diff options
author | Hugo Herbelin <Hugo.Herbelin@inria.fr> | 2015-12-09 23:38:00 +0100 |
---|---|---|
committer | Hugo Herbelin <Hugo.Herbelin@inria.fr> | 2015-12-10 17:44:19 +0100 |
commit | fb77937a6ba0fe45e978911db08de57f931683e1 (patch) | |
tree | 7a82660e8a0686d4989a615bf5c839ec2e7d8c60 /theories | |
parent | 20e1829ad3de42dd322af972c6f9a585f40738ef (diff) |
Changing syntax of pat/constr1.../constrn into pat%constr1...%constrn.
Marking it as experimental.
Diffstat (limited to 'theories')
-rw-r--r-- | theories/Logic/WKL.v | 6 | ||||
-rw-r--r-- | theories/Logic/WeakFan.v | 2 | ||||
-rw-r--r-- | theories/Wellfounded/Lexicographic_Exponentiation.v | 2 |
3 files changed, 5 insertions, 5 deletions
diff --git a/theories/Logic/WKL.v b/theories/Logic/WKL.v index 408eca4a3..abe6a8d99 100644 --- a/theories/Logic/WKL.v +++ b/theories/Logic/WKL.v @@ -40,7 +40,7 @@ Proposition is_path_from_characterization P n l : Proof. intros. split. - induction 1 as [|* HP _ (l'&Hl'&HPl')|* HP _ (l'&Hl'&HPl')]. - + exists []. split. reflexivity. intros n <-/le_n_0_eq. assumption. + + exists []. split. reflexivity. intros n <-%le_n_0_eq. assumption. + exists (true :: l'). split. apply eq_S, Hl'. intros [|] H. * assumption. * simpl. rewrite <- app_assoc. apply HPl', le_S_n, H. @@ -51,10 +51,10 @@ intros. split. + constructor. apply (HPl' 0). apply le_0_n. + eapply next_left. * apply (HPl' 0), le_0_n. - * fold (length l'). apply IHl'. intros n' H/le_n_S. apply HPl' in H. simpl in H. rewrite <- app_assoc in H. assumption. + * fold (length l'). apply IHl'. intros n' H%le_n_S. apply HPl' in H. simpl in H. rewrite <- app_assoc in H. assumption. + apply next_right. * apply (HPl' 0), le_0_n. - * fold (length l'). apply IHl'. intros n' H/le_n_S. apply HPl' in H. simpl in H. rewrite <- app_assoc in H. assumption. + * fold (length l'). apply IHl'. intros n' H%le_n_S. apply HPl' in H. simpl in H. rewrite <- app_assoc in H. assumption. Qed. (** [infinite_from P l] means that we can find arbitrary long paths diff --git a/theories/Logic/WeakFan.v b/theories/Logic/WeakFan.v index 2f84ebe5f..365661be0 100644 --- a/theories/Logic/WeakFan.v +++ b/theories/Logic/WeakFan.v @@ -89,7 +89,7 @@ Qed. Theorem WeakFanTheorem : forall P, barred P -> inductively_barred P []. Proof. intros P Hbar. -destruct Hbar with (X P) as (l,(Hd/Y_approx,HP)). +destruct Hbar with (X P) as (l,(Hd%Y_approx,HP)). assert (inductively_barred P l) by (apply (now P l), HP). clear Hbar HP. induction l as [|a l]. diff --git a/theories/Wellfounded/Lexicographic_Exponentiation.v b/theories/Wellfounded/Lexicographic_Exponentiation.v index dd9e4c986..b8b9e929c 100644 --- a/theories/Wellfounded/Lexicographic_Exponentiation.v +++ b/theories/Wellfounded/Lexicographic_Exponentiation.v @@ -95,7 +95,7 @@ Section Wf_Lexicographic_Exponentiation. intros. - inversion H. assert ([b; a] = ([] ++ [b]) ++ [a]) by auto with sets. - destruct (app_inj_tail (l ++ [y]) ([] ++ [b]) _ _ H0) as ((?, <-)/app_inj_tail, <-). + destruct (app_inj_tail (l ++ [y]) ([] ++ [b]) _ _ H0) as ((?, <-)%app_inj_tail, <-). inversion H1; subst; [ apply rt_step; assumption | apply rt_refl ]. - inversion H0. + apply app_cons_not_nil in H3 as (). |