diff options
author | letouzey <letouzey@85f007b7-540e-0410-9357-904b9bb8a0f7> | 2011-06-30 14:40:50 +0000 |
---|---|---|
committer | letouzey <letouzey@85f007b7-540e-0410-9357-904b9bb8a0f7> | 2011-06-30 14:40:50 +0000 |
commit | 962c2260406c630e90bb001bd9238dea72eef0c1 (patch) | |
tree | e32790d4a08c61c0128826a93b4b02203c7e18ce /theories | |
parent | e20e6b3b9e4148f62c94bfb467817feb2b6a4583 (diff) |
Cleanup of Ndigits
- No need for compatibility notations for stuff introduced strictly
after branching of 8.3, for instance Nor, Nand, etc.
- Properties for N.lor, N.lxor, etc are now in BinNat.N, no need to
duplicate them in Ndigits, apart from the few compatibility results
about xor.
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@14249 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'theories')
-rw-r--r-- | theories/NArith/Ndigits.v | 219 | ||||
-rw-r--r-- | theories/Numbers/Cyclic/DoubleCyclic/DoubleBase.v | 2 | ||||
-rw-r--r-- | theories/Numbers/Cyclic/DoubleCyclic/DoubleDivn1.v | 2 | ||||
-rw-r--r-- | theories/Numbers/Natural/BigN/NMake_gen.ml | 8 | ||||
-rw-r--r-- | theories/Numbers/Natural/BigN/Nbasic.v | 4 | ||||
-rw-r--r-- | theories/Numbers/Natural/SpecViaZ/NSigNAxioms.v | 2 |
6 files changed, 75 insertions, 162 deletions
diff --git a/theories/NArith/Ndigits.v b/theories/NArith/Ndigits.v index e13d6ac51..b0c335957 100644 --- a/theories/NArith/Ndigits.v +++ b/theories/NArith/Ndigits.v @@ -13,145 +13,139 @@ Local Open Scope N_scope. (** This file is mostly obsolete, see directly [BinNat] now. *) -(** Operation over bits of a [N] number. *) - -Notation Por := Pos.lor (only parsing). -Notation Nor := N.lor (only parsing). -Notation Pand := Pos.land (only parsing). -Notation Nand := N.land (only parsing). -Notation Pdiff := Pos.ldiff (only parsing). -Notation Ndiff := N.ldiff (only parsing). +(** Compatibility names for some bitwise operations *) + Notation Pxor := Pos.lxor (only parsing). Notation Nxor := N.lxor (only parsing). -Notation Nshiftl_nat := N.shiftl_nat (only parsing). -Notation Nshiftr_nat := N.shiftr_nat (only parsing). -Notation Nshiftl := N.shiftl (only parsing). -Notation Nshiftr := N.shiftr (only parsing). Notation Pbit := Pos.testbit_nat (only parsing). Notation Nbit := N.testbit_nat (only parsing). -Notation Ptestbit := Pos.testbit (only parsing). -Notation Ntestbit := N.testbit (only parsing). -(** Equivalence of Pbit and Ptestbit *) +Notation Nxor_eq := N.lxor_eq (only parsing). +Notation Nxor_comm := N.lxor_comm (only parsing). +Notation Nxor_assoc := N.lxor_assoc (only parsing). +Notation Nxor_neutral_left := N.lxor_0_l (only parsing). +Notation Nxor_neutral_right := N.lxor_0_r (only parsing). +Notation Nxor_nilpotent := N.lxor_nilpotent (only parsing). + +(** Equivalence of bit-testing functions, + either with index in [N] or in [nat]. *) Lemma Ptestbit_Pbit : - forall p n, Ptestbit p (N_of_nat n) = Pbit p n. + forall p n, Pos.testbit p (N.of_nat n) = Pbit p n. Proof. induction p as [p IH|p IH| ]; intros [|n]; simpl; trivial; rewrite <- IH; f_equal; rewrite (pred_Sn n) at 2; now rewrite N_of_pred. Qed. -Lemma Ntestbit_Nbit : forall a n, Ntestbit a (N_of_nat n) = Nbit a n. +Lemma Ntestbit_Nbit : forall a n, N.testbit a (N.of_nat n) = Nbit a n. Proof. destruct a. trivial. apply Ptestbit_Pbit. Qed. Lemma Pbit_Ptestbit : - forall p n, Pbit p (nat_of_N n) = Ptestbit p n. + forall p n, Pbit p (N.to_nat n) = Pos.testbit p n. Proof. - intros; now rewrite <- Ptestbit_Pbit, N_of_nat_of_N. + intros; now rewrite <- Ptestbit_Pbit, N2Nat.id. Qed. Lemma Nbit_Ntestbit : - forall a n, Nbit a (nat_of_N n) = Ntestbit a n. + forall a n, Nbit a (N.to_nat n) = N.testbit a n. Proof. destruct a. trivial. apply Pbit_Ptestbit. Qed. -(** Equivalence of shifts, N and nat versions *) +(** Equivalence of shifts, index in [N] or [nat] *) Lemma Nshiftr_nat_S : forall a n, - Nshiftr_nat a (S n) = Ndiv2 (Nshiftr_nat a n). + N.shiftr_nat a (S n) = N.div2 (N.shiftr_nat a n). Proof. reflexivity. Qed. Lemma Nshiftl_nat_S : forall a n, - Nshiftl_nat a (S n) = Ndouble (Nshiftl_nat a n). + N.shiftl_nat a (S n) = N.double (N.shiftl_nat a n). Proof. reflexivity. Qed. Lemma Nshiftr_nat_equiv : - forall a n, Nshiftr_nat a (nat_of_N n) = Nshiftr a n. + forall a n, N.shiftr_nat a (N.to_nat n) = N.shiftr a n. Proof. - intros a [|n]; simpl. unfold Nshiftr_nat. + intros a [|n]; simpl. unfold N.shiftr_nat. trivial. symmetry. apply iter_nat_of_P. Qed. Lemma Nshiftr_equiv_nat : - forall a n, Nshiftr a (N_of_nat n) = Nshiftr_nat a n. + forall a n, N.shiftr a (N.of_nat n) = N.shiftr_nat a n. Proof. - intros. now rewrite <- Nshiftr_nat_equiv, nat_of_N_of_nat. + intros. now rewrite <- Nshiftr_nat_equiv, Nat2N.id. Qed. Lemma Nshiftl_nat_equiv : - forall a n, Nshiftl_nat a (nat_of_N n) = Nshiftl a n. + forall a n, N.shiftl_nat a (N.to_nat n) = N.shiftl a n. Proof. - intros [|a] [|n]; simpl; unfold Nshiftl_nat; trivial. - apply iter_nat_invariant; intros; now subst. - rewrite <- iter_nat_of_P. symmetry. now apply iter_pos_swap_gen. + intros [|a] [|n]; simpl; unfold N.shiftl_nat; trivial. + apply nat_iter_invariant; intros; now subst. + rewrite <- Pos2Nat.inj_iter. symmetry. now apply Pos.iter_swap_gen. Qed. Lemma Nshiftl_equiv_nat : - forall a n, Nshiftl a (N_of_nat n) = Nshiftl_nat a n. + forall a n, N.shiftl a (N.of_nat n) = N.shiftl_nat a n. Proof. - intros. now rewrite <- Nshiftl_nat_equiv, nat_of_N_of_nat. + intros. now rewrite <- Nshiftl_nat_equiv, Nat2N.id. Qed. (** Correctness proofs for shifts, nat version *) Lemma Nshiftr_nat_spec : forall a n m, - Nbit (Nshiftr_nat a n) m = Nbit a (m+n). + Nbit (N.shiftr_nat a n) m = Nbit a (m+n). Proof. induction n; intros m. now rewrite <- plus_n_O. simpl. rewrite <- plus_n_Sm, <- plus_Sn_m, <- IHn, Nshiftr_nat_S. - destruct (Nshiftr_nat a n) as [|[p|p|]]; simpl; trivial. + destruct (N.shiftr_nat a n) as [|[p|p|]]; simpl; trivial. Qed. Lemma Nshiftl_nat_spec_high : forall a n m, (n<=m)%nat -> - Nbit (Nshiftl_nat a n) m = Nbit a (m-n). + Nbit (N.shiftl_nat a n) m = Nbit a (m-n). Proof. induction n; intros m H. now rewrite <- minus_n_O. destruct m. inversion H. apply le_S_n in H. simpl. rewrite <- IHn, Nshiftl_nat_S; trivial. - destruct (Nshiftl_nat a n) as [|[p|p|]]; simpl; trivial. + destruct (N.shiftl_nat a n) as [|[p|p|]]; simpl; trivial. Qed. Lemma Nshiftl_nat_spec_low : forall a n m, (m<n)%nat -> - Nbit (Nshiftl_nat a n) m = false. + Nbit (N.shiftl_nat a n) m = false. Proof. induction n; intros m H. inversion H. rewrite Nshiftl_nat_S. destruct m. - destruct (Nshiftl_nat a n); trivial. + destruct (N.shiftl_nat a n); trivial. specialize (IHn m (lt_S_n _ _ H)). - destruct (Nshiftl_nat a n); trivial. + destruct (N.shiftl_nat a n); trivial. Qed. (** A left shift for positive numbers (used in BigN) *) -Notation Pshiftl_nat := Pos.shiftl_nat (only parsing). - -Lemma Pshiftl_nat_0 : forall p, Pshiftl_nat p 0 = p. +Lemma Pshiftl_nat_0 : forall p, Pos.shiftl_nat p 0 = p. Proof. reflexivity. Qed. Lemma Pshiftl_nat_S : - forall p n, Pshiftl_nat p (S n) = xO (Pshiftl_nat p n). + forall p n, Pos.shiftl_nat p (S n) = xO (Pos.shiftl_nat p n). Proof. reflexivity. Qed. Lemma Pshiftl_nat_N : - forall p n, Npos (Pshiftl_nat p n) = Nshiftl_nat (Npos p) n. + forall p n, Npos (Pos.shiftl_nat p n) = N.shiftl_nat (Npos p) n. Proof. - unfold Pshiftl_nat, Nshiftl_nat. + unfold Pos.shiftl_nat, N.shiftl_nat. induction n; simpl; auto. now rewrite <- IHn. Qed. Lemma Pshiftl_nat_plus : forall n m p, - Pshiftl_nat p (m + n) = Pshiftl_nat (Pshiftl_nat p n) m. + Pos.shiftl_nat p (m + n) = Pos.shiftl_nat (Pos.shiftl_nat p n) m. Proof. induction m; simpl; intros. reflexivity. rewrite 2 Pshiftl_nat_S. now f_equal. @@ -159,71 +153,54 @@ Qed. (** Semantics of bitwise operations with respect to [Nbit] *) -Lemma Pxor_semantics : forall p p' n, - Nbit (Pxor p p') n = xorb (Pbit p n) (Pbit p' n). +Lemma Pxor_semantics p p' n : + Nbit (Pos.lxor p p') n = xorb (Pbit p n) (Pbit p' n). Proof. - induction p as [p IHp|p IHp|]; intros [p'|p'|] [|n]; trivial; simpl; - (specialize (IHp p'); destruct Pxor; trivial; apply (IHp n)) || - now destruct Pbit. + rewrite <- Ntestbit_Nbit, <- !Ptestbit_Pbit. apply N.pos_lxor_spec. Qed. -Lemma Nxor_semantics : forall a a' n, - Nbit (Nxor a a') n = xorb (Nbit a n) (Nbit a' n). +Lemma Nxor_semantics a a' n : + Nbit (N.lxor a a') n = xorb (Nbit a n) (Nbit a' n). Proof. - intros [|p] [|p'] n; simpl; trivial. - now destruct Pbit. - now destruct Pbit. - apply Pxor_semantics. + rewrite <- !Ntestbit_Nbit. apply N.lxor_spec. Qed. -Lemma Por_semantics : forall p p' n, - Pbit (Por p p') n = (Pbit p n) || (Pbit p' n). +Lemma Por_semantics p p' n : + Pbit (Pos.lor p p') n = (Pbit p n) || (Pbit p' n). Proof. - induction p as [p IHp|p IHp|]; intros [p'|p'|] [|n]; trivial; - apply (IHp p' n) || now rewrite orb_false_r. + rewrite <- !Ptestbit_Pbit. apply N.pos_lor_spec. Qed. -Lemma Nor_semantics : forall a a' n, - Nbit (Nor a a') n = (Nbit a n) || (Nbit a' n). +Lemma Nor_semantics a a' n : + Nbit (N.lor a a') n = (Nbit a n) || (Nbit a' n). Proof. - intros [|p] [|p'] n; simpl; trivial. - now rewrite orb_false_r. - apply Por_semantics. + rewrite <- !Ntestbit_Nbit. apply N.lor_spec. Qed. -Lemma Pand_semantics : forall p p' n, - Nbit (Pand p p') n = (Pbit p n) && (Pbit p' n). +Lemma Pand_semantics p p' n : + Nbit (Pos.land p p') n = (Pbit p n) && (Pbit p' n). Proof. - induction p as [p IHp|p IHp|]; intros [p'|p'|] [|n]; trivial; simpl; - (specialize (IHp p'); destruct Pand; trivial; apply (IHp n)) || - now rewrite andb_false_r. + rewrite <- Ntestbit_Nbit, <- !Ptestbit_Pbit. apply N.pos_land_spec. Qed. -Lemma Nand_semantics : forall a a' n, - Nbit (Nand a a') n = (Nbit a n) && (Nbit a' n). +Lemma Nand_semantics a a' n : + Nbit (N.land a a') n = (Nbit a n) && (Nbit a' n). Proof. - intros [|p] [|p'] n; simpl; trivial. - now rewrite andb_false_r. - apply Pand_semantics. + rewrite <- !Ntestbit_Nbit. apply N.land_spec. Qed. -Lemma Pdiff_semantics : forall p p' n, - Nbit (Pdiff p p') n = (Pbit p n) && negb (Pbit p' n). +Lemma Pdiff_semantics p p' n : + Nbit (Pos.ldiff p p') n = (Pbit p n) && negb (Pbit p' n). Proof. - induction p as [p IHp|p IHp|]; intros [p'|p'|] [|n]; trivial; simpl; - (specialize (IHp p'); destruct Pdiff; trivial; apply (IHp n)) || - now rewrite andb_true_r. + rewrite <- Ntestbit_Nbit, <- !Ptestbit_Pbit. apply N.pos_ldiff_spec. Qed. -Lemma Ndiff_semantics : forall a a' n, - Nbit (Ndiff a a') n = (Nbit a n) && negb (Nbit a' n). +Lemma Ndiff_semantics a a' n : + Nbit (N.ldiff a a') n = (Nbit a n) && negb (Nbit a' n). Proof. - intros [|p] [|p'] n; simpl; trivial. - simpl. now rewrite andb_true_r. - apply Pdiff_semantics. + rewrite <- !Ntestbit_Nbit. apply N.ldiff_spec. Qed. - (** Equality over functional streams of bits *) Definition eqf (f g:nat -> bool) := forall n:nat, f n = g n. @@ -265,70 +242,6 @@ Proof. split. apply Nbit_faithful. intros; now subst. Qed. -Hint Rewrite Nxor_semantics Nor_semantics - Nand_semantics Ndiff_semantics : bitwise_semantics. - -Ltac bitwise_semantics := - apply Nbit_faithful; intro n; autorewrite with bitwise_semantics. - -(** Now, we can easily deduce properties of [Nxor] and others - from properties of [xorb] and others. *) - -Definition Nxor_eq : forall a a', Nxor a a' = 0 -> a = a' := N.lxor_eq. -Definition Nxor_nilpotent : forall a, Nxor a a = 0 := N.lxor_nilpotent. -Definition Nxor_0_l : forall n, Nxor 0 n = n := N.lxor_0_l. -Definition Nxor_0_r : forall n, Nxor n 0 = n := N.lxor_0_r. - -Notation Nxor_neutral_left := Nxor_0_l (only parsing). -Notation Nxor_neutral_right := Nxor_0_r (only parsing). - -Definition Nxor_comm : forall a a', Nxor a a' = Nxor a' a := N.lxor_comm. - -Definition Nxor_assoc : - forall a a' a'', Nxor (Nxor a a') a'' = Nxor a (Nxor a' a'') - := N.lxor_assoc. - -Definition Nor_0_l : forall n, Nor 0 n = n := N.lor_0_l. -Definition Nor_0_r : forall n, Nor n 0 = n := N.lor_0_r. -Definition Nor_comm : forall a a', Nor a a' = Nor a' a := N.lor_comm. -Definition Nor_assoc : - forall a a' a'', Nor a (Nor a' a'') = Nor (Nor a a') a'' - := N.lor_assoc. -Definition Nor_diag : forall a, Nor a a = a := N.lor_diag. - -Definition Nand_0_l : forall n, Nand 0 n = 0 := N.land_0_l. -Definition Nand_0_r : forall n, Nand n 0 = 0 := N.land_0_r. -Definition Nand_comm : forall a a', Nand a a' = Nand a' a := N.land_comm. -Definition Nand_assoc : - forall a a' a'', Nand a (Nand a' a'') = Nand (Nand a a') a'' - := N.land_assoc. -Definition Nand_diag : forall a, Nand a a = a := N.land_diag. - -Definition Ndiff_0_l : forall n, Ndiff 0 n = 0 := N.ldiff_0_l. -Definition Ndiff_0_r : forall n, Ndiff n 0 = n := N.ldiff_0_r. -Definition Ndiff_diag : forall a, Ndiff a a = 0 := N.ldiff_diag. -Definition Nor_and_distr_l : forall a b c, - Nor (Nand a b) c = Nand (Nor a c) (Nor b c) - := N.lor_land_distr_l. -Definition Nor_and_distr_r : forall a b c, - Nor a (Nand b c) = Nand (Nor a b) (Nor a c) - := N.lor_land_distr_r. -Definition Nand_or_distr_l : forall a b c, - Nand (Nor a b) c = Nor (Nand a c) (Nand b c) - := N.land_lor_distr_l. -Definition Nand_or_distr_r : forall a b c, - Nand a (Nor b c) = Nor (Nand a b) (Nand a c) - := N.land_lor_distr_r. -Definition Ndiff_diff_l : forall a b c, - Ndiff (Ndiff a b) c = Ndiff a (Nor b c) - := N.ldiff_ldiff_l. -Definition Nor_diff_and : forall a b, - Nor (Ndiff a b) (Nand a b) = a - := N.lor_ldiff_and. -Definition Nand_diff : forall a b, - Nand (Ndiff a b) b = 0 - := N.land_ldiff. - Local Close Scope N_scope. (** Checking whether a number is odd, i.e. @@ -742,7 +655,7 @@ destruct a, b, (Bv2N n v1), (Bv2N n v2); simpl in *; rewrite H ; now simpl. Qed. Lemma Nand_BVand : forall n (bv bv' : Bvector n), - Bv2N _ (BVand _ bv bv') = Nand (Bv2N _ bv) (Bv2N _ bv'). + Bv2N _ (BVand _ bv bv') = N.land (Bv2N _ bv) (Bv2N _ bv'). Proof. refine (@Vector.rect2 _ _ _ _ _); simpl; intros; auto. rewrite H. diff --git a/theories/Numbers/Cyclic/DoubleCyclic/DoubleBase.v b/theories/Numbers/Cyclic/DoubleCyclic/DoubleBase.v index d92e818ff..e6c5a0e04 100644 --- a/theories/Numbers/Cyclic/DoubleCyclic/DoubleBase.v +++ b/theories/Numbers/Cyclic/DoubleCyclic/DoubleBase.v @@ -16,7 +16,7 @@ Require Import DoubleType. Local Open Scope Z_scope. -Local Infix "<<" := Pshiftl_nat (at level 30). +Local Infix "<<" := Pos.shiftl_nat (at level 30). Section DoubleBase. Variable w : Type. diff --git a/theories/Numbers/Cyclic/DoubleCyclic/DoubleDivn1.v b/theories/Numbers/Cyclic/DoubleCyclic/DoubleDivn1.v index bf92bbb98..062282f2e 100644 --- a/theories/Numbers/Cyclic/DoubleCyclic/DoubleDivn1.v +++ b/theories/Numbers/Cyclic/DoubleCyclic/DoubleDivn1.v @@ -17,7 +17,7 @@ Require Import DoubleBase. Local Open Scope Z_scope. -Local Infix "<<" := Pshiftl_nat (at level 30). +Local Infix "<<" := Pos.shiftl_nat (at level 30). Section GENDIVN1. diff --git a/theories/Numbers/Natural/BigN/NMake_gen.ml b/theories/Numbers/Natural/BigN/NMake_gen.ml index 866bc95b8..668a11123 100644 --- a/theories/Numbers/Natural/BigN/NMake_gen.ml +++ b/theories/Numbers/Natural/BigN/NMake_gen.ml @@ -250,7 +250,7 @@ pr Qed. Theorem digits_nmake : forall n ww (w_op: ZnZ.Ops ww), - ZnZ.digits (nmake_op _ w_op n) = Pshiftl_nat (ZnZ.digits w_op) n. + ZnZ.digits (nmake_op _ w_op n) = Pos.shiftl_nat (ZnZ.digits w_op) n. Proof. induction n. auto. intros ww ww_op. rewrite Pshiftl_nat_S, <- IHn; auto. @@ -333,7 +333,7 @@ pr " (** * Digits *) Lemma digits_make_op_0 : forall n, - ZnZ.digits (make_op n) = Pshiftl_nat (ZnZ.digits (dom_op Size)) (S n). + ZnZ.digits (make_op n) = Pos.shiftl_nat (ZnZ.digits (dom_op Size)) (S n). Proof. induction n. auto. @@ -343,7 +343,7 @@ pr " Qed. Lemma digits_make_op : forall n, - ZnZ.digits (make_op n) = Pshiftl_nat (ZnZ.digits w0_op) (SizePlus (S n)). + ZnZ.digits (make_op n) = Pos.shiftl_nat (ZnZ.digits w0_op) (SizePlus (S n)). Proof. intros. rewrite digits_make_op_0. replace (SizePlus (S n)) with (S n + Size) by (rewrite <- plus_comm; auto). @@ -351,7 +351,7 @@ pr " Qed. Lemma digits_dom_op : forall n, - ZnZ.digits (dom_op n) = Pshiftl_nat (ZnZ.digits w0_op) n. + ZnZ.digits (dom_op n) = Pos.shiftl_nat (ZnZ.digits w0_op) n. Proof. do_size (destruct n; try reflexivity). exact (digits_make_op n). diff --git a/theories/Numbers/Natural/BigN/Nbasic.v b/theories/Numbers/Natural/BigN/Nbasic.v index dec8f1fe4..aed96a831 100644 --- a/theories/Numbers/Natural/BigN/Nbasic.v +++ b/theories/Numbers/Natural/BigN/Nbasic.v @@ -372,7 +372,7 @@ Section CompareRec. apply Zlt_le_trans with (1:= H). unfold double_wB, DoubleBase.double_wB; simpl. rewrite Pshiftl_nat_S, base_xO. - set (u := base (Pshiftl_nat wm_base n)). + set (u := base (Pos.shiftl_nat wm_base n)). assert (0 < u). unfold u, base; auto with zarith. replace (u^2) with (u * u); simpl; auto with zarith. @@ -507,7 +507,7 @@ Declare Instance dom_op n : ZnZ.Ops (dom_t n). Declare Instance dom_spec n : ZnZ.Specs (dom_op n). Axiom digits_dom_op : forall n, - ZnZ.digits (dom_op n) = Pshiftl_nat (ZnZ.digits (dom_op 0)) n. + ZnZ.digits (dom_op n) = Pos.shiftl_nat (ZnZ.digits (dom_op 0)) n. (** The type [t] of arbitrary-large numbers, with abstract constructor [mk_t] and destructor [destr_t] and iterator [iter_t] *) diff --git a/theories/Numbers/Natural/SpecViaZ/NSigNAxioms.v b/theories/Numbers/Natural/SpecViaZ/NSigNAxioms.v index a1f4ea9a2..0b40d1e6b 100644 --- a/theories/Numbers/Natural/SpecViaZ/NSigNAxioms.v +++ b/theories/Numbers/Natural/SpecViaZ/NSigNAxioms.v @@ -7,7 +7,7 @@ (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) -Require Import ZArith OrdersFacts Nnat Ndigits NAxioms NDiv NSig. +Require Import ZArith OrdersFacts Nnat NAxioms NSig. (** * The interface [NSig.NType] implies the interface [NAxiomsSig] *) |