diff options
author | letouzey <letouzey@85f007b7-540e-0410-9357-904b9bb8a0f7> | 2007-07-13 15:18:18 +0000 |
---|---|---|
committer | letouzey <letouzey@85f007b7-540e-0410-9357-904b9bb8a0f7> | 2007-07-13 15:18:18 +0000 |
commit | d445f5714b772b8240e20d41c8a489e3d4e66253 (patch) | |
tree | dc4ff2a5011af81308ed761172f48b02e736f4b6 /theories | |
parent | 246909f2c587ed798bc42b65fb90c7b77dfa52b7 (diff) |
Small cleanup
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@9996 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'theories')
-rw-r--r-- | theories/QArith/Qfield.v | 18 | ||||
-rw-r--r-- | theories/QArith/Qreals.v | 30 |
2 files changed, 31 insertions, 17 deletions
diff --git a/theories/QArith/Qfield.v b/theories/QArith/Qfield.v index 4d8a80611..f54a6c286 100644 --- a/theories/QArith/Qfield.v +++ b/theories/QArith/Qfield.v @@ -12,7 +12,7 @@ Require Export Field. Require Export QArith_base. Require Import NArithRing. -(** * A ring tactic for rational numbers *) +(** * field and ring tactics for rational numbers *) Definition Qeq_bool (x y : Q) := if Qeq_dec x y then true else false. @@ -23,6 +23,11 @@ Proof. intros _ H; inversion H. Qed. +Lemma Qeq_bool_complete : forall x y : Q, x==y -> Qeq_bool x y = true. +Proof. + intros x y; unfold Qeq_bool in |- *; case (Qeq_dec x y); simpl in |- *; auto. +Qed. + Definition Qsft : field_theory 0 1 Qplus Qmult Qminus Qopp Qdiv Qinv Qeq. Proof. constructor. @@ -77,7 +82,12 @@ Ltac Qpow_tac t := | _ => NotConstant end. -Add Field Qfield : Qsft(decidable Qeq_bool_correct, constants [Qcst], power_tac Qpower_theory [Qpow_tac]). +Add Field Qfield : Qsft + (decidable Qeq_bool_correct, + completeness Qeq_bool_complete, + constants [Qcst], + power_tac Qpower_theory [Qpow_tac]). + (** Exemple of use: *) Section Examples. @@ -109,7 +119,7 @@ Let ex6 : (1#1)+(1#1) == 2#1. ring. Qed. -Let ex7 : forall x : Q, x-x== 0#1. +Let ex7 : forall x : Q, x-x== 0. intro. ring. Qed. @@ -124,7 +134,7 @@ Let ex9 : forall x : Q, x^0 == 1. ring. Qed. -Example test_field : forall x y : Q, ~(y==0) -> (x/y)*y == x. +Let ex10 : forall x y : Q, ~(y==0) -> (x/y)*y == x. intros. field. auto. diff --git a/theories/QArith/Qreals.v b/theories/QArith/Qreals.v index 1b6b4722b..d57a8c824 100644 --- a/theories/QArith/Qreals.v +++ b/theories/QArith/Qreals.v @@ -11,19 +11,15 @@ Require Export Rbase. Require Export QArith_base. -(** A field tactic for rational numbers. *) +(** Injection of rational numbers into real numbers. *) -(** Since field cannot operate on setoid datatypes (yet?), - we translate Q goals into reals before applying field. *) +Definition Q2R (x : Q) : R := (IZR (Qnum x) * / IZR (QDen x))%R. Lemma IZR_nz : forall p : positive, IZR (Zpos p) <> 0%R. intros; apply not_O_IZR; auto with qarith. Qed. -Hint Immediate IZR_nz. -Hint Resolve Rmult_integral_contrapositive. - -Definition Q2R (x : Q) : R := (IZR (Qnum x) * / IZR (QDen x))%R. +Hint Resolve IZR_nz Rmult_integral_contrapositive. Lemma eqR_Qeq : forall x y : Q, Q2R x = Q2R y -> x==y. Proof. @@ -171,7 +167,7 @@ Lemma Q2R_minus : forall x y : Q, Q2R (x-y) = (Q2R x - Q2R y)%R. unfold Qminus in |- *; intros; rewrite Q2R_plus; rewrite Q2R_opp; auto. Qed. -Lemma Q2R_inv : forall x : Q, ~ x==0#1 -> Q2R (/x) = (/ Q2R x)%R. +Lemma Q2R_inv : forall x : Q, ~ x==0 -> Q2R (/x) = (/ Q2R x)%R. Proof. unfold Qinv, Q2R, Qeq in |- *; intros (x1, x2); unfold Qden, Qnum in |- *. case x1. @@ -185,7 +181,7 @@ intros; Qed. Lemma Q2R_div : - forall x y : Q, ~ y==0#1 -> Q2R (x/y) = (Q2R x / Q2R y)%R. + forall x y : Q, ~ y==0 -> Q2R (x/y) = (Q2R x / Q2R y)%R. Proof. unfold Qdiv, Rdiv in |- *. intros; rewrite Q2R_mult. @@ -194,16 +190,24 @@ Qed. Hint Rewrite Q2R_plus Q2R_mult Q2R_opp Q2R_minus Q2R_inv Q2R_div : q2r_simpl. +Section LegacyQField. + +(** In the past, the field tactic was not able to deal with setoid datatypes, + so translating from Q to R and applying field on reals was a workaround. + See now Qfield for a direct field tactic on Q. *) + Ltac QField := apply eqR_Qeq; autorewrite with q2r_simpl; try field; auto. (** Examples of use: *) -Goal forall x y z : Q, (x+y)*z == (x*z)+(y*z). +Let ex1 : forall x y z : Q, (x+y)*z == (x*z)+(y*z). intros; QField. -Abort. +Qed. -Goal forall x y : Q, ~ y==0#1 -> (x/y)*y == x. +Let ex2 : forall x y : Q, ~ y==0 -> (x/y)*y == x. intros; QField. intro; apply H; apply eqR_Qeq. rewrite H0; unfold Q2R in |- *; simpl in |- *; field; auto with real. -Abort. +Qed. + +End LegacyQField.
\ No newline at end of file |