diff options
author | Sébastien Hinderer <Sebastien.Hinderer@inria.fr> | 2014-12-12 13:39:29 +0100 |
---|---|---|
committer | Pierre Letouzey <pierre.letouzey@inria.fr> | 2014-12-18 20:03:16 +0100 |
commit | 82f02e6f1f5f9eeb0e141ba115bf890d1181407a (patch) | |
tree | 60dae52d8bd20128ec005708ffe2765377ff7185 /theories | |
parent | 70fec68705c2d08a1387fe5d0ab409e2fc39717b (diff) |
Lists: a few results on Exists and Forall and a bit of code cleanup.
Diffstat (limited to 'theories')
-rw-r--r-- | theories/Lists/List.v | 296 |
1 files changed, 185 insertions, 111 deletions
diff --git a/theories/Lists/List.v b/theories/Lists/List.v index 3878f1517..a5b0dfd45 100644 --- a/theories/Lists/List.v +++ b/theories/Lists/List.v @@ -1948,147 +1948,221 @@ Section NatSeq. End NatSeq. +Section Exists_Forall. -(** * Existential and universal predicates over lists *) + (** * Existential and universal predicates over lists *) -Inductive Exists {A} (P:A->Prop) : list A -> Prop := - | Exists_cons_hd : forall x l, P x -> Exists P (x::l) - | Exists_cons_tl : forall x l, Exists P l -> Exists P (x::l). -Hint Constructors Exists. + Variable A:Type. -Lemma Exists_exists : forall A P (l:list A), - Exists P l <-> (exists x, In x l /\ P x). -Proof. -split. -induction 1; firstorder. -induction l; firstorder; subst; auto. -Qed. + Section One_predicate. + + Variable P:A->Prop. + + Inductive Exists : list A -> Prop := + | Exists_cons_hd : forall x l, P x -> Exists (x::l) + | Exists_cons_tl : forall x l, Exists l -> Exists (x::l). + + Hint Constructors Exists. + + Lemma Exists_exists (l:list A) : + Exists l <-> (exists x, In x l /\ P x). + Proof. + split. + induction 1; firstorder. + induction l; firstorder; subst; auto. + Qed. + + Lemma Exists_nil : Exists nil <-> False. + Proof. split; inversion 1. Qed. + + Lemma Exists_cons x l: + Exists (x::l) <-> P x \/ Exists l. + Proof. split; inversion 1; auto. Qed. + + Lemma Exists_dec l: + (forall x:A, {P x} + { ~ P x }) -> + {Exists l} + {~ Exists l}. + Proof. + intro Pdec. induction l as [|a l' Hrec]. + - right. now rewrite Exists_nil. + - destruct Hrec as [Hl'|Hl']. + * left. now apply Exists_cons_tl. + * destruct (Pdec a) as [Ha|Ha]. + + left. now apply Exists_cons_hd. + + right. rewrite Exists_exists. red. intro Habsurd. elim Habsurd. + intros x0 (H1, H2). generalize (in_inv H1). destruct 1. + subst. contradiction Ha. + rewrite Exists_exists in Hl'. red in Hl'. apply Hl'. exists x0. auto. + Qed. + + Inductive Forall : list A -> Prop := + | Forall_nil : Forall nil + | Forall_cons : forall x l, P x -> Forall l -> Forall (x::l). + + Hint Constructors Forall. + + Lemma Forall_forall (l:list A): + Forall l <-> (forall x, In x l -> P x). + Proof. + split. + - induction 1; firstorder; subst; auto. + - induction l; firstorder. + Qed. -Lemma Exists_nil : forall A (P:A->Prop), Exists P nil <-> False. -Proof. split; inversion 1. Qed. + Lemma Forall_inv : forall (a:A) l, Forall (a :: l) -> P a. + Proof. + intros; inversion H; trivial. + Qed. -Lemma Exists_cons : forall A (P:A->Prop) x l, - Exists P (x::l) <-> P x \/ Exists P l. -Proof. split; inversion 1; auto. Qed. + Lemma Forall_rect : forall (Q : list A -> Type), + Q [] -> (forall b l, P b -> Q (b :: l)) -> forall l, Forall l -> Q l. + Proof. + intros Q H H'; induction l; intro; [|eapply H', Forall_inv]; eassumption. + Qed. + + End One_predicate. + Lemma Forall_Exists_dec : + forall P:A->Prop, + (forall x:A, {P x} + { ~ P x }) -> + forall l:list A, + {Forall P l} + {Exists (fun x => ~ P x) l}. + Proof. intros P Pdec. induction l as [| a l' Hrec]. + - left. apply Forall_nil. + - destruct Hrec as [Hl'|Hl'], (Pdec a) as [Ha|Ha]. + * left. apply Forall_cons; assumption. + * right. apply Exists_cons_hd. assumption. + * right. apply Exists_cons_tl. assumption. + * right. apply Exists_cons_hd. assumption. + Qed. -Inductive Forall {A} (P:A->Prop) : list A -> Prop := - | Forall_nil : Forall P nil - | Forall_cons : forall x l, P x -> Forall P l -> Forall P (x::l). + Lemma Forall_dec: + forall P:A->Prop, + (forall x:A, {P x} + { ~ P x }) -> + forall l:list A, {Forall P l} + {~ Forall P l}. + Proof. + intros P Pdec l. induction l as [|a l' Hrec]. + - left. apply Forall_nil. + - destruct Hrec as [Hl'|Hl'], (Pdec a) as [Ha|Ha]. + * left. apply Forall_cons; assumption. + * right. red. intro H. inversion H. subst. absurd (P a); assumption. + * right. red. intro H. inversion H. subst. absurd (Forall P l'); assumption. + * right. red. intro H. inversion H. subst. absurd (Forall P l'); assumption. + Qed. + + Lemma Forall_impl : forall (P Q : A -> Prop), (forall a, P a -> Q a) -> + forall l, Forall P l -> Forall Q l. + Proof. + intros P Q Himp l H. induction H. + - apply Forall_nil. + - apply Forall_cons. apply Himp. assumption. assumption. + Qed. + +End Exists_Forall. + +Hint Constructors Exists. Hint Constructors Forall. -Lemma Forall_forall : forall A P (l:list A), - Forall P l <-> (forall x, In x l -> P x). -Proof. -split. -induction 1; firstorder; subst; auto. -induction l; firstorder. -Qed. +Section Forall2. -Lemma Forall_inv : forall A P (a:A) l, Forall P (a :: l) -> P a. -Proof. -intros; inversion H; trivial. -Defined. + (** [Forall2]: stating that elements of two lists are pairwise related. *) -Lemma Forall_rect : forall A (P:A->Prop) (Q : list A -> Type), - Q [] -> (forall b l, P b -> Q (b :: l)) -> forall l, Forall P l -> Q l. -Proof. -intros A P Q H H'; induction l; intro; [|eapply H', Forall_inv]; eassumption. -Defined. + Variables A B : Type. + Variable R : A -> B -> Prop. -Lemma Forall_impl : forall A (P Q : A -> Prop), (forall a, P a -> Q a) -> - forall l, Forall P l -> Forall Q l. -Proof. - intros A P Q Himp l H. - induction H; firstorder. -Qed. + Inductive Forall2 : list A -> list B -> Prop := + | Forall2_nil : Forall2 [] [] + | Forall2_cons : forall x y l l', + R x y -> Forall2 l l' -> Forall2 (x::l) (y::l'). -(** [Forall2]: stating that elements of two lists are pairwise related. *) + Hint Constructors Forall2. -Inductive Forall2 A B (R:A->B->Prop) : list A -> list B -> Prop := - | Forall2_nil : Forall2 R [] [] - | Forall2_cons : forall x y l l', - R x y -> Forall2 R l l' -> Forall2 R (x::l) (y::l'). -Hint Constructors Forall2. + Theorem Forall2_refl : Forall2 [] []. + Proof. intros; apply Forall2_nil. Qed. -Theorem Forall2_refl : forall A B (R:A->B->Prop), Forall2 R [] []. -Proof. intros; apply Forall2_nil. Qed. + Theorem Forall2_app_inv_l : forall l1 l2 l', + Forall2 (l1 ++ l2) l' -> + exists l1' l2', Forall2 l1 l1' /\ Forall2 l2 l2' /\ l' = l1' ++ l2'. + Proof. + induction l1; intros. + exists [], l'; auto. + simpl in H; inversion H; subst; clear H. + apply IHl1 in H4 as (l1' & l2' & Hl1 & Hl2 & ->). + exists (y::l1'), l2'; simpl; auto. + Qed. -Theorem Forall2_app_inv_l : forall A B (R:A->B->Prop) l1 l2 l', - Forall2 R (l1 ++ l2) l' -> - exists l1' l2', Forall2 R l1 l1' /\ Forall2 R l2 l2' /\ l' = l1' ++ l2'. -Proof. - induction l1; intros. - exists [], l'; auto. - simpl in H; inversion H; subst; clear H. - apply IHl1 in H4 as (l1' & l2' & Hl1 & Hl2 & ->). - exists (y::l1'), l2'; simpl; auto. -Qed. + Theorem Forall2_app_inv_r : forall l1' l2' l, + Forall2 l (l1' ++ l2') -> + exists l1 l2, Forall2 l1 l1' /\ Forall2 l2 l2' /\ l = l1 ++ l2. + Proof. + induction l1'; intros. + exists [], l; auto. + simpl in H; inversion H; subst; clear H. + apply IHl1' in H4 as (l1 & l2 & Hl1 & Hl2 & ->). + exists (x::l1), l2; simpl; auto. + Qed. -Theorem Forall2_app_inv_r : forall A B (R:A->B->Prop) l1' l2' l, - Forall2 R l (l1' ++ l2') -> - exists l1 l2, Forall2 R l1 l1' /\ Forall2 R l2 l2' /\ l = l1 ++ l2. -Proof. - induction l1'; intros. - exists [], l; auto. - simpl in H; inversion H; subst; clear H. - apply IHl1' in H4 as (l1 & l2 & Hl1 & Hl2 & ->). - exists (x::l1), l2; simpl; auto. -Qed. + Theorem Forall2_app : forall l1 l2 l1' l2', + Forall2 l1 l1' -> Forall2 l2 l2' -> Forall2 (l1 ++ l2) (l1' ++ l2'). + Proof. + intros. induction l1 in l1', H, H0 |- *; inversion H; subst; simpl; auto. + Qed. +End Forall2. -Theorem Forall2_app : forall A B (R:A->B->Prop) l1 l2 l1' l2', - Forall2 R l1 l1' -> Forall2 R l2 l2' -> Forall2 R (l1 ++ l2) (l1' ++ l2'). -Proof. - intros. induction l1 in l1', H, H0 |- *; inversion H; subst; simpl; auto. -Qed. +Hint Constructors Forall2. + +Section ForallPairs. -(** [ForallPairs] : specifies that a certain relation should + (** [ForallPairs] : specifies that a certain relation should always hold when inspecting all possible pairs of elements of a list. *) -Definition ForallPairs A (R : A -> A -> Prop) l := - forall a b, In a l -> In b l -> R a b. + Variable A : Type. + Variable R : A -> A -> Prop. + + Definition ForallPairs l := + forall a b, In a l -> In b l -> R a b. -(** [ForallOrdPairs] : we still check a relation over all pairs + (** [ForallOrdPairs] : we still check a relation over all pairs of elements of a list, but now the order of elements matters. *) -Inductive ForallOrdPairs A (R : A -> A -> Prop) : list A -> Prop := - | FOP_nil : ForallOrdPairs R nil - | FOP_cons : forall a l, - Forall (R a) l -> ForallOrdPairs R l -> ForallOrdPairs R (a::l). -Hint Constructors ForallOrdPairs. + Inductive ForallOrdPairs : list A -> Prop := + | FOP_nil : ForallOrdPairs nil + | FOP_cons : forall a l, + Forall (R a) l -> ForallOrdPairs l -> ForallOrdPairs (a::l). -Lemma ForallOrdPairs_In : forall A (R:A->A->Prop) l, - ForallOrdPairs R l -> - forall x y, In x l -> In y l -> x=y \/ R x y \/ R y x. -Proof. - induction 1. - inversion 1. - simpl; destruct 1; destruct 1; repeat subst; auto. - right; left. apply -> Forall_forall; eauto. - right; right. apply -> Forall_forall; eauto. -Qed. + Hint Constructors ForallOrdPairs. + Lemma ForallOrdPairs_In : forall l, + ForallOrdPairs l -> + forall x y, In x l -> In y l -> x=y \/ R x y \/ R y x. + Proof. + induction 1. + inversion 1. + simpl; destruct 1; destruct 1; repeat subst; auto. + right; left. apply -> Forall_forall; eauto. + right; right. apply -> Forall_forall; eauto. + Qed. -(** [ForallPairs] implies [ForallOrdPairs]. The reverse implication is true + (** [ForallPairs] implies [ForallOrdPairs]. The reverse implication is true only when [R] is symmetric and reflexive. *) -Lemma ForallPairs_ForallOrdPairs : forall A (R:A->A->Prop) l, - ForallPairs R l -> ForallOrdPairs R l. -Proof. - induction l; auto. intros H. - constructor. - apply <- Forall_forall. intros; apply H; simpl; auto. - apply IHl. red; intros; apply H; simpl; auto. -Qed. + Lemma ForallPairs_ForallOrdPairs l: ForallPairs l -> ForallOrdPairs l. + Proof. + induction l; auto. intros H. + constructor. + apply <- Forall_forall. intros; apply H; simpl; auto. + apply IHl. red; intros; apply H; simpl; auto. + Qed. -Lemma ForallOrdPairs_ForallPairs : forall A (R:A->A->Prop), - (forall x, R x x) -> - (forall x y, R x y -> R y x) -> - forall l, ForallOrdPairs R l -> ForallPairs R l. -Proof. - intros A R Refl Sym l Hl x y Hx Hy. - destruct (ForallOrdPairs_In Hl _ _ Hx Hy); subst; intuition. -Qed. + Lemma ForallOrdPairs_ForallPairs : + (forall x, R x x) -> + (forall x y, R x y -> R y x) -> + forall l, ForallOrdPairs l -> ForallPairs l. + Proof. + intros Refl Sym l Hl x y Hx Hy. + destruct (ForallOrdPairs_In Hl _ _ Hx Hy); subst; intuition. + Qed. +End ForallPairs. (** * Inversion of predicates over lists based on head symbol *) |