aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories
diff options
context:
space:
mode:
authorGravatar herbelin <herbelin@85f007b7-540e-0410-9357-904b9bb8a0f7>2006-12-28 21:05:12 +0000
committerGravatar herbelin <herbelin@85f007b7-540e-0410-9357-904b9bb8a0f7>2006-12-28 21:05:12 +0000
commitba09fcb015b19e083d64f901d11381feee2c033e (patch)
tree138174f95f5733cb11a2a66c00396406963c8ae1 /theories
parentd17bd6a4838b0b181582c23e16c2225277ac1719 (diff)
Remplacement axiome JMeq_eq dans BinPos par eq_dec_eq sur type à
égalité décidable + maj dépendances git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@9467 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'theories')
-rw-r--r--theories/Logic/Eqdep_dec.v7
-rw-r--r--theories/NArith/BinPos.v32
2 files changed, 28 insertions, 11 deletions
diff --git a/theories/Logic/Eqdep_dec.v b/theories/Logic/Eqdep_dec.v
index e491a4d5c..b45aa23fe 100644
--- a/theories/Logic/Eqdep_dec.v
+++ b/theories/Logic/Eqdep_dec.v
@@ -158,6 +158,13 @@ Proof.
apply (Streicher_K__eq_rect_eq A (K_dec_type eq_dec)).
Qed.
+(** We deduce the injectivity of dependent equality for decidable types *)
+Theorem eq_dep_eq_dec :
+ forall A:Type,
+ (forall x y:A, {x = y} + {x <> y}) ->
+ forall (P:A->Type) (p:A) (x y:P p), eq_dep A P p x p y -> x = y.
+Proof (fun A eq_dec => eq_rect_eq__eq_dep_eq A (eq_rect_eq_dec eq_dec)).
+
Unset Implicit Arguments.
(************************************************************************)
diff --git a/theories/NArith/BinPos.v b/theories/NArith/BinPos.v
index 03d29db35..8123d8d85 100644
--- a/theories/NArith/BinPos.v
+++ b/theories/NArith/BinPos.v
@@ -535,21 +535,31 @@ Definition PeanoView_iter (P:positive->Type)
| PeanoSucc _ q => f _ (iter _ q)
end).
-Require Import JMeq.
+Require Import Eqdep_dec EqdepFacts.
+
+Theorem eq_dep_eq_positive :
+ forall (P:positive->Type) (p:positive) (x y:P p),
+ eq_dep positive P p x p y -> x = y.
+Proof.
+apply eq_dep_eq_dec.
+decide equality.
+Qed.
Theorem PeanoViewUnique : forall p (q q':PeanoView p), q = q'.
Proof.
intros.
-induction q. apply JMeq_eq. cut (xH=xH). pattern xH at 1 2 5, q'. destruct q'. trivial.
-destruct p0; intros; discriminate.
-trivial.
-apply JMeq_eq.
-cut (Psucc p=Psucc p). pattern (Psucc p) at 1 2 5, q'. destruct q'.
-intro. destruct p; discriminate.
-intro. unfold p0 in H. apply Psucc_inj in H.
-generalize q'. rewrite H. intro.
-rewrite (IHq q'0).
-trivial.
+induction q.
+apply eq_dep_eq_positive.
+ cut (xH=xH). pattern xH at 1 2 5, q'. destruct q'. trivial.
+ destruct p0; intros; discriminate.
+ trivial.
+apply eq_dep_eq_positive.
+ cut (Psucc p=Psucc p). pattern (Psucc p) at 1 2 5, q'. destruct q'.
+ intro. destruct p; discriminate.
+ intro. unfold p0 in H. apply Psucc_inj in H.
+ generalize q'. rewrite H. intro.
+ rewrite (IHq q'0).
+ trivial.
trivial.
Qed.