diff options
author | herbelin <herbelin@85f007b7-540e-0410-9357-904b9bb8a0f7> | 2011-07-16 20:35:17 +0000 |
---|---|---|
committer | herbelin <herbelin@85f007b7-540e-0410-9357-904b9bb8a0f7> | 2011-07-16 20:35:17 +0000 |
commit | b341c644ed7ad52779b148e7ba6e3dd9158c2174 (patch) | |
tree | c554a697bfa97f3c813e6e90a1d76dbe1c35f3b6 /theories | |
parent | 30a54a6db8190ae1dea5a9182148cb4f38ec7e02 (diff) |
Tentative abbreviation "rew Heq in H" for eq_rect. (feedback welcome)
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@14281 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'theories')
-rw-r--r-- | theories/Init/Logic.v | 7 | ||||
-rw-r--r-- | theories/Vectors/VectorDef.v | 8 |
2 files changed, 11 insertions, 4 deletions
diff --git a/theories/Init/Logic.v b/theories/Init/Logic.v index 8551ca97d..82d2e04d7 100644 --- a/theories/Init/Logic.v +++ b/theories/Init/Logic.v @@ -331,6 +331,13 @@ Section Logic_lemmas. Defined. End Logic_lemmas. +Notation "'rew' H 'in' H'" := (eq_rect _ _ H' _ H) + (at level 0, H' at level 9). +Notation "'rew' <- H 'in' H'" := (eq_rect_r _ H' H) + (at level 0, H' at level 9). +Notation "'rew' -> H 'in' H'" := (eq_rect _ _ H' _ H) + (at level 0, H' at level 9, only parsing). + Theorem f_equal2 : forall (A1 A2 B:Type) (f:A1 -> A2 -> B) (x1 y1:A1) (x2 y2:A2), x1 = y1 -> x2 = y2 -> f x1 x2 = f y1 y2. diff --git a/theories/Vectors/VectorDef.v b/theories/Vectors/VectorDef.v index 777e68b45..adc2c09a3 100644 --- a/theories/Vectors/VectorDef.v +++ b/theories/Vectors/VectorDef.v @@ -197,18 +197,18 @@ Fixpoint rev_append_tail {A n p} (v : t A n) (w: t A p) | a :: v' => rev_append_tail v' (a :: w) end. +Import EqdepFacts. + (** This one has a better type *) Definition rev_append {A n p} (v: t A n) (w: t A p) :t A (n + p) := -eq_rect _ (fun n => t A n) (rev_append_tail v w) _ - (eq_sym _ _ _ (plus_tail_plus n p)). + rew <- (plus_tail_plus n p) in (rev_append_tail v w). (** rev [a₁ ; a₂ ; .. ; an] is [an ; a{n-1} ; .. ; a₁] Caution : There is a lot of rewrite garbage in this definition *) Definition rev {A n} (v : t A n) : t A n := - eq_rect _ (fun n => t A n) (rev_append v []) - _ (eq_sym _ _ _ (plus_n_O _)). + rew <- (plus_n_O _) in (rev_append v []). End BASES. Local Notation "v [@ p ]" := (nth v p) (at level 1). |