diff options
author | sacerdot <sacerdot@85f007b7-540e-0410-9357-904b9bb8a0f7> | 2004-10-19 08:38:34 +0000 |
---|---|---|
committer | sacerdot <sacerdot@85f007b7-540e-0410-9357-904b9bb8a0f7> | 2004-10-19 08:38:34 +0000 |
commit | 75d8a2039464b698b9ba9dd4c88a375e7825e507 (patch) | |
tree | c8ad5bb9733fff513d83e6850ba0c834019d4841 /theories | |
parent | 497927ba1aa160f8a85da1ab42b410604e5af483 (diff) |
Proof term size reduction (again).
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@6241 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'theories')
-rw-r--r-- | theories/Setoids/Setoid.v | 22 |
1 files changed, 11 insertions, 11 deletions
diff --git a/theories/Setoids/Setoid.v b/theories/Setoids/Setoid.v index 51703b23e..e09c3bc84 100644 --- a/theories/Setoids/Setoid.v +++ b/theories/Setoids/Setoid.v @@ -32,6 +32,17 @@ Inductive variance : Set := Definition Argument_Class := X_Relation_Class variance. Definition Relation_Class := X_Relation_Class unit. +Inductive Reflexive_Relation_Class : Type := + RSymmetric : + forall A Aeq, symmetric A Aeq -> reflexive _ Aeq -> Reflexive_Relation_Class + | RAsymmetric : + forall A Aeq, reflexive A Aeq -> Reflexive_Relation_Class + | RLeibniz : Type -> Reflexive_Relation_Class. + +Inductive Areflexive_Relation_Class : Type := + | ASymmetric : forall A Aeq, symmetric A Aeq -> Areflexive_Relation_Class + | AAsymmetric : forall A (Aeq : relation A), Areflexive_Relation_Class. + Implicit Type Hole Out: Relation_Class. Definition relation_class_of_argument_class : Argument_Class -> Relation_Class. @@ -269,17 +280,6 @@ Inductive check_if_variance_is_respected : forall dir, check_if_variance_is_respected (Some Contravariant) dir (opposite_direction dir). -Inductive Reflexive_Relation_Class : Type := - RSymmetric : - forall A Aeq, symmetric A Aeq -> reflexive _ Aeq -> Reflexive_Relation_Class - | RAsymmetric : - forall A Aeq, reflexive A Aeq -> Reflexive_Relation_Class - | RLeibniz : Type -> Reflexive_Relation_Class. - -Inductive Areflexive_Relation_Class : Type := - | ASymmetric : forall A Aeq, symmetric A Aeq -> Areflexive_Relation_Class - | AAsymmetric : forall A (Aeq : relation A), Areflexive_Relation_Class. - Definition relation_class_of_reflexive_relation_class: Reflexive_Relation_Class -> Relation_Class. induction 1. |