diff options
author | herbelin <herbelin@85f007b7-540e-0410-9357-904b9bb8a0f7> | 2001-02-14 15:57:26 +0000 |
---|---|---|
committer | herbelin <herbelin@85f007b7-540e-0410-9357-904b9bb8a0f7> | 2001-02-14 15:57:26 +0000 |
commit | 41bf87dd6a35255596638f1b1983a0b2d0d071b8 (patch) | |
tree | ccbbad2e2d414c5fc73639bd20a205d6eea67ab5 /theories | |
parent | a7de8633c23fe66ee32463d78dae89661805c2d1 (diff) |
Renommage des variables dans les schémas d'induction
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@1387 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'theories')
-rw-r--r-- | theories/Logic/Eqdep_dec.v | 4 | ||||
-rw-r--r-- | theories/Reals/Rbase.v | 12 | ||||
-rw-r--r-- | theories/Reals/Rbasic_fun.v | 4 | ||||
-rw-r--r-- | theories/Wellfounded/Disjoint_Union.v | 12 | ||||
-rw-r--r-- | theories/Wellfounded/Lexicographic_Exponentiation.v | 4 | ||||
-rw-r--r-- | theories/Wellfounded/Lexicographic_Product.v | 6 | ||||
-rw-r--r-- | theories/Zarith/Zmisc.v | 4 |
7 files changed, 23 insertions, 23 deletions
diff --git a/theories/Logic/Eqdep_dec.v b/theories/Logic/Eqdep_dec.v index 54845ea07..6205fc603 100644 --- a/theories/Logic/Eqdep_dec.v +++ b/theories/Logic/Eqdep_dec.v @@ -71,7 +71,7 @@ Unfold nu. Elim (eq_dec x y) using or_indd; Intros. Reflexivity. -Case y0; Trivial. +Case b; Trivial. Save. @@ -123,7 +123,7 @@ Intro e. Elim e using K_dec; Trivial. Intros. -Case y0; Trivial. +Case b; Trivial. Case H. Reflexivity. diff --git a/theories/Reals/Rbase.v b/theories/Reals/Rbase.v index 1fb31101d..91c3e5409 100644 --- a/theories/Reals/Rbase.v +++ b/theories/Reals/Rbase.v @@ -64,7 +64,7 @@ Hints Resolve imp_not_Req : real. (**********) Lemma Req_EM:(r1,r2:R)(r1==r2)\/``r1<>r2``. Intros;Elim (total_order_T r1 r2);Intro. -Case y; Auto with real. +Case a; Auto with real. Auto with real. Save. Hints Resolve Req_EM : real. @@ -72,7 +72,7 @@ Hints Resolve Req_EM : real. (**********) Lemma total_order:(r1,r2:R)``r1<r2``\/(r1==r2)\/``r1>r2``. Intros;Elim (total_order_T r1 r2);Intro;Auto. -Elim y;Intro;Auto. +Elim a;Intro;Auto. Save. (**********) @@ -199,16 +199,16 @@ Save. (*s Decidability of the order *) Lemma total_order_Rlt:(r1,r2:R)(sumboolT ``r1<r2`` ~(``r1<r2``)). Intros;Elim (total_order_T r1 r2);Intros. -Elim y;Intro. +Elim a;Intro. Left;Assumption. -Right;Rewrite y0;Apply Rlt_antirefl. -Right;Unfold Rgt in y;Apply Rlt_antisym;Assumption. +Right;Rewrite b;Apply Rlt_antirefl. +Right;Unfold Rgt in b;Apply Rlt_antisym;Assumption. Save. (**********) Lemma total_order_Rle:(r1,r2:R)(sumboolT ``r1<=r2`` ~(``r1<=r2``)). Intros;Elim (total_order_T r1 r2);Intros. -Left;Unfold Rle;Elim y;Auto with real. +Left;Unfold Rle;Elim a;Auto with real. Right; Auto with real. Save. diff --git a/theories/Reals/Rbasic_fun.v b/theories/Reals/Rbasic_fun.v index b7466eb87..6b2106630 100644 --- a/theories/Reals/Rbasic_fun.v +++ b/theories/Reals/Rbasic_fun.v @@ -75,8 +75,8 @@ Save. (*********) Lemma case_Rabsolu:(r:R)(sumboolT (Rlt r R0) (Rge r R0)). Intro;Generalize (total_order_Rle R0 r);Intro;Elim X;Intro;Clear X. -Right;Apply (Rle_sym1 R0 r y). -Left;Fold (Rgt R0 r);Apply (not_Rle R0 r y). +Right;Apply (Rle_sym1 R0 r a). +Left;Fold (Rgt R0 r);Apply (not_Rle R0 r b). Save. (*********) diff --git a/theories/Wellfounded/Disjoint_Union.v b/theories/Wellfounded/Disjoint_Union.v index 162a31e83..d29262427 100644 --- a/theories/Wellfounded/Disjoint_Union.v +++ b/theories/Wellfounded/Disjoint_Union.v @@ -42,13 +42,13 @@ Proof. Intros. Unfold well_founded . Induction a. - Intro. - Apply (acc_A_sum y). - Apply (H y). + Intro a0. + Apply (acc_A_sum a0). + Apply (H a0). - Intro. - Apply (acc_B_sum H y). - Apply (H0 y). + Intro b. + Apply (acc_B_sum H b). + Apply (H0 b). Qed. End Wf_Disjoint_Union. diff --git a/theories/Wellfounded/Lexicographic_Exponentiation.v b/theories/Wellfounded/Lexicographic_Exponentiation.v index 06a9c123d..7b78ddb9c 100644 --- a/theories/Wellfounded/Lexicographic_Exponentiation.v +++ b/theories/Wellfounded/Lexicographic_Exponentiation.v @@ -301,7 +301,7 @@ Theorem wf_lex_exp : (well_founded A leA)->(well_founded Power Lex_Exp). Proof. Unfold 2 well_founded . - Induction a;Intros. + Induction a;Intros x y. Apply Acc_intro. Induction y0. Unfold 1 lex_exp ;Simpl. @@ -350,7 +350,7 @@ Proof. Apply Acc_intro. Induction y2. Unfold 1 lex_exp . - Simpl;Intros. + Simpl;Intros x4 y3. Intros. Apply (H0 x4 y3);Auto with sets. Intros. diff --git a/theories/Wellfounded/Lexicographic_Product.v b/theories/Wellfounded/Lexicographic_Product.v index 157265047..a6da918e3 100644 --- a/theories/Wellfounded/Lexicographic_Product.v +++ b/theories/Wellfounded/Lexicographic_Product.v @@ -29,11 +29,11 @@ Lemma acc_A_B_lexprod : (x:A)(Acc A leA x) ->(y:(B x))(Acc (B x) (leB x) y) ->(Acc (sigS A B) LexProd (existS A B x y)). Proof. - Induction 1. - Induction 4;Intros. + Induction 1; Intros x0 H0 H1 H2 y. + Induction 1;Intros. Apply Acc_intro. Induction y0. - Intros. + Intros x2 y1 H6. Simple Inversion H6;Intros. Cut (leA x2 x0);Intros. Apply H1;Auto with sets. diff --git a/theories/Zarith/Zmisc.v b/theories/Zarith/Zmisc.v index 2aa69092a..bc90b0612 100644 --- a/theories/Zarith/Zmisc.v +++ b/theories/Zarith/Zmisc.v @@ -303,8 +303,8 @@ Lemma Z_modulo_2 : (x:Z) `x >= 0` -> { y:Z | `x=2*y` }+{ y:Z | `x=2*y+1` }. Proof. Intros x Hx. Elim (Zeven_odd_dec x); Intro. -Left. Split with (Zdiv2 x). Exact (Zeven_div2 x y). -Right. Split with (Zdiv2 x). Exact (Zodd_div2 x Hx y). +Left. Split with (Zdiv2 x). Exact (Zeven_div2 x a). +Right. Split with (Zdiv2 x). Exact (Zodd_div2 x Hx b). Save. (* Very simple *) |