aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories
diff options
context:
space:
mode:
authorGravatar msozeau <msozeau@85f007b7-540e-0410-9357-904b9bb8a0f7>2008-05-11 22:04:26 +0000
committerGravatar msozeau <msozeau@85f007b7-540e-0410-9357-904b9bb8a0f7>2008-05-11 22:04:26 +0000
commit30443ddaba7a0cc996216b3d692b97e0b05907fe (patch)
tree1a1bdadcdf69582262bd6bddc21e9e03215d2871 /theories
parentb6c6e36afa8da16a62bf16191baa2531894c54fc (diff)
- Cleanup parsing of binders, reducing to a single production for all
binders. - Change syntax of type class instances to better match the usual syntax of lemmas/definitions with name first, then arguments ":" instance. Update theories/Classes accordingly. - Correct globalization of tactic references when doing Ltac :=/::=, update documentation. - Remove the not so useful "(x &)" and "{{x}}" syntaxes from Program.Utils, and subset_scope as well. git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@10919 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'theories')
-rw-r--r--theories/Classes/EquivDec.v12
-rw-r--r--theories/Classes/Equivalence.v14
-rw-r--r--theories/Classes/Morphisms.v76
-rw-r--r--theories/Classes/Morphisms_Prop.v12
-rw-r--r--theories/Classes/RelationClasses.v27
-rw-r--r--theories/Classes/SetoidDec.v5
-rw-r--r--theories/Classes/SetoidTactics.v3
-rw-r--r--theories/Program/Subset.v2
-rw-r--r--theories/Program/Syntax.v20
-rw-r--r--theories/Program/Utils.v18
-rw-r--r--theories/Program/Wf.v14
11 files changed, 89 insertions, 114 deletions
diff --git a/theories/Classes/EquivDec.v b/theories/Classes/EquivDec.v
index 62744b1d1..d96a532c3 100644
--- a/theories/Classes/EquivDec.v
+++ b/theories/Classes/EquivDec.v
@@ -94,8 +94,8 @@ Program Instance unit_eqdec : ! EqDec unit eq :=
reflexivity.
Qed.
-Program Instance [ EqDec A eq, EqDec B eq ] =>
- prod_eqdec : ! EqDec (prod A B) eq :=
+Program Instance prod_eqdec [ EqDec A eq, EqDec B eq ] :
+ ! EqDec (prod A B) eq :=
equiv_dec x y :=
let '(x1, x2) := x in
let '(y1, y2) := y in
@@ -106,8 +106,8 @@ Program Instance [ EqDec A eq, EqDec B eq ] =>
Solve Obligations using unfold complement, equiv ; program_simpl.
-Program Instance [ EqDec A eq, EqDec B eq ] =>
- sum_eqdec : ! EqDec (sum A B) eq :=
+Program Instance sum_eqdec [ EqDec A eq, EqDec B eq ] :
+ ! EqDec (sum A B) eq :=
equiv_dec x y :=
match x, y with
| inl a, inl b => if a == b then in_left else in_right
@@ -121,7 +121,7 @@ Program Instance [ EqDec A eq, EqDec B eq ] =>
Require Import Coq.Program.FunctionalExtensionality.
-Program Instance [ EqDec A eq ] => bool_function_eqdec : ! EqDec (bool -> A) eq :=
+Program Instance bool_function_eqdec [ EqDec A eq ] : ! EqDec (bool -> A) eq :=
equiv_dec f g :=
if f true == g true then
if f false == g false then in_left
@@ -138,7 +138,7 @@ Program Instance [ EqDec A eq ] => bool_function_eqdec : ! EqDec (bool -> A) eq
Require Import List.
-Program Instance [ eqa : EqDec A eq ] => list_eqdec : ! EqDec (list A) eq :=
+Program Instance list_eqdec [ eqa : EqDec A eq ] : ! EqDec (list A) eq :=
equiv_dec :=
fix aux (x : list A) y { struct x } :=
match x, y with
diff --git a/theories/Classes/Equivalence.v b/theories/Classes/Equivalence.v
index 23af8a744..42961baea 100644
--- a/theories/Classes/Equivalence.v
+++ b/theories/Classes/Equivalence.v
@@ -52,16 +52,16 @@ Infix "=~=" := pequiv (at level 70, no associativity) : equiv_scope.
(** Shortcuts to make proof search easier. *)
-Program Instance [ sa : Equivalence A ] => equiv_reflexive : Reflexive equiv.
+Program Instance equiv_reflexive [ sa : Equivalence A ] : Reflexive equiv.
-Program Instance [ sa : Equivalence A ] => equiv_symmetric : Symmetric equiv.
+Program Instance equiv_symmetric [ sa : Equivalence A ] : Symmetric equiv.
Next Obligation.
Proof.
symmetry ; auto.
Qed.
-Program Instance [ sa : Equivalence A ] => equiv_transitive : Transitive equiv.
+Program Instance equiv_transitive [ sa : Equivalence A ] : Transitive equiv.
Next Obligation.
Proof.
@@ -116,8 +116,8 @@ Section Respecting.
Definition respecting [ Equivalence A (R : relation A), Equivalence B (R' : relation B) ] : Type :=
{ morph : A -> B | respectful R R' morph morph }.
- Program Instance [ Equivalence A R, Equivalence B R' ] =>
- respecting_equiv : Equivalence respecting
+ Program Instance respecting_equiv [ Equivalence A R, Equivalence B R' ] :
+ Equivalence respecting
(fun (f g : respecting) => forall (x y : A), R x y -> R' (proj1_sig f x) (proj1_sig g y)).
Solve Obligations using unfold respecting in * ; simpl_relation ; program_simpl.
@@ -134,8 +134,8 @@ End Respecting.
(** The default equivalence on function spaces, with higher-priority than [eq]. *)
-Program Instance [ Equivalence A eqA ] =>
- pointwise_equivalence : Equivalence (B -> A) (pointwise_relation eqA) | 9.
+Program Instance pointwise_equivalence [ Equivalence A eqA ] :
+ Equivalence (B -> A) (pointwise_relation eqA) | 9.
Next Obligation.
Proof.
diff --git a/theories/Classes/Morphisms.v b/theories/Classes/Morphisms.v
index 5ac6d8ee5..cd38f318c 100644
--- a/theories/Classes/Morphisms.v
+++ b/theories/Classes/Morphisms.v
@@ -87,12 +87,12 @@ Proof. firstorder. Qed.
(** The subrelation property goes through products as usual. *)
-Instance [ sub : subrelation A R₁ R₂ ] =>
- morphisms_subrelation : ! subrelation (B -> A) (R ==> R₁) (R ==> R₂).
+Instance morphisms_subrelation [ sub : subrelation A R₁ R₂ ] :
+ ! subrelation (B -> A) (R ==> R₁) (R ==> R₂).
Proof. firstorder. Qed.
-Instance [ sub : subrelation A R₂ R₁ ] =>
- morphisms_subrelation_left : ! subrelation (A -> B) (R₁ ==> R) (R₂ ==> R) | 3.
+Instance morphisms_subrelation_left [ sub : subrelation A R₂ R₁ ] :
+ ! subrelation (A -> B) (R₁ ==> R) (R₂ ==> R) | 3.
Proof. firstorder. Qed.
(** [Morphism] is itself a covariant morphism for [subrelation]. *)
@@ -129,16 +129,15 @@ Proof. firstorder. Qed.
Instance iff_inverse_impl_subrelation : subrelation iff (inverse impl).
Proof. firstorder. Qed.
-Instance [ sub : subrelation A R R' ] => pointwise_subrelation :
+Instance pointwise_subrelation [ sub : subrelation A R R' ] :
subrelation (pointwise_relation (A:=B) R) (pointwise_relation R') | 4.
Proof. reduce. unfold pointwise_relation in *. apply sub. apply H. Qed.
(** The complement of a relation conserves its morphisms. *)
-Program Instance [ mR : Morphism (A -> A -> Prop)
- (RA ==> RA ==> iff) R ] =>
- complement_morphism : Morphism (RA ==> RA ==> iff)
- (complement R).
+Program Instance complement_morphism
+ [ mR : Morphism (A -> A -> Prop) (RA ==> RA ==> iff) R ] :
+ Morphism (RA ==> RA ==> iff) (complement R).
Next Obligation.
Proof.
@@ -149,8 +148,9 @@ Program Instance [ mR : Morphism (A -> A -> Prop)
(** The [inverse] too, actually the [flip] instance is a bit more general. *)
-Program Instance [ mor : Morphism (A -> B -> C) (RA ==> RB ==> RC) f ] =>
- flip_morphism : Morphism (RB ==> RA ==> RC) (flip f).
+Program Instance flip_morphism
+ [ mor : Morphism (A -> B -> C) (RA ==> RB ==> RC) f ] :
+ Morphism (RB ==> RA ==> RC) (flip f).
Next Obligation.
Proof.
@@ -160,8 +160,8 @@ Program Instance [ mor : Morphism (A -> B -> C) (RA ==> RB ==> RC) f ] =>
(** Every Transitive relation gives rise to a binary morphism on [impl],
contravariant in the first argument, covariant in the second. *)
-Program Instance [ Transitive A R ] =>
- trans_contra_co_morphism : Morphism (R --> R ++> impl) R.
+Program Instance trans_contra_co_morphism
+ [ Transitive A R ] : Morphism (R --> R ++> impl) R.
Next Obligation.
Proof with auto.
@@ -181,40 +181,40 @@ Program Instance [ Transitive A R ] =>
(** Morphism declarations for partial applications. *)
-Program Instance [ Transitive A R ] =>
- trans_contra_inv_impl_morphism : Morphism (R --> inverse impl) (R x).
+Program Instance trans_contra_inv_impl_morphism
+ [ Transitive A R ] : Morphism (R --> inverse impl) (R x).
Next Obligation.
Proof with auto.
transitivity y...
Qed.
-Program Instance [ Transitive A R ] =>
- trans_co_impl_morphism : Morphism (R ==> impl) (R x).
+Program Instance trans_co_impl_morphism
+ [ Transitive A R ] : Morphism (R ==> impl) (R x).
Next Obligation.
Proof with auto.
transitivity x0...
Qed.
-Program Instance [ Transitive A R, Symmetric A R ] =>
- trans_sym_co_inv_impl_morphism : Morphism (R ==> inverse impl) (R x).
+Program Instance trans_sym_co_inv_impl_morphism
+ [ Transitive A R, Symmetric A R ] : Morphism (R ==> inverse impl) (R x).
Next Obligation.
Proof with auto.
transitivity y...
Qed.
-Program Instance [ Transitive A R, Symmetric _ R ] =>
- trans_sym_contra_impl_morphism : Morphism (R --> impl) (R x).
+Program Instance trans_sym_contra_impl_morphism
+ [ Transitive A R, Symmetric _ R ] : Morphism (R --> impl) (R x).
Next Obligation.
Proof with auto.
transitivity x0...
Qed.
-Program Instance [ Equivalence A R ] =>
- equivalence_partial_app_morphism : Morphism (R ==> iff) (R x).
+Program Instance equivalence_partial_app_morphism
+ [ Equivalence A R ] : Morphism (R ==> iff) (R x).
Next Obligation.
Proof with auto.
@@ -227,8 +227,8 @@ Program Instance [ Equivalence A R ] =>
(** Every Transitive relation induces a morphism by "pushing" an [R x y] on the left of an [R x z] proof
to get an [R y z] goal. *)
-Program Instance [ Transitive A R ] =>
- trans_co_eq_inv_impl_morphism : Morphism (R ==> (@eq A) ==> inverse impl) R.
+Program Instance trans_co_eq_inv_impl_morphism
+ [ Transitive A R ] : Morphism (R ==> (@eq A) ==> inverse impl) R.
Next Obligation.
Proof with auto.
@@ -245,8 +245,8 @@ Program Instance [ Transitive A R ] =>
(** Every Symmetric and Transitive relation gives rise to an equivariant morphism. *)
-Program Instance [ Transitive A R, Symmetric _ R ] =>
- trans_sym_morphism : Morphism (R ==> R ==> iff) R.
+Program Instance trans_sym_morphism
+ [ Transitive A R, Symmetric _ R ] : Morphism (R ==> R ==> iff) R.
Next Obligation.
Proof with auto.
@@ -256,8 +256,8 @@ Program Instance [ Transitive A R, Symmetric _ R ] =>
transitivity y... transitivity y0...
Qed.
-Program Instance [ Equivalence A R ] =>
- equiv_morphism : Morphism (R ==> R ==> iff) R.
+Program Instance equiv_morphism [ Equivalence A R ] :
+ Morphism (R ==> R ==> iff) R.
Next Obligation.
Proof with auto.
@@ -288,7 +288,7 @@ Program Instance inverse_iff_impl_id :
(* eq_reflexive_morphism : Morphism (@Logic.eq A ==> R) m | 3. *)
(* Proof. simpl_relation. Qed. *)
-Instance (A : Type) [ Reflexive B R' ] =>
+Instance reflexive_eq_dom_reflexive (A : Type) [ Reflexive B R' ] :
Reflexive (@Logic.eq A ==> R').
Proof. simpl_relation. Qed.
@@ -322,12 +322,12 @@ Qed.
Class MorphismProxy A (R : relation A) (m : A) : Prop :=
respect_proxy : R m m.
-Instance [ Reflexive A R ] (x : A) =>
- reflexive_morphism_proxy : MorphismProxy A R x | 1.
+Instance reflexive_morphism_proxy
+ [ Reflexive A R ] (x : A) : MorphismProxy A R x | 1.
Proof. firstorder. Qed.
-Instance [ Morphism A R x ] =>
- morphism_morphism_proxy : MorphismProxy A R x | 2.
+Instance morphism_morphism_proxy
+ [ Morphism A R x ] : MorphismProxy A R x | 2.
Proof. firstorder. Qed.
(* Instance (A : Type) [ Reflexive B R ] => *)
@@ -392,8 +392,8 @@ Instance not_inverse_respectful_norm :
Normalizes (A -> B) (R ==> inverse R') (inverse (inverse R ==> R')) | 4.
Proof. firstorder. Qed.
-Instance [ Normalizes B R' (inverse R'') ] =>
- inverse_respectful_rec_norm : Normalizes (A -> B) (inverse R ==> R') (inverse (R ==> R'')).
+Instance inverse_respectful_rec_norm [ Normalizes B R' (inverse R'') ] :
+ Normalizes (A -> B) (inverse R ==> R') (inverse (R ==> R'')).
Proof. red ; intros.
pose normalizes as r.
setoid_rewrite r.
@@ -403,8 +403,8 @@ Qed.
(** Once we have normalized, we will apply this instance to simplify the problem. *)
-Program Instance [ Morphism A R m ] =>
- morphism_inverse_morphism : Morphism (inverse R) m | 2.
+Program Instance morphism_inverse_morphism
+ [ Morphism A R m ] : Morphism (inverse R) m | 2.
(** Bootstrap !!! *)
diff --git a/theories/Classes/Morphisms_Prop.v b/theories/Classes/Morphisms_Prop.v
index 301fba534..7dc1f95ef 100644
--- a/theories/Classes/Morphisms_Prop.v
+++ b/theories/Classes/Morphisms_Prop.v
@@ -73,7 +73,7 @@ Program Instance iff_iff_iff_impl_morphism : Morphism (iff ==> iff ==> iff) impl
(** Morphisms for quantifiers *)
-Program Instance {A : Type} => ex_iff_morphism : Morphism (pointwise_relation iff ==> iff) (@ex A).
+Program Instance ex_iff_morphism {A : Type} : Morphism (pointwise_relation iff ==> iff) (@ex A).
Next Obligation.
Proof.
@@ -86,7 +86,7 @@ Program Instance {A : Type} => ex_iff_morphism : Morphism (pointwise_relation if
exists x₁. rewrite H. assumption.
Qed.
-Program Instance {A : Type} => ex_impl_morphism :
+Program Instance ex_impl_morphism {A : Type} :
Morphism (pointwise_relation impl ==> impl) (@ex A).
Next Obligation.
@@ -95,7 +95,7 @@ Program Instance {A : Type} => ex_impl_morphism :
exists H0. apply H. assumption.
Qed.
-Program Instance {A : Type} => ex_inverse_impl_morphism :
+Program Instance ex_inverse_impl_morphism {A : Type} :
Morphism (pointwise_relation (inverse impl) ==> inverse impl) (@ex A).
Next Obligation.
@@ -104,7 +104,7 @@ Program Instance {A : Type} => ex_inverse_impl_morphism :
exists H0. apply H. assumption.
Qed.
-Program Instance {A : Type} => all_iff_morphism :
+Program Instance all_iff_morphism {A : Type} :
Morphism (pointwise_relation iff ==> iff) (@all A).
Next Obligation.
@@ -113,7 +113,7 @@ Program Instance {A : Type} => all_iff_morphism :
intuition ; specialize (H x0) ; intuition.
Qed.
-Program Instance {A : Type} => all_impl_morphism :
+Program Instance all_impl_morphism {A : Type} :
Morphism (pointwise_relation impl ==> impl) (@all A).
Next Obligation.
@@ -122,7 +122,7 @@ Program Instance {A : Type} => all_impl_morphism :
intuition ; specialize (H x0) ; intuition.
Qed.
-Program Instance {A : Type} => all_inverse_impl_morphism :
+Program Instance all_inverse_impl_morphism {A : Type} :
Morphism (pointwise_relation (inverse impl) ==> inverse impl) (@all A).
Next Obligation.
diff --git a/theories/Classes/RelationClasses.v b/theories/Classes/RelationClasses.v
index 015eb7323..25316c278 100644
--- a/theories/Classes/RelationClasses.v
+++ b/theories/Classes/RelationClasses.v
@@ -65,26 +65,26 @@ Unset Implicit Arguments.
(** We can already dualize all these properties. *)
-Program Instance [ Reflexive A R ] => flip_Reflexive : Reflexive (flip R) :=
+Program Instance flip_Reflexive [ Reflexive A R ] : Reflexive (flip R) :=
reflexivity := reflexivity (R:=R).
-Program Instance [ Irreflexive A R ] => flip_Irreflexive : Irreflexive (flip R) :=
+Program Instance flip_Irreflexive [ Irreflexive A R ] : Irreflexive (flip R) :=
irreflexivity := irreflexivity (R:=R).
-Program Instance [ Symmetric A R ] => flip_Symmetric : Symmetric (flip R).
+Program Instance flip_Symmetric [ Symmetric A R ] : Symmetric (flip R).
Solve Obligations using unfold flip ; program_simpl ; clapply Symmetric.
-Program Instance [ Asymmetric A R ] => flip_Asymmetric : Asymmetric (flip R).
+Program Instance flip_Asymmetric [ Asymmetric A R ] : Asymmetric (flip R).
Solve Obligations using program_simpl ; unfold flip in * ; intros ; clapply asymmetry.
-Program Instance [ Transitive A R ] => flip_Transitive : Transitive (flip R).
+Program Instance flip_Transitive [ Transitive A R ] : Transitive (flip R).
Solve Obligations using unfold flip ; program_simpl ; clapply transitivity.
-Program Instance [ Reflexive A (R : relation A) ] =>
- Reflexive_complement_Irreflexive : Irreflexive (complement R).
+Program Instance Reflexive_complement_Irreflexive [ Reflexive A (R : relation A) ]
+ : Irreflexive (complement R).
Next Obligation.
Proof.
@@ -95,7 +95,7 @@ Program Instance [ Reflexive A (R : relation A) ] =>
Qed.
-Program Instance [ Symmetric A (R : relation A) ] => complement_Symmetric : Symmetric (complement R).
+Program Instance complement_Symmetric [ Symmetric A (R : relation A) ] : Symmetric (complement R).
Next Obligation.
Proof.
@@ -165,8 +165,7 @@ Class PER (carrier : Type) (pequiv : relation carrier) : Prop :=
(** We can build a PER on the Coq function space if we have PERs on the domain and
codomain. *)
-Program Instance [ PER A (R : relation A), PER B (R' : relation B) ] =>
- arrow_per : PER (A -> B)
+Program Instance arrow_per [ PER A (R : relation A), PER B (R' : relation B) ] : PER (A -> B)
(fun f g => forall (x y : A), R x y -> R' (f x) (g y)).
Next Obligation.
@@ -188,8 +187,8 @@ Class Equivalence (carrier : Type) (equiv : relation carrier) : Prop :=
Class [ Equivalence A eqA ] => Antisymmetric (R : relation A) :=
antisymmetry : forall x y, R x y -> R y x -> eqA x y.
-Program Instance [ eq : Equivalence A eqA, ! Antisymmetric eq R ] =>
- flip_antiSymmetric : Antisymmetric eq (flip R).
+Program Instance flip_antiSymmetric [ eq : Equivalence A eqA, ! Antisymmetric eq R ] :
+ Antisymmetric eq (flip R).
(** Leibinz equality [eq] is an equivalence relation.
The instance has low priority as it is always applicable
@@ -368,7 +367,7 @@ Definition relation_disjunction {A} (R : relation A) (R' : relation A) : relatio
(** Relation equivalence is an equivalence, and subrelation defines a partial order. *)
-Instance (A : Type) => relation_equivalence_equivalence :
+Instance relation_equivalence_equivalence (A : Type) :
Equivalence (relation A) relation_equivalence.
Proof. intro A. exact (@predicate_equivalence_equivalence (cons A (cons A nil))). Qed.
@@ -387,7 +386,7 @@ Class [ equ : Equivalence A eqA, PreOrder A R ] => PartialOrder :=
for equivalence (see Morphisms).
It is also sufficient to show that [R] is antisymmetric w.r.t. [eqA] *)
-Instance [ PartialOrder A eqA R ] => partial_order_antisym : ! Antisymmetric A eqA R.
+Instance partial_order_antisym [ PartialOrder A eqA R ] : ! Antisymmetric A eqA R.
Proof with auto.
reduce_goal. pose partial_order_equivalence as poe. do 3 red in poe.
apply <- poe. firstorder.
diff --git a/theories/Classes/SetoidDec.v b/theories/Classes/SetoidDec.v
index 639b15f50..4d6601a6e 100644
--- a/theories/Classes/SetoidDec.v
+++ b/theories/Classes/SetoidDec.v
@@ -95,8 +95,7 @@ Program Instance unit_eqdec : EqDec (@eq_setoid unit) :=
reflexivity.
Qed.
-Program Instance [ ! EqDec (@eq_setoid A), ! EqDec (@eq_setoid B) ] =>
- prod_eqdec : EqDec (@eq_setoid (prod A B)) :=
+Program Instance prod_eqdec [ ! EqDec (@eq_setoid A), ! EqDec (@eq_setoid B) ] : EqDec (@eq_setoid (prod A B)) :=
equiv_dec x y :=
let '(x1, x2) := x in
let '(y1, y2) := y in
@@ -111,7 +110,7 @@ Program Instance [ ! EqDec (@eq_setoid A), ! EqDec (@eq_setoid B) ] =>
Require Import Coq.Program.FunctionalExtensionality.
-Program Instance [ ! EqDec (@eq_setoid A) ] => bool_function_eqdec : EqDec (@eq_setoid (bool -> A)) :=
+Program Instance bool_function_eqdec [ ! EqDec (@eq_setoid A) ] : EqDec (@eq_setoid (bool -> A)) :=
equiv_dec f g :=
if f true == g true then
if f false == g false then in_left
diff --git a/theories/Classes/SetoidTactics.v b/theories/Classes/SetoidTactics.v
index 8412cc102..aeaa197e8 100644
--- a/theories/Classes/SetoidTactics.v
+++ b/theories/Classes/SetoidTactics.v
@@ -38,8 +38,7 @@ Definition default_relation [ DefaultRelation A R ] := R.
(** Every [Equivalence] gives a default relation, if no other is given (lowest priority). *)
-Instance [ Equivalence A R ] =>
- equivalence_default : DefaultRelation A R | 4.
+Instance equivalence_default [ Equivalence A R ] : DefaultRelation A R | 4.
(** The setoid_replace tactics in Ltac, defined in terms of default relations and
the setoid_rewrite tactic. *)
diff --git a/theories/Program/Subset.v b/theories/Program/Subset.v
index 8ce84c827..c9de1a9e1 100644
--- a/theories/Program/Subset.v
+++ b/theories/Program/Subset.v
@@ -9,7 +9,7 @@
Require Import Coq.Program.Utils.
Require Import Coq.Program.Equality.
-Open Local Scope subset_scope.
+Open Local Scope program_scope.
(** Tactics related to subsets and proof irrelevance. *)
diff --git a/theories/Program/Syntax.v b/theories/Program/Syntax.v
index 6158e88f7..6cd75257b 100644
--- a/theories/Program/Syntax.v
+++ b/theories/Program/Syntax.v
@@ -1,4 +1,4 @@
-(* -*- coq-prog-args: ("-emacs-U" "-nois") -*- *)
+(* -*- coq-prog-args: ("-emacs-U") -*- *)
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
@@ -13,10 +13,6 @@
* Institution: LRI, CNRS UMR 8623 - UniversitÃcopyright Paris Sud
* 91405 Orsay, France *)
-(** Unicode lambda abstraction, does not work with factorization of lambdas. *)
-
-Notation " 'λ' x : T , y " := (fun x:T => y) (at level 100, x,T at level 10, y at next level, no associativity) : program_scope.
-
(** Notations for the unit type and value. *)
Notation " () " := Datatypes.unit : type_scope.
@@ -42,11 +38,11 @@ Implicit Arguments cons [[A]].
(** Standard notations for lists. *)
-Notation " [] " := nil.
-Notation " [ x ] " := (cons x nil).
-Notation " [ x ; .. ; y ] " := (cons x .. (cons y nil) ..) (at level 1).
+Notation " [ ] " := nil : list_scope.
+Notation " [ x ] " := (cons x nil) : list_scope.
+Notation " [ x ; .. ; y ] " := (cons x .. (cons y nil) ..) : list_scope.
-(** n-ary exists ! *)
+(** n-ary exists *)
Notation " 'exists' x y , p" := (ex (fun x => (ex (fun y => p))))
(at level 200, x ident, y ident, right associativity) : type_scope.
@@ -61,9 +57,3 @@ Tactic Notation "exist" constr(x) := exists x.
Tactic Notation "exist" constr(x) constr(y) := exists x ; exists y.
Tactic Notation "exist" constr(x) constr(y) constr(z) := exists x ; exists y ; exists z.
Tactic Notation "exist" constr(x) constr(y) constr(z) constr(w) := exists x ; exists y ; exists z ; exists w.
-
-(* Notation " 'Σ' x : T , p" := (sigT (fun x : T => p)) *)
-(* (at level 200, x ident, y ident, right associativity) : program_scope. *)
-
-(* Notation " 'Π' x : T , p " := (forall x : T, p) *)
-(* (at level 200, x ident, right associativity) : program_scope. *) \ No newline at end of file
diff --git a/theories/Program/Utils.v b/theories/Program/Utils.v
index 23f0a7d38..c4a20506c 100644
--- a/theories/Program/Utils.v
+++ b/theories/Program/Utils.v
@@ -12,18 +12,12 @@ Require Export Coq.Program.Tactics.
Set Implicit Arguments.
-(** Wrap a proposition inside a subset. *)
-
-Notation " {{ x }} " := (tt : { y : unit | x }).
-
(** A simpler notation for subsets defined on a cartesian product. *)
Notation "{ ( x , y ) : A | P }" :=
(sig (fun anonymous : A => let (x,y) := anonymous in P))
(x ident, y ident, at level 10) : type_scope.
-(** The scope in which programs are typed (not their types). *)
-
(** Generates an obligation to prove False. *)
Notation " ! " := (False_rect _ _) : program_scope.
@@ -32,19 +26,12 @@ Delimit Scope program_scope with prg.
(** Abbreviation for first projection and hiding of proofs of subset objects. *)
-Notation " ` t " := (proj1_sig t) (at level 10, t at next level) : subset_scope.
-
-Delimit Scope subset_scope with subset.
-
-(* In [subset_scope] to allow masking by redefinitions for particular types. *)
-Notation "( x & ? )" := (@exist _ _ x _) : subset_scope.
+Notation " ` t " := (proj1_sig t) (at level 10, t at next level) : program_scope.
(** Coerces objects to their support before comparing them. *)
Notation " x '`=' y " := ((x :>) = (y :>)) (at level 70) : program_scope.
-(** Quantifying over subsets. *)
-
Require Import Coq.Bool.Sumbool.
(** Construct a dependent disjunction from a boolean. *)
@@ -59,10 +46,11 @@ Notation "'in_left'" := (@left _ _ _) : program_scope.
Notation "'in_right'" := (@right _ _ _) : program_scope.
(** Extraction directives *)
-
+(*
Extraction Inline proj1_sig.
Extract Inductive unit => "unit" [ "()" ].
Extract Inductive bool => "bool" [ "true" "false" ].
Extract Inductive sumbool => "bool" [ "true" "false" ].
(* Extract Inductive prod "'a" "'b" => " 'a * 'b " [ "(,)" ]. *)
(* Extract Inductive sigT => "prod" [ "" ]. *)
+*) \ No newline at end of file
diff --git a/theories/Program/Wf.v b/theories/Program/Wf.v
index 20dfe9b01..d24312ff1 100644
--- a/theories/Program/Wf.v
+++ b/theories/Program/Wf.v
@@ -2,7 +2,7 @@ Require Import Coq.Init.Wf.
Require Import Coq.Program.Utils.
Require Import ProofIrrelevance.
-Open Local Scope subset_scope.
+Open Local Scope program_scope.
Implicit Arguments Enriching Acc_inv [y].
@@ -91,9 +91,9 @@ Section Well_founded_measure.
Variable F_sub : forall x:A, (forall y: { y : A | m y < m x }, P (proj1_sig y)) -> P x.
- Fixpoint Fix_measure_F_sub (x : A) (r : Acc lt (m x)) {struct r} : P x :=
- F_sub x (fun y: { y : A | m y < m x} => Fix_measure_F_sub (proj1_sig y)
- (@Acc_inv _ _ _ r (m (proj1_sig y)) (proj2_sig y))).
+ Program Fixpoint Fix_measure_F_sub (x : A) (r : Acc lt (m x)) {struct r} : P x :=
+ F_sub x (fun (y : A | m y < m x) => Fix_measure_F_sub y
+ (@Acc_inv _ _ _ r (m y) (proj2_sig y))).
Definition Fix_measure_sub (x : A) := Fix_measure_F_sub x (lt_wf (m x)).
@@ -102,7 +102,7 @@ Section Well_founded_measure.
Section FixPoint.
Variable P : A -> Type.
- Variable F_sub : forall x:A, (forall (y : A | m y < m x), P (proj1_sig y)) -> P x.
+ Program Variable F_sub : forall x:A, (forall (y : A | m y < m x), P y) -> P x.
Notation Fix_F := (Fix_measure_F_sub P F_sub) (only parsing). (* alias *)
@@ -113,9 +113,9 @@ Section Well_founded_measure.
forall (x:A) (f g:forall y : { y : A | m y < m x}, P (`y)),
(forall y : { y : A | m y < m x}, f y = g y) -> F_sub x f = F_sub x g.
- Lemma Fix_measure_F_eq :
+ Program Lemma Fix_measure_F_eq :
forall (x:A) (r:Acc lt (m x)),
- F_sub x (fun (y:{y:A|m y < m x}) => Fix_F (`y) (Acc_inv r (proj2_sig y))) = Fix_F x r.
+ F_sub x (fun (y:A | m y < m x) => Fix_F y (Acc_inv r (proj2_sig y))) = Fix_F x r.
Proof.
intros x.
set (y := m x).