diff options
author | herbelin <herbelin@85f007b7-540e-0410-9357-904b9bb8a0f7> | 2007-02-07 14:42:26 +0000 |
---|---|---|
committer | herbelin <herbelin@85f007b7-540e-0410-9357-904b9bb8a0f7> | 2007-02-07 14:42:26 +0000 |
commit | 6b006ec56f9750293c5ac6c8f69233d37318f41d (patch) | |
tree | c860a753439b5432de12a3873d5e62ea0adb2e4d /theories | |
parent | 7bc476283db30b0d611e78962050de65bd061e68 (diff) |
Backtrack sur le passage de Set à Type pour l'ordre lexicographique
pour garder Relation_Operators.Pow dans Set (puisque le polymorphisme
d'univers pour les inductifs ne se propage pas aux définitions)
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@9609 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'theories')
-rw-r--r-- | theories/Relations/Relation_Operators.v | 4 | ||||
-rw-r--r-- | theories/Wellfounded/Lexicographic_Exponentiation.v | 2 |
2 files changed, 3 insertions, 3 deletions
diff --git a/theories/Relations/Relation_Operators.v b/theories/Relations/Relation_Operators.v index c8ace84c3..8d76b4f4e 100644 --- a/theories/Relations/Relation_Operators.v +++ b/theories/Relations/Relation_Operators.v @@ -138,7 +138,7 @@ End Swap. Section Lexicographic_Exponentiation. - Variable A : Type. + Variable A : Set. Variable leA : A -> A -> Prop. Let Nil := nil (A:=A). Let List := list A. @@ -156,7 +156,7 @@ Section Lexicographic_Exponentiation. forall (x y:A) (l:List), leA x y -> Desc (l ++ y :: Nil) -> Desc ((l ++ y :: Nil) ++ x :: Nil). - Definition Pow : Type := sig Desc. + Definition Pow : Set := sig Desc. Definition lex_exp (a b:Pow) : Prop := Ltl (proj1_sig a) (proj1_sig b). diff --git a/theories/Wellfounded/Lexicographic_Exponentiation.v b/theories/Wellfounded/Lexicographic_Exponentiation.v index 4d6d66c3d..69421255d 100644 --- a/theories/Wellfounded/Lexicographic_Exponentiation.v +++ b/theories/Wellfounded/Lexicographic_Exponentiation.v @@ -18,7 +18,7 @@ Require Import Relation_Operators. Require Import Transitive_Closure. Section Wf_Lexicographic_Exponentiation. - Variable A : Type. + Variable A : Set. Variable leA : A -> A -> Prop. Notation Power := (Pow A leA). |