diff options
author | Théo Zimmermann <theo.zimmermann@univ-paris-diderot.fr> | 2018-03-04 12:04:03 +0100 |
---|---|---|
committer | Théo Zimmermann <theo.zimmermann@univ-paris-diderot.fr> | 2018-03-04 12:04:03 +0100 |
commit | 39ec5b14518c35450aa0d9be2ab1012f5bd2f8e3 (patch) | |
tree | 6c9e4de49bfede9c18878beadf2b1700e20c037a /theories | |
parent | 6131f89f6b91c45e641dd877df8719fa77987453 (diff) |
Remove all uses of Focus in standard library.
Diffstat (limited to 'theories')
-rw-r--r-- | theories/Reals/Ranalysis5.v | 62 |
1 files changed, 25 insertions, 37 deletions
diff --git a/theories/Reals/Ranalysis5.v b/theories/Reals/Ranalysis5.v index 61c0debb7..de1e2f303 100644 --- a/theories/Reals/Ranalysis5.v +++ b/theories/Reals/Ranalysis5.v @@ -27,46 +27,34 @@ Lemma f_incr_implies_g_incr_interv : forall f g:R->R, forall lb ub, (forall x , f lb <= x -> x <= f ub -> lb <= g x <= ub) -> (forall x y, f lb <= x -> x < y -> y <= f ub -> g x < g y). Proof. -intros f g lb ub lb_lt_ub f_incr f_eq_g g_ok x y lb_le_x x_lt_y y_le_ub. - assert (x_encad : f lb <= x <= f ub). - split ; [assumption | apply Rle_trans with (r2:=y) ; [apply Rlt_le|] ; assumption]. - assert (y_encad : f lb <= y <= f ub). - split ; [apply Rle_trans with (r2:=x) ; [|apply Rlt_le] ; assumption | assumption]. - assert (Temp1 : lb <= lb) by intuition ; assert (Temp2 : ub <= ub) by intuition. - assert (gx_encad := g_ok _ (proj1 x_encad) (proj2 x_encad)). - assert (gy_encad := g_ok _ (proj1 y_encad) (proj2 y_encad)). - clear Temp1 Temp2. - case (Rlt_dec (g x) (g y)). - intuition. + intros f g lb ub lb_lt_ub f_incr f_eq_g g_ok x y lb_le_x x_lt_y y_le_ub. + assert (x_encad : f lb <= x <= f ub) by lra. + assert (y_encad : f lb <= y <= f ub) by lra. + assert (gx_encad := g_ok _ (proj1 x_encad) (proj2 x_encad)). + assert (gy_encad := g_ok _ (proj1 y_encad) (proj2 y_encad)). + case (Rlt_dec (g x) (g y)); [ easy |]. intros Hfalse. - assert (Temp := Rnot_lt_le _ _ Hfalse). - assert (Hcontradiction : y <= x). - replace y with (id y) by intuition ; replace x with (id x) by intuition ; - rewrite <- f_eq_g. rewrite <- f_eq_g. - assert (f_incr2 : forall x y, lb <= x -> x <= y -> y < ub -> f x <= f y). + assert (Temp := Rnot_lt_le _ _ Hfalse). + enough (y <= x) by lra. + replace y with (id y) by easy. + replace x with (id x) by easy. + rewrite <- f_eq_g by easy. + rewrite <- f_eq_g by easy. + assert (f_incr2 : forall x y, lb <= x -> x <= y -> y < ub -> f x <= f y). { intros m n lb_le_m m_le_n n_lt_ub. case (m_le_n). - intros ; apply Rlt_le ; apply f_incr ; [| | apply Rlt_le] ; assumption. - intros Hyp ; rewrite Hyp ; apply Req_le ; reflexivity. - apply f_incr2. - intuition. intuition. - Focus 3. intuition. - Focus 2. intuition. - Focus 2. intuition. Focus 2. intuition. - assert (Temp2 : g x <> ub). - intro Hf. - assert (Htemp : (comp f g) x = f ub). - unfold comp ; rewrite Hf ; reflexivity. - rewrite f_eq_g in Htemp ; unfold id in Htemp. - assert (Htemp2 : x < f ub). - apply Rlt_le_trans with (r2:=y) ; intuition. - clear -Htemp Htemp2. fourier. - intuition. intuition. - clear -Temp2 gx_encad. - case (proj2 gx_encad). - intuition. - intro Hfalse ; apply False_ind ; apply Temp2 ; assumption. - apply False_ind. clear - Hcontradiction x_lt_y. fourier. + - intros; apply Rlt_le, f_incr, Rlt_le; assumption. + - intros Hyp; rewrite Hyp; apply Req_le; reflexivity. + } + apply f_incr2; intuition. + enough (g x <> ub) by lra. + intro Hf. + assert (Htemp : (comp f g) x = f ub). { + unfold comp; rewrite Hf; reflexivity. + } + rewrite f_eq_g in Htemp by easy. + unfold id in Htemp. + fourier. Qed. Lemma derivable_pt_id_interv : forall (lb ub x:R), |