aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories
diff options
context:
space:
mode:
authorGravatar msozeau <msozeau@85f007b7-540e-0410-9357-904b9bb8a0f7>2008-07-28 09:24:15 +0000
committerGravatar msozeau <msozeau@85f007b7-540e-0410-9357-904b9bb8a0f7>2008-07-28 09:24:15 +0000
commitf7665a72dba3a896997220d738597cfe05b27990 (patch)
tree9bf47da71e2a912832199c6d13633d8ddee34678 /theories
parent059a0622a512e40ffc1944cdc6084c3462aa85f9 (diff)
Fixes in generalize_eqs/dependent induction to allow the user to specify
generalized variables himself. git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@11280 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'theories')
-rw-r--r--theories/Program/Equality.v25
-rw-r--r--theories/Program/Tactics.v16
2 files changed, 23 insertions, 18 deletions
diff --git a/theories/Program/Equality.v b/theories/Program/Equality.v
index 89e44c9bc..cd30d77ca 100644
--- a/theories/Program/Equality.v
+++ b/theories/Program/Equality.v
@@ -235,30 +235,43 @@ Ltac simpl_depind := subst* ; autoinjections ; try discriminates ;
and starts a dependent induction using this tactic. *)
Ltac do_depind tac H :=
+ generalize_eqs_vars H ; tac H ; repeat progress simpl_depind.
+
+(** A variant where generalized variables should be given by the user. *)
+
+Ltac do_depind' tac H :=
generalize_eqs H ; tac H ; repeat progress simpl_depind.
(** Calls [destruct] on the generalized hypothesis, results should be similar to inversion. *)
Tactic Notation "dependent" "destruction" ident(H) :=
- do_depind ltac:(fun H => destruct H ; intros) H ; subst*.
+ do_depind ltac:(fun hyp => destruct hyp ; intros) H ; subst*.
Tactic Notation "dependent" "destruction" ident(H) "using" constr(c) :=
- do_depind ltac:(fun H => destruct H using c ; intros) H.
+ do_depind ltac:(fun hyp => destruct hyp using c ; intros) H.
+
+(** This tactic also generalizes the goal by the given variables before the induction. *)
+
+Tactic Notation "dependent" "destruction" ident(H) "generalizing" ne_hyp_list(l) :=
+ do_depind' ltac:(fun hyp => revert l ; destruct hyp ; intros) H.
+
+Tactic Notation "dependent" "destruction" ident(H) "generalizing" ne_hyp_list(l) "using" constr(c) :=
+ do_depind' ltac:(fun hyp => revert l ; destruct hyp using c ; intros) H.
(** Then we have wrappers for usual calls to induction. One can customize the induction tactic by
writting another wrapper calling do_depind. *)
Tactic Notation "dependent" "induction" ident(H) :=
- do_depind ltac:(fun H => induction H ; intros) H.
+ do_depind ltac:(fun hyp => induction hyp ; intros) H.
Tactic Notation "dependent" "induction" ident(H) "using" constr(c) :=
- do_depind ltac:(fun H => induction H using c ; intros) H.
+ do_depind ltac:(fun hyp => induction hyp using c ; intros) H.
(** This tactic also generalizes the goal by the given variables before the induction. *)
Tactic Notation "dependent" "induction" ident(H) "generalizing" ne_hyp_list(l) :=
- do_depind ltac:(fun H => generalize l ; clear l ; induction H ; intros) H.
+ do_depind' ltac:(fun hyp => generalize l ; clear l ; induction hyp ; intros) H.
Tactic Notation "dependent" "induction" ident(H) "generalizing" ne_hyp_list(l) "using" constr(c) :=
- do_depind ltac:(fun H => generalize l ; clear l ; induction H using c ; intros) H.
+ do_depind' ltac:(fun hyp => generalize l ; clear l ; induction hyp using c ; intros) H.
diff --git a/theories/Program/Tactics.v b/theories/Program/Tactics.v
index 45e965142..d7535c323 100644
--- a/theories/Program/Tactics.v
+++ b/theories/Program/Tactics.v
@@ -77,10 +77,10 @@ Ltac clear_dup :=
match goal with
| [ H : ?X |- _ ] =>
match goal with
- | [ H' : X |- _ ] =>
- match H' with
- | H => fail 2
- | _ => clear H' || clear H
+ | [ H' : ?Y |- _ ] =>
+ match H with
+ | H' => fail 2
+ | _ => conv X Y ; (clear H' || clear H)
end
end
end.
@@ -158,14 +158,6 @@ Ltac autoinjection :=
let tac H := progress (inversion H ; subst ; clear_dups) ; clear H in
match goal with
| [ H : ?f ?a = ?f' ?a' |- _ ] => tac H
- | [ H : ?f ?a ?b = ?f' ?a' ?b' |- _ ] => tac H
- | [ H : ?f ?a ?b ?c = ?f' ?a' ?b' ?c' |- _ ] => tac H
- | [ H : ?f ?a ?b ?c ?d= ?f' ?a' ?b' ?c' ?d' |- _ ] => tac H
- | [ H : ?f ?a ?b ?c ?d ?e= ?f' ?a' ?b' ?c' ?d' ?e' |- _ ] => tac H
- | [ H : ?f ?a ?b ?c ?d ?e ?g= ?f' ?a' ?b' ?c' ?d' ?e' ?g' |- _ ] => tac H
- | [ H : ?f ?a ?b ?c ?d ?e ?g ?h= ?f' ?a' ?b' ?c' ?d' ?e'?g' ?h' |- _ ] => tac H
- | [ H : ?f ?a ?b ?c ?d ?e ?g ?h ?i = ?f' ?a' ?b' ?c' ?d' ?e'?g' ?h' ?i' |- _ ] => tac H
- | [ H : ?f ?a ?b ?c ?d ?e ?g ?h ?i ?j = ?f' ?a' ?b' ?c' ?d' ?e'?g' ?h' ?i' ?j' |- _ ] => tac H
end.
Ltac autoinjections := repeat autoinjection.