aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories
diff options
context:
space:
mode:
authorGravatar letouzey <letouzey@85f007b7-540e-0410-9357-904b9bb8a0f7>2007-07-13 15:18:18 +0000
committerGravatar letouzey <letouzey@85f007b7-540e-0410-9357-904b9bb8a0f7>2007-07-13 15:18:18 +0000
commitd445f5714b772b8240e20d41c8a489e3d4e66253 (patch)
treedc4ff2a5011af81308ed761172f48b02e736f4b6 /theories
parent246909f2c587ed798bc42b65fb90c7b77dfa52b7 (diff)
Small cleanup
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@9996 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'theories')
-rw-r--r--theories/QArith/Qfield.v18
-rw-r--r--theories/QArith/Qreals.v30
2 files changed, 31 insertions, 17 deletions
diff --git a/theories/QArith/Qfield.v b/theories/QArith/Qfield.v
index 4d8a80611..f54a6c286 100644
--- a/theories/QArith/Qfield.v
+++ b/theories/QArith/Qfield.v
@@ -12,7 +12,7 @@ Require Export Field.
Require Export QArith_base.
Require Import NArithRing.
-(** * A ring tactic for rational numbers *)
+(** * field and ring tactics for rational numbers *)
Definition Qeq_bool (x y : Q) :=
if Qeq_dec x y then true else false.
@@ -23,6 +23,11 @@ Proof.
intros _ H; inversion H.
Qed.
+Lemma Qeq_bool_complete : forall x y : Q, x==y -> Qeq_bool x y = true.
+Proof.
+ intros x y; unfold Qeq_bool in |- *; case (Qeq_dec x y); simpl in |- *; auto.
+Qed.
+
Definition Qsft : field_theory 0 1 Qplus Qmult Qminus Qopp Qdiv Qinv Qeq.
Proof.
constructor.
@@ -77,7 +82,12 @@ Ltac Qpow_tac t :=
| _ => NotConstant
end.
-Add Field Qfield : Qsft(decidable Qeq_bool_correct, constants [Qcst], power_tac Qpower_theory [Qpow_tac]).
+Add Field Qfield : Qsft
+ (decidable Qeq_bool_correct,
+ completeness Qeq_bool_complete,
+ constants [Qcst],
+ power_tac Qpower_theory [Qpow_tac]).
+
(** Exemple of use: *)
Section Examples.
@@ -109,7 +119,7 @@ Let ex6 : (1#1)+(1#1) == 2#1.
ring.
Qed.
-Let ex7 : forall x : Q, x-x== 0#1.
+Let ex7 : forall x : Q, x-x== 0.
intro.
ring.
Qed.
@@ -124,7 +134,7 @@ Let ex9 : forall x : Q, x^0 == 1.
ring.
Qed.
-Example test_field : forall x y : Q, ~(y==0) -> (x/y)*y == x.
+Let ex10 : forall x y : Q, ~(y==0) -> (x/y)*y == x.
intros.
field.
auto.
diff --git a/theories/QArith/Qreals.v b/theories/QArith/Qreals.v
index 1b6b4722b..d57a8c824 100644
--- a/theories/QArith/Qreals.v
+++ b/theories/QArith/Qreals.v
@@ -11,19 +11,15 @@
Require Export Rbase.
Require Export QArith_base.
-(** A field tactic for rational numbers. *)
+(** Injection of rational numbers into real numbers. *)
-(** Since field cannot operate on setoid datatypes (yet?),
- we translate Q goals into reals before applying field. *)
+Definition Q2R (x : Q) : R := (IZR (Qnum x) * / IZR (QDen x))%R.
Lemma IZR_nz : forall p : positive, IZR (Zpos p) <> 0%R.
intros; apply not_O_IZR; auto with qarith.
Qed.
-Hint Immediate IZR_nz.
-Hint Resolve Rmult_integral_contrapositive.
-
-Definition Q2R (x : Q) : R := (IZR (Qnum x) * / IZR (QDen x))%R.
+Hint Resolve IZR_nz Rmult_integral_contrapositive.
Lemma eqR_Qeq : forall x y : Q, Q2R x = Q2R y -> x==y.
Proof.
@@ -171,7 +167,7 @@ Lemma Q2R_minus : forall x y : Q, Q2R (x-y) = (Q2R x - Q2R y)%R.
unfold Qminus in |- *; intros; rewrite Q2R_plus; rewrite Q2R_opp; auto.
Qed.
-Lemma Q2R_inv : forall x : Q, ~ x==0#1 -> Q2R (/x) = (/ Q2R x)%R.
+Lemma Q2R_inv : forall x : Q, ~ x==0 -> Q2R (/x) = (/ Q2R x)%R.
Proof.
unfold Qinv, Q2R, Qeq in |- *; intros (x1, x2); unfold Qden, Qnum in |- *.
case x1.
@@ -185,7 +181,7 @@ intros;
Qed.
Lemma Q2R_div :
- forall x y : Q, ~ y==0#1 -> Q2R (x/y) = (Q2R x / Q2R y)%R.
+ forall x y : Q, ~ y==0 -> Q2R (x/y) = (Q2R x / Q2R y)%R.
Proof.
unfold Qdiv, Rdiv in |- *.
intros; rewrite Q2R_mult.
@@ -194,16 +190,24 @@ Qed.
Hint Rewrite Q2R_plus Q2R_mult Q2R_opp Q2R_minus Q2R_inv Q2R_div : q2r_simpl.
+Section LegacyQField.
+
+(** In the past, the field tactic was not able to deal with setoid datatypes,
+ so translating from Q to R and applying field on reals was a workaround.
+ See now Qfield for a direct field tactic on Q. *)
+
Ltac QField := apply eqR_Qeq; autorewrite with q2r_simpl; try field; auto.
(** Examples of use: *)
-Goal forall x y z : Q, (x+y)*z == (x*z)+(y*z).
+Let ex1 : forall x y z : Q, (x+y)*z == (x*z)+(y*z).
intros; QField.
-Abort.
+Qed.
-Goal forall x y : Q, ~ y==0#1 -> (x/y)*y == x.
+Let ex2 : forall x y : Q, ~ y==0 -> (x/y)*y == x.
intros; QField.
intro; apply H; apply eqR_Qeq.
rewrite H0; unfold Q2R in |- *; simpl in |- *; field; auto with real.
-Abort.
+Qed.
+
+End LegacyQField. \ No newline at end of file