split; red.
intros x0 H'; elim H'; (intros x1 H'0; elim H'0; auto with sets).
intros x0 H'; elim H'; auto with sets.
Qed.
@@ -86,7 +86,7 @@ Section Sets_as_an_algebra.
Union U (Union U (Singleton U x) (Singleton U y)) (Singleton U z) =
Triple U x y z.
Proof.
- intros x y z; apply Extensionality_Ensembles; split; red in |- *.
+ intros x y z; apply Extensionality_Ensembles; split; red.
intros x0 H'; elim H'.
intros x1 H'0; elim H'0; (intros x2 H'1; elim H'1; auto with sets).
intros x1 H'0; elim H'0; auto with sets.
@@ -114,7 +114,7 @@ Section Sets_as_an_algebra.
Proof.
intros A B.
apply Extensionality_Ensembles.
- split; red in |- *; intros x H'; elim H'; auto with sets.
+ split; red; intros x H'; elim H'; auto with sets.
Qed.
Theorem Distributivity :
@@ -124,7 +124,7 @@ Section Sets_as_an_algebra.
Proof.
intros A B C.
apply Extensionality_Ensembles.
- split; red in |- *; intros x H'.
+ split; red; intros x H'.
elim H'.
intros x0 H'0 H'1; generalize H'0.
elim H'1; auto with sets.
@@ -138,7 +138,7 @@ Section Sets_as_an_algebra.
Proof.
intros A B C.
apply Extensionality_Ensembles.
- split; red in |- *; intros x H'.
+ split; red; intros x H'.
elim H'; auto with sets.
intros x0 H'0; elim H'0; auto with sets.
elim H'.
@@ -151,15 +151,15 @@ Section Sets_as_an_algebra.
Theorem Union_add :
forall (A B:Ensemble U) (x:U), Add U (Union U A B) x = Union U A (Add U B x).
Proof.
- unfold Add in |- *; auto using Union_associative with sets.
+ unfold Add; auto using Union_associative with sets.
Qed.
Theorem Non_disjoint_union :
forall (X:Ensemble U) (x:U), In U X x -> Add U X x = X.
Proof.
- intros X x H'; unfold Add in |- *.
- apply Extensionality_Ensembles; red in |- *.
- split; red in |- *; auto with sets.
+ intros X x H'; unfold Add.
+ apply Extensionality_Ensembles; red.
+ split; red; auto with sets.
intros x0 H'0; elim H'0; auto with sets.
intros t H'1; elim H'1; auto with sets.
Qed.
@@ -167,12 +167,12 @@ Section Sets_as_an_algebra.
Theorem Non_disjoint_union' :
forall (X:Ensemble U) (x:U), ~ In U X x -> Subtract U X x = X.
Proof.
- intros X x H'; unfold Subtract in |- *.
+ intros X x H'; unfold Subtract.
apply Extensionality_Ensembles.
- split; red in |- *; auto with sets.
+ split; red; auto with sets.
intros x0 H'0; elim H'0; auto with sets.
intros x0 H'0; apply Setminus_intro; auto with sets.
- red in |- *; intro H'1; elim H'1.
+ red; intro H'1; elim H'1.
lapply (Singleton_inv U x x0); auto with sets.
intro H'4; apply H'; rewrite H'4; auto with sets.
Qed.
@@ -186,7 +186,7 @@ Section Sets_as_an_algebra.
forall (A B:Ensemble U) (x:U),
Included U A B -> Included U (Add U A x) (Add U B x).
Proof.
- intros A B x H'; red in |- *; auto with sets.
+ intros A B x H'; red; auto with sets.
intros x0 H'0.
lapply (Add_inv U A x x0); auto with sets.
intro H'1; elim H'1;
@@ -198,7 +198,7 @@ Section Sets_as_an_algebra.
forall (A B:Ensemble U) (x:U),
~ In U A x -> Included U (Add U A x) (Add U B x) -> Included U A B.
Proof.
- unfold Included in |- *.
+ unfold Included.
intros A B x H' H'0 x0 H'1.
lapply (H'0 x0); auto with sets.
intro H'2; lapply (Add_inv U B x x0); auto with sets.
@@ -212,7 +212,7 @@ Section Sets_as_an_algebra.
forall (A:Ensemble U) (x y:U), Add U (Add U A x) y = Add U (Add U A y) x.
Proof.
intros A x y.
- unfold Add in |- *.
+ unfold Add.
rewrite (Union_associative A (Singleton U x) (Singleton U y)).
rewrite (Union_commutative (Singleton U x) (Singleton U y)).
rewrite <- (Union_associative A (Singleton U y) (Singleton U x));
@@ -234,7 +234,7 @@ Section Sets_as_an_algebra.
Proof.
intros A B x y H'; try assumption.
rewrite <- (Union_add (Add U A x) B y).
- unfold Add at 4 in |- *.
+ unfold Add at 4.
rewrite (Union_commutative A (Singleton U x)).
rewrite Union_associative.
rewrite (Union_absorbs A B H').
diff --git a/theories/Sets/Relations_1_facts.v b/theories/Sets/Relations_1_facts.v
index 0c8329dd0..efd895e2c 100644
--- a/theories/Sets/Relations_1_facts.v
+++ b/theories/Sets/Relations_1_facts.v
@@ -33,8 +33,8 @@ Theorem Rsym_imp_notRsym :
forall (U:Type) (R:Relation U),
Symmetric U R -> Symmetric U (Complement U R).
Proof.
-unfold Symmetric, Complement in |- *.
-intros U R H' x y H'0; red in |- *; intro H'1; apply H'0; auto with sets.
+unfold Symmetric, Complement.
+intros U R H' x y H'0; red; intro H'1; apply H'0; auto with sets.
Qed.
Theorem Equiv_from_preorder :
@@ -44,8 +44,8 @@ Proof.
intros U R H'; elim H'; intros H'0 H'1.
apply Definition_of_equivalence.
red in H'0; auto 10 with sets.
-2: red in |- *; intros x y h; elim h; intros H'3 H'4; auto 10 with sets.
-red in H'1; red in |- *; auto 10 with sets.
+2: red; intros x y h; elim h; intros H'3 H'4; auto 10 with sets.
+red in H'1; red; auto 10 with sets.
intros x y z h; elim h; intros H'3 H'4; clear h.
intro h; elim h; intros H'5 H'6; clear h.
split; apply H'1 with y; auto 10 with sets.
@@ -70,7 +70,7 @@ Hint Resolve contains_is_preorder.
Theorem same_relation_is_equivalence :
forall U:Type, Equivalence (Relation U) (same_relation U).
Proof.
-unfold same_relation at 1 in |- *; auto 10 with sets.
+unfold same_relation at 1; auto 10 with sets.
Qed.
Hint Resolve same_relation_is_equivalence.
@@ -78,14 +78,14 @@ Theorem cong_reflexive_same_relation :
forall (U:Type) (R R':Relation U),
same_relation U R R' -> Reflexive U R -> Reflexive U R'.
Proof.
-unfold same_relation in |- *; intuition.
+unfold same_relation; intuition.
Qed.
Theorem cong_symmetric_same_relation :
forall (U:Type) (R R':Relation U),
same_relation U R R' -> Symmetric U R -> Symmetric U R'.
Proof.
- compute in |- *; intros; elim H; intros; clear H;
+ compute; intros; elim H; intros; clear H;
apply (H3 y x (H0 x y (H2 x y H1))).
(*Intuition.*)
Qed.
@@ -94,7 +94,7 @@ Theorem cong_antisymmetric_same_relation :
forall (U:Type) (R R':Relation U),
same_relation U R R' -> Antisymmetric U R -> Antisymmetric U R'.
Proof.
- compute in |- *; intros; elim H; intros; clear H;
+ compute; intros; elim H; intros; clear H;
apply (H0 x y (H3 x y H1) (H3 y x H2)).
(*Intuition.*)
Qed.
@@ -103,7 +103,7 @@ Theorem cong_transitive_same_relation :
forall (U:Type) (R R':Relation U),
same_relation U R R' -> Transitive U R -> Transitive U R'.
Proof.
-intros U R R' H' H'0; red in |- *.
+intros U R R' H' H'0; red.
elim H'.
intros H'1 H'2 x y z H'3 H'4; apply H'2.
apply H'0 with y; auto with sets.
diff --git a/theories/Sets/Relations_2_facts.v b/theories/Sets/Relations_2_facts.v
index 89b98c1f5..bc5960ebe 100644
--- a/theories/Sets/Relations_2_facts.v
+++ b/theories/Sets/Relations_2_facts.v
@@ -43,13 +43,13 @@ Qed.
Theorem Rstar_contains_R :
forall (U:Type) (R:Relation U), contains U (Rstar U R) R.
Proof.
-intros U R; red in |- *; intros x y H'; apply Rstar_n with y; auto with sets.
+intros U R; red; intros x y H'; apply Rstar_n with y; auto with sets.
Qed.
Theorem Rstar_contains_Rplus :
forall (U:Type) (R:Relation U), contains U (Rstar U R) (Rplus U R).
Proof.
-intros U R; red in |- *.
+intros U R; red.
intros x y H'; elim H'.
generalize Rstar_contains_R; intro T; red in T; auto with sets.
intros x0 y0 z H'0 H'1 H'2; apply Rstar_n with y0; auto with sets.
@@ -58,7 +58,7 @@ Qed.
Theorem Rstar_transitive :
forall (U:Type) (R:Relation U), Transitive U (Rstar U R).
Proof.
-intros U R; red in |- *.
+intros U R; red.
intros x y z H'; elim H'; auto with sets.
intros x0 y0 z0 H'0 H'1 H'2 H'3; apply Rstar_n with y0; auto with sets.
Qed.
@@ -75,7 +75,7 @@ Theorem Rstar_equiv_Rstar1 :
forall (U:Type) (R:Relation U), same_relation U (Rstar U R) (Rstar1 U R).
Proof.
generalize Rstar_contains_R; intro T; red in T.
-intros U R; unfold same_relation, contains in |- *.
+intros U R; unfold same_relation, contains.
split; intros x y H'; elim H'; auto with sets.
generalize Rstar_transitive; intro T1; red in T1.
intros x0 y0 z H'0 H'1 H'2 H'3; apply T1 with y0; auto with sets.
@@ -85,7 +85,7 @@ Qed.
Theorem Rsym_imp_Rstarsym :
forall (U:Type) (R:Relation U), Symmetric U R -> Symmetric U (Rstar U R).
Proof.
-intros U R H'; red in |- *.
+intros U R H'; red.
intros x y H'0; elim H'0; auto with sets.
intros x0 y0 z H'1 H'2 H'3.
generalize Rstar_transitive; intro T1; red in T1.
@@ -97,7 +97,7 @@ Theorem Sstar_contains_Rstar :
forall (U:Type) (R S:Relation U),
contains U (Rstar U S) R -> contains U (Rstar U S) (Rstar U R).
Proof.
-unfold contains in |- *.
+unfold contains.
intros U R S H' x y H'0; elim H'0; auto with sets.
generalize Rstar_transitive; intro T1; red in T1.
intros x0 y0 z H'1 H'2 H'3; apply T1 with y0; auto with sets.
diff --git a/theories/Sets/Relations_3_facts.v b/theories/Sets/Relations_3_facts.v
index 8ac6e7fb4..455ad5843 100644
--- a/theories/Sets/Relations_3_facts.v
+++ b/theories/Sets/Relations_3_facts.v
@@ -33,7 +33,7 @@ Require Export Relations_3.
Theorem Rstar_imp_coherent :
forall (U:Type) (R:Relation U) (x y:U), Rstar U R x y -> coherent U R x y.
Proof.
-intros U R x y H'; red in |- *.
+intros U R x y H'; red.
exists y; auto with sets.
Qed.
Hint Resolve Rstar_imp_coherent.
@@ -41,8 +41,8 @@ Hint Resolve Rstar_imp_coherent.
Theorem coherent_symmetric :
forall (U:Type) (R:Relation U), Symmetric U (coherent U R).
Proof.
-unfold coherent at 1 in |- *.
-intros U R; red in |- *.
+unfold coherent at 1.
+intros U R; red.
intros x y H'; elim H'.
intros z H'0; exists z; tauto.
Qed.
@@ -50,9 +50,9 @@ Qed.
Theorem Strong_confluence :
forall (U:Type) (R:Relation U), Strongly_confluent U R -> Confluent U R.
Proof.
-intros U R H'; red in |- *.
-intro x; red in |- *; intros a b H'0.
-unfold coherent at 1 in |- *.
+intros U R H'; red.
+intro x; red; intros a b H'0.
+unfold coherent at 1.
generalize b; clear b.
elim H'0; clear H'0.
intros x0 b H'1; exists b; auto with sets.
@@ -75,9 +75,9 @@ Qed.
Theorem Strong_confluence_direct :
forall (U:Type) (R:Relation U), Strongly_confluent U R -> Confluent U R.
Proof.
-intros U R H'; red in |- *.
-intro x; red in |- *; intros a b H'0.
-unfold coherent at 1 in |- *.
+intros U R H'; red.
+intro x; red; intros a b H'0.
+unfold coherent at 1.
generalize b; clear b.
elim H'0; clear H'0.
intros x0 b H'1; exists b; auto with sets.
@@ -111,7 +111,7 @@ Theorem Noetherian_contains_Noetherian :
forall (U:Type) (R R':Relation U),
Noetherian U R -> contains U R R' -> Noetherian U R'.
Proof.
-unfold Noetherian at 2 in |- *.
+unfold Noetherian at 2.
intros U R R' H' H'0 x.
elim (H' x); auto with sets.
Qed.
@@ -120,8 +120,8 @@ Theorem Newman :
forall (U:Type) (R:Relation U),
Noetherian U R -> Locally_confluent U R -> Confluent U R.
Proof.
-intros U R H' H'0; red in |- *; intro x.
-elim (H' x); unfold confluent in |- *.
+intros U R H' H'0; red; intro x.
+elim (H' x); unfold confluent.
intros x0 H'1 H'2 y z H'3 H'4.
generalize (Rstar_cases U R x0 y); intro h; lapply h;
[ intro h0; elim h0;
@@ -163,7 +163,7 @@ generalize (H'2 v); intro h; lapply h;
| clear h h0 ]
| clear h h0 ]
| clear h ]; auto with sets.
-red in |- *; (exists z1; split); auto with sets.
+red; (exists z1; split); auto with sets.
apply T with y1; auto with sets.
apply T with t; auto with sets.
Qed.
diff --git a/theories/Sets/Uniset.v b/theories/Sets/Uniset.v
index bf1aaf8db..ca4519ee4 100644
--- a/theories/Sets/Uniset.v
+++ b/theories/Sets/Uniset.v
@@ -51,37 +51,37 @@ Hint Unfold seq.
Lemma leb_refl : forall b:bool, leb b b.
Proof.
-destruct b; simpl in |- *; auto.
+destruct b; simpl; auto.
Qed.
Hint Resolve leb_refl.
Lemma incl_left : forall s1 s2:uniset, seq s1 s2 -> incl s1 s2.
Proof.
-unfold incl in |- *; intros s1 s2 E a; elim (E a); auto.
+unfold incl; intros s1 s2 E a; elim (E a); auto.
Qed.
Lemma incl_right : forall s1 s2:uniset, seq s1 s2 -> incl s2 s1.
Proof.
-unfold incl in |- *; intros s1 s2 E a; elim (E a); auto.
+unfold incl; intros s1 s2 E a; elim (E a); auto.
Qed.
Lemma seq_refl : forall x:uniset, seq x x.
Proof.
-destruct x; unfold seq in |- *; auto.
+destruct x; unfold seq; auto.
Qed.
Hint Resolve seq_refl.
Lemma seq_trans : forall x y z:uniset, seq x y -> seq y z -> seq x z.
Proof.
-unfold seq in |- *.
-destruct x; destruct y; destruct z; simpl in |- *; intros.
+unfold seq.
+destruct x; destruct y; destruct z; simpl; intros.
rewrite H; auto.
Qed.
Lemma seq_sym : forall x y:uniset, seq x y -> seq y x.
Proof.
-unfold seq in |- *.
-destruct x; destruct y; simpl in |- *; auto.
+unfold seq.
+destruct x; destruct y; simpl; auto.
Qed.
(** uniset union *)
@@ -90,20 +90,20 @@ Definition union (m1 m2:uniset) :=
Lemma union_empty_left : forall x:uniset, seq x (union Emptyset x).
Proof.
-unfold seq in |- *; unfold union in |- *; simpl in |- *; auto.
+unfold seq; unfold union; simpl; auto.
Qed.
Hint Resolve union_empty_left.
Lemma union_empty_right : forall x:uniset, seq x (union x Emptyset).
Proof.
-unfold seq in |- *; unfold union in |- *; simpl in |- *.
+unfold seq; unfold union; simpl.
intros x a; rewrite (orb_b_false (charac x a)); auto.
Qed.
Hint Resolve union_empty_right.
Lemma union_comm : forall x y:uniset, seq (union x y) (union y x).
Proof.
-unfold seq in |- *; unfold charac in |- *; unfold union in |- *.
+unfold seq; unfold charac; unfold union.
destruct x; destruct y; auto with bool.
Qed.
Hint Resolve union_comm.
@@ -111,14 +111,14 @@ Hint Resolve union_comm.
Lemma union_ass :
forall x y z:uniset, seq (union (union x y) z) (union x (union y z)).
Proof.
-unfold seq in |- *; unfold union in |- *; unfold charac in |- *.
+unfold seq; unfold union; unfold charac.
destruct x; destruct y; destruct z; auto with bool.
Qed.
Hint Resolve union_ass.
Lemma seq_left : forall x y z:uniset, seq x y -> seq (union x z) (union y z).
Proof.
-unfold seq in |- *; unfold union in |- *; unfold charac in |- *.
+unfold seq; unfold union; unfold charac.
destruct x; destruct y; destruct z.
intros; elim H; auto.
Qed.
@@ -126,7 +126,7 @@ Hint Resolve seq_left.
Lemma seq_right : forall x y z:uniset, seq x y -> seq (union z x) (union z y).
Proof.
-unfold seq in |- *; unfold union in |- *; unfold charac in |- *.
+unfold seq; unfold union; unfold charac.
destruct x; destruct y; destruct z.
intros; elim H; auto.
Qed.
diff --git a/theories/Sorting/Heap.v b/theories/Sorting/Heap.v
index 60bb50cec..8653640d3 100644
--- a/theories/Sorting/Heap.v
+++ b/theories/Sorting/Heap.v
@@ -55,13 +55,13 @@ Section defs.
Lemma leA_Tree_Leaf : forall a:A, leA_Tree a Tree_Leaf.
Proof.
- simpl in |- *; auto with datatypes.
+ simpl; auto with datatypes.
Qed.
Lemma leA_Tree_Node :
forall (a b:A) (G D:Tree), leA a b -> leA_Tree a (Tree_Node b G D).
Proof.
- simpl in |- *; auto with datatypes.
+ simpl; auto with datatypes.
Qed.
@@ -121,7 +121,7 @@ Section defs.
forall (T:Tree) (a b:A), leA a b -> leA_Tree b T -> leA_Tree a T.
Proof.
simple induction T; auto with datatypes.
- intros; simpl in |- *; apply leA_trans with b; auto with datatypes.
+ intros; simpl; apply leA_trans with b; auto with datatypes.
Qed.
(** ** Merging two sorted lists *)
@@ -213,12 +213,12 @@ Section defs.
simple induction 1; intros.
apply insert_exist with (Tree_Node a Tree_Leaf Tree_Leaf);
auto using node_is_heap, nil_is_heap, leA_Tree_Leaf with datatypes.
- simpl in |- *; unfold meq, munion in |- *; auto using node_is_heap with datatypes.
+ simpl; unfold meq, munion; auto using node_is_heap with datatypes.
elim (leA_dec a a0); intros.
elim (X a0); intros.
apply insert_exist with (Tree_Node a T2 T0);
auto using node_is_heap, nil_is_heap, leA_Tree_Leaf with datatypes.
- simpl in |- *; apply treesort_twist1; trivial with datatypes.
+ simpl; apply treesort_twist1; trivial with datatypes.
elim (X a); intros T3 HeapT3 ConT3 LeA.
apply insert_exist with (Tree_Node a0 T2 T3);
auto using node_is_heap, nil_is_heap, leA_Tree_Leaf with datatypes.
@@ -226,7 +226,7 @@ Section defs.
apply low_trans with a; auto with datatypes.
apply LeA; auto with datatypes.
apply low_trans with a; auto with datatypes.
- simpl in |- *; apply treesort_twist2; trivial with datatypes.
+ simpl; apply treesort_twist2; trivial with datatypes.
Qed.
@@ -242,10 +242,10 @@ Section defs.
Proof.
simple induction l.
apply (heap_exist nil Tree_Leaf); auto with datatypes.
- simpl in |- *; unfold meq in |- *; exact nil_is_heap.
+ simpl; unfold meq; exact nil_is_heap.
simple induction 1.
intros T i m; elim (insert T i a).
- intros; apply heap_exist with T1; simpl in |- *; auto with datatypes.
+ intros; apply heap_exist with T1; simpl; auto with datatypes.
apply meq_trans with (munion (contents T) (singletonBag a)).
apply meq_trans with (munion (singletonBag a) (contents T)).
apply meq_right; trivial with datatypes.
@@ -269,7 +269,7 @@ Section defs.
apply flat_exist with (nil (A:=A)); auto with datatypes.
elim X; intros l1 s1 i1 m1; elim X0; intros l2 s2 i2 m2.
elim (merge _ s1 _ s2); intros.
- apply flat_exist with (a :: l); simpl in |- *; auto with datatypes.
+ apply flat_exist with (a :: l); simpl; auto with datatypes.
apply meq_trans with
(munion (list_contents _ eqA_dec l1)
(munion (list_contents _ eqA_dec l2) (singletonBag a))).
@@ -288,7 +288,7 @@ Section defs.
forall l:list A,
{m : list A | Sorted leA m & permutation _ eqA_dec l m}.
Proof.
- intro l; unfold permutation in |- *.
+ intro l; unfold permutation.
elim (list_to_heap l).
intros.
elim (heap_to_list T); auto with datatypes.
diff --git a/theories/Sorting/PermutSetoid.v b/theories/Sorting/PermutSetoid.v
index b2b15c705..aed7150c8 100644
--- a/theories/Sorting/PermutSetoid.v
+++ b/theories/Sorting/PermutSetoid.v
@@ -52,7 +52,7 @@ Lemma list_contents_app :
forall l m:list A,
meq (list_contents (l ++ m)) (munion (list_contents l) (list_contents m)).
Proof.
- simple induction l; simpl in |- *; auto with datatypes.
+ simple induction l; simpl; auto with datatypes.
intros.
apply meq_trans with
(munion (singletonBag a) (munion (list_contents l0) (list_contents m)));
@@ -65,7 +65,7 @@ Definition permutation (l m:list A) := meq (list_contents l) (list_contents m).
Lemma permut_refl : forall l:list A, permutation l l.
Proof.
- unfold permutation in |- *; auto with datatypes.
+ unfold permutation; auto with datatypes.
Qed.
Lemma permut_sym :
@@ -77,7 +77,7 @@ Qed.
Lemma permut_trans :
forall l m n:list A, permutation l m -> permutation m n -> permutation l n.
Proof.
- unfold permutation in |- *; intros.
+ unfold permutation; intros.
apply meq_trans with (list_contents m); auto with datatypes.
Qed.
@@ -102,7 +102,7 @@ Lemma permut_app :
forall l l' m m':list A,
permutation l l' -> permutation m m' -> permutation (l ++ m) (l' ++ m').
Proof.
- unfold permutation in |- *; intros.
+ unfold permutation; intros.
apply meq_trans with (munion (list_contents l) (list_contents m));
auto using permut_cons, list_contents_app with datatypes.
apply meq_trans with (munion (list_contents l') (list_contents m'));
diff --git a/theories/Strings/String.v b/theories/Strings/String.v
index 289ffab31..1e824e2ea 100644
--- a/theories/Strings/String.v
+++ b/theories/Strings/String.v
@@ -72,14 +72,14 @@ Fixpoint get (n : nat) (s : string) {struct s} : option ascii :=
Theorem get_correct :
forall s1 s2 : string, (forall n : nat, get n s1 = get n s2) <-> s1 = s2.
Proof.
-intros s1; elim s1; simpl in |- *.
-intros s2; case s2; simpl in |- *; split; auto.
+intros s1; elim s1; simpl.
+intros s2; case s2; simpl; split; auto.
intros H; generalize (H 0); intros H1; inversion H1.
intros; discriminate.
-intros a s1' Rec s2; case s2; simpl in |- *; split; auto.
+intros a s1' Rec s2; case s2; simpl; split; auto.
intros H; generalize (H 0); intros H1; inversion H1.
intros; discriminate.
-intros H; generalize (H 0); simpl in |- *; intros H1; inversion H1.
+intros H; generalize (H 0); simpl; intros H1; inversion H1.
case (Rec s).
intros H0; rewrite H0; auto.
intros n; exact (H (S n)).
@@ -94,9 +94,9 @@ Theorem append_correct1 :
forall (s1 s2 : string) (n : nat),
n < length s1 -> get n s1 = get n (s1 ++ s2).
Proof.
-intros s1; elim s1; simpl in |- *; auto.
+intros s1; elim s1; simpl; auto.
intros s2 n H; inversion H.
-intros a s1' Rec s2 n; case n; simpl in |- *; auto.
+intros a s1' Rec s2 n; case n; simpl; auto.
intros n0 H; apply Rec; auto.
apply lt_S_n; auto.
Qed.
@@ -107,10 +107,10 @@ Theorem append_correct2 :
forall (s1 s2 : string) (n : nat),
get n s2 = get (n + length s1) (s1 ++ s2).
Proof.
-intros s1; elim s1; simpl in |- *; auto.
-intros s2 n; rewrite plus_comm; simpl in |- *; auto.
-intros a s1' Rec s2 n; case n; simpl in |- *; auto.
-generalize (Rec s2 0); simpl in |- *; auto. intros.
+intros s1; elim s1; simpl; auto.
+intros s2 n; rewrite plus_comm; simpl; auto.
+intros a s1' Rec s2 n; case n; simpl; auto.
+generalize (Rec s2 0); simpl; auto. intros.
rewrite <- Plus.plus_Snm_nSm; auto.
Qed.
@@ -135,16 +135,16 @@ Theorem substring_correct1 :
forall (s : string) (n m p : nat),
p < m -> get p (substring n m s) = get (p + n) s.
Proof.
-intros s; elim s; simpl in |- *; auto.
-intros n; case n; simpl in |- *; auto.
-intros m; case m; simpl in |- *; auto.
-intros a s' Rec; intros n; case n; simpl in |- *; auto.
-intros m; case m; simpl in |- *; auto.
+intros s; elim s; simpl; auto.
+intros n; case n; simpl; auto.
+intros m; case m; simpl; auto.
+intros a s' Rec; intros n; case n; simpl; auto.
+intros m; case m; simpl; auto.
intros p H; inversion H.
-intros m' p; case p; simpl in |- *; auto.
-intros n0 H; apply Rec; simpl in |- *; auto.
+intros m' p; case p; simpl; auto.
+intros n0 H; apply Rec; simpl; auto.
apply Lt.lt_S_n; auto.
-intros n' m p H; rewrite <- Plus.plus_Snm_nSm; simpl in |- *; auto.
+intros n' m p H; rewrite <- Plus.plus_Snm_nSm; simpl; auto.
Qed.
(** The substring has at most [m] elements *)
@@ -152,14 +152,14 @@ Qed.
Theorem substring_correct2 :
forall (s : string) (n m p : nat), m <= p -> get p (substring n m s) = None.
Proof.
-intros s; elim s; simpl in |- *; auto.
-intros n; case n; simpl in |- *; auto.
-intros m; case m; simpl in |- *; auto.
-intros a s' Rec; intros n; case n; simpl in |- *; auto.
-intros m; case m; simpl in |- *; auto.
-intros m' p; case p; simpl in |- *; auto.
+intros s; elim s; simpl; auto.
+intros n; case n; simpl; auto.
+intros m; case m; simpl; auto.
+intros a s' Rec; intros n; case n; simpl; auto.
+intros m; case m; simpl; auto.
+intros m' p; case p; simpl; auto.
intros H; inversion H.
-intros n0 H; apply Rec; simpl in |- *; auto.
+intros n0 H; apply Rec; simpl; auto.
apply Le.le_S_n; auto.
Qed.
@@ -188,11 +188,11 @@ Theorem prefix_correct :
forall s1 s2 : string,
prefix s1 s2 = true <-> substring 0 (length s1) s2 = s1.
Proof.
-intros s1; elim s1; simpl in |- *; auto.
-intros s2; case s2; simpl in |- *; split; auto.
-intros a s1' Rec s2; case s2; simpl in |- *; auto.
+intros s1; elim s1; simpl; auto.
+intros s2; case s2; simpl; split; auto.
+intros a s1' Rec s2; case s2; simpl; auto.
split; intros; discriminate.
-intros b s2'; case (ascii_dec a b); simpl in |- *; auto.
+intros b s2'; case (ascii_dec a b); simpl; auto.
intros e; case (Rec s2'); intros H1 H2; split; intros H3; auto.
rewrite e; rewrite H1; auto.
apply H2; injection H3; auto.
@@ -234,25 +234,25 @@ Theorem index_correct1 :
forall (n m : nat) (s1 s2 : string),
index n s1 s2 = Some m -> substring m (length s1) s2 = s1.
Proof.
-intros n m s1 s2; generalize n m s1; clear n m s1; elim s2; simpl in |- *;
+intros n m s1 s2; generalize n m s1; clear n m s1; elim s2; simpl;
auto.
-intros n; case n; simpl in |- *; auto.
-intros m s1; case s1; simpl in |- *; auto.
+intros n; case n; simpl; auto.
+intros m s1; case s1; simpl; auto.
intros H; injection H; intros H1; rewrite <- H1; auto.
intros; discriminate.
intros; discriminate.
intros b s2' Rec n m s1.
-case n; simpl in |- *; auto.
+case n; simpl; auto.
generalize (prefix_correct s1 (String b s2'));
case (prefix s1 (String b s2')).
intros H0 H; injection H; intros H1; rewrite <- H1; auto.
-case H0; simpl in |- *; auto.
-case m; simpl in |- *; auto.
+case H0; simpl; auto.
+case m; simpl; auto.
case (index 0 s1 s2'); intros; discriminate.
intros m'; generalize (Rec 0 m' s1); case (index 0 s1 s2'); auto.
intros x H H0 H1; apply H; injection H1; auto.
intros; discriminate.
-intros n'; case m; simpl in |- *; auto.
+intros n'; case m; simpl; auto.
case (index n' s1 s2'); intros; discriminate.
intros m'; generalize (Rec n' m' s1); case (index n' s1 s2'); auto.
intros x H H1; apply H; injection H1; auto.
@@ -267,35 +267,35 @@ Theorem index_correct2 :
index n s1 s2 = Some m ->
forall p : nat, n <= p -> p < m -> substring p (length s1) s2 <> s1.
Proof.
-intros n m s1 s2; generalize n m s1; clear n m s1; elim s2; simpl in |- *;
+intros n m s1 s2; generalize n m s1; clear n m s1; elim s2; simpl;
auto.
-intros n; case n; simpl in |- *; auto.
-intros m s1; case s1; simpl in |- *; auto.
+intros n; case n; simpl; auto.
+intros m s1; case s1; simpl; auto.
intros H; injection H; intros H1; rewrite <- H1.
intros p H0 H2; inversion H2.
intros; discriminate.
intros; discriminate.
intros b s2' Rec n m s1.
-case n; simpl in |- *; auto.
+case n; simpl; auto.
generalize (prefix_correct s1 (String b s2'));
case (prefix s1 (String b s2')).
intros H0 H; injection H; intros H1; rewrite <- H1; auto.
intros p H2 H3; inversion H3.
-case m; simpl in |- *; auto.
+case m; simpl; auto.
case (index 0 s1 s2'); intros; discriminate.
intros m'; generalize (Rec 0 m' s1); case (index 0 s1 s2'); auto.
-intros x H H0 H1 p; try case p; simpl in |- *; auto.
-intros H2 H3; red in |- *; intros H4; case H0.
+intros x H H0 H1 p; try case p; simpl; auto.
+intros H2 H3; red; intros H4; case H0.
intros H5 H6; absurd (false = true); auto with bool.
intros n0 H2 H3; apply H; auto.
injection H1; auto.
apply Le.le_O_n.
apply Lt.lt_S_n; auto.
intros; discriminate.
-intros n'; case m; simpl in |- *; auto.
+intros n'; case m; simpl; auto.
case (index n' s1 s2'); intros; discriminate.
intros m'; generalize (Rec n' m' s1); case (index n' s1 s2'); auto.
-intros x H H0 p; case p; simpl in |- *; auto.
+intros x H H0 p; case p; simpl; auto.
intros H1; inversion H1; auto.
intros n0 H1 H2; apply H; auto.
injection H0; auto.
@@ -312,33 +312,33 @@ Theorem index_correct3 :
index n s1 s2 = None ->
s1 <> EmptyString -> n <= m -> substring m (length s1) s2 <> s1.
Proof.
-intros n m s1 s2; generalize n m s1; clear n m s1; elim s2; simpl in |- *;
+intros n m s1 s2; generalize n m s1; clear n m s1; elim s2; simpl;
auto.
-intros n; case n; simpl in |- *; auto.
-intros m s1; case s1; simpl in |- *; auto.
-case m; intros; red in |- *; intros; discriminate.
+intros n; case n; simpl; auto.
+intros m s1; case s1; simpl; auto.
+case m; intros; red; intros; discriminate.
intros n' m; case m; auto.
-intros s1; case s1; simpl in |- *; auto.
+intros s1; case s1; simpl; auto.
intros b s2' Rec n m s1.
-case n; simpl in |- *; auto.
+case n; simpl; auto.
generalize (prefix_correct s1 (String b s2'));
case (prefix s1 (String b s2')).
intros; discriminate.
-case m; simpl in |- *; auto with bool.
-case s1; simpl in |- *; auto.
-intros a s H H0 H1 H2; red in |- *; intros H3; case H.
+case m; simpl; auto with bool.
+case s1; simpl; auto.
+intros a s H H0 H1 H2; red; intros H3; case H.
intros H4 H5; absurd (false = true); auto with bool.
-case s1; simpl in |- *; auto.
+case s1; simpl; auto.
intros a s n0 H H0 H1 H2;
- change (substring n0 (length (String a s)) s2' <> String a s) in |- *;
+ change (substring n0 (length (String a s)) s2' <> String a s);
apply (Rec 0); auto.
-generalize H0; case (index 0 (String a s) s2'); simpl in |- *; auto; intros;
+generalize H0; case (index 0 (String a s) s2'); simpl; auto; intros;
discriminate.
apply Le.le_O_n.
-intros n'; case m; simpl in |- *; auto.
+intros n'; case m; simpl; auto.
intros H H0 H1; inversion H1.
intros n0 H H0 H1; apply (Rec n'); auto.
-generalize H; case (index n' s1 s2'); simpl in |- *; auto; intros;
+generalize H; case (index n' s1 s2'); simpl; auto; intros;
discriminate.
apply Le.le_S_n; auto.
Qed.
@@ -353,13 +353,13 @@ Theorem index_correct4 :
forall (n : nat) (s : string),
index n EmptyString s = None -> length s < n.
Proof.
-intros n s; generalize n; clear n; elim s; simpl in |- *; auto.
-intros n; case n; simpl in |- *; auto.
+intros n s; generalize n; clear n; elim s; simpl; auto.
+intros n; case n; simpl; auto.
intros; discriminate.
intros; apply Lt.lt_O_Sn.
-intros a s' H n; case n; simpl in |- *; auto.
+intros a s' H n; case n; simpl; auto.
intros; discriminate.
-intros n'; generalize (H n'); case (index n' EmptyString s'); simpl in |- *;
+intros n'; generalize (H n'); case (index n' EmptyString s'); simpl;
auto.
intros; discriminate.
intros H0 H1; apply Lt.lt_n_S; auto.
diff --git a/theories/Wellfounded/Disjoint_Union.v b/theories/Wellfounded/Disjoint_Union.v
index f5daa3014..ec0dfeb81 100644
--- a/theories/Wellfounded/Disjoint_Union.v
+++ b/theories/Wellfounded/Disjoint_Union.v
@@ -41,7 +41,7 @@ Section Wf_Disjoint_Union.
well_founded leA -> well_founded leB -> well_founded Le_AsB.
Proof.
intros.
- unfold well_founded in |- *.
+ unfold well_founded.
destruct a as [a| b].
apply (acc_A_sum a).
apply (H a).
diff --git a/theories/Wellfounded/Inclusion.v b/theories/Wellfounded/Inclusion.v
index 1c83c4816..73d66c847 100644
--- a/theories/Wellfounded/Inclusion.v
+++ b/theories/Wellfounded/Inclusion.v
@@ -24,7 +24,7 @@ Section WfInclusion.
Theorem wf_incl : inclusion A R1 R2 -> well_founded R2 -> well_founded R1.
Proof.
- unfold well_founded in |- *; auto with sets.
+ unfold well_founded; auto with sets.
Qed.
End WfInclusion.
diff --git a/theories/Wellfounded/Inverse_Image.v b/theories/Wellfounded/Inverse_Image.v
index 27a1c3811..db89cb356 100644
--- a/theories/Wellfounded/Inverse_Image.v
+++ b/theories/Wellfounded/Inverse_Image.v
@@ -31,7 +31,7 @@ Section Inverse_Image.
Theorem wf_inverse_image : well_founded R -> well_founded Rof.
Proof.
- red in |- *; intros; apply Acc_inverse_image; auto.
+ red; intros; apply Acc_inverse_image; auto.
Qed.
Variable F : A -> B -> Prop.
@@ -49,7 +49,7 @@ Section Inverse_Image.
Theorem wf_inverse_rel : well_founded R -> well_founded RoF.
Proof.
- red in |- *; constructor; intros.
+ red; constructor; intros.
case H0; intros.
apply (Acc_inverse_rel x); auto.
Qed.
diff --git a/theories/Wellfounded/Lexicographic_Exponentiation.v b/theories/Wellfounded/Lexicographic_Exponentiation.v
index 6d5b663bd..fe2d83250 100644
--- a/theories/Wellfounded/Lexicographic_Exponentiation.v
+++ b/theories/Wellfounded/Lexicographic_Exponentiation.v
@@ -36,11 +36,11 @@ Section Wf_Lexicographic_Exponentiation.
Proof.
simple induction x.
simple induction z.
- simpl in |- *; intros H.
+ simpl; intros H.
inversion_clear H.
- simpl in |- *; intros; apply (Lt_nil A leA).
+ simpl; intros; apply (Lt_nil A leA).
intros a l HInd.
- simpl in |- *.
+ simpl.
intros.
inversion_clear H.
apply (Lt_hd A leA); auto with sets.
@@ -54,7 +54,7 @@ Section Wf_Lexicographic_Exponentiation.
ltl x (y ++ z) -> ltl x y \/ (exists y' : List, x = y ++ y' /\ ltl y' z).
Proof.
intros x y; generalize x.
- elim y; simpl in |- *.
+ elim y; simpl.
right.
exists x0; auto with sets.
intros.
@@ -196,7 +196,7 @@ Section Wf_Lexicographic_Exponentiation.
Descl x0 /\ Descl (l0 ++ Cons x1 Nil)).
- simpl in |- *.
+ simpl.
split.
generalize (app_inj_tail _ _ _ _ H2); simple induction 1.
simple induction 1; auto with sets.
@@ -239,7 +239,7 @@ Section Wf_Lexicographic_Exponentiation.
Proof.
intros a b x.
case x.
- simpl in |- *.
+ simpl.
simple induction 1.
intros.
inversion H1; auto with sets.
@@ -267,7 +267,7 @@ Section Wf_Lexicographic_Exponentiation.
case x.
intros; apply (Lt_nil A leA).
- simpl in |- *; intros.
+ simpl; intros.
inversion_clear H0.
apply (Lt_hd A leA a b); auto with sets.
@@ -284,17 +284,17 @@ Section Wf_Lexicographic_Exponentiation.
apply (Acc_inv (R:=Lex_Exp) (x:=<< x1 ++ x2, y1 >>)).
auto with sets.
- unfold lex_exp in |- *; simpl in |- *; auto with sets.
+ unfold lex_exp; simpl; auto with sets.
Qed.
Theorem wf_lex_exp : well_founded leA -> well_founded Lex_Exp.
Proof.
- unfold well_founded at 2 in |- *.
+ unfold well_founded at 2.
simple induction a; intros x y.
apply Acc_intro.
simple induction y0.
- unfold lex_exp at 1 in |- *; simpl in |- *.
+ unfold lex_exp at 1; simpl.
apply rev_ind with
(A := A)
(P := fun x:List =>
@@ -335,8 +335,8 @@ Section Wf_Lexicographic_Exponentiation.
intro.
apply Acc_intro.
simple induction y2.
- unfold lex_exp at 1 in |- *.
- simpl in |- *; intros x4 y3. intros.
+ unfold lex_exp at 1.
+ simpl; intros x4 y3. intros.
apply (H0 x4 y3); auto with sets.
intros.
@@ -357,7 +357,7 @@ Section Wf_Lexicographic_Exponentiation.
generalize (HInd2 f); intro.
apply Acc_intro.
simple induction y3.
- unfold lex_exp at 1 in |- *; simpl in |- *; intros.
+ unfold lex_exp at 1; simpl; intros.
apply H15; auto with sets.
Qed.
diff --git a/theories/Wellfounded/Lexicographic_Product.v b/theories/Wellfounded/Lexicographic_Product.v
index 9a1d66f43..a0c639e4e 100644
--- a/theories/Wellfounded/Lexicographic_Product.v
+++ b/theories/Wellfounded/Lexicographic_Product.v
@@ -60,7 +60,7 @@ Section WfLexicographic_Product.
well_founded leA ->
(forall x:A, well_founded (leB x)) -> well_founded LexProd.
Proof.
- intros wfA wfB; unfold well_founded in |- *.
+ intros wfA wfB; unfold well_founded.
destruct a.
apply acc_A_B_lexprod; auto with sets; intros.
red in wfB.
@@ -94,7 +94,7 @@ Section Wf_Symmetric_Product.
Lemma wf_symprod :
well_founded leA -> well_founded leB -> well_founded Symprod.
Proof.
- red in |- *.
+ red.
destruct a.
apply Acc_symprod; auto with sets.
Defined.
@@ -161,7 +161,7 @@ Section Swap.
Lemma wf_swapprod : well_founded R -> well_founded SwapProd.
Proof.
- red in |- *.
+ red.
destruct a; intros.
apply Acc_swapprod; auto with sets.
Defined.
diff --git a/theories/Wellfounded/Transitive_Closure.v b/theories/Wellfounded/Transitive_Closure.v
index e9bc7ccf7..5d06c6c02 100644
--- a/theories/Wellfounded/Transitive_Closure.v
+++ b/theories/Wellfounded/Transitive_Closure.v
@@ -18,7 +18,7 @@ Section Wf_Transitive_Closure.
Notation trans_clos := (clos_trans A R).
Lemma incl_clos_trans : inclusion A R trans_clos.
- red in |- *; auto with sets.
+ red; auto with sets.
Qed.
Lemma Acc_clos_trans : forall x:A, Acc R x -> Acc trans_clos x.
@@ -39,7 +39,7 @@ Section Wf_Transitive_Closure.
Theorem wf_clos_trans : well_founded R -> well_founded trans_clos.
Proof.
- unfold well_founded in |- *; auto with sets.
+ unfold well_founded; auto with sets.
Defined.
End Wf_Transitive_Closure.
diff --git a/theories/Wellfounded/Union.v b/theories/Wellfounded/Union.v
index e3fdc4c5e..c0aa1c0db 100644
--- a/theories/Wellfounded/Union.v
+++ b/theories/Wellfounded/Union.v
@@ -51,7 +51,7 @@ Section WfUnion.
elim strip_commut with x x0 y0; auto with sets; intros.
apply Acc_inv_trans with x1; auto with sets.
- unfold union in |- *.
+ unfold union.
elim H11; auto with sets; intros.
apply t_trans with y1; auto with sets.
@@ -65,7 +65,7 @@ Section WfUnion.
Theorem wf_union :
commut A R1 R2 -> well_founded R1 -> well_founded R2 -> well_founded Union.
Proof.
- unfold well_founded in |- *.
+ unfold well_founded.
intros.
apply Acc_union; auto with sets.
Qed.
diff --git a/theories/Wellfounded/Well_Ordering.v b/theories/Wellfounded/Well_Ordering.v
index fc4e2ebce..452da1b2e 100644
--- a/theories/Wellfounded/Well_Ordering.v
+++ b/theories/Wellfounded/Well_Ordering.v
@@ -25,7 +25,7 @@ Section WellOrdering.
Theorem wf_WO : well_founded le_WO.
Proof.
- unfold well_founded in |- *; intro.
+ unfold well_founded; intro.
apply Acc_intro.
elim a.
intros.
@@ -37,7 +37,7 @@ Section WellOrdering.
apply (H v0 y0).
cut (f = f1).
intros E; rewrite E; auto.
- symmetry in |- *.
+ symmetry .
apply (inj_pair2 A (fun a0:A => B a0 -> WO) a0 f1 f H5).
Qed.
@@ -61,7 +61,7 @@ Section Characterisation_wf_relations.
apply (well_founded_induction_type H (fun a:A => WO A B)); auto.
intros x H1.
apply (sup A B x).
- unfold B at 1 in |- *.
+ unfold B at 1.
destruct 1 as [x0].
apply (H1 x0); auto.
Qed.
diff --git a/theories/ZArith/ZArith_dec.v b/theories/ZArith/ZArith_dec.v
index 8d535d509..06c9988a1 100644
--- a/theories/ZArith/ZArith_dec.v
+++ b/theories/ZArith/ZArith_dec.v
@@ -151,7 +151,7 @@ Proof.
intro.
apply False_rec.
apply H.
- symmetry in |- *.
+ symmetry .
assumption.
Defined.
@@ -174,7 +174,7 @@ Proof.
assumption.
intro.
right.
- symmetry in |- *.
+ symmetry .
assumption.
Defined.
diff --git a/theories/ZArith/Zcomplements.v b/theories/ZArith/Zcomplements.v
index 7ae2a67ca..02e3ffe47 100644
--- a/theories/ZArith/Zcomplements.v
+++ b/theories/ZArith/Zcomplements.v
@@ -56,7 +56,7 @@ Proof.
set (Q := fun z => 0 <= z -> P z * P (- z)) in *.
cut (Q (Z.abs p)); [ intros | apply (Z_lt_rec Q); auto with zarith ].
elim (Zabs_dec p); intro eq; rewrite eq; elim H; auto with zarith.
- unfold Q in |- *; clear Q; intros.
+ unfold Q; clear Q; intros.
split; apply HP.
rewrite Z.abs_eq; auto; intros.
elim (H (Z.abs m)); intros; auto with zarith.
@@ -75,7 +75,7 @@ Proof.
set (Q := fun z => 0 <= z -> P z /\ P (- z)) in *.
cut (Q (Z.abs p)); [ intros | apply (Z_lt_induction Q); auto with zarith ].
elim (Zabs_dec p); intro eq; rewrite eq; elim H; auto with zarith.
- unfold Q in |- *; clear Q; intros.
+ unfold Q; clear Q; intros.
split; apply HP.
rewrite Z.abs_eq; auto; intros.
elim (H (Z.abs m)); intros; auto with zarith.
diff --git a/theories/ZArith/Zdigits.v b/theories/ZArith/Zdigits.v
index a9348785a..d252b3e92 100644
--- a/theories/ZArith/Zdigits.v
+++ b/theories/ZArith/Zdigits.v
@@ -90,13 +90,13 @@ Section ENCODING_VALUE.
Lemma Zmod2_twice :
forall z:Z, z = (2 * Zmod2 z + bit_value (Z.odd z))%Z.
Proof.
- destruct z; simpl in |- *.
+ destruct z; simpl.
trivial.
- destruct p; simpl in |- *; trivial.
+ destruct p; simpl; trivial.
- destruct p; simpl in |- *.
- destruct p as [p| p| ]; simpl in |- *.
+ destruct p; simpl.
+ destruct p as [p| p| ]; simpl.
rewrite <- (Pos.pred_double_succ p); trivial.
trivial.
@@ -145,17 +145,17 @@ Section Z_BRIC_A_BRAC.
(z >= 0)%Z ->
Z_to_binary (S n) (bit_value b + 2 * z) = Bcons b n (Z_to_binary n z).
Proof.
- destruct b; destruct z; simpl in |- *; auto.
+ destruct b; destruct z; simpl; auto.
intro H; elim H; trivial.
Qed.
Lemma binary_value_pos :
forall (n:nat) (bv:Bvector n), (binary_value n bv >= 0)%Z.
Proof.
- induction bv as [| a n v IHbv]; simpl in |- *.
+ induction bv as [| a n v IHbv]; simpl.
omega.
- destruct a; destruct (binary_value n v); simpl in |- *; auto.
+ destruct a; destruct (binary_value n v); simpl; auto.
auto with zarith.
Qed.
@@ -174,7 +174,7 @@ Section Z_BRIC_A_BRAC.
Proof.
destruct b; destruct z as [| p| p]; auto.
destruct p as [p| p| ]; auto.
- destruct p as [p| p| ]; simpl in |- *; auto.
+ destruct p as [p| p| ]; simpl; auto.
intros; rewrite (Pos.succ_pred_double p); trivial.
Qed.
@@ -201,7 +201,7 @@ Section Z_BRIC_A_BRAC.
auto.
destruct p; auto.
- simpl in |- *; intros; omega.
+ simpl; intros; omega.
intro H; elim H; trivial.
Qed.
@@ -233,7 +233,7 @@ Section Z_BRIC_A_BRAC.
Lemma Zeven_bit_value :
forall z:Z, Zeven.Zeven z -> bit_value (Z.odd z) = 0%Z.
Proof.
- destruct z; unfold bit_value in |- *; auto.
+ destruct z; unfold bit_value; auto.
destruct p; tauto || (intro H; elim H).
destruct p; tauto || (intro H; elim H).
Qed.
@@ -241,7 +241,7 @@ Section Z_BRIC_A_BRAC.
Lemma Zodd_bit_value :
forall z:Z, Zeven.Zodd z -> bit_value (Z.odd z) = 1%Z.
Proof.
- destruct z; unfold bit_value in |- *; auto.
+ destruct z; unfold bit_value; auto.
intros; elim H.
destruct p; tauto || (intros; elim H).
destruct p; tauto || (intros; elim H).
@@ -310,7 +310,7 @@ Section COHERENT_VALUE.
(z < two_power_nat n)%Z -> binary_value n (Z_to_binary n z) = z.
Proof.
induction n as [| n IHn].
- unfold two_power_nat, shift_nat in |- *; simpl in |- *; intros; omega.
+ unfold two_power_nat, shift_nat; simpl; intros; omega.
intros; rewrite Z_to_binary_Sn_z.
rewrite binary_value_Sn.
@@ -328,7 +328,7 @@ Section COHERENT_VALUE.
(z < two_power_nat n)%Z -> two_compl_value n (Z_to_two_compl n z) = z.
Proof.
induction n as [| n IHn].
- unfold two_power_nat, shift_nat in |- *; simpl in |- *; intros.
+ unfold two_power_nat, shift_nat; simpl; intros.
assert (z = (-1)%Z \/ z = 0%Z). omega.
intuition; subst z; trivial.
diff --git a/theories/ZArith/Zlogarithm.v b/theories/ZArith/Zlogarithm.v
index 3711ea021..09323ebd4 100644
--- a/theories/ZArith/Zlogarithm.v
+++ b/theories/ZArith/Zlogarithm.v
@@ -77,7 +77,7 @@ Section Log_pos. (* Log of positive integers *)
forall x:positive,
0 <= log_inf x /\ two_p (log_inf x) <= Zpos x < two_p (Z.succ (log_inf x)).
Proof.
- simple induction x; intros; simpl in |- *;
+ simple induction x; intros; simpl;
[ elim H; intros Hp HR; clear H; split;
[ auto with zarith
| rewrite two_p_S with (x := Z.succ (log_inf p)) by (apply Z.le_le_succ_r; trivial);
@@ -90,7 +90,7 @@ Section Log_pos. (* Log of positive integers *)
rewrite two_p_S by trivial;
rewrite two_p_S in HR by trivial; rewrite (BinInt.Pos2Z.inj_xO p);
omega ]
- | unfold two_power_pos in |- *; unfold shift_pos in |- *; simpl in |- *;
+ | unfold two_power_pos; unfold shift_pos; simpl;
omega ].
Qed.
@@ -103,7 +103,7 @@ Section Log_pos. (* Log of positive integers *)
Lemma log_sup_correct1 : forall p:positive, 0 <= log_sup p.
Proof.
- simple induction p; intros; simpl in |- *; auto with zarith.
+ simple induction p; intros; simpl; auto with zarith.
Qed.
(** For every [p], either [p] is a power of two and [(log_inf p)=(log_sup p)]
@@ -115,16 +115,16 @@ Section Log_pos. (* Log of positive integers *)
else log_sup p = Z.succ (log_inf p).
Proof.
simple induction p; intros;
- [ elim H; right; simpl in |- *;
+ [ elim H; right; simpl;
rewrite (two_p_S (log_inf p0) (log_inf_correct1 p0));
rewrite BinInt.Pos2Z.inj_xI; unfold Z.succ; omega
| elim H; clear H; intro Hif;
- [ left; simpl in |- *;
+ [ left; simpl;
rewrite (two_p_S (log_inf p0) (log_inf_correct1 p0));
rewrite (two_p_S (log_sup p0) (log_sup_correct1 p0));
rewrite <- (proj1 Hif); rewrite <- (proj2 Hif);
auto
- | right; simpl in |- *;
+ | right; simpl;
rewrite (two_p_S (log_inf p0) (log_inf_correct1 p0));
rewrite BinInt.Pos2Z.inj_xO; unfold Z.succ;
omega ]
@@ -146,12 +146,12 @@ Section Log_pos. (* Log of positive integers *)
Lemma log_inf_le_log_sup : forall p:positive, log_inf p <= log_sup p.
Proof.
- simple induction p; simpl in |- *; intros; omega.
+ simple induction p; simpl; intros; omega.
Qed.
Lemma log_sup_le_Slog_inf : forall p:positive, log_sup p <= Z.succ (log_inf p).
Proof.
- simple induction p; simpl in |- *; intros; omega.
+ simple induction p; simpl; intros; omega.
Qed.
(** Now it's possible to specify and build the [Log] rounded to the nearest *)
@@ -167,7 +167,7 @@ Section Log_pos. (* Log of positive integers *)
Theorem log_near_correct1 : forall p:positive, 0 <= log_near p.
Proof.
- simple induction p; simpl in |- *; intros;
+ simple induction p; simpl; intros;
[ elim p0; auto with zarith
| elim p0; auto with zarith
| trivial with zarith ].
@@ -182,9 +182,9 @@ Section Log_pos. (* Log of positive integers *)
Proof.
simple induction p.
intros p0 [Einf| Esup].
- simpl in |- *. rewrite Einf.
+ simpl. rewrite Einf.
case p0; [ left | left | right ]; reflexivity.
- simpl in |- *; rewrite Esup.
+ simpl; rewrite Esup.
elim (log_sup_log_inf p0).
generalize (log_inf_le_log_sup p0).
generalize (log_sup_le_Slog_inf p0).
@@ -192,10 +192,10 @@ Section Log_pos. (* Log of positive integers *)
intros; omega.
case p0; intros; auto with zarith.
intros p0 [Einf| Esup].
- simpl in |- *.
+ simpl.
repeat rewrite Einf.
case p0; intros; auto with zarith.
- simpl in |- *.
+ simpl.
repeat rewrite Esup.
case p0; intros; auto with zarith.
auto.
@@ -216,7 +216,7 @@ Section divers.
Lemma ZERO_le_N_digits : forall x:Z, 0 <= N_digits x.
Proof.
- simple induction x; simpl in |- *;
+ simple induction x; simpl;
[ apply Z.le_refl | exact log_inf_correct1 | exact log_inf_correct1 ].
Qed.
@@ -245,21 +245,21 @@ Section divers.
Proof.
split;
[ elim p;
- [ simpl in |- *; tauto
- | simpl in |- *; intros; generalize (H H0); intro H1; elim H1;
+ [ simpl; tauto
+ | simpl; intros; generalize (H H0); intro H1; elim H1;
intros y0 Hy0; exists (S y0); rewrite Hy0; reflexivity
| intro; exists 0%nat; reflexivity ]
- | intros; elim H; intros; rewrite H0; elim x; intros; simpl in |- *; trivial ].
+ | intros; elim H; intros; rewrite H0; elim x; intros; simpl; trivial ].
Qed.
Lemma Is_power_or : forall p:positive, Is_power p \/ ~ Is_power p.
Proof.
simple induction p;
- [ intros; right; simpl in |- *; tauto
+ [ intros; right; simpl; tauto
| intros; elim H;
- [ intros; left; simpl in |- *; exact H0
- | intros; right; simpl in |- *; exact H0 ]
- | left; simpl in |- *; trivial ].
+ [ intros; left; simpl; exact H0
+ | intros; right; simpl; exact H0 ]
+ | left; simpl; trivial ].
Qed.
End divers.
diff --git a/theories/ZArith/Znumtheory.v b/theories/ZArith/Znumtheory.v
index 33f4dc7f4..5d6550f99 100644
--- a/theories/ZArith/Znumtheory.v
+++ b/theories/ZArith/Znumtheory.v
@@ -305,7 +305,7 @@ Section extended_euclid_algorithm.
v1 * a + v2 * b = v3 ->
(forall d:Z, Zis_gcd u3 v3 d -> Zis_gcd a b d) -> Euclid.
Proof.
- intros v3 Hv3; generalize Hv3; pattern v3 in |- *.
+ intros v3 Hv3; generalize Hv3; pattern v3.
apply Zlt_0_rec.
clear v3 Hv3; intros.
elim (Z_zerop x); intro.
@@ -319,8 +319,8 @@ Section extended_euclid_algorithm.
apply Z_mod_lt; omega.
assert (xpos : x > 0). omega.
generalize (Z_div_mod_eq u3 x xpos).
- unfold q in |- *.
- intro eq; pattern u3 at 2 in |- *; rewrite eq; ring.
+ unfold q.
+ intro eq; pattern u3 at 2; rewrite eq; ring.
apply (H (u3 - q * x) Hq (proj1 Hq) v1 v2 x (u1 - q * v1) (u2 - q * v2)).
tauto.
replace ((u1 - q * v1) * a + (u2 - q * v2) * b) with
@@ -459,12 +459,12 @@ Proof.
apply Gauss with a.
rewrite H3.
auto with zarith.
- red in |- *; auto with zarith.
+ red; auto with zarith.
apply Gauss with c.
rewrite Z.mul_comm.
rewrite <- H3.
auto with zarith.
- red in |- *; auto with zarith.
+ red; auto with zarith.
Qed.
(** After factorization by a gcd, the original numbers are relatively prime. *)
@@ -479,7 +479,7 @@ Proof.
elim H1; intros.
elim H4; intros.
rewrite H2 in H6; subst b; omega.
- unfold rel_prime in |- *.
+ unfold rel_prime.
destruct H1.
destruct H1 as (a',H1).
destruct H3 as (b',H3).
diff --git a/theories/ZArith/Zwf.v b/theories/ZArith/Zwf.v
index 0a4418671..6f005d01d 100644
--- a/theories/ZArith/Zwf.v
+++ b/theories/ZArith/Zwf.v
@@ -32,13 +32,13 @@ Section wf_proof.
Let f (z:Z) := Z.abs_nat (z - c).
Lemma Zwf_well_founded : well_founded (Zwf c).
- red in |- *; intros.
+ red; intros.
assert (forall (n:nat) (a:Z), (f a < n)%nat \/ a < c -> Acc (Zwf c) a).
clear a; simple induction n; intros.
(** n= 0 *)
case H; intros.
case (lt_n_O (f a)); auto.
- apply Acc_intro; unfold Zwf in |- *; intros.
+ apply Acc_intro; unfold Zwf; intros.
assert False; omega || contradiction.
(** inductive case *)
case H0; clear H0; intro; auto.