aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories
diff options
context:
space:
mode:
authorGravatar letouzey <letouzey@85f007b7-540e-0410-9357-904b9bb8a0f7>2008-02-10 02:28:43 +0000
committerGravatar letouzey <letouzey@85f007b7-540e-0410-9357-904b9bb8a0f7>2008-02-10 02:28:43 +0000
commit952d9ebd44fe6bd052c81c583e3a74752b53f932 (patch)
treeecc5842e59ae2f75c7a2b35fdc54f1106664803e /theories
parent5e475019abd6ac3a8bb923b6133625da446696c2 (diff)
Proposal of a nice notation for constructors xI and xO of type positive
More details in the header of BinPos.v git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@10547 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'theories')
-rw-r--r--theories/NArith/BinNat.v8
-rw-r--r--theories/NArith/BinPos.v202
-rw-r--r--theories/ZArith/BinInt.v38
3 files changed, 133 insertions, 115 deletions
diff --git a/theories/NArith/BinNat.v b/theories/NArith/BinNat.v
index d0ed874dd..9949d612d 100644
--- a/theories/NArith/BinNat.v
+++ b/theories/NArith/BinNat.v
@@ -148,7 +148,7 @@ Defined.
Definition Ndouble_plus_one x :=
match x with
| N0 => Npos 1
-| Npos p => Npos (xI p)
+| Npos p => Npos p~1
end.
(** Operation x -> 2 * x *)
@@ -156,7 +156,7 @@ end.
Definition Ndouble n :=
match n with
| N0 => N0
-| Npos p => Npos (xO p)
+| Npos p => Npos p~0
end.
(** convenient induction principles *)
@@ -193,8 +193,8 @@ Definition Ndiv2 (n:N) :=
match n with
| N0 => N0
| Npos 1 => N0
- | Npos (xO p) => Npos p
- | Npos (xI p) => Npos p
+ | Npos p~0 => Npos p
+ | Npos p~1 => Npos p
end.
Lemma Ndouble_div2 : forall n:N, Ndiv2 (Ndouble n) = n.
diff --git a/theories/NArith/BinPos.v b/theories/NArith/BinPos.v
index a910c8922..36a845824 100644
--- a/theories/NArith/BinPos.v
+++ b/theories/NArith/BinPos.v
@@ -30,13 +30,29 @@ Bind Scope positive_scope with positive.
Arguments Scope xO [positive_scope].
Arguments Scope xI [positive_scope].
+(** Postfix notation for positive numbers, allowing to mimic
+ the position of bits in a big-endian representation.
+ For instance, we can write 1~1~0 instead of (xO (xI xH))
+ for the number 6 (which is 110 in binary).
+
+ NB: in the current file, only xH~1~0 is possible, since
+ the interpretation of constants isn't available yet.
+*)
+
+Notation "p ~1" := (xI p)
+ (at level 7, left associativity, format "p '~1'") : positive_scope.
+Notation "p ~0" := (xO p)
+ (at level 7, left associativity, format "p '~0'") : positive_scope.
+
+Open Local Scope positive_scope.
+
(** Successor *)
Fixpoint Psucc (x:positive) : positive :=
match x with
- | xI x' => xO (Psucc x')
- | xO x' => xI x'
- | xH => xO xH
+ | p~1 => (Psucc p)~0
+ | p~0 => p~1
+ | xH => xH~0
end.
(** Addition *)
@@ -45,42 +61,40 @@ Set Boxed Definitions.
Fixpoint Pplus (x y:positive) {struct x} : positive :=
match x, y with
- | xI x', xI y' => xO (Pplus_carry x' y')
- | xI x', xO y' => xI (Pplus x' y')
- | xI x', xH => xO (Psucc x')
- | xO x', xI y' => xI (Pplus x' y')
- | xO x', xO y' => xO (Pplus x' y')
- | xO x', xH => xI x'
- | xH, xI y' => xO (Psucc y')
- | xH, xO y' => xI y'
- | xH, xH => xO xH
+ | p~1, q~1 => (Pplus_carry p q)~0
+ | p~1, q~0 => (Pplus p q)~1
+ | p~1, xH => (Psucc p)~0
+ | p~0, q~1 => (Pplus p q)~1
+ | p~0, q~0 => (Pplus p q)~0
+ | p~0, xH => p~1
+ | xH, q~1 => (Psucc q)~0
+ | xH, q~0 => q~1
+ | xH, xH => xH~0
end
with Pplus_carry (x y:positive) {struct x} : positive :=
match x, y with
- | xI x', xI y' => xI (Pplus_carry x' y')
- | xI x', xO y' => xO (Pplus_carry x' y')
- | xI x', xH => xI (Psucc x')
- | xO x', xI y' => xO (Pplus_carry x' y')
- | xO x', xO y' => xI (Pplus x' y')
- | xO x', xH => xO (Psucc x')
- | xH, xI y' => xI (Psucc y')
- | xH, xO y' => xO (Psucc y')
- | xH, xH => xI xH
+ | p~1, q~1 => (Pplus_carry p q)~1
+ | p~1, q~0 => (Pplus_carry p q)~0
+ | p~1, xH => (Psucc p)~1
+ | p~0, q~1 => (Pplus_carry p q)~0
+ | p~0, q~0 => (Pplus p q)~1
+ | p~0, xH => (Psucc p)~0
+ | xH, q~1 => (Psucc q)~1
+ | xH, q~0 => (Psucc q)~0
+ | xH, xH => xH~1
end.
Unset Boxed Definitions.
Infix "+" := Pplus : positive_scope.
-Open Local Scope positive_scope.
-
(** From binary positive numbers to Peano natural numbers *)
Fixpoint Pmult_nat (x:positive) (pow2:nat) {struct x} : nat :=
match x with
- | xI x' => (pow2 + Pmult_nat x' (pow2 + pow2))%nat
- | xO x' => Pmult_nat x' (pow2 + pow2)%nat
+ | p~1 => (pow2 + Pmult_nat p (pow2 + pow2))%nat
+ | p~0 => Pmult_nat p (pow2 + pow2)%nat
| xH => pow2
end.
@@ -91,15 +105,15 @@ Definition nat_of_P (x:positive) := Pmult_nat x 1.
Fixpoint P_of_succ_nat (n:nat) : positive :=
match n with
| O => xH
- | S x' => Psucc (P_of_succ_nat x')
+ | S x => Psucc (P_of_succ_nat x)
end.
(** Operation x -> 2*x-1 *)
Fixpoint Pdouble_minus_one (x:positive) : positive :=
match x with
- | xI x' => xI (xO x')
- | xO x' => xI (Pdouble_minus_one x')
+ | p~1 => p~0~1
+ | p~0 => (Pdouble_minus_one p)~1
| xH => xH
end.
@@ -107,8 +121,8 @@ Fixpoint Pdouble_minus_one (x:positive) : positive :=
Definition Ppred (x:positive) :=
match x with
- | xI x' => xO x'
- | xO x' => Pdouble_minus_one x'
+ | p~1 => p~0
+ | p~0 => Pdouble_minus_one p
| xH => xH
end.
@@ -125,7 +139,7 @@ Definition Pdouble_plus_one_mask (x:positive_mask) :=
match x with
| IsNul => IsPos xH
| IsNeg => IsNeg
- | IsPos p => IsPos (xI p)
+ | IsPos p => IsPos p~1
end.
(** Operation x -> 2*x *)
@@ -134,15 +148,15 @@ Definition Pdouble_mask (x:positive_mask) :=
match x with
| IsNul => IsNul
| IsNeg => IsNeg
- | IsPos p => IsPos (xO p)
+ | IsPos p => IsPos p~0
end.
(** Operation x -> 2*x-2 *)
Definition Pdouble_minus_two (x:positive) :=
match x with
- | xI x' => IsPos (xO (xO x'))
- | xO x' => IsPos (xO (Pdouble_minus_one x'))
+ | p~1 => IsPos p~0~0
+ | p~0 => IsPos (Pdouble_minus_one p)~0
| xH => IsNul
end.
@@ -150,24 +164,24 @@ Definition Pdouble_minus_two (x:positive) :=
Fixpoint Pminus_mask (x y:positive) {struct y} : positive_mask :=
match x, y with
- | xI x', xI y' => Pdouble_mask (Pminus_mask x' y')
- | xI x', xO y' => Pdouble_plus_one_mask (Pminus_mask x' y')
- | xI x', xH => IsPos (xO x')
- | xO x', xI y' => Pdouble_plus_one_mask (Pminus_mask_carry x' y')
- | xO x', xO y' => Pdouble_mask (Pminus_mask x' y')
- | xO x', xH => IsPos (Pdouble_minus_one x')
+ | p~1, q~1 => Pdouble_mask (Pminus_mask p q)
+ | p~1, q~0 => Pdouble_plus_one_mask (Pminus_mask p q)
+ | p~1, xH => IsPos p~0
+ | p~0, q~1 => Pdouble_plus_one_mask (Pminus_mask_carry p q)
+ | p~0, q~0 => Pdouble_mask (Pminus_mask p q)
+ | p~0, xH => IsPos (Pdouble_minus_one p)
| xH, xH => IsNul
| xH, _ => IsNeg
end
with Pminus_mask_carry (x y:positive) {struct y} : positive_mask :=
match x, y with
- | xI x', xI y' => Pdouble_plus_one_mask (Pminus_mask_carry x' y')
- | xI x', xO y' => Pdouble_mask (Pminus_mask x' y')
- | xI x', xH => IsPos (Pdouble_minus_one x')
- | xO x', xI y' => Pdouble_mask (Pminus_mask_carry x' y')
- | xO x', xO y' => Pdouble_plus_one_mask (Pminus_mask_carry x' y')
- | xO x', xH => Pdouble_minus_two x'
+ | p~1, q~1 => Pdouble_plus_one_mask (Pminus_mask_carry p q)
+ | p~1, q~0 => Pdouble_mask (Pminus_mask p q)
+ | p~1, xH => IsPos (Pdouble_minus_one p)
+ | p~0, q~1 => Pdouble_mask (Pminus_mask_carry p q)
+ | p~0, q~0 => Pdouble_plus_one_mask (Pminus_mask_carry p q)
+ | p~0, xH => Pdouble_minus_two p
| xH, _ => IsNeg
end.
@@ -185,8 +199,8 @@ Infix "-" := Pminus : positive_scope.
Fixpoint Pmult (x y:positive) {struct x} : positive :=
match x with
- | xI x' => y + xO (Pmult x' y)
- | xO x' => xO (Pmult x' y)
+ | p~1 => y + (Pmult p y)~0
+ | p~0 => (Pmult p y)~0
| xH => y
end.
@@ -197,8 +211,8 @@ Infix "*" := Pmult : positive_scope.
Definition Pdiv2 (z:positive) :=
match z with
| xH => xH
- | xO p => p
- | xI p => p
+ | p~0 => p
+ | p~1 => p
end.
Infix "/" := Pdiv2 : positive_scope.
@@ -207,14 +221,14 @@ Infix "/" := Pdiv2 : positive_scope.
Fixpoint Pcompare (x y:positive) (r:comparison) {struct y} : comparison :=
match x, y with
- | xI x', xI y' => Pcompare x' y' r
- | xI x', xO y' => Pcompare x' y' Gt
- | xI x', xH => Gt
- | xO x', xI y' => Pcompare x' y' Lt
- | xO x', xO y' => Pcompare x' y' r
- | xO x', xH => Gt
- | xH, xI y' => Lt
- | xH, xO y' => Lt
+ | p~1, q~1 => Pcompare p q r
+ | p~1, q~0 => Pcompare p q Gt
+ | p~1, xH => Gt
+ | p~0, q~1 => Pcompare p q Lt
+ | p~0, q~0 => Pcompare p q r
+ | p~0, xH => Gt
+ | xH, q~1 => Lt
+ | xH, q~0 => Lt
| xH, xH => r
end.
@@ -259,7 +273,7 @@ Qed.
(** Specification of [xI] in term of [Psucc] and [xO] *)
-Lemma xI_succ_xO : forall p:positive, xI p = Psucc (xO p).
+Lemma xI_succ_xO : forall p:positive, p~1 = Psucc p~0.
Proof.
reflexivity.
Qed.
@@ -272,27 +286,27 @@ Qed.
(** Successor and double *)
Lemma Psucc_o_double_minus_one_eq_xO :
- forall p:positive, Psucc (Pdouble_minus_one p) = xO p.
+ forall p:positive, Psucc (Pdouble_minus_one p) = p~0.
Proof.
intro x; induction x as [x IHx| x| ]; simpl in |- *; try rewrite IHx;
reflexivity.
Qed.
Lemma Pdouble_minus_one_o_succ_eq_xI :
- forall p:positive, Pdouble_minus_one (Psucc p) = xI p.
+ forall p:positive, Pdouble_minus_one (Psucc p) = p~1.
Proof.
intro x; induction x as [x IHx| x| ]; simpl in |- *; try rewrite IHx;
reflexivity.
Qed.
Lemma xO_succ_permute :
- forall p:positive, xO (Psucc p) = Psucc (Psucc (xO p)).
+ forall p:positive, (Psucc p)~0 = Psucc (Psucc p~0).
Proof.
intro y; induction y as [y Hrecy| y Hrecy| ]; simpl in |- *; auto.
Qed.
Lemma double_moins_un_xO_discr :
- forall p:positive, Pdouble_minus_one p <> xO p.
+ forall p:positive, Pdouble_minus_one p <> p~0.
Proof.
intro x; destruct x as [p| p| ]; discriminate.
Qed.
@@ -498,22 +512,22 @@ Qed.
(** Commutation of addition with the double of a positive number *)
-Lemma Pplus_xO : forall m n : positive, xO (m + n) = xO m + xO n.
+Lemma Pplus_xO : forall m n : positive, (m + n)~0 = m~0 + n~0.
Proof.
destruct n; destruct m; simpl; auto.
Qed.
Lemma Pplus_xI_double_minus_one :
- forall p q:positive, xO (p + q) = xI p + Pdouble_minus_one q.
+ forall p q:positive, (p + q)~0 = p~1 + Pdouble_minus_one q.
Proof.
- intros; change (xI p) with (xO p + xH) in |- *.
+ intros; change (p~1) with (p~0 + xH) in |- *.
rewrite <- Pplus_assoc; rewrite <- Pplus_one_succ_l;
rewrite Psucc_o_double_minus_one_eq_xO.
reflexivity.
Qed.
Lemma Pplus_xO_double_minus_one :
- forall p q:positive, Pdouble_minus_one (p + q) = xO p + Pdouble_minus_one q.
+ forall p q:positive, Pdouble_minus_one (p + q) = p~0 + Pdouble_minus_one q.
Proof.
induction p as [p IHp| p IHp| ]; destruct q as [q| q| ]; simpl in |- *;
try rewrite Pplus_carry_spec; try rewrite Pdouble_minus_one_o_succ_eq_xI;
@@ -525,7 +539,7 @@ Qed.
(** Misc *)
-Lemma Pplus_diag : forall p:positive, p + p = xO p.
+Lemma Pplus_diag : forall p:positive, p + p = p~0.
Proof.
intro x; induction x; simpl in |- *; try rewrite Pplus_carry_spec;
try rewrite IHx; reflexivity.
@@ -539,14 +553,14 @@ Inductive PeanoView : positive -> Type :=
| PeanoOne : PeanoView xH
| PeanoSucc : forall p, PeanoView p -> PeanoView (Psucc p).
-Fixpoint peanoView_xO p (q:PeanoView p) {struct q} : PeanoView (xO p) :=
- match q in PeanoView x return PeanoView (xO x) with
+Fixpoint peanoView_xO p (q:PeanoView p) {struct q} : PeanoView (p~0) :=
+ match q in PeanoView x return PeanoView (x~0) with
| PeanoOne => PeanoSucc _ PeanoOne
| PeanoSucc _ q => PeanoSucc _ (PeanoSucc _ (peanoView_xO _ q))
end.
-Fixpoint peanoView_xI p (q:PeanoView p) {struct q} : PeanoView (xI p) :=
- match q in PeanoView x return PeanoView (xI x) with
+Fixpoint peanoView_xI p (q:PeanoView p) {struct q} : PeanoView (p~1) :=
+ match q in PeanoView x return PeanoView (x~1) with
| PeanoOne => PeanoSucc _ (PeanoSucc _ PeanoOne)
| PeanoSucc _ q => PeanoSucc _ (PeanoSucc _ (peanoView_xI _ q))
end.
@@ -554,8 +568,8 @@ Fixpoint peanoView_xI p (q:PeanoView p) {struct q} : PeanoView (xI p) :=
Fixpoint peanoView p : PeanoView p :=
match p return PeanoView p with
| xH => PeanoOne
- | xO p => peanoView_xO p (peanoView p)
- | xI p => peanoView_xI p (peanoView p)
+ | p~0 => peanoView_xO p (peanoView p)
+ | p~1 => peanoView_xI p (peanoView p)
end.
Definition PeanoView_iter (P:positive->Type)
@@ -655,7 +669,7 @@ Qed.
(** Right reduction properties for multiplication *)
-Lemma Pmult_xO_permute_r : forall p q:positive, p * xO q = xO (p * q).
+Lemma Pmult_xO_permute_r : forall p q:positive, p * q~0 = (p * q)~0.
Proof.
intros x y; induction x; simpl in |- *.
rewrite IHx; reflexivity.
@@ -663,7 +677,7 @@ Proof.
reflexivity.
Qed.
-Lemma Pmult_xI_permute_r : forall p q:positive, p * xI q = p + xO (p * q).
+Lemma Pmult_xI_permute_r : forall p q:positive, p * q~1 = p + (p * q)~0.
Proof.
intros x y; induction x; simpl in |- *.
rewrite IHx; do 2 rewrite Pplus_assoc; rewrite Pplus_comm with (p := y);
@@ -688,10 +702,10 @@ Theorem Pmult_plus_distr_l :
forall p q r:positive, p * (q + r) = p * q + p * r.
Proof.
intros x y z; induction x; simpl in |- *.
- rewrite IHx; rewrite <- Pplus_assoc with (q := xO (x * y));
- rewrite Pplus_assoc with (p := xO (x * y));
- rewrite Pplus_comm with (p := xO (x * y));
- rewrite <- Pplus_assoc with (q := xO (x * y));
+ rewrite IHx; rewrite <- Pplus_assoc with (q := (x * y)~0);
+ rewrite Pplus_assoc with (p := (x * y)~0);
+ rewrite Pplus_comm with (p := (x * y)~0);
+ rewrite <- Pplus_assoc with (q := (x * y)~0);
rewrite Pplus_assoc with (q := z); reflexivity.
rewrite IHx; reflexivity.
reflexivity.
@@ -715,7 +729,7 @@ Qed.
(** Parity properties of multiplication *)
-Lemma Pmult_xI_mult_xO_discr : forall p q r:positive, xI p * r <> xO q * r.
+Lemma Pmult_xI_mult_xO_discr : forall p q r:positive, p~1 * r <> q~0 * r.
Proof.
intros x y z; induction z as [| z IHz| ]; try discriminate.
intro H; apply IHz; clear IHz.
@@ -723,7 +737,7 @@ Proof.
injection H; clear H; intro H; exact H.
Qed.
-Lemma Pmult_xO_discr : forall p q:positive, xO p * q <> q.
+Lemma Pmult_xO_discr : forall p q:positive, p~0 * q <> q.
Proof.
intros x y; induction y; try discriminate.
rewrite Pmult_xO_permute_r; injection; assumption.
@@ -735,12 +749,12 @@ Theorem Pmult_reg_r : forall p q r:positive, p * r = q * r -> p = q.
Proof.
intro x; induction x as [p IHp| p IHp| ]; intro y; destruct y as [q| q| ];
intros z H; reflexivity || apply (f_equal (A:=positive)) || apply False_ind.
- simpl in H; apply IHp with (xO z); simpl in |- *;
+ simpl in H; apply IHp with (z~0); simpl in |- *;
do 2 rewrite Pmult_xO_permute_r; apply Pplus_reg_l with (1 := H).
apply Pmult_xI_mult_xO_discr with (1 := H).
simpl in H; rewrite Pplus_comm in H; apply Pplus_no_neutral with (1 := H).
symmetry in H; apply Pmult_xI_mult_xO_discr with (1 := H).
- apply IHp with (xO z); simpl in |- *; do 2 rewrite Pmult_xO_permute_r;
+ apply IHp with (z~0); simpl in |- *; do 2 rewrite Pmult_xO_permute_r;
assumption.
apply Pmult_xO_discr with (1 := H).
simpl in H; symmetry in H; rewrite Pplus_comm in H;
@@ -935,7 +949,7 @@ Proof.
intros p q; split.
generalize p q; clear p q.
induction p as [p' IH | p' IH |]; destruct q as [q' | q' |]; simpl; intro H.
- assert (T : xI p' = xI q' <-> p' = q').
+ assert (T : p'~1 = q'~1 <-> p' = q').
split; intro HH; [inversion HH; trivial | rewrite HH; reflexivity].
cut ((p' ?= q') Eq = Lt \/ p' = q'). firstorder.
apply IH. apply Pcompare_Gt_Lt; assumption.
@@ -944,7 +958,7 @@ Proof.
apply IH in H. left.
destruct H as [H | H]; [elim (Pcompare_Lt_eq_Lt p' q'); auto; left; assumption |
rewrite H; apply Pcompare_refl_id].
- assert (T : xO p' = xO q' <-> p' = q').
+ assert (T : p'~0 = q'~0 <-> p' = q').
split; intro HH; [inversion HH; trivial | rewrite HH; reflexivity].
cut ((p' ?= q') Eq = Lt \/ p' = q'); [firstorder | ].
elim (Pcompare_Lt_eq_Lt p' q'); auto.
@@ -1129,7 +1143,7 @@ Lemma Pminus_mask_Gt :
Proof.
intro x; induction x as [p| p| ]; intro y; destruct y as [q| q| ];
simpl in |- *; intro H; try discriminate H.
- destruct (IHp q H) as [z [H4 [H6 H7]]]; exists (xO z); split.
+ destruct (IHp q H) as [z [H4 [H6 H7]]]; exists (z~0); split.
rewrite H4; reflexivity.
split.
simpl in |- *; rewrite H6; reflexivity.
@@ -1141,17 +1155,17 @@ Proof.
| rewrite H9; clear H9; destruct z as [p0| p0| ];
[ reflexivity | reflexivity | absurd (xH = xH); trivial ] ] ].
case Pcompare_Gt_Gt with (1 := H);
- [ intros H3; elim (IHp q H3); intros z H4; exists (xI z); elim H4;
+ [ intros H3; elim (IHp q H3); intros z H4; exists (z~1); elim H4;
intros H5 H6; elim H6; intros H7 H8; split;
[ simpl in |- *; rewrite H5; auto
| split;
[ simpl in |- *; rewrite H7; trivial
| right;
- change (Pdouble_mask (Pminus_mask p q) = IsPos (Ppred (xI z)))
+ change (Pdouble_mask (Pminus_mask p q) = IsPos (Ppred (z~1)))
in |- *; rewrite H5; auto ] ]
| intros H3; exists xH; rewrite H3; split;
[ simpl in |- *; rewrite Pminus_mask_diag; auto | split; auto ] ].
- exists (xO p); auto.
+ exists (p~0); auto.
destruct (IHp q) as [z [H4 [H6 H7]]].
apply Pcompare_Lt_Gt; assumption.
destruct (ZL11 z) as [vZ| ];
@@ -1161,7 +1175,7 @@ Proof.
[ simpl in |- *; rewrite Pplus_one_succ_r; rewrite <- vZ;
rewrite H6; trivial
| auto ] ]
- | exists (xI (Ppred z)); destruct H7 as [| H8];
+ | exists ((Ppred z)~1); destruct H7 as [| H8];
[ absurd (z = xH); assumption
| split;
[ rewrite H8; trivial
@@ -1170,7 +1184,7 @@ Proof.
[ rewrite H6; trivial | assumption ]
| right; rewrite H8; reflexivity ] ] ] ].
destruct (IHp q H) as [z [H4 [H6 H7]]].
- exists (xO z); split;
+ exists (z~0); split;
[ rewrite H4; auto
| split;
[ simpl in |- *; rewrite H6; reflexivity
@@ -1231,8 +1245,8 @@ Qed.
Fixpoint Psize (p:positive) : nat :=
match p with
| xH => 1%nat
- | xI p => S (Psize p)
- | xO p => S (Psize p)
+ | p~1 => S (Psize p)
+ | p~0 => S (Psize p)
end.
Lemma Psize_monotone : forall p q, (p?=q) Eq = Lt -> (Psize p <= Psize q)%nat.
diff --git a/theories/ZArith/BinInt.v b/theories/ZArith/BinInt.v
index 9b0c88669..46faafb23 100644
--- a/theories/ZArith/BinInt.v
+++ b/theories/ZArith/BinInt.v
@@ -40,37 +40,41 @@ Arguments Scope Zneg [positive_scope].
Definition Zdouble_plus_one (x:Z) :=
match x with
| Z0 => Zpos 1
- | Zpos p => Zpos (xI p)
+ | Zpos p => Zpos p~1
| Zneg p => Zneg (Pdouble_minus_one p)
end.
Definition Zdouble_minus_one (x:Z) :=
match x with
| Z0 => Zneg 1
- | Zneg p => Zneg (xI p)
+ | Zneg p => Zneg p~1
| Zpos p => Zpos (Pdouble_minus_one p)
end.
Definition Zdouble (x:Z) :=
match x with
| Z0 => Z0
- | Zpos p => Zpos (xO p)
- | Zneg p => Zneg (xO p)
+ | Zpos p => Zpos p~0
+ | Zneg p => Zneg p~0
end.
+Open Local Scope positive_scope.
+
Fixpoint ZPminus (x y:positive) {struct y} : Z :=
match x, y with
- | xI x', xI y' => Zdouble (ZPminus x' y')
- | xI x', xO y' => Zdouble_plus_one (ZPminus x' y')
- | xI x', xH => Zpos (xO x')
- | xO x', xI y' => Zdouble_minus_one (ZPminus x' y')
- | xO x', xO y' => Zdouble (ZPminus x' y')
- | xO x', xH => Zpos (Pdouble_minus_one x')
- | xH, xI y' => Zneg (xO y')
- | xH, xO y' => Zneg (Pdouble_minus_one y')
- | xH, xH => Z0
+ | p~1, q~1 => Zdouble (ZPminus p q)
+ | p~1, q~0 => Zdouble_plus_one (ZPminus p q)
+ | p~1, 1 => Zpos p~0
+ | p~0, q~1 => Zdouble_minus_one (ZPminus p q)
+ | p~0, q~0 => Zdouble (ZPminus p q)
+ | p~0, 1 => Zpos (Pdouble_minus_one p)
+ | 1, q~1 => Zneg q~0
+ | 1, q~0 => Zneg (Pdouble_minus_one q)
+ | 1, 1 => Z0
end.
+Close Local Scope positive_scope.
+
(** ** Addition on integers *)
Definition Zplus (x y:Z) :=
@@ -1035,22 +1039,22 @@ Proof.
split; [apply Zpos_eq|apply Zpos_eq_rev].
Qed.
-Lemma Zpos_xI : forall p:positive, Zpos (xI p) = Zpos 2 * Zpos p + Zpos 1.
+Lemma Zpos_xI : forall p:positive, Zpos p~1 = Zpos 2 * Zpos p + Zpos 1.
Proof.
intro; apply refl_equal.
Qed.
-Lemma Zpos_xO : forall p:positive, Zpos (xO p) = Zpos 2 * Zpos p.
+Lemma Zpos_xO : forall p:positive, Zpos p~0 = Zpos 2 * Zpos p.
Proof.
intro; apply refl_equal.
Qed.
-Lemma Zneg_xI : forall p:positive, Zneg (xI p) = Zpos 2 * Zneg p - Zpos 1.
+Lemma Zneg_xI : forall p:positive, Zneg p~1 = Zpos 2 * Zneg p - Zpos 1.
Proof.
intro; apply refl_equal.
Qed.
-Lemma Zneg_xO : forall p:positive, Zneg (xO p) = Zpos 2 * Zneg p.
+Lemma Zneg_xO : forall p:positive, Zneg p~0 = Zpos 2 * Zneg p.
Proof.
reflexivity.
Qed.