aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories
diff options
context:
space:
mode:
authorGravatar sacerdot <sacerdot@85f007b7-540e-0410-9357-904b9bb8a0f7>2004-10-19 08:38:34 +0000
committerGravatar sacerdot <sacerdot@85f007b7-540e-0410-9357-904b9bb8a0f7>2004-10-19 08:38:34 +0000
commit75d8a2039464b698b9ba9dd4c88a375e7825e507 (patch)
treec8ad5bb9733fff513d83e6850ba0c834019d4841 /theories
parent497927ba1aa160f8a85da1ab42b410604e5af483 (diff)
Proof term size reduction (again).
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@6241 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'theories')
-rw-r--r--theories/Setoids/Setoid.v22
1 files changed, 11 insertions, 11 deletions
diff --git a/theories/Setoids/Setoid.v b/theories/Setoids/Setoid.v
index 51703b23e..e09c3bc84 100644
--- a/theories/Setoids/Setoid.v
+++ b/theories/Setoids/Setoid.v
@@ -32,6 +32,17 @@ Inductive variance : Set :=
Definition Argument_Class := X_Relation_Class variance.
Definition Relation_Class := X_Relation_Class unit.
+Inductive Reflexive_Relation_Class : Type :=
+ RSymmetric :
+ forall A Aeq, symmetric A Aeq -> reflexive _ Aeq -> Reflexive_Relation_Class
+ | RAsymmetric :
+ forall A Aeq, reflexive A Aeq -> Reflexive_Relation_Class
+ | RLeibniz : Type -> Reflexive_Relation_Class.
+
+Inductive Areflexive_Relation_Class : Type :=
+ | ASymmetric : forall A Aeq, symmetric A Aeq -> Areflexive_Relation_Class
+ | AAsymmetric : forall A (Aeq : relation A), Areflexive_Relation_Class.
+
Implicit Type Hole Out: Relation_Class.
Definition relation_class_of_argument_class : Argument_Class -> Relation_Class.
@@ -269,17 +280,6 @@ Inductive check_if_variance_is_respected :
forall dir,
check_if_variance_is_respected (Some Contravariant) dir (opposite_direction dir).
-Inductive Reflexive_Relation_Class : Type :=
- RSymmetric :
- forall A Aeq, symmetric A Aeq -> reflexive _ Aeq -> Reflexive_Relation_Class
- | RAsymmetric :
- forall A Aeq, reflexive A Aeq -> Reflexive_Relation_Class
- | RLeibniz : Type -> Reflexive_Relation_Class.
-
-Inductive Areflexive_Relation_Class : Type :=
- | ASymmetric : forall A Aeq, symmetric A Aeq -> Areflexive_Relation_Class
- | AAsymmetric : forall A (Aeq : relation A), Areflexive_Relation_Class.
-
Definition relation_class_of_reflexive_relation_class:
Reflexive_Relation_Class -> Relation_Class.
induction 1.