diff options
author | Pierre Letouzey <pierre.letouzey@inria.fr> | 2017-03-22 11:24:27 +0100 |
---|---|---|
committer | Pierre Letouzey <pierre.letouzey@inria.fr> | 2017-06-13 10:30:29 +0200 |
commit | 295107103aaa86db8a31abb0e410123212648d45 (patch) | |
tree | 15928f2d0e3752e70938401555faddb48661f34d /theories | |
parent | 423d3202fa0f244db36a0b1b45edfa61829201e6 (diff) |
BigNums: remove files about BigN,BigZ,BigQ (now in an separate git repo)
See now https://github.com/coq/bignums
Int31 is still in the stdlib.
Some proofs there has be adapted to avoid the need for BigNumPrelude.
Diffstat (limited to 'theories')
28 files changed, 171 insertions, 14486 deletions
diff --git a/theories/Numbers/BigNumPrelude.v b/theories/Numbers/BigNumPrelude.v deleted file mode 100644 index bd8930872..000000000 --- a/theories/Numbers/BigNumPrelude.v +++ /dev/null @@ -1,411 +0,0 @@ -(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016 *) -(* \VV/ **************************************************************) -(* // * This file is distributed under the terms of the *) -(* * GNU Lesser General Public License Version 2.1 *) -(************************************************************************) -(* Benjamin Gregoire, Laurent Thery, INRIA, 2007 *) -(************************************************************************) - -(** * BigNumPrelude *) - -(** Auxiliary functions & theorems used for arbitrary precision efficient - numbers. *) - - -Require Import ArithRing. -Require Export ZArith. -Require Export Znumtheory. -Require Export Zpow_facts. - -Declare ML Module "numbers_syntax_plugin". - -(* *** Nota Bene *** - All results that were general enough have been moved in ZArith. - Only remain here specialized lemmas and compatibility elements. - (P.L. 5/11/2007). -*) - - -Local Open Scope Z_scope. - -(* For compatibility of scripts, weaker version of some lemmas of Z.div *) - -Lemma Zlt0_not_eq : forall n, 0<n -> n<>0. -Proof. - auto with zarith. -Qed. - -Definition Zdiv_mult_cancel_r a b c H := Zdiv.Zdiv_mult_cancel_r a b c (Zlt0_not_eq _ H). -Definition Zdiv_mult_cancel_l a b c H := Zdiv.Zdiv_mult_cancel_r a b c (Zlt0_not_eq _ H). -Definition Z_div_plus_l a b c H := Zdiv.Z_div_plus_full_l a b c (Zlt0_not_eq _ H). - -(* Automation *) - -Hint Extern 2 (Z.le _ _) => - (match goal with - |- Zpos _ <= Zpos _ => exact (eq_refl _) -| H: _ <= ?p |- _ <= ?p => apply Z.le_trans with (2 := H) -| H: _ < ?p |- _ <= ?p => apply Z.lt_le_incl; apply Z.le_lt_trans with (2 := H) - end). - -Hint Extern 2 (Z.lt _ _) => - (match goal with - |- Zpos _ < Zpos _ => exact (eq_refl _) -| H: _ <= ?p |- _ <= ?p => apply Z.lt_le_trans with (2 := H) -| H: _ < ?p |- _ <= ?p => apply Z.le_lt_trans with (2 := H) - end). - - -Hint Resolve Z.lt_gt Z.le_ge Z_div_pos: zarith. - -(************************************** - Properties of order and product - **************************************) - - Theorem beta_lex: forall a b c d beta, - a * beta + b <= c * beta + d -> - 0 <= b < beta -> 0 <= d < beta -> - a <= c. - Proof. - intros a b c d beta H1 (H3, H4) (H5, H6). - assert (a - c < 1); auto with zarith. - apply Z.mul_lt_mono_pos_r with beta; auto with zarith. - apply Z.le_lt_trans with (d - b); auto with zarith. - rewrite Z.mul_sub_distr_r; auto with zarith. - Qed. - - Theorem beta_lex_inv: forall a b c d beta, - a < c -> 0 <= b < beta -> - 0 <= d < beta -> - a * beta + b < c * beta + d. - Proof. - intros a b c d beta H1 (H3, H4) (H5, H6). - case (Z.le_gt_cases (c * beta + d) (a * beta + b)); auto with zarith. - intros H7. contradict H1. apply Z.le_ngt. apply beta_lex with (1 := H7); auto. - Qed. - - Lemma beta_mult : forall h l beta, - 0 <= h < beta -> 0 <= l < beta -> 0 <= h*beta+l < beta^2. - Proof. - intros h l beta H1 H2;split. auto with zarith. - rewrite <- (Z.add_0_r (beta^2)); rewrite Z.pow_2_r; - apply beta_lex_inv;auto with zarith. - Qed. - - Lemma Zmult_lt_b : - forall b x y, 0 <= x < b -> 0 <= y < b -> 0 <= x * y <= b^2 - 2*b + 1. - Proof. - intros b x y (Hx1,Hx2) (Hy1,Hy2);split;auto with zarith. - apply Z.le_trans with ((b-1)*(b-1)). - apply Z.mul_le_mono_nonneg;auto with zarith. - apply Z.eq_le_incl; ring. - Qed. - - Lemma sum_mul_carry : forall xh xl yh yl wc cc beta, - 1 < beta -> - 0 <= wc < beta -> - 0 <= xh < beta -> - 0 <= xl < beta -> - 0 <= yh < beta -> - 0 <= yl < beta -> - 0 <= cc < beta^2 -> - wc*beta^2 + cc = xh*yl + xl*yh -> - 0 <= wc <= 1. - Proof. - intros xh xl yh yl wc cc beta U H1 H2 H3 H4 H5 H6 H7. - assert (H8 := Zmult_lt_b beta xh yl H2 H5). - assert (H9 := Zmult_lt_b beta xl yh H3 H4). - split;auto with zarith. - apply beta_lex with (cc) (beta^2 - 2) (beta^2); auto with zarith. - Qed. - - Theorem mult_add_ineq: forall x y cross beta, - 0 <= x < beta -> - 0 <= y < beta -> - 0 <= cross < beta -> - 0 <= x * y + cross < beta^2. - Proof. - intros x y cross beta HH HH1 HH2. - split; auto with zarith. - apply Z.le_lt_trans with ((beta-1)*(beta-1)+(beta-1)); auto with zarith. - apply Z.add_le_mono; auto with zarith. - apply Z.mul_le_mono_nonneg; auto with zarith. - rewrite ?Z.mul_sub_distr_l, ?Z.mul_sub_distr_r, Z.pow_2_r; auto with zarith. - Qed. - - Theorem mult_add_ineq2: forall x y c cross beta, - 0 <= x < beta -> - 0 <= y < beta -> - 0 <= c*beta + cross <= 2*beta - 2 -> - 0 <= x * y + (c*beta + cross) < beta^2. - Proof. - intros x y c cross beta HH HH1 HH2. - split; auto with zarith. - apply Z.le_lt_trans with ((beta-1)*(beta-1)+(2*beta-2));auto with zarith. - apply Z.add_le_mono; auto with zarith. - apply Z.mul_le_mono_nonneg; auto with zarith. - rewrite ?Z.mul_sub_distr_l, ?Z.mul_sub_distr_r, Z.pow_2_r; auto with zarith. - Qed. - -Theorem mult_add_ineq3: forall x y c cross beta, - 0 <= x < beta -> - 0 <= y < beta -> - 0 <= cross <= beta - 2 -> - 0 <= c <= 1 -> - 0 <= x * y + (c*beta + cross) < beta^2. - Proof. - intros x y c cross beta HH HH1 HH2 HH3. - apply mult_add_ineq2;auto with zarith. - split;auto with zarith. - apply Z.le_trans with (1*beta+cross);auto with zarith. - Qed. - -Hint Rewrite Z.mul_1_r Z.mul_0_r Z.mul_1_l Z.mul_0_l Z.add_0_l Z.add_0_r Z.sub_0_r: rm10. - - -(************************************** - Properties of Z.div and Z.modulo -**************************************) - -Theorem Zmod_le_first: forall a b, 0 <= a -> 0 < b -> 0 <= a mod b <= a. - Proof. - intros a b H H1;case (Z_mod_lt a b);auto with zarith;intros H2 H3;split;auto. - case (Z.le_gt_cases b a); intros H4; auto with zarith. - rewrite Zmod_small; auto with zarith. - Qed. - - - Theorem Zmod_distr: forall a b r t, 0 <= a <= b -> 0 <= r -> 0 <= t < 2 ^a -> - (2 ^a * r + t) mod (2 ^ b) = (2 ^a * r) mod (2 ^ b) + t. - Proof. - intros a b r t (H1, H2) H3 (H4, H5). - assert (t < 2 ^ b). - apply Z.lt_le_trans with (1:= H5); auto with zarith. - apply Zpower_le_monotone; auto with zarith. - rewrite Zplus_mod; auto with zarith. - rewrite Zmod_small with (a := t); auto with zarith. - apply Zmod_small; auto with zarith. - split; auto with zarith. - assert (0 <= 2 ^a * r); auto with zarith. - apply Z.add_nonneg_nonneg; auto with zarith. - match goal with |- context [?X mod ?Y] => case (Z_mod_lt X Y) end; - auto with zarith. - pattern (2 ^ b) at 2; replace (2 ^ b) with ((2 ^ b - 2 ^a) + 2 ^ a); - try ring. - apply Z.add_le_lt_mono; auto with zarith. - replace b with ((b - a) + a); try ring. - rewrite Zpower_exp; auto with zarith. - pattern (2 ^a) at 4; rewrite <- (Z.mul_1_l (2 ^a)); - try rewrite <- Z.mul_sub_distr_r. - rewrite (Z.mul_comm (2 ^(b - a))); rewrite Zmult_mod_distr_l; - auto with zarith. - rewrite (Z.mul_comm (2 ^a)); apply Z.mul_le_mono_nonneg_r; auto with zarith. - match goal with |- context [?X mod ?Y] => case (Z_mod_lt X Y) end; - auto with zarith. - Qed. - - Theorem Zmod_shift_r: - forall a b r t, 0 <= a <= b -> 0 <= r -> 0 <= t < 2 ^a -> - (r * 2 ^a + t) mod (2 ^ b) = (r * 2 ^a) mod (2 ^ b) + t. - Proof. - intros a b r t (H1, H2) H3 (H4, H5). - assert (t < 2 ^ b). - apply Z.lt_le_trans with (1:= H5); auto with zarith. - apply Zpower_le_monotone; auto with zarith. - rewrite Zplus_mod; auto with zarith. - rewrite Zmod_small with (a := t); auto with zarith. - apply Zmod_small; auto with zarith. - split; auto with zarith. - assert (0 <= 2 ^a * r); auto with zarith. - apply Z.add_nonneg_nonneg; auto with zarith. - match goal with |- context [?X mod ?Y] => case (Z_mod_lt X Y) end; - auto with zarith. - pattern (2 ^ b) at 2;replace (2 ^ b) with ((2 ^ b - 2 ^a) + 2 ^ a); try ring. - apply Z.add_le_lt_mono; auto with zarith. - replace b with ((b - a) + a); try ring. - rewrite Zpower_exp; auto with zarith. - pattern (2 ^a) at 4; rewrite <- (Z.mul_1_l (2 ^a)); - try rewrite <- Z.mul_sub_distr_r. - repeat rewrite (fun x => Z.mul_comm x (2 ^ a)); rewrite Zmult_mod_distr_l; - auto with zarith. - apply Z.mul_le_mono_nonneg_l; auto with zarith. - match goal with |- context [?X mod ?Y] => case (Z_mod_lt X Y) end; - auto with zarith. - Qed. - - Theorem Zdiv_shift_r: - forall a b r t, 0 <= a <= b -> 0 <= r -> 0 <= t < 2 ^a -> - (r * 2 ^a + t) / (2 ^ b) = (r * 2 ^a) / (2 ^ b). - Proof. - intros a b r t (H1, H2) H3 (H4, H5). - assert (Eq: t < 2 ^ b); auto with zarith. - apply Z.lt_le_trans with (1 := H5); auto with zarith. - apply Zpower_le_monotone; auto with zarith. - pattern (r * 2 ^ a) at 1; rewrite Z_div_mod_eq with (b := 2 ^ b); - auto with zarith. - rewrite <- Z.add_assoc. - rewrite <- Zmod_shift_r; auto with zarith. - rewrite (Z.mul_comm (2 ^ b)); rewrite Z_div_plus_full_l; auto with zarith. - rewrite (fun x y => @Zdiv_small (x mod y)); auto with zarith. - match goal with |- context [?X mod ?Y] => case (Z_mod_lt X Y) end; - auto with zarith. - Qed. - - - Lemma shift_unshift_mod : forall n p a, - 0 <= a < 2^n -> - 0 <= p <= n -> - a * 2^p = a / 2^(n - p) * 2^n + (a*2^p) mod 2^n. - Proof. - intros n p a H1 H2. - pattern (a*2^p) at 1;replace (a*2^p) with - (a*2^p/2^n * 2^n + a*2^p mod 2^n). - 2:symmetry;rewrite (Z.mul_comm (a*2^p/2^n));apply Z_div_mod_eq. - replace (a * 2 ^ p / 2 ^ n) with (a / 2 ^ (n - p));trivial. - replace (2^n) with (2^(n-p)*2^p). - symmetry;apply Zdiv_mult_cancel_r. - destruct H1;trivial. - cut (0 < 2^p); auto with zarith. - rewrite <- Zpower_exp. - replace (n-p+p) with n;trivial. ring. - omega. omega. - apply Z.lt_gt. apply Z.pow_pos_nonneg;auto with zarith. - Qed. - - - Lemma shift_unshift_mod_2 : forall n p a, 0 <= p <= n -> - ((a * 2 ^ (n - p)) mod (2^n) / 2 ^ (n - p)) mod (2^n) = - a mod 2 ^ p. - Proof. - intros. - rewrite Zmod_small. - rewrite Zmod_eq by (auto with zarith). - unfold Z.sub at 1. - rewrite Z_div_plus_l by (auto with zarith). - assert (2^n = 2^(n-p)*2^p). - rewrite <- Zpower_exp by (auto with zarith). - replace (n-p+p) with n; auto with zarith. - rewrite H0. - rewrite <- Zdiv_Zdiv, Z_div_mult by (auto with zarith). - rewrite (Z.mul_comm (2^(n-p))), Z.mul_assoc. - rewrite <- Z.mul_opp_l. - rewrite Z_div_mult by (auto with zarith). - symmetry; apply Zmod_eq; auto with zarith. - - remember (a * 2 ^ (n - p)) as b. - destruct (Z_mod_lt b (2^n)); auto with zarith. - split. - apply Z_div_pos; auto with zarith. - apply Zdiv_lt_upper_bound; auto with zarith. - apply Z.lt_le_trans with (2^n); auto with zarith. - rewrite <- (Z.mul_1_r (2^n)) at 1. - apply Z.mul_le_mono_nonneg; auto with zarith. - cut (0 < 2 ^ (n-p)); auto with zarith. - Qed. - - Lemma div_le_0 : forall p x, 0 <= x -> 0 <= x / 2 ^ p. - Proof. - intros p x Hle;destruct (Z_le_gt_dec 0 p). - apply Zdiv_le_lower_bound;auto with zarith. - replace (2^p) with 0. - destruct x;compute;intro;discriminate. - destruct p;trivial;discriminate. - Qed. - - Lemma div_lt : forall p x y, 0 <= x < y -> x / 2^p < y. - Proof. - intros p x y H;destruct (Z_le_gt_dec 0 p). - apply Zdiv_lt_upper_bound;auto with zarith. - apply Z.lt_le_trans with y;auto with zarith. - rewrite <- (Z.mul_1_r y);apply Z.mul_le_mono_nonneg;auto with zarith. - assert (0 < 2^p);auto with zarith. - replace (2^p) with 0. - destruct x;change (0<y);auto with zarith. - destruct p;trivial;discriminate. - Qed. - - Theorem Zgcd_div_pos a b: - 0 < b -> 0 < Z.gcd a b -> 0 < b / Z.gcd a b. - Proof. - intros Hb Hg. - assert (H : 0 <= b / Z.gcd a b) by (apply Z.div_pos; auto with zarith). - Z.le_elim H; trivial. - rewrite (Zdivide_Zdiv_eq (Z.gcd a b) b), <- H, Z.mul_0_r in Hb; - auto using Z.gcd_divide_r with zarith. - Qed. - - Theorem Zdiv_neg a b: - a < 0 -> 0 < b -> a / b < 0. - Proof. - intros Ha Hb. - assert (b > 0) by omega. - generalize (Z_mult_div_ge a _ H); intros. - assert (b * (a / b) < 0)%Z. - apply Z.le_lt_trans with a; auto with zarith. - destruct b; try (compute in Hb; discriminate). - destruct (a/Zpos p)%Z. - compute in H1; discriminate. - compute in H1; discriminate. - compute; auto. - Qed. - - Lemma Zdiv_gcd_zero : forall a b, b / Z.gcd a b = 0 -> b <> 0 -> - Z.gcd a b = 0. - Proof. - intros. - generalize (Zgcd_is_gcd a b); destruct 1. - destruct H2 as (k,Hk). - generalize H; rewrite Hk at 1. - destruct (Z.eq_dec (Z.gcd a b) 0) as [H'|H']; auto. - rewrite Z_div_mult_full; auto. - intros; subst k; simpl in *; subst b; elim H0; auto. - Qed. - - Lemma Zgcd_mult_rel_prime : forall a b c, - Z.gcd a c = 1 -> Z.gcd b c = 1 -> Z.gcd (a*b) c = 1. - Proof. - intros. - rewrite Zgcd_1_rel_prime in *. - apply rel_prime_sym; apply rel_prime_mult; apply rel_prime_sym; auto. - Qed. - - Lemma Zcompare_gt : forall (A:Type)(a a':A)(p q:Z), - match (p?=q)%Z with Gt => a | _ => a' end = - if Z_le_gt_dec p q then a' else a. - Proof. - intros. - destruct Z_le_gt_dec as [H|H]. - red in H. - destruct (p?=q)%Z; auto; elim H; auto. - rewrite H; auto. - Qed. - -Theorem Zbounded_induction : - (forall Q : Z -> Prop, forall b : Z, - Q 0 -> - (forall n, 0 <= n -> n < b - 1 -> Q n -> Q (n + 1)) -> - forall n, 0 <= n -> n < b -> Q n)%Z. -Proof. -intros Q b Q0 QS. -set (Q' := fun n => (n < b /\ Q n) \/ (b <= n)). -assert (H : forall n, 0 <= n -> Q' n). -apply natlike_rec2; unfold Q'. -destruct (Z.le_gt_cases b 0) as [H | H]. now right. left; now split. -intros n H IH. destruct IH as [[IH1 IH2] | IH]. -destruct (Z.le_gt_cases (b - 1) n) as [H1 | H1]. -right; auto with zarith. -left. split; [auto with zarith | now apply (QS n)]. -right; auto with zarith. -unfold Q' in *; intros n H1 H2. destruct (H n H1) as [[H3 H4] | H3]. -assumption. now apply Z.le_ngt in H3. -Qed. - -Lemma Zsquare_le x : x <= x*x. -Proof. -destruct (Z.lt_ge_cases 0 x). -- rewrite <- Z.mul_1_l at 1. - rewrite <- Z.mul_le_mono_pos_r; auto with zarith. -- pose proof (Z.square_nonneg x); auto with zarith. -Qed. diff --git a/theories/Numbers/Cyclic/Abstract/CyclicAxioms.v b/theories/Numbers/Cyclic/Abstract/CyclicAxioms.v index 3312161ae..857580198 100644 --- a/theories/Numbers/Cyclic/Abstract/CyclicAxioms.v +++ b/theories/Numbers/Cyclic/Abstract/CyclicAxioms.v @@ -17,7 +17,7 @@ Set Implicit Arguments. Require Import ZArith. Require Import Znumtheory. -Require Import BigNumPrelude. +Require Import Zpow_facts. Require Import DoubleType. Local Open Scope Z_scope. diff --git a/theories/Numbers/Cyclic/DoubleCyclic/DoubleType.v b/theories/Numbers/Cyclic/Abstract/DoubleType.v index abd567a85..d60c19ea5 100644 --- a/theories/Numbers/Cyclic/DoubleCyclic/DoubleType.v +++ b/theories/Numbers/Cyclic/Abstract/DoubleType.v @@ -67,4 +67,3 @@ Fixpoint word (w:Type) (n:nat) : Type := | O => w | S n => zn2z (word w n) end. - diff --git a/theories/Numbers/Cyclic/Abstract/NZCyclic.v b/theories/Numbers/Cyclic/Abstract/NZCyclic.v index df9b83392..3f9b7b297 100644 --- a/theories/Numbers/Cyclic/Abstract/NZCyclic.v +++ b/theories/Numbers/Cyclic/Abstract/NZCyclic.v @@ -9,7 +9,8 @@ (************************************************************************) Require Export NZAxioms. -Require Import BigNumPrelude. +Require Import ZArith. +Require Import Zpow_facts. Require Import DoubleType. Require Import CyclicAxioms. @@ -139,6 +140,26 @@ rewrite 2 ZnZ.of_Z_correct; auto with zarith. symmetry; apply Zmod_small; auto with zarith. Qed. +Theorem Zbounded_induction : + (forall Q : Z -> Prop, forall b : Z, + Q 0 -> + (forall n, 0 <= n -> n < b - 1 -> Q n -> Q (n + 1)) -> + forall n, 0 <= n -> n < b -> Q n)%Z. +Proof. +intros Q b Q0 QS. +set (Q' := fun n => (n < b /\ Q n) \/ (b <= n)). +assert (H : forall n, 0 <= n -> Q' n). +apply natlike_rec2; unfold Q'. +destruct (Z.le_gt_cases b 0) as [H | H]. now right. left; now split. +intros n H IH. destruct IH as [[IH1 IH2] | IH]. +destruct (Z.le_gt_cases (b - 1) n) as [H1 | H1]. +right; auto with zarith. +left. split; [auto with zarith | now apply (QS n)]. +right; auto with zarith. +unfold Q' in *; intros n H1 H2. destruct (H n H1) as [[H3 H4] | H3]. +assumption. now apply Z.le_ngt in H3. +Qed. + Lemma B_holds : forall n : Z, 0 <= n < wB -> B n. Proof. intros n [H1 H2]. diff --git a/theories/Numbers/Cyclic/DoubleCyclic/DoubleAdd.v b/theories/Numbers/Cyclic/DoubleCyclic/DoubleAdd.v deleted file mode 100644 index 407bcca4b..000000000 --- a/theories/Numbers/Cyclic/DoubleCyclic/DoubleAdd.v +++ /dev/null @@ -1,317 +0,0 @@ -(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016 *) -(* \VV/ **************************************************************) -(* // * This file is distributed under the terms of the *) -(* * GNU Lesser General Public License Version 2.1 *) -(************************************************************************) -(* Benjamin Gregoire, Laurent Thery, INRIA, 2007 *) -(************************************************************************) - -Set Implicit Arguments. - -Require Import ZArith. -Require Import BigNumPrelude. -Require Import DoubleType. -Require Import DoubleBase. - -Local Open Scope Z_scope. - -Section DoubleAdd. - Variable w : Type. - Variable w_0 : w. - Variable w_1 : w. - Variable w_WW : w -> w -> zn2z w. - Variable w_W0 : w -> zn2z w. - Variable ww_1 : zn2z w. - Variable w_succ_c : w -> carry w. - Variable w_add_c : w -> w -> carry w. - Variable w_add_carry_c : w -> w -> carry w. - Variable w_succ : w -> w. - Variable w_add : w -> w -> w. - Variable w_add_carry : w -> w -> w. - - Definition ww_succ_c x := - match x with - | W0 => C0 ww_1 - | WW xh xl => - match w_succ_c xl with - | C0 l => C0 (WW xh l) - | C1 l => - match w_succ_c xh with - | C0 h => C0 (WW h w_0) - | C1 h => C1 W0 - end - end - end. - - Definition ww_succ x := - match x with - | W0 => ww_1 - | WW xh xl => - match w_succ_c xl with - | C0 l => WW xh l - | C1 l => w_W0 (w_succ xh) - end - end. - - Definition ww_add_c x y := - match x, y with - | W0, _ => C0 y - | _, W0 => C0 x - | WW xh xl, WW yh yl => - match w_add_c xl yl with - | C0 l => - match w_add_c xh yh with - | C0 h => C0 (WW h l) - | C1 h => C1 (w_WW h l) - end - | C1 l => - match w_add_carry_c xh yh with - | C0 h => C0 (WW h l) - | C1 h => C1 (w_WW h l) - end - end - end. - - Variable R : Type. - Variable f0 f1 : zn2z w -> R. - - Definition ww_add_c_cont x y := - match x, y with - | W0, _ => f0 y - | _, W0 => f0 x - | WW xh xl, WW yh yl => - match w_add_c xl yl with - | C0 l => - match w_add_c xh yh with - | C0 h => f0 (WW h l) - | C1 h => f1 (w_WW h l) - end - | C1 l => - match w_add_carry_c xh yh with - | C0 h => f0 (WW h l) - | C1 h => f1 (w_WW h l) - end - end - end. - - (* ww_add et ww_add_carry conserve la forme normale s'il n'y a pas - de debordement *) - Definition ww_add x y := - match x, y with - | W0, _ => y - | _, W0 => x - | WW xh xl, WW yh yl => - match w_add_c xl yl with - | C0 l => WW (w_add xh yh) l - | C1 l => WW (w_add_carry xh yh) l - end - end. - - Definition ww_add_carry_c x y := - match x, y with - | W0, W0 => C0 ww_1 - | W0, WW yh yl => ww_succ_c (WW yh yl) - | WW xh xl, W0 => ww_succ_c (WW xh xl) - | WW xh xl, WW yh yl => - match w_add_carry_c xl yl with - | C0 l => - match w_add_c xh yh with - | C0 h => C0 (WW h l) - | C1 h => C1 (WW h l) - end - | C1 l => - match w_add_carry_c xh yh with - | C0 h => C0 (WW h l) - | C1 h => C1 (w_WW h l) - end - end - end. - - Definition ww_add_carry x y := - match x, y with - | W0, W0 => ww_1 - | W0, WW yh yl => ww_succ (WW yh yl) - | WW xh xl, W0 => ww_succ (WW xh xl) - | WW xh xl, WW yh yl => - match w_add_carry_c xl yl with - | C0 l => WW (w_add xh yh) l - | C1 l => WW (w_add_carry xh yh) l - end - end. - - (*Section DoubleProof.*) - Variable w_digits : positive. - Variable w_to_Z : w -> Z. - - - Notation wB := (base w_digits). - Notation wwB := (base (ww_digits w_digits)). - Notation "[| x |]" := (w_to_Z x) (at level 0, x at level 99). - Notation "[+| c |]" := - (interp_carry 1 wB w_to_Z c) (at level 0, c at level 99). - Notation "[-| c |]" := - (interp_carry (-1) wB w_to_Z c) (at level 0, c at level 99). - - Notation "[[ x ]]" := (ww_to_Z w_digits w_to_Z x)(at level 0, x at level 99). - Notation "[+[ c ]]" := - (interp_carry 1 wwB (ww_to_Z w_digits w_to_Z) c) - (at level 0, c at level 99). - Notation "[-[ c ]]" := - (interp_carry (-1) wwB (ww_to_Z w_digits w_to_Z) c) - (at level 0, c at level 99). - - Variable spec_w_0 : [|w_0|] = 0. - Variable spec_w_1 : [|w_1|] = 1. - Variable spec_ww_1 : [[ww_1]] = 1. - Variable spec_to_Z : forall x, 0 <= [|x|] < wB. - Variable spec_w_WW : forall h l, [[w_WW h l]] = [|h|] * wB + [|l|]. - Variable spec_w_W0 : forall h, [[w_W0 h]] = [|h|] * wB. - Variable spec_w_succ_c : forall x, [+|w_succ_c x|] = [|x|] + 1. - Variable spec_w_add_c : forall x y, [+|w_add_c x y|] = [|x|] + [|y|]. - Variable spec_w_add_carry_c : - forall x y, [+|w_add_carry_c x y|] = [|x|] + [|y|] + 1. - Variable spec_w_succ : forall x, [|w_succ x|] = ([|x|] + 1) mod wB. - Variable spec_w_add : forall x y, [|w_add x y|] = ([|x|] + [|y|]) mod wB. - Variable spec_w_add_carry : - forall x y, [|w_add_carry x y|] = ([|x|] + [|y|] + 1) mod wB. - - Lemma spec_ww_succ_c : forall x, [+[ww_succ_c x]] = [[x]] + 1. - Proof. - destruct x as [ |xh xl];simpl. apply spec_ww_1. - generalize (spec_w_succ_c xl);destruct (w_succ_c xl) as [l|l]; - intro H;unfold interp_carry in H. simpl;rewrite H;ring. - rewrite <- Z.add_assoc;rewrite <- H;rewrite Z.mul_1_l. - assert ([|l|] = 0). generalize (spec_to_Z xl)(spec_to_Z l);omega. - rewrite H0;generalize (spec_w_succ_c xh);destruct (w_succ_c xh) as [h|h]; - intro H1;unfold interp_carry in H1. - simpl;rewrite H1;rewrite spec_w_0;ring. - unfold interp_carry;simpl ww_to_Z;rewrite wwB_wBwB. - assert ([|xh|] = wB - 1). generalize (spec_to_Z xh)(spec_to_Z h);omega. - rewrite H2;ring. - Qed. - - Lemma spec_ww_add_c : forall x y, [+[ww_add_c x y]] = [[x]] + [[y]]. - Proof. - destruct x as [ |xh xl];trivial. - destruct y as [ |yh yl]. rewrite Z.add_0_r;trivial. - simpl. replace ([|xh|] * wB + [|xl|] + ([|yh|] * wB + [|yl|])) - with (([|xh|]+[|yh|])*wB + ([|xl|]+[|yl|])). 2:ring. - generalize (spec_w_add_c xl yl);destruct (w_add_c xl yl) as [l|l]; - intros H;unfold interp_carry in H;rewrite <- H. - generalize (spec_w_add_c xh yh);destruct (w_add_c xh yh) as [h|h]; - intros H1;unfold interp_carry in *;rewrite <- H1. trivial. - repeat rewrite Z.mul_1_l;rewrite spec_w_WW;rewrite wwB_wBwB; ring. - rewrite Z.add_assoc;rewrite <- Z.mul_add_distr_r. - generalize (spec_w_add_carry_c xh yh);destruct (w_add_carry_c xh yh) - as [h|h]; intros H1;unfold interp_carry in *;rewrite <- H1. - simpl;ring. - repeat rewrite Z.mul_1_l;rewrite wwB_wBwB;rewrite spec_w_WW;ring. - Qed. - - Section Cont. - Variable P : zn2z w -> zn2z w -> R -> Prop. - Variable x y : zn2z w. - Variable spec_f0 : forall r, [[r]] = [[x]] + [[y]] -> P x y (f0 r). - Variable spec_f1 : forall r, wwB + [[r]] = [[x]] + [[y]] -> P x y (f1 r). - - Lemma spec_ww_add_c_cont : P x y (ww_add_c_cont x y). - Proof. - destruct x as [ |xh xl];trivial. - apply spec_f0;trivial. - destruct y as [ |yh yl]. - apply spec_f0;rewrite Z.add_0_r;trivial. - simpl. - generalize (spec_w_add_c xl yl);destruct (w_add_c xl yl) as [l|l]; - intros H;unfold interp_carry in H. - generalize (spec_w_add_c xh yh);destruct (w_add_c xh yh) as [h|h]; - intros H1;unfold interp_carry in *. - apply spec_f0. simpl;rewrite H;rewrite H1;ring. - apply spec_f1. simpl;rewrite spec_w_WW;rewrite H. - rewrite Z.add_assoc;rewrite wwB_wBwB. rewrite Z.pow_2_r; rewrite <- Z.mul_add_distr_r. - rewrite Z.mul_1_l in H1;rewrite H1;ring. - generalize (spec_w_add_carry_c xh yh);destruct (w_add_carry_c xh yh) - as [h|h]; intros H1;unfold interp_carry in *. - apply spec_f0;simpl;rewrite H1. rewrite Z.mul_add_distr_r. - rewrite <- Z.add_assoc;rewrite H;ring. - apply spec_f1. rewrite spec_w_WW;rewrite wwB_wBwB. - rewrite Z.add_assoc; rewrite Z.pow_2_r; rewrite <- Z.mul_add_distr_r. - rewrite Z.mul_1_l in H1;rewrite H1. rewrite Z.mul_add_distr_r. - rewrite <- Z.add_assoc;rewrite H; simpl; ring. - Qed. - - End Cont. - - Lemma spec_ww_add_carry_c : - forall x y, [+[ww_add_carry_c x y]] = [[x]] + [[y]] + 1. - Proof. - destruct x as [ |xh xl];intro y. - exact (spec_ww_succ_c y). - destruct y as [ |yh yl]. - rewrite Z.add_0_r;exact (spec_ww_succ_c (WW xh xl)). - simpl; replace ([|xh|] * wB + [|xl|] + ([|yh|] * wB + [|yl|]) + 1) - with (([|xh|]+[|yh|])*wB + ([|xl|]+[|yl|]+1)). 2:ring. - generalize (spec_w_add_carry_c xl yl);destruct (w_add_carry_c xl yl) - as [l|l];intros H;unfold interp_carry in H;rewrite <- H. - generalize (spec_w_add_c xh yh);destruct (w_add_c xh yh) as [h|h]; - intros H1;unfold interp_carry in H1;rewrite <- H1. trivial. - unfold interp_carry;repeat rewrite Z.mul_1_l;simpl;rewrite wwB_wBwB;ring. - rewrite Z.add_assoc;rewrite <- Z.mul_add_distr_r. - generalize (spec_w_add_carry_c xh yh);destruct (w_add_carry_c xh yh) - as [h|h];intros H1;unfold interp_carry in H1;rewrite <- H1. trivial. - unfold interp_carry;rewrite spec_w_WW; - repeat rewrite Z.mul_1_l;simpl;rewrite wwB_wBwB;ring. - Qed. - - Lemma spec_ww_succ : forall x, [[ww_succ x]] = ([[x]] + 1) mod wwB. - Proof. - destruct x as [ |xh xl];simpl. - rewrite spec_ww_1;rewrite Zmod_small;trivial. - split;[intro;discriminate|apply wwB_pos]. - rewrite <- Z.add_assoc;generalize (spec_w_succ_c xl); - destruct (w_succ_c xl) as[l|l];intro H;unfold interp_carry in H;rewrite <-H. - rewrite Zmod_small;trivial. - rewrite wwB_wBwB;apply beta_mult;apply spec_to_Z. - assert ([|l|] = 0). clear spec_ww_1 spec_w_1 spec_w_0. - assert (H1:= spec_to_Z l); assert (H2:= spec_to_Z xl); omega. - rewrite H0;rewrite Z.add_0_r;rewrite <- Z.mul_add_distr_r;rewrite wwB_wBwB. - rewrite Z.pow_2_r; rewrite Zmult_mod_distr_r;try apply lt_0_wB. - rewrite spec_w_W0;rewrite spec_w_succ;trivial. - Qed. - - Lemma spec_ww_add : forall x y, [[ww_add x y]] = ([[x]] + [[y]]) mod wwB. - Proof. - destruct x as [ |xh xl];intros y. - rewrite Zmod_small;trivial. apply spec_ww_to_Z;trivial. - destruct y as [ |yh yl]. - change [[W0]] with 0;rewrite Z.add_0_r. - rewrite Zmod_small;trivial. - exact (spec_ww_to_Z w_digits w_to_Z spec_to_Z (WW xh xl)). - simpl. replace ([|xh|] * wB + [|xl|] + ([|yh|] * wB + [|yl|])) - with (([|xh|]+[|yh|])*wB + ([|xl|]+[|yl|])). 2:ring. - generalize (spec_w_add_c xl yl);destruct (w_add_c xl yl) as [l|l]; - unfold interp_carry;intros H;simpl;rewrite <- H. - rewrite (mod_wwB w_digits w_to_Z spec_to_Z);rewrite spec_w_add;trivial. - rewrite Z.add_assoc;rewrite <- Z.mul_add_distr_r. - rewrite(mod_wwB w_digits w_to_Z spec_to_Z);rewrite spec_w_add_carry;trivial. - Qed. - - Lemma spec_ww_add_carry : - forall x y, [[ww_add_carry x y]] = ([[x]] + [[y]] + 1) mod wwB. - Proof. - destruct x as [ |xh xl];intros y. - exact (spec_ww_succ y). - destruct y as [ |yh yl]. - change [[W0]] with 0;rewrite Z.add_0_r. exact (spec_ww_succ (WW xh xl)). - simpl;replace ([|xh|] * wB + [|xl|] + ([|yh|] * wB + [|yl|]) + 1) - with (([|xh|]+[|yh|])*wB + ([|xl|]+[|yl|]+1)). 2:ring. - generalize (spec_w_add_carry_c xl yl);destruct (w_add_carry_c xl yl) - as [l|l];unfold interp_carry;intros H;rewrite <- H;simpl ww_to_Z. - rewrite(mod_wwB w_digits w_to_Z spec_to_Z);rewrite spec_w_add;trivial. - rewrite Z.add_assoc;rewrite <- Z.mul_add_distr_r. - rewrite(mod_wwB w_digits w_to_Z spec_to_Z);rewrite spec_w_add_carry;trivial. - Qed. - -(* End DoubleProof. *) -End DoubleAdd. diff --git a/theories/Numbers/Cyclic/DoubleCyclic/DoubleBase.v b/theories/Numbers/Cyclic/DoubleCyclic/DoubleBase.v deleted file mode 100644 index e94a891dd..000000000 --- a/theories/Numbers/Cyclic/DoubleCyclic/DoubleBase.v +++ /dev/null @@ -1,437 +0,0 @@ -(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016 *) -(* \VV/ **************************************************************) -(* // * This file is distributed under the terms of the *) -(* * GNU Lesser General Public License Version 2.1 *) -(************************************************************************) -(* Benjamin Gregoire, Laurent Thery, INRIA, 2007 *) -(************************************************************************) - -Set Implicit Arguments. - -Require Import ZArith Ndigits. -Require Import BigNumPrelude. -Require Import DoubleType. - -Local Open Scope Z_scope. - -Local Infix "<<" := Pos.shiftl_nat (at level 30). - -Section DoubleBase. - Variable w : Type. - Variable w_0 : w. - Variable w_1 : w. - Variable w_Bm1 : w. - Variable w_WW : w -> w -> zn2z w. - Variable w_0W : w -> zn2z w. - Variable w_digits : positive. - Variable w_zdigits: w. - Variable w_add: w -> w -> zn2z w. - Variable w_to_Z : w -> Z. - Variable w_compare : w -> w -> comparison. - - Definition ww_digits := xO w_digits. - - Definition ww_zdigits := w_add w_zdigits w_zdigits. - - Definition ww_to_Z := zn2z_to_Z (base w_digits) w_to_Z. - - Definition ww_1 := WW w_0 w_1. - - Definition ww_Bm1 := WW w_Bm1 w_Bm1. - - Definition ww_WW xh xl : zn2z (zn2z w) := - match xh, xl with - | W0, W0 => W0 - | _, _ => WW xh xl - end. - - Definition ww_W0 h : zn2z (zn2z w) := - match h with - | W0 => W0 - | _ => WW h W0 - end. - - Definition ww_0W l : zn2z (zn2z w) := - match l with - | W0 => W0 - | _ => WW W0 l - end. - - Definition double_WW (n:nat) := - match n return word w n -> word w n -> word w (S n) with - | O => w_WW - | S n => - fun (h l : zn2z (word w n)) => - match h, l with - | W0, W0 => W0 - | _, _ => WW h l - end - end. - - Definition double_wB n := base (w_digits << n). - - Fixpoint double_to_Z (n:nat) : word w n -> Z := - match n return word w n -> Z with - | O => w_to_Z - | S n => zn2z_to_Z (double_wB n) (double_to_Z n) - end. - - Fixpoint extend_aux (n:nat) (x:zn2z w) {struct n}: word w (S n) := - match n return word w (S n) with - | O => x - | S n1 => WW W0 (extend_aux n1 x) - end. - - Definition extend (n:nat) (x:w) : word w (S n) := - let r := w_0W x in - match r with - | W0 => W0 - | _ => extend_aux n r - end. - - Definition double_0 n : word w n := - match n return word w n with - | O => w_0 - | S _ => W0 - end. - - Definition double_split (n:nat) (x:zn2z (word w n)) := - match x with - | W0 => - match n return word w n * word w n with - | O => (w_0,w_0) - | S _ => (W0, W0) - end - | WW h l => (h,l) - end. - - Definition ww_compare x y := - match x, y with - | W0, W0 => Eq - | W0, WW yh yl => - match w_compare w_0 yh with - | Eq => w_compare w_0 yl - | _ => Lt - end - | WW xh xl, W0 => - match w_compare xh w_0 with - | Eq => w_compare xl w_0 - | _ => Gt - end - | WW xh xl, WW yh yl => - match w_compare xh yh with - | Eq => w_compare xl yl - | Lt => Lt - | Gt => Gt - end - end. - - - (* Return the low part of the composed word*) - Fixpoint get_low (n : nat) {struct n}: - word w n -> w := - match n return (word w n -> w) with - | 0%nat => fun x => x - | S n1 => - fun x => - match x with - | W0 => w_0 - | WW _ x1 => get_low n1 x1 - end - end. - - - Section DoubleProof. - Notation wB := (base w_digits). - Notation wwB := (base ww_digits). - Notation "[| x |]" := (w_to_Z x) (at level 0, x at level 99). - Notation "[[ x ]]" := (ww_to_Z x) (at level 0, x at level 99). - Notation "[+[ c ]]" := - (interp_carry 1 wwB ww_to_Z c) (at level 0, c at level 99). - Notation "[-[ c ]]" := - (interp_carry (-1) wwB ww_to_Z c) (at level 0, c at level 99). - Notation "[! n | x !]" := (double_to_Z n x) (at level 0, x at level 99). - - Variable spec_w_0 : [|w_0|] = 0. - Variable spec_w_1 : [|w_1|] = 1. - Variable spec_w_Bm1 : [|w_Bm1|] = wB - 1. - Variable spec_w_WW : forall h l, [[w_WW h l]] = [|h|] * wB + [|l|]. - Variable spec_w_0W : forall l, [[w_0W l]] = [|l|]. - Variable spec_to_Z : forall x, 0 <= [|x|] < wB. - Variable spec_w_compare : forall x y, - w_compare x y = Z.compare [|x|] [|y|]. - - Lemma wwB_wBwB : wwB = wB^2. - Proof. - unfold base, ww_digits;rewrite Z.pow_2_r; rewrite (Pos2Z.inj_xO w_digits). - replace (2 * Zpos w_digits) with (Zpos w_digits + Zpos w_digits). - apply Zpower_exp; unfold Z.ge;simpl;intros;discriminate. - ring. - Qed. - - Lemma spec_ww_1 : [[ww_1]] = 1. - Proof. simpl;rewrite spec_w_0;rewrite spec_w_1;ring. Qed. - - Lemma spec_ww_Bm1 : [[ww_Bm1]] = wwB - 1. - Proof. simpl;rewrite spec_w_Bm1;rewrite wwB_wBwB;ring. Qed. - - Lemma lt_0_wB : 0 < wB. - Proof. - unfold base;apply Z.pow_pos_nonneg. unfold Z.lt;reflexivity. - unfold Z.le;intros H;discriminate H. - Qed. - - Lemma lt_0_wwB : 0 < wwB. - Proof. rewrite wwB_wBwB; rewrite Z.pow_2_r; apply Z.mul_pos_pos;apply lt_0_wB. Qed. - - Lemma wB_pos: 1 < wB. - Proof. - unfold base;apply Z.lt_le_trans with (2^1). unfold Z.lt;reflexivity. - apply Zpower_le_monotone. unfold Z.lt;reflexivity. - split;unfold Z.le;intros H. discriminate H. - clear spec_w_0W w_0W spec_w_Bm1 spec_to_Z spec_w_WW w_WW. - destruct w_digits; discriminate H. - Qed. - - Lemma wwB_pos: 1 < wwB. - Proof. - assert (H:= wB_pos);rewrite wwB_wBwB;rewrite <-(Z.mul_1_r 1). - rewrite Z.pow_2_r. - apply Zmult_lt_compat2;(split;[unfold Z.lt;reflexivity|trivial]). - apply Z.lt_le_incl;trivial. - Qed. - - Theorem wB_div_2: 2 * (wB / 2) = wB. - Proof. - clear spec_w_0 w_0 spec_w_1 w_1 spec_w_Bm1 w_Bm1 spec_w_WW spec_w_0W - spec_to_Z;unfold base. - assert (2 ^ Zpos w_digits = 2 * (2 ^ (Zpos w_digits - 1))). - pattern 2 at 2; rewrite <- Z.pow_1_r. - rewrite <- Zpower_exp; auto with zarith. - f_equal; auto with zarith. - case w_digits; compute; intros; discriminate. - rewrite H; f_equal; auto with zarith. - rewrite Z.mul_comm; apply Z_div_mult; auto with zarith. - Qed. - - Theorem wwB_div_2 : wwB / 2 = wB / 2 * wB. - Proof. - clear spec_w_0 w_0 spec_w_1 w_1 spec_w_Bm1 w_Bm1 spec_w_WW spec_w_0W - spec_to_Z. - rewrite wwB_wBwB; rewrite Z.pow_2_r. - pattern wB at 1; rewrite <- wB_div_2; auto. - rewrite <- Z.mul_assoc. - repeat (rewrite (Z.mul_comm 2); rewrite Z_div_mult); auto with zarith. - Qed. - - Lemma mod_wwB : forall z x, - (z*wB + [|x|]) mod wwB = (z mod wB)*wB + [|x|]. - Proof. - intros z x. - rewrite Zplus_mod. - pattern wwB at 1;rewrite wwB_wBwB; rewrite Z.pow_2_r. - rewrite Zmult_mod_distr_r;try apply lt_0_wB. - rewrite (Zmod_small [|x|]). - apply Zmod_small;rewrite wwB_wBwB;apply beta_mult;try apply spec_to_Z. - apply Z_mod_lt;apply Z.lt_gt;apply lt_0_wB. - destruct (spec_to_Z x);split;trivial. - change [|x|] with (0*wB+[|x|]). rewrite wwB_wBwB. - rewrite Z.pow_2_r;rewrite <- (Z.add_0_r (wB*wB));apply beta_lex_inv. - apply lt_0_wB. apply spec_to_Z. split;[apply Z.le_refl | apply lt_0_wB]. - Qed. - - Lemma wB_div : forall x y, ([|x|] * wB + [|y|]) / wB = [|x|]. - Proof. - clear spec_w_0 spec_w_1 spec_w_Bm1 w_0 w_1 w_Bm1. - intros x y;unfold base;rewrite Zdiv_shift_r;auto with zarith. - rewrite Z_div_mult;auto with zarith. - destruct (spec_to_Z x);trivial. - Qed. - - Lemma wB_div_plus : forall x y p, - 0 <= p -> - ([|x|]*wB + [|y|]) / 2^(Zpos w_digits + p) = [|x|] / 2^p. - Proof. - clear spec_w_0 spec_w_1 spec_w_Bm1 w_0 w_1 w_Bm1. - intros x y p Hp;rewrite Zpower_exp;auto with zarith. - rewrite <- Zdiv_Zdiv;auto with zarith. - rewrite wB_div;trivial. - Qed. - - Lemma lt_wB_wwB : wB < wwB. - Proof. - clear spec_w_0 spec_w_1 spec_w_Bm1 w_0 w_1 w_Bm1. - unfold base;apply Zpower_lt_monotone;auto with zarith. - assert (0 < Zpos w_digits). compute;reflexivity. - unfold ww_digits;rewrite Pos2Z.inj_xO;auto with zarith. - Qed. - - Lemma w_to_Z_wwB : forall x, x < wB -> x < wwB. - Proof. - intros x H;apply Z.lt_trans with wB;trivial;apply lt_wB_wwB. - Qed. - - Lemma spec_ww_to_Z : forall x, 0 <= [[x]] < wwB. - Proof. - clear spec_w_0 spec_w_1 spec_w_Bm1 w_0 w_1 w_Bm1. - destruct x as [ |h l];simpl. - split;[apply Z.le_refl|apply lt_0_wwB]. - assert (H:=spec_to_Z h);assert (L:=spec_to_Z l);split. - apply Z.add_nonneg_nonneg;auto with zarith. - rewrite <- (Z.add_0_r wwB);rewrite wwB_wBwB; rewrite Z.pow_2_r; - apply beta_lex_inv;auto with zarith. - Qed. - - Lemma double_wB_wwB : forall n, double_wB n * double_wB n = double_wB (S n). - Proof. - intros n;unfold double_wB;simpl. - unfold base. rewrite (Pos2Z.inj_xO (_ << _)). - replace (2 * Zpos (w_digits << n)) with - (Zpos (w_digits << n) + Zpos (w_digits << n)) by ring. - symmetry; apply Zpower_exp;intro;discriminate. - Qed. - - Lemma double_wB_pos: - forall n, 0 <= double_wB n. - Proof. - intros n; unfold double_wB, base; auto with zarith. - Qed. - - Lemma double_wB_more_digits: - forall n, wB <= double_wB n. - Proof. - clear spec_w_0 spec_w_1 spec_w_Bm1 w_0 w_1 w_Bm1. - intros n; elim n; clear n; auto. - unfold double_wB, "<<"; auto with zarith. - intros n H1; rewrite <- double_wB_wwB. - apply Z.le_trans with (wB * 1). - rewrite Z.mul_1_r; apply Z.le_refl. - unfold base; auto with zarith. - apply Z.mul_le_mono_nonneg; auto with zarith. - apply Z.le_trans with wB; auto with zarith. - unfold base. - rewrite <- (Z.pow_0_r 2). - apply Z.pow_le_mono_r; auto with zarith. - Qed. - - Lemma spec_double_to_Z : - forall n (x:word w n), 0 <= [!n | x!] < double_wB n. - Proof. - clear spec_w_0 spec_w_1 spec_w_Bm1 w_0 w_1 w_Bm1. - induction n;intros. exact (spec_to_Z x). - unfold double_to_Z;fold double_to_Z. - destruct x;unfold zn2z_to_Z. - unfold double_wB,base;split;auto with zarith. - assert (U0:= IHn w0);assert (U1:= IHn w1). - split;auto with zarith. - apply Z.lt_le_trans with ((double_wB n - 1) * double_wB n + double_wB n). - assert (double_to_Z n w0*double_wB n <= (double_wB n - 1)*double_wB n). - apply Z.mul_le_mono_nonneg_r;auto with zarith. - auto with zarith. - rewrite <- double_wB_wwB. - replace ((double_wB n - 1) * double_wB n + double_wB n) with (double_wB n * double_wB n); - [auto with zarith | ring]. - Qed. - - Lemma spec_get_low: - forall n x, - [!n | x!] < wB -> [|get_low n x|] = [!n | x!]. - Proof. - clear spec_w_1 spec_w_Bm1. - intros n; elim n; auto; clear n. - intros n Hrec x; case x; clear x; auto. - intros xx yy; simpl. - destruct (spec_double_to_Z n xx) as [F1 _]. Z.le_elim F1. - - (* 0 < [!n | xx!] *) - intros; exfalso. - assert (F3 := double_wB_more_digits n). - destruct (spec_double_to_Z n yy) as [F4 _]. - assert (F5: 1 * wB <= [!n | xx!] * double_wB n); - auto with zarith. - apply Z.mul_le_mono_nonneg; auto with zarith. - unfold base; auto with zarith. - - (* 0 = [!n | xx!] *) - rewrite <- F1; rewrite Z.mul_0_l, Z.add_0_l. - intros; apply Hrec; auto. - Qed. - - Lemma spec_double_WW : forall n (h l : word w n), - [!S n|double_WW n h l!] = [!n|h!] * double_wB n + [!n|l!]. - Proof. - induction n;simpl;intros;trivial. - destruct h;auto. - destruct l;auto. - Qed. - - Lemma spec_extend_aux : forall n x, [!S n|extend_aux n x!] = [[x]]. - Proof. induction n;simpl;trivial. Qed. - - Lemma spec_extend : forall n x, [!S n|extend n x!] = [|x|]. - Proof. - intros n x;assert (H:= spec_w_0W x);unfold extend. - destruct (w_0W x);simpl;trivial. - rewrite <- H;exact (spec_extend_aux n (WW w0 w1)). - Qed. - - Lemma spec_double_0 : forall n, [!n|double_0 n!] = 0. - Proof. destruct n;trivial. Qed. - - Lemma spec_double_split : forall n x, - let (h,l) := double_split n x in - [!S n|x!] = [!n|h!] * double_wB n + [!n|l!]. - Proof. - destruct x;simpl;auto. - destruct n;simpl;trivial. - rewrite spec_w_0;trivial. - Qed. - - Lemma wB_lex_inv: forall a b c d, - a < c -> - a * wB + [|b|] < c * wB + [|d|]. - Proof. - intros a b c d H1; apply beta_lex_inv with (1 := H1); auto. - Qed. - - Ltac comp2ord := match goal with - | |- Lt = (?x ?= ?y) => symmetry; change (x < y) - | |- Gt = (?x ?= ?y) => symmetry; change (x > y); apply Z.lt_gt - end. - - Lemma spec_ww_compare : forall x y, - ww_compare x y = Z.compare [[x]] [[y]]. - Proof. - destruct x as [ |xh xl];destruct y as [ |yh yl];simpl;trivial. - (* 1st case *) - rewrite 2 spec_w_compare, spec_w_0. - destruct (Z.compare_spec 0 [|yh|]) as [H|H|H]. - rewrite <- H;simpl. reflexivity. - symmetry. change (0 < [|yh|]*wB+[|yl|]). - change 0 with (0*wB+0). rewrite <- spec_w_0 at 2. - apply wB_lex_inv;trivial. - absurd (0 <= [|yh|]). apply Z.lt_nge; trivial. - destruct (spec_to_Z yh);trivial. - (* 2nd case *) - rewrite 2 spec_w_compare, spec_w_0. - destruct (Z.compare_spec [|xh|] 0) as [H|H|H]. - rewrite H;simpl;reflexivity. - absurd (0 <= [|xh|]). apply Z.lt_nge; trivial. - destruct (spec_to_Z xh);trivial. - comp2ord. - change 0 with (0*wB+0). rewrite <- spec_w_0 at 2. - apply wB_lex_inv;trivial. - (* 3rd case *) - rewrite 2 spec_w_compare. - destruct (Z.compare_spec [|xh|] [|yh|]) as [H|H|H]. - rewrite H. - symmetry. apply Z.add_compare_mono_l. - comp2ord. apply wB_lex_inv;trivial. - comp2ord. apply wB_lex_inv;trivial. - Qed. - - - End DoubleProof. - -End DoubleBase. - diff --git a/theories/Numbers/Cyclic/DoubleCyclic/DoubleCyclic.v b/theories/Numbers/Cyclic/DoubleCyclic/DoubleCyclic.v deleted file mode 100644 index 4ebe8fac1..000000000 --- a/theories/Numbers/Cyclic/DoubleCyclic/DoubleCyclic.v +++ /dev/null @@ -1,966 +0,0 @@ -(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016 *) -(* \VV/ **************************************************************) -(* // * This file is distributed under the terms of the *) -(* * GNU Lesser General Public License Version 2.1 *) -(************************************************************************) -(* Benjamin Gregoire, Laurent Thery, INRIA, 2007 *) -(************************************************************************) - -Set Implicit Arguments. - -Require Import ZArith. -Require Import BigNumPrelude. -Require Import DoubleType. -Require Import DoubleBase. -Require Import DoubleAdd. -Require Import DoubleSub. -Require Import DoubleMul. -Require Import DoubleSqrt. -Require Import DoubleLift. -Require Import DoubleDivn1. -Require Import DoubleDiv. -Require Import CyclicAxioms. - -Local Open Scope Z_scope. - - -Section Z_2nZ. - - Context {t : Type}{ops : ZnZ.Ops t}. - - Let w_digits := ZnZ.digits. - Let w_zdigits := ZnZ.zdigits. - - Let w_to_Z := ZnZ.to_Z. - Let w_of_pos := ZnZ.of_pos. - Let w_head0 := ZnZ.head0. - Let w_tail0 := ZnZ.tail0. - - Let w_0 := ZnZ.zero. - Let w_1 := ZnZ.one. - Let w_Bm1 := ZnZ.minus_one. - - Let w_compare := ZnZ.compare. - Let w_eq0 := ZnZ.eq0. - - Let w_opp_c := ZnZ.opp_c. - Let w_opp := ZnZ.opp. - Let w_opp_carry := ZnZ.opp_carry. - - Let w_succ_c := ZnZ.succ_c. - Let w_add_c := ZnZ.add_c. - Let w_add_carry_c := ZnZ.add_carry_c. - Let w_succ := ZnZ.succ. - Let w_add := ZnZ.add. - Let w_add_carry := ZnZ.add_carry. - - Let w_pred_c := ZnZ.pred_c. - Let w_sub_c := ZnZ.sub_c. - Let w_sub_carry_c := ZnZ.sub_carry_c. - Let w_pred := ZnZ.pred. - Let w_sub := ZnZ.sub. - Let w_sub_carry := ZnZ.sub_carry. - - - Let w_mul_c := ZnZ.mul_c. - Let w_mul := ZnZ.mul. - Let w_square_c := ZnZ.square_c. - - Let w_div21 := ZnZ.div21. - Let w_div_gt := ZnZ.div_gt. - Let w_div := ZnZ.div. - - Let w_mod_gt := ZnZ.modulo_gt. - Let w_mod := ZnZ.modulo. - - Let w_gcd_gt := ZnZ.gcd_gt. - Let w_gcd := ZnZ.gcd. - - Let w_add_mul_div := ZnZ.add_mul_div. - - Let w_pos_mod := ZnZ.pos_mod. - - Let w_is_even := ZnZ.is_even. - Let w_sqrt2 := ZnZ.sqrt2. - Let w_sqrt := ZnZ.sqrt. - - Let _zn2z := zn2z t. - - Let wB := base w_digits. - - Let w_Bm2 := w_pred w_Bm1. - - Let ww_1 := ww_1 w_0 w_1. - Let ww_Bm1 := ww_Bm1 w_Bm1. - - Let w_add2 a b := match w_add_c a b with C0 p => WW w_0 p | C1 p => WW w_1 p end. - - Let _ww_digits := xO w_digits. - - Let _ww_zdigits := w_add2 w_zdigits w_zdigits. - - Let to_Z := zn2z_to_Z wB w_to_Z. - - Let w_W0 := ZnZ.WO. - Let w_0W := ZnZ.OW. - Let w_WW := ZnZ.WW. - - Let ww_of_pos p := - match w_of_pos p with - | (N0, l) => (N0, WW w_0 l) - | (Npos ph,l) => - let (n,h) := w_of_pos ph in (n, w_WW h l) - end. - - Let head0 := - Eval lazy beta delta [ww_head0] in - ww_head0 w_0 w_0W w_compare w_head0 w_add2 w_zdigits _ww_zdigits. - - Let tail0 := - Eval lazy beta delta [ww_tail0] in - ww_tail0 w_0 w_0W w_compare w_tail0 w_add2 w_zdigits _ww_zdigits. - - Let ww_WW := Eval lazy beta delta [ww_WW] in (@ww_WW t). - Let ww_0W := Eval lazy beta delta [ww_0W] in (@ww_0W t). - Let ww_W0 := Eval lazy beta delta [ww_W0] in (@ww_W0 t). - - (* ** Comparison ** *) - Let compare := - Eval lazy beta delta[ww_compare] in ww_compare w_0 w_compare. - - Let eq0 (x:zn2z t) := - match x with - | W0 => true - | _ => false - end. - - (* ** Opposites ** *) - Let opp_c := - Eval lazy beta delta [ww_opp_c] in ww_opp_c w_0 w_opp_c w_opp_carry. - - Let opp := - Eval lazy beta delta [ww_opp] in ww_opp w_0 w_opp_c w_opp_carry w_opp. - - Let opp_carry := - Eval lazy beta delta [ww_opp_carry] in ww_opp_carry w_WW ww_Bm1 w_opp_carry. - - (* ** Additions ** *) - - Let succ_c := - Eval lazy beta delta [ww_succ_c] in ww_succ_c w_0 ww_1 w_succ_c. - - Let add_c := - Eval lazy beta delta [ww_add_c] in ww_add_c w_WW w_add_c w_add_carry_c. - - Let add_carry_c := - Eval lazy beta iota delta [ww_add_carry_c ww_succ_c] in - ww_add_carry_c w_0 w_WW ww_1 w_succ_c w_add_c w_add_carry_c. - - Let succ := - Eval lazy beta delta [ww_succ] in ww_succ w_W0 ww_1 w_succ_c w_succ. - - Let add := - Eval lazy beta delta [ww_add] in ww_add w_add_c w_add w_add_carry. - - Let add_carry := - Eval lazy beta iota delta [ww_add_carry ww_succ] in - ww_add_carry w_W0 ww_1 w_succ_c w_add_carry_c w_succ w_add w_add_carry. - - (* ** Subtractions ** *) - - Let pred_c := - Eval lazy beta delta [ww_pred_c] in ww_pred_c w_Bm1 w_WW ww_Bm1 w_pred_c. - - Let sub_c := - Eval lazy beta iota delta [ww_sub_c ww_opp_c] in - ww_sub_c w_0 w_WW w_opp_c w_opp_carry w_sub_c w_sub_carry_c. - - Let sub_carry_c := - Eval lazy beta iota delta [ww_sub_carry_c ww_pred_c ww_opp_carry] in - ww_sub_carry_c w_Bm1 w_WW ww_Bm1 w_opp_carry w_pred_c w_sub_c w_sub_carry_c. - - Let pred := - Eval lazy beta delta [ww_pred] in ww_pred w_Bm1 w_WW ww_Bm1 w_pred_c w_pred. - - Let sub := - Eval lazy beta iota delta [ww_sub ww_opp] in - ww_sub w_0 w_WW w_opp_c w_opp_carry w_sub_c w_opp w_sub w_sub_carry. - - Let sub_carry := - Eval lazy beta iota delta [ww_sub_carry ww_pred ww_opp_carry] in - ww_sub_carry w_Bm1 w_WW ww_Bm1 w_opp_carry w_pred_c w_sub_carry_c w_pred - w_sub w_sub_carry. - - - (* ** Multiplication ** *) - - Let mul_c := - Eval lazy beta iota delta [ww_mul_c double_mul_c] in - ww_mul_c w_0 w_1 w_WW w_W0 w_mul_c add_c add add_carry. - - Let karatsuba_c := - Eval lazy beta iota delta [ww_karatsuba_c double_mul_c kara_prod] in - ww_karatsuba_c w_0 w_1 w_WW w_W0 w_compare w_add w_sub w_mul_c - add_c add add_carry sub_c sub. - - Let mul := - Eval lazy beta delta [ww_mul] in - ww_mul w_W0 w_add w_mul_c w_mul add. - - Let square_c := - Eval lazy beta delta [ww_square_c] in - ww_square_c w_0 w_1 w_WW w_W0 w_mul_c w_square_c add_c add add_carry. - - (* Division operation *) - - Let div32 := - Eval lazy beta iota delta [w_div32] in - w_div32 w_0 w_Bm1 w_Bm2 w_WW w_compare w_add_c w_add_carry_c - w_add w_add_carry w_pred w_sub w_mul_c w_div21 sub_c. - - Let div21 := - Eval lazy beta iota delta [ww_div21] in - ww_div21 w_0 w_0W div32 ww_1 compare sub. - - Let low (p: zn2z t) := match p with WW _ p1 => p1 | _ => w_0 end. - - Let add_mul_div := - Eval lazy beta delta [ww_add_mul_div] in - ww_add_mul_div w_0 w_WW w_W0 w_0W compare w_add_mul_div sub w_zdigits low. - - Let div_gt := - Eval lazy beta delta [ww_div_gt] in - ww_div_gt w_0 w_WW w_0W w_compare w_eq0 w_opp_c w_opp - w_opp_carry w_sub_c w_sub w_sub_carry - w_div_gt w_add_mul_div w_head0 w_div21 div32 _ww_zdigits ww_1 add_mul_div w_zdigits. - - Let div := - Eval lazy beta delta [ww_div] in ww_div ww_1 compare div_gt. - - Let mod_gt := - Eval lazy beta delta [ww_mod_gt] in - ww_mod_gt w_0 w_WW w_0W w_compare w_eq0 w_opp_c w_opp w_opp_carry w_sub_c w_sub w_sub_carry - w_mod_gt w_add_mul_div w_head0 w_div21 div32 _ww_zdigits add_mul_div w_zdigits. - - Let mod_ := - Eval lazy beta delta [ww_mod] in ww_mod compare mod_gt. - - Let pos_mod := - Eval lazy beta delta [ww_pos_mod] in - ww_pos_mod w_0 w_zdigits w_WW w_pos_mod compare w_0W low sub _ww_zdigits. - - Let is_even := - Eval lazy beta delta [ww_is_even] in ww_is_even w_is_even. - - Let sqrt2 := - Eval lazy beta delta [ww_sqrt2] in - ww_sqrt2 w_is_even w_compare w_0 w_1 w_Bm1 w_0W w_sub w_square_c - w_div21 w_add_mul_div w_zdigits w_add_c w_sqrt2 w_pred pred_c - pred add_c add sub_c add_mul_div. - - Let sqrt := - Eval lazy beta delta [ww_sqrt] in - ww_sqrt w_is_even w_0 w_sub w_add_mul_div w_zdigits - _ww_zdigits w_sqrt2 pred add_mul_div head0 compare low. - - Let gcd_gt_fix := - Eval cbv beta delta [ww_gcd_gt_aux ww_gcd_gt_body] in - ww_gcd_gt_aux w_0 w_WW w_0W w_compare w_opp_c w_opp w_opp_carry - w_sub_c w_sub w_sub_carry w_gcd_gt - w_add_mul_div w_head0 w_div21 div32 _ww_zdigits add_mul_div - w_zdigits. - - Let gcd_cont := - Eval lazy beta delta [gcd_cont] in gcd_cont ww_1 w_1 w_compare. - - Let gcd_gt := - Eval lazy beta delta [ww_gcd_gt] in - ww_gcd_gt w_0 w_eq0 w_gcd_gt _ww_digits gcd_gt_fix gcd_cont. - - Let gcd := - Eval lazy beta delta [ww_gcd] in - ww_gcd compare w_0 w_eq0 w_gcd_gt _ww_digits gcd_gt_fix gcd_cont. - - Definition lor (x y : zn2z t) := - match x, y with - | W0, _ => y - | _, W0 => x - | WW hx lx, WW hy ly => WW (ZnZ.lor hx hy) (ZnZ.lor lx ly) - end. - - Definition land (x y : zn2z t) := - match x, y with - | W0, _ => W0 - | _, W0 => W0 - | WW hx lx, WW hy ly => WW (ZnZ.land hx hy) (ZnZ.land lx ly) - end. - - Definition lxor (x y : zn2z t) := - match x, y with - | W0, _ => y - | _, W0 => x - | WW hx lx, WW hy ly => WW (ZnZ.lxor hx hy) (ZnZ.lxor lx ly) - end. - - (* ** Record of operators on 2 words *) - - Global Instance mk_zn2z_ops : ZnZ.Ops (zn2z t) | 1 := - ZnZ.MkOps _ww_digits _ww_zdigits - to_Z ww_of_pos head0 tail0 - W0 ww_1 ww_Bm1 - compare eq0 - opp_c opp opp_carry - succ_c add_c add_carry_c - succ add add_carry - pred_c sub_c sub_carry_c - pred sub sub_carry - mul_c mul square_c - div21 div_gt div - mod_gt mod_ - gcd_gt gcd - add_mul_div - pos_mod - is_even - sqrt2 - sqrt - lor - land - lxor. - - Global Instance mk_zn2z_ops_karatsuba : ZnZ.Ops (zn2z t) | 2 := - ZnZ.MkOps _ww_digits _ww_zdigits - to_Z ww_of_pos head0 tail0 - W0 ww_1 ww_Bm1 - compare eq0 - opp_c opp opp_carry - succ_c add_c add_carry_c - succ add add_carry - pred_c sub_c sub_carry_c - pred sub sub_carry - karatsuba_c mul square_c - div21 div_gt div - mod_gt mod_ - gcd_gt gcd - add_mul_div - pos_mod - is_even - sqrt2 - sqrt - lor - land - lxor. - - (* Proof *) - Context {specs : ZnZ.Specs ops}. - - Create HintDb ZnZ. - - Hint Resolve - ZnZ.spec_to_Z - ZnZ.spec_of_pos - ZnZ.spec_0 - ZnZ.spec_1 - ZnZ.spec_m1 - ZnZ.spec_compare - ZnZ.spec_eq0 - ZnZ.spec_opp_c - ZnZ.spec_opp - ZnZ.spec_opp_carry - ZnZ.spec_succ_c - ZnZ.spec_add_c - ZnZ.spec_add_carry_c - ZnZ.spec_succ - ZnZ.spec_add - ZnZ.spec_add_carry - ZnZ.spec_pred_c - ZnZ.spec_sub_c - ZnZ.spec_sub_carry_c - ZnZ.spec_pred - ZnZ.spec_sub - ZnZ.spec_sub_carry - ZnZ.spec_mul_c - ZnZ.spec_mul - ZnZ.spec_square_c - ZnZ.spec_div21 - ZnZ.spec_div_gt - ZnZ.spec_div - ZnZ.spec_modulo_gt - ZnZ.spec_modulo - ZnZ.spec_gcd_gt - ZnZ.spec_gcd - ZnZ.spec_head0 - ZnZ.spec_tail0 - ZnZ.spec_add_mul_div - ZnZ.spec_pos_mod - ZnZ.spec_is_even - ZnZ.spec_sqrt2 - ZnZ.spec_sqrt - ZnZ.spec_WO - ZnZ.spec_OW - ZnZ.spec_WW : ZnZ. - - Ltac wwauto := unfold ww_to_Z; eauto with ZnZ. - - Let wwB := base _ww_digits. - - Notation "[| x |]" := (to_Z x) (at level 0, x at level 99). - - Notation "[+| c |]" := - (interp_carry 1 wwB to_Z c) (at level 0, c at level 99). - - Notation "[-| c |]" := - (interp_carry (-1) wwB to_Z c) (at level 0, c at level 99). - - Notation "[[ x ]]" := (zn2z_to_Z wwB to_Z x) (at level 0, x at level 99). - - Let spec_ww_to_Z : forall x, 0 <= [| x |] < wwB. - Proof. refine (spec_ww_to_Z w_digits w_to_Z _); wwauto. Qed. - - Let spec_ww_of_pos : forall p, - Zpos p = (Z.of_N (fst (ww_of_pos p)))*wwB + [|(snd (ww_of_pos p))|]. - Proof. - unfold ww_of_pos;intros. - rewrite (ZnZ.spec_of_pos p). unfold w_of_pos. - case (ZnZ.of_pos p); intros. simpl. - destruct n; simpl ZnZ.to_Z. - simpl;unfold w_to_Z,w_0; rewrite ZnZ.spec_0;trivial. - unfold Z.of_N. - rewrite (ZnZ.spec_of_pos p0). - case (ZnZ.of_pos p0); intros. simpl. - unfold fst, snd,Z.of_N, to_Z, wB, w_digits, w_to_Z, w_WW. - rewrite ZnZ.spec_WW. - replace wwB with (wB*wB). - unfold wB,w_to_Z,w_digits;destruct n;ring. - symmetry. rewrite <- Z.pow_2_r; exact (wwB_wBwB w_digits). - Qed. - - Let spec_ww_0 : [|W0|] = 0. - Proof. reflexivity. Qed. - - Let spec_ww_1 : [|ww_1|] = 1. - Proof. refine (spec_ww_1 w_0 w_1 w_digits w_to_Z _ _);wwauto. Qed. - - Let spec_ww_Bm1 : [|ww_Bm1|] = wwB - 1. - Proof. refine (spec_ww_Bm1 w_Bm1 w_digits w_to_Z _);wwauto. Qed. - - Let spec_ww_compare : - forall x y, compare x y = Z.compare [|x|] [|y|]. - Proof. - refine (spec_ww_compare w_0 w_digits w_to_Z w_compare _ _ _);wwauto. - Qed. - - Let spec_ww_eq0 : forall x, eq0 x = true -> [|x|] = 0. - Proof. destruct x;simpl;intros;trivial;discriminate. Qed. - - Let spec_ww_opp_c : forall x, [-|opp_c x|] = -[|x|]. - Proof. - refine(spec_ww_opp_c w_0 w_0 W0 w_opp_c w_opp_carry w_digits w_to_Z _ _ _ _); - wwauto. - Qed. - - Let spec_ww_opp : forall x, [|opp x|] = (-[|x|]) mod wwB. - Proof. - refine(spec_ww_opp w_0 w_0 W0 w_opp_c w_opp_carry w_opp - w_digits w_to_Z _ _ _ _ _); - wwauto. - Qed. - - Let spec_ww_opp_carry : forall x, [|opp_carry x|] = wwB - [|x|] - 1. - Proof. - refine (spec_ww_opp_carry w_WW ww_Bm1 w_opp_carry w_digits w_to_Z _ _ _); - wwauto. - Qed. - - Let spec_ww_succ_c : forall x, [+|succ_c x|] = [|x|] + 1. - Proof. - refine (spec_ww_succ_c w_0 w_0 ww_1 w_succ_c w_digits w_to_Z _ _ _ _);wwauto. - Qed. - - Let spec_ww_add_c : forall x y, [+|add_c x y|] = [|x|] + [|y|]. - Proof. - refine (spec_ww_add_c w_WW w_add_c w_add_carry_c w_digits w_to_Z _ _ _);wwauto. - Qed. - - Let spec_ww_add_carry_c : forall x y, [+|add_carry_c x y|] = [|x|]+[|y|]+1. - Proof. - refine (spec_ww_add_carry_c w_0 w_0 w_WW ww_1 w_succ_c w_add_c w_add_carry_c - w_digits w_to_Z _ _ _ _ _ _ _);wwauto. - Qed. - - Let spec_ww_succ : forall x, [|succ x|] = ([|x|] + 1) mod wwB. - Proof. - refine (spec_ww_succ w_W0 ww_1 w_succ_c w_succ w_digits w_to_Z _ _ _ _ _); - wwauto. - Qed. - - Let spec_ww_add : forall x y, [|add x y|] = ([|x|] + [|y|]) mod wwB. - Proof. - refine (spec_ww_add w_add_c w_add w_add_carry w_digits w_to_Z _ _ _ _);wwauto. - Qed. - - Let spec_ww_add_carry : forall x y, [|add_carry x y|]=([|x|]+[|y|]+1)mod wwB. - Proof. - refine (spec_ww_add_carry w_W0 ww_1 w_succ_c w_add_carry_c w_succ - w_add w_add_carry w_digits w_to_Z _ _ _ _ _ _ _ _);wwauto. - Qed. - - Let spec_ww_pred_c : forall x, [-|pred_c x|] = [|x|] - 1. - Proof. - refine (spec_ww_pred_c w_0 w_Bm1 w_WW ww_Bm1 w_pred_c w_digits w_to_Z - _ _ _ _ _);wwauto. - Qed. - - Let spec_ww_sub_c : forall x y, [-|sub_c x y|] = [|x|] - [|y|]. - Proof. - refine (spec_ww_sub_c w_0 w_0 w_WW W0 w_opp_c w_opp_carry w_sub_c - w_sub_carry_c w_digits w_to_Z _ _ _ _ _ _ _);wwauto. - Qed. - - Let spec_ww_sub_carry_c : forall x y, [-|sub_carry_c x y|] = [|x|]-[|y|]-1. - Proof. - refine (spec_ww_sub_carry_c w_0 w_Bm1 w_WW ww_Bm1 w_opp_carry w_pred_c - w_sub_c w_sub_carry_c w_digits w_to_Z _ _ _ _ _ _ _ _);wwauto. - Qed. - - Let spec_ww_pred : forall x, [|pred x|] = ([|x|] - 1) mod wwB. - Proof. - refine (spec_ww_pred w_0 w_Bm1 w_WW ww_Bm1 w_pred_c w_pred w_digits w_to_Z - _ _ _ _ _ _);wwauto. - Qed. - - Let spec_ww_sub : forall x y, [|sub x y|] = ([|x|] - [|y|]) mod wwB. - Proof. - refine (spec_ww_sub w_0 w_0 w_WW W0 w_opp_c w_opp_carry w_sub_c w_opp - w_sub w_sub_carry w_digits w_to_Z _ _ _ _ _ _ _ _ _);wwauto. - Qed. - - Let spec_ww_sub_carry : forall x y, [|sub_carry x y|]=([|x|]-[|y|]-1) mod wwB. - Proof. - refine (spec_ww_sub_carry w_0 w_Bm1 w_WW ww_Bm1 w_opp_carry w_pred_c - w_sub_carry_c w_pred w_sub w_sub_carry w_digits w_to_Z _ _ _ _ _ _ _ _ _ _); - wwauto. - Qed. - - Let spec_ww_mul_c : forall x y, [[mul_c x y ]] = [|x|] * [|y|]. - Proof. - refine (spec_ww_mul_c w_0 w_1 w_WW w_W0 w_mul_c add_c add add_carry w_digits - w_to_Z _ _ _ _ _ _ _ _ _);wwauto. - Qed. - - Let spec_ww_karatsuba_c : forall x y, [[karatsuba_c x y ]] = [|x|] * [|y|]. - Proof. - refine (spec_ww_karatsuba_c _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - _ _ _ _ _ _ _ _ _ _ _ _); wwauto. - unfold w_digits; apply ZnZ.spec_more_than_1_digit; auto. - Qed. - - Let spec_ww_mul : forall x y, [|mul x y|] = ([|x|] * [|y|]) mod wwB. - Proof. - refine (spec_ww_mul w_W0 w_add w_mul_c w_mul add w_digits w_to_Z _ _ _ _ _); - wwauto. - Qed. - - Let spec_ww_square_c : forall x, [[square_c x]] = [|x|] * [|x|]. - Proof. - refine (spec_ww_square_c w_0 w_1 w_WW w_W0 w_mul_c w_square_c add_c add - add_carry w_digits w_to_Z _ _ _ _ _ _ _ _ _ _);wwauto. - Qed. - - Let spec_w_div32 : forall a1 a2 a3 b1 b2, - wB / 2 <= (w_to_Z b1) -> - [|WW a1 a2|] < [|WW b1 b2|] -> - let (q, r) := div32 a1 a2 a3 b1 b2 in - (w_to_Z a1) * wwB + (w_to_Z a2) * wB + (w_to_Z a3) = - (w_to_Z q) * ((w_to_Z b1)*wB + (w_to_Z b2)) + [|r|] /\ - 0 <= [|r|] < (w_to_Z b1)*wB + w_to_Z b2. - Proof. - refine (spec_w_div32 w_0 w_Bm1 w_Bm2 w_WW w_compare w_add_c w_add_carry_c - w_add w_add_carry w_pred w_sub w_mul_c w_div21 sub_c w_digits w_to_Z - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _);wwauto. - unfold w_Bm2, w_to_Z, w_pred, w_Bm1. - rewrite ZnZ.spec_pred, ZnZ.spec_m1. - unfold w_digits;rewrite Zmod_small. ring. - assert (H:= wB_pos(ZnZ.digits)). omega. - exact ZnZ.spec_div21. - Qed. - - Let spec_ww_div21 : forall a1 a2 b, - wwB/2 <= [|b|] -> - [|a1|] < [|b|] -> - let (q,r) := div21 a1 a2 b in - [|a1|] *wwB+ [|a2|] = [|q|] * [|b|] + [|r|] /\ - 0 <= [|r|] < [|b|]. - Proof. - refine (spec_ww_div21 w_0 w_0W div32 ww_1 compare sub w_digits w_to_Z - _ _ _ _ _ _ _);wwauto. - Qed. - - Let spec_add2: forall x y, - [|w_add2 x y|] = w_to_Z x + w_to_Z y. - unfold w_add2. - intros xh xl; generalize (ZnZ.spec_add_c xh xl). - unfold w_add_c; case ZnZ.add_c; unfold interp_carry; simpl ww_to_Z. - intros w0 Hw0; simpl; unfold w_to_Z; rewrite Hw0. - unfold w_0; rewrite ZnZ.spec_0; simpl; auto with zarith. - intros w0; rewrite Z.mul_1_l; simpl. - unfold w_to_Z, w_1; rewrite ZnZ.spec_1; auto with zarith. - rewrite Z.mul_1_l; auto. - Qed. - - Let spec_low: forall x, - w_to_Z (low x) = [|x|] mod wB. - intros x; case x; simpl low. - unfold ww_to_Z, w_to_Z, w_0; rewrite ZnZ.spec_0; simpl; wwauto. - intros xh xl; simpl. - rewrite Z.add_comm; rewrite Z_mod_plus; auto with zarith. - rewrite Zmod_small; auto with zarith. - unfold wB, base; eauto with ZnZ zarith. - unfold wB, base; eauto with ZnZ zarith. - Qed. - - Let spec_ww_digits: - [|_ww_zdigits|] = Zpos (xO w_digits). - Proof. - unfold w_to_Z, _ww_zdigits. - rewrite spec_add2. - unfold w_to_Z, w_zdigits, w_digits. - rewrite ZnZ.spec_zdigits; auto. - rewrite Pos2Z.inj_xO; auto with zarith. - Qed. - - - Let spec_ww_head00 : forall x, [|x|] = 0 -> [|head0 x|] = Zpos _ww_digits. - Proof. - refine (spec_ww_head00 w_0 w_0W - w_compare w_head0 w_add2 w_zdigits _ww_zdigits - w_to_Z _ _ _ (eq_refl _ww_digits) _ _ _ _); wwauto. - exact ZnZ.spec_head00. - exact ZnZ.spec_zdigits. - Qed. - - Let spec_ww_head0 : forall x, 0 < [|x|] -> - wwB/ 2 <= 2 ^ [|head0 x|] * [|x|] < wwB. - Proof. - refine (spec_ww_head0 w_0 w_0W w_compare w_head0 - w_add2 w_zdigits _ww_zdigits - w_to_Z _ _ _ _ _ _ _);wwauto. - exact ZnZ.spec_zdigits. - Qed. - - Let spec_ww_tail00 : forall x, [|x|] = 0 -> [|tail0 x|] = Zpos _ww_digits. - Proof. - refine (spec_ww_tail00 w_0 w_0W - w_compare w_tail0 w_add2 w_zdigits _ww_zdigits - w_to_Z _ _ _ (eq_refl _ww_digits) _ _ _ _); wwauto. - exact ZnZ.spec_tail00. - exact ZnZ.spec_zdigits. - Qed. - - - Let spec_ww_tail0 : forall x, 0 < [|x|] -> - exists y, 0 <= y /\ [|x|] = (2 * y + 1) * 2 ^ [|tail0 x|]. - Proof. - refine (spec_ww_tail0 (w_digits := w_digits) w_0 w_0W w_compare w_tail0 - w_add2 w_zdigits _ww_zdigits w_to_Z _ _ _ _ _ _ _);wwauto. - exact ZnZ.spec_zdigits. - Qed. - - Lemma spec_ww_add_mul_div : forall x y p, - [|p|] <= Zpos _ww_digits -> - [| add_mul_div p x y |] = - ([|x|] * (2 ^ [|p|]) + - [|y|] / (2 ^ ((Zpos _ww_digits) - [|p|]))) mod wwB. - Proof. - refine (@spec_ww_add_mul_div t w_0 w_WW w_W0 w_0W compare w_add_mul_div - sub w_digits w_zdigits low w_to_Z - _ _ _ _ _ _ _ _ _ _ _);wwauto. - exact ZnZ.spec_zdigits. - Qed. - - Let spec_ww_div_gt : forall a b, - [|a|] > [|b|] -> 0 < [|b|] -> - let (q,r) := div_gt a b in - [|a|] = [|q|] * [|b|] + [|r|] /\ 0 <= [|r|] < [|b|]. - Proof. -refine -(@spec_ww_div_gt t w_digits w_0 w_WW w_0W w_compare w_eq0 - w_opp_c w_opp w_opp_carry w_sub_c w_sub w_sub_carry w_div_gt - w_add_mul_div w_head0 w_div21 div32 _ww_zdigits ww_1 add_mul_div w_zdigits w_to_Z - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ -). - exact ZnZ.spec_0. - exact ZnZ.spec_to_Z. - wwauto. - wwauto. - exact ZnZ.spec_compare. - exact ZnZ.spec_eq0. - exact ZnZ.spec_opp_c. - exact ZnZ.spec_opp. - exact ZnZ.spec_opp_carry. - exact ZnZ.spec_sub_c. - exact ZnZ.spec_sub. - exact ZnZ.spec_sub_carry. - exact ZnZ.spec_div_gt. - exact ZnZ.spec_add_mul_div. - exact ZnZ.spec_head0. - exact ZnZ.spec_div21. - exact spec_w_div32. - exact ZnZ.spec_zdigits. - exact spec_ww_digits. - exact spec_ww_1. - exact spec_ww_add_mul_div. - Qed. - - Let spec_ww_div : forall a b, 0 < [|b|] -> - let (q,r) := div a b in - [|a|] = [|q|] * [|b|] + [|r|] /\ - 0 <= [|r|] < [|b|]. - Proof. - refine (spec_ww_div w_digits ww_1 compare div_gt w_to_Z _ _ _ _);wwauto. - Qed. - - Let spec_ww_mod_gt : forall a b, - [|a|] > [|b|] -> 0 < [|b|] -> - [|mod_gt a b|] = [|a|] mod [|b|]. - Proof. - refine (@spec_ww_mod_gt t w_digits w_0 w_WW w_0W w_compare w_eq0 - w_opp_c w_opp w_opp_carry w_sub_c w_sub w_sub_carry w_div_gt w_mod_gt - w_add_mul_div w_head0 w_div21 div32 _ww_zdigits ww_1 add_mul_div - w_zdigits w_to_Z - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _);wwauto. - exact ZnZ.spec_div_gt. - exact ZnZ.spec_div21. - exact ZnZ.spec_zdigits. - exact spec_ww_add_mul_div. - Qed. - - Let spec_ww_mod : forall a b, 0 < [|b|] -> [|mod_ a b|] = [|a|] mod [|b|]. - Proof. - refine (spec_ww_mod w_digits W0 compare mod_gt w_to_Z _ _ _);wwauto. - Qed. - - Let spec_ww_gcd_gt : forall a b, [|a|] > [|b|] -> - Zis_gcd [|a|] [|b|] [|gcd_gt a b|]. - Proof. - refine (@spec_ww_gcd_gt t w_digits W0 w_to_Z _ - w_0 w_0 w_eq0 w_gcd_gt _ww_digits - _ gcd_gt_fix _ _ _ _ gcd_cont _);wwauto. - refine (@spec_ww_gcd_gt_aux t w_digits w_0 w_WW w_0W w_compare w_opp_c w_opp - w_opp_carry w_sub_c w_sub w_sub_carry w_gcd_gt w_add_mul_div w_head0 - w_div21 div32 _ww_zdigits ww_1 add_mul_div w_zdigits w_to_Z - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _);wwauto. - exact ZnZ.spec_div21. - exact ZnZ.spec_zdigits. - exact spec_ww_add_mul_div. - refine (@spec_gcd_cont t w_digits ww_1 w_to_Z _ _ w_0 w_1 w_compare - _ _);wwauto. - Qed. - - Let spec_ww_gcd : forall a b, Zis_gcd [|a|] [|b|] [|gcd a b|]. - Proof. - refine (@spec_ww_gcd t w_digits W0 compare w_to_Z _ _ w_0 w_0 w_eq0 w_gcd_gt - _ww_digits _ gcd_gt_fix _ _ _ _ gcd_cont _);wwauto. - refine (@spec_ww_gcd_gt_aux t w_digits w_0 w_WW w_0W w_compare w_opp_c w_opp - w_opp_carry w_sub_c w_sub w_sub_carry w_gcd_gt w_add_mul_div w_head0 - w_div21 div32 _ww_zdigits ww_1 add_mul_div w_zdigits w_to_Z - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _);wwauto. - exact ZnZ.spec_div21. - exact ZnZ.spec_zdigits. - exact spec_ww_add_mul_div. - refine (@spec_gcd_cont t w_digits ww_1 w_to_Z _ _ w_0 w_1 w_compare - _ _);wwauto. - Qed. - - Let spec_ww_is_even : forall x, - match is_even x with - true => [|x|] mod 2 = 0 - | false => [|x|] mod 2 = 1 - end. - Proof. - refine (@spec_ww_is_even t w_is_even w_digits _ _ ). - exact ZnZ.spec_is_even. - Qed. - - Let spec_ww_sqrt2 : forall x y, - wwB/ 4 <= [|x|] -> - let (s,r) := sqrt2 x y in - [[WW x y]] = [|s|] ^ 2 + [+|r|] /\ - [+|r|] <= 2 * [|s|]. - Proof. - intros x y H. - refine (@spec_ww_sqrt2 t w_is_even w_compare w_0 w_1 w_Bm1 - w_0W w_sub w_square_c w_div21 w_add_mul_div w_digits w_zdigits - _ww_zdigits - w_add_c w_sqrt2 w_pred pred_c pred add_c add sub_c add_mul_div - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _); wwauto. - exact ZnZ.spec_zdigits. - exact ZnZ.spec_more_than_1_digit. - exact ZnZ.spec_is_even. - exact ZnZ.spec_div21. - exact spec_ww_add_mul_div. - exact ZnZ.spec_sqrt2. - Qed. - - Let spec_ww_sqrt : forall x, - [|sqrt x|] ^ 2 <= [|x|] < ([|sqrt x|] + 1) ^ 2. - Proof. - refine (@spec_ww_sqrt t w_is_even w_0 w_1 w_Bm1 - w_sub w_add_mul_div w_digits w_zdigits _ww_zdigits - w_sqrt2 pred add_mul_div head0 compare - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _); wwauto. - exact ZnZ.spec_zdigits. - exact ZnZ.spec_more_than_1_digit. - exact ZnZ.spec_is_even. - exact spec_ww_add_mul_div. - exact ZnZ.spec_sqrt2. - Qed. - - Let wB_pos : 0 < wB. - Proof. - unfold wB, base; apply Z.pow_pos_nonneg; auto with zarith. - Qed. - - Hint Transparent ww_to_Z. - - Let ww_testbit_high n x y : Z.pos w_digits <= n -> - Z.testbit [|WW x y|] n = - Z.testbit (ZnZ.to_Z x) (n - Z.pos w_digits). - Proof. - intros Hn. - assert (E : ZnZ.to_Z x = [|WW x y|] / wB). - { simpl. - rewrite Z.div_add_l; eauto with ZnZ zarith. - now rewrite Z.div_small, Z.add_0_r; wwauto. } - rewrite E. - unfold wB, base. rewrite Z.div_pow2_bits. - - f_equal; auto with zarith. - - easy. - - auto with zarith. - Qed. - - Let ww_testbit_low n x y : 0 <= n < Z.pos w_digits -> - Z.testbit [|WW x y|] n = Z.testbit (ZnZ.to_Z y) n. - Proof. - intros (Hn,Hn'). - assert (E : ZnZ.to_Z y = [|WW x y|] mod wB). - { simpl; symmetry. - rewrite Z.add_comm, Z.mod_add; auto with zarith nocore. - apply Z.mod_small; eauto with ZnZ zarith. } - rewrite E. - unfold wB, base. symmetry. apply Z.mod_pow2_bits_low; auto. - Qed. - - Let spec_lor x y : [|lor x y|] = Z.lor [|x|] [|y|]. - Proof. - destruct x as [ |hx lx]. trivial. - destruct y as [ |hy ly]. now rewrite Z.lor_comm. - change ([|WW (ZnZ.lor hx hy) (ZnZ.lor lx ly)|] = - Z.lor [|WW hx lx|] [|WW hy ly|]). - apply Z.bits_inj'; intros n Hn. - rewrite Z.lor_spec. - destruct (Z.le_gt_cases (Z.pos w_digits) n) as [LE|GT]. - - now rewrite !ww_testbit_high, ZnZ.spec_lor, Z.lor_spec. - - rewrite !ww_testbit_low; auto. - now rewrite ZnZ.spec_lor, Z.lor_spec. - Qed. - - Let spec_land x y : [|land x y|] = Z.land [|x|] [|y|]. - Proof. - destruct x as [ |hx lx]. trivial. - destruct y as [ |hy ly]. now rewrite Z.land_comm. - change ([|WW (ZnZ.land hx hy) (ZnZ.land lx ly)|] = - Z.land [|WW hx lx|] [|WW hy ly|]). - apply Z.bits_inj'; intros n Hn. - rewrite Z.land_spec. - destruct (Z.le_gt_cases (Z.pos w_digits) n) as [LE|GT]. - - now rewrite !ww_testbit_high, ZnZ.spec_land, Z.land_spec. - - rewrite !ww_testbit_low; auto. - now rewrite ZnZ.spec_land, Z.land_spec. - Qed. - - Let spec_lxor x y : [|lxor x y|] = Z.lxor [|x|] [|y|]. - Proof. - destruct x as [ |hx lx]. trivial. - destruct y as [ |hy ly]. now rewrite Z.lxor_comm. - change ([|WW (ZnZ.lxor hx hy) (ZnZ.lxor lx ly)|] = - Z.lxor [|WW hx lx|] [|WW hy ly|]). - apply Z.bits_inj'; intros n Hn. - rewrite Z.lxor_spec. - destruct (Z.le_gt_cases (Z.pos w_digits) n) as [LE|GT]. - - now rewrite !ww_testbit_high, ZnZ.spec_lxor, Z.lxor_spec. - - rewrite !ww_testbit_low; auto. - now rewrite ZnZ.spec_lxor, Z.lxor_spec. - Qed. - - Global Instance mk_zn2z_specs : ZnZ.Specs mk_zn2z_ops. - Proof. - apply ZnZ.MkSpecs; auto. - exact spec_ww_add_mul_div. - - refine (@spec_ww_pos_mod t w_0 w_digits w_zdigits w_WW - w_pos_mod compare w_0W low sub _ww_zdigits w_to_Z - _ _ _ _ _ _ _ _ _ _ _ _);wwauto. - exact ZnZ.spec_zdigits. - unfold w_to_Z, w_zdigits. - rewrite ZnZ.spec_zdigits. - rewrite <- Pos2Z.inj_xO; exact spec_ww_digits. - Qed. - - Global Instance mk_zn2z_specs_karatsuba : ZnZ.Specs mk_zn2z_ops_karatsuba. - Proof. - apply ZnZ.MkSpecs; auto. - exact spec_ww_add_mul_div. - refine (@spec_ww_pos_mod t w_0 w_digits w_zdigits w_WW - w_pos_mod compare w_0W low sub _ww_zdigits w_to_Z - _ _ _ _ _ _ _ _ _ _ _ _);wwauto. - exact ZnZ.spec_zdigits. - unfold w_to_Z, w_zdigits. - rewrite ZnZ.spec_zdigits. - rewrite <- Pos2Z.inj_xO; exact spec_ww_digits. - Qed. - -End Z_2nZ. - - -Section MulAdd. - - Context {t : Type}{ops : ZnZ.Ops t}{specs : ZnZ.Specs ops}. - - Definition mul_add:= w_mul_add ZnZ.zero ZnZ.succ ZnZ.add_c ZnZ.mul_c. - - Notation "[| x |]" := (ZnZ.to_Z x) (at level 0, x at level 99). - - Notation "[|| x ||]" := - (zn2z_to_Z (base ZnZ.digits) ZnZ.to_Z x) (at level 0, x at level 99). - - Lemma spec_mul_add: forall x y z, - let (zh, zl) := mul_add x y z in - [||WW zh zl||] = [|x|] * [|y|] + [|z|]. - Proof. - intros x y z. - refine (spec_w_mul_add _ _ _ _ _ _ _ _ _ _ _ _ x y z); auto. - exact ZnZ.spec_0. - exact ZnZ.spec_to_Z. - exact ZnZ.spec_succ. - exact ZnZ.spec_add_c. - exact ZnZ.spec_mul_c. - Qed. - -End MulAdd. - - -(** Modular versions of DoubleCyclic *) - -Module DoubleCyclic (C:CyclicType) <: CyclicType. - Definition t := zn2z C.t. - Instance ops : ZnZ.Ops t := mk_zn2z_ops. - Instance specs : ZnZ.Specs ops := mk_zn2z_specs. -End DoubleCyclic. - -Module DoubleCyclicKaratsuba (C:CyclicType) <: CyclicType. - Definition t := zn2z C.t. - Definition ops : ZnZ.Ops t := mk_zn2z_ops_karatsuba. - Definition specs : ZnZ.Specs ops := mk_zn2z_specs_karatsuba. -End DoubleCyclicKaratsuba. diff --git a/theories/Numbers/Cyclic/DoubleCyclic/DoubleDiv.v b/theories/Numbers/Cyclic/DoubleCyclic/DoubleDiv.v deleted file mode 100644 index 09d7329b6..000000000 --- a/theories/Numbers/Cyclic/DoubleCyclic/DoubleDiv.v +++ /dev/null @@ -1,1494 +0,0 @@ -(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016 *) -(* \VV/ **************************************************************) -(* // * This file is distributed under the terms of the *) -(* * GNU Lesser General Public License Version 2.1 *) -(************************************************************************) -(* Benjamin Gregoire, Laurent Thery, INRIA, 2007 *) -(************************************************************************) - -Set Implicit Arguments. - -Require Import ZArith. -Require Import BigNumPrelude. -Require Import DoubleType. -Require Import DoubleBase. -Require Import DoubleDivn1. -Require Import DoubleAdd. -Require Import DoubleSub. - -Local Open Scope Z_scope. - -Ltac zarith := auto with zarith. - - -Section POS_MOD. - - Variable w:Type. - Variable w_0 : w. - Variable w_digits : positive. - Variable w_zdigits : w. - Variable w_WW : w -> w -> zn2z w. - Variable w_pos_mod : w -> w -> w. - Variable w_compare : w -> w -> comparison. - Variable ww_compare : zn2z w -> zn2z w -> comparison. - Variable w_0W : w -> zn2z w. - Variable low: zn2z w -> w. - Variable ww_sub: zn2z w -> zn2z w -> zn2z w. - Variable ww_zdigits : zn2z w. - - - Definition ww_pos_mod p x := - let zdigits := w_0W w_zdigits in - match x with - | W0 => W0 - | WW xh xl => - match ww_compare p zdigits with - | Eq => w_WW w_0 xl - | Lt => w_WW w_0 (w_pos_mod (low p) xl) - | Gt => - match ww_compare p ww_zdigits with - | Lt => - let n := low (ww_sub p zdigits) in - w_WW (w_pos_mod n xh) xl - | _ => x - end - end - end. - - - Variable w_to_Z : w -> Z. - - Notation wB := (base w_digits). - Notation wwB := (base (ww_digits w_digits)). - Notation "[| x |]" := (w_to_Z x) (at level 0, x at level 99). - - Notation "[[ x ]]" := (ww_to_Z w_digits w_to_Z x)(at level 0, x at level 99). - - - Variable spec_w_0 : [|w_0|] = 0. - - Variable spec_to_Z : forall x, 0 <= [|x|] < wB. - - Variable spec_to_w_Z : forall x, 0 <= [[x]] < wwB. - - Variable spec_w_WW : forall h l, [[w_WW h l]] = [|h|] * wB + [|l|]. - - Variable spec_pos_mod : forall w p, - [|w_pos_mod p w|] = [|w|] mod (2 ^ [|p|]). - - Variable spec_w_0W : forall l, [[w_0W l]] = [|l|]. - Variable spec_ww_compare : forall x y, - ww_compare x y = Z.compare [[x]] [[y]]. - Variable spec_ww_sub: forall x y, - [[ww_sub x y]] = ([[x]] - [[y]]) mod wwB. - - Variable spec_zdigits : [| w_zdigits |] = Zpos w_digits. - Variable spec_low: forall x, [| low x|] = [[x]] mod wB. - Variable spec_ww_zdigits : [[ww_zdigits]] = 2 * [|w_zdigits|]. - Variable spec_ww_digits : ww_digits w_digits = xO w_digits. - - - Hint Rewrite spec_w_0 spec_w_WW : w_rewrite. - - Lemma spec_ww_pos_mod : forall w p, - [[ww_pos_mod p w]] = [[w]] mod (2 ^ [[p]]). - assert (HHHHH:= lt_0_wB w_digits). - assert (F0: forall x y, x - y + y = x); auto with zarith. - intros w1 p; case (spec_to_w_Z p); intros HH1 HH2. - unfold ww_pos_mod; case w1. reflexivity. - intros xh xl; rewrite spec_ww_compare. - case Z.compare_spec; - rewrite spec_w_0W; rewrite spec_zdigits; fold wB; - intros H1. - rewrite H1; simpl ww_to_Z. - autorewrite with w_rewrite rm10. - rewrite Zplus_mod; auto with zarith. - rewrite Z_mod_mult; auto with zarith. - autorewrite with rm10. - rewrite Zmod_mod; auto with zarith. - rewrite Zmod_small; auto with zarith. - autorewrite with w_rewrite rm10. - simpl ww_to_Z. - rewrite spec_pos_mod. - assert (HH0: [|low p|] = [[p]]). - rewrite spec_low. - apply Zmod_small; auto with zarith. - case (spec_to_w_Z p); intros HHH1 HHH2; split; auto with zarith. - apply Z.lt_le_trans with (1 := H1). - unfold base; apply Zpower2_le_lin; auto with zarith. - rewrite HH0. - rewrite Zplus_mod; auto with zarith. - unfold base. - rewrite <- (F0 (Zpos w_digits) [[p]]). - rewrite Zpower_exp; auto with zarith. - rewrite Z.mul_assoc. - rewrite Z_mod_mult; auto with zarith. - autorewrite with w_rewrite rm10. - rewrite Zmod_mod; auto with zarith. - rewrite spec_ww_compare. - case Z.compare_spec; rewrite spec_ww_zdigits; - rewrite spec_zdigits; intros H2. - replace (2^[[p]]) with wwB. - rewrite Zmod_small; auto with zarith. - unfold base; rewrite H2. - rewrite spec_ww_digits; auto. - assert (HH0: [|low (ww_sub p (w_0W w_zdigits))|] = - [[p]] - Zpos w_digits). - rewrite spec_low. - rewrite spec_ww_sub. - rewrite spec_w_0W; rewrite spec_zdigits. - rewrite <- Zmod_div_mod; auto with zarith. - rewrite Zmod_small; auto with zarith. - split; auto with zarith. - apply Z.lt_le_trans with (Zpos w_digits); auto with zarith. - unfold base; apply Zpower2_le_lin; auto with zarith. - exists wB; unfold base; rewrite <- Zpower_exp; auto with zarith. - rewrite spec_ww_digits; - apply f_equal with (f := Z.pow 2); rewrite Pos2Z.inj_xO; auto with zarith. - simpl ww_to_Z; autorewrite with w_rewrite. - rewrite spec_pos_mod; rewrite HH0. - pattern [|xh|] at 2; - rewrite Z_div_mod_eq with (b := 2 ^ ([[p]] - Zpos w_digits)); - auto with zarith. - rewrite (fun x => (Z.mul_comm (2 ^ x))); rewrite Z.mul_add_distr_r. - unfold base; rewrite <- Z.mul_assoc; rewrite <- Zpower_exp; - auto with zarith. - rewrite F0; auto with zarith. - rewrite <- Z.add_assoc; rewrite Zplus_mod; auto with zarith. - rewrite Z_mod_mult; auto with zarith. - autorewrite with rm10. - rewrite Zmod_mod; auto with zarith. - symmetry; apply Zmod_small; auto with zarith. - case (spec_to_Z xh); intros U1 U2. - case (spec_to_Z xl); intros U3 U4. - split; auto with zarith. - apply Z.add_nonneg_nonneg; auto with zarith. - apply Z.mul_nonneg_nonneg; auto with zarith. - match goal with |- 0 <= ?X mod ?Y => - case (Z_mod_lt X Y); auto with zarith - end. - match goal with |- ?X mod ?Y * ?U + ?Z < ?T => - apply Z.le_lt_trans with ((Y - 1) * U + Z ); - [case (Z_mod_lt X Y); auto with zarith | idtac] - end. - match goal with |- ?X * ?U + ?Y < ?Z => - apply Z.le_lt_trans with (X * U + (U - 1)) - end. - apply Z.add_le_mono_l; auto with zarith. - case (spec_to_Z xl); unfold base; auto with zarith. - rewrite Z.mul_sub_distr_r; rewrite <- Zpower_exp; auto with zarith. - rewrite F0; auto with zarith. - rewrite Zmod_small; auto with zarith. - case (spec_to_w_Z (WW xh xl)); intros U1 U2. - split; auto with zarith. - apply Z.lt_le_trans with (1:= U2). - unfold base; rewrite spec_ww_digits. - apply Zpower_le_monotone; auto with zarith. - split; auto with zarith. - rewrite Pos2Z.inj_xO; auto with zarith. - Qed. - -End POS_MOD. - -Section DoubleDiv32. - - Variable w : Type. - Variable w_0 : w. - Variable w_Bm1 : w. - Variable w_Bm2 : w. - Variable w_WW : w -> w -> zn2z w. - Variable w_compare : w -> w -> comparison. - Variable w_add_c : w -> w -> carry w. - Variable w_add_carry_c : w -> w -> carry w. - Variable w_add : w -> w -> w. - Variable w_add_carry : w -> w -> w. - Variable w_pred : w -> w. - Variable w_sub : w -> w -> w. - Variable w_mul_c : w -> w -> zn2z w. - Variable w_div21 : w -> w -> w -> w*w. - Variable ww_sub_c : zn2z w -> zn2z w -> carry (zn2z w). - - Definition w_div32_body a1 a2 a3 b1 b2 := - match w_compare a1 b1 with - | Lt => - let (q,r) := w_div21 a1 a2 b1 in - match ww_sub_c (w_WW r a3) (w_mul_c q b2) with - | C0 r1 => (q,r1) - | C1 r1 => - let q := w_pred q in - ww_add_c_cont w_WW w_add_c w_add_carry_c - (fun r2=>(w_pred q, ww_add w_add_c w_add w_add_carry r2 (WW b1 b2))) - (fun r2 => (q,r2)) - r1 (WW b1 b2) - end - | Eq => - ww_add_c_cont w_WW w_add_c w_add_carry_c - (fun r => (w_Bm2, ww_add w_add_c w_add w_add_carry r (WW b1 b2))) - (fun r => (w_Bm1,r)) - (WW (w_sub a2 b2) a3) (WW b1 b2) - | Gt => (w_0, W0) (* cas absurde *) - end. - - Definition w_div32 a1 a2 a3 b1 b2 := - Eval lazy beta iota delta [ww_add_c_cont ww_add w_div32_body] in - w_div32_body a1 a2 a3 b1 b2. - - (* Proof *) - - Variable w_digits : positive. - Variable w_to_Z : w -> Z. - - Notation wB := (base w_digits). - Notation wwB := (base (ww_digits w_digits)). - Notation "[| x |]" := (w_to_Z x) (at level 0, x at level 99). - Notation "[+| c |]" := - (interp_carry 1 wB w_to_Z c) (at level 0, c at level 99). - Notation "[-| c |]" := - (interp_carry (-1) wB w_to_Z c) (at level 0, c at level 99). - - Notation "[[ x ]]" := (ww_to_Z w_digits w_to_Z x)(at level 0, x at level 99). - Notation "[-[ c ]]" := - (interp_carry (-1) wwB (ww_to_Z w_digits w_to_Z) c) - (at level 0, c at level 99). - - - Variable spec_w_0 : [|w_0|] = 0. - Variable spec_w_Bm1 : [|w_Bm1|] = wB - 1. - Variable spec_w_Bm2 : [|w_Bm2|] = wB - 2. - - Variable spec_to_Z : forall x, 0 <= [|x|] < wB. - - Variable spec_w_WW : forall h l, [[w_WW h l]] = [|h|] * wB + [|l|]. - Variable spec_compare : - forall x y, w_compare x y = Z.compare [|x|] [|y|]. - Variable spec_w_add_c : forall x y, [+|w_add_c x y|] = [|x|] + [|y|]. - Variable spec_w_add_carry_c : - forall x y, [+|w_add_carry_c x y|] = [|x|] + [|y|] + 1. - - Variable spec_w_add : forall x y, [|w_add x y|] = ([|x|] + [|y|]) mod wB. - Variable spec_w_add_carry : - forall x y, [|w_add_carry x y|] = ([|x|] + [|y|] + 1) mod wB. - - Variable spec_pred : forall x, [|w_pred x|] = ([|x|] - 1) mod wB. - Variable spec_sub : forall x y, [|w_sub x y|] = ([|x|] - [|y|]) mod wB. - - Variable spec_mul_c : forall x y, [[ w_mul_c x y ]] = [|x|] * [|y|]. - Variable spec_div21 : forall a1 a2 b, - wB/2 <= [|b|] -> - [|a1|] < [|b|] -> - let (q,r) := w_div21 a1 a2 b in - [|a1|] *wB+ [|a2|] = [|q|] * [|b|] + [|r|] /\ - 0 <= [|r|] < [|b|]. - - Variable spec_ww_sub_c : forall x y, [-[ww_sub_c x y]] = [[x]] - [[y]]. - - Ltac Spec_w_to_Z x := - let H:= fresh "HH" in - assert (H:= spec_to_Z x). - Ltac Spec_ww_to_Z x := - let H:= fresh "HH" in - assert (H:= spec_ww_to_Z w_digits w_to_Z spec_to_Z x). - - Theorem wB_div2: forall x, wB/2 <= x -> wB <= 2 * x. - intros x H; rewrite <- wB_div_2; apply Z.mul_le_mono_nonneg_l; auto with zarith. - Qed. - - Lemma Zmult_lt_0_reg_r_2 : forall n m : Z, 0 <= n -> 0 < m * n -> 0 < m. - Proof. - intros n m H1 H2;apply Z.mul_pos_cancel_r with n;trivial. - Z.le_elim H1; trivial. - subst;rewrite Z.mul_0_r in H2;discriminate H2. - Qed. - - Theorem spec_w_div32 : forall a1 a2 a3 b1 b2, - wB/2 <= [|b1|] -> - [[WW a1 a2]] < [[WW b1 b2]] -> - let (q,r) := w_div32 a1 a2 a3 b1 b2 in - [|a1|] * wwB + [|a2|] * wB + [|a3|] = - [|q|] * ([|b1|] * wB + [|b2|]) + [[r]] /\ - 0 <= [[r]] < [|b1|] * wB + [|b2|]. - Proof. - intros a1 a2 a3 b1 b2 Hle Hlt. - assert (U:= lt_0_wB w_digits); assert (U1:= lt_0_wwB w_digits). - Spec_w_to_Z a1;Spec_w_to_Z a2;Spec_w_to_Z a3;Spec_w_to_Z b1;Spec_w_to_Z b2. - rewrite wwB_wBwB; rewrite Z.pow_2_r; rewrite Z.mul_assoc;rewrite <- Z.mul_add_distr_r. - change (w_div32 a1 a2 a3 b1 b2) with (w_div32_body a1 a2 a3 b1 b2). - unfold w_div32_body. - rewrite spec_compare. case Z.compare_spec; intro Hcmp. - simpl in Hlt. - rewrite Hcmp in Hlt;assert ([|a2|] < [|b2|]). omega. - assert ([[WW (w_sub a2 b2) a3]] = ([|a2|]-[|b2|])*wB + [|a3|] + wwB). - simpl;rewrite spec_sub. - assert ([|a2|] - [|b2|] = wB*(-1) + ([|a2|] - [|b2|] + wB)). ring. - assert (0 <= [|a2|] - [|b2|] + wB < wB). omega. - rewrite <-(Zmod_unique ([|a2|]-[|b2|]) wB (-1) ([|a2|]-[|b2|]+wB) H1 H0). - rewrite wwB_wBwB;ring. - assert (U2 := wB_pos w_digits). - eapply spec_ww_add_c_cont with (P := - fun (x y:zn2z w) (res:w*zn2z w) => - let (q, r) := res in - ([|a1|] * wB + [|a2|]) * wB + [|a3|] = - [|q|] * ([|b1|] * wB + [|b2|]) + [[r]] /\ - 0 <= [[r]] < [|b1|] * wB + [|b2|]);eauto. - rewrite H0;intros r. - repeat - (rewrite spec_ww_add;eauto || rewrite spec_w_Bm1 || rewrite spec_w_Bm2); - simpl ww_to_Z;try rewrite Z.mul_1_l;intros H1. - assert (0<= ([[r]] + ([|b1|] * wB + [|b2|])) - wwB < [|b1|] * wB + [|b2|]). - Spec_ww_to_Z r;split;zarith. - rewrite H1. - assert (H12:= wB_div2 Hle). assert (wwB <= 2 * [|b1|] * wB). - rewrite wwB_wBwB; rewrite Z.pow_2_r; zarith. - assert (-wwB < ([|a2|] - [|b2|]) * wB + [|a3|] < 0). - split. apply Z.lt_le_trans with (([|a2|] - [|b2|]) * wB);zarith. - rewrite wwB_wBwB;replace (-(wB^2)) with (-wB*wB);[zarith | ring]. - apply Z.mul_lt_mono_pos_r;zarith. - apply Z.le_lt_trans with (([|a2|] - [|b2|]) * wB + (wB -1));zarith. - replace ( ([|a2|] - [|b2|]) * wB + (wB - 1)) with - (([|a2|] - [|b2|] + 1) * wB + - 1);[zarith | ring]. - assert (([|a2|] - [|b2|] + 1) * wB <= 0);zarith. - replace 0 with (0*wB);zarith. - replace (([|a2|] - [|b2|]) * wB + [|a3|] + wwB + ([|b1|] * wB + [|b2|]) + - ([|b1|] * wB + [|b2|]) - wwB) with - (([|a2|] - [|b2|]) * wB + [|a3|] + 2*[|b1|] * wB + 2*[|b2|]); - [zarith | ring]. - rewrite <- (Zmod_unique ([[r]] + ([|b1|] * wB + [|b2|])) wwB - 1 ([[r]] + ([|b1|] * wB + [|b2|]) - wwB));zarith;try (ring;fail). - split. rewrite H1;rewrite Hcmp;ring. trivial. - Spec_ww_to_Z (WW b1 b2). simpl in HH4;zarith. - rewrite H0;intros r;repeat - (rewrite spec_w_Bm1 || rewrite spec_w_Bm2); - simpl ww_to_Z;try rewrite Z.mul_1_l;intros H1. - assert ([[r]]=([|a2|]-[|b2|])*wB+[|a3|]+([|b1|]*wB+[|b2|])). zarith. - split. rewrite H2;rewrite Hcmp;ring. - split. Spec_ww_to_Z r;zarith. - rewrite H2. - assert (([|a2|] - [|b2|]) * wB + [|a3|] < 0);zarith. - apply Z.le_lt_trans with (([|a2|] - [|b2|]) * wB + (wB -1));zarith. - replace ( ([|a2|] - [|b2|]) * wB + (wB - 1)) with - (([|a2|] - [|b2|] + 1) * wB + - 1);[zarith|ring]. - assert (([|a2|] - [|b2|] + 1) * wB <= 0);zarith. - replace 0 with (0*wB);zarith. - (* Cas Lt *) - assert (Hdiv21 := spec_div21 a2 Hle Hcmp); - destruct (w_div21 a1 a2 b1) as (q, r);destruct Hdiv21. - rewrite H. - assert (Hq := spec_to_Z q). - generalize - (spec_ww_sub_c (w_WW r a3) (w_mul_c q b2)); - destruct (ww_sub_c (w_WW r a3) (w_mul_c q b2)) - as [r1|r1];repeat (rewrite spec_w_WW || rewrite spec_mul_c); - unfold interp_carry;intros H1. - rewrite H1. - split. ring. split. - rewrite <- H1;destruct (spec_ww_to_Z w_digits w_to_Z spec_to_Z r1);trivial. - apply Z.le_lt_trans with ([|r|] * wB + [|a3|]). - assert ( 0 <= [|q|] * [|b2|]);zarith. - apply beta_lex_inv;zarith. - assert ([[r1]] = [|r|] * wB + [|a3|] - [|q|] * [|b2|] + wwB). - rewrite <- H1;ring. - Spec_ww_to_Z r1; assert (0 <= [|r|]*wB). zarith. - assert (0 < [|q|] * [|b2|]). zarith. - assert (0 < [|q|]). - apply Zmult_lt_0_reg_r_2 with [|b2|];zarith. - eapply spec_ww_add_c_cont with (P := - fun (x y:zn2z w) (res:w*zn2z w) => - let (q0, r0) := res in - ([|q|] * [|b1|] + [|r|]) * wB + [|a3|] = - [|q0|] * ([|b1|] * wB + [|b2|]) + [[r0]] /\ - 0 <= [[r0]] < [|b1|] * wB + [|b2|]);eauto. - intros r2;repeat (rewrite spec_pred || rewrite spec_ww_add;eauto); - simpl ww_to_Z;intros H7. - assert (0 < [|q|] - 1). - assert (H6 : 1 <= [|q|]) by zarith. - Z.le_elim H6;zarith. - rewrite <- H6 in H2;rewrite H2 in H7. - assert (0 < [|b1|]*wB). apply Z.mul_pos_pos;zarith. - Spec_ww_to_Z r2. zarith. - rewrite (Zmod_small ([|q|] -1));zarith. - rewrite (Zmod_small ([|q|] -1 -1));zarith. - assert ([[r2]] + ([|b1|] * wB + [|b2|]) = - wwB * 1 + - ([|r|] * wB + [|a3|] - [|q|] * [|b2|] + 2 * ([|b1|] * wB + [|b2|]))). - rewrite H7;rewrite H2;ring. - assert - ([|r|]*wB + [|a3|] - [|q|]*[|b2|] + 2 * ([|b1|]*wB + [|b2|]) - < [|b1|]*wB + [|b2|]). - Spec_ww_to_Z r2;omega. - Spec_ww_to_Z (WW b1 b2). simpl in HH5. - assert - (0 <= [|r|]*wB + [|a3|] - [|q|]*[|b2|] + 2 * ([|b1|]*wB + [|b2|]) - < wwB). split;try omega. - replace (2*([|b1|]*wB+[|b2|])) with ((2*[|b1|])*wB+2*[|b2|]). 2:ring. - assert (H12:= wB_div2 Hle). assert (wwB <= 2 * [|b1|] * wB). - rewrite wwB_wBwB; rewrite Z.pow_2_r; zarith. omega. - rewrite <- (Zmod_unique - ([[r2]] + ([|b1|] * wB + [|b2|])) - wwB - 1 - ([|r|] * wB + [|a3|] - [|q|] * [|b2|] + 2*([|b1|] * wB + [|b2|])) - H10 H8). - split. ring. zarith. - intros r2;repeat (rewrite spec_pred);simpl ww_to_Z;intros H7. - rewrite (Zmod_small ([|q|] -1));zarith. - split. - replace [[r2]] with ([[r1]] + ([|b1|] * wB + [|b2|]) -wwB). - rewrite H2; ring. rewrite <- H7; ring. - Spec_ww_to_Z r2;Spec_ww_to_Z r1. omega. - simpl in Hlt. - assert ([|a1|] * wB + [|a2|] <= [|b1|] * wB + [|b2|]). zarith. - assert (H1 := beta_lex _ _ _ _ _ H HH0 HH3). rewrite spec_w_0;simpl;zarith. - Qed. - - -End DoubleDiv32. - -Section DoubleDiv21. - Variable w : Type. - Variable w_0 : w. - - Variable w_0W : w -> zn2z w. - Variable w_div32 : w -> w -> w -> w -> w -> w * zn2z w. - - Variable ww_1 : zn2z w. - Variable ww_compare : zn2z w -> zn2z w -> comparison. - Variable ww_sub : zn2z w -> zn2z w -> zn2z w. - - - Definition ww_div21 a1 a2 b := - match a1 with - | W0 => - match ww_compare a2 b with - | Gt => (ww_1, ww_sub a2 b) - | Eq => (ww_1, W0) - | Lt => (W0, a2) - end - | WW a1h a1l => - match a2 with - | W0 => - match b with - | W0 => (W0,W0) (* cas absurde *) - | WW b1 b2 => - let (q1, r) := w_div32 a1h a1l w_0 b1 b2 in - match r with - | W0 => (WW q1 w_0, W0) - | WW r1 r2 => - let (q2, s) := w_div32 r1 r2 w_0 b1 b2 in - (WW q1 q2, s) - end - end - | WW a2h a2l => - match b with - | W0 => (W0,W0) (* cas absurde *) - | WW b1 b2 => - let (q1, r) := w_div32 a1h a1l a2h b1 b2 in - match r with - | W0 => (WW q1 w_0, w_0W a2l) - | WW r1 r2 => - let (q2, s) := w_div32 r1 r2 a2l b1 b2 in - (WW q1 q2, s) - end - end - end - end. - - (* Proof *) - - Variable w_digits : positive. - Variable w_to_Z : w -> Z. - Notation wB := (base w_digits). - Notation wwB := (base (ww_digits w_digits)). - Notation "[| x |]" := (w_to_Z x) (at level 0, x at level 99). - Notation "[[ x ]]" := (ww_to_Z w_digits w_to_Z x)(at level 0, x at level 99). - Notation "[-[ c ]]" := - (interp_carry (-1) wwB (ww_to_Z w_digits w_to_Z) c) - (at level 0, c at level 99). - - Variable spec_w_0 : [|w_0|] = 0. - Variable spec_to_Z : forall x, 0 <= [|x|] < wB. - Variable spec_w_0W : forall l, [[w_0W l]] = [|l|]. - Variable spec_w_div32 : forall a1 a2 a3 b1 b2, - wB/2 <= [|b1|] -> - [[WW a1 a2]] < [[WW b1 b2]] -> - let (q,r) := w_div32 a1 a2 a3 b1 b2 in - [|a1|] * wwB + [|a2|] * wB + [|a3|] = - [|q|] * ([|b1|] * wB + [|b2|]) + [[r]] /\ - 0 <= [[r]] < [|b1|] * wB + [|b2|]. - Variable spec_ww_1 : [[ww_1]] = 1. - Variable spec_ww_compare : forall x y, - ww_compare x y = Z.compare [[x]] [[y]]. - Variable spec_ww_sub : forall x y, [[ww_sub x y]] = ([[x]] - [[y]]) mod wwB. - - Theorem wwB_div: wwB = 2 * (wwB / 2). - Proof. - rewrite wwB_div_2; rewrite Z.mul_assoc; rewrite wB_div_2; auto. - rewrite <- Z.pow_2_r; apply wwB_wBwB. - Qed. - - Ltac Spec_w_to_Z x := - let H:= fresh "HH" in - assert (H:= spec_to_Z x). - Ltac Spec_ww_to_Z x := - let H:= fresh "HH" in - assert (H:= spec_ww_to_Z w_digits w_to_Z spec_to_Z x). - - Theorem spec_ww_div21 : forall a1 a2 b, - wwB/2 <= [[b]] -> - [[a1]] < [[b]] -> - let (q,r) := ww_div21 a1 a2 b in - [[a1]] *wwB+[[a2]] = [[q]] * [[b]] + [[r]] /\ 0 <= [[r]] < [[b]]. - Proof. - assert (U:= lt_0_wB w_digits). - assert (U1:= lt_0_wwB w_digits). - intros a1 a2 b H Hlt; unfold ww_div21. - Spec_ww_to_Z b; assert (Eq: 0 < [[b]]). Spec_ww_to_Z a1;omega. - generalize Hlt H ;clear Hlt H;case a1. - intros H1 H2;simpl in H1;Spec_ww_to_Z a2. - rewrite spec_ww_compare. case Z.compare_spec; - simpl;try rewrite spec_ww_1;autorewrite with rm10; intros;zarith. - rewrite spec_ww_sub;simpl. rewrite Zmod_small;zarith. - split. ring. - assert (wwB <= 2*[[b]]);zarith. - rewrite wwB_div;zarith. - intros a1h a1l. Spec_w_to_Z a1h;Spec_w_to_Z a1l. Spec_ww_to_Z a2. - destruct a2 as [ |a3 a4]; - (destruct b as [ |b1 b2];[unfold Z.le in Eq;discriminate Eq|idtac]); - try (Spec_w_to_Z a3; Spec_w_to_Z a4); Spec_w_to_Z b1; Spec_w_to_Z b2; - intros Hlt H; match goal with |-context [w_div32 ?X ?Y ?Z ?T ?U] => - generalize (@spec_w_div32 X Y Z T U); case (w_div32 X Y Z T U); - intros q1 r H0 - end; (assert (Eq1: wB / 2 <= [|b1|]);[ - apply (@beta_lex (wB / 2) 0 [|b1|] [|b2|] wB); auto with zarith; - autorewrite with rm10;repeat rewrite (Z.mul_comm wB); - rewrite <- wwB_div_2; trivial - | generalize (H0 Eq1 Hlt);clear H0;destruct r as [ |r1 r2];simpl; - try rewrite spec_w_0; try rewrite spec_w_0W;repeat rewrite Z.add_0_r; - intros (H1,H2) ]). - split;[rewrite wwB_wBwB; rewrite Z.pow_2_r | trivial]. - rewrite Z.mul_assoc;rewrite Z.mul_add_distr_r;rewrite <- Z.mul_assoc; - rewrite <- Z.pow_2_r; rewrite <- wwB_wBwB;rewrite H1;ring. - destruct H2 as (H2,H3);match goal with |-context [w_div32 ?X ?Y ?Z ?T ?U] => - generalize (@spec_w_div32 X Y Z T U); case (w_div32 X Y Z T U); - intros q r H0;generalize (H0 Eq1 H3);clear H0;intros (H4,H5) end. - split;[rewrite wwB_wBwB | trivial]. - rewrite Z.pow_2_r. - rewrite Z.mul_assoc;rewrite Z.mul_add_distr_r;rewrite <- Z.mul_assoc; - rewrite <- Z.pow_2_r. - rewrite <- wwB_wBwB;rewrite H1. - rewrite spec_w_0 in H4;rewrite Z.add_0_r in H4. - repeat rewrite Z.mul_add_distr_r. rewrite <- (Z.mul_assoc [|r1|]). - rewrite <- Z.pow_2_r; rewrite <- wwB_wBwB;rewrite H4;simpl;ring. - split;[rewrite wwB_wBwB | split;zarith]. - replace (([|a1h|] * wB + [|a1l|]) * wB^2 + ([|a3|] * wB + [|a4|])) - with (([|a1h|] * wwB + [|a1l|] * wB + [|a3|])*wB+ [|a4|]). - rewrite H1;ring. rewrite wwB_wBwB;ring. - change [|a4|] with (0*wB+[|a4|]);apply beta_lex_inv;zarith. - assert (1 <= wB/2);zarith. - assert (H_:= wB_pos w_digits);apply Zdiv_le_lower_bound;zarith. - destruct H2 as (H2,H3);match goal with |-context [w_div32 ?X ?Y ?Z ?T ?U] => - generalize (@spec_w_div32 X Y Z T U); case (w_div32 X Y Z T U); - intros q r H0;generalize (H0 Eq1 H3);clear H0;intros (H4,H5) end. - split;trivial. - replace (([|a1h|] * wB + [|a1l|]) * wwB + ([|a3|] * wB + [|a4|])) with - (([|a1h|] * wwB + [|a1l|] * wB + [|a3|])*wB + [|a4|]); - [rewrite H1 | rewrite wwB_wBwB;ring]. - replace (([|q1|]*([|b1|]*wB+[|b2|])+([|r1|]*wB+[|r2|]))*wB+[|a4|]) with - (([|q1|]*([|b1|]*wB+[|b2|]))*wB+([|r1|]*wwB+[|r2|]*wB+[|a4|])); - [rewrite H4;simpl|rewrite wwB_wBwB];ring. - Qed. - -End DoubleDiv21. - -Section DoubleDivGt. - Variable w : Type. - Variable w_digits : positive. - Variable w_0 : w. - - Variable w_WW : w -> w -> zn2z w. - Variable w_0W : w -> zn2z w. - Variable w_compare : w -> w -> comparison. - Variable w_eq0 : w -> bool. - Variable w_opp_c : w -> carry w. - Variable w_opp w_opp_carry : w -> w. - Variable w_sub_c : w -> w -> carry w. - Variable w_sub w_sub_carry : w -> w -> w. - - Variable w_div_gt : w -> w -> w*w. - Variable w_mod_gt : w -> w -> w. - Variable w_gcd_gt : w -> w -> w. - Variable w_add_mul_div : w -> w -> w -> w. - Variable w_head0 : w -> w. - Variable w_div21 : w -> w -> w -> w * w. - Variable w_div32 : w -> w -> w -> w -> w -> w * zn2z w. - - - Variable _ww_zdigits : zn2z w. - Variable ww_1 : zn2z w. - Variable ww_add_mul_div : zn2z w -> zn2z w -> zn2z w -> zn2z w. - - Variable w_zdigits : w. - - Definition ww_div_gt_aux ah al bh bl := - Eval lazy beta iota delta [ww_sub ww_opp] in - let p := w_head0 bh in - match w_compare p w_0 with - | Gt => - let b1 := w_add_mul_div p bh bl in - let b2 := w_add_mul_div p bl w_0 in - let a1 := w_add_mul_div p w_0 ah in - let a2 := w_add_mul_div p ah al in - let a3 := w_add_mul_div p al w_0 in - let (q,r) := w_div32 a1 a2 a3 b1 b2 in - (WW w_0 q, ww_add_mul_div - (ww_sub w_0 w_WW w_opp_c w_opp_carry w_sub_c - w_opp w_sub w_sub_carry _ww_zdigits (w_0W p)) W0 r) - | _ => (ww_1, ww_sub w_0 w_WW w_opp_c w_opp_carry w_sub_c - w_opp w_sub w_sub_carry (WW ah al) (WW bh bl)) - end. - - Definition ww_div_gt a b := - Eval lazy beta iota delta [ww_div_gt_aux double_divn1 - double_divn1_p double_divn1_p_aux double_divn1_0 double_divn1_0_aux - double_split double_0 double_WW] in - match a, b with - | W0, _ => (W0,W0) - | _, W0 => (W0,W0) - | WW ah al, WW bh bl => - if w_eq0 ah then - let (q,r) := w_div_gt al bl in - (WW w_0 q, w_0W r) - else - match w_compare w_0 bh with - | Eq => - let(q,r):= - double_divn1 w_zdigits w_0 w_WW w_head0 w_add_mul_div w_div21 - w_compare w_sub 1 a bl in - (q, w_0W r) - | Lt => ww_div_gt_aux ah al bh bl - | Gt => (W0,W0) (* cas absurde *) - end - end. - - Definition ww_mod_gt_aux ah al bh bl := - Eval lazy beta iota delta [ww_sub ww_opp] in - let p := w_head0 bh in - match w_compare p w_0 with - | Gt => - let b1 := w_add_mul_div p bh bl in - let b2 := w_add_mul_div p bl w_0 in - let a1 := w_add_mul_div p w_0 ah in - let a2 := w_add_mul_div p ah al in - let a3 := w_add_mul_div p al w_0 in - let (q,r) := w_div32 a1 a2 a3 b1 b2 in - ww_add_mul_div (ww_sub w_0 w_WW w_opp_c w_opp_carry w_sub_c - w_opp w_sub w_sub_carry _ww_zdigits (w_0W p)) W0 r - | _ => - ww_sub w_0 w_WW w_opp_c w_opp_carry w_sub_c - w_opp w_sub w_sub_carry (WW ah al) (WW bh bl) - end. - - Definition ww_mod_gt a b := - Eval lazy beta iota delta [ww_mod_gt_aux double_modn1 - double_modn1_p double_modn1_p_aux double_modn1_0 double_modn1_0_aux - double_split double_0 double_WW snd] in - match a, b with - | W0, _ => W0 - | _, W0 => W0 - | WW ah al, WW bh bl => - if w_eq0 ah then w_0W (w_mod_gt al bl) - else - match w_compare w_0 bh with - | Eq => - w_0W (double_modn1 w_zdigits w_0 w_head0 w_add_mul_div w_div21 - w_compare w_sub 1 a bl) - | Lt => ww_mod_gt_aux ah al bh bl - | Gt => W0 (* cas absurde *) - end - end. - - Definition ww_gcd_gt_body (cont: w->w->w->w->zn2z w) (ah al bh bl: w) := - Eval lazy beta iota delta [ww_mod_gt_aux double_modn1 - double_modn1_p double_modn1_p_aux double_modn1_0 double_modn1_0_aux - double_split double_0 double_WW snd] in - match w_compare w_0 bh with - | Eq => - match w_compare w_0 bl with - | Eq => WW ah al (* normalement n'arrive pas si forme normale *) - | Lt => - let m := double_modn1 w_zdigits w_0 w_head0 w_add_mul_div w_div21 - w_compare w_sub 1 (WW ah al) bl in - WW w_0 (w_gcd_gt bl m) - | Gt => W0 (* absurde *) - end - | Lt => - let m := ww_mod_gt_aux ah al bh bl in - match m with - | W0 => WW bh bl - | WW mh ml => - match w_compare w_0 mh with - | Eq => - match w_compare w_0 ml with - | Eq => WW bh bl - | _ => - let r := double_modn1 w_zdigits w_0 w_head0 w_add_mul_div w_div21 - w_compare w_sub 1 (WW bh bl) ml in - WW w_0 (w_gcd_gt ml r) - end - | Lt => - let r := ww_mod_gt_aux bh bl mh ml in - match r with - | W0 => m - | WW rh rl => cont mh ml rh rl - end - | Gt => W0 (* absurde *) - end - end - | Gt => W0 (* absurde *) - end. - - Fixpoint ww_gcd_gt_aux - (p:positive) (cont: w -> w -> w -> w -> zn2z w) (ah al bh bl : w) - {struct p} : zn2z w := - ww_gcd_gt_body - (fun mh ml rh rl => match p with - | xH => cont mh ml rh rl - | xO p => ww_gcd_gt_aux p (ww_gcd_gt_aux p cont) mh ml rh rl - | xI p => ww_gcd_gt_aux p (ww_gcd_gt_aux p cont) mh ml rh rl - end) ah al bh bl. - - - (* Proof *) - - Variable w_to_Z : w -> Z. - Notation wB := (base w_digits). - Notation wwB := (base (ww_digits w_digits)). - Notation "[| x |]" := (w_to_Z x) (at level 0, x at level 99). - Notation "[-| c |]" := - (interp_carry (-1) wB w_to_Z c) (at level 0, c at level 99). - - Notation "[[ x ]]" := (ww_to_Z w_digits w_to_Z x)(at level 0, x at level 99). - - Variable spec_w_0 : [|w_0|] = 0. - Variable spec_to_Z : forall x, 0 <= [|x|] < wB. - Variable spec_to_w_Z : forall x, 0 <= [[x]] < wwB. - - Variable spec_w_WW : forall h l, [[w_WW h l]] = [|h|] * wB + [|l|]. - Variable spec_w_0W : forall l, [[w_0W l]] = [|l|]. - Variable spec_compare : - forall x y, w_compare x y = Z.compare [|x|] [|y|]. - Variable spec_eq0 : forall x, w_eq0 x = true -> [|x|] = 0. - - Variable spec_opp_c : forall x, [-|w_opp_c x|] = -[|x|]. - Variable spec_opp : forall x, [|w_opp x|] = (-[|x|]) mod wB. - Variable spec_opp_carry : forall x, [|w_opp_carry x|] = wB - [|x|] - 1. - - Variable spec_sub_c : forall x y, [-|w_sub_c x y|] = [|x|] - [|y|]. - Variable spec_sub : forall x y, [|w_sub x y|] = ([|x|] - [|y|]) mod wB. - Variable spec_sub_carry : - forall x y, [|w_sub_carry x y|] = ([|x|] - [|y|] - 1) mod wB. - - Variable spec_div_gt : forall a b, [|a|] > [|b|] -> 0 < [|b|] -> - let (q,r) := w_div_gt a b in - [|a|] = [|q|] * [|b|] + [|r|] /\ - 0 <= [|r|] < [|b|]. - Variable spec_mod_gt : forall a b, [|a|] > [|b|] -> 0 < [|b|] -> - [|w_mod_gt a b|] = [|a|] mod [|b|]. - Variable spec_gcd_gt : forall a b, [|a|] > [|b|] -> - Zis_gcd [|a|] [|b|] [|w_gcd_gt a b|]. - - Variable spec_add_mul_div : forall x y p, - [|p|] <= Zpos w_digits -> - [| w_add_mul_div p x y |] = - ([|x|] * (2 ^ ([|p|])) + - [|y|] / (2 ^ ((Zpos w_digits) - [|p|]))) mod wB. - Variable spec_head0 : forall x, 0 < [|x|] -> - wB/ 2 <= 2 ^ [|w_head0 x|] * [|x|] < wB. - - Variable spec_div21 : forall a1 a2 b, - wB/2 <= [|b|] -> - [|a1|] < [|b|] -> - let (q,r) := w_div21 a1 a2 b in - [|a1|] *wB+ [|a2|] = [|q|] * [|b|] + [|r|] /\ - 0 <= [|r|] < [|b|]. - - Variable spec_w_div32 : forall a1 a2 a3 b1 b2, - wB/2 <= [|b1|] -> - [[WW a1 a2]] < [[WW b1 b2]] -> - let (q,r) := w_div32 a1 a2 a3 b1 b2 in - [|a1|] * wwB + [|a2|] * wB + [|a3|] = - [|q|] * ([|b1|] * wB + [|b2|]) + [[r]] /\ - 0 <= [[r]] < [|b1|] * wB + [|b2|]. - - Variable spec_w_zdigits: [|w_zdigits|] = Zpos w_digits. - - Variable spec_ww_digits_ : [[_ww_zdigits]] = Zpos (xO w_digits). - Variable spec_ww_1 : [[ww_1]] = 1. - Variable spec_ww_add_mul_div : forall x y p, - [[p]] <= Zpos (xO w_digits) -> - [[ ww_add_mul_div p x y ]] = - ([[x]] * (2^[[p]]) + - [[y]] / (2^(Zpos (xO w_digits) - [[p]]))) mod wwB. - - Ltac Spec_w_to_Z x := - let H:= fresh "HH" in - assert (H:= spec_to_Z x). - - Ltac Spec_ww_to_Z x := - let H:= fresh "HH" in - assert (H:= spec_ww_to_Z w_digits w_to_Z spec_to_Z x). - - Lemma to_Z_div_minus_p : forall x p, - 0 < [|p|] < Zpos w_digits -> - 0 <= [|x|] / 2 ^ (Zpos w_digits - [|p|]) < 2 ^ [|p|]. - Proof. - intros x p H;Spec_w_to_Z x. - split. apply Zdiv_le_lower_bound;zarith. - apply Zdiv_lt_upper_bound;zarith. - rewrite <- Zpower_exp;zarith. - ring_simplify ([|p|] + (Zpos w_digits - [|p|])); unfold base in HH;zarith. - Qed. - Hint Resolve to_Z_div_minus_p : zarith. - - Lemma spec_ww_div_gt_aux : forall ah al bh bl, - [[WW ah al]] > [[WW bh bl]] -> - 0 < [|bh|] -> - let (q,r) := ww_div_gt_aux ah al bh bl in - [[WW ah al]] = [[q]] * [[WW bh bl]] + [[r]] /\ - 0 <= [[r]] < [[WW bh bl]]. - Proof. - intros ah al bh bl Hgt Hpos;unfold ww_div_gt_aux. - change - (let (q, r) := let p := w_head0 bh in - match w_compare p w_0 with - | Gt => - let b1 := w_add_mul_div p bh bl in - let b2 := w_add_mul_div p bl w_0 in - let a1 := w_add_mul_div p w_0 ah in - let a2 := w_add_mul_div p ah al in - let a3 := w_add_mul_div p al w_0 in - let (q,r) := w_div32 a1 a2 a3 b1 b2 in - (WW w_0 q, ww_add_mul_div - (ww_sub w_0 w_WW w_opp_c w_opp_carry w_sub_c - w_opp w_sub w_sub_carry _ww_zdigits (w_0W p)) W0 r) - | _ => (ww_1, ww_sub w_0 w_WW w_opp_c w_opp_carry w_sub_c - w_opp w_sub w_sub_carry (WW ah al) (WW bh bl)) - end in [[WW ah al]]=[[q]]*[[WW bh bl]]+[[r]] /\ 0 <=[[r]]< [[WW bh bl]]). - assert (Hh := spec_head0 Hpos). - lazy zeta. - rewrite spec_compare; case Z.compare_spec; - rewrite spec_w_0; intros HH. - generalize Hh; rewrite HH; simpl Z.pow; - rewrite Z.mul_1_l; intros (HH1, HH2); clear HH. - assert (wwB <= 2*[[WW bh bl]]). - apply Z.le_trans with (2*[|bh|]*wB). - rewrite wwB_wBwB; rewrite Z.pow_2_r; apply Z.mul_le_mono_nonneg_r; zarith. - rewrite <- wB_div_2; apply Z.mul_le_mono_nonneg_l; zarith. - simpl ww_to_Z;rewrite Z.mul_add_distr_l;rewrite Z.mul_assoc. - Spec_w_to_Z bl;zarith. - Spec_ww_to_Z (WW ah al). - rewrite spec_ww_sub;eauto. - simpl;rewrite spec_ww_1;rewrite Z.mul_1_l;simpl. - simpl ww_to_Z in Hgt, H, HH;rewrite Zmod_small;split;zarith. - case (spec_to_Z (w_head0 bh)); auto with zarith. - assert ([|w_head0 bh|] < Zpos w_digits). - destruct (Z_lt_ge_dec [|w_head0 bh|] (Zpos w_digits));trivial. - exfalso. - assert (2 ^ [|w_head0 bh|] * [|bh|] >= wB);auto with zarith. - apply Z.le_ge; replace wB with (wB * 1);try ring. - Spec_w_to_Z bh;apply Z.mul_le_mono_nonneg;zarith. - unfold base;apply Zpower_le_monotone;zarith. - assert (HHHH : 0 < [|w_head0 bh|] < Zpos w_digits); auto with zarith. - assert (Hb:= Z.lt_le_incl _ _ H). - generalize (spec_add_mul_div w_0 ah Hb) - (spec_add_mul_div ah al Hb) - (spec_add_mul_div al w_0 Hb) - (spec_add_mul_div bh bl Hb) - (spec_add_mul_div bl w_0 Hb); - rewrite spec_w_0; repeat rewrite Z.mul_0_l;repeat rewrite Z.add_0_l; - rewrite Zdiv_0_l;repeat rewrite Z.add_0_r. - Spec_w_to_Z ah;Spec_w_to_Z bh. - unfold base;repeat rewrite Zmod_shift_r;zarith. - assert (H3:=to_Z_div_minus_p ah HHHH);assert(H4:=to_Z_div_minus_p al HHHH); - assert (H5:=to_Z_div_minus_p bl HHHH). - rewrite Z.mul_comm in Hh. - assert (2^[|w_head0 bh|] < wB). unfold base;apply Zpower_lt_monotone;zarith. - unfold base in H0;rewrite Zmod_small;zarith. - fold wB; rewrite (Zmod_small ([|bh|] * 2 ^ [|w_head0 bh|]));zarith. - intros U1 U2 U3 V1 V2. - generalize (@spec_w_div32 (w_add_mul_div (w_head0 bh) w_0 ah) - (w_add_mul_div (w_head0 bh) ah al) - (w_add_mul_div (w_head0 bh) al w_0) - (w_add_mul_div (w_head0 bh) bh bl) - (w_add_mul_div (w_head0 bh) bl w_0)). - destruct (w_div32 (w_add_mul_div (w_head0 bh) w_0 ah) - (w_add_mul_div (w_head0 bh) ah al) - (w_add_mul_div (w_head0 bh) al w_0) - (w_add_mul_div (w_head0 bh) bh bl) - (w_add_mul_div (w_head0 bh) bl w_0)) as (q,r). - rewrite V1;rewrite V2. rewrite Z.mul_add_distr_r. - rewrite <- (Z.add_assoc ([|bh|] * 2 ^ [|w_head0 bh|] * wB)). - unfold base;rewrite <- shift_unshift_mod;zarith. fold wB. - replace ([|bh|] * 2 ^ [|w_head0 bh|] * wB + [|bl|] * 2 ^ [|w_head0 bh|]) with - ([[WW bh bl]] * 2^[|w_head0 bh|]). 2:simpl;ring. - fold wwB. rewrite wwB_wBwB. rewrite Z.pow_2_r. rewrite U1;rewrite U2;rewrite U3. - rewrite Z.mul_assoc. rewrite Z.mul_add_distr_r. - rewrite (Z.add_assoc ([|ah|] / 2^(Zpos(w_digits) - [|w_head0 bh|])*wB * wB)). - rewrite <- Z.mul_add_distr_r. rewrite <- Z.add_assoc. - unfold base;repeat rewrite <- shift_unshift_mod;zarith. fold wB. - replace ([|ah|] * 2 ^ [|w_head0 bh|] * wB + [|al|] * 2 ^ [|w_head0 bh|]) with - ([[WW ah al]] * 2^[|w_head0 bh|]). 2:simpl;ring. - intros Hd;destruct Hd;zarith. - simpl. apply beta_lex_inv;zarith. rewrite U1;rewrite V1. - assert ([|ah|] / 2 ^ (Zpos (w_digits) - [|w_head0 bh|]) < wB/2);zarith. - apply Zdiv_lt_upper_bound;zarith. - unfold base. - replace (2^Zpos (w_digits)) with (2^(Zpos (w_digits) - 1)*2). - rewrite Z_div_mult;zarith. rewrite <- Zpower_exp;zarith. - apply Z.lt_le_trans with wB;zarith. - unfold base;apply Zpower_le_monotone;zarith. - pattern 2 at 2;replace 2 with (2^1);trivial. - rewrite <- Zpower_exp;zarith. ring_simplify (Zpos (w_digits) - 1 + 1);trivial. - change [[WW w_0 q]] with ([|w_0|]*wB+[|q|]);rewrite spec_w_0;rewrite - Z.mul_0_l;rewrite Z.add_0_l. - replace [[ww_add_mul_div (ww_sub w_0 w_WW w_opp_c w_opp_carry w_sub_c w_opp w_sub w_sub_carry - _ww_zdigits (w_0W (w_head0 bh))) W0 r]] with ([[r]]/2^[|w_head0 bh|]). - assert (0 < 2^[|w_head0 bh|]). apply Z.pow_pos_nonneg;zarith. - split. - rewrite <- (Z_div_mult [[WW ah al]] (2^[|w_head0 bh|]));zarith. - rewrite H1;rewrite Z.mul_assoc;apply Z_div_plus_l;trivial. - split;[apply Zdiv_le_lower_bound| apply Zdiv_lt_upper_bound];zarith. - rewrite spec_ww_add_mul_div. - rewrite spec_ww_sub; auto with zarith. - rewrite spec_ww_digits_. - change (Zpos (xO (w_digits))) with (2*Zpos (w_digits));zarith. - simpl ww_to_Z;rewrite Z.mul_0_l;rewrite Z.add_0_l. - rewrite spec_w_0W. - rewrite (fun x y => Zmod_small (x-y)); auto with zarith. - ring_simplify (2 * Zpos w_digits - (2 * Zpos w_digits - [|w_head0 bh|])). - rewrite Zmod_small;zarith. - split;[apply Zdiv_le_lower_bound| apply Zdiv_lt_upper_bound];zarith. - Spec_ww_to_Z r. - apply Z.lt_le_trans with wwB;zarith. - rewrite <- (Z.mul_1_r wwB);apply Z.mul_le_mono_nonneg;zarith. - split; auto with zarith. - apply Z.le_lt_trans with (2 * Zpos w_digits); auto with zarith. - unfold base, ww_digits; rewrite (Pos2Z.inj_xO w_digits). - apply Zpower2_lt_lin; auto with zarith. - rewrite spec_ww_sub; auto with zarith. - rewrite spec_ww_digits_; rewrite spec_w_0W. - rewrite Zmod_small;zarith. - rewrite Pos2Z.inj_xO; split; auto with zarith. - apply Z.le_lt_trans with (2 * Zpos w_digits); auto with zarith. - unfold base, ww_digits; rewrite (Pos2Z.inj_xO w_digits). - apply Zpower2_lt_lin; auto with zarith. - Qed. - - Lemma spec_ww_div_gt : forall a b, [[a]] > [[b]] -> 0 < [[b]] -> - let (q,r) := ww_div_gt a b in - [[a]] = [[q]] * [[b]] + [[r]] /\ - 0 <= [[r]] < [[b]]. - Proof. - intros a b Hgt Hpos;unfold ww_div_gt. - change (let (q,r) := match a, b with - | W0, _ => (W0,W0) - | _, W0 => (W0,W0) - | WW ah al, WW bh bl => - if w_eq0 ah then - let (q,r) := w_div_gt al bl in - (WW w_0 q, w_0W r) - else - match w_compare w_0 bh with - | Eq => - let(q,r):= - double_divn1 w_zdigits w_0 w_WW w_head0 w_add_mul_div w_div21 - w_compare w_sub 1 a bl in - (q, w_0W r) - | Lt => ww_div_gt_aux ah al bh bl - | Gt => (W0,W0) (* cas absurde *) - end - end in [[a]] = [[q]] * [[b]] + [[r]] /\ 0 <= [[r]] < [[b]]). - destruct a as [ |ah al]. simpl in Hgt;omega. - destruct b as [ |bh bl]. simpl in Hpos;omega. - Spec_w_to_Z ah; Spec_w_to_Z al; Spec_w_to_Z bh; Spec_w_to_Z bl. - assert (H:=@spec_eq0 ah);destruct (w_eq0 ah). - simpl ww_to_Z;rewrite H;trivial. simpl in Hgt;rewrite H in Hgt;trivial. - assert ([|bh|] <= 0). - apply beta_lex with (d:=[|al|])(b:=[|bl|]) (beta := wB);zarith. - assert ([|bh|] = 0);zarith. rewrite H1 in Hgt;rewrite H1;simpl in Hgt. - simpl. simpl in Hpos;rewrite H1 in Hpos;simpl in Hpos. - assert (H2:=spec_div_gt Hgt Hpos);destruct (w_div_gt al bl). - repeat rewrite spec_w_0W;simpl;rewrite spec_w_0;simpl;trivial. - clear H. - rewrite spec_compare; case Z.compare_spec; intros Hcmp. - rewrite spec_w_0 in Hcmp. change [[WW bh bl]] with ([|bh|]*wB+[|bl|]). - rewrite <- Hcmp;rewrite Z.mul_0_l;rewrite Z.add_0_l. - simpl in Hpos;rewrite <- Hcmp in Hpos;simpl in Hpos. - assert (H2:= @spec_double_divn1 w w_digits w_zdigits w_0 w_WW w_head0 w_add_mul_div - w_div21 w_compare w_sub w_to_Z spec_to_Z spec_w_zdigits spec_w_0 spec_w_WW spec_head0 - spec_add_mul_div spec_div21 spec_compare spec_sub 1 (WW ah al) bl Hpos). - destruct (double_divn1 w_zdigits w_0 w_WW w_head0 w_add_mul_div w_div21 - w_compare w_sub 1 - (WW ah al) bl). - rewrite spec_w_0W;unfold ww_to_Z;trivial. - apply spec_ww_div_gt_aux;trivial. rewrite spec_w_0 in Hcmp;trivial. - rewrite spec_w_0 in Hcmp;exfalso;omega. - Qed. - - Lemma spec_ww_mod_gt_aux_eq : forall ah al bh bl, - ww_mod_gt_aux ah al bh bl = snd (ww_div_gt_aux ah al bh bl). - Proof. - intros ah al bh bl. unfold ww_mod_gt_aux, ww_div_gt_aux. - case w_compare; auto. - case w_div32; auto. - Qed. - - Lemma spec_ww_mod_gt_aux : forall ah al bh bl, - [[WW ah al]] > [[WW bh bl]] -> - 0 < [|bh|] -> - [[ww_mod_gt_aux ah al bh bl]] = [[WW ah al]] mod [[WW bh bl]]. - Proof. - intros. rewrite spec_ww_mod_gt_aux_eq;trivial. - assert (H3 := spec_ww_div_gt_aux ah al bl H H0). - destruct (ww_div_gt_aux ah al bh bl) as (q,r);simpl. simpl in H,H3. - destruct H3;apply Zmod_unique with [[q]];zarith. - rewrite H1;ring. - Qed. - - Lemma spec_w_mod_gt_eq : forall a b, [|a|] > [|b|] -> 0 <[|b|] -> - [|w_mod_gt a b|] = [|snd (w_div_gt a b)|]. - Proof. - intros a b Hgt Hpos. - rewrite spec_mod_gt;trivial. - assert (H:=spec_div_gt Hgt Hpos). - destruct (w_div_gt a b) as (q,r);simpl. - rewrite Z.mul_comm in H;destruct H. - symmetry;apply Zmod_unique with [|q|];trivial. - Qed. - - Lemma spec_ww_mod_gt_eq : forall a b, [[a]] > [[b]] -> 0 < [[b]] -> - [[ww_mod_gt a b]] = [[snd (ww_div_gt a b)]]. - Proof. - intros a b Hgt Hpos. - change (ww_mod_gt a b) with - (match a, b with - | W0, _ => W0 - | _, W0 => W0 - | WW ah al, WW bh bl => - if w_eq0 ah then w_0W (w_mod_gt al bl) - else - match w_compare w_0 bh with - | Eq => - w_0W (double_modn1 w_zdigits w_0 w_head0 w_add_mul_div w_div21 - w_compare w_sub 1 a bl) - | Lt => ww_mod_gt_aux ah al bh bl - | Gt => W0 (* cas absurde *) - end end). - change (ww_div_gt a b) with - (match a, b with - | W0, _ => (W0,W0) - | _, W0 => (W0,W0) - | WW ah al, WW bh bl => - if w_eq0 ah then - let (q,r) := w_div_gt al bl in - (WW w_0 q, w_0W r) - else - match w_compare w_0 bh with - | Eq => - let(q,r):= - double_divn1 w_zdigits w_0 w_WW w_head0 w_add_mul_div w_div21 - w_compare w_sub 1 a bl in - (q, w_0W r) - | Lt => ww_div_gt_aux ah al bh bl - | Gt => (W0,W0) (* cas absurde *) - end - end). - destruct a as [ |ah al];trivial. - destruct b as [ |bh bl];trivial. - Spec_w_to_Z ah; Spec_w_to_Z al; Spec_w_to_Z bh; Spec_w_to_Z bl. - assert (H:=@spec_eq0 ah);destruct (w_eq0 ah). - simpl in Hgt;rewrite H in Hgt;trivial. - assert ([|bh|] <= 0). - apply beta_lex with (d:=[|al|])(b:=[|bl|]) (beta := wB);zarith. - assert ([|bh|] = 0);zarith. rewrite H1 in Hgt;simpl in Hgt. - simpl in Hpos;rewrite H1 in Hpos;simpl in Hpos. - rewrite spec_w_0W;rewrite spec_w_mod_gt_eq;trivial. - destruct (w_div_gt al bl);simpl;rewrite spec_w_0W;trivial. - clear H. - rewrite spec_compare; case Z.compare_spec; intros H2. - rewrite (@spec_double_modn1_aux w w_zdigits w_0 w_WW w_head0 w_add_mul_div - w_div21 w_compare w_sub w_to_Z spec_w_0 spec_compare 1 (WW ah al) bl). - destruct (double_divn1 w_zdigits w_0 w_WW w_head0 w_add_mul_div w_div21 w_compare w_sub 1 - (WW ah al) bl);simpl;trivial. - rewrite spec_ww_mod_gt_aux_eq;trivial;symmetry;trivial. - trivial. - Qed. - - Lemma spec_ww_mod_gt : forall a b, [[a]] > [[b]] -> 0 < [[b]] -> - [[ww_mod_gt a b]] = [[a]] mod [[b]]. - Proof. - intros a b Hgt Hpos. - assert (H:= spec_ww_div_gt a b Hgt Hpos). - rewrite (spec_ww_mod_gt_eq a b Hgt Hpos). - destruct (ww_div_gt a b)as(q,r);destruct H. - apply Zmod_unique with[[q]];simpl;trivial. - rewrite Z.mul_comm;trivial. - Qed. - - Lemma Zis_gcd_mod : forall a b d, - 0 < b -> Zis_gcd b (a mod b) d -> Zis_gcd a b d. - Proof. - intros a b d H H1; apply Zis_gcd_for_euclid with (a/b). - pattern a at 1;rewrite (Z_div_mod_eq a b). - ring_simplify (b * (a / b) + a mod b - a / b * b);trivial. zarith. - Qed. - - Lemma spec_ww_gcd_gt_aux_body : - forall ah al bh bl n cont, - [[WW bh bl]] <= 2^n -> - [[WW ah al]] > [[WW bh bl]] -> - (forall xh xl yh yl, - [[WW xh xl]] > [[WW yh yl]] -> [[WW yh yl]] <= 2^(n-1) -> - Zis_gcd [[WW xh xl]] [[WW yh yl]] [[cont xh xl yh yl]]) -> - Zis_gcd [[WW ah al]] [[WW bh bl]] [[ww_gcd_gt_body cont ah al bh bl]]. - Proof. - intros ah al bh bl n cont Hlog Hgt Hcont. - change (ww_gcd_gt_body cont ah al bh bl) with (match w_compare w_0 bh with - | Eq => - match w_compare w_0 bl with - | Eq => WW ah al (* normalement n'arrive pas si forme normale *) - | Lt => - let m := double_modn1 w_zdigits w_0 w_head0 w_add_mul_div w_div21 - w_compare w_sub 1 (WW ah al) bl in - WW w_0 (w_gcd_gt bl m) - | Gt => W0 (* absurde *) - end - | Lt => - let m := ww_mod_gt_aux ah al bh bl in - match m with - | W0 => WW bh bl - | WW mh ml => - match w_compare w_0 mh with - | Eq => - match w_compare w_0 ml with - | Eq => WW bh bl - | _ => - let r := double_modn1 w_zdigits w_0 w_head0 w_add_mul_div w_div21 - w_compare w_sub 1 (WW bh bl) ml in - WW w_0 (w_gcd_gt ml r) - end - | Lt => - let r := ww_mod_gt_aux bh bl mh ml in - match r with - | W0 => m - | WW rh rl => cont mh ml rh rl - end - | Gt => W0 (* absurde *) - end - end - | Gt => W0 (* absurde *) - end). - rewrite spec_compare, spec_w_0. - case Z.compare_spec; intros Hbh. - simpl ww_to_Z in *. rewrite <- Hbh. - rewrite Z.mul_0_l;rewrite Z.add_0_l. - rewrite spec_compare, spec_w_0. - case Z.compare_spec; intros Hbl. - rewrite <- Hbl;apply Zis_gcd_0. - simpl;rewrite spec_w_0;rewrite Z.mul_0_l;rewrite Z.add_0_l. - apply Zis_gcd_mod;zarith. - change ([|ah|] * wB + [|al|]) with (double_to_Z w_digits w_to_Z 1 (WW ah al)). - rewrite <- (@spec_double_modn1 w w_digits w_zdigits w_0 w_WW w_head0 w_add_mul_div - w_div21 w_compare w_sub w_to_Z spec_to_Z spec_w_zdigits spec_w_0 spec_w_WW spec_head0 spec_add_mul_div - spec_div21 spec_compare spec_sub 1 (WW ah al) bl Hbl). - apply spec_gcd_gt. - rewrite (@spec_double_modn1 w w_digits w_zdigits w_0 w_WW); trivial. - apply Z.lt_gt;match goal with | |- ?x mod ?y < ?y => - destruct (Z_mod_lt x y);zarith end. - Spec_w_to_Z bl;exfalso;omega. - assert (H:= spec_ww_mod_gt_aux _ _ _ Hgt Hbh). - assert (H2 : 0 < [[WW bh bl]]). - simpl;Spec_w_to_Z bl. apply Z.lt_le_trans with ([|bh|]*wB);zarith. - apply Z.mul_pos_pos;zarith. - apply Zis_gcd_mod;trivial. rewrite <- H. - simpl in *;destruct (ww_mod_gt_aux ah al bh bl) as [ |mh ml]. - simpl;apply Zis_gcd_0;zarith. - rewrite spec_compare, spec_w_0; case Z.compare_spec; intros Hmh. - simpl;rewrite <- Hmh;simpl. - rewrite spec_compare, spec_w_0; case Z.compare_spec; intros Hml. - rewrite <- Hml;simpl;apply Zis_gcd_0. - simpl; rewrite spec_w_0; simpl. - apply Zis_gcd_mod;zarith. - change ([|bh|] * wB + [|bl|]) with (double_to_Z w_digits w_to_Z 1 (WW bh bl)). - rewrite <- (@spec_double_modn1 w w_digits w_zdigits w_0 w_WW w_head0 w_add_mul_div - w_div21 w_compare w_sub w_to_Z spec_to_Z spec_w_zdigits spec_w_0 spec_w_WW spec_head0 spec_add_mul_div - spec_div21 spec_compare spec_sub 1 (WW bh bl) ml Hml). - apply spec_gcd_gt. - rewrite (@spec_double_modn1 w w_digits w_zdigits w_0 w_WW); trivial. - apply Z.lt_gt;match goal with | |- ?x mod ?y < ?y => - destruct (Z_mod_lt x y);zarith end. - Spec_w_to_Z ml;exfalso;omega. - assert ([[WW bh bl]] > [[WW mh ml]]). - rewrite H;simpl; apply Z.lt_gt;match goal with | |- ?x mod ?y < ?y => - destruct (Z_mod_lt x y);zarith end. - assert (H1:= spec_ww_mod_gt_aux _ _ _ H0 Hmh). - assert (H3 : 0 < [[WW mh ml]]). - simpl;Spec_w_to_Z ml. apply Z.lt_le_trans with ([|mh|]*wB);zarith. - apply Z.mul_pos_pos;zarith. - apply Zis_gcd_mod;zarith. simpl in *;rewrite <- H1. - destruct (ww_mod_gt_aux bh bl mh ml) as [ |rh rl]. simpl; apply Zis_gcd_0. - simpl;apply Hcont. simpl in H1;rewrite H1. - apply Z.lt_gt;match goal with | |- ?x mod ?y < ?y => - destruct (Z_mod_lt x y);zarith end. - apply Z.le_trans with (2^n/2). - apply Zdiv_le_lower_bound;zarith. - apply Z.le_trans with ([|bh|] * wB + [|bl|]);zarith. - assert (H3' := Z_div_mod_eq [[WW bh bl]] [[WW mh ml]] (Z.lt_gt _ _ H3)). - assert (H4 : 0 <= [[WW bh bl]]/[[WW mh ml]]). - apply Z.ge_le;apply Z_div_ge0;zarith. simpl in *;rewrite H1. - pattern ([|bh|] * wB + [|bl|]) at 2;rewrite H3'. - Z.le_elim H4. - assert (H6' : [[WW bh bl]] mod [[WW mh ml]] = - [[WW bh bl]] - [[WW mh ml]] * ([[WW bh bl]]/[[WW mh ml]])). - simpl;pattern ([|bh|] * wB + [|bl|]) at 2;rewrite H3';ring. simpl in H6'. - assert ([[WW mh ml]] <= [[WW mh ml]] * ([[WW bh bl]]/[[WW mh ml]])). - simpl;pattern ([|mh|]*wB+[|ml|]) at 1;rewrite <- Z.mul_1_r;zarith. - simpl in *;assert (H8 := Z_mod_lt [[WW bh bl]] [[WW mh ml]]);simpl in H8; - zarith. - assert (H8 := Z_mod_lt [[WW bh bl]] [[WW mh ml]]);simpl in *;zarith. - rewrite <- H4 in H3';rewrite Z.mul_0_r in H3';simpl in H3';zarith. - pattern n at 1;replace n with (n-1+1);try ring. - rewrite Zpower_exp;zarith. change (2^1) with 2. - rewrite Z_div_mult;zarith. - assert (2^1 <= 2^n). change (2^1) with 2;zarith. - assert (H7 := @Zpower_le_monotone_inv 2 1 n);zarith. - Spec_w_to_Z mh;exfalso;zarith. - Spec_w_to_Z bh;exfalso;zarith. - Qed. - - Lemma spec_ww_gcd_gt_aux : - forall p cont n, - (forall xh xl yh yl, - [[WW xh xl]] > [[WW yh yl]] -> - [[WW yh yl]] <= 2^n -> - Zis_gcd [[WW xh xl]] [[WW yh yl]] [[cont xh xl yh yl]]) -> - forall ah al bh bl , [[WW ah al]] > [[WW bh bl]] -> - [[WW bh bl]] <= 2^(Zpos p + n) -> - Zis_gcd [[WW ah al]] [[WW bh bl]] - [[ww_gcd_gt_aux p cont ah al bh bl]]. - Proof. - induction p;intros cont n Hcont ah al bh bl Hgt Hs;simpl ww_gcd_gt_aux. - assert (0 < Zpos p). unfold Z.lt;reflexivity. - apply spec_ww_gcd_gt_aux_body with (n := Zpos (xI p) + n); - trivial;rewrite Pos2Z.inj_xI. - intros. apply IHp with (n := Zpos p + n);zarith. - intros. apply IHp with (n := n );zarith. - apply Z.le_trans with (2 ^ (2* Zpos p + 1+ n -1));zarith. - apply Z.pow_le_mono_r;zarith. - assert (0 < Zpos p). unfold Z.lt;reflexivity. - apply spec_ww_gcd_gt_aux_body with (n := Zpos (xO p) + n );trivial. - rewrite (Pos2Z.inj_xO p). - intros. apply IHp with (n := Zpos p + n - 1);zarith. - intros. apply IHp with (n := n -1 );zarith. - intros;apply Hcont;zarith. - apply Z.le_trans with (2^(n-1));zarith. - apply Z.pow_le_mono_r;zarith. - apply Z.le_trans with (2 ^ (Zpos p + n -1));zarith. - apply Z.pow_le_mono_r;zarith. - apply Z.le_trans with (2 ^ (2*Zpos p + n -1));zarith. - apply Z.pow_le_mono_r;zarith. - apply spec_ww_gcd_gt_aux_body with (n := n+1);trivial. - rewrite Z.add_comm;trivial. - ring_simplify (n + 1 - 1);trivial. - Qed. - -End DoubleDivGt. - -Section DoubleDiv. - - Variable w : Type. - Variable w_digits : positive. - Variable ww_1 : zn2z w. - Variable ww_compare : zn2z w -> zn2z w -> comparison. - - Variable ww_div_gt : zn2z w -> zn2z w -> zn2z w * zn2z w. - Variable ww_mod_gt : zn2z w -> zn2z w -> zn2z w. - - Definition ww_div a b := - match ww_compare a b with - | Gt => ww_div_gt a b - | Eq => (ww_1, W0) - | Lt => (W0, a) - end. - - Definition ww_mod a b := - match ww_compare a b with - | Gt => ww_mod_gt a b - | Eq => W0 - | Lt => a - end. - - Variable w_to_Z : w -> Z. - Notation wB := (base w_digits). - Notation wwB := (base (ww_digits w_digits)). - Notation "[| x |]" := (w_to_Z x) (at level 0, x at level 99). - Notation "[[ x ]]" := (ww_to_Z w_digits w_to_Z x)(at level 0, x at level 99). - Variable spec_to_Z : forall x, 0 <= [|x|] < wB. - Variable spec_ww_1 : [[ww_1]] = 1. - Variable spec_ww_compare : forall x y, - ww_compare x y = Z.compare [[x]] [[y]]. - Variable spec_ww_div_gt : forall a b, [[a]] > [[b]] -> 0 < [[b]] -> - let (q,r) := ww_div_gt a b in - [[a]] = [[q]] * [[b]] + [[r]] /\ - 0 <= [[r]] < [[b]]. - Variable spec_ww_mod_gt : forall a b, [[a]] > [[b]] -> 0 < [[b]] -> - [[ww_mod_gt a b]] = [[a]] mod [[b]]. - - Ltac Spec_w_to_Z x := - let H:= fresh "HH" in - assert (H:= spec_to_Z x). - - Ltac Spec_ww_to_Z x := - let H:= fresh "HH" in - assert (H:= spec_ww_to_Z w_digits w_to_Z spec_to_Z x). - - Lemma spec_ww_div : forall a b, 0 < [[b]] -> - let (q,r) := ww_div a b in - [[a]] = [[q]] * [[b]] + [[r]] /\ - 0 <= [[r]] < [[b]]. - Proof. - intros a b Hpos;unfold ww_div. - rewrite spec_ww_compare; case Z.compare_spec; intros. - simpl;rewrite spec_ww_1;split;zarith. - simpl;split;[ring|Spec_ww_to_Z a;zarith]. - apply spec_ww_div_gt;auto with zarith. - Qed. - - Lemma spec_ww_mod : forall a b, 0 < [[b]] -> - [[ww_mod a b]] = [[a]] mod [[b]]. - Proof. - intros a b Hpos;unfold ww_mod. - rewrite spec_ww_compare; case Z.compare_spec; intros. - simpl;apply Zmod_unique with 1;try rewrite H;zarith. - Spec_ww_to_Z a;symmetry;apply Zmod_small;zarith. - apply spec_ww_mod_gt;auto with zarith. - Qed. - - - Variable w_0 : w. - Variable w_1 : w. - Variable w_compare : w -> w -> comparison. - Variable w_eq0 : w -> bool. - Variable w_gcd_gt : w -> w -> w. - Variable _ww_digits : positive. - Variable spec_ww_digits_ : _ww_digits = xO w_digits. - Variable ww_gcd_gt_fix : - positive -> (w -> w -> w -> w -> zn2z w) -> - w -> w -> w -> w -> zn2z w. - - Variable spec_w_0 : [|w_0|] = 0. - Variable spec_w_1 : [|w_1|] = 1. - Variable spec_compare : - forall x y, w_compare x y = Z.compare [|x|] [|y|]. - Variable spec_eq0 : forall x, w_eq0 x = true -> [|x|] = 0. - Variable spec_gcd_gt : forall a b, [|a|] > [|b|] -> - Zis_gcd [|a|] [|b|] [|w_gcd_gt a b|]. - Variable spec_gcd_gt_fix : - forall p cont n, - (forall xh xl yh yl, - [[WW xh xl]] > [[WW yh yl]] -> - [[WW yh yl]] <= 2^n -> - Zis_gcd [[WW xh xl]] [[WW yh yl]] [[cont xh xl yh yl]]) -> - forall ah al bh bl , [[WW ah al]] > [[WW bh bl]] -> - [[WW bh bl]] <= 2^(Zpos p + n) -> - Zis_gcd [[WW ah al]] [[WW bh bl]] - [[ww_gcd_gt_fix p cont ah al bh bl]]. - - Definition gcd_cont (xh xl yh yl:w) := - match w_compare w_1 yl with - | Eq => ww_1 - | _ => WW xh xl - end. - - Lemma spec_gcd_cont : forall xh xl yh yl, - [[WW xh xl]] > [[WW yh yl]] -> - [[WW yh yl]] <= 1 -> - Zis_gcd [[WW xh xl]] [[WW yh yl]] [[gcd_cont xh xl yh yl]]. - Proof. - intros xh xl yh yl Hgt' Hle. simpl in Hle. - assert ([|yh|] = 0). - change 1 with (0*wB+1) in Hle. - assert (0 <= 1 < wB). split;zarith. apply wB_pos. - assert (H1:= beta_lex _ _ _ _ _ Hle (spec_to_Z yl) H). - Spec_w_to_Z yh;zarith. - unfold gcd_cont; rewrite spec_compare, spec_w_1. - case Z.compare_spec; intros Hcmpy. - simpl;rewrite H;simpl; - rewrite spec_ww_1;rewrite <- Hcmpy;apply Zis_gcd_mod;zarith. - rewrite <- (Zmod_unique ([|xh|]*wB+[|xl|]) 1 ([|xh|]*wB+[|xl|]) 0);zarith. - rewrite H in Hle; exfalso;zarith. - assert (H0 : [|yl|] = 0) by (Spec_w_to_Z yl;zarith). - simpl. rewrite H0, H;simpl;apply Zis_gcd_0;trivial. - Qed. - - - Variable cont : w -> w -> w -> w -> zn2z w. - Variable spec_cont : forall xh xl yh yl, - [[WW xh xl]] > [[WW yh yl]] -> - [[WW yh yl]] <= 1 -> - Zis_gcd [[WW xh xl]] [[WW yh yl]] [[cont xh xl yh yl]]. - - Definition ww_gcd_gt a b := - match a, b with - | W0, _ => b - | _, W0 => a - | WW ah al, WW bh bl => - if w_eq0 ah then (WW w_0 (w_gcd_gt al bl)) - else ww_gcd_gt_fix _ww_digits cont ah al bh bl - end. - - Definition ww_gcd a b := - Eval lazy beta delta [ww_gcd_gt] in - match ww_compare a b with - | Gt => ww_gcd_gt a b - | Eq => a - | Lt => ww_gcd_gt b a - end. - - Lemma spec_ww_gcd_gt : forall a b, [[a]] > [[b]] -> - Zis_gcd [[a]] [[b]] [[ww_gcd_gt a b]]. - Proof. - intros a b Hgt;unfold ww_gcd_gt. - destruct a as [ |ah al]. simpl;apply Zis_gcd_sym;apply Zis_gcd_0. - destruct b as [ |bh bl]. simpl;apply Zis_gcd_0. - simpl in Hgt. generalize (@spec_eq0 ah);destruct (w_eq0 ah);intros. - simpl;rewrite H in Hgt;trivial;rewrite H;trivial;rewrite spec_w_0;simpl. - assert ([|bh|] <= 0). - apply beta_lex with (d:=[|al|])(b:=[|bl|]) (beta := wB);zarith. - Spec_w_to_Z bh;assert ([|bh|] = 0);zarith. rewrite H1 in Hgt;simpl in Hgt. - rewrite H1;simpl;auto. clear H. - apply spec_gcd_gt_fix with (n:= 0);trivial. - rewrite Z.add_0_r;rewrite spec_ww_digits_. - change (2 ^ Zpos (xO w_digits)) with wwB. Spec_ww_to_Z (WW bh bl);zarith. - Qed. - - Lemma spec_ww_gcd : forall a b, Zis_gcd [[a]] [[b]] [[ww_gcd a b]]. - Proof. - intros a b. - change (ww_gcd a b) with - (match ww_compare a b with - | Gt => ww_gcd_gt a b - | Eq => a - | Lt => ww_gcd_gt b a - end). - rewrite spec_ww_compare; case Z.compare_spec; intros Hcmp. - Spec_ww_to_Z b;rewrite Hcmp. - apply Zis_gcd_for_euclid with 1;zarith. - ring_simplify ([[b]] - 1 * [[b]]). apply Zis_gcd_0;zarith. - apply Zis_gcd_sym;apply spec_ww_gcd_gt;zarith. - apply spec_ww_gcd_gt;zarith. - Qed. - -End DoubleDiv. - diff --git a/theories/Numbers/Cyclic/DoubleCyclic/DoubleDivn1.v b/theories/Numbers/Cyclic/DoubleCyclic/DoubleDivn1.v deleted file mode 100644 index 195527dd5..000000000 --- a/theories/Numbers/Cyclic/DoubleCyclic/DoubleDivn1.v +++ /dev/null @@ -1,519 +0,0 @@ -(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016 *) -(* \VV/ **************************************************************) -(* // * This file is distributed under the terms of the *) -(* * GNU Lesser General Public License Version 2.1 *) -(************************************************************************) -(* Benjamin Gregoire, Laurent Thery, INRIA, 2007 *) -(************************************************************************) - -Set Implicit Arguments. - -Require Import ZArith Ndigits. -Require Import BigNumPrelude. -Require Import DoubleType. -Require Import DoubleBase. - -Local Open Scope Z_scope. - -Local Infix "<<" := Pos.shiftl_nat (at level 30). - -Section GENDIVN1. - - Variable w : Type. - Variable w_digits : positive. - Variable w_zdigits : w. - Variable w_0 : w. - Variable w_WW : w -> w -> zn2z w. - Variable w_head0 : w -> w. - Variable w_add_mul_div : w -> w -> w -> w. - Variable w_div21 : w -> w -> w -> w * w. - Variable w_compare : w -> w -> comparison. - Variable w_sub : w -> w -> w. - - - - (* ** For proofs ** *) - Variable w_to_Z : w -> Z. - - Notation wB := (base w_digits). - - Notation "[| x |]" := (w_to_Z x) (at level 0, x at level 99). - Notation "[! n | x !]" := (double_to_Z w_digits w_to_Z n x) - (at level 0, x at level 99). - Notation "[[ x ]]" := (zn2z_to_Z wB w_to_Z x) (at level 0, x at level 99). - - Variable spec_to_Z : forall x, 0 <= [| x |] < wB. - Variable spec_w_zdigits: [|w_zdigits|] = Zpos w_digits. - Variable spec_0 : [|w_0|] = 0. - Variable spec_WW : forall h l, [[w_WW h l]] = [|h|] * wB + [|l|]. - Variable spec_head0 : forall x, 0 < [|x|] -> - wB/ 2 <= 2 ^ [|w_head0 x|] * [|x|] < wB. - Variable spec_add_mul_div : forall x y p, - [|p|] <= Zpos w_digits -> - [| w_add_mul_div p x y |] = - ([|x|] * (2 ^ [|p|]) + - [|y|] / (2 ^ ((Zpos w_digits) - [|p|]))) mod wB. - Variable spec_div21 : forall a1 a2 b, - wB/2 <= [|b|] -> - [|a1|] < [|b|] -> - let (q,r) := w_div21 a1 a2 b in - [|a1|] *wB+ [|a2|] = [|q|] * [|b|] + [|r|] /\ - 0 <= [|r|] < [|b|]. - Variable spec_compare : - forall x y, w_compare x y = Z.compare [|x|] [|y|]. - Variable spec_sub: forall x y, - [|w_sub x y|] = ([|x|] - [|y|]) mod wB. - - - - Section DIVAUX. - Variable b2p : w. - Variable b2p_le : wB/2 <= [|b2p|]. - - Definition double_divn1_0_aux n (divn1: w -> word w n -> word w n * w) r h := - let (hh,hl) := double_split w_0 n h in - let (qh,rh) := divn1 r hh in - let (ql,rl) := divn1 rh hl in - (double_WW w_WW n qh ql, rl). - - Fixpoint double_divn1_0 (n:nat) : w -> word w n -> word w n * w := - match n return w -> word w n -> word w n * w with - | O => fun r x => w_div21 r x b2p - | S n => double_divn1_0_aux n (double_divn1_0 n) - end. - - Lemma spec_split : forall (n : nat) (x : zn2z (word w n)), - let (h, l) := double_split w_0 n x in - [!S n | x!] = [!n | h!] * double_wB w_digits n + [!n | l!]. - Proof (spec_double_split w_0 w_digits w_to_Z spec_0). - - Lemma spec_double_divn1_0 : forall n r a, - [|r|] < [|b2p|] -> - let (q,r') := double_divn1_0 n r a in - [|r|] * double_wB w_digits n + [!n|a!] = [!n|q!] * [|b2p|] + [|r'|] /\ - 0 <= [|r'|] < [|b2p|]. - Proof. - induction n;intros. - exact (spec_div21 a b2p_le H). - simpl (double_divn1_0 (S n) r a); unfold double_divn1_0_aux. - assert (H1 := spec_split n a);destruct (double_split w_0 n a) as (hh,hl). - rewrite H1. - assert (H2 := IHn r hh H);destruct (double_divn1_0 n r hh) as (qh,rh). - destruct H2. - assert ([|rh|] < [|b2p|]). omega. - assert (H4 := IHn rh hl H3);destruct (double_divn1_0 n rh hl) as (ql,rl). - destruct H4;split;trivial. - rewrite spec_double_WW;trivial. - rewrite <- double_wB_wwB. - rewrite Z.mul_assoc;rewrite Z.add_assoc;rewrite <- Z.mul_add_distr_r. - rewrite H0;rewrite Z.mul_add_distr_r;rewrite <- Z.add_assoc. - rewrite H4;ring. - Qed. - - Definition double_modn1_0_aux n (modn1:w -> word w n -> w) r h := - let (hh,hl) := double_split w_0 n h in modn1 (modn1 r hh) hl. - - Fixpoint double_modn1_0 (n:nat) : w -> word w n -> w := - match n return w -> word w n -> w with - | O => fun r x => snd (w_div21 r x b2p) - | S n => double_modn1_0_aux n (double_modn1_0 n) - end. - - Lemma spec_double_modn1_0 : forall n r x, - double_modn1_0 n r x = snd (double_divn1_0 n r x). - Proof. - induction n;simpl;intros;trivial. - unfold double_modn1_0_aux, double_divn1_0_aux. - destruct (double_split w_0 n x) as (hh,hl). - rewrite (IHn r hh). - destruct (double_divn1_0 n r hh) as (qh,rh);simpl. - rewrite IHn. destruct (double_divn1_0 n rh hl);trivial. - Qed. - - Variable p : w. - Variable p_bounded : [|p|] <= Zpos w_digits. - - Lemma spec_add_mul_divp : forall x y, - [| w_add_mul_div p x y |] = - ([|x|] * (2 ^ [|p|]) + - [|y|] / (2 ^ ((Zpos w_digits) - [|p|]))) mod wB. - Proof. - intros;apply spec_add_mul_div;auto. - Qed. - - Definition double_divn1_p_aux n - (divn1 : w -> word w n -> word w n -> word w n * w) r h l := - let (hh,hl) := double_split w_0 n h in - let (lh,ll) := double_split w_0 n l in - let (qh,rh) := divn1 r hh hl in - let (ql,rl) := divn1 rh hl lh in - (double_WW w_WW n qh ql, rl). - - Fixpoint double_divn1_p (n:nat) : w -> word w n -> word w n -> word w n * w := - match n return w -> word w n -> word w n -> word w n * w with - | O => fun r h l => w_div21 r (w_add_mul_div p h l) b2p - | S n => double_divn1_p_aux n (double_divn1_p n) - end. - - Lemma p_lt_double_digits : forall n, [|p|] <= Zpos (w_digits << n). - Proof. - induction n;simpl. trivial. - case (spec_to_Z p); rewrite Pos2Z.inj_xO;auto with zarith. - Qed. - - Lemma spec_double_divn1_p : forall n r h l, - [|r|] < [|b2p|] -> - let (q,r') := double_divn1_p n r h l in - [|r|] * double_wB w_digits n + - ([!n|h!]*2^[|p|] + - [!n|l!] / (2^(Zpos(w_digits << n) - [|p|]))) - mod double_wB w_digits n = [!n|q!] * [|b2p|] + [|r'|] /\ - 0 <= [|r'|] < [|b2p|]. - Proof. - case (spec_to_Z p); intros HH0 HH1. - induction n;intros. - simpl (double_divn1_p 0 r h l). - unfold double_to_Z, double_wB, "<<". - rewrite <- spec_add_mul_divp. - exact (spec_div21 (w_add_mul_div p h l) b2p_le H). - simpl (double_divn1_p (S n) r h l). - unfold double_divn1_p_aux. - assert (H1 := spec_split n h);destruct (double_split w_0 n h) as (hh,hl). - rewrite H1. rewrite <- double_wB_wwB. - assert (H2 := spec_split n l);destruct (double_split w_0 n l) as (lh,ll). - rewrite H2. - replace ([|r|] * (double_wB w_digits n * double_wB w_digits n) + - (([!n|hh!] * double_wB w_digits n + [!n|hl!]) * 2 ^ [|p|] + - ([!n|lh!] * double_wB w_digits n + [!n|ll!]) / - 2^(Zpos (w_digits << (S n)) - [|p|])) mod - (double_wB w_digits n * double_wB w_digits n)) with - (([|r|] * double_wB w_digits n + ([!n|hh!] * 2^[|p|] + - [!n|hl!] / 2^(Zpos (w_digits << n) - [|p|])) mod - double_wB w_digits n) * double_wB w_digits n + - ([!n|hl!] * 2^[|p|] + - [!n|lh!] / 2^(Zpos (w_digits << n) - [|p|])) mod - double_wB w_digits n). - generalize (IHn r hh hl H);destruct (double_divn1_p n r hh hl) as (qh,rh); - intros (H3,H4);rewrite H3. - assert ([|rh|] < [|b2p|]). omega. - replace (([!n|qh!] * [|b2p|] + [|rh|]) * double_wB w_digits n + - ([!n|hl!] * 2 ^ [|p|] + - [!n|lh!] / 2 ^ (Zpos (w_digits << n) - [|p|])) mod - double_wB w_digits n) with - ([!n|qh!] * [|b2p|] *double_wB w_digits n + ([|rh|]*double_wB w_digits n + - ([!n|hl!] * 2 ^ [|p|] + - [!n|lh!] / 2 ^ (Zpos (w_digits << n) - [|p|])) mod - double_wB w_digits n)). 2:ring. - generalize (IHn rh hl lh H0);destruct (double_divn1_p n rh hl lh) as (ql,rl); - intros (H5,H6);rewrite H5. - split;[rewrite spec_double_WW;trivial;ring|trivial]. - assert (Uhh := spec_double_to_Z w_digits w_to_Z spec_to_Z n hh); - unfold double_wB,base in Uhh. - assert (Uhl := spec_double_to_Z w_digits w_to_Z spec_to_Z n hl); - unfold double_wB,base in Uhl. - assert (Ulh := spec_double_to_Z w_digits w_to_Z spec_to_Z n lh); - unfold double_wB,base in Ulh. - assert (Ull := spec_double_to_Z w_digits w_to_Z spec_to_Z n ll); - unfold double_wB,base in Ull. - unfold double_wB,base. - assert (UU:=p_lt_double_digits n). - rewrite Zdiv_shift_r;auto with zarith. - 2:change (Zpos (w_digits << (S n))) - with (2*Zpos (w_digits << n));auto with zarith. - replace (2 ^ (Zpos (w_digits << (S n)) - [|p|])) with - (2^(Zpos (w_digits << n) - [|p|])*2^Zpos (w_digits << n)). - rewrite Zdiv_mult_cancel_r;auto with zarith. - rewrite Z.mul_add_distr_r with (p:= 2^[|p|]). - pattern ([!n|hl!] * 2^[|p|]) at 2; - rewrite (shift_unshift_mod (Zpos(w_digits << n))([|p|])([!n|hl!])); - auto with zarith. - rewrite Z.add_assoc. - replace - ([!n|hh!] * 2^Zpos (w_digits << n)* 2^[|p|] + - ([!n|hl!] / 2^(Zpos (w_digits << n)-[|p|])* - 2^Zpos(w_digits << n))) - with - (([!n|hh!] *2^[|p|] + double_to_Z w_digits w_to_Z n hl / - 2^(Zpos (w_digits << n)-[|p|])) - * 2^Zpos(w_digits << n));try (ring;fail). - rewrite <- Z.add_assoc. - rewrite <- (Zmod_shift_r ([|p|]));auto with zarith. - replace - (2 ^ Zpos (w_digits << n) * 2 ^ Zpos (w_digits << n)) with - (2 ^ (Zpos (w_digits << n) + Zpos (w_digits << n))). - rewrite (Zmod_shift_r (Zpos (w_digits << n)));auto with zarith. - replace (2 ^ (Zpos (w_digits << n) + Zpos (w_digits << n))) - with (2^Zpos(w_digits << n) *2^Zpos(w_digits << n)). - rewrite (Z.mul_comm (([!n|hh!] * 2 ^ [|p|] + - [!n|hl!] / 2 ^ (Zpos (w_digits << n) - [|p|])))). - rewrite Zmult_mod_distr_l;auto with zarith. - ring. - rewrite Zpower_exp;auto with zarith. - assert (0 < Zpos (w_digits << n)). unfold Z.lt;reflexivity. - auto with zarith. - apply Z_mod_lt;auto with zarith. - rewrite Zpower_exp;auto with zarith. - split;auto with zarith. - apply Zdiv_lt_upper_bound;auto with zarith. - rewrite <- Zpower_exp;auto with zarith. - replace ([|p|] + (Zpos (w_digits << n) - [|p|])) with - (Zpos(w_digits << n));auto with zarith. - rewrite <- Zpower_exp;auto with zarith. - replace (Zpos (w_digits << (S n)) - [|p|]) with - (Zpos (w_digits << n) - [|p|] + - Zpos (w_digits << n));trivial. - change (Zpos (w_digits << (S n))) with - (2*Zpos (w_digits << n)). ring. - Qed. - - Definition double_modn1_p_aux n (modn1 : w -> word w n -> word w n -> w) r h l:= - let (hh,hl) := double_split w_0 n h in - let (lh,ll) := double_split w_0 n l in - modn1 (modn1 r hh hl) hl lh. - - Fixpoint double_modn1_p (n:nat) : w -> word w n -> word w n -> w := - match n return w -> word w n -> word w n -> w with - | O => fun r h l => snd (w_div21 r (w_add_mul_div p h l) b2p) - | S n => double_modn1_p_aux n (double_modn1_p n) - end. - - Lemma spec_double_modn1_p : forall n r h l , - double_modn1_p n r h l = snd (double_divn1_p n r h l). - Proof. - induction n;simpl;intros;trivial. - unfold double_modn1_p_aux, double_divn1_p_aux. - destruct(double_split w_0 n h)as(hh,hl);destruct(double_split w_0 n l) as (lh,ll). - rewrite (IHn r hh hl);destruct (double_divn1_p n r hh hl) as (qh,rh). - rewrite IHn;simpl;destruct (double_divn1_p n rh hl lh);trivial. - Qed. - - End DIVAUX. - - Fixpoint high (n:nat) : word w n -> w := - match n return word w n -> w with - | O => fun a => a - | S n => - fun (a:zn2z (word w n)) => - match a with - | W0 => w_0 - | WW h l => high n h - end - end. - - Lemma spec_double_digits:forall n, Zpos w_digits <= Zpos (w_digits << n). - Proof. - induction n;simpl;auto with zarith. - change (Zpos (xO (w_digits << n))) with - (2*Zpos (w_digits << n)). - assert (0 < Zpos w_digits) by reflexivity. - auto with zarith. - Qed. - - Lemma spec_high : forall n (x:word w n), - [|high n x|] = [!n|x!] / 2^(Zpos (w_digits << n) - Zpos w_digits). - Proof. - induction n;intros. - unfold high,double_to_Z. rewrite Pshiftl_nat_0. - replace (Zpos w_digits - Zpos w_digits) with 0;try ring. - simpl. rewrite <- (Zdiv_unique [|x|] 1 [|x|] 0);auto with zarith. - assert (U2 := spec_double_digits n). - assert (U3 : 0 < Zpos w_digits). exact (eq_refl Lt). - destruct x;unfold high;fold high. - unfold double_to_Z,zn2z_to_Z;rewrite spec_0. - rewrite Zdiv_0_l;trivial. - assert (U0 := spec_double_to_Z w_digits w_to_Z spec_to_Z n w0); - assert (U1 := spec_double_to_Z w_digits w_to_Z spec_to_Z n w1). - simpl [!S n|WW w0 w1!]. - unfold double_wB,base;rewrite Zdiv_shift_r;auto with zarith. - replace (2 ^ (Zpos (w_digits << (S n)) - Zpos w_digits)) with - (2^(Zpos (w_digits << n) - Zpos w_digits) * - 2^Zpos (w_digits << n)). - rewrite Zdiv_mult_cancel_r;auto with zarith. - rewrite <- Zpower_exp;auto with zarith. - replace (Zpos (w_digits << n) - Zpos w_digits + - Zpos (w_digits << n)) with - (Zpos (w_digits << (S n)) - Zpos w_digits);trivial. - change (Zpos (w_digits << (S n))) with - (2*Zpos (w_digits << n));ring. - change (Zpos (w_digits << (S n))) with - (2*Zpos (w_digits << n)); auto with zarith. - Qed. - - Definition double_divn1 (n:nat) (a:word w n) (b:w) := - let p := w_head0 b in - match w_compare p w_0 with - | Gt => - let b2p := w_add_mul_div p b w_0 in - let ha := high n a in - let k := w_sub w_zdigits p in - let lsr_n := w_add_mul_div k w_0 in - let r0 := w_add_mul_div p w_0 ha in - let (q,r) := double_divn1_p b2p p n r0 a (double_0 w_0 n) in - (q, lsr_n r) - | _ => double_divn1_0 b n w_0 a - end. - - Lemma spec_double_divn1 : forall n a b, - 0 < [|b|] -> - let (q,r) := double_divn1 n a b in - [!n|a!] = [!n|q!] * [|b|] + [|r|] /\ - 0 <= [|r|] < [|b|]. - Proof. - intros n a b H. unfold double_divn1. - case (spec_head0 H); intros H0 H1. - case (spec_to_Z (w_head0 b)); intros HH1 HH2. - rewrite spec_compare; case Z.compare_spec; - rewrite spec_0; intros H2; auto with zarith. - assert (Hv1: wB/2 <= [|b|]). - generalize H0; rewrite H2; rewrite Z.pow_0_r; - rewrite Z.mul_1_l; auto. - assert (Hv2: [|w_0|] < [|b|]). - rewrite spec_0; auto. - generalize (spec_double_divn1_0 Hv1 n a Hv2). - rewrite spec_0;rewrite Z.mul_0_l; rewrite Z.add_0_l; auto. - contradict H2; auto with zarith. - assert (HHHH : 0 < [|w_head0 b|]); auto with zarith. - assert ([|w_head0 b|] < Zpos w_digits). - case (Z.le_gt_cases (Zpos w_digits) [|w_head0 b|]); auto; intros HH. - assert (2 ^ [|w_head0 b|] < wB). - apply Z.le_lt_trans with (2 ^ [|w_head0 b|] * [|b|]);auto with zarith. - replace (2 ^ [|w_head0 b|]) with (2^[|w_head0 b|] * 1);try (ring;fail). - apply Z.mul_le_mono_nonneg;auto with zarith. - assert (wB <= 2^[|w_head0 b|]). - unfold base;apply Zpower_le_monotone;auto with zarith. omega. - assert ([|w_add_mul_div (w_head0 b) b w_0|] = - 2 ^ [|w_head0 b|] * [|b|]). - rewrite (spec_add_mul_div b w_0); auto with zarith. - rewrite spec_0;rewrite Zdiv_0_l; try omega. - rewrite Z.add_0_r; rewrite Z.mul_comm. - rewrite Zmod_small; auto with zarith. - assert (H5 := spec_to_Z (high n a)). - assert - ([|w_add_mul_div (w_head0 b) w_0 (high n a)|] - <[|w_add_mul_div (w_head0 b) b w_0|]). - rewrite H4. - rewrite spec_add_mul_div;auto with zarith. - rewrite spec_0;rewrite Z.mul_0_l;rewrite Z.add_0_l. - assert (([|high n a|]/2^(Zpos w_digits - [|w_head0 b|])) < wB). - apply Zdiv_lt_upper_bound;auto with zarith. - apply Z.lt_le_trans with wB;auto with zarith. - pattern wB at 1;replace wB with (wB*1);try ring. - apply Z.mul_le_mono_nonneg;auto with zarith. - assert (H6 := Z.pow_pos_nonneg 2 (Zpos w_digits - [|w_head0 b|])); - auto with zarith. - rewrite Zmod_small;auto with zarith. - apply Zdiv_lt_upper_bound;auto with zarith. - apply Z.lt_le_trans with wB;auto with zarith. - apply Z.le_trans with (2 ^ [|w_head0 b|] * [|b|] * 2). - rewrite <- wB_div_2; try omega. - apply Z.mul_le_mono_nonneg;auto with zarith. - pattern 2 at 1;rewrite <- Z.pow_1_r. - apply Zpower_le_monotone;split;auto with zarith. - rewrite <- H4 in H0. - assert (Hb3: [|w_head0 b|] <= Zpos w_digits); auto with zarith. - assert (H7:= spec_double_divn1_p H0 Hb3 n a (double_0 w_0 n) H6). - destruct (double_divn1_p (w_add_mul_div (w_head0 b) b w_0) (w_head0 b) n - (w_add_mul_div (w_head0 b) w_0 (high n a)) a - (double_0 w_0 n)) as (q,r). - assert (U:= spec_double_digits n). - rewrite spec_double_0 in H7;trivial;rewrite Zdiv_0_l in H7. - rewrite Z.add_0_r in H7. - rewrite spec_add_mul_div in H7;auto with zarith. - rewrite spec_0 in H7;rewrite Z.mul_0_l in H7;rewrite Z.add_0_l in H7. - assert (([|high n a|] / 2 ^ (Zpos w_digits - [|w_head0 b|])) mod wB - = [!n|a!] / 2^(Zpos (w_digits << n) - [|w_head0 b|])). - rewrite Zmod_small;auto with zarith. - rewrite spec_high. rewrite Zdiv_Zdiv;auto with zarith. - rewrite <- Zpower_exp;auto with zarith. - replace (Zpos (w_digits << n) - Zpos w_digits + - (Zpos w_digits - [|w_head0 b|])) - with (Zpos (w_digits << n) - [|w_head0 b|]);trivial;ring. - assert (H8 := Z.pow_pos_nonneg 2 (Zpos w_digits - [|w_head0 b|]));auto with zarith. - split;auto with zarith. - apply Z.le_lt_trans with ([|high n a|]);auto with zarith. - apply Zdiv_le_upper_bound;auto with zarith. - pattern ([|high n a|]) at 1;rewrite <- Z.mul_1_r. - apply Z.mul_le_mono_nonneg;auto with zarith. - rewrite H8 in H7;unfold double_wB,base in H7. - rewrite <- shift_unshift_mod in H7;auto with zarith. - rewrite H4 in H7. - assert ([|w_add_mul_div (w_sub w_zdigits (w_head0 b)) w_0 r|] - = [|r|]/2^[|w_head0 b|]). - rewrite spec_add_mul_div. - rewrite spec_0;rewrite Z.mul_0_l;rewrite Z.add_0_l. - replace (Zpos w_digits - [|w_sub w_zdigits (w_head0 b)|]) - with ([|w_head0 b|]). - rewrite Zmod_small;auto with zarith. - assert (H9 := spec_to_Z r). - split;auto with zarith. - apply Z.le_lt_trans with ([|r|]);auto with zarith. - apply Zdiv_le_upper_bound;auto with zarith. - pattern ([|r|]) at 1;rewrite <- Z.mul_1_r. - apply Z.mul_le_mono_nonneg;auto with zarith. - assert (H10 := Z.pow_pos_nonneg 2 ([|w_head0 b|]));auto with zarith. - rewrite spec_sub. - rewrite Zmod_small; auto with zarith. - split; auto with zarith. - case (spec_to_Z w_zdigits); auto with zarith. - rewrite spec_sub. - rewrite Zmod_small; auto with zarith. - split; auto with zarith. - case (spec_to_Z w_zdigits); auto with zarith. - case H7; intros H71 H72. - split. - rewrite <- (Z_div_mult [!n|a!] (2^[|w_head0 b|]));auto with zarith. - rewrite H71;rewrite H9. - replace ([!n|q!] * (2 ^ [|w_head0 b|] * [|b|])) - with ([!n|q!] *[|b|] * 2^[|w_head0 b|]); - try (ring;fail). - rewrite Z_div_plus_l;auto with zarith. - assert (H10 := spec_to_Z - (w_add_mul_div (w_sub w_zdigits (w_head0 b)) w_0 r));split; - auto with zarith. - rewrite H9. - apply Zdiv_lt_upper_bound;auto with zarith. - rewrite Z.mul_comm;auto with zarith. - exact (spec_double_to_Z w_digits w_to_Z spec_to_Z n a). - Qed. - - - Definition double_modn1 (n:nat) (a:word w n) (b:w) := - let p := w_head0 b in - match w_compare p w_0 with - | Gt => - let b2p := w_add_mul_div p b w_0 in - let ha := high n a in - let k := w_sub w_zdigits p in - let lsr_n := w_add_mul_div k w_0 in - let r0 := w_add_mul_div p w_0 ha in - let r := double_modn1_p b2p p n r0 a (double_0 w_0 n) in - lsr_n r - | _ => double_modn1_0 b n w_0 a - end. - - Lemma spec_double_modn1_aux : forall n a b, - double_modn1 n a b = snd (double_divn1 n a b). - Proof. - intros n a b;unfold double_divn1,double_modn1. - rewrite spec_compare; case Z.compare_spec; - rewrite spec_0; intros H2; auto with zarith. - apply spec_double_modn1_0. - apply spec_double_modn1_0. - rewrite spec_double_modn1_p. - destruct (double_divn1_p (w_add_mul_div (w_head0 b) b w_0) (w_head0 b) n - (w_add_mul_div (w_head0 b) w_0 (high n a)) a (double_0 w_0 n));simpl;trivial. - Qed. - - Lemma spec_double_modn1 : forall n a b, 0 < [|b|] -> - [|double_modn1 n a b|] = [!n|a!] mod [|b|]. - Proof. - intros n a b H;assert (H1 := spec_double_divn1 n a H). - assert (H2 := spec_double_modn1_aux n a b). - rewrite H2;destruct (double_divn1 n a b) as (q,r). - simpl;apply Zmod_unique with (double_to_Z w_digits w_to_Z n q);auto with zarith. - destruct H1 as (h1,h2);rewrite h1;ring. - Qed. - -End GENDIVN1. diff --git a/theories/Numbers/Cyclic/DoubleCyclic/DoubleLift.v b/theories/Numbers/Cyclic/DoubleCyclic/DoubleLift.v deleted file mode 100644 index f65b47c8c..000000000 --- a/theories/Numbers/Cyclic/DoubleCyclic/DoubleLift.v +++ /dev/null @@ -1,475 +0,0 @@ -(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016 *) -(* \VV/ **************************************************************) -(* // * This file is distributed under the terms of the *) -(* * GNU Lesser General Public License Version 2.1 *) -(************************************************************************) -(* Benjamin Gregoire, Laurent Thery, INRIA, 2007 *) -(************************************************************************) - -Set Implicit Arguments. - -Require Import ZArith. -Require Import BigNumPrelude. -Require Import DoubleType. -Require Import DoubleBase. - -Local Open Scope Z_scope. - -Section DoubleLift. - Variable w : Type. - Variable w_0 : w. - Variable w_WW : w -> w -> zn2z w. - Variable w_W0 : w -> zn2z w. - Variable w_0W : w -> zn2z w. - Variable w_compare : w -> w -> comparison. - Variable ww_compare : zn2z w -> zn2z w -> comparison. - Variable w_head0 : w -> w. - Variable w_tail0 : w -> w. - Variable w_add: w -> w -> zn2z w. - Variable w_add_mul_div : w -> w -> w -> w. - Variable ww_sub: zn2z w -> zn2z w -> zn2z w. - Variable w_digits : positive. - Variable ww_Digits : positive. - Variable w_zdigits : w. - Variable ww_zdigits : zn2z w. - Variable low: zn2z w -> w. - - Definition ww_head0 x := - match x with - | W0 => ww_zdigits - | WW xh xl => - match w_compare w_0 xh with - | Eq => w_add w_zdigits (w_head0 xl) - | _ => w_0W (w_head0 xh) - end - end. - - - Definition ww_tail0 x := - match x with - | W0 => ww_zdigits - | WW xh xl => - match w_compare w_0 xl with - | Eq => w_add w_zdigits (w_tail0 xh) - | _ => w_0W (w_tail0 xl) - end - end. - - - (* 0 < p < ww_digits *) - Definition ww_add_mul_div p x y := - let zdigits := w_0W w_zdigits in - match x, y with - | W0, W0 => W0 - | W0, WW yh yl => - match ww_compare p zdigits with - | Eq => w_0W yh - | Lt => w_0W (w_add_mul_div (low p) w_0 yh) - | Gt => - let n := low (ww_sub p zdigits) in - w_WW (w_add_mul_div n w_0 yh) (w_add_mul_div n yh yl) - end - | WW xh xl, W0 => - match ww_compare p zdigits with - | Eq => w_W0 xl - | Lt => w_WW (w_add_mul_div (low p) xh xl) (w_add_mul_div (low p) xl w_0) - | Gt => - let n := low (ww_sub p zdigits) in - w_W0 (w_add_mul_div n xl w_0) - end - | WW xh xl, WW yh yl => - match ww_compare p zdigits with - | Eq => w_WW xl yh - | Lt => w_WW (w_add_mul_div (low p) xh xl) (w_add_mul_div (low p) xl yh) - | Gt => - let n := low (ww_sub p zdigits) in - w_WW (w_add_mul_div n xl yh) (w_add_mul_div n yh yl) - end - end. - - Section DoubleProof. - Variable w_to_Z : w -> Z. - - Notation wB := (base w_digits). - Notation wwB := (base (ww_digits w_digits)). - Notation "[| x |]" := (w_to_Z x) (at level 0, x at level 99). - Notation "[[ x ]]" := (ww_to_Z w_digits w_to_Z x)(at level 0, x at level 99). - - Variable spec_w_0 : [|w_0|] = 0. - Variable spec_to_Z : forall x, 0 <= [|x|] < wB. - Variable spec_to_w_Z : forall x, 0 <= [[x]] < wwB. - Variable spec_w_WW : forall h l, [[w_WW h l]] = [|h|] * wB + [|l|]. - Variable spec_w_W0 : forall h, [[w_W0 h]] = [|h|] * wB. - Variable spec_w_0W : forall l, [[w_0W l]] = [|l|]. - Variable spec_compare : forall x y, - w_compare x y = Z.compare [|x|] [|y|]. - Variable spec_ww_compare : forall x y, - ww_compare x y = Z.compare [[x]] [[y]]. - Variable spec_ww_digits : ww_Digits = xO w_digits. - Variable spec_w_head00 : forall x, [|x|] = 0 -> [|w_head0 x|] = Zpos w_digits. - Variable spec_w_head0 : forall x, 0 < [|x|] -> - wB/ 2 <= 2 ^ ([|w_head0 x|]) * [|x|] < wB. - Variable spec_w_tail00 : forall x, [|x|] = 0 -> [|w_tail0 x|] = Zpos w_digits. - Variable spec_w_tail0 : forall x, 0 < [|x|] -> - exists y, 0 <= y /\ [|x|] = (2* y + 1) * (2 ^ [|w_tail0 x|]). - Variable spec_w_add_mul_div : forall x y p, - [|p|] <= Zpos w_digits -> - [| w_add_mul_div p x y |] = - ([|x|] * (2 ^ [|p|]) + - [|y|] / (2 ^ ((Zpos w_digits) - [|p|]))) mod wB. - Variable spec_w_add: forall x y, - [[w_add x y]] = [|x|] + [|y|]. - Variable spec_ww_sub: forall x y, - [[ww_sub x y]] = ([[x]] - [[y]]) mod wwB. - - Variable spec_zdigits : [| w_zdigits |] = Zpos w_digits. - Variable spec_low: forall x, [| low x|] = [[x]] mod wB. - - Variable spec_ww_zdigits : [[ww_zdigits]] = Zpos ww_Digits. - - Hint Resolve div_le_0 div_lt w_to_Z_wwB: lift. - Ltac zarith := auto with zarith lift. - - Lemma spec_ww_head00 : forall x, [[x]] = 0 -> [[ww_head0 x]] = Zpos ww_Digits. - Proof. - intros x; case x; unfold ww_head0. - intros HH; rewrite spec_ww_zdigits; auto. - intros xh xl; simpl; intros Hx. - case (spec_to_Z xh); intros Hx1 Hx2. - case (spec_to_Z xl); intros Hy1 Hy2. - assert (F1: [|xh|] = 0). - { Z.le_elim Hy1; auto. - - absurd (0 < [|xh|] * wB + [|xl|]); auto with zarith. - apply Z.lt_le_trans with (1 := Hy1); auto with zarith. - pattern [|xl|] at 1; rewrite <- (Z.add_0_l [|xl|]). - apply Z.add_le_mono_r; auto with zarith. - - Z.le_elim Hx1; auto. - absurd (0 < [|xh|] * wB + [|xl|]); auto with zarith. - rewrite <- Hy1; rewrite Z.add_0_r; auto with zarith. - apply Z.mul_pos_pos; auto with zarith. } - rewrite spec_compare. case Z.compare_spec. - intros H; simpl. - rewrite spec_w_add; rewrite spec_w_head00. - rewrite spec_zdigits; rewrite spec_ww_digits. - rewrite Pos2Z.inj_xO; auto with zarith. - rewrite F1 in Hx; auto with zarith. - rewrite spec_w_0; auto with zarith. - rewrite spec_w_0; auto with zarith. - Qed. - - Lemma spec_ww_head0 : forall x, 0 < [[x]] -> - wwB/ 2 <= 2 ^ [[ww_head0 x]] * [[x]] < wwB. - Proof. - clear spec_ww_zdigits. - rewrite wwB_div_2;rewrite Z.mul_comm;rewrite wwB_wBwB. - assert (U:= lt_0_wB w_digits); destruct x as [ |xh xl];simpl ww_to_Z;intros H. - unfold Z.lt in H;discriminate H. - rewrite spec_compare, spec_w_0. case Z.compare_spec; intros H0. - rewrite <- H0 in *. simpl Z.add. simpl in H. - case (spec_to_Z w_zdigits); - case (spec_to_Z (w_head0 xl)); intros HH1 HH2 HH3 HH4. - rewrite spec_w_add. - rewrite spec_zdigits; rewrite Zpower_exp; auto with zarith. - case (spec_w_head0 H); intros H1 H2. - rewrite Z.pow_2_r; fold wB; rewrite <- Z.mul_assoc; split. - apply Z.mul_le_mono_nonneg_l; auto with zarith. - apply Z.mul_lt_mono_pos_l; auto with zarith. - assert (H1 := spec_w_head0 H0). - rewrite spec_w_0W. - split. - rewrite Z.mul_add_distr_l;rewrite Z.mul_assoc. - apply Z.le_trans with (2 ^ [|w_head0 xh|] * [|xh|] * wB). - rewrite Z.mul_comm; zarith. - assert (0 <= 2 ^ [|w_head0 xh|] * [|xl|]);zarith. - assert (H2:=spec_to_Z xl);apply Z.mul_nonneg_nonneg;zarith. - case (spec_to_Z (w_head0 xh)); intros H2 _. - generalize ([|w_head0 xh|]) H1 H2;clear H1 H2; - intros p H1 H2. - assert (Eq1 : 2^p < wB). - rewrite <- (Z.mul_1_r (2^p));apply Z.le_lt_trans with (2^p*[|xh|]);zarith. - assert (Eq2: p < Zpos w_digits). - destruct (Z.le_gt_cases (Zpos w_digits) p);trivial;contradict Eq1. - apply Z.le_ngt;unfold base;apply Zpower_le_monotone;zarith. - assert (Zpos w_digits = p + (Zpos w_digits - p)). ring. - rewrite Z.pow_2_r. - unfold base at 2;rewrite H3;rewrite Zpower_exp;zarith. - rewrite <- Z.mul_assoc; apply Z.mul_lt_mono_pos_l; zarith. - rewrite <- (Z.add_0_r (2^(Zpos w_digits - p)*wB));apply beta_lex_inv;zarith. - apply Z.mul_lt_mono_pos_r with (2 ^ p); zarith. - rewrite <- Zpower_exp;zarith. - rewrite Z.mul_comm;ring_simplify (Zpos w_digits - p + p);fold wB;zarith. - assert (H1 := spec_to_Z xh);zarith. - Qed. - - Lemma spec_ww_tail00 : forall x, [[x]] = 0 -> [[ww_tail0 x]] = Zpos ww_Digits. - Proof. - intros x; case x; unfold ww_tail0. - intros HH; rewrite spec_ww_zdigits; auto. - intros xh xl; simpl; intros Hx. - case (spec_to_Z xh); intros Hx1 Hx2. - case (spec_to_Z xl); intros Hy1 Hy2. - assert (F1: [|xh|] = 0). - { Z.le_elim Hy1; auto. - - absurd (0 < [|xh|] * wB + [|xl|]); auto with zarith. - apply Z.lt_le_trans with (1 := Hy1); auto with zarith. - pattern [|xl|] at 1; rewrite <- (Z.add_0_l [|xl|]). - apply Z.add_le_mono_r; auto with zarith. - - Z.le_elim Hx1; auto. - absurd (0 < [|xh|] * wB + [|xl|]); auto with zarith. - rewrite <- Hy1; rewrite Z.add_0_r; auto with zarith. - apply Z.mul_pos_pos; auto with zarith. } - assert (F2: [|xl|] = 0). - rewrite F1 in Hx; auto with zarith. - rewrite spec_compare; case Z.compare_spec. - intros H; simpl. - rewrite spec_w_add; rewrite spec_w_tail00; auto. - rewrite spec_zdigits; rewrite spec_ww_digits. - rewrite Pos2Z.inj_xO; auto with zarith. - rewrite spec_w_0; auto with zarith. - rewrite spec_w_0; auto with zarith. - Qed. - - Lemma spec_ww_tail0 : forall x, 0 < [[x]] -> - exists y, 0 <= y /\ [[x]] = (2 * y + 1) * 2 ^ [[ww_tail0 x]]. - Proof. - clear spec_ww_zdigits. - destruct x as [ |xh xl];simpl ww_to_Z;intros H. - unfold Z.lt in H;discriminate H. - rewrite spec_compare, spec_w_0. case Z.compare_spec; intros H0. - rewrite <- H0; rewrite Z.add_0_r. - case (spec_to_Z (w_tail0 xh)); intros HH1 HH2. - generalize H; rewrite <- H0; rewrite Z.add_0_r; clear H; intros H. - case (@spec_w_tail0 xh). - apply Z.mul_lt_mono_pos_r with wB; auto with zarith. - unfold base; auto with zarith. - intros z (Hz1, Hz2); exists z; split; auto. - rewrite spec_w_add; rewrite (fun x => Z.add_comm [|x|]). - rewrite spec_zdigits; rewrite Zpower_exp; auto with zarith. - rewrite Z.mul_assoc; rewrite <- Hz2; auto. - - case (spec_to_Z (w_tail0 xh)); intros HH1 HH2. - case (spec_w_tail0 H0); intros z (Hz1, Hz2). - assert (Hp: [|w_tail0 xl|] < Zpos w_digits). - case (Z.le_gt_cases (Zpos w_digits) [|w_tail0 xl|]); auto; intros H1. - absurd (2 ^ (Zpos w_digits) <= 2 ^ [|w_tail0 xl|]). - apply Z.lt_nge. - case (spec_to_Z xl); intros HH3 HH4. - apply Z.le_lt_trans with (2 := HH4). - apply Z.le_trans with (1 * 2 ^ [|w_tail0 xl|]); auto with zarith. - rewrite Hz2. - apply Z.mul_le_mono_nonneg_r; auto with zarith. - apply Zpower_le_monotone; auto with zarith. - exists ([|xh|] * (2 ^ ((Zpos w_digits - [|w_tail0 xl|]) - 1)) + z); split. - apply Z.add_nonneg_nonneg; auto. - apply Z.mul_nonneg_nonneg; auto with zarith. - case (spec_to_Z xh); auto. - rewrite spec_w_0W. - rewrite (Z.mul_add_distr_l 2); rewrite <- Z.add_assoc. - rewrite Z.mul_add_distr_r; rewrite <- Hz2. - apply f_equal2 with (f := Z.add); auto. - rewrite (Z.mul_comm 2). - repeat rewrite <- Z.mul_assoc. - apply f_equal2 with (f := Z.mul); auto. - case (spec_to_Z (w_tail0 xl)); intros HH3 HH4. - pattern 2 at 2; rewrite <- Z.pow_1_r. - lazy beta; repeat rewrite <- Zpower_exp; auto with zarith. - unfold base; apply f_equal with (f := Z.pow 2); auto with zarith. - - contradict H0; case (spec_to_Z xl); auto with zarith. - Qed. - - Hint Rewrite Zdiv_0_l Z.mul_0_l Z.add_0_l Z.mul_0_r Z.add_0_r - spec_w_W0 spec_w_0W spec_w_WW spec_w_0 - (wB_div w_digits w_to_Z spec_to_Z) - (wB_div_plus w_digits w_to_Z spec_to_Z) : w_rewrite. - Ltac w_rewrite := autorewrite with w_rewrite;trivial. - - Lemma spec_ww_add_mul_div_aux : forall xh xl yh yl p, - let zdigits := w_0W w_zdigits in - [[p]] <= Zpos (xO w_digits) -> - [[match ww_compare p zdigits with - | Eq => w_WW xl yh - | Lt => w_WW (w_add_mul_div (low p) xh xl) - (w_add_mul_div (low p) xl yh) - | Gt => - let n := low (ww_sub p zdigits) in - w_WW (w_add_mul_div n xl yh) (w_add_mul_div n yh yl) - end]] = - ([[WW xh xl]] * (2^[[p]]) + - [[WW yh yl]] / (2^(Zpos (xO w_digits) - [[p]]))) mod wwB. - Proof. - clear spec_ww_zdigits. - intros xh xl yh yl p zdigits;assert (HwwB := wwB_pos w_digits). - case (spec_to_w_Z p); intros Hv1 Hv2. - replace (Zpos (xO w_digits)) with (Zpos w_digits + Zpos w_digits). - 2 : rewrite Pos2Z.inj_xO;ring. - replace (Zpos w_digits + Zpos w_digits - [[p]]) with - (Zpos w_digits + (Zpos w_digits - [[p]])). 2:ring. - intros Hp; assert (Hxh := spec_to_Z xh);assert (Hxl:=spec_to_Z xl); - assert (Hx := spec_ww_to_Z w_digits w_to_Z spec_to_Z (WW xh xl)); - simpl in Hx;assert (Hyh := spec_to_Z yh);assert (Hyl:=spec_to_Z yl); - assert (Hy:=spec_ww_to_Z w_digits w_to_Z spec_to_Z (WW yh yl));simpl in Hy. - rewrite spec_ww_compare; case Z.compare_spec; intros H1. - rewrite H1; unfold zdigits; rewrite spec_w_0W. - rewrite spec_zdigits; rewrite Z.sub_diag; rewrite Z.add_0_r. - simpl ww_to_Z; w_rewrite;zarith. - fold wB. - rewrite Z.mul_add_distr_r;rewrite <- Z.mul_assoc;rewrite <- Z.add_assoc. - rewrite <- Z.pow_2_r. - rewrite <- wwB_wBwB;apply Zmod_unique with [|xh|]. - exact (spec_ww_to_Z w_digits w_to_Z spec_to_Z (WW xl yh)). ring. - simpl ww_to_Z; w_rewrite;zarith. - assert (HH0: [|low p|] = [[p]]). - rewrite spec_low. - apply Zmod_small. - case (spec_to_w_Z p); intros HH1 HH2; split; auto. - generalize H1; unfold zdigits; rewrite spec_w_0W; - rewrite spec_zdigits; intros tmp. - apply Z.lt_le_trans with (1 := tmp). - unfold base. - apply Zpower2_le_lin; auto with zarith. - 2: generalize H1; unfold zdigits; rewrite spec_w_0W; - rewrite spec_zdigits; auto with zarith. - generalize H1; unfold zdigits; rewrite spec_w_0W; - rewrite spec_zdigits; auto; clear H1; intros H1. - assert (HH: [|low p|] <= Zpos w_digits). - rewrite HH0; auto with zarith. - repeat rewrite spec_w_add_mul_div with (1 := HH). - rewrite HH0. - rewrite Z.mul_add_distr_r. - pattern ([|xl|] * 2 ^ [[p]]) at 2; - rewrite shift_unshift_mod with (n:= Zpos w_digits);fold wB;zarith. - replace ([|xh|] * wB * 2^[[p]]) with ([|xh|] * 2^[[p]] * wB). 2:ring. - rewrite Z.add_assoc;rewrite <- Z.mul_add_distr_r. rewrite <- Z.add_assoc. - unfold base at 5;rewrite <- Zmod_shift_r;zarith. - unfold base;rewrite Zmod_shift_r with (b:= Zpos (ww_digits w_digits)); - fold wB;fold wwB;zarith. - rewrite wwB_wBwB;rewrite Z.pow_2_r; rewrite Zmult_mod_distr_r;zarith. - unfold ww_digits;rewrite Pos2Z.inj_xO;zarith. apply Z_mod_lt;zarith. - split;zarith. apply Zdiv_lt_upper_bound;zarith. - rewrite <- Zpower_exp;zarith. - ring_simplify ([[p]] + (Zpos w_digits - [[p]]));fold wB;zarith. - assert (Hv: [[p]] > Zpos w_digits). - generalize H1; clear H1. - unfold zdigits; rewrite spec_w_0W; rewrite spec_zdigits; auto with zarith. - clear H1. - assert (HH0: [|low (ww_sub p zdigits)|] = [[p]] - Zpos w_digits). - rewrite spec_low. - rewrite spec_ww_sub. - unfold zdigits; rewrite spec_w_0W; rewrite spec_zdigits. - rewrite <- Zmod_div_mod; auto with zarith. - rewrite Zmod_small; auto with zarith. - split; auto with zarith. - apply Z.le_lt_trans with (Zpos w_digits); auto with zarith. - unfold base; apply Zpower2_lt_lin; auto with zarith. - exists wB; unfold base. - unfold ww_digits; rewrite (Pos2Z.inj_xO w_digits). - rewrite <- Zpower_exp; auto with zarith. - apply f_equal with (f := fun x => 2 ^ x); auto with zarith. - assert (HH: [|low (ww_sub p zdigits)|] <= Zpos w_digits). - rewrite HH0; auto with zarith. - replace (Zpos w_digits + (Zpos w_digits - [[p]])) with - (Zpos w_digits - ([[p]] - Zpos w_digits)); zarith. - lazy zeta; simpl ww_to_Z; w_rewrite;zarith. - repeat rewrite spec_w_add_mul_div;zarith. - rewrite HH0. - pattern wB at 5;replace wB with - (2^(([[p]] - Zpos w_digits) - + (Zpos w_digits - ([[p]] - Zpos w_digits)))). - rewrite Zpower_exp;zarith. rewrite Z.mul_assoc. - rewrite Z_div_plus_l;zarith. - rewrite shift_unshift_mod with (a:= [|yh|]) (p:= [[p]] - Zpos w_digits) - (n := Zpos w_digits);zarith. fold wB. - set (u := [[p]] - Zpos w_digits). - replace [[p]] with (u + Zpos w_digits);zarith. - rewrite Zpower_exp;zarith. rewrite Z.mul_assoc. fold wB. - repeat rewrite Z.add_assoc. rewrite <- Z.mul_add_distr_r. - repeat rewrite <- Z.add_assoc. - unfold base;rewrite Zmod_shift_r with (b:= Zpos (ww_digits w_digits)); - fold wB;fold wwB;zarith. - unfold base;rewrite Zmod_shift_r with (a:= Zpos w_digits) - (b:= Zpos w_digits);fold wB;fold wwB;zarith. - rewrite wwB_wBwB; rewrite Z.pow_2_r; rewrite Zmult_mod_distr_r;zarith. - rewrite Z.mul_add_distr_r. - replace ([|xh|] * wB * 2 ^ u) with - ([|xh|]*2^u*wB). 2:ring. - repeat rewrite <- Z.add_assoc. - rewrite (Z.add_comm ([|xh|] * 2 ^ u * wB)). - rewrite Z_mod_plus;zarith. rewrite Z_mod_mult;zarith. - unfold base;rewrite <- Zmod_shift_r;zarith. fold base;apply Z_mod_lt;zarith. - unfold u; split;zarith. - split;zarith. unfold u; apply Zdiv_lt_upper_bound;zarith. - rewrite <- Zpower_exp;zarith. - fold u. - ring_simplify (u + (Zpos w_digits - u)); fold - wB;zarith. unfold ww_digits;rewrite Pos2Z.inj_xO;zarith. - unfold base;rewrite <- Zmod_shift_r;zarith. fold base;apply Z_mod_lt;zarith. - unfold u; split;zarith. - unfold u; split;zarith. - apply Zdiv_lt_upper_bound;zarith. - rewrite <- Zpower_exp;zarith. - fold u. - ring_simplify (u + (Zpos w_digits - u)); fold wB; auto with zarith. - unfold u;zarith. - unfold u;zarith. - set (u := [[p]] - Zpos w_digits). - ring_simplify (u + (Zpos w_digits - u)); fold wB; auto with zarith. - Qed. - - Lemma spec_ww_add_mul_div : forall x y p, - [[p]] <= Zpos (xO w_digits) -> - [[ ww_add_mul_div p x y ]] = - ([[x]] * (2^[[p]]) + - [[y]] / (2^(Zpos (xO w_digits) - [[p]]))) mod wwB. - Proof. - clear spec_ww_zdigits. - intros x y p H. - destruct x as [ |xh xl]; - [assert (H1 := @spec_ww_add_mul_div_aux w_0 w_0) - |assert (H1 := @spec_ww_add_mul_div_aux xh xl)]; - (destruct y as [ |yh yl]; - [generalize (H1 w_0 w_0 p H) | generalize (H1 yh yl p H)]; - clear H1;w_rewrite);simpl ww_add_mul_div. - replace [[WW w_0 w_0]] with 0;[w_rewrite|simpl;w_rewrite;trivial]. - intros Heq;rewrite <- Heq;clear Heq; auto. - rewrite spec_ww_compare. case Z.compare_spec; intros H1; w_rewrite. - rewrite (spec_w_add_mul_div w_0 w_0);w_rewrite;zarith. - generalize H1; w_rewrite; rewrite spec_zdigits; clear H1; intros H1. - assert (HH0: [|low p|] = [[p]]). - rewrite spec_low. - apply Zmod_small. - case (spec_to_w_Z p); intros HH1 HH2; split; auto. - apply Z.lt_le_trans with (1 := H1). - unfold base; apply Zpower2_le_lin; auto with zarith. - rewrite HH0; auto with zarith. - replace [[WW w_0 w_0]] with 0;[w_rewrite|simpl;w_rewrite;trivial]. - intros Heq;rewrite <- Heq;clear Heq. - generalize (spec_ww_compare p (w_0W w_zdigits)); - case ww_compare; intros H1; w_rewrite. - rewrite (spec_w_add_mul_div w_0 w_0);w_rewrite;zarith. - rewrite Pos2Z.inj_xO in H;zarith. - assert (HH: [|low (ww_sub p (w_0W w_zdigits)) |] = [[p]] - Zpos w_digits). - symmetry in H1; change ([[p]] > [[w_0W w_zdigits]]) in H1. - revert H1. - rewrite spec_low. - rewrite spec_ww_sub; w_rewrite; intros H1. - rewrite <- Zmod_div_mod; auto with zarith. - rewrite Zmod_small; auto with zarith. - split; auto with zarith. - apply Z.le_lt_trans with (Zpos w_digits); auto with zarith. - unfold base; apply Zpower2_lt_lin; auto with zarith. - unfold base; auto with zarith. - unfold base; auto with zarith. - exists wB; unfold base. - unfold ww_digits; rewrite (Pos2Z.inj_xO w_digits). - rewrite <- Zpower_exp; auto with zarith. - apply f_equal with (f := fun x => 2 ^ x); auto with zarith. - case (spec_to_Z xh); auto with zarith. - Qed. - - End DoubleProof. - -End DoubleLift. - diff --git a/theories/Numbers/Cyclic/DoubleCyclic/DoubleMul.v b/theories/Numbers/Cyclic/DoubleCyclic/DoubleMul.v deleted file mode 100644 index b99013900..000000000 --- a/theories/Numbers/Cyclic/DoubleCyclic/DoubleMul.v +++ /dev/null @@ -1,621 +0,0 @@ -(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016 *) -(* \VV/ **************************************************************) -(* // * This file is distributed under the terms of the *) -(* * GNU Lesser General Public License Version 2.1 *) -(************************************************************************) -(* Benjamin Gregoire, Laurent Thery, INRIA, 2007 *) -(************************************************************************) - -Set Implicit Arguments. - -Require Import ZArith. -Require Import BigNumPrelude. -Require Import DoubleType. -Require Import DoubleBase. - -Local Open Scope Z_scope. - -Section DoubleMul. - Variable w : Type. - Variable w_0 : w. - Variable w_1 : w. - Variable w_WW : w -> w -> zn2z w. - Variable w_W0 : w -> zn2z w. - Variable w_0W : w -> zn2z w. - Variable w_compare : w -> w -> comparison. - Variable w_succ : w -> w. - Variable w_add_c : w -> w -> carry w. - Variable w_add : w -> w -> w. - Variable w_sub: w -> w -> w. - Variable w_mul_c : w -> w -> zn2z w. - Variable w_mul : w -> w -> w. - Variable w_square_c : w -> zn2z w. - Variable ww_add_c : zn2z w -> zn2z w -> carry (zn2z w). - Variable ww_add : zn2z w -> zn2z w -> zn2z w. - Variable ww_add_carry : zn2z w -> zn2z w -> zn2z w. - Variable ww_sub_c : zn2z w -> zn2z w -> carry (zn2z w). - Variable ww_sub : zn2z w -> zn2z w -> zn2z w. - - (* ** Multiplication ** *) - - (* (xh*B+xl) (yh*B + yl) - xh*yh = hh = |hhh|hhl|B2 - xh*yl +xl*yh = cc = |cch|ccl|B - xl*yl = ll = |llh|lll - *) - - Definition double_mul_c (cross:w->w->w->w->zn2z w -> zn2z w -> w*zn2z w) x y := - match x, y with - | W0, _ => W0 - | _, W0 => W0 - | WW xh xl, WW yh yl => - let hh := w_mul_c xh yh in - let ll := w_mul_c xl yl in - let (wc,cc) := cross xh xl yh yl hh ll in - match cc with - | W0 => WW (ww_add hh (w_W0 wc)) ll - | WW cch ccl => - match ww_add_c (w_W0 ccl) ll with - | C0 l => WW (ww_add hh (w_WW wc cch)) l - | C1 l => WW (ww_add_carry hh (w_WW wc cch)) l - end - end - end. - - Definition ww_mul_c := - double_mul_c - (fun xh xl yh yl hh ll=> - match ww_add_c (w_mul_c xh yl) (w_mul_c xl yh) with - | C0 cc => (w_0, cc) - | C1 cc => (w_1, cc) - end). - - Definition w_2 := w_add w_1 w_1. - - Definition kara_prod xh xl yh yl hh ll := - match ww_add_c hh ll with - C0 m => - match w_compare xl xh with - Eq => (w_0, m) - | Lt => - match w_compare yl yh with - Eq => (w_0, m) - | Lt => (w_0, ww_sub m (w_mul_c (w_sub xh xl) (w_sub yh yl))) - | Gt => match ww_add_c m (w_mul_c (w_sub xh xl) (w_sub yl yh)) with - C1 m1 => (w_1, m1) | C0 m1 => (w_0, m1) - end - end - | Gt => - match w_compare yl yh with - Eq => (w_0, m) - | Lt => match ww_add_c m (w_mul_c (w_sub xl xh) (w_sub yh yl)) with - C1 m1 => (w_1, m1) | C0 m1 => (w_0, m1) - end - | Gt => (w_0, ww_sub m (w_mul_c (w_sub xl xh) (w_sub yl yh))) - end - end - | C1 m => - match w_compare xl xh with - Eq => (w_1, m) - | Lt => - match w_compare yl yh with - Eq => (w_1, m) - | Lt => match ww_sub_c m (w_mul_c (w_sub xh xl) (w_sub yh yl)) with - C0 m1 => (w_1, m1) | C1 m1 => (w_0, m1) - end - | Gt => match ww_add_c m (w_mul_c (w_sub xh xl) (w_sub yl yh)) with - C1 m1 => (w_2, m1) | C0 m1 => (w_1, m1) - end - end - | Gt => - match w_compare yl yh with - Eq => (w_1, m) - | Lt => match ww_add_c m (w_mul_c (w_sub xl xh) (w_sub yh yl)) with - C1 m1 => (w_2, m1) | C0 m1 => (w_1, m1) - end - | Gt => match ww_sub_c m (w_mul_c (w_sub xl xh) (w_sub yl yh)) with - C1 m1 => (w_0, m1) | C0 m1 => (w_1, m1) - end - end - end - end. - - Definition ww_karatsuba_c := double_mul_c kara_prod. - - Definition ww_mul x y := - match x, y with - | W0, _ => W0 - | _, W0 => W0 - | WW xh xl, WW yh yl => - let ccl := w_add (w_mul xh yl) (w_mul xl yh) in - ww_add (w_W0 ccl) (w_mul_c xl yl) - end. - - Definition ww_square_c x := - match x with - | W0 => W0 - | WW xh xl => - let hh := w_square_c xh in - let ll := w_square_c xl in - let xhxl := w_mul_c xh xl in - let (wc,cc) := - match ww_add_c xhxl xhxl with - | C0 cc => (w_0, cc) - | C1 cc => (w_1, cc) - end in - match cc with - | W0 => WW (ww_add hh (w_W0 wc)) ll - | WW cch ccl => - match ww_add_c (w_W0 ccl) ll with - | C0 l => WW (ww_add hh (w_WW wc cch)) l - | C1 l => WW (ww_add_carry hh (w_WW wc cch)) l - end - end - end. - - Section DoubleMulAddn1. - Variable w_mul_add : w -> w -> w -> w * w. - - Fixpoint double_mul_add_n1 (n:nat) : word w n -> w -> w -> w * word w n := - match n return word w n -> w -> w -> w * word w n with - | O => w_mul_add - | S n1 => - let mul_add := double_mul_add_n1 n1 in - fun x y r => - match x with - | W0 => (w_0,extend w_0W n1 r) - | WW xh xl => - let (rl,l) := mul_add xl y r in - let (rh,h) := mul_add xh y rl in - (rh, double_WW w_WW n1 h l) - end - end. - - End DoubleMulAddn1. - - Section DoubleMulAddmn1. - Variable wn: Type. - Variable extend_n : w -> wn. - Variable wn_0W : wn -> zn2z wn. - Variable wn_WW : wn -> wn -> zn2z wn. - Variable w_mul_add_n1 : wn -> w -> w -> w*wn. - Fixpoint double_mul_add_mn1 (m:nat) : - word wn m -> w -> w -> w*word wn m := - match m return word wn m -> w -> w -> w*word wn m with - | O => w_mul_add_n1 - | S m1 => - let mul_add := double_mul_add_mn1 m1 in - fun x y r => - match x with - | W0 => (w_0,extend wn_0W m1 (extend_n r)) - | WW xh xl => - let (rl,l) := mul_add xl y r in - let (rh,h) := mul_add xh y rl in - (rh, double_WW wn_WW m1 h l) - end - end. - - End DoubleMulAddmn1. - - Definition w_mul_add x y r := - match w_mul_c x y with - | W0 => (w_0, r) - | WW h l => - match w_add_c l r with - | C0 lr => (h,lr) - | C1 lr => (w_succ h, lr) - end - end. - - - (*Section DoubleProof. *) - Variable w_digits : positive. - Variable w_to_Z : w -> Z. - - Notation wB := (base w_digits). - Notation wwB := (base (ww_digits w_digits)). - Notation "[| x |]" := (w_to_Z x) (at level 0, x at level 99). - Notation "[+| c |]" := - (interp_carry 1 wB w_to_Z c) (at level 0, c at level 99). - Notation "[-| c |]" := - (interp_carry (-1) wB w_to_Z c) (at level 0, c at level 99). - - Notation "[[ x ]]" := (ww_to_Z w_digits w_to_Z x)(at level 0, x at level 99). - Notation "[+[ c ]]" := - (interp_carry 1 wwB (ww_to_Z w_digits w_to_Z) c) - (at level 0, c at level 99). - Notation "[-[ c ]]" := - (interp_carry (-1) wwB (ww_to_Z w_digits w_to_Z) c) - (at level 0, c at level 99). - - Notation "[|| x ||]" := - (zn2z_to_Z wwB (ww_to_Z w_digits w_to_Z) x) (at level 0, x at level 99). - - Notation "[! n | x !]" := (double_to_Z w_digits w_to_Z n x) - (at level 0, x at level 99). - - Variable spec_more_than_1_digit: 1 < Zpos w_digits. - Variable spec_w_0 : [|w_0|] = 0. - Variable spec_w_1 : [|w_1|] = 1. - - Variable spec_to_Z : forall x, 0 <= [|x|] < wB. - - Variable spec_w_WW : forall h l, [[w_WW h l]] = [|h|] * wB + [|l|]. - Variable spec_w_W0 : forall h, [[w_W0 h]] = [|h|] * wB. - Variable spec_w_0W : forall l, [[w_0W l]] = [|l|]. - Variable spec_w_compare : - forall x y, w_compare x y = Z.compare [|x|] [|y|]. - Variable spec_w_succ : forall x, [|w_succ x|] = ([|x|] + 1) mod wB. - Variable spec_w_add_c : forall x y, [+|w_add_c x y|] = [|x|] + [|y|]. - Variable spec_w_add : forall x y, [|w_add x y|] = ([|x|] + [|y|]) mod wB. - Variable spec_w_sub : forall x y, [|w_sub x y|] = ([|x|] - [|y|]) mod wB. - - Variable spec_w_mul_c : forall x y, [[ w_mul_c x y ]] = [|x|] * [|y|]. - Variable spec_w_mul : forall x y, [|w_mul x y|] = ([|x|] * [|y|]) mod wB. - Variable spec_w_square_c : forall x, [[ w_square_c x]] = [|x|] * [|x|]. - - Variable spec_ww_add_c : forall x y, [+[ww_add_c x y]] = [[x]] + [[y]]. - Variable spec_ww_add : forall x y, [[ww_add x y]] = ([[x]] + [[y]]) mod wwB. - Variable spec_ww_add_carry : - forall x y, [[ww_add_carry x y]] = ([[x]] + [[y]] + 1) mod wwB. - Variable spec_ww_sub : forall x y, [[ww_sub x y]] = ([[x]] - [[y]]) mod wwB. - Variable spec_ww_sub_c : forall x y, [-[ww_sub_c x y]] = [[x]] - [[y]]. - - - Lemma spec_ww_to_Z : forall x, 0 <= [[x]] < wwB. - Proof. intros x;apply spec_ww_to_Z;auto. Qed. - - Lemma spec_ww_to_Z_wBwB : forall x, 0 <= [[x]] < wB^2. - Proof. rewrite <- wwB_wBwB;apply spec_ww_to_Z. Qed. - - Hint Resolve spec_ww_to_Z spec_ww_to_Z_wBwB : mult. - Ltac zarith := auto with zarith mult. - - Lemma wBwB_lex: forall a b c d, - a * wB^2 + [[b]] <= c * wB^2 + [[d]] -> - a <= c. - Proof. - intros a b c d H; apply beta_lex with [[b]] [[d]] (wB^2);zarith. - Qed. - - Lemma wBwB_lex_inv: forall a b c d, - a < c -> - a * wB^2 + [[b]] < c * wB^2 + [[d]]. - Proof. - intros a b c d H; apply beta_lex_inv; zarith. - Qed. - - Lemma sum_mul_carry : forall xh xl yh yl wc cc, - [|wc|]*wB^2 + [[cc]] = [|xh|] * [|yl|] + [|xl|] * [|yh|] -> - 0 <= [|wc|] <= 1. - Proof. - intros. - apply (sum_mul_carry [|xh|] [|xl|] [|yh|] [|yl|] [|wc|][[cc]] wB);zarith. - apply wB_pos. - Qed. - - Theorem mult_add_ineq: forall xH yH crossH, - 0 <= [|xH|] * [|yH|] + [|crossH|] < wwB. - Proof. - intros;rewrite wwB_wBwB;apply mult_add_ineq;zarith. - Qed. - - Hint Resolve mult_add_ineq : mult. - - Lemma spec_mul_aux : forall xh xl yh yl wc (cc:zn2z w) hh ll, - [[hh]] = [|xh|] * [|yh|] -> - [[ll]] = [|xl|] * [|yl|] -> - [|wc|]*wB^2 + [[cc]] = [|xh|] * [|yl|] + [|xl|] * [|yh|] -> - [||match cc with - | W0 => WW (ww_add hh (w_W0 wc)) ll - | WW cch ccl => - match ww_add_c (w_W0 ccl) ll with - | C0 l => WW (ww_add hh (w_WW wc cch)) l - | C1 l => WW (ww_add_carry hh (w_WW wc cch)) l - end - end||] = ([|xh|] * wB + [|xl|]) * ([|yh|] * wB + [|yl|]). - Proof. - intros;assert (U1 := wB_pos w_digits). - replace (([|xh|] * wB + [|xl|]) * ([|yh|] * wB + [|yl|])) with - ([|xh|]*[|yh|]*wB^2 + ([|xh|]*[|yl|] + [|xl|]*[|yh|])*wB + [|xl|]*[|yl|]). - 2:ring. rewrite <- H1;rewrite <- H;rewrite <- H0. - assert (H2 := sum_mul_carry _ _ _ _ _ _ H1). - destruct cc as [ | cch ccl]; simpl zn2z_to_Z; simpl ww_to_Z. - rewrite spec_ww_add;rewrite spec_w_W0;rewrite Zmod_small; - rewrite wwB_wBwB. ring. - rewrite <- (Z.add_0_r ([|wc|]*wB));rewrite H;apply mult_add_ineq3;zarith. - simpl ww_to_Z in H1. assert (U:=spec_to_Z cch). - assert ([|wc|]*wB + [|cch|] <= 2*wB - 3). - destruct (Z_le_gt_dec ([|wc|]*wB + [|cch|]) (2*wB - 3)) as [Hle|Hgt];trivial. - assert ([|xh|] * [|yl|] + [|xl|] * [|yh|] <= (2*wB - 4)*wB + 2). - ring_simplify ((2*wB - 4)*wB + 2). - assert (H4 := Zmult_lt_b _ _ _ (spec_to_Z xh) (spec_to_Z yl)). - assert (H5 := Zmult_lt_b _ _ _ (spec_to_Z xl) (spec_to_Z yh)). - omega. - generalize H3;clear H3;rewrite <- H1. - rewrite Z.add_assoc; rewrite Z.pow_2_r; rewrite Z.mul_assoc; - rewrite <- Z.mul_add_distr_r. - assert (((2 * wB - 4) + 2)*wB <= ([|wc|] * wB + [|cch|])*wB). - apply Z.mul_le_mono_nonneg;zarith. - rewrite Z.mul_add_distr_r in H3. - intros. assert (U2 := spec_to_Z ccl);omega. - generalize (spec_ww_add_c (w_W0 ccl) ll);destruct (ww_add_c (w_W0 ccl) ll) - as [l|l];unfold interp_carry;rewrite spec_w_W0;try rewrite Z.mul_1_l; - simpl zn2z_to_Z; - try rewrite spec_ww_add;try rewrite spec_ww_add_carry;rewrite spec_w_WW; - rewrite Zmod_small;rewrite wwB_wBwB;intros. - rewrite H4;ring. rewrite H;apply mult_add_ineq2;zarith. - rewrite Z.add_assoc;rewrite Z.mul_add_distr_r. - rewrite Z.mul_1_l;rewrite <- Z.add_assoc;rewrite H4;ring. - repeat rewrite <- Z.add_assoc;rewrite H;apply mult_add_ineq2;zarith. - Qed. - - Lemma spec_double_mul_c : forall cross:w->w->w->w->zn2z w -> zn2z w -> w*zn2z w, - (forall xh xl yh yl hh ll, - [[hh]] = [|xh|]*[|yh|] -> - [[ll]] = [|xl|]*[|yl|] -> - let (wc,cc) := cross xh xl yh yl hh ll in - [|wc|]*wwB + [[cc]] = [|xh|]*[|yl|] + [|xl|]*[|yh|]) -> - forall x y, [||double_mul_c cross x y||] = [[x]] * [[y]]. - Proof. - intros cross Hcross x y;destruct x as [ |xh xl];simpl;trivial. - destruct y as [ |yh yl];simpl. rewrite Z.mul_0_r;trivial. - assert (H1:= spec_w_mul_c xh yh);assert (H2:= spec_w_mul_c xl yl). - generalize (Hcross _ _ _ _ _ _ H1 H2). - destruct (cross xh xl yh yl (w_mul_c xh yh) (w_mul_c xl yl)) as (wc,cc). - intros;apply spec_mul_aux;trivial. - rewrite <- wwB_wBwB;trivial. - Qed. - - Lemma spec_ww_mul_c : forall x y, [||ww_mul_c x y||] = [[x]] * [[y]]. - Proof. - intros x y;unfold ww_mul_c;apply spec_double_mul_c. - intros xh xl yh yl hh ll H1 H2. - generalize (spec_ww_add_c (w_mul_c xh yl) (w_mul_c xl yh)); - destruct (ww_add_c (w_mul_c xh yl) (w_mul_c xl yh)) as [c|c]; - unfold interp_carry;repeat rewrite spec_w_mul_c;intros H; - (rewrite spec_w_0 || rewrite spec_w_1);rewrite H;ring. - Qed. - - Lemma spec_w_2: [|w_2|] = 2. - unfold w_2; rewrite spec_w_add; rewrite spec_w_1; simpl. - apply Zmod_small; split; auto with zarith. - rewrite <- (Z.pow_1_r 2); unfold base; apply Zpower_lt_monotone; auto with zarith. - Qed. - - Lemma kara_prod_aux : forall xh xl yh yl, - xh*yh + xl*yl - (xh-xl)*(yh-yl) = xh*yl + xl*yh. - Proof. intros;ring. Qed. - - Lemma spec_kara_prod : forall xh xl yh yl hh ll, - [[hh]] = [|xh|]*[|yh|] -> - [[ll]] = [|xl|]*[|yl|] -> - let (wc,cc) := kara_prod xh xl yh yl hh ll in - [|wc|]*wwB + [[cc]] = [|xh|]*[|yl|] + [|xl|]*[|yh|]. - Proof. - intros xh xl yh yl hh ll H H0; rewrite <- kara_prod_aux; - rewrite <- H; rewrite <- H0; unfold kara_prod. - assert (Hxh := (spec_to_Z xh)); assert (Hxl := (spec_to_Z xl)); - assert (Hyh := (spec_to_Z yh)); assert (Hyl := (spec_to_Z yl)). - generalize (spec_ww_add_c hh ll); case (ww_add_c hh ll); - intros z Hz; rewrite <- Hz; unfold interp_carry; assert (Hz1 := (spec_ww_to_Z z)). - rewrite spec_w_compare; case Z.compare_spec; intros Hxlh; - try rewrite Hxlh; try rewrite spec_w_0; try (ring; fail). - rewrite spec_w_compare; case Z.compare_spec; intros Hylh. - rewrite Hylh; rewrite spec_w_0; try (ring; fail). - rewrite spec_w_0; try (ring; fail). - repeat (rewrite spec_ww_sub || rewrite spec_w_sub || rewrite spec_w_mul_c). - repeat rewrite Zmod_small; auto with zarith; try (ring; fail). - split; auto with zarith. - simpl in Hz; rewrite Hz; rewrite H; rewrite H0. - rewrite kara_prod_aux; apply Z.add_nonneg_nonneg; apply Z.mul_nonneg_nonneg; auto with zarith. - apply Z.le_lt_trans with ([[z]]-0); auto with zarith. - unfold Z.sub; apply Z.add_le_mono_l; apply Z.le_0_sub; simpl; rewrite Z.opp_involutive. - apply Z.mul_nonneg_nonneg; auto with zarith. - match goal with |- context[ww_add_c ?x ?y] => - generalize (spec_ww_add_c x y); case (ww_add_c x y); try rewrite spec_w_0; - intros z1 Hz2 - end. - simpl in Hz2; rewrite Hz2; repeat (rewrite spec_w_sub || rewrite spec_w_mul_c). - repeat rewrite Zmod_small; auto with zarith; try (ring; fail). - rewrite spec_w_1; unfold interp_carry in Hz2; rewrite Hz2; - repeat (rewrite spec_w_sub || rewrite spec_w_mul_c). - repeat rewrite Zmod_small; auto with zarith; try (ring; fail). - rewrite spec_w_compare; case Z.compare_spec; intros Hylh. - rewrite Hylh; rewrite spec_w_0; try (ring; fail). - match goal with |- context[ww_add_c ?x ?y] => - generalize (spec_ww_add_c x y); case (ww_add_c x y); try rewrite spec_w_0; - intros z1 Hz2 - end. - simpl in Hz2; rewrite Hz2; repeat (rewrite spec_w_sub || rewrite spec_w_mul_c). - repeat rewrite Zmod_small; auto with zarith; try (ring; fail). - rewrite spec_w_1; unfold interp_carry in Hz2; rewrite Hz2; - repeat (rewrite spec_w_sub || rewrite spec_w_mul_c). - repeat rewrite Zmod_small; auto with zarith; try (ring; fail). - rewrite spec_w_0; try (ring; fail). - repeat (rewrite spec_ww_sub || rewrite spec_w_sub || rewrite spec_w_mul_c). - repeat rewrite Zmod_small; auto with zarith; try (ring; fail). - split. - match goal with |- context[(?x - ?y) * (?z - ?t)] => - replace ((x - y) * (z - t)) with ((y - x) * (t - z)); [idtac | ring] - end. - simpl in Hz; rewrite Hz; rewrite H; rewrite H0. - rewrite kara_prod_aux; apply Z.add_nonneg_nonneg; apply Z.mul_nonneg_nonneg; auto with zarith. - apply Z.le_lt_trans with ([[z]]-0); auto with zarith. - unfold Z.sub; apply Z.add_le_mono_l; apply Z.le_0_sub; simpl; rewrite Z.opp_involutive. - apply Z.mul_nonneg_nonneg; auto with zarith. - (** there is a carry in hh + ll **) - rewrite Z.mul_1_l. - rewrite spec_w_compare; case Z.compare_spec; intros Hxlh; - try rewrite Hxlh; try rewrite spec_w_1; try (ring; fail). - rewrite spec_w_compare; case Z.compare_spec; intros Hylh; - try rewrite Hylh; try rewrite spec_w_1; try (ring; fail). - match goal with |- context[ww_sub_c ?x ?y] => - generalize (spec_ww_sub_c x y); case (ww_sub_c x y); try rewrite spec_w_1; - intros z1 Hz2 - end. - simpl in Hz2; rewrite Hz2; repeat (rewrite spec_w_sub || rewrite spec_w_mul_c). - repeat rewrite Zmod_small; auto with zarith; try (ring; fail). - rewrite spec_w_0; rewrite Z.mul_0_l; rewrite Z.add_0_l. - generalize Hz2; clear Hz2; unfold interp_carry. - repeat (rewrite spec_w_sub || rewrite spec_w_mul_c). - repeat rewrite Zmod_small; auto with zarith; try (ring; fail). - match goal with |- context[ww_add_c ?x ?y] => - generalize (spec_ww_add_c x y); case (ww_add_c x y); try rewrite spec_w_1; - intros z1 Hz2 - end. - simpl in Hz2; rewrite Hz2; repeat (rewrite spec_w_sub || rewrite spec_w_mul_c). - repeat rewrite Zmod_small; auto with zarith; try (ring; fail). - rewrite spec_w_2; unfold interp_carry in Hz2. - transitivity (wwB + (1 * wwB + [[z1]])). - ring. - rewrite Hz2; repeat (rewrite spec_w_sub || rewrite spec_w_mul_c). - repeat rewrite Zmod_small; auto with zarith; try (ring; fail). - rewrite spec_w_compare; case Z.compare_spec; intros Hylh; - try rewrite Hylh; try rewrite spec_w_1; try (ring; fail). - match goal with |- context[ww_add_c ?x ?y] => - generalize (spec_ww_add_c x y); case (ww_add_c x y); try rewrite spec_w_1; - intros z1 Hz2 - end. - simpl in Hz2; rewrite Hz2; repeat (rewrite spec_w_sub || rewrite spec_w_mul_c). - repeat rewrite Zmod_small; auto with zarith; try (ring; fail). - rewrite spec_w_2; unfold interp_carry in Hz2. - transitivity (wwB + (1 * wwB + [[z1]])). - ring. - rewrite Hz2; repeat (rewrite spec_w_sub || rewrite spec_w_mul_c). - repeat rewrite Zmod_small; auto with zarith; try (ring; fail). - match goal with |- context[ww_sub_c ?x ?y] => - generalize (spec_ww_sub_c x y); case (ww_sub_c x y); try rewrite spec_w_1; - intros z1 Hz2 - end. - simpl in Hz2; rewrite Hz2; repeat (rewrite spec_w_sub || rewrite spec_w_mul_c). - repeat rewrite Zmod_small; auto with zarith; try (ring; fail). - rewrite spec_w_0; rewrite Z.mul_0_l; rewrite Z.add_0_l. - match goal with |- context[(?x - ?y) * (?z - ?t)] => - replace ((x - y) * (z - t)) with ((y - x) * (t - z)); [idtac | ring] - end. - generalize Hz2; clear Hz2; unfold interp_carry. - repeat (rewrite spec_w_sub || rewrite spec_w_mul_c). - repeat rewrite Zmod_small; auto with zarith; try (ring; fail). - Qed. - - Lemma sub_carry : forall xh xl yh yl z, - 0 <= z -> - [|xh|]*[|yl|] + [|xl|]*[|yh|] = wwB + z -> - z < wwB. - Proof. - intros xh xl yh yl z Hle Heq. - destruct (Z_le_gt_dec wwB z);auto with zarith. - generalize (Zmult_lt_b _ _ _ (spec_to_Z xh) (spec_to_Z yl)). - generalize (Zmult_lt_b _ _ _ (spec_to_Z xl) (spec_to_Z yh)). - rewrite <- wwB_wBwB;intros H1 H2. - assert (H3 := wB_pos w_digits). - assert (2*wB <= wwB). - rewrite wwB_wBwB; rewrite Z.pow_2_r; apply Z.mul_le_mono_nonneg;zarith. - omega. - Qed. - - Ltac Spec_ww_to_Z x := - let H:= fresh "H" in - assert (H:= spec_ww_to_Z x). - - Ltac Zmult_lt_b x y := - let H := fresh "H" in - assert (H := Zmult_lt_b _ _ _ (spec_to_Z x) (spec_to_Z y)). - - Lemma spec_ww_karatsuba_c : forall x y, [||ww_karatsuba_c x y||]=[[x]]*[[y]]. - Proof. - intros x y; unfold ww_karatsuba_c;apply spec_double_mul_c. - intros; apply spec_kara_prod; auto. - Qed. - - Lemma spec_ww_mul : forall x y, [[ww_mul x y]] = [[x]]*[[y]] mod wwB. - Proof. - assert (U:= lt_0_wB w_digits). - assert (U1:= lt_0_wwB w_digits). - intros x y; case x; auto; intros xh xl. - case y; auto. - simpl; rewrite Z.mul_0_r; rewrite Zmod_small; auto with zarith. - intros yh yl;simpl. - repeat (rewrite spec_ww_add || rewrite spec_w_W0 || rewrite spec_w_mul_c - || rewrite spec_w_add || rewrite spec_w_mul). - rewrite <- Zplus_mod; auto with zarith. - repeat (rewrite Z.mul_add_distr_r || rewrite Z.mul_add_distr_l). - rewrite <- Zmult_mod_distr_r; auto with zarith. - rewrite <- Z.pow_2_r; rewrite <- wwB_wBwB; auto with zarith. - rewrite Zplus_mod; auto with zarith. - rewrite Zmod_mod; auto with zarith. - rewrite <- Zplus_mod; auto with zarith. - match goal with |- ?X mod _ = _ => - rewrite <- Z_mod_plus with (a := X) (b := [|xh|] * [|yh|]) - end; auto with zarith. - f_equal; auto; rewrite wwB_wBwB; ring. - Qed. - - Lemma spec_ww_square_c : forall x, [||ww_square_c x||] = [[x]]*[[x]]. - Proof. - destruct x as [ |xh xl];simpl;trivial. - case_eq match ww_add_c (w_mul_c xh xl) (w_mul_c xh xl) with - | C0 cc => (w_0, cc) - | C1 cc => (w_1, cc) - end;intros wc cc Heq. - apply (spec_mul_aux xh xl xh xl wc cc);trivial. - generalize Heq (spec_ww_add_c (w_mul_c xh xl) (w_mul_c xh xl));clear Heq. - rewrite spec_w_mul_c;destruct (ww_add_c (w_mul_c xh xl) (w_mul_c xh xl)); - unfold interp_carry;try rewrite Z.mul_1_l;intros Heq Heq';inversion Heq; - rewrite (Z.mul_comm [|xl|]);subst. - rewrite spec_w_0;rewrite Z.mul_0_l;rewrite Z.add_0_l;trivial. - rewrite spec_w_1;rewrite Z.mul_1_l;rewrite <- wwB_wBwB;trivial. - Qed. - - Section DoubleMulAddn1Proof. - - Variable w_mul_add : w -> w -> w -> w * w. - Variable spec_w_mul_add : forall x y r, - let (h,l):= w_mul_add x y r in - [|h|]*wB+[|l|] = [|x|]*[|y|] + [|r|]. - - Lemma spec_double_mul_add_n1 : forall n x y r, - let (h,l) := double_mul_add_n1 w_mul_add n x y r in - [|h|]*double_wB w_digits n + [!n|l!] = [!n|x!]*[|y|]+[|r|]. - Proof. - induction n;intros x y r;trivial. - exact (spec_w_mul_add x y r). - unfold double_mul_add_n1;destruct x as[ |xh xl]; - fold(double_mul_add_n1 w_mul_add). - rewrite spec_w_0;rewrite spec_extend;simpl;trivial. - assert(H:=IHn xl y r);destruct (double_mul_add_n1 w_mul_add n xl y r)as(rl,l). - assert(U:=IHn xh y rl);destruct(double_mul_add_n1 w_mul_add n xh y rl)as(rh,h). - rewrite <- double_wB_wwB. rewrite spec_double_WW;simpl;trivial. - rewrite Z.mul_add_distr_r;rewrite <- Z.add_assoc;rewrite <- H. - rewrite Z.mul_assoc;rewrite Z.add_assoc;rewrite <- Z.mul_add_distr_r. - rewrite U;ring. - Qed. - - End DoubleMulAddn1Proof. - - Lemma spec_w_mul_add : forall x y r, - let (h,l):= w_mul_add x y r in - [|h|]*wB+[|l|] = [|x|]*[|y|] + [|r|]. - Proof. - intros x y r;unfold w_mul_add;assert (H:=spec_w_mul_c x y); - destruct (w_mul_c x y) as [ |h l];simpl;rewrite <- H. - rewrite spec_w_0;trivial. - assert (U:=spec_w_add_c l r);destruct (w_add_c l r) as [lr|lr];unfold - interp_carry in U;try rewrite Z.mul_1_l in H;simpl. - rewrite U;ring. rewrite spec_w_succ. rewrite Zmod_small. - rewrite <- Z.add_assoc;rewrite <- U;ring. - simpl in H;assert (H1:= Zmult_lt_b _ _ _ (spec_to_Z x) (spec_to_Z y)). - rewrite <- H in H1. - assert (H2:=spec_to_Z h);split;zarith. - case H1;clear H1;intro H1;clear H1. - replace (wB ^ 2 - 2 * wB) with ((wB - 2)*wB). 2:ring. - intros H0;assert (U1:= wB_pos w_digits). - assert (H1 := beta_lex _ _ _ _ _ H0 (spec_to_Z l));zarith. - Qed. - -(* End DoubleProof. *) - -End DoubleMul. diff --git a/theories/Numbers/Cyclic/DoubleCyclic/DoubleSqrt.v b/theories/Numbers/Cyclic/DoubleCyclic/DoubleSqrt.v deleted file mode 100644 index d07ce3018..000000000 --- a/theories/Numbers/Cyclic/DoubleCyclic/DoubleSqrt.v +++ /dev/null @@ -1,1369 +0,0 @@ -(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016 *) -(* \VV/ **************************************************************) -(* // * This file is distributed under the terms of the *) -(* * GNU Lesser General Public License Version 2.1 *) -(************************************************************************) -(* Benjamin Gregoire, Laurent Thery, INRIA, 2007 *) -(************************************************************************) - -Set Implicit Arguments. - -Require Import ZArith. -Require Import BigNumPrelude. -Require Import DoubleType. -Require Import DoubleBase. - -Local Open Scope Z_scope. - -Section DoubleSqrt. - Variable w : Type. - Variable w_is_even : w -> bool. - Variable w_compare : w -> w -> comparison. - Variable w_0 : w. - Variable w_1 : w. - Variable w_Bm1 : w. - Variable w_WW : w -> w -> zn2z w. - Variable w_W0 : w -> zn2z w. - Variable w_0W : w -> zn2z w. - Variable w_sub : w -> w -> w. - Variable w_sub_c : w -> w -> carry w. - Variable w_square_c : w -> zn2z w. - Variable w_div21 : w -> w -> w -> w * w. - Variable w_add_mul_div : w -> w -> w -> w. - Variable w_digits : positive. - Variable w_zdigits : w. - Variable ww_zdigits : zn2z w. - Variable w_add_c : w -> w -> carry w. - Variable w_sqrt2 : w -> w -> w * carry w. - Variable w_pred : w -> w. - Variable ww_pred_c : zn2z w -> carry (zn2z w). - Variable ww_pred : zn2z w -> zn2z w. - Variable ww_add_c : zn2z w -> zn2z w -> carry (zn2z w). - Variable ww_add : zn2z w -> zn2z w -> zn2z w. - Variable ww_sub_c : zn2z w -> zn2z w -> carry (zn2z w). - Variable ww_add_mul_div : zn2z w -> zn2z w -> zn2z w -> zn2z w. - Variable ww_head0 : zn2z w -> zn2z w. - Variable ww_compare : zn2z w -> zn2z w -> comparison. - Variable low : zn2z w -> w. - - Let wwBm1 := ww_Bm1 w_Bm1. - - Definition ww_is_even x := - match x with - | W0 => true - | WW xh xl => w_is_even xl - end. - - Let w_div21c x y z := - match w_compare x z with - | Eq => - match w_compare y z with - Eq => (C1 w_1, w_0) - | Gt => (C1 w_1, w_sub y z) - | Lt => (C1 w_0, y) - end - | Gt => - let x1 := w_sub x z in - let (q, r) := w_div21 x1 y z in - (C1 q, r) - | Lt => - let (q, r) := w_div21 x y z in - (C0 q, r) - end. - - Let w_div2s x y s := - match x with - C1 x1 => - let x2 := w_sub x1 s in - let (q, r) := w_div21c x2 y s in - match q with - C0 q1 => - if w_is_even q1 then - (C0 (w_add_mul_div (w_pred w_zdigits) w_1 q1), C0 r) - else - (C0 (w_add_mul_div (w_pred w_zdigits) w_1 q1), w_add_c r s) - | C1 q1 => - if w_is_even q1 then - (C1 (w_add_mul_div (w_pred w_zdigits) w_0 q1), C0 r) - else - (C1 (w_add_mul_div (w_pred w_zdigits) w_0 q1), w_add_c r s) - end - | C0 x1 => - let (q, r) := w_div21c x1 y s in - match q with - C0 q1 => - if w_is_even q1 then - (C0 (w_add_mul_div (w_pred w_zdigits) w_0 q1), C0 r) - else - (C0 (w_add_mul_div (w_pred w_zdigits) w_0 q1), w_add_c r s) - | C1 q1 => - if w_is_even q1 then - (C0 (w_add_mul_div (w_pred w_zdigits) w_1 q1), C0 r) - else - (C0 (w_add_mul_div (w_pred w_zdigits) w_1 q1), w_add_c r s) - end - end. - - Definition split x := - match x with - | W0 => (w_0,w_0) - | WW h l => (h,l) - end. - - Definition ww_sqrt2 x y := - let (x1, x2) := split x in - let (y1, y2) := split y in - let ( q, r) := w_sqrt2 x1 x2 in - let (q1, r1) := w_div2s r y1 q in - match q1 with - C0 q1 => - let q2 := w_square_c q1 in - let a := WW q q1 in - match r1 with - C1 r2 => - match ww_sub_c (WW r2 y2) q2 with - C0 r3 => (a, C1 r3) - | C1 r3 => (a, C0 r3) - end - | C0 r2 => - match ww_sub_c (WW r2 y2) q2 with - C0 r3 => (a, C0 r3) - | C1 r3 => - let a2 := ww_add_mul_div (w_0W w_1) a W0 in - match ww_pred_c a2 with - C0 a3 => - (ww_pred a, ww_add_c a3 r3) - | C1 a3 => - (ww_pred a, C0 (ww_add a3 r3)) - end - end - end - | C1 q1 => - let a1 := WW q w_Bm1 in - let a2 := ww_add_mul_div (w_0W w_1) a1 wwBm1 in - (a1, ww_add_c a2 y) - end. - - Definition ww_is_zero x := - match ww_compare W0 x with - Eq => true - | _ => false - end. - - Definition ww_head1 x := - let p := ww_head0 x in - if (ww_is_even p) then p else ww_pred p. - - Definition ww_sqrt x := - if (ww_is_zero x) then W0 - else - let p := ww_head1 x in - match ww_compare p W0 with - | Gt => - match ww_add_mul_div p x W0 with - W0 => W0 - | WW x1 x2 => - let (r, _) := w_sqrt2 x1 x2 in - WW w_0 (w_add_mul_div - (w_sub w_zdigits - (low (ww_add_mul_div (ww_pred ww_zdigits) - W0 p))) w_0 r) - end - | _ => - match x with - W0 => W0 - | WW x1 x2 => WW w_0 (fst (w_sqrt2 x1 x2)) - end - end. - - - Variable w_to_Z : w -> Z. - - Notation wB := (base w_digits). - Notation wwB := (base (ww_digits w_digits)). - Notation "[| x |]" := (w_to_Z x) (at level 0, x at level 99). - Notation "[+| c |]" := - (interp_carry 1 wB w_to_Z c) (at level 0, c at level 99). - Notation "[-| c |]" := - (interp_carry (-1) wB w_to_Z c) (at level 0, c at level 99). - - Notation "[[ x ]]" := (ww_to_Z w_digits w_to_Z x)(at level 0, x at level 99). - Notation "[+[ c ]]" := - (interp_carry 1 wwB (ww_to_Z w_digits w_to_Z) c) - (at level 0, c at level 99). - Notation "[-[ c ]]" := - (interp_carry (-1) wwB (ww_to_Z w_digits w_to_Z) c) - (at level 0, c at level 99). - - Notation "[|| x ||]" := - (zn2z_to_Z wwB (ww_to_Z w_digits w_to_Z) x) (at level 0, x at level 99). - - Notation "[! n | x !]" := (double_to_Z w_digits w_to_Z n x) - (at level 0, x at level 99). - - Variable spec_w_0 : [|w_0|] = 0. - Variable spec_w_1 : [|w_1|] = 1. - Variable spec_w_Bm1 : [|w_Bm1|] = wB - 1. - Variable spec_w_zdigits : [|w_zdigits|] = Zpos w_digits. - Variable spec_more_than_1_digit: 1 < Zpos w_digits. - - Variable spec_ww_zdigits : [[ww_zdigits]] = Zpos (xO w_digits). - Variable spec_to_Z : forall x, 0 <= [|x|] < wB. - Variable spec_to_w_Z : forall x, 0 <= [[x]] < wwB. - - Variable spec_w_WW : forall h l, [[w_WW h l]] = [|h|] * wB + [|l|]. - Variable spec_w_W0 : forall h, [[w_W0 h]] = [|h|] * wB. - Variable spec_w_0W : forall l, [[w_0W l]] = [|l|]. - Variable spec_w_is_even : forall x, - if w_is_even x then [|x|] mod 2 = 0 else [|x|] mod 2 = 1. - Variable spec_w_compare : forall x y, - w_compare x y = Z.compare [|x|] [|y|]. - Variable spec_w_sub : forall x y, [|w_sub x y|] = ([|x|] - [|y|]) mod wB. - Variable spec_w_square_c : forall x, [[ w_square_c x]] = [|x|] * [|x|]. - Variable spec_w_div21 : forall a1 a2 b, - wB/2 <= [|b|] -> - [|a1|] < [|b|] -> - let (q,r) := w_div21 a1 a2 b in - [|a1|] *wB+ [|a2|] = [|q|] * [|b|] + [|r|] /\ - 0 <= [|r|] < [|b|]. - Variable spec_w_add_mul_div : forall x y p, - [|p|] <= Zpos w_digits -> - [| w_add_mul_div p x y |] = - ([|x|] * (2 ^ [|p|]) + - [|y|] / (Z.pow 2 ((Zpos w_digits) - [|p|]))) mod wB. - Variable spec_ww_add_mul_div : forall x y p, - [[p]] <= Zpos (xO w_digits) -> - [[ ww_add_mul_div p x y ]] = - ([[x]] * (2^ [[p]]) + - [[y]] / (2^ (Zpos (xO w_digits) - [[p]]))) mod wwB. - Variable spec_w_add_c : forall x y, [+|w_add_c x y|] = [|x|] + [|y|]. - Variable spec_ww_add : forall x y, [[ww_add x y]] = ([[x]] + [[y]]) mod wwB. - Variable spec_w_sqrt2 : forall x y, - wB/ 4 <= [|x|] -> - let (s,r) := w_sqrt2 x y in - [[WW x y]] = [|s|] ^ 2 + [+|r|] /\ - [+|r|] <= 2 * [|s|]. - Variable spec_ww_sub_c : forall x y, [-[ww_sub_c x y]] = [[x]] - [[y]]. - Variable spec_ww_pred_c : forall x, [-[ww_pred_c x]] = [[x]] - 1. - Variable spec_pred : forall x, [|w_pred x|] = ([|x|] - 1) mod wB. - Variable spec_ww_pred : forall x, [[ww_pred x]] = ([[x]] - 1) mod wwB. - Variable spec_ww_add_c : forall x y, [+[ww_add_c x y]] = [[x]] + [[y]]. - Variable spec_ww_compare : forall x y, - ww_compare x y = Z.compare [[x]] [[y]]. - Variable spec_ww_head0 : forall x, 0 < [[x]] -> - wwB/ 2 <= 2 ^ [[ww_head0 x]] * [[x]] < wwB. - Variable spec_low: forall x, [|low x|] = [[x]] mod wB. - - Let spec_ww_Bm1 : [[wwBm1]] = wwB - 1. - Proof. refine (spec_ww_Bm1 w_Bm1 w_digits w_to_Z _);auto. Qed. - - Hint Rewrite spec_w_0 spec_w_1 spec_w_WW spec_w_sub - spec_w_add_mul_div spec_ww_Bm1 spec_w_add_c : w_rewrite. - - Lemma spec_ww_is_even : forall x, - if ww_is_even x then [[x]] mod 2 = 0 else [[x]] mod 2 = 1. -clear spec_more_than_1_digit. -intros x; case x; simpl ww_is_even. - reflexivity. - simpl. - intros w1 w2; simpl. - unfold base. - rewrite Zplus_mod; auto with zarith. - rewrite (fun x y => (Zdivide_mod (x * y))); auto with zarith. - rewrite Z.add_0_l; rewrite Zmod_mod; auto with zarith. - apply spec_w_is_even; auto with zarith. - apply Z.divide_mul_r; apply Zpower_divide; auto with zarith. - Qed. - - - Theorem spec_w_div21c : forall a1 a2 b, - wB/2 <= [|b|] -> - let (q,r) := w_div21c a1 a2 b in - [|a1|] * wB + [|a2|] = [+|q|] * [|b|] + [|r|] /\ 0 <= [|r|] < [|b|]. - intros a1 a2 b Hb; unfold w_div21c. - assert (H: 0 < [|b|]); auto with zarith. - assert (U := wB_pos w_digits). - apply Z.lt_le_trans with (2 := Hb); auto with zarith. - apply Z.lt_le_trans with 1; auto with zarith. - apply Zdiv_le_lower_bound; auto with zarith. - rewrite !spec_w_compare. repeat case Z.compare_spec. - intros H1 H2; split. - unfold interp_carry; autorewrite with w_rewrite rm10; auto with zarith. - rewrite H1; rewrite H2; ring. - autorewrite with w_rewrite; auto with zarith. - intros H1 H2; split. - unfold interp_carry; autorewrite with w_rewrite rm10; auto with zarith. - rewrite H2; ring. - destruct (spec_to_Z a2);auto with zarith. - intros H1 H2; split. - unfold interp_carry; autorewrite with w_rewrite rm10; auto with zarith. - rewrite H2; rewrite Zmod_small; auto with zarith. - ring. - destruct (spec_to_Z a2);auto with zarith. - rewrite spec_w_sub; auto with zarith. - destruct (spec_to_Z a2) as [H3 H4];auto with zarith. - rewrite Zmod_small; auto with zarith. - split; auto with zarith. - assert ([|a2|] < 2 * [|b|]); auto with zarith. - apply Z.lt_le_trans with (2 * (wB / 2)); auto with zarith. - rewrite wB_div_2; auto. - intros H1. - match goal with |- context[w_div21 ?y ?z ?t] => - generalize (@spec_w_div21 y z t Hb H1); - case (w_div21 y z t); simpl; autorewrite with w_rewrite; - auto - end. - intros H1. - assert (H2: [|w_sub a1 b|] < [|b|]). - rewrite spec_w_sub; auto with zarith. - rewrite Zmod_small; auto with zarith. - assert ([|a1|] < 2 * [|b|]); auto with zarith. - apply Z.lt_le_trans with (2 * (wB / 2)); auto with zarith. - rewrite wB_div_2; auto. - destruct (spec_to_Z a1);auto with zarith. - destruct (spec_to_Z a1);auto with zarith. - match goal with |- context[w_div21 ?y ?z ?t] => - generalize (@spec_w_div21 y z t Hb H2); - case (w_div21 y z t); autorewrite with w_rewrite; - auto - end. - intros w0 w1; replace [+|C1 w0|] with (wB + [|w0|]). - rewrite Zmod_small; auto with zarith. - intros (H3, H4); split; auto. - rewrite Z.mul_add_distr_r. - rewrite <- Z.add_assoc; rewrite <- H3; ring. - split; auto with zarith. - assert ([|a1|] < 2 * [|b|]); auto with zarith. - apply Z.lt_le_trans with (2 * (wB / 2)); auto with zarith. - rewrite wB_div_2; auto. - destruct (spec_to_Z a1);auto with zarith. - destruct (spec_to_Z a1);auto with zarith. - simpl; case wB; auto. - Qed. - - Theorem C0_id: forall p, [+|C0 p|] = [|p|]. - intros p; simpl; auto. - Qed. - - Theorem add_mult_div_2: forall w, - [|w_add_mul_div (w_pred w_zdigits) w_0 w|] = [|w|] / 2. - intros w1. - assert (Hp: [|w_pred w_zdigits|] = Zpos w_digits - 1). - rewrite spec_pred; rewrite spec_w_zdigits. - rewrite Zmod_small; auto with zarith. - split; auto with zarith. - apply Z.lt_le_trans with (Zpos w_digits); auto with zarith. - unfold base; apply Zpower2_le_lin; auto with zarith. - rewrite spec_w_add_mul_div; auto with zarith. - autorewrite with w_rewrite rm10. - match goal with |- context[?X - ?Y] => - replace (X - Y) with 1 - end. - rewrite Z.pow_1_r; rewrite Zmod_small; auto with zarith. - destruct (spec_to_Z w1) as [H1 H2];auto with zarith. - split; auto with zarith. - apply Zdiv_lt_upper_bound; auto with zarith. - rewrite Hp; ring. - Qed. - - Theorem add_mult_div_2_plus_1: forall w, - [|w_add_mul_div (w_pred w_zdigits) w_1 w|] = - [|w|] / 2 + 2 ^ Zpos (w_digits - 1). - intros w1. - assert (Hp: [|w_pred w_zdigits|] = Zpos w_digits - 1). - rewrite spec_pred; rewrite spec_w_zdigits. - rewrite Zmod_small; auto with zarith. - split; auto with zarith. - apply Z.lt_le_trans with (Zpos w_digits); auto with zarith. - unfold base; apply Zpower2_le_lin; auto with zarith. - autorewrite with w_rewrite rm10; auto with zarith. - match goal with |- context[?X - ?Y] => - replace (X - Y) with 1 - end; rewrite Hp; try ring. - rewrite Pos2Z.inj_sub_max; auto with zarith. - rewrite Z.max_r; auto with zarith. - rewrite Z.pow_1_r; rewrite Zmod_small; auto with zarith. - destruct (spec_to_Z w1) as [H1 H2];auto with zarith. - split; auto with zarith. - unfold base. - match goal with |- _ < _ ^ ?X => - assert (tmp: forall p, 1 + (p - 1) = p); auto with zarith; - rewrite <- (tmp X); clear tmp - end. - rewrite Zpower_exp; try rewrite Z.pow_1_r; auto with zarith. - assert (tmp: forall p, 1 + (p -1) - 1 = p - 1); auto with zarith; - rewrite tmp; clear tmp; auto with zarith. - match goal with |- ?X + ?Y < _ => - assert (Y < X); auto with zarith - end. - apply Zdiv_lt_upper_bound; auto with zarith. - pattern 2 at 2; rewrite <- Z.pow_1_r; rewrite <- Zpower_exp; - auto with zarith. - assert (tmp: forall p, (p - 1) + 1 = p); auto with zarith; - rewrite tmp; clear tmp; auto with zarith. - Qed. - - Theorem add_mult_mult_2: forall w, - [|w_add_mul_div w_1 w w_0|] = 2 * [|w|] mod wB. - intros w1. - autorewrite with w_rewrite rm10; auto with zarith. - rewrite Z.pow_1_r; auto with zarith. - rewrite Z.mul_comm; auto. - Qed. - - Theorem ww_add_mult_mult_2: forall w, - [[ww_add_mul_div (w_0W w_1) w W0]] = 2 * [[w]] mod wwB. - intros w1. - rewrite spec_ww_add_mul_div; auto with zarith. - autorewrite with w_rewrite rm10. - rewrite spec_w_0W; rewrite spec_w_1. - rewrite Z.pow_1_r; auto with zarith. - rewrite Z.mul_comm; auto. - rewrite spec_w_0W; rewrite spec_w_1; auto with zarith. - red; simpl; intros; discriminate. - Qed. - - Theorem ww_add_mult_mult_2_plus_1: forall w, - [[ww_add_mul_div (w_0W w_1) w wwBm1]] = - (2 * [[w]] + 1) mod wwB. - intros w1. - rewrite spec_ww_add_mul_div; auto with zarith. - rewrite spec_w_0W; rewrite spec_w_1; auto with zarith. - rewrite Z.pow_1_r; auto with zarith. - f_equal; auto. - rewrite Z.mul_comm; f_equal; auto. - autorewrite with w_rewrite rm10. - unfold ww_digits, base. - symmetry; apply Zdiv_unique with (r := 2 ^ (Zpos (ww_digits w_digits) - 1) -1); - auto with zarith. - unfold ww_digits; split; auto with zarith. - match goal with |- 0 <= ?X - 1 => - assert (0 < X); auto with zarith - end. - apply Z.pow_pos_nonneg; auto with zarith. - match goal with |- 0 <= ?X - 1 => - assert (0 < X); auto with zarith; red; reflexivity - end. - unfold ww_digits; autorewrite with rm10. - assert (tmp: forall p q r, p + (q - r) = p + q - r); auto with zarith; - rewrite tmp; clear tmp. - assert (tmp: forall p, p + p = 2 * p); auto with zarith; - rewrite tmp; clear tmp. - f_equal; auto. - pattern 2 at 2; rewrite <- Z.pow_1_r; rewrite <- Zpower_exp; - auto with zarith. - assert (tmp: forall p, 1 + (p - 1) = p); auto with zarith; - rewrite tmp; clear tmp; auto. - match goal with |- ?X - 1 >= 0 => - assert (0 < X); auto with zarith; red; reflexivity - end. - rewrite spec_w_0W; rewrite spec_w_1; auto with zarith. - red; simpl; intros; discriminate. - Qed. - - Theorem Zplus_mod_one: forall a1 b1, 0 < b1 -> (a1 + b1) mod b1 = a1 mod b1. - intros a1 b1 H; rewrite Zplus_mod; auto with zarith. - rewrite Z_mod_same; try rewrite Z.add_0_r; auto with zarith. - apply Zmod_mod; auto. - Qed. - - Lemma C1_plus_wB: forall x, [+|C1 x|] = wB + [|x|]. - unfold interp_carry; auto with zarith. - Qed. - - Theorem spec_w_div2s : forall a1 a2 b, - wB/2 <= [|b|] -> [+|a1|] <= 2 * [|b|] -> - let (q,r) := w_div2s a1 a2 b in - [+|a1|] * wB + [|a2|] = [+|q|] * (2 * [|b|]) + [+|r|] /\ 0 <= [+|r|] < 2 * [|b|]. - intros a1 a2 b H. - assert (HH: 0 < [|b|]); auto with zarith. - assert (U := wB_pos w_digits). - apply Z.lt_le_trans with (2 := H); auto with zarith. - apply Z.lt_le_trans with 1; auto with zarith. - apply Zdiv_le_lower_bound; auto with zarith. - unfold w_div2s; case a1; intros w0 H0. - match goal with |- context[w_div21c ?y ?z ?t] => - generalize (@spec_w_div21c y z t H); - case (w_div21c y z t); autorewrite with w_rewrite; - auto - end. - intros c w1; case c. - simpl interp_carry; intros w2 (Hw1, Hw2). - match goal with |- context[w_is_even ?y] => - generalize (spec_w_is_even y); - case (w_is_even y) - end. - repeat rewrite C0_id. - rewrite add_mult_div_2. - intros H1; split; auto with zarith. - rewrite Hw1. - pattern [|w2|] at 1; rewrite (Z_div_mod_eq [|w2|] 2); - auto with zarith. - rewrite H1; ring. - repeat rewrite C0_id. - rewrite add_mult_div_2. - rewrite spec_w_add_c; auto with zarith. - intros H1; split; auto with zarith. - rewrite Hw1. - pattern [|w2|] at 1; rewrite (Z_div_mod_eq [|w2|] 2); - auto with zarith. - rewrite H1; ring. - intros w2; rewrite C1_plus_wB. - intros (Hw1, Hw2). - match goal with |- context[w_is_even ?y] => - generalize (spec_w_is_even y); - case (w_is_even y) - end. - repeat rewrite C0_id. - intros H1; split; auto with zarith. - rewrite Hw1. - pattern [|w2|] at 1; rewrite (Z_div_mod_eq [|w2|] 2); - auto with zarith. - rewrite H1. - repeat rewrite C0_id. - rewrite add_mult_div_2_plus_1; unfold base. - match goal with |- context[_ ^ ?X] => - assert (tmp: forall p, 1 + (p - 1) = p); auto with zarith; - rewrite <- (tmp X); clear tmp; rewrite Zpower_exp; - try rewrite Z.pow_1_r; auto with zarith - end. - rewrite Pos2Z.inj_sub_max; auto with zarith. - rewrite Z.max_r; auto with zarith. - ring. - repeat rewrite C0_id. - rewrite spec_w_add_c; auto with zarith. - intros H1; split; auto with zarith. - rewrite add_mult_div_2_plus_1. - rewrite Hw1. - pattern [|w2|] at 1; rewrite (Z_div_mod_eq [|w2|] 2); - auto with zarith. - rewrite H1. - unfold base. - match goal with |- context[_ ^ ?X] => - assert (tmp: forall p, 1 + (p - 1) = p); auto with zarith; - rewrite <- (tmp X); clear tmp; rewrite Zpower_exp; - try rewrite Z.pow_1_r; auto with zarith - end. - rewrite Pos2Z.inj_sub_max; auto with zarith. - rewrite Z.max_r; auto with zarith. - ring. - repeat rewrite C1_plus_wB in H0. - rewrite C1_plus_wB. - match goal with |- context[w_div21c ?y ?z ?t] => - generalize (@spec_w_div21c y z t H); - case (w_div21c y z t); autorewrite with w_rewrite; - auto - end. - intros c w1; case c. - intros w2 (Hw1, Hw2); rewrite C0_id in Hw1. - rewrite <- Zplus_mod_one in Hw1; auto with zarith. - rewrite Zmod_small in Hw1; auto with zarith. - match goal with |- context[w_is_even ?y] => - generalize (spec_w_is_even y); - case (w_is_even y) - end. - repeat rewrite C0_id. - intros H1; split; auto with zarith. - rewrite add_mult_div_2_plus_1. - replace (wB + [|w0|]) with ([|b|] + ([|w0|] - [|b|] + wB)); - auto with zarith. - rewrite Z.mul_add_distr_r; rewrite <- Z.add_assoc. - rewrite Hw1. - pattern [|w2|] at 1; rewrite (Z_div_mod_eq [|w2|] 2); - auto with zarith. - rewrite H1; unfold base. - match goal with |- context[_ ^ ?X] => - assert (tmp: forall p, 1 + (p - 1) = p); auto with zarith; - rewrite <- (tmp X); clear tmp; rewrite Zpower_exp; - try rewrite Z.pow_1_r; auto with zarith - end. - rewrite Pos2Z.inj_sub_max; auto with zarith. - rewrite Z.max_r; auto with zarith. - ring. - repeat rewrite C0_id. - rewrite add_mult_div_2_plus_1. - rewrite spec_w_add_c; auto with zarith. - intros H1; split; auto with zarith. - replace (wB + [|w0|]) with ([|b|] + ([|w0|] - [|b|] + wB)); - auto with zarith. - rewrite Z.mul_add_distr_r; rewrite <- Z.add_assoc. - rewrite Hw1. - pattern [|w2|] at 1; rewrite (Z_div_mod_eq [|w2|] 2); - auto with zarith. - rewrite H1; unfold base. - match goal with |- context[_ ^ ?X] => - assert (tmp: forall p, 1 + (p - 1) = p); auto with zarith; - rewrite <- (tmp X); clear tmp; rewrite Zpower_exp; - try rewrite Z.pow_1_r; auto with zarith - end. - rewrite Pos2Z.inj_sub_max; auto with zarith. - rewrite Z.max_r; auto with zarith. - ring. - split; auto with zarith. - destruct (spec_to_Z b);auto with zarith. - destruct (spec_to_Z w0);auto with zarith. - destruct (spec_to_Z b);auto with zarith. - destruct (spec_to_Z b);auto with zarith. - intros w2; rewrite C1_plus_wB. - rewrite <- Zplus_mod_one; auto with zarith. - rewrite Zmod_small; auto with zarith. - intros (Hw1, Hw2). - match goal with |- context[w_is_even ?y] => - generalize (spec_w_is_even y); - case (w_is_even y) - end. - repeat (rewrite C0_id || rewrite C1_plus_wB). - intros H1; split; auto with zarith. - rewrite add_mult_div_2. - replace (wB + [|w0|]) with ([|b|] + ([|w0|] - [|b|] + wB)); - auto with zarith. - rewrite Z.mul_add_distr_r; rewrite <- Z.add_assoc. - rewrite Hw1. - pattern [|w2|] at 1; rewrite (Z_div_mod_eq [|w2|] 2); - auto with zarith. - rewrite H1; ring. - repeat (rewrite C0_id || rewrite C1_plus_wB). - rewrite spec_w_add_c; auto with zarith. - intros H1; split; auto with zarith. - rewrite add_mult_div_2. - replace (wB + [|w0|]) with ([|b|] + ([|w0|] - [|b|] + wB)); - auto with zarith. - rewrite Z.mul_add_distr_r; rewrite <- Z.add_assoc. - rewrite Hw1. - pattern [|w2|] at 1; rewrite (Z_div_mod_eq [|w2|] 2); - auto with zarith. - rewrite H1; ring. - split; auto with zarith. - destruct (spec_to_Z b);auto with zarith. - destruct (spec_to_Z w0);auto with zarith. - destruct (spec_to_Z b);auto with zarith. - destruct (spec_to_Z b);auto with zarith. - Qed. - - Theorem wB_div_4: 4 * (wB / 4) = wB. - Proof. - unfold base. - assert (2 ^ Zpos w_digits = - 4 * (2 ^ (Zpos w_digits - 2))). - change 4 with (2 ^ 2). - rewrite <- Zpower_exp; auto with zarith. - f_equal; auto with zarith. - rewrite H. - rewrite (fun x => (Z.mul_comm 4 (2 ^x))). - rewrite Z_div_mult; auto with zarith. - Qed. - - Theorem Zsquare_mult: forall p, p ^ 2 = p * p. - intros p; change 2 with (1 + 1); rewrite Zpower_exp; - try rewrite Z.pow_1_r; auto with zarith. - Qed. - - Theorem Zsquare_pos: forall p, 0 <= p ^ 2. - intros p; case (Z.le_gt_cases 0 p); intros H1. - rewrite Zsquare_mult; apply Z.mul_nonneg_nonneg; auto with zarith. - rewrite Zsquare_mult; replace (p * p) with ((- p) * (- p)); try ring. - apply Z.mul_nonneg_nonneg; auto with zarith. - Qed. - - Lemma spec_split: forall x, - [|fst (split x)|] * wB + [|snd (split x)|] = [[x]]. - intros x; case x; simpl; autorewrite with w_rewrite; - auto with zarith. - Qed. - - Theorem mult_wwB: forall x y, [|x|] * [|y|] < wwB. - Proof. - intros x y; rewrite wwB_wBwB; rewrite Z.pow_2_r. - generalize (spec_to_Z x); intros U. - generalize (spec_to_Z y); intros U1. - apply Z.le_lt_trans with ((wB -1 ) * (wB - 1)); auto with zarith. - apply Z.mul_le_mono_nonneg; auto with zarith. - rewrite ?Z.mul_sub_distr_l, ?Z.mul_sub_distr_r; auto with zarith. - Qed. - Hint Resolve mult_wwB. - - Lemma spec_ww_sqrt2 : forall x y, - wwB/ 4 <= [[x]] -> - let (s,r) := ww_sqrt2 x y in - [||WW x y||] = [[s]] ^ 2 + [+[r]] /\ - [+[r]] <= 2 * [[s]]. - intros x y H; unfold ww_sqrt2. - repeat match goal with |- context[split ?x] => - generalize (spec_split x); case (split x) - end; simpl @fst; simpl @snd. - intros w0 w1 Hw0 w2 w3 Hw1. - assert (U: wB/4 <= [|w2|]). - case (Z.le_gt_cases (wB / 4) [|w2|]); auto; intros H1. - contradict H; apply Z.lt_nge. - rewrite wwB_wBwB; rewrite Z.pow_2_r. - pattern wB at 1; rewrite <- wB_div_4; rewrite <- Z.mul_assoc; - rewrite Z.mul_comm. - rewrite Z_div_mult; auto with zarith. - rewrite <- Hw1. - match goal with |- _ < ?X => - pattern X; rewrite <- Z.add_0_r; apply beta_lex_inv; - auto with zarith - end. - destruct (spec_to_Z w3);auto with zarith. - generalize (@spec_w_sqrt2 w2 w3 U); case (w_sqrt2 w2 w3). - intros w4 c (H1, H2). - assert (U1: wB/2 <= [|w4|]). - case (Z.le_gt_cases (wB/2) [|w4|]); auto with zarith. - intros U1. - assert (U2 : [|w4|] <= wB/2 -1); auto with zarith. - assert (U3 : [|w4|] ^ 2 <= wB/4 * wB - wB + 1); auto with zarith. - match goal with |- ?X ^ 2 <= ?Y => - rewrite Zsquare_mult; - replace Y with ((wB/2 - 1) * (wB/2 -1)) - end. - apply Z.mul_le_mono_nonneg; auto with zarith. - destruct (spec_to_Z w4);auto with zarith. - destruct (spec_to_Z w4);auto with zarith. - pattern wB at 4 5; rewrite <- wB_div_2. - rewrite Z.mul_assoc. - replace ((wB / 4) * 2) with (wB / 2). - ring. - pattern wB at 1; rewrite <- wB_div_4. - change 4 with (2 * 2). - rewrite <- Z.mul_assoc; rewrite (Z.mul_comm 2). - rewrite Z_div_mult; try ring; auto with zarith. - assert (U4 : [+|c|] <= wB -2); auto with zarith. - apply Z.le_trans with (1 := H2). - match goal with |- ?X <= ?Y => - replace Y with (2 * (wB/ 2 - 1)); auto with zarith - end. - pattern wB at 2; rewrite <- wB_div_2; auto with zarith. - match type of H1 with ?X = _ => - assert (U5: X < wB / 4 * wB) - end. - rewrite H1; auto with zarith. - contradict U; apply Z.lt_nge. - apply Z.mul_lt_mono_pos_r with wB; auto with zarith. - destruct (spec_to_Z w4);auto with zarith. - apply Z.le_lt_trans with (2 := U5). - unfold ww_to_Z, zn2z_to_Z. - destruct (spec_to_Z w3);auto with zarith. - generalize (@spec_w_div2s c w0 w4 U1 H2). - case (w_div2s c w0 w4). - intros c0; case c0; intros w5; - repeat (rewrite C0_id || rewrite C1_plus_wB). - intros c1; case c1; intros w6; - repeat (rewrite C0_id || rewrite C1_plus_wB). - intros (H3, H4). - match goal with |- context [ww_sub_c ?y ?z] => - generalize (spec_ww_sub_c y z); case (ww_sub_c y z) - end. - intros z; change [-[C0 z]] with ([[z]]). - change [+[C0 z]] with ([[z]]). - intros H5; rewrite spec_w_square_c in H5; - auto. - split. - unfold zn2z_to_Z; rewrite <- Hw1. - unfold ww_to_Z, zn2z_to_Z in H1. rewrite H1. - rewrite <- Hw0. - match goal with |- (?X ^2 + ?Y) * wwB + (?Z * wB + ?T) = ?U => - transitivity ((X * wB) ^ 2 + (Y * wB + Z) * wB + T) - end. - repeat rewrite Zsquare_mult. - rewrite wwB_wBwB; ring. - rewrite H3. - rewrite H5. - unfold ww_to_Z, zn2z_to_Z. - repeat rewrite Zsquare_mult; ring. - rewrite H5. - unfold ww_to_Z, zn2z_to_Z. - match goal with |- ?X - ?Y * ?Y <= _ => - assert (V := Zsquare_pos Y); - rewrite Zsquare_mult in V; - apply Z.le_trans with X; auto with zarith; - clear V - end. - match goal with |- ?X * wB + ?Y <= 2 * (?Z * wB + ?T) => - apply Z.le_trans with ((2 * Z - 1) * wB + wB); auto with zarith - end. - destruct (spec_to_Z w1);auto with zarith. - match goal with |- ?X <= _ => - replace X with (2 * [|w4|] * wB); auto with zarith - end. - rewrite Z.mul_add_distr_l; rewrite Z.mul_assoc. - destruct (spec_to_Z w5); auto with zarith. - ring. - intros z; replace [-[C1 z]] with (- wwB + [[z]]). - 2: simpl; case wwB; auto with zarith. - intros H5; rewrite spec_w_square_c in H5; - auto. - match goal with |- context [ww_pred_c ?y] => - generalize (spec_ww_pred_c y); case (ww_pred_c y) - end. - intros z1; change [-[C0 z1]] with ([[z1]]). - rewrite ww_add_mult_mult_2. - rewrite spec_ww_add_c. - rewrite spec_ww_pred. - rewrite <- Zmod_unique with (q := 1) (r := -wwB + 2 * [[WW w4 w5]]); - auto with zarith. - intros Hz1; rewrite Zmod_small; auto with zarith. - match type of H5 with -?X + ?Y = ?Z => - assert (V: Y = Z + X); - try (rewrite <- H5; ring) - end. - split. - unfold zn2z_to_Z; rewrite <- Hw1. - unfold ww_to_Z, zn2z_to_Z in H1; rewrite H1. - rewrite <- Hw0. - match goal with |- (?X ^2 + ?Y) * wwB + (?Z * wB + ?T) = ?U => - transitivity ((X * wB) ^ 2 + (Y * wB + Z) * wB + T) - end. - repeat rewrite Zsquare_mult. - rewrite wwB_wBwB; ring. - rewrite H3. - rewrite V. - rewrite Hz1. - unfold ww_to_Z; simpl zn2z_to_Z. - repeat rewrite Zsquare_mult; ring. - rewrite Hz1. - destruct (spec_ww_to_Z w_digits w_to_Z spec_to_Z z);auto with zarith. - assert (V1 := spec_ww_to_Z w_digits w_to_Z spec_to_Z (WW w4 w5)). - assert (0 < [[WW w4 w5]]); auto with zarith. - apply Z.lt_le_trans with (wB/ 2 * wB + 0); auto with zarith. - autorewrite with rm10; apply Z.mul_pos_pos; auto with zarith. - apply Z.mul_lt_mono_pos_r with 2; auto with zarith. - autorewrite with rm10. - rewrite Z.mul_comm; rewrite wB_div_2; auto with zarith. - case (spec_to_Z w5);auto with zarith. - case (spec_to_Z w5);auto with zarith. - simpl. - assert (V2 := spec_to_Z w5);auto with zarith. - assert (V1 := spec_ww_to_Z w_digits w_to_Z spec_to_Z (WW w4 w5)); auto with zarith. - split; auto with zarith. - assert (wwB <= 2 * [[WW w4 w5]]); auto with zarith. - apply Z.le_trans with (2 * ([|w4|] * wB)). - rewrite wwB_wBwB; rewrite Z.pow_2_r. - rewrite Z.mul_assoc; apply Z.mul_le_mono_nonneg_r; auto with zarith. - assert (V2 := spec_to_Z w5);auto with zarith. - rewrite <- wB_div_2; auto with zarith. - simpl ww_to_Z; assert (V2 := spec_to_Z w5);auto with zarith. - assert (V1 := spec_ww_to_Z w_digits w_to_Z spec_to_Z (WW w4 w5)); auto with zarith. - intros z1; change [-[C1 z1]] with (-wwB + [[z1]]). - match goal with |- context[([+[C0 ?z]])] => - change [+[C0 z]] with ([[z]]) - end. - rewrite spec_ww_add; auto with zarith. - rewrite spec_ww_pred; auto with zarith. - rewrite ww_add_mult_mult_2. - rename V1 into VV1. - assert (VV2: 0 < [[WW w4 w5]]); auto with zarith. - apply Z.lt_le_trans with (wB/ 2 * wB + 0); auto with zarith. - autorewrite with rm10; apply Z.mul_pos_pos; auto with zarith. - apply Z.mul_lt_mono_pos_r with 2; auto with zarith. - autorewrite with rm10. - rewrite Z.mul_comm; rewrite wB_div_2; auto with zarith. - assert (VV3 := spec_to_Z w5);auto with zarith. - assert (VV3 := spec_to_Z w5);auto with zarith. - simpl. - assert (VV3 := spec_to_Z w5);auto with zarith. - assert (VV3: wwB <= 2 * [[WW w4 w5]]); auto with zarith. - apply Z.le_trans with (2 * ([|w4|] * wB)). - rewrite wwB_wBwB; rewrite Z.pow_2_r. - rewrite Z.mul_assoc; apply Z.mul_le_mono_nonneg_r; auto with zarith. - case (spec_to_Z w5);auto with zarith. - rewrite <- wB_div_2; auto with zarith. - simpl ww_to_Z; assert (V4 := spec_to_Z w5);auto with zarith. - rewrite <- Zmod_unique with (q := 1) (r := -wwB + 2 * [[WW w4 w5]]); - auto with zarith. - intros Hz1; rewrite Zmod_small; auto with zarith. - match type of H5 with -?X + ?Y = ?Z => - assert (V: Y = Z + X); - try (rewrite <- H5; ring) - end. - match type of Hz1 with -?X + ?Y = -?X + ?Z - 1 => - assert (V1: Y = Z - 1); - [replace (Z - 1) with (X + (-X + Z -1)); - [rewrite <- Hz1 | idtac]; ring - | idtac] - end. - rewrite <- Zmod_unique with (q := 1) (r := -wwB + [[z1]] + [[z]]); - auto with zarith. - unfold zn2z_to_Z; rewrite <- Hw1. - unfold ww_to_Z, zn2z_to_Z in H1; rewrite H1. - rewrite <- Hw0. - split. - match goal with |- (?X ^2 + ?Y) * wwB + (?Z * wB + ?T) = ?U => - transitivity ((X * wB) ^ 2 + (Y * wB + Z) * wB + T) - end. - repeat rewrite Zsquare_mult. - rewrite wwB_wBwB; ring. - rewrite H3. - rewrite V. - rewrite Hz1. - unfold ww_to_Z; simpl zn2z_to_Z. - repeat rewrite Zsquare_mult; ring. - assert (V2 := spec_ww_to_Z w_digits w_to_Z spec_to_Z z);auto with zarith. - assert (V2 := spec_ww_to_Z w_digits w_to_Z spec_to_Z z);auto with zarith. - assert (V3 := spec_ww_to_Z w_digits w_to_Z spec_to_Z z1);auto with zarith. - split; auto with zarith. - rewrite (Z.add_comm (-wwB)); rewrite <- Z.add_assoc. - rewrite H5. - match goal with |- 0 <= ?X + (?Y - ?Z) => - apply Z.le_trans with (X - Z); auto with zarith - end. - 2: generalize (spec_ww_to_Z w_digits w_to_Z spec_to_Z (WW w6 w1)); unfold ww_to_Z; auto with zarith. - rewrite V1. - match goal with |- 0 <= ?X - 1 - ?Y => - assert (Y < X); auto with zarith - end. - apply Z.lt_le_trans with wwB; auto with zarith. - intros (H3, H4). - match goal with |- context [ww_sub_c ?y ?z] => - generalize (spec_ww_sub_c y z); case (ww_sub_c y z) - end. - intros z; change [-[C0 z]] with ([[z]]). - match goal with |- context[([+[C1 ?z]])] => - replace [+[C1 z]] with (wwB + [[z]]) - end. - 2: simpl; case wwB; auto. - intros H5; rewrite spec_w_square_c in H5; - auto. - split. - change ([||WW x y||]) with ([[x]] * wwB + [[y]]). - rewrite <- Hw1. - unfold ww_to_Z, zn2z_to_Z in H1; rewrite H1. - rewrite <- Hw0. - match goal with |- (?X ^2 + ?Y) * wwB + (?Z * wB + ?T) = ?U => - transitivity ((X * wB) ^ 2 + (Y * wB + Z) * wB + T) - end. - repeat rewrite Zsquare_mult. - rewrite wwB_wBwB; ring. - rewrite H3. - rewrite H5. - unfold ww_to_Z; simpl zn2z_to_Z. - rewrite wwB_wBwB. - repeat rewrite Zsquare_mult; ring. - simpl ww_to_Z. - rewrite H5. - simpl ww_to_Z. - rewrite wwB_wBwB; rewrite Z.pow_2_r. - match goal with |- ?X * ?Y + (?Z * ?Y + ?T - ?U) <= _ => - apply Z.le_trans with (X * Y + (Z * Y + T - 0)); - auto with zarith - end. - assert (V := Zsquare_pos [|w5|]); - rewrite Zsquare_mult in V; auto with zarith. - autorewrite with rm10. - match goal with |- _ <= 2 * (?U * ?V + ?W) => - apply Z.le_trans with (2 * U * V + 0); - auto with zarith - end. - match goal with |- ?X * ?Y + (?Z * ?Y + ?T) <= _ => - replace (X * Y + (Z * Y + T)) with ((X + Z) * Y + T); - try ring - end. - apply Z.lt_le_incl; apply beta_lex_inv; auto with zarith. - destruct (spec_to_Z w1);auto with zarith. - destruct (spec_to_Z w5);auto with zarith. - rewrite Z.mul_add_distr_l; auto with zarith. - rewrite Z.mul_assoc; auto with zarith. - intros z; replace [-[C1 z]] with (- wwB + [[z]]). - 2: simpl; case wwB; auto with zarith. - intros H5; rewrite spec_w_square_c in H5; - auto. - match goal with |- context[([+[C0 ?z]])] => - change [+[C0 z]] with ([[z]]) - end. - match type of H5 with -?X + ?Y = ?Z => - assert (V: Y = Z + X); - try (rewrite <- H5; ring) - end. - change ([||WW x y||]) with ([[x]] * wwB + [[y]]). - simpl ww_to_Z. - rewrite <- Hw1. - simpl ww_to_Z in H1; rewrite H1. - rewrite <- Hw0. - split. - match goal with |- (?X ^2 + ?Y) * wwB + (?Z * wB + ?T) = ?U => - transitivity ((X * wB) ^ 2 + (Y * wB + Z) * wB + T) - end. - repeat rewrite Zsquare_mult. - rewrite wwB_wBwB; ring. - rewrite H3. - rewrite V. - simpl ww_to_Z. - rewrite wwB_wBwB. - repeat rewrite Zsquare_mult; ring. - rewrite V. - simpl ww_to_Z. - rewrite wwB_wBwB; rewrite Z.pow_2_r. - match goal with |- (?Z * ?Y + ?T - ?U) + ?X * ?Y <= _ => - apply Z.le_trans with ((Z * Y + T - 0) + X * Y); - auto with zarith - end. - assert (V1 := Zsquare_pos [|w5|]); - rewrite Zsquare_mult in V1; auto with zarith. - autorewrite with rm10. - match goal with |- _ <= 2 * (?U * ?V + ?W) => - apply Z.le_trans with (2 * U * V + 0); - auto with zarith - end. - match goal with |- (?Z * ?Y + ?T) + ?X * ?Y <= _ => - replace ((Z * Y + T) + X * Y) with ((X + Z) * Y + T); - try ring - end. - apply Z.lt_le_incl; apply beta_lex_inv; auto with zarith. - destruct (spec_to_Z w1);auto with zarith. - destruct (spec_to_Z w5);auto with zarith. - rewrite Z.mul_add_distr_l; auto with zarith. - rewrite Z.mul_assoc; auto with zarith. - Z.le_elim H2. - intros c1 (H3, H4). - match type of H3 with ?X = ?Y => absurd (X < Y) end. - apply Z.le_ngt; rewrite <- H3; auto with zarith. - rewrite Z.mul_add_distr_r. - apply Z.lt_le_trans with ((2 * [|w4|]) * wB + 0); - auto with zarith. - apply beta_lex_inv; auto with zarith. - destruct (spec_to_Z w0);auto with zarith. - assert (V1 := spec_to_Z w5);auto with zarith. - rewrite (Z.mul_comm wB); auto with zarith. - assert (0 <= [|w5|] * (2 * [|w4|])); auto with zarith. - intros c1 (H3, H4); rewrite H2 in H3. - match type of H3 with ?X + ?Y = (?Z + ?T) * ?U + ?V => - assert (VV: (Y = (T * U) + V)); - [replace Y with ((X + Y) - X); - [rewrite H3; ring | ring] | idtac] - end. - assert (V1 := spec_to_Z w0);auto with zarith. - assert (V2 := spec_to_Z w5);auto with zarith. - case V2; intros V3 _. - Z.le_elim V3; auto with zarith. - match type of VV with ?X = ?Y => absurd (X < Y) end. - apply Z.le_ngt; rewrite <- VV; auto with zarith. - apply Z.lt_le_trans with wB; auto with zarith. - match goal with |- _ <= ?X + _ => - apply Z.le_trans with X; auto with zarith - end. - match goal with |- _ <= _ * ?X => - apply Z.le_trans with (1 * X); auto with zarith - end. - autorewrite with rm10. - rewrite <- wB_div_2; apply Z.mul_le_mono_nonneg_l; auto with zarith. - rewrite <- V3 in VV; generalize VV; autorewrite with rm10; - clear VV; intros VV. - rewrite spec_ww_add_c; auto with zarith. - rewrite ww_add_mult_mult_2_plus_1. - match goal with |- context[?X mod wwB] => - rewrite <- Zmod_unique with (q := 1) (r := -wwB + X) - end; auto with zarith. - simpl ww_to_Z. - rewrite spec_w_Bm1; auto with zarith. - split. - change ([||WW x y||]) with ([[x]] * wwB + [[y]]). - rewrite <- Hw1. - simpl ww_to_Z in H1; rewrite H1. - rewrite <- Hw0. - match goal with |- (?X ^2 + ?Y) * wwB + (?Z * wB + ?T) = ?U => - transitivity ((X * wB) ^ 2 + (Y * wB + Z) * wB + T) - end. - repeat rewrite Zsquare_mult. - rewrite wwB_wBwB; ring. - rewrite H2. - rewrite wwB_wBwB. - repeat rewrite Zsquare_mult; ring. - assert (V4 := spec_ww_to_Z w_digits w_to_Z spec_to_Z y);auto with zarith. - assert (V4 := spec_ww_to_Z w_digits w_to_Z spec_to_Z y);auto with zarith. - simpl ww_to_Z; unfold ww_to_Z. - rewrite spec_w_Bm1; auto with zarith. - split. - rewrite wwB_wBwB; rewrite Z.pow_2_r. - match goal with |- _ <= -?X + (2 * (?Z * ?T + ?U) + ?V) => - assert (X <= 2 * Z * T); auto with zarith - end. - apply Z.mul_le_mono_nonneg_r; auto with zarith. - rewrite <- wB_div_2; apply Z.mul_le_mono_nonneg_l; auto with zarith. - rewrite Z.mul_add_distr_l; auto with zarith. - rewrite Z.mul_assoc; auto with zarith. - match goal with |- _ + ?X < _ => - replace X with ((2 * (([|w4|]) + 1) * wB) - 1); try ring - end. - assert (2 * ([|w4|] + 1) * wB <= 2 * wwB); auto with zarith. - rewrite <- Z.mul_assoc; apply Z.mul_le_mono_nonneg_l; auto with zarith. - rewrite wwB_wBwB; rewrite Z.pow_2_r. - apply Z.mul_le_mono_nonneg_r; auto with zarith. - case (spec_to_Z w4);auto with zarith. -Qed. - - Lemma spec_ww_is_zero: forall x, - if ww_is_zero x then [[x]] = 0 else 0 < [[x]]. - intro x; unfold ww_is_zero. - rewrite spec_ww_compare. case Z.compare_spec; - auto with zarith. - simpl ww_to_Z. - assert (V4 := spec_ww_to_Z w_digits w_to_Z spec_to_Z x);auto with zarith. - Qed. - - Lemma wwB_4_2: 2 * (wwB / 4) = wwB/ 2. - pattern wwB at 1; rewrite wwB_wBwB; rewrite Z.pow_2_r. - rewrite <- wB_div_2. - match goal with |- context[(2 * ?X) * (2 * ?Z)] => - replace ((2 * X) * (2 * Z)) with ((X * Z) * 4); try ring - end. - rewrite Z_div_mult; auto with zarith. - rewrite Z.mul_assoc; rewrite wB_div_2. - rewrite wwB_div_2; ring. - Qed. - - - Lemma spec_ww_head1 - : forall x : zn2z w, - (ww_is_even (ww_head1 x) = true) /\ - (0 < [[x]] -> wwB / 4 <= 2 ^ [[ww_head1 x]] * [[x]] < wwB). - assert (U := wB_pos w_digits). - intros x; unfold ww_head1. - generalize (spec_ww_is_even (ww_head0 x)); case_eq (ww_is_even (ww_head0 x)). - intros HH H1; rewrite HH; split; auto. - intros H2. - generalize (spec_ww_head0 x H2); case (ww_head0 x); autorewrite with rm10. - intros (H3, H4); split; auto with zarith. - apply Z.le_trans with (2 := H3). - apply Zdiv_le_compat_l; auto with zarith. - intros xh xl (H3, H4); split; auto with zarith. - apply Z.le_trans with (2 := H3). - apply Zdiv_le_compat_l; auto with zarith. - intros H1. - case (spec_to_w_Z (ww_head0 x)); intros Hv1 Hv2. - assert (Hp0: 0 < [[ww_head0 x]]). - generalize (spec_ww_is_even (ww_head0 x)); rewrite H1. - generalize Hv1; case [[ww_head0 x]]. - rewrite Zmod_small; auto with zarith. - intros; assert (0 < Zpos p); auto with zarith. - red; simpl; auto. - intros p H2; case H2; auto. - assert (Hp: [[ww_pred (ww_head0 x)]] = [[ww_head0 x]] - 1). - rewrite spec_ww_pred. - rewrite Zmod_small; auto with zarith. - intros H2; split. - generalize (spec_ww_is_even (ww_pred (ww_head0 x))); - case ww_is_even; auto. - rewrite Hp. - rewrite Zminus_mod; auto with zarith. - rewrite H2; repeat rewrite Zmod_small; auto with zarith. - intros H3; rewrite Hp. - case (spec_ww_head0 x); auto; intros Hv3 Hv4. - assert (Hu: forall u, 0 < u -> 2 * 2 ^ (u - 1) = 2 ^u). - intros u Hu. - pattern 2 at 1; rewrite <- Z.pow_1_r. - rewrite <- Zpower_exp; auto with zarith. - ring_simplify (1 + (u - 1)); auto with zarith. - split; auto with zarith. - apply Z.mul_le_mono_pos_r with 2; auto with zarith. - repeat rewrite (fun x => Z.mul_comm x 2). - rewrite wwB_4_2. - rewrite Z.mul_assoc; rewrite Hu; auto with zarith. - apply Z.le_lt_trans with (2 * 2 ^ ([[ww_head0 x]] - 1) * [[x]]); auto with zarith; - rewrite Hu; auto with zarith. - apply Z.mul_le_mono_nonneg_r; auto with zarith. - apply Zpower_le_monotone; auto with zarith. - Qed. - - Theorem wwB_4_wB_4: wwB / 4 = wB / 4 * wB. - Proof. - symmetry; apply Zdiv_unique with 0; auto with zarith. - rewrite Z.mul_assoc; rewrite wB_div_4; auto with zarith. - rewrite wwB_wBwB; ring. - Qed. - - Lemma spec_ww_sqrt : forall x, - [[ww_sqrt x]] ^ 2 <= [[x]] < ([[ww_sqrt x]] + 1) ^ 2. - assert (U := wB_pos w_digits). - intro x; unfold ww_sqrt. - generalize (spec_ww_is_zero x); case (ww_is_zero x). - simpl ww_to_Z; simpl Z.pow; unfold Z.pow_pos; simpl; - auto with zarith. - intros H1. - rewrite spec_ww_compare. case Z.compare_spec; - simpl ww_to_Z; autorewrite with rm10. - generalize H1; case x. - intros HH; contradict HH; simpl ww_to_Z; auto with zarith. - intros w0 w1; simpl ww_to_Z; autorewrite with w_rewrite rm10. - intros H2; case (spec_ww_head1 (WW w0 w1)); intros H3 H4 H5. - generalize (H4 H2); clear H4; rewrite H5; clear H5; autorewrite with rm10. - intros (H4, H5). - assert (V: wB/4 <= [|w0|]). - apply beta_lex with 0 [|w1|] wB; auto with zarith; autorewrite with rm10. - rewrite <- wwB_4_wB_4; auto. - generalize (@spec_w_sqrt2 w0 w1 V);auto with zarith. - case (w_sqrt2 w0 w1); intros w2 c. - simpl ww_to_Z; simpl @fst. - case c; unfold interp_carry; autorewrite with rm10. - intros w3 (H6, H7); rewrite H6. - assert (V1 := spec_to_Z w3);auto with zarith. - split; auto with zarith. - apply Z.le_lt_trans with ([|w2|] ^2 + 2 * [|w2|]); auto with zarith. - match goal with |- ?X < ?Z => - replace Z with (X + 1); auto with zarith - end. - repeat rewrite Zsquare_mult; ring. - intros w3 (H6, H7); rewrite H6. - assert (V1 := spec_to_Z w3);auto with zarith. - split; auto with zarith. - apply Z.le_lt_trans with ([|w2|] ^2 + 2 * [|w2|]); auto with zarith. - match goal with |- ?X < ?Z => - replace Z with (X + 1); auto with zarith - end. - repeat rewrite Zsquare_mult; ring. - intros HH; case (spec_to_w_Z (ww_head1 x)); auto with zarith. - intros Hv1. - case (spec_ww_head1 x); intros Hp1 Hp2. - generalize (Hp2 H1); clear Hp2; intros Hp2. - assert (Hv2: [[ww_head1 x]] <= Zpos (xO w_digits)). - case (Z.le_gt_cases (Zpos (xO w_digits)) [[ww_head1 x]]); auto with zarith; intros HH1. - case Hp2; intros _ HH2; contradict HH2. - apply Z.le_ngt; unfold base. - apply Z.le_trans with (2 ^ [[ww_head1 x]]). - apply Zpower_le_monotone; auto with zarith. - pattern (2 ^ [[ww_head1 x]]) at 1; - rewrite <- (Z.mul_1_r (2 ^ [[ww_head1 x]])). - apply Z.mul_le_mono_nonneg_l; auto with zarith. - generalize (spec_ww_add_mul_div x W0 (ww_head1 x) Hv2); - case ww_add_mul_div. - simpl ww_to_Z; autorewrite with w_rewrite rm10. - rewrite Zmod_small; auto with zarith. - intros H2. symmetry in H2. rewrite Z.mul_eq_0 in H2. destruct H2 as [H2|H2]. - rewrite H2; unfold Z.pow, Z.pow_pos; simpl; auto with zarith. - match type of H2 with ?X = ?Y => - absurd (Y < X); try (rewrite H2; auto with zarith; fail) - end. - apply Z.pow_pos_nonneg; auto with zarith. - split; auto with zarith. - case Hp2; intros _ tmp; apply Z.le_lt_trans with (2 := tmp); - clear tmp. - rewrite Z.mul_comm; apply Z.mul_le_mono_nonneg_r; auto with zarith. - assert (Hv0: [[ww_head1 x]] = 2 * ([[ww_head1 x]]/2)). - pattern [[ww_head1 x]] at 1; rewrite (Z_div_mod_eq [[ww_head1 x]] 2); - auto with zarith. - generalize (spec_ww_is_even (ww_head1 x)); rewrite Hp1; - intros tmp; rewrite tmp; rewrite Z.add_0_r; auto. - intros w0 w1; autorewrite with w_rewrite rm10. - rewrite Zmod_small; auto with zarith. - 2: rewrite Z.mul_comm; auto with zarith. - intros H2. - assert (V: wB/4 <= [|w0|]). - apply beta_lex with 0 [|w1|] wB; auto with zarith; autorewrite with rm10. - simpl ww_to_Z in H2; rewrite H2. - rewrite <- wwB_4_wB_4; auto with zarith. - rewrite Z.mul_comm; auto with zarith. - assert (V1 := spec_to_Z w1);auto with zarith. - generalize (@spec_w_sqrt2 w0 w1 V);auto with zarith. - case (w_sqrt2 w0 w1); intros w2 c. - case (spec_to_Z w2); intros HH1 HH2. - simpl ww_to_Z; simpl @fst. - assert (Hv3: [[ww_pred ww_zdigits]] - = Zpos (xO w_digits) - 1). - rewrite spec_ww_pred; rewrite spec_ww_zdigits. - rewrite Zmod_small; auto with zarith. - split; auto with zarith. - apply Z.lt_le_trans with (Zpos (xO w_digits)); auto with zarith. - unfold base; apply Zpower2_le_lin; auto with zarith. - assert (Hv4: [[ww_head1 x]]/2 < wB). - apply Z.le_lt_trans with (Zpos w_digits). - apply Z.mul_le_mono_pos_r with 2; auto with zarith. - repeat rewrite (fun x => Z.mul_comm x 2). - rewrite <- Hv0; rewrite <- Pos2Z.inj_xO; auto. - unfold base; apply Zpower2_lt_lin; auto with zarith. - assert (Hv5: [[(ww_add_mul_div (ww_pred ww_zdigits) W0 (ww_head1 x))]] - = [[ww_head1 x]]/2). - rewrite spec_ww_add_mul_div. - simpl ww_to_Z; autorewrite with rm10. - rewrite Hv3. - ring_simplify (Zpos (xO w_digits) - (Zpos (xO w_digits) - 1)). - rewrite Z.pow_1_r. - rewrite Zmod_small; auto with zarith. - split; auto with zarith. - apply Z.lt_le_trans with (1 := Hv4); auto with zarith. - unfold base; apply Zpower_le_monotone; auto with zarith. - split; unfold ww_digits; try rewrite Pos2Z.inj_xO; auto with zarith. - rewrite Hv3; auto with zarith. - assert (Hv6: [|low(ww_add_mul_div (ww_pred ww_zdigits) W0 (ww_head1 x))|] - = [[ww_head1 x]]/2). - rewrite spec_low. - rewrite Hv5; rewrite Zmod_small; auto with zarith. - rewrite spec_w_add_mul_div; auto with zarith. - rewrite spec_w_sub; auto with zarith. - rewrite spec_w_0. - simpl ww_to_Z; autorewrite with rm10. - rewrite Hv6; rewrite spec_w_zdigits. - rewrite (fun x y => Zmod_small (x - y)). - ring_simplify (Zpos w_digits - (Zpos w_digits - [[ww_head1 x]] / 2)). - rewrite Zmod_small. - simpl ww_to_Z in H2; rewrite H2; auto with zarith. - intros (H4, H5); split. - apply Z.mul_le_mono_pos_r with (2 ^ [[ww_head1 x]]); auto with zarith. - rewrite H4. - apply Z.le_trans with ([|w2|] ^ 2); auto with zarith. - rewrite Z.mul_comm. - pattern [[ww_head1 x]] at 1; - rewrite Hv0; auto with zarith. - rewrite (Z.mul_comm 2); rewrite Z.pow_mul_r; - auto with zarith. - assert (tmp: forall p q, p ^ 2 * q ^ 2 = (p * q) ^2); - try (intros; repeat rewrite Zsquare_mult; ring); - rewrite tmp; clear tmp. - apply Zpower_le_monotone3; auto with zarith. - split; auto with zarith. - pattern [|w2|] at 2; - rewrite (Z_div_mod_eq [|w2|] (2 ^ ([[ww_head1 x]] / 2))); - auto with zarith. - match goal with |- ?X <= ?X + ?Y => - assert (0 <= Y); auto with zarith - end. - case (Z_mod_lt [|w2|] (2 ^ ([[ww_head1 x]] / 2))); auto with zarith. - case c; unfold interp_carry; autorewrite with rm10; - intros w3; assert (V3 := spec_to_Z w3);auto with zarith. - apply Z.mul_lt_mono_pos_r with (2 ^ [[ww_head1 x]]); auto with zarith. - rewrite H4. - apply Z.le_lt_trans with ([|w2|] ^ 2 + 2 * [|w2|]); auto with zarith. - apply Z.lt_le_trans with (([|w2|] + 1) ^ 2); auto with zarith. - match goal with |- ?X < ?Y => - replace Y with (X + 1); auto with zarith - end. - repeat rewrite (Zsquare_mult); ring. - rewrite Z.mul_comm. - pattern [[ww_head1 x]] at 1; rewrite Hv0. - rewrite (Z.mul_comm 2); rewrite Z.pow_mul_r; - auto with zarith. - assert (tmp: forall p q, p ^ 2 * q ^ 2 = (p * q) ^2); - try (intros; repeat rewrite Zsquare_mult; ring); - rewrite tmp; clear tmp. - apply Zpower_le_monotone3; auto with zarith. - split; auto with zarith. - pattern [|w2|] at 1; rewrite (Z_div_mod_eq [|w2|] (2 ^ ([[ww_head1 x]]/2))); - auto with zarith. - rewrite <- Z.add_assoc; rewrite Z.mul_add_distr_l. - autorewrite with rm10; apply Z.add_le_mono_l; auto with zarith. - case (Z_mod_lt [|w2|] (2 ^ ([[ww_head1 x]]/2))); auto with zarith. - split; auto with zarith. - apply Z.le_lt_trans with ([|w2|]); auto with zarith. - apply Zdiv_le_upper_bound; auto with zarith. - pattern [|w2|] at 1; replace [|w2|] with ([|w2|] * 2 ^0); - auto with zarith. - apply Z.mul_le_mono_nonneg_l; auto with zarith. - apply Zpower_le_monotone; auto with zarith. - rewrite Z.pow_0_r; autorewrite with rm10; auto. - split; auto with zarith. - rewrite Hv0 in Hv2; rewrite (Pos2Z.inj_xO w_digits) in Hv2; auto with zarith. - apply Z.le_lt_trans with (Zpos w_digits); auto with zarith. - unfold base; apply Zpower2_lt_lin; auto with zarith. - rewrite spec_w_sub; auto with zarith. - rewrite Hv6; rewrite spec_w_zdigits; auto with zarith. - assert (Hv7: 0 < [[ww_head1 x]]/2); auto with zarith. - rewrite Zmod_small; auto with zarith. - split; auto with zarith. - assert ([[ww_head1 x]]/2 <= Zpos w_digits); auto with zarith. - apply Z.mul_le_mono_pos_r with 2; auto with zarith. - repeat rewrite (fun x => Z.mul_comm x 2). - rewrite <- Hv0; rewrite <- Pos2Z.inj_xO; auto with zarith. - apply Z.le_lt_trans with (Zpos w_digits); auto with zarith. - unfold base; apply Zpower2_lt_lin; auto with zarith. - Qed. - -End DoubleSqrt. diff --git a/theories/Numbers/Cyclic/DoubleCyclic/DoubleSub.v b/theories/Numbers/Cyclic/DoubleCyclic/DoubleSub.v deleted file mode 100644 index a2df26002..000000000 --- a/theories/Numbers/Cyclic/DoubleCyclic/DoubleSub.v +++ /dev/null @@ -1,356 +0,0 @@ - -(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) -(* \VV/ **************************************************************) -(* // * This file is distributed under the terms of the *) -(* * GNU Lesser General Public License Version 2.1 *) -(************************************************************************) -(* Benjamin Gregoire, Laurent Thery, INRIA, 2007 *) -(************************************************************************) - -Set Implicit Arguments. - -Require Import ZArith. -Require Import BigNumPrelude. -Require Import DoubleType. -Require Import DoubleBase. - -Local Open Scope Z_scope. - -Section DoubleSub. - Variable w : Type. - Variable w_0 : w. - Variable w_Bm1 : w. - Variable w_WW : w -> w -> zn2z w. - Variable ww_Bm1 : zn2z w. - Variable w_opp_c : w -> carry w. - Variable w_opp_carry : w -> w. - Variable w_pred_c : w -> carry w. - Variable w_sub_c : w -> w -> carry w. - Variable w_sub_carry_c : w -> w -> carry w. - Variable w_opp : w -> w. - Variable w_pred : w -> w. - Variable w_sub : w -> w -> w. - Variable w_sub_carry : w -> w -> w. - - (* ** Opposites ** *) - Definition ww_opp_c x := - match x with - | W0 => C0 W0 - | WW xh xl => - match w_opp_c xl with - | C0 _ => - match w_opp_c xh with - | C0 h => C0 W0 - | C1 h => C1 (WW h w_0) - end - | C1 l => C1 (WW (w_opp_carry xh) l) - end - end. - - Definition ww_opp x := - match x with - | W0 => W0 - | WW xh xl => - match w_opp_c xl with - | C0 _ => WW (w_opp xh) w_0 - | C1 l => WW (w_opp_carry xh) l - end - end. - - Definition ww_opp_carry x := - match x with - | W0 => ww_Bm1 - | WW xh xl => w_WW (w_opp_carry xh) (w_opp_carry xl) - end. - - Definition ww_pred_c x := - match x with - | W0 => C1 ww_Bm1 - | WW xh xl => - match w_pred_c xl with - | C0 l => C0 (w_WW xh l) - | C1 _ => - match w_pred_c xh with - | C0 h => C0 (WW h w_Bm1) - | C1 _ => C1 ww_Bm1 - end - end - end. - - Definition ww_pred x := - match x with - | W0 => ww_Bm1 - | WW xh xl => - match w_pred_c xl with - | C0 l => w_WW xh l - | C1 l => WW (w_pred xh) w_Bm1 - end - end. - - Definition ww_sub_c x y := - match y, x with - | W0, _ => C0 x - | WW yh yl, W0 => ww_opp_c (WW yh yl) - | WW yh yl, WW xh xl => - match w_sub_c xl yl with - | C0 l => - match w_sub_c xh yh with - | C0 h => C0 (w_WW h l) - | C1 h => C1 (WW h l) - end - | C1 l => - match w_sub_carry_c xh yh with - | C0 h => C0 (WW h l) - | C1 h => C1 (WW h l) - end - end - end. - - Definition ww_sub x y := - match y, x with - | W0, _ => x - | WW yh yl, W0 => ww_opp (WW yh yl) - | WW yh yl, WW xh xl => - match w_sub_c xl yl with - | C0 l => w_WW (w_sub xh yh) l - | C1 l => WW (w_sub_carry xh yh) l - end - end. - - Definition ww_sub_carry_c x y := - match y, x with - | W0, W0 => C1 ww_Bm1 - | W0, WW xh xl => ww_pred_c (WW xh xl) - | WW yh yl, W0 => C1 (ww_opp_carry (WW yh yl)) - | WW yh yl, WW xh xl => - match w_sub_carry_c xl yl with - | C0 l => - match w_sub_c xh yh with - | C0 h => C0 (w_WW h l) - | C1 h => C1 (WW h l) - end - | C1 l => - match w_sub_carry_c xh yh with - | C0 h => C0 (w_WW h l) - | C1 h => C1 (w_WW h l) - end - end - end. - - Definition ww_sub_carry x y := - match y, x with - | W0, W0 => ww_Bm1 - | W0, WW xh xl => ww_pred (WW xh xl) - | WW yh yl, W0 => ww_opp_carry (WW yh yl) - | WW yh yl, WW xh xl => - match w_sub_carry_c xl yl with - | C0 l => w_WW (w_sub xh yh) l - | C1 l => w_WW (w_sub_carry xh yh) l - end - end. - - (*Section DoubleProof.*) - Variable w_digits : positive. - Variable w_to_Z : w -> Z. - - - Notation wB := (base w_digits). - Notation wwB := (base (ww_digits w_digits)). - Notation "[| x |]" := (w_to_Z x) (at level 0, x at level 99). - Notation "[+| c |]" := - (interp_carry 1 wB w_to_Z c) (at level 0, c at level 99). - Notation "[-| c |]" := - (interp_carry (-1) wB w_to_Z c) (at level 0, c at level 99). - - Notation "[[ x ]]" := (ww_to_Z w_digits w_to_Z x)(at level 0, x at level 99). - Notation "[+[ c ]]" := - (interp_carry 1 wwB (ww_to_Z w_digits w_to_Z) c) - (at level 0, c at level 99). - Notation "[-[ c ]]" := - (interp_carry (-1) wwB (ww_to_Z w_digits w_to_Z) c) - (at level 0, c at level 99). - - Variable spec_w_0 : [|w_0|] = 0. - Variable spec_w_Bm1 : [|w_Bm1|] = wB - 1. - Variable spec_ww_Bm1 : [[ww_Bm1]] = wwB - 1. - Variable spec_to_Z : forall x, 0 <= [|x|] < wB. - Variable spec_w_WW : forall h l, [[w_WW h l]] = [|h|] * wB + [|l|]. - - Variable spec_opp_c : forall x, [-|w_opp_c x|] = -[|x|]. - Variable spec_opp : forall x, [|w_opp x|] = (-[|x|]) mod wB. - Variable spec_opp_carry : forall x, [|w_opp_carry x|] = wB - [|x|] - 1. - - Variable spec_pred_c : forall x, [-|w_pred_c x|] = [|x|] - 1. - Variable spec_sub_c : forall x y, [-|w_sub_c x y|] = [|x|] - [|y|]. - Variable spec_sub_carry_c : - forall x y, [-|w_sub_carry_c x y|] = [|x|] - [|y|] - 1. - - Variable spec_pred : forall x, [|w_pred x|] = ([|x|] - 1) mod wB. - Variable spec_sub : forall x y, [|w_sub x y|] = ([|x|] - [|y|]) mod wB. - Variable spec_sub_carry : - forall x y, [|w_sub_carry x y|] = ([|x|] - [|y|] - 1) mod wB. - - - Lemma spec_ww_opp_c : forall x, [-[ww_opp_c x]] = -[[x]]. - Proof. - destruct x as [ |xh xl];simpl. reflexivity. - rewrite Z.opp_add_distr;generalize (spec_opp_c xl);destruct (w_opp_c xl) - as [l|l];intros H;unfold interp_carry in H;rewrite <- H; - rewrite <- Z.mul_opp_l. - assert ([|l|] = 0). - assert (H1:= spec_to_Z l);assert (H2 := spec_to_Z xl);omega. - rewrite H0;generalize (spec_opp_c xh);destruct (w_opp_c xh) - as [h|h];intros H1;unfold interp_carry in *;rewrite <- H1. - assert ([|h|] = 0). - assert (H3:= spec_to_Z h);assert (H2 := spec_to_Z xh);omega. - rewrite H2;reflexivity. - simpl ww_to_Z;rewrite wwB_wBwB;rewrite spec_w_0;ring. - unfold interp_carry;simpl ww_to_Z;rewrite wwB_wBwB;rewrite spec_opp_carry; - ring. - Qed. - - Lemma spec_ww_opp : forall x, [[ww_opp x]] = (-[[x]]) mod wwB. - Proof. - destruct x as [ |xh xl];simpl. reflexivity. - rewrite Z.opp_add_distr, <- Z.mul_opp_l. - generalize (spec_opp_c xl);destruct (w_opp_c xl) - as [l|l];intros H;unfold interp_carry in H;rewrite <- H;simpl ww_to_Z. - rewrite spec_w_0;rewrite Z.add_0_r;rewrite wwB_wBwB. - assert ([|l|] = 0). - assert (H1:= spec_to_Z l);assert (H2 := spec_to_Z xl);omega. - rewrite H0;rewrite Z.add_0_r; rewrite Z.pow_2_r; - rewrite Zmult_mod_distr_r;try apply lt_0_wB. - rewrite spec_opp;trivial. - apply Zmod_unique with (q:= -1). - exact (spec_ww_to_Z w_digits w_to_Z spec_to_Z (WW (w_opp_carry xh) l)). - rewrite spec_opp_carry;rewrite wwB_wBwB;ring. - Qed. - - Lemma spec_ww_opp_carry : forall x, [[ww_opp_carry x]] = wwB - [[x]] - 1. - Proof. - destruct x as [ |xh xl];simpl. rewrite spec_ww_Bm1;ring. - rewrite spec_w_WW;simpl;repeat rewrite spec_opp_carry;rewrite wwB_wBwB;ring. - Qed. - - Lemma spec_ww_pred_c : forall x, [-[ww_pred_c x]] = [[x]] - 1. - Proof. - destruct x as [ |xh xl];unfold ww_pred_c. - unfold interp_carry;rewrite spec_ww_Bm1;simpl ww_to_Z;ring. - simpl ww_to_Z;replace (([|xh|]*wB+[|xl|])-1) with ([|xh|]*wB+([|xl|]-1)). - 2:ring. generalize (spec_pred_c xl);destruct (w_pred_c xl) as [l|l]; - intros H;unfold interp_carry in H;rewrite <- H. simpl;apply spec_w_WW. - rewrite Z.add_assoc;rewrite <- Z.mul_add_distr_r. - assert ([|l|] = wB - 1). - assert (H1:= spec_to_Z l);assert (H2 := spec_to_Z xl);omega. - rewrite H0;change ([|xh|] + -1) with ([|xh|] - 1). - generalize (spec_pred_c xh);destruct (w_pred_c xh) as [h|h]; - intros H1;unfold interp_carry in H1;rewrite <- H1. - simpl;rewrite spec_w_Bm1;ring. - assert ([|h|] = wB - 1). - assert (H3:= spec_to_Z h);assert (H2 := spec_to_Z xh);omega. - rewrite H2;unfold interp_carry;rewrite spec_ww_Bm1;rewrite wwB_wBwB;ring. - Qed. - - Lemma spec_ww_sub_c : forall x y, [-[ww_sub_c x y]] = [[x]] - [[y]]. - Proof. - destruct y as [ |yh yl];simpl. ring. - destruct x as [ |xh xl];simpl. exact (spec_ww_opp_c (WW yh yl)). - replace ([|xh|] * wB + [|xl|] - ([|yh|] * wB + [|yl|])) - with (([|xh|]-[|yh|])*wB + ([|xl|]-[|yl|])). 2:ring. - generalize (spec_sub_c xl yl);destruct (w_sub_c xl yl) as [l|l];intros H; - unfold interp_carry in H;rewrite <- H. - generalize (spec_sub_c xh yh);destruct (w_sub_c xh yh) as [h|h];intros H1; - unfold interp_carry in H1;rewrite <- H1;unfold interp_carry; - try rewrite spec_w_WW;simpl ww_to_Z;try rewrite wwB_wBwB;ring. - rewrite Z.add_assoc;rewrite <- Z.mul_add_distr_r. - change ([|xh|] - [|yh|] + -1) with ([|xh|] - [|yh|] - 1). - generalize (spec_sub_carry_c xh yh);destruct (w_sub_carry_c xh yh) as [h|h]; - intros H1;unfold interp_carry in *;rewrite <- H1;simpl ww_to_Z; - try rewrite wwB_wBwB;ring. - Qed. - - Lemma spec_ww_sub_carry_c : - forall x y, [-[ww_sub_carry_c x y]] = [[x]] - [[y]] - 1. - Proof. - destruct y as [ |yh yl];simpl. - unfold Z.sub;simpl;rewrite Z.add_0_r;exact (spec_ww_pred_c x). - destruct x as [ |xh xl]. - unfold interp_carry;rewrite spec_w_WW;simpl ww_to_Z;rewrite wwB_wBwB; - repeat rewrite spec_opp_carry;ring. - simpl ww_to_Z. - replace ([|xh|] * wB + [|xl|] - ([|yh|] * wB + [|yl|]) - 1) - with (([|xh|]-[|yh|])*wB + ([|xl|]-[|yl|]-1)). 2:ring. - generalize (spec_sub_carry_c xl yl);destruct (w_sub_carry_c xl yl) - as [l|l];intros H;unfold interp_carry in H;rewrite <- H. - generalize (spec_sub_c xh yh);destruct (w_sub_c xh yh) as [h|h];intros H1; - unfold interp_carry in H1;rewrite <- H1;unfold interp_carry; - try rewrite spec_w_WW;simpl ww_to_Z;try rewrite wwB_wBwB;ring. - rewrite Z.add_assoc;rewrite <- Z.mul_add_distr_r. - change ([|xh|] - [|yh|] + -1) with ([|xh|] - [|yh|] - 1). - generalize (spec_sub_carry_c xh yh);destruct (w_sub_carry_c xh yh) as [h|h]; - intros H1;unfold interp_carry in *;rewrite <- H1;try rewrite spec_w_WW; - simpl ww_to_Z; try rewrite wwB_wBwB;ring. - Qed. - - Lemma spec_ww_pred : forall x, [[ww_pred x]] = ([[x]] - 1) mod wwB. - Proof. - destruct x as [ |xh xl];simpl. - apply Zmod_unique with (-1). apply spec_ww_to_Z;trivial. - rewrite spec_ww_Bm1;ring. - replace ([|xh|]*wB + [|xl|] - 1) with ([|xh|]*wB + ([|xl|] - 1)). 2:ring. - generalize (spec_pred_c xl);destruct (w_pred_c xl) as [l|l];intro H; - unfold interp_carry in H;rewrite <- H;simpl ww_to_Z. - rewrite Zmod_small. apply spec_w_WW. - exact (spec_ww_to_Z w_digits w_to_Z spec_to_Z (WW xh l)). - rewrite Z.add_assoc;rewrite <- Z.mul_add_distr_r. - change ([|xh|] + -1) with ([|xh|] - 1). - assert ([|l|] = wB - 1). - assert (H1:= spec_to_Z l);assert (H2:= spec_to_Z xl);omega. - rewrite (mod_wwB w_digits w_to_Z);trivial. - rewrite spec_pred;rewrite spec_w_Bm1;rewrite <- H0;trivial. - Qed. - - Lemma spec_ww_sub : forall x y, [[ww_sub x y]] = ([[x]] - [[y]]) mod wwB. - Proof. - destruct y as [ |yh yl];simpl. - ring_simplify ([[x]] - 0);rewrite Zmod_small;trivial. apply spec_ww_to_Z;trivial. - destruct x as [ |xh xl];simpl. exact (spec_ww_opp (WW yh yl)). - replace ([|xh|] * wB + [|xl|] - ([|yh|] * wB + [|yl|])) - with (([|xh|] - [|yh|]) * wB + ([|xl|] - [|yl|])). 2:ring. - generalize (spec_sub_c xl yl);destruct (w_sub_c xl yl)as[l|l];intros H; - unfold interp_carry in H;rewrite <- H. - rewrite spec_w_WW;rewrite (mod_wwB w_digits w_to_Z spec_to_Z). - rewrite spec_sub;trivial. - simpl ww_to_Z;rewrite Z.add_assoc;rewrite <- Z.mul_add_distr_r. - rewrite (mod_wwB w_digits w_to_Z spec_to_Z);rewrite spec_sub_carry;trivial. - Qed. - - Lemma spec_ww_sub_carry : - forall x y, [[ww_sub_carry x y]] = ([[x]] - [[y]] - 1) mod wwB. - Proof. - destruct y as [ |yh yl];simpl. - ring_simplify ([[x]] - 0);exact (spec_ww_pred x). - destruct x as [ |xh xl];simpl. - apply Zmod_unique with (-1). - apply spec_ww_to_Z;trivial. - fold (ww_opp_carry (WW yh yl)). - rewrite (spec_ww_opp_carry (WW yh yl));simpl ww_to_Z;ring. - replace ([|xh|] * wB + [|xl|] - ([|yh|] * wB + [|yl|]) - 1) - with (([|xh|] - [|yh|]) * wB + ([|xl|] - [|yl|] - 1)). 2:ring. - generalize (spec_sub_carry_c xl yl);destruct (w_sub_carry_c xl yl)as[l|l]; - intros H;unfold interp_carry in H;rewrite <- H;rewrite spec_w_WW. - rewrite (mod_wwB w_digits w_to_Z spec_to_Z);rewrite spec_sub;trivial. - rewrite Z.add_assoc;rewrite <- Z.mul_add_distr_r. - rewrite (mod_wwB w_digits w_to_Z spec_to_Z);rewrite spec_sub_carry;trivial. - Qed. - -(* End DoubleProof. *) - -End DoubleSub. - - - - - diff --git a/theories/Numbers/Cyclic/Int31/Cyclic31.v b/theories/Numbers/Cyclic/Int31/Cyclic31.v index 0e58b8155..ba55003f7 100644 --- a/theories/Numbers/Cyclic/Int31/Cyclic31.v +++ b/theories/Numbers/Cyclic/Int31/Cyclic31.v @@ -18,13 +18,16 @@ Require Export Int31. Require Import Znumtheory. Require Import Zgcd_alt. Require Import Zpow_facts. -Require Import BigNumPrelude. Require Import CyclicAxioms. Require Import ROmega. +Declare ML Module "int31_syntax_plugin". + Local Open Scope nat_scope. Local Open Scope int31_scope. +Local Hint Resolve Z.lt_gt Z.div_pos : zarith. + Section Basics. (** * Basic results about [iszero], [shiftl], [shiftr] *) @@ -455,12 +458,19 @@ Section Basics. rewrite Z.succ_double_spec; auto with zarith. Qed. - Lemma phi_bounded : forall x, (0 <= phi x < 2 ^ (Z.of_nat size))%Z. + Lemma phi_nonneg : forall x, (0 <= phi x)%Z. Proof. intros. rewrite <- phibis_aux_equiv. - split. apply phibis_aux_pos. + Qed. + + Hint Resolve phi_nonneg : zarith. + + Lemma phi_bounded : forall x, (0 <= phi x < 2 ^ (Z.of_nat size))%Z. + Proof. + intros. split; [auto with zarith|]. + rewrite <- phibis_aux_equiv. change x with (nshiftr x (size-size)). apply phibis_aux_bounded; auto. Qed. @@ -1624,6 +1634,37 @@ Section Int31_Specs. rewrite Z.mul_comm, Z_div_mult; auto with zarith. Qed. + Lemma shift_unshift_mod_2 : forall n p a, 0 <= p <= n -> + ((a * 2 ^ (n - p)) mod (2^n) / 2 ^ (n - p)) mod (2^n) = + a mod 2 ^ p. + Proof. + intros. + rewrite Zmod_small. + rewrite Zmod_eq by (auto with zarith). + unfold Z.sub at 1. + rewrite Z_div_plus_full_l + by (cut (0 < 2^(n-p)); auto with zarith). + assert (2^n = 2^(n-p)*2^p). + rewrite <- Zpower_exp by (auto with zarith). + replace (n-p+p) with n; auto with zarith. + rewrite H0. + rewrite <- Zdiv_Zdiv, Z_div_mult by (auto with zarith). + rewrite (Z.mul_comm (2^(n-p))), Z.mul_assoc. + rewrite <- Z.mul_opp_l. + rewrite Z_div_mult by (auto with zarith). + symmetry; apply Zmod_eq; auto with zarith. + + remember (a * 2 ^ (n - p)) as b. + destruct (Z_mod_lt b (2^n)); auto with zarith. + split. + apply Z_div_pos; auto with zarith. + apply Zdiv_lt_upper_bound; auto with zarith. + apply Z.lt_le_trans with (2^n); auto with zarith. + rewrite <- (Z.mul_1_r (2^n)) at 1. + apply Z.mul_le_mono_nonneg; auto with zarith. + cut (0 < 2 ^ (n-p)); auto with zarith. + Qed. + Lemma spec_pos_mod : forall w p, [|ZnZ.pos_mod p w|] = [|w|] mod (2 ^ [|p|]). Proof. @@ -1654,7 +1695,7 @@ Section Int31_Specs. rewrite spec_add_mul_div by (rewrite H4; auto with zarith). change [|0|] with 0%Z; rewrite Zdiv_0_l, Z.add_0_r. rewrite H4. - apply shift_unshift_mod_2; auto with zarith. + apply shift_unshift_mod_2; simpl; auto with zarith. Qed. @@ -1973,32 +2014,24 @@ Section Int31_Specs. assert (Hp2: 0 < [|2|]) by exact (eq_refl Lt). intros Hi Hj Hij H31 Hrec; rewrite sqrt31_step_def. rewrite spec_compare, div31_phi; auto. - case Z.compare_spec; auto; intros Hc; + case Z.compare_spec; auto; intros Hc; try (split; auto; apply sqrt_test_true; auto with zarith; fail). - apply Hrec; repeat rewrite div31_phi; auto with zarith. - replace [|(j + fst (i / j)%int31)|] with ([|j|] + [|i|] / [|j|]). - split. + assert (E : [|(j + fst (i / j)%int31)|] = [|j|] + [|i|] / [|j|]). + { rewrite spec_add, div31_phi; auto using Z.mod_small with zarith. } + apply Hrec; rewrite !div31_phi, E; auto using sqrt_main with zarith. + split; try apply sqrt_test_false; auto with zarith. apply Z.le_succ_l in Hj. change (1 <= [|j|]) in Hj. Z.le_elim Hj. - replace ([|j|] + [|i|]/[|j|]) with - (1 * 2 + (([|j|] - 2) + [|i|] / [|j|])); try ring. - rewrite Z_div_plus_full_l; auto with zarith. - assert (0 <= [|i|]/ [|j|]) by (apply Z_div_pos; auto with zarith). - assert (0 <= ([|j|] - 2 + [|i|] / [|j|]) / [|2|]) ; auto with zarith. - rewrite <- Hj, Zdiv_1_r. - replace (1 + [|i|])%Z with (1 * 2 + ([|i|] - 1))%Z; try ring. - rewrite Z_div_plus_full_l; auto with zarith. - assert (0 <= ([|i|] - 1) /2)%Z by (apply Z_div_pos; auto with zarith). - change ([|2|]) with 2%Z; auto with zarith. - apply sqrt_test_false; auto with zarith. - rewrite spec_add, div31_phi; auto. - symmetry; apply Zmod_small. - split; auto with zarith. - replace [|j + fst (i / j)%int31|] with ([|j|] + [|i|] / [|j|]). - apply sqrt_main; auto with zarith. - rewrite spec_add, div31_phi; auto. - symmetry; apply Zmod_small. - split; auto with zarith. + - replace ([|j|] + [|i|]/[|j|]) with + (1 * 2 + (([|j|] - 2) + [|i|] / [|j|])) by ring. + rewrite Z_div_plus_full_l; auto with zarith. + assert (0 <= [|i|]/ [|j|]) by auto with zarith. + assert (0 <= ([|j|] - 2 + [|i|] / [|j|]) / [|2|]); auto with zarith. + - rewrite <- Hj, Zdiv_1_r. + replace (1 + [|i|]) with (1 * 2 + ([|i|] - 1)) by ring. + rewrite Z_div_plus_full_l; auto with zarith. + assert (0 <= ([|i|] - 1) /2) by auto with zarith. + change ([|2|]) with 2; auto with zarith. Qed. Lemma iter31_sqrt_correct n rec i j: 0 < [|i|] -> 0 < [|j|] -> @@ -2078,11 +2111,12 @@ Section Int31_Specs. case (phi_bounded j); intros Hbj _. case (phi_bounded il); intros Hbil _. case (phi_bounded ih); intros Hbih Hbih1. - assert (([|ih|] < [|j|] + 1)%Z); auto with zarith. + assert ([|ih|] < [|j|] + 1); auto with zarith. apply Z.square_lt_simpl_nonneg; auto with zarith. - repeat rewrite <-Z.pow_2_r; apply Z.le_lt_trans with (2 := H1). - apply Z.le_trans with ([|ih|] * base)%Z; unfold phi2, base; - try rewrite Z.pow_2_r; auto with zarith. + rewrite <- ?Z.pow_2_r; apply Z.le_lt_trans with (2 := H1). + apply Z.le_trans with ([|ih|] * wB). + - rewrite ? Z.pow_2_r; auto with zarith. + - unfold phi2. change base with wB; auto with zarith. Qed. Lemma div312_phi ih il j: (2^30 <= [|j|] -> [|ih|] < [|j|] -> @@ -2104,90 +2138,89 @@ Section Int31_Specs. Proof. assert (Hp2: (0 < [|2|])%Z) by exact (eq_refl Lt). intros Hih Hj Hij Hrec; rewrite sqrt312_step_def. - assert (H1: ([|ih|] <= [|j|])%Z) by (apply sqrt312_lower_bound with il; auto). + assert (H1: ([|ih|] <= [|j|])) by (apply sqrt312_lower_bound with il; auto). case (phi_bounded ih); intros Hih1 _. case (phi_bounded il); intros Hil1 _. case (phi_bounded j); intros _ Hj1. assert (Hp3: (0 < phi2 ih il)). - unfold phi2; apply Z.lt_le_trans with ([|ih|] * base)%Z; auto with zarith. - apply Z.mul_pos_pos; auto with zarith. - apply Z.lt_le_trans with (2:= Hih); auto with zarith. + { unfold phi2; apply Z.lt_le_trans with ([|ih|] * base); auto with zarith. + apply Z.mul_pos_pos; auto with zarith. + apply Z.lt_le_trans with (2:= Hih); auto with zarith. } rewrite spec_compare. case Z.compare_spec; intros Hc1. - split; auto. - apply sqrt_test_true; auto. - unfold phi2, base; auto with zarith. - unfold phi2; rewrite Hc1. - assert (0 <= [|il|]/[|j|]) by (apply Z_div_pos; auto with zarith). - rewrite Z.mul_comm, Z_div_plus_full_l; unfold base; auto with zarith. - simpl wB in Hj1. unfold Z.pow_pos in Hj1. simpl in Hj1. auto with zarith. - case (Z.le_gt_cases (2 ^ 30) [|j|]); intros Hjj. - rewrite spec_compare; case Z.compare_spec; - rewrite div312_phi; auto; intros Hc; - try (split; auto; apply sqrt_test_true; auto with zarith; fail). - apply Hrec. - assert (Hf1: 0 <= phi2 ih il/ [|j|]) by (apply Z_div_pos; auto with zarith). - apply Z.le_succ_l in Hj. change (1 <= [|j|]) in Hj. - Z.le_elim Hj. - 2: contradict Hc; apply Z.le_ngt; rewrite <- Hj, Zdiv_1_r; auto with zarith. - assert (Hf3: 0 < ([|j|] + phi2 ih il / [|j|]) / 2). - replace ([|j|] + phi2 ih il/ [|j|])%Z with - (1 * 2 + (([|j|] - 2) + phi2 ih il / [|j|])); try ring. - rewrite Z_div_plus_full_l; auto with zarith. - assert (0 <= ([|j|] - 2 + phi2 ih il / [|j|]) / 2) ; auto with zarith. - assert (Hf4: ([|j|] + phi2 ih il / [|j|]) / 2 < [|j|]). - apply sqrt_test_false; auto with zarith. - generalize (spec_add_c j (fst (div3121 ih il j))). - unfold interp_carry; case add31c; intros r; - rewrite div312_phi; auto with zarith. - rewrite div31_phi; change [|2|] with 2%Z; auto with zarith. - intros HH; rewrite HH; clear HH; auto with zarith. - rewrite spec_add, div31_phi; change [|2|] with 2%Z; auto. - rewrite Z.mul_1_l; intros HH. - rewrite Z.add_comm, <- Z_div_plus_full_l; auto with zarith. - change (phi v30 * 2) with (2 ^ Z.of_nat size). - rewrite HH, Zmod_small; auto with zarith. - replace (phi - match j +c fst (div3121 ih il j) with - | C0 m1 => fst (m1 / 2)%int31 - | C1 m1 => fst (m1 / 2)%int31 + v30 - end) with ((([|j|] + (phi2 ih il)/([|j|]))/2)). - apply sqrt_main; auto with zarith. - generalize (spec_add_c j (fst (div3121 ih il j))). - unfold interp_carry; case add31c; intros r; - rewrite div312_phi; auto with zarith. - rewrite div31_phi; auto with zarith. - intros HH; rewrite HH; auto with zarith. - intros HH; rewrite <- HH. - change (1 * 2 ^ Z.of_nat size) with (phi (v30) * 2). - rewrite Z_div_plus_full_l; auto with zarith. - rewrite Z.add_comm. - rewrite spec_add, Zmod_small. - rewrite div31_phi; auto. - split; auto with zarith. - case (phi_bounded (fst (r/2)%int31)); - case (phi_bounded v30); auto with zarith. - rewrite div31_phi; change (phi 2) with 2%Z; auto. - change (2 ^Z.of_nat size) with (base/2 + phi v30). - assert (phi r / 2 < base/2); auto with zarith. - apply Z.mul_lt_mono_pos_r with 2; auto with zarith. - change (base/2 * 2) with base. - apply Z.le_lt_trans with (phi r). - rewrite Z.mul_comm; apply Z_mult_div_ge; auto with zarith. - case (phi_bounded r); auto with zarith. - contradict Hij; apply Z.le_ngt. - assert ((1 + [|j|]) <= 2 ^ 30); auto with zarith. - apply Z.le_trans with ((2 ^ 30) * (2 ^ 30)); auto with zarith. - assert (0 <= 1 + [|j|]); auto with zarith. - apply Z.mul_le_mono_nonneg; auto with zarith. - change ((2 ^ 30) * (2 ^ 30)) with ((2 ^ 29) * base). - apply Z.le_trans with ([|ih|] * base); auto with zarith. - unfold phi2, base; auto with zarith. - split; auto. - apply sqrt_test_true; auto. - unfold phi2, base; auto with zarith. - apply Z.le_ge; apply Z.le_trans with (([|j|] * base)/[|j|]). - rewrite Z.mul_comm, Z_div_mult; auto with zarith. - apply Z.ge_le; apply Z_div_ge; auto with zarith. + - split; auto. + apply sqrt_test_true; auto. + + unfold phi2, base; auto with zarith. + + unfold phi2; rewrite Hc1. + assert (0 <= [|il|]/[|j|]) by (apply Z_div_pos; auto with zarith). + rewrite Z.mul_comm, Z_div_plus_full_l; auto with zarith. + change base with wB. auto with zarith. + - case (Z.le_gt_cases (2 ^ 30) [|j|]); intros Hjj. + + rewrite spec_compare; case Z.compare_spec; + rewrite div312_phi; auto; intros Hc; + try (split; auto; apply sqrt_test_true; auto with zarith; fail). + apply Hrec. + * assert (Hf1: 0 <= phi2 ih il/ [|j|]) by auto with zarith. + apply Z.le_succ_l in Hj. change (1 <= [|j|]) in Hj. + Z.le_elim Hj; + [ | contradict Hc; apply Z.le_ngt; + rewrite <- Hj, Zdiv_1_r; auto with zarith ]. + assert (Hf3: 0 < ([|j|] + phi2 ih il / [|j|]) / 2). + { replace ([|j|] + phi2 ih il/ [|j|]) with + (1 * 2 + (([|j|] - 2) + phi2 ih il / [|j|])); try ring. + rewrite Z_div_plus_full_l; auto with zarith. + assert (0 <= ([|j|] - 2 + phi2 ih il / [|j|]) / 2) ; + auto with zarith. } + assert (Hf4: ([|j|] + phi2 ih il / [|j|]) / 2 < [|j|]). + { apply sqrt_test_false; auto with zarith. } + generalize (spec_add_c j (fst (div3121 ih il j))). + unfold interp_carry; case add31c; intros r; + rewrite div312_phi; auto with zarith. + { rewrite div31_phi; change [|2|] with 2; auto with zarith. + intros HH; rewrite HH; clear HH; auto with zarith. } + { rewrite spec_add, div31_phi; change [|2|] with 2; auto. + rewrite Z.mul_1_l; intros HH. + rewrite Z.add_comm, <- Z_div_plus_full_l; auto with zarith. + change (phi v30 * 2) with (2 ^ Z.of_nat size). + rewrite HH, Zmod_small; auto with zarith. } + * replace (phi _) with (([|j|] + (phi2 ih il)/([|j|]))/2); + [ apply sqrt_main; auto with zarith | ]. + generalize (spec_add_c j (fst (div3121 ih il j))). + unfold interp_carry; case add31c; intros r; + rewrite div312_phi; auto with zarith. + { rewrite div31_phi; auto with zarith. + intros HH; rewrite HH; auto with zarith. } + { intros HH; rewrite <- HH. + change (1 * 2 ^ Z.of_nat size) with (phi (v30) * 2). + rewrite Z_div_plus_full_l; auto with zarith. + rewrite Z.add_comm. + rewrite spec_add, Zmod_small. + - rewrite div31_phi; auto. + - split; auto with zarith. + + case (phi_bounded (fst (r/2)%int31)); + case (phi_bounded v30); auto with zarith. + + rewrite div31_phi; change (phi 2) with 2; auto. + change (2 ^Z.of_nat size) with (base/2 + phi v30). + assert (phi r / 2 < base/2); auto with zarith. + apply Z.mul_lt_mono_pos_r with 2; auto with zarith. + change (base/2 * 2) with base. + apply Z.le_lt_trans with (phi r). + * rewrite Z.mul_comm; apply Z_mult_div_ge; auto with zarith. + * case (phi_bounded r); auto with zarith. } + + contradict Hij; apply Z.le_ngt. + assert ((1 + [|j|]) <= 2 ^ 30); auto with zarith. + apply Z.le_trans with ((2 ^ 30) * (2 ^ 30)); auto with zarith. + * assert (0 <= 1 + [|j|]); auto with zarith. + apply Z.mul_le_mono_nonneg; auto with zarith. + * change ((2 ^ 30) * (2 ^ 30)) with ((2 ^ 29) * base). + apply Z.le_trans with ([|ih|] * base); + change wB with base in *; auto with zarith. + unfold phi2, base; auto with zarith. + - split; auto. + apply sqrt_test_true; auto. + + unfold phi2, base; auto with zarith. + + apply Z.le_ge; apply Z.le_trans with (([|j|] * base)/[|j|]). + * rewrite Z.mul_comm, Z_div_mult; auto with zarith. + * apply Z.ge_le; apply Z_div_ge; auto with zarith. Qed. Lemma iter312_sqrt_correct n rec ih il j: @@ -2209,7 +2242,7 @@ Section Int31_Specs. intros j3 Hj3 Hpj3. apply HHrec; auto. rewrite Nat2Z.inj_succ, Z.pow_succ_r. - apply Z.le_trans with (2 ^Z.of_nat n + [|j2|])%Z; auto with zarith. + apply Z.le_trans with (2 ^Z.of_nat n + [|j2|]); auto with zarith. apply Nat2Z.is_nonneg. Qed. diff --git a/theories/Numbers/Cyclic/ZModulo/ZModulo.v b/theories/Numbers/Cyclic/ZModulo/ZModulo.v index 04fc5a8df..a3d7edbf4 100644 --- a/theories/Numbers/Cyclic/ZModulo/ZModulo.v +++ b/theories/Numbers/Cyclic/ZModulo/ZModulo.v @@ -18,7 +18,7 @@ Set Implicit Arguments. Require Import Bool. Require Import ZArith. Require Import Znumtheory. -Require Import BigNumPrelude. +Require Import Zpow_facts. Require Import DoubleType. Require Import CyclicAxioms. @@ -48,13 +48,14 @@ Section ZModulo. Lemma spec_more_than_1_digit: 1 < Zpos digits. Proof. - generalize digits_ne_1; destruct digits; auto. + generalize digits_ne_1; destruct digits; red; auto. destruct 1; auto. Qed. Let digits_gt_1 := spec_more_than_1_digit. Lemma wB_pos : wB > 0. Proof. + apply Z.lt_gt. unfold wB, base; auto with zarith. Qed. Hint Resolve wB_pos. @@ -558,7 +559,7 @@ Section ZModulo. apply Zmod_small. generalize (Z_mod_lt [|w|] (2 ^ [|p|])); intros. split. - destruct H; auto with zarith. + destruct H; auto using Z.lt_gt with zarith. apply Z.le_lt_trans with [|w|]; auto with zarith. apply Zmod_le; auto with zarith. Qed. diff --git a/theories/Numbers/Integer/BigZ/BigZ.v b/theories/Numbers/Integer/BigZ/BigZ.v deleted file mode 100644 index 7c76011f2..000000000 --- a/theories/Numbers/Integer/BigZ/BigZ.v +++ /dev/null @@ -1,208 +0,0 @@ -(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016 *) -(* \VV/ **************************************************************) -(* // * This file is distributed under the terms of the *) -(* * GNU Lesser General Public License Version 2.1 *) -(************************************************************************) -(* Benjamin Gregoire, Laurent Thery, INRIA, 2007 *) -(************************************************************************) - -Require Export BigN. -Require Import ZProperties ZDivFloor ZSig ZSigZAxioms ZMake. - -(** * [BigZ] : arbitrary large efficient integers. - - The following [BigZ] module regroups both the operations and - all the abstract properties: - - - [ZMake.Make BigN] provides the operations and basic specs w.r.t. ZArith - - [ZTypeIsZAxioms] shows (mainly) that these operations implement - the interface [ZAxioms] - - [ZProp] adds all generic properties derived from [ZAxioms] - - [MinMax*Properties] provides properties of [min] and [max] - -*) - -Delimit Scope bigZ_scope with bigZ. - -Module BigZ <: ZType <: OrderedTypeFull <: TotalOrder := - ZMake.Make BigN - <+ ZTypeIsZAxioms - <+ ZBasicProp [no inline] <+ ZExtraProp [no inline] - <+ HasEqBool2Dec [no inline] - <+ MinMaxLogicalProperties [no inline] - <+ MinMaxDecProperties [no inline]. - -(** For precision concerning the above scope handling, see comment in BigN *) - -(** Notations about [BigZ] *) - -Local Open Scope bigZ_scope. - -Notation bigZ := BigZ.t. -Bind Scope bigZ_scope with bigZ BigZ.t BigZ.t_. -Arguments BigZ.Pos _%bigN. -Arguments BigZ.Neg _%bigN. -Local Notation "0" := BigZ.zero : bigZ_scope. -Local Notation "1" := BigZ.one : bigZ_scope. -Local Notation "2" := BigZ.two : bigZ_scope. -Infix "+" := BigZ.add : bigZ_scope. -Infix "-" := BigZ.sub : bigZ_scope. -Notation "- x" := (BigZ.opp x) : bigZ_scope. -Infix "*" := BigZ.mul : bigZ_scope. -Infix "/" := BigZ.div : bigZ_scope. -Infix "^" := BigZ.pow : bigZ_scope. -Infix "?=" := BigZ.compare : bigZ_scope. -Infix "=?" := BigZ.eqb (at level 70, no associativity) : bigZ_scope. -Infix "<=?" := BigZ.leb (at level 70, no associativity) : bigZ_scope. -Infix "<?" := BigZ.ltb (at level 70, no associativity) : bigZ_scope. -Infix "==" := BigZ.eq (at level 70, no associativity) : bigZ_scope. -Notation "x != y" := (~x==y) (at level 70, no associativity) : bigZ_scope. -Infix "<" := BigZ.lt : bigZ_scope. -Infix "<=" := BigZ.le : bigZ_scope. -Notation "x > y" := (y < x) (only parsing) : bigZ_scope. -Notation "x >= y" := (y <= x) (only parsing) : bigZ_scope. -Notation "x < y < z" := (x<y /\ y<z) : bigZ_scope. -Notation "x < y <= z" := (x<y /\ y<=z) : bigZ_scope. -Notation "x <= y < z" := (x<=y /\ y<z) : bigZ_scope. -Notation "x <= y <= z" := (x<=y /\ y<=z) : bigZ_scope. -Notation "[ i ]" := (BigZ.to_Z i) : bigZ_scope. -Infix "mod" := BigZ.modulo (at level 40, no associativity) : bigZ_scope. -Infix "÷" := BigZ.quot (at level 40, left associativity) : bigZ_scope. - -(** Some additional results about [BigZ] *) - -Theorem spec_to_Z: forall n : bigZ, - BigN.to_Z (BigZ.to_N n) = ((Z.sgn [n]) * [n])%Z. -Proof. -intros n; case n; simpl; intros p; - generalize (BigN.spec_pos p); case (BigN.to_Z p); auto. -intros p1 H1; case H1; auto. -intros p1 H1; case H1; auto. -Qed. - -Theorem spec_to_N n: - ([n] = Z.sgn [n] * (BigN.to_Z (BigZ.to_N n)))%Z. -Proof. -case n; simpl; intros p; - generalize (BigN.spec_pos p); case (BigN.to_Z p); auto. -intros p1 H1; case H1; auto. -intros p1 H1; case H1; auto. -Qed. - -Theorem spec_to_Z_pos: forall n, (0 <= [n])%Z -> - BigN.to_Z (BigZ.to_N n) = [n]. -Proof. -intros n; case n; simpl; intros p; - generalize (BigN.spec_pos p); case (BigN.to_Z p); auto. -intros p1 _ H1; case H1; auto. -intros p1 H1; case H1; auto. -Qed. - -(** [BigZ] is a ring *) - -Lemma BigZring : - ring_theory 0 1 BigZ.add BigZ.mul BigZ.sub BigZ.opp BigZ.eq. -Proof. -constructor. -exact BigZ.add_0_l. exact BigZ.add_comm. exact BigZ.add_assoc. -exact BigZ.mul_1_l. exact BigZ.mul_comm. exact BigZ.mul_assoc. -exact BigZ.mul_add_distr_r. -symmetry. apply BigZ.add_opp_r. -exact BigZ.add_opp_diag_r. -Qed. - -Lemma BigZeqb_correct : forall x y, (x =? y) = true -> x==y. -Proof. now apply BigZ.eqb_eq. Qed. - -Definition BigZ_of_N n := BigZ.of_Z (Z.of_N n). - -Lemma BigZpower : power_theory 1 BigZ.mul BigZ.eq BigZ_of_N BigZ.pow. -Proof. -constructor. -intros. unfold BigZ.eq, BigZ_of_N. rewrite BigZ.spec_pow, BigZ.spec_of_Z. -rewrite Zpower_theory.(rpow_pow_N). -destruct n; simpl. reflexivity. -induction p; simpl; intros; BigZ.zify; rewrite ?IHp; auto. -Qed. - -Lemma BigZdiv : div_theory BigZ.eq BigZ.add BigZ.mul (@id _) - (fun a b => if b =? 0 then (0,a) else BigZ.div_eucl a b). -Proof. -constructor. unfold id. intros a b. -BigZ.zify. -case Z.eqb_spec. -BigZ.zify. auto with zarith. -intros NEQ. -generalize (BigZ.spec_div_eucl a b). -generalize (Z_div_mod_full [a] [b] NEQ). -destruct BigZ.div_eucl as (q,r), Z.div_eucl as (q',r'). -intros (EQ,_). injection 1 as EQr EQq. -BigZ.zify. rewrite EQr, EQq; auto. -Qed. - -(** Detection of constants *) - -Ltac isBigZcst t := - match t with - | BigZ.Pos ?t => isBigNcst t - | BigZ.Neg ?t => isBigNcst t - | BigZ.zero => constr:(true) - | BigZ.one => constr:(true) - | BigZ.two => constr:(true) - | BigZ.minus_one => constr:(true) - | _ => constr:(false) - end. - -Ltac BigZcst t := - match isBigZcst t with - | true => constr:(t) - | false => constr:(NotConstant) - end. - -Ltac BigZ_to_N t := - match t with - | BigZ.Pos ?t => BigN_to_N t - | BigZ.zero => constr:(0%N) - | BigZ.one => constr:(1%N) - | BigZ.two => constr:(2%N) - | _ => constr:(NotConstant) - end. - -(** Registration for the "ring" tactic *) - -Add Ring BigZr : BigZring - (decidable BigZeqb_correct, - constants [BigZcst], - power_tac BigZpower [BigZ_to_N], - div BigZdiv). - -Section TestRing. -Let test : forall x y, 1 + x*y + x^2 + 1 == 1*1 + 1 + (y + 1*x)*x. -Proof. -intros. ring_simplify. reflexivity. -Qed. -Let test' : forall x y, 1 + x*y + x^2 - 1*1 - y*x + 1*(-x)*x == 0. -Proof. -intros. ring_simplify. reflexivity. -Qed. -End TestRing. - -(** [BigZ] also benefits from an "order" tactic *) - -Ltac bigZ_order := BigZ.order. - -Section TestOrder. -Let test : forall x y : bigZ, x<=y -> y<=x -> x==y. -Proof. bigZ_order. Qed. -End TestOrder. - -(** We can use at least a bit of (r)omega by translating to [Z]. *) - -Section TestOmega. -Let test : forall x y : bigZ, x<=y -> y<=x -> x==y. -Proof. intros x y. BigZ.zify. omega. Qed. -End TestOmega. - -(** Todo: micromega *) diff --git a/theories/Numbers/Integer/BigZ/ZMake.v b/theories/Numbers/Integer/BigZ/ZMake.v deleted file mode 100644 index fec6e0683..000000000 --- a/theories/Numbers/Integer/BigZ/ZMake.v +++ /dev/null @@ -1,759 +0,0 @@ -(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016 *) -(* \VV/ **************************************************************) -(* // * This file is distributed under the terms of the *) -(* * GNU Lesser General Public License Version 2.1 *) -(************************************************************************) -(* Benjamin Gregoire, Laurent Thery, INRIA, 2007 *) -(************************************************************************) - -Require Import ZArith. -Require Import BigNumPrelude. -Require Import NSig. -Require Import ZSig. - -Open Scope Z_scope. - -(** * ZMake - - A generic transformation from a structure of natural numbers - [NSig.NType] to a structure of integers [ZSig.ZType]. -*) - -Module Make (NN:NType) <: ZType. - - Inductive t_ := - | Pos : NN.t -> t_ - | Neg : NN.t -> t_. - - Definition t := t_. - - Definition zero := Pos NN.zero. - Definition one := Pos NN.one. - Definition two := Pos NN.two. - Definition minus_one := Neg NN.one. - - Definition of_Z x := - match x with - | Zpos x => Pos (NN.of_N (Npos x)) - | Z0 => zero - | Zneg x => Neg (NN.of_N (Npos x)) - end. - - Definition to_Z x := - match x with - | Pos nx => NN.to_Z nx - | Neg nx => Z.opp (NN.to_Z nx) - end. - - Theorem spec_of_Z: forall x, to_Z (of_Z x) = x. - Proof. - intros x; case x; unfold to_Z, of_Z, zero. - exact NN.spec_0. - intros; rewrite NN.spec_of_N; auto. - intros; rewrite NN.spec_of_N; auto. - Qed. - - Definition eq x y := (to_Z x = to_Z y). - - Theorem spec_0: to_Z zero = 0. - exact NN.spec_0. - Qed. - - Theorem spec_1: to_Z one = 1. - exact NN.spec_1. - Qed. - - Theorem spec_2: to_Z two = 2. - exact NN.spec_2. - Qed. - - Theorem spec_m1: to_Z minus_one = -1. - simpl; rewrite NN.spec_1; auto. - Qed. - - Definition compare x y := - match x, y with - | Pos nx, Pos ny => NN.compare nx ny - | Pos nx, Neg ny => - match NN.compare nx NN.zero with - | Gt => Gt - | _ => NN.compare ny NN.zero - end - | Neg nx, Pos ny => - match NN.compare NN.zero nx with - | Lt => Lt - | _ => NN.compare NN.zero ny - end - | Neg nx, Neg ny => NN.compare ny nx - end. - - Theorem spec_compare : - forall x y, compare x y = Z.compare (to_Z x) (to_Z y). - Proof. - unfold compare, to_Z. - destruct x as [x|x], y as [y|y]; - rewrite ?NN.spec_compare, ?NN.spec_0, ?Z.compare_opp; auto; - assert (Hx:=NN.spec_pos x); assert (Hy:=NN.spec_pos y); - set (X:=NN.to_Z x) in *; set (Y:=NN.to_Z y) in *; clearbody X Y. - - destruct (Z.compare_spec X 0) as [EQ|LT|GT]. - + rewrite <- Z.opp_0 in EQ. now rewrite EQ, Z.compare_opp. - + exfalso. omega. - + symmetry. change (X > -Y). omega. - - destruct (Z.compare_spec 0 X) as [EQ|LT|GT]. - + rewrite <- EQ, Z.opp_0; auto. - + symmetry. change (-X < Y). omega. - + exfalso. omega. - Qed. - - Definition eqb x y := - match compare x y with - | Eq => true - | _ => false - end. - - Theorem spec_eqb x y : eqb x y = Z.eqb (to_Z x) (to_Z y). - Proof. - apply Bool.eq_iff_eq_true. - unfold eqb. rewrite Z.eqb_eq, <- Z.compare_eq_iff, spec_compare. - split; [now destruct Z.compare | now intros ->]. - Qed. - - Definition lt n m := to_Z n < to_Z m. - Definition le n m := to_Z n <= to_Z m. - - - Definition ltb (x y : t) : bool := - match compare x y with - | Lt => true - | _ => false - end. - - Theorem spec_ltb x y : ltb x y = Z.ltb (to_Z x) (to_Z y). - Proof. - apply Bool.eq_iff_eq_true. - rewrite Z.ltb_lt. unfold Z.lt, ltb. rewrite spec_compare. - split; [now destruct Z.compare | now intros ->]. - Qed. - - Definition leb (x y : t) : bool := - match compare x y with - | Gt => false - | _ => true - end. - - Theorem spec_leb x y : leb x y = Z.leb (to_Z x) (to_Z y). - Proof. - apply Bool.eq_iff_eq_true. - rewrite Z.leb_le. unfold Z.le, leb. rewrite spec_compare. - now destruct Z.compare; split. - Qed. - - Definition min n m := match compare n m with Gt => m | _ => n end. - Definition max n m := match compare n m with Lt => m | _ => n end. - - Theorem spec_min : forall n m, to_Z (min n m) = Z.min (to_Z n) (to_Z m). - Proof. - unfold min, Z.min. intros. rewrite spec_compare. destruct Z.compare; auto. - Qed. - - Theorem spec_max : forall n m, to_Z (max n m) = Z.max (to_Z n) (to_Z m). - Proof. - unfold max, Z.max. intros. rewrite spec_compare. destruct Z.compare; auto. - Qed. - - Definition to_N x := - match x with - | Pos nx => nx - | Neg nx => nx - end. - - Definition abs x := Pos (to_N x). - - Theorem spec_abs: forall x, to_Z (abs x) = Z.abs (to_Z x). - Proof. - intros x; case x; clear x; intros x; assert (F:=NN.spec_pos x). - simpl; rewrite Z.abs_eq; auto. - simpl; rewrite Z.abs_neq; simpl; auto with zarith. - Qed. - - Definition opp x := - match x with - | Pos nx => Neg nx - | Neg nx => Pos nx - end. - - Theorem spec_opp: forall x, to_Z (opp x) = - to_Z x. - Proof. - intros x; case x; simpl; auto with zarith. - Qed. - - Definition succ x := - match x with - | Pos n => Pos (NN.succ n) - | Neg n => - match NN.compare NN.zero n with - | Lt => Neg (NN.pred n) - | _ => one - end - end. - - Theorem spec_succ: forall n, to_Z (succ n) = to_Z n + 1. - Proof. - intros x; case x; clear x; intros x. - exact (NN.spec_succ x). - simpl. rewrite NN.spec_compare. case Z.compare_spec; rewrite ?NN.spec_0; simpl. - intros HH; rewrite <- HH; rewrite NN.spec_1; ring. - intros HH; rewrite NN.spec_pred, Z.max_r; auto with zarith. - generalize (NN.spec_pos x); auto with zarith. - Qed. - - Definition add x y := - match x, y with - | Pos nx, Pos ny => Pos (NN.add nx ny) - | Pos nx, Neg ny => - match NN.compare nx ny with - | Gt => Pos (NN.sub nx ny) - | Eq => zero - | Lt => Neg (NN.sub ny nx) - end - | Neg nx, Pos ny => - match NN.compare nx ny with - | Gt => Neg (NN.sub nx ny) - | Eq => zero - | Lt => Pos (NN.sub ny nx) - end - | Neg nx, Neg ny => Neg (NN.add nx ny) - end. - - Theorem spec_add: forall x y, to_Z (add x y) = to_Z x + to_Z y. - Proof. - unfold add, to_Z; intros [x | x] [y | y]; - try (rewrite NN.spec_add; auto with zarith); - rewrite NN.spec_compare; case Z.compare_spec; - unfold zero; rewrite ?NN.spec_0, ?NN.spec_sub; omega with *. - Qed. - - Definition pred x := - match x with - | Pos nx => - match NN.compare NN.zero nx with - | Lt => Pos (NN.pred nx) - | _ => minus_one - end - | Neg nx => Neg (NN.succ nx) - end. - - Theorem spec_pred: forall x, to_Z (pred x) = to_Z x - 1. - Proof. - unfold pred, to_Z, minus_one; intros [x | x]; - try (rewrite NN.spec_succ; ring). - rewrite NN.spec_compare; case Z.compare_spec; - rewrite ?NN.spec_0, ?NN.spec_1, ?NN.spec_pred; - generalize (NN.spec_pos x); omega with *. - Qed. - - Definition sub x y := - match x, y with - | Pos nx, Pos ny => - match NN.compare nx ny with - | Gt => Pos (NN.sub nx ny) - | Eq => zero - | Lt => Neg (NN.sub ny nx) - end - | Pos nx, Neg ny => Pos (NN.add nx ny) - | Neg nx, Pos ny => Neg (NN.add nx ny) - | Neg nx, Neg ny => - match NN.compare nx ny with - | Gt => Neg (NN.sub nx ny) - | Eq => zero - | Lt => Pos (NN.sub ny nx) - end - end. - - Theorem spec_sub: forall x y, to_Z (sub x y) = to_Z x - to_Z y. - Proof. - unfold sub, to_Z; intros [x | x] [y | y]; - try (rewrite NN.spec_add; auto with zarith); - rewrite NN.spec_compare; case Z.compare_spec; - unfold zero; rewrite ?NN.spec_0, ?NN.spec_sub; omega with *. - Qed. - - Definition mul x y := - match x, y with - | Pos nx, Pos ny => Pos (NN.mul nx ny) - | Pos nx, Neg ny => Neg (NN.mul nx ny) - | Neg nx, Pos ny => Neg (NN.mul nx ny) - | Neg nx, Neg ny => Pos (NN.mul nx ny) - end. - - Theorem spec_mul: forall x y, to_Z (mul x y) = to_Z x * to_Z y. - Proof. - unfold mul, to_Z; intros [x | x] [y | y]; rewrite NN.spec_mul; ring. - Qed. - - Definition square x := - match x with - | Pos nx => Pos (NN.square nx) - | Neg nx => Pos (NN.square nx) - end. - - Theorem spec_square: forall x, to_Z (square x) = to_Z x * to_Z x. - Proof. - unfold square, to_Z; intros [x | x]; rewrite NN.spec_square; ring. - Qed. - - Definition pow_pos x p := - match x with - | Pos nx => Pos (NN.pow_pos nx p) - | Neg nx => - match p with - | xH => x - | xO _ => Pos (NN.pow_pos nx p) - | xI _ => Neg (NN.pow_pos nx p) - end - end. - - Theorem spec_pow_pos: forall x n, to_Z (pow_pos x n) = to_Z x ^ Zpos n. - Proof. - assert (F0: forall x, (-x)^2 = x^2). - intros x; rewrite Z.pow_2_r; ring. - unfold pow_pos, to_Z; intros [x | x] [p | p |]; - try rewrite NN.spec_pow_pos; try ring. - assert (F: 0 <= 2 * Zpos p). - assert (0 <= Zpos p); auto with zarith. - rewrite Pos2Z.inj_xI; repeat rewrite Zpower_exp; auto with zarith. - repeat rewrite Z.pow_mul_r; auto with zarith. - rewrite F0; ring. - assert (F: 0 <= 2 * Zpos p). - assert (0 <= Zpos p); auto with zarith. - rewrite Pos2Z.inj_xO; repeat rewrite Zpower_exp; auto with zarith. - repeat rewrite Z.pow_mul_r; auto with zarith. - rewrite F0; ring. - Qed. - - Definition pow_N x n := - match n with - | N0 => one - | Npos p => pow_pos x p - end. - - Theorem spec_pow_N: forall x n, to_Z (pow_N x n) = to_Z x ^ Z.of_N n. - Proof. - destruct n; simpl. apply NN.spec_1. - apply spec_pow_pos. - Qed. - - Definition pow x y := - match to_Z y with - | Z0 => one - | Zpos p => pow_pos x p - | Zneg p => zero - end. - - Theorem spec_pow: forall x y, to_Z (pow x y) = to_Z x ^ to_Z y. - Proof. - intros. unfold pow. destruct (to_Z y); simpl. - apply NN.spec_1. - apply spec_pow_pos. - apply NN.spec_0. - Qed. - - Definition log2 x := - match x with - | Pos nx => Pos (NN.log2 nx) - | Neg nx => zero - end. - - Theorem spec_log2: forall x, to_Z (log2 x) = Z.log2 (to_Z x). - Proof. - intros. destruct x as [p|p]; simpl. apply NN.spec_log2. - rewrite NN.spec_0. - destruct (Z_le_lt_eq_dec _ _ (NN.spec_pos p)) as [LT|EQ]. - rewrite Z.log2_nonpos; auto with zarith. - now rewrite <- EQ. - Qed. - - Definition sqrt x := - match x with - | Pos nx => Pos (NN.sqrt nx) - | Neg nx => Neg NN.zero - end. - - Theorem spec_sqrt: forall x, to_Z (sqrt x) = Z.sqrt (to_Z x). - Proof. - destruct x as [p|p]; simpl. - apply NN.spec_sqrt. - rewrite NN.spec_0. - destruct (Z_le_lt_eq_dec _ _ (NN.spec_pos p)) as [LT|EQ]. - rewrite Z.sqrt_neg; auto with zarith. - now rewrite <- EQ. - Qed. - - Definition div_eucl x y := - match x, y with - | Pos nx, Pos ny => - let (q, r) := NN.div_eucl nx ny in - (Pos q, Pos r) - | Pos nx, Neg ny => - let (q, r) := NN.div_eucl nx ny in - if NN.eqb NN.zero r - then (Neg q, zero) - else (Neg (NN.succ q), Neg (NN.sub ny r)) - | Neg nx, Pos ny => - let (q, r) := NN.div_eucl nx ny in - if NN.eqb NN.zero r - then (Neg q, zero) - else (Neg (NN.succ q), Pos (NN.sub ny r)) - | Neg nx, Neg ny => - let (q, r) := NN.div_eucl nx ny in - (Pos q, Neg r) - end. - - Ltac break_nonneg x px EQx := - let H := fresh "H" in - assert (H:=NN.spec_pos x); - destruct (NN.to_Z x) as [|px|px] eqn:EQx; - [clear H|clear H|elim H; reflexivity]. - - Theorem spec_div_eucl: forall x y, - let (q,r) := div_eucl x y in - (to_Z q, to_Z r) = Z.div_eucl (to_Z x) (to_Z y). - Proof. - unfold div_eucl, to_Z. intros [x | x] [y | y]. - (* Pos Pos *) - generalize (NN.spec_div_eucl x y); destruct (NN.div_eucl x y); auto. - (* Pos Neg *) - generalize (NN.spec_div_eucl x y); destruct (NN.div_eucl x y) as (q,r). - break_nonneg x px EQx; break_nonneg y py EQy; - try (injection 1 as Hq Hr; rewrite NN.spec_eqb, NN.spec_0, Hr; - simpl; rewrite Hq, NN.spec_0; auto). - change (- Zpos py) with (Zneg py). - assert (GT : Zpos py > 0) by (compute; auto). - generalize (Z_div_mod (Zpos px) (Zpos py) GT). - unfold Z.div_eucl. destruct (Z.pos_div_eucl px (Zpos py)) as (q',r'). - intros (EQ,MOD). injection 1 as Hq' Hr'. - rewrite NN.spec_eqb, NN.spec_0, Hr'. - break_nonneg r pr EQr. - subst; simpl. rewrite NN.spec_0; auto. - subst. lazy iota beta delta [Z.eqb]. - rewrite NN.spec_sub, NN.spec_succ, EQy, EQr. f_equal. omega with *. - (* Neg Pos *) - generalize (NN.spec_div_eucl x y); destruct (NN.div_eucl x y) as (q,r). - break_nonneg x px EQx; break_nonneg y py EQy; - try (injection 1 as Hq Hr; rewrite NN.spec_eqb, NN.spec_0, Hr; - simpl; rewrite Hq, NN.spec_0; auto). - change (- Zpos px) with (Zneg px). - assert (GT : Zpos py > 0) by (compute; auto). - generalize (Z_div_mod (Zpos px) (Zpos py) GT). - unfold Z.div_eucl. destruct (Z.pos_div_eucl px (Zpos py)) as (q',r'). - intros (EQ,MOD). injection 1 as Hq' Hr'. - rewrite NN.spec_eqb, NN.spec_0, Hr'. - break_nonneg r pr EQr. - subst; simpl. rewrite NN.spec_0; auto. - subst. lazy iota beta delta [Z.eqb]. - rewrite NN.spec_sub, NN.spec_succ, EQy, EQr. f_equal. omega with *. - (* Neg Neg *) - generalize (NN.spec_div_eucl x y); destruct (NN.div_eucl x y) as (q,r). - break_nonneg x px EQx; break_nonneg y py EQy; - try (injection 1 as -> ->; auto). - simpl. intros <-; auto. - Qed. - - Definition div x y := fst (div_eucl x y). - - Definition spec_div: forall x y, - to_Z (div x y) = to_Z x / to_Z y. - Proof. - intros x y; generalize (spec_div_eucl x y); unfold div, Z.div. - case div_eucl; case Z.div_eucl; simpl; auto. - intros q r q11 r1 H; injection H; auto. - Qed. - - Definition modulo x y := snd (div_eucl x y). - - Theorem spec_modulo: - forall x y, to_Z (modulo x y) = to_Z x mod to_Z y. - Proof. - intros x y; generalize (spec_div_eucl x y); unfold modulo, Z.modulo. - case div_eucl; case Z.div_eucl; simpl; auto. - intros q r q11 r1 H; injection H; auto. - Qed. - - Definition quot x y := - match x, y with - | Pos nx, Pos ny => Pos (NN.div nx ny) - | Pos nx, Neg ny => Neg (NN.div nx ny) - | Neg nx, Pos ny => Neg (NN.div nx ny) - | Neg nx, Neg ny => Pos (NN.div nx ny) - end. - - Definition rem x y := - if eqb y zero then x - else - match x, y with - | Pos nx, Pos ny => Pos (NN.modulo nx ny) - | Pos nx, Neg ny => Pos (NN.modulo nx ny) - | Neg nx, Pos ny => Neg (NN.modulo nx ny) - | Neg nx, Neg ny => Neg (NN.modulo nx ny) - end. - - Lemma spec_quot : forall x y, to_Z (quot x y) = (to_Z x) ÷ (to_Z y). - Proof. - intros [x|x] [y|y]; simpl; symmetry; rewrite NN.spec_div; - (* Nota: we rely here on [forall a b, a ÷ 0 = b / 0] *) - destruct (Z.eq_dec (NN.to_Z y) 0) as [EQ|NEQ]; - try (rewrite EQ; now destruct (NN.to_Z x)); - rewrite ?Z.quot_opp_r, ?Z.quot_opp_l, ?Z.opp_involutive, ?Z.opp_inj_wd; - trivial; apply Z.quot_div_nonneg; - generalize (NN.spec_pos x) (NN.spec_pos y); Z.order. - Qed. - - Lemma spec_rem : forall x y, - to_Z (rem x y) = Z.rem (to_Z x) (to_Z y). - Proof. - intros x y. unfold rem. rewrite spec_eqb, spec_0. - case Z.eqb_spec; intros Hy. - (* Nota: we rely here on [Z.rem a 0 = a] *) - rewrite Hy. now destruct (to_Z x). - destruct x as [x|x], y as [y|y]; simpl in *; symmetry; - rewrite ?Z.eq_opp_l, ?Z.opp_0 in Hy; - rewrite NN.spec_modulo, ?Z.rem_opp_r, ?Z.rem_opp_l, ?Z.opp_involutive, - ?Z.opp_inj_wd; - trivial; apply Z.rem_mod_nonneg; - generalize (NN.spec_pos x) (NN.spec_pos y); Z.order. - Qed. - - Definition gcd x y := - match x, y with - | Pos nx, Pos ny => Pos (NN.gcd nx ny) - | Pos nx, Neg ny => Pos (NN.gcd nx ny) - | Neg nx, Pos ny => Pos (NN.gcd nx ny) - | Neg nx, Neg ny => Pos (NN.gcd nx ny) - end. - - Theorem spec_gcd: forall a b, to_Z (gcd a b) = Z.gcd (to_Z a) (to_Z b). - Proof. - unfold gcd, Z.gcd, to_Z; intros [x | x] [y | y]; rewrite NN.spec_gcd; unfold Z.gcd; - auto; case NN.to_Z; simpl; auto with zarith; - try rewrite Z.abs_opp; auto; - case NN.to_Z; simpl; auto with zarith. - Qed. - - Definition sgn x := - match compare zero x with - | Lt => one - | Eq => zero - | Gt => minus_one - end. - - Lemma spec_sgn : forall x, to_Z (sgn x) = Z.sgn (to_Z x). - Proof. - intros. unfold sgn. rewrite spec_compare. case Z.compare_spec. - rewrite spec_0. intros <-; auto. - rewrite spec_0, spec_1. symmetry. rewrite Z.sgn_pos_iff; auto. - rewrite spec_0, spec_m1. symmetry. rewrite Z.sgn_neg_iff; auto with zarith. - Qed. - - Definition even z := - match z with - | Pos n => NN.even n - | Neg n => NN.even n - end. - - Definition odd z := - match z with - | Pos n => NN.odd n - | Neg n => NN.odd n - end. - - Lemma spec_even : forall z, even z = Z.even (to_Z z). - Proof. - intros [n|n]; simpl; rewrite NN.spec_even; trivial. - destruct (NN.to_Z n) as [|p|p]; now try destruct p. - Qed. - - Lemma spec_odd : forall z, odd z = Z.odd (to_Z z). - Proof. - intros [n|n]; simpl; rewrite NN.spec_odd; trivial. - destruct (NN.to_Z n) as [|p|p]; now try destruct p. - Qed. - - Definition norm_pos z := - match z with - | Pos _ => z - | Neg n => if NN.eqb n NN.zero then Pos n else z - end. - - Definition testbit a n := - match norm_pos n, norm_pos a with - | Pos p, Pos a => NN.testbit a p - | Pos p, Neg a => negb (NN.testbit (NN.pred a) p) - | Neg p, _ => false - end. - - Definition shiftl a n := - match norm_pos a, n with - | Pos a, Pos n => Pos (NN.shiftl a n) - | Pos a, Neg n => Pos (NN.shiftr a n) - | Neg a, Pos n => Neg (NN.shiftl a n) - | Neg a, Neg n => Neg (NN.succ (NN.shiftr (NN.pred a) n)) - end. - - Definition shiftr a n := shiftl a (opp n). - - Definition lor a b := - match norm_pos a, norm_pos b with - | Pos a, Pos b => Pos (NN.lor a b) - | Neg a, Pos b => Neg (NN.succ (NN.ldiff (NN.pred a) b)) - | Pos a, Neg b => Neg (NN.succ (NN.ldiff (NN.pred b) a)) - | Neg a, Neg b => Neg (NN.succ (NN.land (NN.pred a) (NN.pred b))) - end. - - Definition land a b := - match norm_pos a, norm_pos b with - | Pos a, Pos b => Pos (NN.land a b) - | Neg a, Pos b => Pos (NN.ldiff b (NN.pred a)) - | Pos a, Neg b => Pos (NN.ldiff a (NN.pred b)) - | Neg a, Neg b => Neg (NN.succ (NN.lor (NN.pred a) (NN.pred b))) - end. - - Definition ldiff a b := - match norm_pos a, norm_pos b with - | Pos a, Pos b => Pos (NN.ldiff a b) - | Neg a, Pos b => Neg (NN.succ (NN.lor (NN.pred a) b)) - | Pos a, Neg b => Pos (NN.land a (NN.pred b)) - | Neg a, Neg b => Pos (NN.ldiff (NN.pred b) (NN.pred a)) - end. - - Definition lxor a b := - match norm_pos a, norm_pos b with - | Pos a, Pos b => Pos (NN.lxor a b) - | Neg a, Pos b => Neg (NN.succ (NN.lxor (NN.pred a) b)) - | Pos a, Neg b => Neg (NN.succ (NN.lxor a (NN.pred b))) - | Neg a, Neg b => Pos (NN.lxor (NN.pred a) (NN.pred b)) - end. - - Definition div2 x := shiftr x one. - - Lemma Zlnot_alt1 : forall x, -(x+1) = Z.lnot x. - Proof. - unfold Z.lnot, Z.pred; auto with zarith. - Qed. - - Lemma Zlnot_alt2 : forall x, Z.lnot (x-1) = -x. - Proof. - unfold Z.lnot, Z.pred; auto with zarith. - Qed. - - Lemma Zlnot_alt3 : forall x, Z.lnot (-x) = x-1. - Proof. - unfold Z.lnot, Z.pred; auto with zarith. - Qed. - - Lemma spec_norm_pos : forall x, to_Z (norm_pos x) = to_Z x. - Proof. - intros [x|x]; simpl; trivial. - rewrite NN.spec_eqb, NN.spec_0. - case Z.eqb_spec; simpl; auto with zarith. - Qed. - - Lemma spec_norm_pos_pos : forall x y, norm_pos x = Neg y -> - 0 < NN.to_Z y. - Proof. - intros [x|x] y; simpl; try easy. - rewrite NN.spec_eqb, NN.spec_0. - case Z.eqb_spec; simpl; try easy. - inversion 2. subst. generalize (NN.spec_pos y); auto with zarith. - Qed. - - Ltac destr_norm_pos x := - rewrite <- (spec_norm_pos x); - let H := fresh in - let x' := fresh x in - assert (H := spec_norm_pos_pos x); - destruct (norm_pos x) as [x'|x']; - specialize (H x' (eq_refl _)) || clear H. - - Lemma spec_testbit: forall x p, testbit x p = Z.testbit (to_Z x) (to_Z p). - Proof. - intros x p. unfold testbit. - destr_norm_pos p; simpl. destr_norm_pos x; simpl. - apply NN.spec_testbit. - rewrite NN.spec_testbit, NN.spec_pred, Z.max_r by auto with zarith. - symmetry. apply Z.bits_opp. apply NN.spec_pos. - symmetry. apply Z.testbit_neg_r; auto with zarith. - Qed. - - Lemma spec_shiftl: forall x p, to_Z (shiftl x p) = Z.shiftl (to_Z x) (to_Z p). - Proof. - intros x p. unfold shiftl. - destr_norm_pos x; destruct p as [p|p]; simpl; - assert (Hp := NN.spec_pos p). - apply NN.spec_shiftl. - rewrite Z.shiftl_opp_r. apply NN.spec_shiftr. - rewrite !NN.spec_shiftl. - rewrite !Z.shiftl_mul_pow2 by apply NN.spec_pos. - symmetry. apply Z.mul_opp_l. - rewrite Z.shiftl_opp_r, NN.spec_succ, NN.spec_shiftr, NN.spec_pred, Z.max_r - by auto with zarith. - now rewrite Zlnot_alt1, Z.lnot_shiftr, Zlnot_alt2. - Qed. - - Lemma spec_shiftr: forall x p, to_Z (shiftr x p) = Z.shiftr (to_Z x) (to_Z p). - Proof. - intros. unfold shiftr. rewrite spec_shiftl, spec_opp. - apply Z.shiftl_opp_r. - Qed. - - Lemma spec_land: forall x y, to_Z (land x y) = Z.land (to_Z x) (to_Z y). - Proof. - intros x y. unfold land. - destr_norm_pos x; destr_norm_pos y; simpl; - rewrite ?NN.spec_succ, ?NN.spec_land, ?NN.spec_ldiff, ?NN.spec_lor, - ?NN.spec_pred, ?Z.max_r, ?Zlnot_alt1; auto with zarith. - now rewrite Z.ldiff_land, Zlnot_alt2. - now rewrite Z.ldiff_land, Z.land_comm, Zlnot_alt2. - now rewrite Z.lnot_lor, !Zlnot_alt2. - Qed. - - Lemma spec_lor: forall x y, to_Z (lor x y) = Z.lor (to_Z x) (to_Z y). - Proof. - intros x y. unfold lor. - destr_norm_pos x; destr_norm_pos y; simpl; - rewrite ?NN.spec_succ, ?NN.spec_land, ?NN.spec_ldiff, ?NN.spec_lor, - ?NN.spec_pred, ?Z.max_r, ?Zlnot_alt1; auto with zarith. - now rewrite Z.lnot_ldiff, Z.lor_comm, Zlnot_alt2. - now rewrite Z.lnot_ldiff, Zlnot_alt2. - now rewrite Z.lnot_land, !Zlnot_alt2. - Qed. - - Lemma spec_ldiff: forall x y, to_Z (ldiff x y) = Z.ldiff (to_Z x) (to_Z y). - Proof. - intros x y. unfold ldiff. - destr_norm_pos x; destr_norm_pos y; simpl; - rewrite ?NN.spec_succ, ?NN.spec_land, ?NN.spec_ldiff, ?NN.spec_lor, - ?NN.spec_pred, ?Z.max_r, ?Zlnot_alt1; auto with zarith. - now rewrite Z.ldiff_land, Zlnot_alt3. - now rewrite Z.lnot_lor, Z.ldiff_land, <- Zlnot_alt2. - now rewrite 2 Z.ldiff_land, Zlnot_alt2, Z.land_comm, Zlnot_alt3. - Qed. - - Lemma spec_lxor: forall x y, to_Z (lxor x y) = Z.lxor (to_Z x) (to_Z y). - Proof. - intros x y. unfold lxor. - destr_norm_pos x; destr_norm_pos y; simpl; - rewrite ?NN.spec_succ, ?NN.spec_lxor, ?NN.spec_pred, ?Z.max_r, ?Zlnot_alt1; - auto with zarith. - now rewrite !Z.lnot_lxor_r, Zlnot_alt2. - now rewrite !Z.lnot_lxor_l, Zlnot_alt2. - now rewrite <- Z.lxor_lnot_lnot, !Zlnot_alt2. - Qed. - - Lemma spec_div2: forall x, to_Z (div2 x) = Z.div2 (to_Z x). - Proof. - intros x. unfold div2. now rewrite spec_shiftr, Z.div2_spec, spec_1. - Qed. - -End Make. diff --git a/theories/Numbers/Integer/SpecViaZ/ZSig.v b/theories/Numbers/Integer/SpecViaZ/ZSig.v deleted file mode 100644 index a360327a4..000000000 --- a/theories/Numbers/Integer/SpecViaZ/ZSig.v +++ /dev/null @@ -1,135 +0,0 @@ -(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016 *) -(* \VV/ **************************************************************) -(* // * This file is distributed under the terms of the *) -(* * GNU Lesser General Public License Version 2.1 *) -(************************************************************************) -(* Benjamin Gregoire, Laurent Thery, INRIA, 2007 *) -(************************************************************************) - -Require Import BinInt. - -Open Scope Z_scope. - -(** * ZSig *) - -(** Interface of a rich structure about integers. - Specifications are written via translation to Z. -*) - -Module Type ZType. - - Parameter t : Type. - - Parameter to_Z : t -> Z. - Local Notation "[ x ]" := (to_Z x). - - Definition eq x y := [x] = [y]. - Definition lt x y := [x] < [y]. - Definition le x y := [x] <= [y]. - - Parameter of_Z : Z -> t. - Parameter spec_of_Z: forall x, to_Z (of_Z x) = x. - - Parameter compare : t -> t -> comparison. - Parameter eqb : t -> t -> bool. - Parameter ltb : t -> t -> bool. - Parameter leb : t -> t -> bool. - Parameter min : t -> t -> t. - Parameter max : t -> t -> t. - Parameter zero : t. - Parameter one : t. - Parameter two : t. - Parameter minus_one : t. - Parameter succ : t -> t. - Parameter add : t -> t -> t. - Parameter pred : t -> t. - Parameter sub : t -> t -> t. - Parameter opp : t -> t. - Parameter mul : t -> t -> t. - Parameter square : t -> t. - Parameter pow_pos : t -> positive -> t. - Parameter pow_N : t -> N -> t. - Parameter pow : t -> t -> t. - Parameter sqrt : t -> t. - Parameter log2 : t -> t. - Parameter div_eucl : t -> t -> t * t. - Parameter div : t -> t -> t. - Parameter modulo : t -> t -> t. - Parameter quot : t -> t -> t. - Parameter rem : t -> t -> t. - Parameter gcd : t -> t -> t. - Parameter sgn : t -> t. - Parameter abs : t -> t. - Parameter even : t -> bool. - Parameter odd : t -> bool. - Parameter testbit : t -> t -> bool. - Parameter shiftr : t -> t -> t. - Parameter shiftl : t -> t -> t. - Parameter land : t -> t -> t. - Parameter lor : t -> t -> t. - Parameter ldiff : t -> t -> t. - Parameter lxor : t -> t -> t. - Parameter div2 : t -> t. - - Parameter spec_compare: forall x y, compare x y = ([x] ?= [y]). - Parameter spec_eqb : forall x y, eqb x y = ([x] =? [y]). - Parameter spec_ltb : forall x y, ltb x y = ([x] <? [y]). - Parameter spec_leb : forall x y, leb x y = ([x] <=? [y]). - Parameter spec_min : forall x y, [min x y] = Z.min [x] [y]. - Parameter spec_max : forall x y, [max x y] = Z.max [x] [y]. - Parameter spec_0: [zero] = 0. - Parameter spec_1: [one] = 1. - Parameter spec_2: [two] = 2. - Parameter spec_m1: [minus_one] = -1. - Parameter spec_succ: forall n, [succ n] = [n] + 1. - Parameter spec_add: forall x y, [add x y] = [x] + [y]. - Parameter spec_pred: forall x, [pred x] = [x] - 1. - Parameter spec_sub: forall x y, [sub x y] = [x] - [y]. - Parameter spec_opp: forall x, [opp x] = - [x]. - Parameter spec_mul: forall x y, [mul x y] = [x] * [y]. - Parameter spec_square: forall x, [square x] = [x] * [x]. - Parameter spec_pow_pos: forall x n, [pow_pos x n] = [x] ^ Zpos n. - Parameter spec_pow_N: forall x n, [pow_N x n] = [x] ^ Z.of_N n. - Parameter spec_pow: forall x n, [pow x n] = [x] ^ [n]. - Parameter spec_sqrt: forall x, [sqrt x] = Z.sqrt [x]. - Parameter spec_log2: forall x, [log2 x] = Z.log2 [x]. - Parameter spec_div_eucl: forall x y, - let (q,r) := div_eucl x y in ([q], [r]) = Z.div_eucl [x] [y]. - Parameter spec_div: forall x y, [div x y] = [x] / [y]. - Parameter spec_modulo: forall x y, [modulo x y] = [x] mod [y]. - Parameter spec_quot: forall x y, [quot x y] = [x] ÷ [y]. - Parameter spec_rem: forall x y, [rem x y] = Z.rem [x] [y]. - Parameter spec_gcd: forall a b, [gcd a b] = Z.gcd [a] [b]. - Parameter spec_sgn : forall x, [sgn x] = Z.sgn [x]. - Parameter spec_abs : forall x, [abs x] = Z.abs [x]. - Parameter spec_even : forall x, even x = Z.even [x]. - Parameter spec_odd : forall x, odd x = Z.odd [x]. - Parameter spec_testbit: forall x p, testbit x p = Z.testbit [x] [p]. - Parameter spec_shiftr: forall x p, [shiftr x p] = Z.shiftr [x] [p]. - Parameter spec_shiftl: forall x p, [shiftl x p] = Z.shiftl [x] [p]. - Parameter spec_land: forall x y, [land x y] = Z.land [x] [y]. - Parameter spec_lor: forall x y, [lor x y] = Z.lor [x] [y]. - Parameter spec_ldiff: forall x y, [ldiff x y] = Z.ldiff [x] [y]. - Parameter spec_lxor: forall x y, [lxor x y] = Z.lxor [x] [y]. - Parameter spec_div2: forall x, [div2 x] = Z.div2 [x]. - -End ZType. - -Module Type ZType_Notation (Import Z:ZType). - Notation "[ x ]" := (to_Z x). - Infix "==" := eq (at level 70). - Notation "0" := zero. - Notation "1" := one. - Notation "2" := two. - Infix "+" := add. - Infix "-" := sub. - Infix "*" := mul. - Infix "^" := pow. - Notation "- x" := (opp x). - Infix "<=" := le. - Infix "<" := lt. -End ZType_Notation. - -Module Type ZType' := ZType <+ ZType_Notation. diff --git a/theories/Numbers/Integer/SpecViaZ/ZSigZAxioms.v b/theories/Numbers/Integer/SpecViaZ/ZSigZAxioms.v deleted file mode 100644 index 32410d1d0..000000000 --- a/theories/Numbers/Integer/SpecViaZ/ZSigZAxioms.v +++ /dev/null @@ -1,527 +0,0 @@ -(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016 *) -(* \VV/ **************************************************************) -(* // * This file is distributed under the terms of the *) -(* * GNU Lesser General Public License Version 2.1 *) -(************************************************************************) - -Require Import Bool ZArith OrdersFacts Nnat ZAxioms ZSig. - -(** * The interface [ZSig.ZType] implies the interface [ZAxiomsSig] *) - -Module ZTypeIsZAxioms (Import ZZ : ZType'). - -Hint Rewrite - spec_0 spec_1 spec_2 spec_add spec_sub spec_pred spec_succ - spec_mul spec_opp spec_of_Z spec_div spec_modulo spec_square spec_sqrt - spec_compare spec_eqb spec_ltb spec_leb spec_max spec_min - spec_abs spec_sgn spec_pow spec_log2 spec_even spec_odd spec_gcd - spec_quot spec_rem spec_testbit spec_shiftl spec_shiftr - spec_land spec_lor spec_ldiff spec_lxor spec_div2 - : zsimpl. - -Ltac zsimpl := autorewrite with zsimpl. -Ltac zcongruence := repeat red; intros; zsimpl; congruence. -Ltac zify := unfold eq, lt, le in *; zsimpl. - -Instance eq_equiv : Equivalence eq. -Proof. unfold eq. firstorder. Qed. - -Local Obligation Tactic := zcongruence. - -Program Instance succ_wd : Proper (eq ==> eq) succ. -Program Instance pred_wd : Proper (eq ==> eq) pred. -Program Instance add_wd : Proper (eq ==> eq ==> eq) add. -Program Instance sub_wd : Proper (eq ==> eq ==> eq) sub. -Program Instance mul_wd : Proper (eq ==> eq ==> eq) mul. - -Theorem pred_succ : forall n, pred (succ n) == n. -Proof. -intros. zify. auto with zarith. -Qed. - -Theorem one_succ : 1 == succ 0. -Proof. -now zify. -Qed. - -Theorem two_succ : 2 == succ 1. -Proof. -now zify. -Qed. - -Section Induction. - -Variable A : ZZ.t -> Prop. -Hypothesis A_wd : Proper (eq==>iff) A. -Hypothesis A0 : A 0. -Hypothesis AS : forall n, A n <-> A (succ n). - -Let B (z : Z) := A (of_Z z). - -Lemma B0 : B 0. -Proof. -unfold B; simpl. -rewrite <- (A_wd 0); auto. -zify. auto. -Qed. - -Lemma BS : forall z : Z, B z -> B (z + 1). -Proof. -intros z H. -unfold B in *. apply -> AS in H. -setoid_replace (of_Z (z + 1)) with (succ (of_Z z)); auto. -zify. auto. -Qed. - -Lemma BP : forall z : Z, B z -> B (z - 1). -Proof. -intros z H. -unfold B in *. rewrite AS. -setoid_replace (succ (of_Z (z - 1))) with (of_Z z); auto. -zify. auto with zarith. -Qed. - -Lemma B_holds : forall z : Z, B z. -Proof. -intros; destruct (Z_lt_le_dec 0 z). -apply natlike_ind; auto with zarith. -apply B0. -intros; apply BS; auto. -replace z with (-(-z))%Z in * by (auto with zarith). -remember (-z)%Z as z'. -pattern z'; apply natlike_ind. -apply B0. -intros; rewrite Z.opp_succ; unfold Z.pred; apply BP; auto. -subst z'; auto with zarith. -Qed. - -Theorem bi_induction : forall n, A n. -Proof. -intro n. setoid_replace n with (of_Z (to_Z n)). -apply B_holds. -zify. auto. -Qed. - -End Induction. - -Theorem add_0_l : forall n, 0 + n == n. -Proof. -intros. zify. auto with zarith. -Qed. - -Theorem add_succ_l : forall n m, (succ n) + m == succ (n + m). -Proof. -intros. zify. auto with zarith. -Qed. - -Theorem sub_0_r : forall n, n - 0 == n. -Proof. -intros. zify. auto with zarith. -Qed. - -Theorem sub_succ_r : forall n m, n - (succ m) == pred (n - m). -Proof. -intros. zify. auto with zarith. -Qed. - -Theorem mul_0_l : forall n, 0 * n == 0. -Proof. -intros. zify. auto with zarith. -Qed. - -Theorem mul_succ_l : forall n m, (succ n) * m == n * m + m. -Proof. -intros. zify. ring. -Qed. - -(** Order *) - -Lemma eqb_eq x y : eqb x y = true <-> x == y. -Proof. - zify. apply Z.eqb_eq. -Qed. - -Lemma leb_le x y : leb x y = true <-> x <= y. -Proof. - zify. apply Z.leb_le. -Qed. - -Lemma ltb_lt x y : ltb x y = true <-> x < y. -Proof. - zify. apply Z.ltb_lt. -Qed. - -Lemma compare_eq_iff n m : compare n m = Eq <-> n == m. -Proof. - intros. zify. apply Z.compare_eq_iff. -Qed. - -Lemma compare_lt_iff n m : compare n m = Lt <-> n < m. -Proof. - intros. zify. reflexivity. -Qed. - -Lemma compare_le_iff n m : compare n m <> Gt <-> n <= m. -Proof. - intros. zify. reflexivity. -Qed. - -Lemma compare_antisym n m : compare m n = CompOpp (compare n m). -Proof. - intros. zify. apply Z.compare_antisym. -Qed. - -Include BoolOrderFacts ZZ ZZ ZZ [no inline]. - -Instance compare_wd : Proper (eq ==> eq ==> Logic.eq) compare. -Proof. -intros x x' Hx y y' Hy. zify. now rewrite Hx, Hy. -Qed. - -Instance eqb_wd : Proper (eq ==> eq ==> Logic.eq) eqb. -Proof. -intros x x' Hx y y' Hy. zify. now rewrite Hx, Hy. -Qed. - -Instance ltb_wd : Proper (eq ==> eq ==> Logic.eq) ltb. -Proof. -intros x x' Hx y y' Hy. zify. now rewrite Hx, Hy. -Qed. - -Instance leb_wd : Proper (eq ==> eq ==> Logic.eq) leb. -Proof. -intros x x' Hx y y' Hy. zify. now rewrite Hx, Hy. -Qed. - -Instance lt_wd : Proper (eq ==> eq ==> iff) lt. -Proof. -intros x x' Hx y y' Hy; unfold lt; rewrite Hx, Hy; intuition. -Qed. - -Theorem lt_succ_r : forall n m, n < (succ m) <-> n <= m. -Proof. -intros. zify. omega. -Qed. - -Theorem min_l : forall n m, n <= m -> min n m == n. -Proof. -intros n m. zify. omega with *. -Qed. - -Theorem min_r : forall n m, m <= n -> min n m == m. -Proof. -intros n m. zify. omega with *. -Qed. - -Theorem max_l : forall n m, m <= n -> max n m == n. -Proof. -intros n m. zify. omega with *. -Qed. - -Theorem max_r : forall n m, n <= m -> max n m == m. -Proof. -intros n m. zify. omega with *. -Qed. - -(** Part specific to integers, not natural numbers *) - -Theorem succ_pred : forall n, succ (pred n) == n. -Proof. -intros. zify. auto with zarith. -Qed. - -(** Opp *) - -Program Instance opp_wd : Proper (eq ==> eq) opp. - -Theorem opp_0 : - 0 == 0. -Proof. -intros. zify. auto with zarith. -Qed. - -Theorem opp_succ : forall n, - (succ n) == pred (- n). -Proof. -intros. zify. auto with zarith. -Qed. - -(** Abs / Sgn *) - -Theorem abs_eq : forall n, 0 <= n -> abs n == n. -Proof. -intros n. zify. omega with *. -Qed. - -Theorem abs_neq : forall n, n <= 0 -> abs n == -n. -Proof. -intros n. zify. omega with *. -Qed. - -Theorem sgn_null : forall n, n==0 -> sgn n == 0. -Proof. -intros n. zify. omega with *. -Qed. - -Theorem sgn_pos : forall n, 0<n -> sgn n == 1. -Proof. -intros n. zify. omega with *. -Qed. - -Theorem sgn_neg : forall n, n<0 -> sgn n == opp 1. -Proof. -intros n. zify. omega with *. -Qed. - -(** Power *) - -Program Instance pow_wd : Proper (eq==>eq==>eq) pow. - -Lemma pow_0_r : forall a, a^0 == 1. -Proof. - intros. now zify. -Qed. - -Lemma pow_succ_r : forall a b, 0<=b -> a^(succ b) == a * a^b. -Proof. - intros a b. zify. intros. now rewrite Z.add_1_r, Z.pow_succ_r. -Qed. - -Lemma pow_neg_r : forall a b, b<0 -> a^b == 0. -Proof. - intros a b. zify. intros Hb. - destruct [b]; reflexivity || discriminate. -Qed. - -Lemma pow_pow_N : forall a b, 0<=b -> a^b == pow_N a (Z.to_N (to_Z b)). -Proof. - intros a b. zify. intros Hb. now rewrite spec_pow_N, Z2N.id. -Qed. - -Lemma pow_pos_N : forall a p, pow_pos a p == pow_N a (Npos p). -Proof. - intros a b. red. now rewrite spec_pow_N, spec_pow_pos. -Qed. - -(** Square *) - -Lemma square_spec n : square n == n * n. -Proof. - now zify. -Qed. - -(** Sqrt *) - -Lemma sqrt_spec : forall n, 0<=n -> - (sqrt n)*(sqrt n) <= n /\ n < (succ (sqrt n))*(succ (sqrt n)). -Proof. - intros n. zify. apply Z.sqrt_spec. -Qed. - -Lemma sqrt_neg : forall n, n<0 -> sqrt n == 0. -Proof. - intros n. zify. apply Z.sqrt_neg. -Qed. - -(** Log2 *) - -Lemma log2_spec : forall n, 0<n -> - 2^(log2 n) <= n /\ n < 2^(succ (log2 n)). -Proof. - intros n. zify. apply Z.log2_spec. -Qed. - -Lemma log2_nonpos : forall n, n<=0 -> log2 n == 0. -Proof. - intros n. zify. apply Z.log2_nonpos. -Qed. - -(** Even / Odd *) - -Definition Even n := exists m, n == 2*m. -Definition Odd n := exists m, n == 2*m+1. - -Lemma even_spec n : even n = true <-> Even n. -Proof. - unfold Even. zify. rewrite Z.even_spec. - split; intros (m,Hm). - - exists (of_Z m). now zify. - - exists [m]. revert Hm. now zify. -Qed. - -Lemma odd_spec n : odd n = true <-> Odd n. -Proof. - unfold Odd. zify. rewrite Z.odd_spec. - split; intros (m,Hm). - - exists (of_Z m). now zify. - - exists [m]. revert Hm. now zify. -Qed. - -(** Div / Mod *) - -Program Instance div_wd : Proper (eq==>eq==>eq) div. -Program Instance mod_wd : Proper (eq==>eq==>eq) modulo. - -Theorem div_mod : forall a b, ~b==0 -> a == b*(div a b) + (modulo a b). -Proof. -intros a b. zify. intros. apply Z.div_mod; auto. -Qed. - -Theorem mod_pos_bound : - forall a b, 0 < b -> 0 <= modulo a b /\ modulo a b < b. -Proof. -intros a b. zify. intros. apply Z_mod_lt; auto with zarith. -Qed. - -Theorem mod_neg_bound : - forall a b, b < 0 -> b < modulo a b /\ modulo a b <= 0. -Proof. -intros a b. zify. intros. apply Z_mod_neg; auto with zarith. -Qed. - -Definition mod_bound_pos : - forall a b, 0<=a -> 0<b -> 0 <= modulo a b /\ modulo a b < b := - fun a b _ H => mod_pos_bound a b H. - -(** Quot / Rem *) - -Program Instance quot_wd : Proper (eq==>eq==>eq) quot. -Program Instance rem_wd : Proper (eq==>eq==>eq) rem. - -Theorem quot_rem : forall a b, ~b==0 -> a == b*(quot a b) + rem a b. -Proof. -intros a b. zify. apply Z.quot_rem. -Qed. - -Theorem rem_bound_pos : - forall a b, 0<=a -> 0<b -> 0 <= rem a b /\ rem a b < b. -Proof. -intros a b. zify. apply Z.rem_bound_pos. -Qed. - -Theorem rem_opp_l : forall a b, ~b==0 -> rem (-a) b == -(rem a b). -Proof. -intros a b. zify. apply Z.rem_opp_l. -Qed. - -Theorem rem_opp_r : forall a b, ~b==0 -> rem a (-b) == rem a b. -Proof. -intros a b. zify. apply Z.rem_opp_r. -Qed. - -(** Gcd *) - -Definition divide n m := exists p, m == p*n. -Local Notation "( x | y )" := (divide x y) (at level 0). - -Lemma spec_divide : forall n m, (n|m) <-> Z.divide [n] [m]. -Proof. - intros n m. split. - - intros (p,H). exists [p]. revert H; now zify. - - intros (z,H). exists (of_Z z). now zify. -Qed. - -Lemma gcd_divide_l : forall n m, (gcd n m | n). -Proof. - intros n m. apply spec_divide. zify. apply Z.gcd_divide_l. -Qed. - -Lemma gcd_divide_r : forall n m, (gcd n m | m). -Proof. - intros n m. apply spec_divide. zify. apply Z.gcd_divide_r. -Qed. - -Lemma gcd_greatest : forall n m p, (p|n) -> (p|m) -> (p|gcd n m). -Proof. - intros n m p. rewrite !spec_divide. zify. apply Z.gcd_greatest. -Qed. - -Lemma gcd_nonneg : forall n m, 0 <= gcd n m. -Proof. - intros. zify. apply Z.gcd_nonneg. -Qed. - -(** Bitwise operations *) - -Program Instance testbit_wd : Proper (eq==>eq==>Logic.eq) testbit. - -Lemma testbit_odd_0 : forall a, testbit (2*a+1) 0 = true. -Proof. - intros. zify. apply Z.testbit_odd_0. -Qed. - -Lemma testbit_even_0 : forall a, testbit (2*a) 0 = false. -Proof. - intros. zify. apply Z.testbit_even_0. -Qed. - -Lemma testbit_odd_succ : forall a n, 0<=n -> - testbit (2*a+1) (succ n) = testbit a n. -Proof. - intros a n. zify. apply Z.testbit_odd_succ. -Qed. - -Lemma testbit_even_succ : forall a n, 0<=n -> - testbit (2*a) (succ n) = testbit a n. -Proof. - intros a n. zify. apply Z.testbit_even_succ. -Qed. - -Lemma testbit_neg_r : forall a n, n<0 -> testbit a n = false. -Proof. - intros a n. zify. apply Z.testbit_neg_r. -Qed. - -Lemma shiftr_spec : forall a n m, 0<=m -> - testbit (shiftr a n) m = testbit a (m+n). -Proof. - intros a n m. zify. apply Z.shiftr_spec. -Qed. - -Lemma shiftl_spec_high : forall a n m, 0<=m -> n<=m -> - testbit (shiftl a n) m = testbit a (m-n). -Proof. - intros a n m. zify. intros Hn H. - now apply Z.shiftl_spec_high. -Qed. - -Lemma shiftl_spec_low : forall a n m, m<n -> - testbit (shiftl a n) m = false. -Proof. - intros a n m. zify. intros H. now apply Z.shiftl_spec_low. -Qed. - -Lemma land_spec : forall a b n, - testbit (land a b) n = testbit a n && testbit b n. -Proof. - intros a n m. zify. now apply Z.land_spec. -Qed. - -Lemma lor_spec : forall a b n, - testbit (lor a b) n = testbit a n || testbit b n. -Proof. - intros a n m. zify. now apply Z.lor_spec. -Qed. - -Lemma ldiff_spec : forall a b n, - testbit (ldiff a b) n = testbit a n && negb (testbit b n). -Proof. - intros a n m. zify. now apply Z.ldiff_spec. -Qed. - -Lemma lxor_spec : forall a b n, - testbit (lxor a b) n = xorb (testbit a n) (testbit b n). -Proof. - intros a n m. zify. now apply Z.lxor_spec. -Qed. - -Lemma div2_spec : forall a, div2 a == shiftr a 1. -Proof. - intros a. zify. now apply Z.div2_spec. -Qed. - -End ZTypeIsZAxioms. - -Module ZType_ZAxioms (ZZ : ZType) - <: ZAxiomsSig <: OrderFunctions ZZ <: HasMinMax ZZ - := ZZ <+ ZTypeIsZAxioms. diff --git a/theories/Numbers/Natural/BigN/BigN.v b/theories/Numbers/Natural/BigN/BigN.v deleted file mode 100644 index e8ff516f3..000000000 --- a/theories/Numbers/Natural/BigN/BigN.v +++ /dev/null @@ -1,198 +0,0 @@ -(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016 *) -(* \VV/ **************************************************************) -(* // * This file is distributed under the terms of the *) -(* * GNU Lesser General Public License Version 2.1 *) -(************************************************************************) - -(** * Efficient arbitrary large natural numbers in base 2^31 *) - -(** Initial Author: Arnaud Spiwack *) - -Require Export Int31. -Require Import CyclicAxioms Cyclic31 Ring31 NSig NSigNAxioms NMake - NProperties GenericMinMax. - -(** The following [BigN] module regroups both the operations and - all the abstract properties: - - - [NMake.Make Int31Cyclic] provides the operations and basic specs - w.r.t. ZArith - - [NTypeIsNAxioms] shows (mainly) that these operations implement - the interface [NAxioms] - - [NProp] adds all generic properties derived from [NAxioms] - - [MinMax*Properties] provides properties of [min] and [max]. - -*) - -Delimit Scope bigN_scope with bigN. - -Module BigN <: NType <: OrderedTypeFull <: TotalOrder := - NMake.Make Int31Cyclic - <+ NTypeIsNAxioms - <+ NBasicProp [no inline] <+ NExtraProp [no inline] - <+ HasEqBool2Dec [no inline] - <+ MinMaxLogicalProperties [no inline] - <+ MinMaxDecProperties [no inline]. - -(** Notations about [BigN] *) - -Local Open Scope bigN_scope. - -Notation bigN := BigN.t. -Bind Scope bigN_scope with bigN BigN.t BigN.t'. -Arguments BigN.N0 _%int31. -Local Notation "0" := BigN.zero : bigN_scope. (* temporary notation *) -Local Notation "1" := BigN.one : bigN_scope. (* temporary notation *) -Local Notation "2" := BigN.two : bigN_scope. (* temporary notation *) -Infix "+" := BigN.add : bigN_scope. -Infix "-" := BigN.sub : bigN_scope. -Infix "*" := BigN.mul : bigN_scope. -Infix "/" := BigN.div : bigN_scope. -Infix "^" := BigN.pow : bigN_scope. -Infix "?=" := BigN.compare : bigN_scope. -Infix "=?" := BigN.eqb (at level 70, no associativity) : bigN_scope. -Infix "<=?" := BigN.leb (at level 70, no associativity) : bigN_scope. -Infix "<?" := BigN.ltb (at level 70, no associativity) : bigN_scope. -Infix "==" := BigN.eq (at level 70, no associativity) : bigN_scope. -Notation "x != y" := (~x==y) (at level 70, no associativity) : bigN_scope. -Infix "<" := BigN.lt : bigN_scope. -Infix "<=" := BigN.le : bigN_scope. -Notation "x > y" := (y < x) (only parsing) : bigN_scope. -Notation "x >= y" := (y <= x) (only parsing) : bigN_scope. -Notation "x < y < z" := (x<y /\ y<z) : bigN_scope. -Notation "x < y <= z" := (x<y /\ y<=z) : bigN_scope. -Notation "x <= y < z" := (x<=y /\ y<z) : bigN_scope. -Notation "x <= y <= z" := (x<=y /\ y<=z) : bigN_scope. -Notation "[ i ]" := (BigN.to_Z i) : bigN_scope. -Infix "mod" := BigN.modulo (at level 40, no associativity) : bigN_scope. - -(** Example of reasoning about [BigN] *) - -Theorem succ_pred: forall q : bigN, - 0 < q -> BigN.succ (BigN.pred q) == q. -Proof. -intros; apply BigN.succ_pred. -intro H'; rewrite H' in H; discriminate. -Qed. - -(** [BigN] is a semi-ring *) - -Lemma BigNring : semi_ring_theory 0 1 BigN.add BigN.mul BigN.eq. -Proof. -constructor. -exact BigN.add_0_l. exact BigN.add_comm. exact BigN.add_assoc. -exact BigN.mul_1_l. exact BigN.mul_0_l. exact BigN.mul_comm. -exact BigN.mul_assoc. exact BigN.mul_add_distr_r. -Qed. - -Lemma BigNeqb_correct : forall x y, (x =? y) = true -> x==y. -Proof. now apply BigN.eqb_eq. Qed. - -Lemma BigNpower : power_theory 1 BigN.mul BigN.eq BigN.of_N BigN.pow. -Proof. -constructor. -intros. red. rewrite BigN.spec_pow, BigN.spec_of_N. -rewrite Zpower_theory.(rpow_pow_N). -destruct n; simpl. reflexivity. -induction p; simpl; intros; BigN.zify; rewrite ?IHp; auto. -Qed. - -Lemma BigNdiv : div_theory BigN.eq BigN.add BigN.mul (@id _) - (fun a b => if b =? 0 then (0,a) else BigN.div_eucl a b). -Proof. -constructor. unfold id. intros a b. -BigN.zify. -case Z.eqb_spec. -BigN.zify. auto with zarith. -intros NEQ. -generalize (BigN.spec_div_eucl a b). -generalize (Z_div_mod_full [a] [b] NEQ). -destruct BigN.div_eucl as (q,r), Z.div_eucl as (q',r'). -intros (EQ,_). injection 1 as EQr EQq. -BigN.zify. rewrite EQr, EQq; auto. -Qed. - - -(** Detection of constants *) - -Ltac isStaticWordCst t := - match t with - | W0 => constr:(true) - | WW ?t1 ?t2 => - match isStaticWordCst t1 with - | false => constr:(false) - | true => isStaticWordCst t2 - end - | _ => isInt31cst t - end. - -Ltac isBigNcst t := - match t with - | BigN.N0 ?t => isStaticWordCst t - | BigN.N1 ?t => isStaticWordCst t - | BigN.N2 ?t => isStaticWordCst t - | BigN.N3 ?t => isStaticWordCst t - | BigN.N4 ?t => isStaticWordCst t - | BigN.N5 ?t => isStaticWordCst t - | BigN.N6 ?t => isStaticWordCst t - | BigN.Nn ?n ?t => match isnatcst n with - | true => isStaticWordCst t - | false => constr:(false) - end - | BigN.zero => constr:(true) - | BigN.one => constr:(true) - | BigN.two => constr:(true) - | _ => constr:(false) - end. - -Ltac BigNcst t := - match isBigNcst t with - | true => constr:(t) - | false => constr:(NotConstant) - end. - -Ltac BigN_to_N t := - match isBigNcst t with - | true => eval vm_compute in (BigN.to_N t) - | false => constr:(NotConstant) - end. - -Ltac Ncst t := - match isNcst t with - | true => constr:(t) - | false => constr:(NotConstant) - end. - -(** Registration for the "ring" tactic *) - -Add Ring BigNr : BigNring - (decidable BigNeqb_correct, - constants [BigNcst], - power_tac BigNpower [BigN_to_N], - div BigNdiv). - -Section TestRing. -Let test : forall x y, 1 + x*y^1 + x^2 + 1 == 1*1 + 1 + y*x + 1*x*x. -intros. ring_simplify. reflexivity. -Qed. -End TestRing. - -(** We benefit also from an "order" tactic *) - -Ltac bigN_order := BigN.order. - -Section TestOrder. -Let test : forall x y : bigN, x<=y -> y<=x -> x==y. -Proof. bigN_order. Qed. -End TestOrder. - -(** We can use at least a bit of (r)omega by translating to [Z]. *) - -Section TestOmega. -Let test : forall x y : bigN, x<=y -> y<=x -> x==y. -Proof. intros x y. BigN.zify. omega. Qed. -End TestOmega. - -(** Todo: micromega *) diff --git a/theories/Numbers/Natural/BigN/NMake.v b/theories/Numbers/Natural/BigN/NMake.v deleted file mode 100644 index 1425041a1..000000000 --- a/theories/Numbers/Natural/BigN/NMake.v +++ /dev/null @@ -1,1706 +0,0 @@ -(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016 *) -(* \VV/ **************************************************************) -(* // * This file is distributed under the terms of the *) -(* * GNU Lesser General Public License Version 2.1 *) -(************************************************************************) -(* Benjamin Gregoire, Laurent Thery, INRIA, 2007 *) -(************************************************************************) - -(** * NMake *) - -(** From a cyclic Z/nZ representation to arbitrary precision natural numbers.*) - -(** NB: This file contain the part which is independent from the underlying - representation. The representation-dependent (and macro-generated) part - is now in [NMake_gen]. *) - -Require Import Bool BigNumPrelude ZArith Nnat Ndigits CyclicAxioms DoubleType - Nbasic Wf_nat StreamMemo NSig NMake_gen. - -Module Make (W0:CyclicType) <: NType. - - (** Let's include the macro-generated part. Even if we can't functorize - things (due to Eval red_t below), the rest of the module only uses - elements mentionned in interface [NAbstract]. *) - - Include NMake_gen.Make W0. - - Open Scope Z_scope. - - Local Notation "[ x ]" := (to_Z x). - - Definition eq (x y : t) := [x] = [y]. - - Declare Reduction red_t := - lazy beta iota delta - [iter_t reduce same_level mk_t mk_t_S succ_t dom_t dom_op]. - - Ltac red_t := - match goal with |- ?u => let v := (eval red_t in u) in change v end. - - (** * Generic results *) - - Tactic Notation "destr_t" constr(x) "as" simple_intropattern(pat) := - destruct (destr_t x) as pat; cbv zeta; - rewrite ?iter_mk_t, ?spec_mk_t, ?spec_reduce. - - Lemma spec_same_level : forall A (P:Z->Z->A->Prop) - (f : forall n, dom_t n -> dom_t n -> A), - (forall n x y, P (ZnZ.to_Z x) (ZnZ.to_Z y) (f n x y)) -> - forall x y, P [x] [y] (same_level f x y). - Proof. - intros. apply spec_same_level_dep with (P:=fun _ => P); auto. - Qed. - - Theorem spec_pos: forall x, 0 <= [x]. - Proof. - intros x. destr_t x as (n,x). now case (ZnZ.spec_to_Z x). - Qed. - - Lemma digits_dom_op_incr : forall n m, (n<=m)%nat -> - (ZnZ.digits (dom_op n) <= ZnZ.digits (dom_op m))%positive. - Proof. - intros. - change (Zpos (ZnZ.digits (dom_op n)) <= Zpos (ZnZ.digits (dom_op m))). - rewrite !digits_dom_op, !Pshiftl_nat_Zpower. - apply Z.mul_le_mono_nonneg_l; auto with zarith. - apply Z.pow_le_mono_r; auto with zarith. - Qed. - - Definition to_N (x : t) := Z.to_N (to_Z x). - - (** * Zero, One *) - - Definition zero := mk_t O ZnZ.zero. - Definition one := mk_t O ZnZ.one. - - Theorem spec_0: [zero] = 0. - Proof. - unfold zero. rewrite spec_mk_t. exact ZnZ.spec_0. - Qed. - - Theorem spec_1: [one] = 1. - Proof. - unfold one. rewrite spec_mk_t. exact ZnZ.spec_1. - Qed. - - (** * Successor *) - - (** NB: it is crucial here and for the rest of this file to preserve - the let-in's. They allow to pre-compute once and for all the - field access to Z/nZ initial structures (when n=0..6). *) - - Local Notation succn := (fun n => - let op := dom_op n in - let succ_c := ZnZ.succ_c in - let one := ZnZ.one in - fun x => match succ_c x with - | C0 r => mk_t n r - | C1 r => mk_t_S n (WW one r) - end). - - Definition succ : t -> t := Eval red_t in iter_t succn. - - Lemma succ_fold : succ = iter_t succn. - Proof. red_t; reflexivity. Qed. - - Theorem spec_succ: forall n, [succ n] = [n] + 1. - Proof. - intros x. rewrite succ_fold. destr_t x as (n,x). - generalize (ZnZ.spec_succ_c x); case ZnZ.succ_c. - intros. rewrite spec_mk_t. assumption. - intros. unfold interp_carry in *. - rewrite spec_mk_t_S. simpl. rewrite ZnZ.spec_1. assumption. - Qed. - - (** Two *) - - (** Not really pretty, but since W0 might be Z/2Z, we're not sure - there's a proper 2 there. *) - - Definition two := succ one. - - Lemma spec_2 : [two] = 2. - Proof. - unfold two. now rewrite spec_succ, spec_1. - Qed. - - (** * Addition *) - - Local Notation addn := (fun n => - let op := dom_op n in - let add_c := ZnZ.add_c in - let one := ZnZ.one in - fun x y =>match add_c x y with - | C0 r => mk_t n r - | C1 r => mk_t_S n (WW one r) - end). - - Definition add : t -> t -> t := Eval red_t in same_level addn. - - Lemma add_fold : add = same_level addn. - Proof. red_t; reflexivity. Qed. - - Theorem spec_add: forall x y, [add x y] = [x] + [y]. - Proof. - intros x y. rewrite add_fold. apply spec_same_level; clear x y. - intros n x y. cbv beta iota zeta. - generalize (ZnZ.spec_add_c x y); case ZnZ.add_c; intros z H. - rewrite spec_mk_t. assumption. - rewrite spec_mk_t_S. unfold interp_carry in H. - simpl. rewrite ZnZ.spec_1. assumption. - Qed. - - (** * Predecessor *) - - Local Notation predn := (fun n => - let pred_c := ZnZ.pred_c in - fun x => match pred_c x with - | C0 r => reduce n r - | C1 _ => zero - end). - - Definition pred : t -> t := Eval red_t in iter_t predn. - - Lemma pred_fold : pred = iter_t predn. - Proof. red_t; reflexivity. Qed. - - Theorem spec_pred_pos : forall x, 0 < [x] -> [pred x] = [x] - 1. - Proof. - intros x. rewrite pred_fold. destr_t x as (n,x). intros H. - generalize (ZnZ.spec_pred_c x); case ZnZ.pred_c; intros y H'. - rewrite spec_reduce. assumption. - exfalso. unfold interp_carry in *. - generalize (ZnZ.spec_to_Z x) (ZnZ.spec_to_Z y); auto with zarith. - Qed. - - Theorem spec_pred0 : forall x, [x] = 0 -> [pred x] = 0. - Proof. - intros x. rewrite pred_fold. destr_t x as (n,x). intros H. - generalize (ZnZ.spec_pred_c x); case ZnZ.pred_c; intros y H'. - rewrite spec_reduce. - unfold interp_carry in H'. - generalize (ZnZ.spec_to_Z y); auto with zarith. - exact spec_0. - Qed. - - Lemma spec_pred x : [pred x] = Z.max 0 ([x]-1). - Proof. - rewrite Z.max_comm. - destruct (Z.max_spec ([x]-1) 0) as [(H,->)|(H,->)]. - - apply spec_pred0; generalize (spec_pos x); auto with zarith. - - apply spec_pred_pos; auto with zarith. - Qed. - - (** * Subtraction *) - - Local Notation subn := (fun n => - let sub_c := ZnZ.sub_c in - fun x y => match sub_c x y with - | C0 r => reduce n r - | C1 r => zero - end). - - Definition sub : t -> t -> t := Eval red_t in same_level subn. - - Lemma sub_fold : sub = same_level subn. - Proof. red_t; reflexivity. Qed. - - Theorem spec_sub_pos : forall x y, [y] <= [x] -> [sub x y] = [x] - [y]. - Proof. - intros x y. rewrite sub_fold. apply spec_same_level. clear x y. - intros n x y. simpl. - generalize (ZnZ.spec_sub_c x y); case ZnZ.sub_c; intros z H LE. - rewrite spec_reduce. assumption. - unfold interp_carry in H. - exfalso. - generalize (ZnZ.spec_to_Z z); auto with zarith. - Qed. - - Theorem spec_sub0 : forall x y, [x] < [y] -> [sub x y] = 0. - Proof. - intros x y. rewrite sub_fold. apply spec_same_level. clear x y. - intros n x y. simpl. - generalize (ZnZ.spec_sub_c x y); case ZnZ.sub_c; intros z H LE. - rewrite spec_reduce. - unfold interp_carry in H. - generalize (ZnZ.spec_to_Z z); auto with zarith. - exact spec_0. - Qed. - - Lemma spec_sub : forall x y, [sub x y] = Z.max 0 ([x]-[y]). - Proof. - intros. destruct (Z.le_gt_cases [y] [x]). - rewrite Z.max_r; auto with zarith. apply spec_sub_pos; auto. - rewrite Z.max_l; auto with zarith. apply spec_sub0; auto. - Qed. - - (** * Comparison *) - - Definition comparen_m n : - forall m, word (dom_t n) (S m) -> dom_t n -> comparison := - let op := dom_op n in - let zero := ZnZ.zero (Ops:=op) in - let compare := ZnZ.compare (Ops:=op) in - let compare0 := compare zero in - fun m => compare_mn_1 (dom_t n) (dom_t n) zero compare compare0 compare (S m). - - Let spec_comparen_m: - forall n m (x : word (dom_t n) (S m)) (y : dom_t n), - comparen_m n m x y = Z.compare (eval n (S m) x) (ZnZ.to_Z y). - Proof. - intros n m x y. - unfold comparen_m, eval. - rewrite nmake_double. - apply spec_compare_mn_1. - exact ZnZ.spec_0. - intros. apply ZnZ.spec_compare. - exact ZnZ.spec_to_Z. - exact ZnZ.spec_compare. - exact ZnZ.spec_compare. - exact ZnZ.spec_to_Z. - Qed. - - Definition comparenm n m wx wy := - let mn := Max.max n m in - let d := diff n m in - let op := make_op mn in - ZnZ.compare - (castm (diff_r n m) (extend_tr wx (snd d))) - (castm (diff_l n m) (extend_tr wy (fst d))). - - Local Notation compare_folded := - (iter_sym _ - (fun n => ZnZ.compare (Ops:=dom_op n)) - comparen_m - comparenm - CompOpp). - - Definition compare : t -> t -> comparison := - Eval lazy beta iota delta [iter_sym dom_op dom_t comparen_m] in - compare_folded. - - Lemma compare_fold : compare = compare_folded. - Proof. - lazy beta iota delta [iter_sym dom_op dom_t comparen_m]. reflexivity. - Qed. - - Theorem spec_compare : forall x y, - compare x y = Z.compare [x] [y]. - Proof. - intros x y. rewrite compare_fold. apply spec_iter_sym; clear x y. - intros. apply ZnZ.spec_compare. - intros. cbv beta zeta. apply spec_comparen_m. - intros n m x y; unfold comparenm. - rewrite (spec_cast_l n m x), (spec_cast_r n m y). - unfold to_Z; apply ZnZ.spec_compare. - intros. subst. now rewrite <- Z.compare_antisym. - Qed. - - Definition eqb (x y : t) : bool := - match compare x y with - | Eq => true - | _ => false - end. - - Theorem spec_eqb x y : eqb x y = Z.eqb [x] [y]. - Proof. - apply eq_iff_eq_true. - unfold eqb. rewrite Z.eqb_eq, <- Z.compare_eq_iff, spec_compare. - split; [now destruct Z.compare | now intros ->]. - Qed. - - Definition lt (n m : t) := [n] < [m]. - Definition le (n m : t) := [n] <= [m]. - - Definition ltb (x y : t) : bool := - match compare x y with - | Lt => true - | _ => false - end. - - Theorem spec_ltb x y : ltb x y = Z.ltb [x] [y]. - Proof. - apply eq_iff_eq_true. - rewrite Z.ltb_lt. unfold Z.lt, ltb. rewrite spec_compare. - split; [now destruct Z.compare | now intros ->]. - Qed. - - Definition leb (x y : t) : bool := - match compare x y with - | Gt => false - | _ => true - end. - - Theorem spec_leb x y : leb x y = Z.leb [x] [y]. - Proof. - apply eq_iff_eq_true. - rewrite Z.leb_le. unfold Z.le, leb. rewrite spec_compare. - now destruct Z.compare; split. - Qed. - - Definition min (n m : t) : t := match compare n m with Gt => m | _ => n end. - Definition max (n m : t) : t := match compare n m with Lt => m | _ => n end. - - Theorem spec_max : forall n m, [max n m] = Z.max [n] [m]. - Proof. - intros. unfold max, Z.max. rewrite spec_compare; destruct Z.compare; reflexivity. - Qed. - - Theorem spec_min : forall n m, [min n m] = Z.min [n] [m]. - Proof. - intros. unfold min, Z.min. rewrite spec_compare; destruct Z.compare; reflexivity. - Qed. - - (** * Multiplication *) - - Definition wn_mul n : forall m, word (dom_t n) (S m) -> dom_t n -> t := - let op := dom_op n in - let zero := ZnZ.zero in - let succ := ZnZ.succ (Ops:=op) in - let add_c := ZnZ.add_c (Ops:=op) in - let mul_c := ZnZ.mul_c (Ops:=op) in - let ww := @ZnZ.WW _ op in - let ow := @ZnZ.OW _ op in - let eq0 := ZnZ.eq0 in - let mul_add := @DoubleMul.w_mul_add _ zero succ add_c mul_c in - let mul_add_n1 := @DoubleMul.double_mul_add_n1 _ zero ww ow mul_add in - fun m x y => - let (w,r) := mul_add_n1 (S m) x y zero in - if eq0 w then mk_t_w' n m r - else mk_t_w' n (S m) (WW (extend n m w) r). - - Definition mulnm n m x y := - let mn := Max.max n m in - let d := diff n m in - let op := make_op mn in - reduce_n (S mn) (ZnZ.mul_c - (castm (diff_r n m) (extend_tr x (snd d))) - (castm (diff_l n m) (extend_tr y (fst d)))). - - Local Notation mul_folded := - (iter_sym _ - (fun n => let mul_c := ZnZ.mul_c in - fun x y => reduce (S n) (succ_t _ (mul_c x y))) - wn_mul - mulnm - (fun x => x)). - - Definition mul : t -> t -> t := - Eval lazy beta iota delta - [iter_sym dom_op dom_t reduce succ_t extend zeron - wn_mul DoubleMul.w_mul_add mk_t_w'] in - mul_folded. - - Lemma mul_fold : mul = mul_folded. - Proof. - lazy beta iota delta - [iter_sym dom_op dom_t reduce succ_t extend zeron - wn_mul DoubleMul.w_mul_add mk_t_w']. reflexivity. - Qed. - - Lemma spec_muln: - forall n (x: word _ (S n)) y, - [Nn (S n) (ZnZ.mul_c (Ops:=make_op n) x y)] = [Nn n x] * [Nn n y]. - Proof. - intros n x y; unfold to_Z. - rewrite <- ZnZ.spec_mul_c. - rewrite make_op_S. - case ZnZ.mul_c; auto. - Qed. - - Lemma spec_mul_add_n1: forall n m x y z, - let (q,r) := DoubleMul.double_mul_add_n1 ZnZ.zero ZnZ.WW ZnZ.OW - (DoubleMul.w_mul_add ZnZ.zero ZnZ.succ ZnZ.add_c ZnZ.mul_c) - (S m) x y z in - ZnZ.to_Z q * (base (ZnZ.digits (nmake_op _ (dom_op n) (S m)))) - + eval n (S m) r = - eval n (S m) x * ZnZ.to_Z y + ZnZ.to_Z z. - Proof. - intros n m x y z. - rewrite digits_nmake. - unfold eval. rewrite nmake_double. - apply DoubleMul.spec_double_mul_add_n1. - apply ZnZ.spec_0. - exact ZnZ.spec_WW. - exact ZnZ.spec_OW. - apply DoubleCyclic.spec_mul_add. - Qed. - - Lemma spec_wn_mul : forall n m x y, - [wn_mul n m x y] = (eval n (S m) x) * ZnZ.to_Z y. - Proof. - intros; unfold wn_mul. - generalize (spec_mul_add_n1 n m x y ZnZ.zero). - case DoubleMul.double_mul_add_n1; intros q r Hqr. - rewrite ZnZ.spec_0, Z.add_0_r in Hqr. rewrite <- Hqr. - generalize (ZnZ.spec_eq0 q); case ZnZ.eq0; intros HH. - rewrite HH; auto. simpl. apply spec_mk_t_w'. - clear. - rewrite spec_mk_t_w'. - set (m' := S m) in *. - unfold eval. - rewrite nmake_WW. f_equal. f_equal. - rewrite <- spec_mk_t. - symmetry. apply spec_extend. - Qed. - - Theorem spec_mul : forall x y, [mul x y] = [x] * [y]. - Proof. - intros x y. rewrite mul_fold. apply spec_iter_sym; clear x y. - intros n x y. cbv zeta beta. - rewrite spec_reduce, spec_succ_t, <- ZnZ.spec_mul_c; auto. - apply spec_wn_mul. - intros n m x y; unfold mulnm. rewrite spec_reduce_n. - rewrite (spec_cast_l n m x), (spec_cast_r n m y). - apply spec_muln. - intros. rewrite Z.mul_comm; auto. - Qed. - - (** * Division by a smaller number *) - - Definition wn_divn1 n := - let op := dom_op n in - let zd := ZnZ.zdigits op in - let zero := ZnZ.zero in - let ww := ZnZ.WW in - let head0 := ZnZ.head0 in - let add_mul_div := ZnZ.add_mul_div in - let div21 := ZnZ.div21 in - let compare := ZnZ.compare in - let sub := ZnZ.sub in - let ddivn1 := - DoubleDivn1.double_divn1 zd zero ww head0 add_mul_div div21 compare sub in - fun m x y => let (u,v) := ddivn1 (S m) x y in (mk_t_w' n m u, mk_t n v). - - Definition div_gtnm n m wx wy := - let mn := Max.max n m in - let d := diff n m in - let op := make_op mn in - let (q, r):= ZnZ.div_gt - (castm (diff_r n m) (extend_tr wx (snd d))) - (castm (diff_l n m) (extend_tr wy (fst d))) in - (reduce_n mn q, reduce_n mn r). - - Local Notation div_gt_folded := - (iter _ - (fun n => let div_gt := ZnZ.div_gt in - fun x y => let (u,v) := div_gt x y in (reduce n u, reduce n v)) - (fun n => - let div_gt := ZnZ.div_gt in - fun m x y => - let y' := DoubleBase.get_low (zeron n) (S m) y in - let (u,v) := div_gt x y' in (reduce n u, reduce n v)) - wn_divn1 - div_gtnm). - - Definition div_gt := - Eval lazy beta iota delta - [iter dom_op dom_t reduce zeron wn_divn1 mk_t_w' mk_t] in - div_gt_folded. - - Lemma div_gt_fold : div_gt = div_gt_folded. - Proof. - lazy beta iota delta [iter dom_op dom_t reduce zeron wn_divn1 mk_t_w' mk_t]. - reflexivity. - Qed. - - Lemma spec_get_endn: forall n m x y, - eval n m x <= [mk_t n y] -> - [mk_t n (DoubleBase.get_low (zeron n) m x)] = eval n m x. - Proof. - intros n m x y H. - unfold eval. rewrite nmake_double. - rewrite spec_mk_t in *. - apply DoubleBase.spec_get_low. - apply spec_zeron. - exact ZnZ.spec_to_Z. - apply Z.le_lt_trans with (ZnZ.to_Z y); auto. - rewrite <- nmake_double; auto. - case (ZnZ.spec_to_Z y); auto. - Qed. - - Definition spec_divn1 n := - DoubleDivn1.spec_double_divn1 - (ZnZ.zdigits (dom_op n)) (ZnZ.zero:dom_t n) - ZnZ.WW ZnZ.head0 - ZnZ.add_mul_div ZnZ.div21 - ZnZ.compare ZnZ.sub ZnZ.to_Z - ZnZ.spec_to_Z - ZnZ.spec_zdigits - ZnZ.spec_0 ZnZ.spec_WW ZnZ.spec_head0 - ZnZ.spec_add_mul_div ZnZ.spec_div21 - ZnZ.spec_compare ZnZ.spec_sub. - - Lemma spec_div_gt_aux : forall x y, [x] > [y] -> 0 < [y] -> - let (q,r) := div_gt x y in - [x] = [q] * [y] + [r] /\ 0 <= [r] < [y]. - Proof. - intros x y. rewrite div_gt_fold. apply spec_iter; clear x y. - intros n x y H1 H2. simpl. - generalize (ZnZ.spec_div_gt x y H1 H2); case ZnZ.div_gt. - intros u v. rewrite 2 spec_reduce. auto. - intros n m x y H1 H2. cbv zeta beta. - generalize (ZnZ.spec_div_gt x - (DoubleBase.get_low (zeron n) (S m) y)). - case ZnZ.div_gt. - intros u v H3; repeat rewrite spec_reduce. - generalize (spec_get_endn n (S m) y x). rewrite !spec_mk_t. intros H4. - rewrite H4 in H3; auto with zarith. - intros n m x y H1 H2. - generalize (spec_divn1 n (S m) x y H2). - unfold wn_divn1; case DoubleDivn1.double_divn1. - intros u v H3. - rewrite spec_mk_t_w', spec_mk_t. - rewrite <- !nmake_double in H3; auto. - intros n m x y H1 H2; unfold div_gtnm. - generalize (ZnZ.spec_div_gt - (castm (diff_r n m) - (extend_tr x (snd (diff n m)))) - (castm (diff_l n m) - (extend_tr y (fst (diff n m))))). - case ZnZ.div_gt. - intros xx yy HH. - repeat rewrite spec_reduce_n. - rewrite (spec_cast_l n m x), (spec_cast_r n m y). - unfold to_Z; apply HH. - rewrite (spec_cast_l n m x) in H1; auto. - rewrite (spec_cast_r n m y) in H1; auto. - rewrite (spec_cast_r n m y) in H2; auto. - Qed. - - Theorem spec_div_gt: forall x y, [x] > [y] -> 0 < [y] -> - let (q,r) := div_gt x y in - [q] = [x] / [y] /\ [r] = [x] mod [y]. - Proof. - intros x y H1 H2; generalize (spec_div_gt_aux x y H1 H2); case div_gt. - intros q r (H3, H4); split. - apply (Zdiv_unique [x] [y] [q] [r]); auto. - rewrite Z.mul_comm; auto. - apply (Zmod_unique [x] [y] [q] [r]); auto. - rewrite Z.mul_comm; auto. - Qed. - - (** * General Division *) - - Definition div_eucl (x y : t) : t * t := - if eqb y zero then (zero,zero) else - match compare x y with - | Eq => (one, zero) - | Lt => (zero, x) - | Gt => div_gt x y - end. - - Theorem spec_div_eucl: forall x y, - let (q,r) := div_eucl x y in - ([q], [r]) = Z.div_eucl [x] [y]. - Proof. - intros x y. unfold div_eucl. - rewrite spec_eqb, spec_compare, spec_0. - case Z.eqb_spec. - intros ->. rewrite spec_0. destruct [x]; auto. - intros H'. - assert (H : 0 < [y]) by (generalize (spec_pos y); auto with zarith). - clear H'. - case Z.compare_spec; intros Cmp; - rewrite ?spec_0, ?spec_1; intros; auto with zarith. - rewrite Cmp; generalize (Z_div_same [y] (Z.lt_gt _ _ H)) - (Z_mod_same [y] (Z.lt_gt _ _ H)); - unfold Z.div, Z.modulo; case Z.div_eucl; intros; subst; auto. - assert (LeLt: 0 <= [x] < [y]) by (generalize (spec_pos x); auto). - generalize (Zdiv_small _ _ LeLt) (Zmod_small _ _ LeLt); - unfold Z.div, Z.modulo; case Z.div_eucl; intros; subst; auto. - generalize (spec_div_gt _ _ (Z.lt_gt _ _ Cmp) H); auto. - unfold Z.div, Z.modulo; case Z.div_eucl; case div_gt. - intros a b c d (H1, H2); subst; auto. - Qed. - - Definition div (x y : t) : t := fst (div_eucl x y). - - Theorem spec_div: - forall x y, [div x y] = [x] / [y]. - Proof. - intros x y; unfold div; generalize (spec_div_eucl x y); - case div_eucl; simpl fst. - intros xx yy; unfold Z.div; case Z.div_eucl; intros qq rr H; - injection H; auto. - Qed. - - (** * Modulo by a smaller number *) - - Definition wn_modn1 n := - let op := dom_op n in - let zd := ZnZ.zdigits op in - let zero := ZnZ.zero in - let head0 := ZnZ.head0 in - let add_mul_div := ZnZ.add_mul_div in - let div21 := ZnZ.div21 in - let compare := ZnZ.compare in - let sub := ZnZ.sub in - let dmodn1 := - DoubleDivn1.double_modn1 zd zero head0 add_mul_div div21 compare sub in - fun m x y => reduce n (dmodn1 (S m) x y). - - Definition mod_gtnm n m wx wy := - let mn := Max.max n m in - let d := diff n m in - let op := make_op mn in - reduce_n mn (ZnZ.modulo_gt - (castm (diff_r n m) (extend_tr wx (snd d))) - (castm (diff_l n m) (extend_tr wy (fst d)))). - - Local Notation mod_gt_folded := - (iter _ - (fun n => let modulo_gt := ZnZ.modulo_gt in - fun x y => reduce n (modulo_gt x y)) - (fun n => let modulo_gt := ZnZ.modulo_gt in - fun m x y => - reduce n (modulo_gt x (DoubleBase.get_low (zeron n) (S m) y))) - wn_modn1 - mod_gtnm). - - Definition mod_gt := - Eval lazy beta iota delta [iter dom_op dom_t reduce wn_modn1 zeron] in - mod_gt_folded. - - Lemma mod_gt_fold : mod_gt = mod_gt_folded. - Proof. - lazy beta iota delta [iter dom_op dom_t reduce wn_modn1 zeron]. - reflexivity. - Qed. - - Definition spec_modn1 n := - DoubleDivn1.spec_double_modn1 - (ZnZ.zdigits (dom_op n)) (ZnZ.zero:dom_t n) - ZnZ.WW ZnZ.head0 - ZnZ.add_mul_div ZnZ.div21 - ZnZ.compare ZnZ.sub ZnZ.to_Z - ZnZ.spec_to_Z - ZnZ.spec_zdigits - ZnZ.spec_0 ZnZ.spec_WW ZnZ.spec_head0 - ZnZ.spec_add_mul_div ZnZ.spec_div21 - ZnZ.spec_compare ZnZ.spec_sub. - - Theorem spec_mod_gt: - forall x y, [x] > [y] -> 0 < [y] -> [mod_gt x y] = [x] mod [y]. - Proof. - intros x y. rewrite mod_gt_fold. apply spec_iter; clear x y. - intros n x y H1 H2. simpl. rewrite spec_reduce. - exact (ZnZ.spec_modulo_gt x y H1 H2). - intros n m x y H1 H2. cbv zeta beta. rewrite spec_reduce. - rewrite <- spec_mk_t in H1. - rewrite <- (spec_get_endn n (S m) y x); auto with zarith. - rewrite spec_mk_t. - apply ZnZ.spec_modulo_gt; auto. - rewrite <- (spec_get_endn n (S m) y x), !spec_mk_t in H1; auto with zarith. - rewrite <- (spec_get_endn n (S m) y x), !spec_mk_t in H2; auto with zarith. - intros n m x y H1 H2. unfold wn_modn1. rewrite spec_reduce. - unfold eval; rewrite nmake_double. - apply (spec_modn1 n); auto. - intros n m x y H1 H2; unfold mod_gtnm. - repeat rewrite spec_reduce_n. - rewrite (spec_cast_l n m x), (spec_cast_r n m y). - unfold to_Z; apply ZnZ.spec_modulo_gt. - rewrite (spec_cast_l n m x) in H1; auto. - rewrite (spec_cast_r n m y) in H1; auto. - rewrite (spec_cast_r n m y) in H2; auto. - Qed. - - (** * General Modulo *) - - Definition modulo (x y : t) : t := - if eqb y zero then zero else - match compare x y with - | Eq => zero - | Lt => x - | Gt => mod_gt x y - end. - - Theorem spec_modulo: - forall x y, [modulo x y] = [x] mod [y]. - Proof. - intros x y. unfold modulo. - rewrite spec_eqb, spec_compare, spec_0. - case Z.eqb_spec. - intros ->; rewrite spec_0. destruct [x]; auto. - intro H'. - assert (H : 0 < [y]) by (generalize (spec_pos y); auto with zarith). - clear H'. - case Z.compare_spec; - rewrite ?spec_0, ?spec_1; intros; try split; auto with zarith. - rewrite H0; symmetry; apply Z_mod_same; auto with zarith. - symmetry; apply Zmod_small; auto with zarith. - generalize (spec_pos x); auto with zarith. - apply spec_mod_gt; auto with zarith. - Qed. - - (** * Square *) - - Local Notation squaren := (fun n => - let square_c := ZnZ.square_c in - fun x => reduce (S n) (succ_t _ (square_c x))). - - Definition square : t -> t := Eval red_t in iter_t squaren. - - Lemma square_fold : square = iter_t squaren. - Proof. red_t; reflexivity. Qed. - - Theorem spec_square: forall x, [square x] = [x] * [x]. - Proof. - intros x. rewrite square_fold. destr_t x as (n,x). - rewrite spec_succ_t. exact (ZnZ.spec_square_c x). - Qed. - - (** * Square Root *) - - Local Notation sqrtn := (fun n => - let sqrt := ZnZ.sqrt in - fun x => reduce n (sqrt x)). - - Definition sqrt : t -> t := Eval red_t in iter_t sqrtn. - - Lemma sqrt_fold : sqrt = iter_t sqrtn. - Proof. red_t; reflexivity. Qed. - - Theorem spec_sqrt_aux: forall x, [sqrt x] ^ 2 <= [x] < ([sqrt x] + 1) ^ 2. - Proof. - intros x. rewrite sqrt_fold. destr_t x as (n,x). exact (ZnZ.spec_sqrt x). - Qed. - - Theorem spec_sqrt: forall x, [sqrt x] = Z.sqrt [x]. - Proof. - intros x. - symmetry. apply Z.sqrt_unique. - rewrite <- ! Z.pow_2_r. apply spec_sqrt_aux. - Qed. - - (** * Power *) - - Fixpoint pow_pos (x:t)(p:positive) : t := - match p with - | xH => x - | xO p => square (pow_pos x p) - | xI p => mul (square (pow_pos x p)) x - end. - - Theorem spec_pow_pos: forall x n, [pow_pos x n] = [x] ^ Zpos n. - Proof. - intros x n; generalize x; elim n; clear n x; simpl pow_pos. - intros; rewrite spec_mul; rewrite spec_square; rewrite H. - rewrite Pos2Z.inj_xI; rewrite Zpower_exp; auto with zarith. - rewrite (Z.mul_comm 2); rewrite Z.pow_mul_r; auto with zarith. - rewrite Z.pow_2_r; rewrite Z.pow_1_r; auto. - intros; rewrite spec_square; rewrite H. - rewrite Pos2Z.inj_xO; auto with zarith. - rewrite (Z.mul_comm 2); rewrite Z.pow_mul_r; auto with zarith. - rewrite Z.pow_2_r; auto. - intros; rewrite Z.pow_1_r; auto. - Qed. - - Definition pow_N (x:t)(n:N) : t := match n with - | BinNat.N0 => one - | BinNat.Npos p => pow_pos x p - end. - - Theorem spec_pow_N: forall x n, [pow_N x n] = [x] ^ Z.of_N n. - Proof. - destruct n; simpl. apply spec_1. - apply spec_pow_pos. - Qed. - - Definition pow (x y:t) : t := pow_N x (to_N y). - - Theorem spec_pow : forall x y, [pow x y] = [x] ^ [y]. - Proof. - intros. unfold pow, to_N. - now rewrite spec_pow_N, Z2N.id by apply spec_pos. - Qed. - - - (** * digits - - Number of digits in the representation of a numbers - (including head zero's). - NB: This function isn't a morphism for setoid [eq]. - *) - - Local Notation digitsn := (fun n => - let digits := ZnZ.digits (dom_op n) in - fun _ => digits). - - Definition digits : t -> positive := Eval red_t in iter_t digitsn. - - Lemma digits_fold : digits = iter_t digitsn. - Proof. red_t; reflexivity. Qed. - - Theorem spec_digits: forall x, 0 <= [x] < 2 ^ Zpos (digits x). - Proof. - intros x. rewrite digits_fold. destr_t x as (n,x). exact (ZnZ.spec_to_Z x). - Qed. - - Lemma digits_level : forall x, digits x = ZnZ.digits (dom_op (level x)). - Proof. - intros x. rewrite digits_fold. unfold level. destr_t x as (n,x). reflexivity. - Qed. - - (** * Gcd *) - - Definition gcd_gt_body a b cont := - match compare b zero with - | Gt => - let r := mod_gt a b in - match compare r zero with - | Gt => cont r (mod_gt b r) - | _ => b - end - | _ => a - end. - - Theorem Zspec_gcd_gt_body: forall a b cont p, - [a] > [b] -> [a] < 2 ^ p -> - (forall a1 b1, [a1] < 2 ^ (p - 1) -> [a1] > [b1] -> - Zis_gcd [a1] [b1] [cont a1 b1]) -> - Zis_gcd [a] [b] [gcd_gt_body a b cont]. - Proof. - intros a b cont p H2 H3 H4; unfold gcd_gt_body. - rewrite ! spec_compare, spec_0. case Z.compare_spec. - intros ->; apply Zis_gcd_0. - intros HH; absurd (0 <= [b]); auto with zarith. - case (spec_digits b); auto with zarith. - intros H5; case Z.compare_spec. - intros H6; rewrite <- (Z.mul_1_r [b]). - rewrite (Z_div_mod_eq [a] [b]); auto with zarith. - rewrite <- spec_mod_gt; auto with zarith. - rewrite H6; rewrite Z.add_0_r. - apply Zis_gcd_mult; apply Zis_gcd_1. - intros; apply False_ind. - case (spec_digits (mod_gt a b)); auto with zarith. - intros H6; apply DoubleDiv.Zis_gcd_mod; auto with zarith. - apply DoubleDiv.Zis_gcd_mod; auto with zarith. - rewrite <- spec_mod_gt; auto with zarith. - assert (F2: [b] > [mod_gt a b]). - case (Z_mod_lt [a] [b]); auto with zarith. - repeat rewrite <- spec_mod_gt; auto with zarith. - assert (F3: [mod_gt a b] > [mod_gt b (mod_gt a b)]). - case (Z_mod_lt [b] [mod_gt a b]); auto with zarith. - rewrite <- spec_mod_gt; auto with zarith. - repeat rewrite <- spec_mod_gt; auto with zarith. - apply H4; auto with zarith. - apply Z.mul_lt_mono_pos_r with 2; auto with zarith. - apply Z.le_lt_trans with ([b] + [mod_gt a b]); auto with zarith. - apply Z.le_lt_trans with (([a]/[b]) * [b] + [mod_gt a b]); auto with zarith. - - apply Z.add_le_mono_r. - rewrite <- (Z.mul_1_l [b]) at 1. - apply Z.mul_le_mono_nonneg_r; auto with zarith. - change 1 with (Z.succ 0). apply Z.le_succ_l. - apply Z.div_str_pos; auto with zarith. - - rewrite Z.mul_comm; rewrite spec_mod_gt; auto with zarith. - rewrite <- Z_div_mod_eq; auto with zarith. - rewrite Z.mul_comm, <- Z.pow_succ_r, Z.sub_1_r, Z.succ_pred; auto. - apply Z.le_0_sub. change 1 with (Z.succ 0). apply Z.le_succ_l. - destruct p; simpl in H3; auto with zarith. - Qed. - - Fixpoint gcd_gt_aux (p:positive) (cont:t->t->t) (a b:t) : t := - gcd_gt_body a b - (fun a b => - match p with - | xH => cont a b - | xO p => gcd_gt_aux p (gcd_gt_aux p cont) a b - | xI p => gcd_gt_aux p (gcd_gt_aux p cont) a b - end). - - Theorem Zspec_gcd_gt_aux: forall p n a b cont, - [a] > [b] -> [a] < 2 ^ (Zpos p + n) -> - (forall a1 b1, [a1] < 2 ^ n -> [a1] > [b1] -> - Zis_gcd [a1] [b1] [cont a1 b1]) -> - Zis_gcd [a] [b] [gcd_gt_aux p cont a b]. - intros p; elim p; clear p. - intros p Hrec n a b cont H2 H3 H4. - unfold gcd_gt_aux; apply Zspec_gcd_gt_body with (Zpos (xI p) + n); auto. - intros a1 b1 H6 H7. - apply Hrec with (Zpos p + n); auto. - replace (Zpos p + (Zpos p + n)) with - (Zpos (xI p) + n - 1); auto. - rewrite Pos2Z.inj_xI; ring. - intros a2 b2 H9 H10. - apply Hrec with n; auto. - intros p Hrec n a b cont H2 H3 H4. - unfold gcd_gt_aux; apply Zspec_gcd_gt_body with (Zpos (xO p) + n); auto. - intros a1 b1 H6 H7. - apply Hrec with (Zpos p + n - 1); auto. - replace (Zpos p + (Zpos p + n - 1)) with - (Zpos (xO p) + n - 1); auto. - rewrite Pos2Z.inj_xO; ring. - intros a2 b2 H9 H10. - apply Hrec with (n - 1); auto. - replace (Zpos p + (n - 1)) with - (Zpos p + n - 1); auto with zarith. - intros a3 b3 H12 H13; apply H4; auto with zarith. - apply Z.lt_le_trans with (1 := H12). - apply Z.pow_le_mono_r; auto with zarith. - intros n a b cont H H2 H3. - simpl gcd_gt_aux. - apply Zspec_gcd_gt_body with (n + 1); auto with zarith. - rewrite Z.add_comm; auto. - intros a1 b1 H5 H6; apply H3; auto. - replace n with (n + 1 - 1); auto; try ring. - Qed. - - Definition gcd_cont a b := - match compare one b with - | Eq => one - | _ => a - end. - - Definition gcd_gt a b := gcd_gt_aux (digits a) gcd_cont a b. - - Theorem spec_gcd_gt: forall a b, - [a] > [b] -> [gcd_gt a b] = Z.gcd [a] [b]. - Proof. - intros a b H2. - case (spec_digits (gcd_gt a b)); intros H3 H4. - case (spec_digits a); intros H5 H6. - symmetry; apply Zis_gcd_gcd; auto with zarith. - unfold gcd_gt; apply Zspec_gcd_gt_aux with 0; auto with zarith. - intros a1 a2; rewrite Z.pow_0_r. - case (spec_digits a2); intros H7 H8; - intros; apply False_ind; auto with zarith. - Qed. - - Definition gcd (a b : t) : t := - match compare a b with - | Eq => a - | Lt => gcd_gt b a - | Gt => gcd_gt a b - end. - - Theorem spec_gcd: forall a b, [gcd a b] = Z.gcd [a] [b]. - Proof. - intros a b. - case (spec_digits a); intros H1 H2. - case (spec_digits b); intros H3 H4. - unfold gcd. rewrite spec_compare. case Z.compare_spec. - intros HH; rewrite HH; symmetry; apply Zis_gcd_gcd; auto. - apply Zis_gcd_refl. - intros; transitivity (Z.gcd [b] [a]). - apply spec_gcd_gt; auto with zarith. - apply Zis_gcd_gcd; auto with zarith. - apply Z.gcd_nonneg. - apply Zis_gcd_sym; apply Zgcd_is_gcd. - intros; apply spec_gcd_gt; auto with zarith. - Qed. - - (** * Parity test *) - - Definition even : t -> bool := Eval red_t in - iter_t (fun n x => ZnZ.is_even x). - - Definition odd x := negb (even x). - - Lemma even_fold : even = iter_t (fun n x => ZnZ.is_even x). - Proof. red_t; reflexivity. Qed. - - Theorem spec_even_aux: forall x, - if even x then [x] mod 2 = 0 else [x] mod 2 = 1. - Proof. - intros x. rewrite even_fold. destr_t x as (n,x). - exact (ZnZ.spec_is_even x). - Qed. - - Theorem spec_even: forall x, even x = Z.even [x]. - Proof. - intros x. assert (H := spec_even_aux x). symmetry. - rewrite (Z.div_mod [x] 2); auto with zarith. - destruct (even x); rewrite H, ?Z.add_0_r. - rewrite Zeven_bool_iff. apply Zeven_2p. - apply not_true_is_false. rewrite Zeven_bool_iff. - apply Zodd_not_Zeven. apply Zodd_2p_plus_1. - Qed. - - Theorem spec_odd: forall x, odd x = Z.odd [x]. - Proof. - intros x. unfold odd. - assert (H := spec_even_aux x). symmetry. - rewrite (Z.div_mod [x] 2); auto with zarith. - destruct (even x); rewrite H, ?Z.add_0_r; simpl negb. - apply not_true_is_false. rewrite Zodd_bool_iff. - apply Zeven_not_Zodd. apply Zeven_2p. - apply Zodd_bool_iff. apply Zodd_2p_plus_1. - Qed. - - (** * Conversion *) - - Definition pheight p := - Peano.pred (Pos.to_nat (get_height (ZnZ.digits (dom_op 0)) (plength p))). - - Theorem pheight_correct: forall p, - Zpos p < 2 ^ (Zpos (ZnZ.digits (dom_op 0)) * 2 ^ (Z.of_nat (pheight p))). - Proof. - intros p; unfold pheight. - rewrite Nat2Z.inj_pred by apply Pos2Nat.is_pos. - rewrite positive_nat_Z. - rewrite <- Z.sub_1_r. - assert (F2:= (get_height_correct (ZnZ.digits (dom_op 0)) (plength p))). - apply Z.lt_le_trans with (Zpos (Pos.succ p)). - rewrite Pos2Z.inj_succ; auto with zarith. - apply Z.le_trans with (1 := plength_pred_correct (Pos.succ p)). - rewrite Pos.pred_succ. - apply Z.pow_le_mono_r; auto with zarith. - Qed. - - Definition of_pos (x:positive) : t := - let n := pheight x in - reduce n (snd (ZnZ.of_pos x)). - - Theorem spec_of_pos: forall x, - [of_pos x] = Zpos x. - Proof. - intros x; unfold of_pos. - rewrite spec_reduce. - simpl. - apply ZnZ.of_pos_correct. - unfold base. - apply Z.lt_le_trans with (1 := pheight_correct x). - apply Z.pow_le_mono_r; auto with zarith. - rewrite (digits_dom_op (_ _)), Pshiftl_nat_Zpower. auto with zarith. - Qed. - - Definition of_N (x:N) : t := - match x with - | BinNat.N0 => zero - | Npos p => of_pos p - end. - - Theorem spec_of_N: forall x, - [of_N x] = Z.of_N x. - Proof. - intros x; case x. - simpl of_N. exact spec_0. - intros p; exact (spec_of_pos p). - Qed. - - (** * [head0] and [tail0] - - Number of zero at the beginning and at the end of - the representation of the number. - NB: these functions are not morphism for setoid [eq]. - *) - - Local Notation head0n := (fun n => - let head0 := ZnZ.head0 in - fun x => reduce n (head0 x)). - - Definition head0 : t -> t := Eval red_t in iter_t head0n. - - Lemma head0_fold : head0 = iter_t head0n. - Proof. red_t; reflexivity. Qed. - - Theorem spec_head00: forall x, [x] = 0 -> [head0 x] = Zpos (digits x). - Proof. - intros x. rewrite head0_fold, digits_fold. destr_t x as (n,x). - exact (ZnZ.spec_head00 x). - Qed. - - Lemma pow2_pos_minus_1 : forall z, 0<z -> 2^(z-1) = 2^z / 2. - Proof. - intros. apply Zdiv_unique with 0; auto with zarith. - change 2 with (2^1) at 2. - rewrite <- Zpower_exp; auto with zarith. - rewrite Z.add_0_r. f_equal. auto with zarith. - Qed. - - Theorem spec_head0: forall x, 0 < [x] -> - 2 ^ (Zpos (digits x) - 1) <= 2 ^ [head0 x] * [x] < 2 ^ Zpos (digits x). - Proof. - intros x. rewrite pow2_pos_minus_1 by (red; auto). - rewrite head0_fold, digits_fold. destr_t x as (n,x). exact (ZnZ.spec_head0 x). - Qed. - - Local Notation tail0n := (fun n => - let tail0 := ZnZ.tail0 in - fun x => reduce n (tail0 x)). - - Definition tail0 : t -> t := Eval red_t in iter_t tail0n. - - Lemma tail0_fold : tail0 = iter_t tail0n. - Proof. red_t; reflexivity. Qed. - - Theorem spec_tail00: forall x, [x] = 0 -> [tail0 x] = Zpos (digits x). - Proof. - intros x. rewrite tail0_fold, digits_fold. destr_t x as (n,x). - exact (ZnZ.spec_tail00 x). - Qed. - - Theorem spec_tail0: forall x, - 0 < [x] -> exists y, 0 <= y /\ [x] = (2 * y + 1) * 2 ^ [tail0 x]. - Proof. - intros x. rewrite tail0_fold. destr_t x as (n,x). exact (ZnZ.spec_tail0 x). - Qed. - - (** * [Ndigits] - - Same as [digits] but encoded using large integers - NB: this function is not a morphism for setoid [eq]. - *) - - Local Notation Ndigitsn := (fun n => - let d := reduce n (ZnZ.zdigits (dom_op n)) in - fun _ => d). - - Definition Ndigits : t -> t := Eval red_t in iter_t Ndigitsn. - - Lemma Ndigits_fold : Ndigits = iter_t Ndigitsn. - Proof. red_t; reflexivity. Qed. - - Theorem spec_Ndigits: forall x, [Ndigits x] = Zpos (digits x). - Proof. - intros x. rewrite Ndigits_fold, digits_fold. destr_t x as (n,x). - apply ZnZ.spec_zdigits. - Qed. - - (** * Binary logarithm *) - - Local Notation log2n := (fun n => - let op := dom_op n in - let zdigits := ZnZ.zdigits op in - let head0 := ZnZ.head0 in - let sub_carry := ZnZ.sub_carry in - fun x => reduce n (sub_carry zdigits (head0 x))). - - Definition log2 : t -> t := Eval red_t in - let log2 := iter_t log2n in - fun x => if eqb x zero then zero else log2 x. - - Lemma log2_fold : - log2 = fun x => if eqb x zero then zero else iter_t log2n x. - Proof. red_t; reflexivity. Qed. - - Lemma spec_log2_0 : forall x, [x] = 0 -> [log2 x] = 0. - Proof. - intros x H. rewrite log2_fold. - rewrite spec_eqb, H. rewrite spec_0. simpl. exact spec_0. - Qed. - - Lemma head0_zdigits : forall n (x : dom_t n), - 0 < ZnZ.to_Z x -> - ZnZ.to_Z (ZnZ.head0 x) < ZnZ.to_Z (ZnZ.zdigits (dom_op n)). - Proof. - intros n x H. - destruct (ZnZ.spec_head0 x H) as (_,H0). - intros. - assert (H1 := ZnZ.spec_to_Z (ZnZ.head0 x)). - assert (H2 := ZnZ.spec_to_Z (ZnZ.zdigits (dom_op n))). - unfold base in *. - rewrite ZnZ.spec_zdigits in H2 |- *. - set (h := ZnZ.to_Z (ZnZ.head0 x)) in *; clearbody h. - set (d := ZnZ.digits (dom_op n)) in *; clearbody d. - destruct (Z_lt_le_dec h (Zpos d)); auto. exfalso. - assert (1 * 2^Zpos d <= ZnZ.to_Z x * 2^h). - apply Z.mul_le_mono_nonneg; auto with zarith. - apply Z.pow_le_mono_r; auto with zarith. - rewrite Z.mul_comm in H0. auto with zarith. - Qed. - - Lemma spec_log2_pos : forall x, [x]<>0 -> - 2^[log2 x] <= [x] < 2^([log2 x]+1). - Proof. - intros x H. rewrite log2_fold. - rewrite spec_eqb. rewrite spec_0. - case Z.eqb_spec. - auto with zarith. - clear H. - destr_t x as (n,x). intros H. - rewrite ZnZ.spec_sub_carry. - assert (H0 := ZnZ.spec_to_Z x). - assert (H1 := ZnZ.spec_to_Z (ZnZ.head0 x)). - assert (H2 := ZnZ.spec_to_Z (ZnZ.zdigits (dom_op n))). - assert (H3 := head0_zdigits n x). - rewrite Zmod_small by auto with zarith. - rewrite Z.sub_simpl_r. - rewrite (Z.mul_lt_mono_pos_l (2^(ZnZ.to_Z (ZnZ.head0 x)))); - auto with zarith. - rewrite (Z.mul_le_mono_pos_l _ _ (2^(ZnZ.to_Z (ZnZ.head0 x)))); - auto with zarith. - rewrite <- 2 Zpower_exp; auto with zarith. - rewrite !Z.add_sub_assoc, !Z.add_simpl_l. - rewrite ZnZ.spec_zdigits. - rewrite pow2_pos_minus_1 by (red; auto). - apply ZnZ.spec_head0; auto with zarith. - Qed. - - Lemma spec_log2 : forall x, [log2 x] = Z.log2 [x]. - Proof. - intros. destruct (Z_lt_ge_dec 0 [x]). - symmetry. apply Z.log2_unique. apply spec_pos. - apply spec_log2_pos. intro EQ; rewrite EQ in *; auto with zarith. - rewrite spec_log2_0. rewrite Z.log2_nonpos; auto with zarith. - generalize (spec_pos x); auto with zarith. - Qed. - - Lemma log2_digits_head0 : forall x, 0 < [x] -> - [log2 x] = Zpos (digits x) - [head0 x] - 1. - Proof. - intros. rewrite log2_fold. - rewrite spec_eqb. rewrite spec_0. - case Z.eqb_spec. - auto with zarith. - intros _. revert H. rewrite digits_fold, head0_fold. destr_t x as (n,x). - rewrite ZnZ.spec_sub_carry. - intros. - generalize (head0_zdigits n x H). - generalize (ZnZ.spec_to_Z (ZnZ.head0 x)). - generalize (ZnZ.spec_to_Z (ZnZ.zdigits (dom_op n))). - rewrite ZnZ.spec_zdigits. intros. apply Zmod_small. - auto with zarith. - Qed. - - (** * Right shift *) - - Local Notation shiftrn := (fun n => - let op := dom_op n in - let zdigits := ZnZ.zdigits op in - let sub_c := ZnZ.sub_c in - let add_mul_div := ZnZ.add_mul_div in - let zzero := ZnZ.zero in - fun x p => match sub_c zdigits p with - | C0 d => reduce n (add_mul_div d zzero x) - | C1 _ => zero - end). - - Definition shiftr : t -> t -> t := Eval red_t in - same_level shiftrn. - - Lemma shiftr_fold : shiftr = same_level shiftrn. - Proof. red_t; reflexivity. Qed. - - Lemma div_pow2_bound :forall x y z, - 0 <= x -> 0 <= y -> x < z -> 0 <= x / 2 ^ y < z. - Proof. - intros x y z HH HH1 HH2. - split; auto with zarith. - apply Z.le_lt_trans with (2 := HH2); auto with zarith. - apply Zdiv_le_upper_bound; auto with zarith. - pattern x at 1; replace x with (x * 2 ^ 0); auto with zarith. - apply Z.mul_le_mono_nonneg_l; auto. - apply Z.pow_le_mono_r; auto with zarith. - rewrite Z.pow_0_r; ring. - Qed. - - Theorem spec_shiftr_pow2 : forall x n, - [shiftr x n] = [x] / 2 ^ [n]. - Proof. - intros x y. rewrite shiftr_fold. apply spec_same_level. clear x y. - intros n x p. simpl. - assert (Hx := ZnZ.spec_to_Z x). - assert (Hy := ZnZ.spec_to_Z p). - generalize (ZnZ.spec_sub_c (ZnZ.zdigits (dom_op n)) p). - case ZnZ.sub_c; intros d H; unfold interp_carry in *; simpl. - (** Subtraction without underflow : [ p <= digits ] *) - rewrite spec_reduce. - rewrite ZnZ.spec_zdigits in H. - rewrite ZnZ.spec_add_mul_div by auto with zarith. - rewrite ZnZ.spec_0, Z.mul_0_l, Z.add_0_l. - rewrite Zmod_small. - f_equal. f_equal. auto with zarith. - split. auto with zarith. - apply div_pow2_bound; auto with zarith. - (** Subtraction with underflow : [ digits < p ] *) - rewrite ZnZ.spec_0. symmetry. - apply Zdiv_small. - split; auto with zarith. - apply Z.lt_le_trans with (base (ZnZ.digits (dom_op n))); auto with zarith. - unfold base. apply Z.pow_le_mono_r; auto with zarith. - rewrite ZnZ.spec_zdigits in H. - generalize (ZnZ.spec_to_Z d); auto with zarith. - Qed. - - Lemma spec_shiftr: forall x p, [shiftr x p] = Z.shiftr [x] [p]. - Proof. - intros. - now rewrite spec_shiftr_pow2, Z.shiftr_div_pow2 by apply spec_pos. - Qed. - - (** * Left shift *) - - (** First an unsafe version, working correctly only if - the representation is large enough *) - - Local Notation unsafe_shiftln := (fun n => - let op := dom_op n in - let add_mul_div := ZnZ.add_mul_div in - let zero := ZnZ.zero in - fun x p => reduce n (add_mul_div p x zero)). - - Definition unsafe_shiftl : t -> t -> t := Eval red_t in - same_level unsafe_shiftln. - - Lemma unsafe_shiftl_fold : unsafe_shiftl = same_level unsafe_shiftln. - Proof. red_t; reflexivity. Qed. - - Theorem spec_unsafe_shiftl_aux : forall x p K, - 0 <= K -> - [x] < 2^K -> - [p] + K <= Zpos (digits x) -> - [unsafe_shiftl x p] = [x] * 2 ^ [p]. - Proof. - intros x p. - rewrite unsafe_shiftl_fold. rewrite digits_level. - apply spec_same_level_dep. - intros n m z z' r LE H K HK H1 H2. apply (H K); auto. - transitivity (Zpos (ZnZ.digits (dom_op n))); auto. - apply digits_dom_op_incr; auto. - clear x p. - intros n x p K HK Hx Hp. simpl. rewrite spec_reduce. - destruct (ZnZ.spec_to_Z x). - destruct (ZnZ.spec_to_Z p). - rewrite ZnZ.spec_add_mul_div by (omega with *). - rewrite ZnZ.spec_0, Zdiv_0_l, Z.add_0_r. - apply Zmod_small. unfold base. - split; auto with zarith. - rewrite Z.mul_comm. - apply Z.lt_le_trans with (2^(ZnZ.to_Z p + K)). - rewrite Zpower_exp; auto with zarith. - apply Z.mul_lt_mono_pos_l; auto with zarith. - apply Z.pow_le_mono_r; auto with zarith. - Qed. - - Theorem spec_unsafe_shiftl: forall x p, - [p] <= [head0 x] -> [unsafe_shiftl x p] = [x] * 2 ^ [p]. - Proof. - intros. - destruct (Z.eq_dec [x] 0) as [EQ|NEQ]. - (* [x] = 0 *) - apply spec_unsafe_shiftl_aux with 0; auto with zarith. - now rewrite EQ. - rewrite spec_head00 in *; auto with zarith. - (* [x] <> 0 *) - apply spec_unsafe_shiftl_aux with ([log2 x] + 1); auto with zarith. - generalize (spec_pos (log2 x)); auto with zarith. - destruct (spec_log2_pos x); auto with zarith. - rewrite log2_digits_head0; auto with zarith. - generalize (spec_pos x); auto with zarith. - Qed. - - (** Then we define a function doubling the size of the representation - but without changing the value of the number. *) - - Local Notation double_size_n := (fun n => - let zero := ZnZ.zero in - fun x => mk_t_S n (WW zero x)). - - Definition double_size : t -> t := Eval red_t in - iter_t double_size_n. - - Lemma double_size_fold : double_size = iter_t double_size_n. - Proof. red_t; reflexivity. Qed. - - Lemma double_size_level : forall x, level (double_size x) = S (level x). - Proof. - intros x. rewrite double_size_fold; unfold level at 2. destr_t x as (n,x). - apply mk_t_S_level. - Qed. - - Theorem spec_double_size_digits: - forall x, Zpos (digits (double_size x)) = 2 * (Zpos (digits x)). - Proof. - intros x. rewrite ! digits_level, double_size_level. - rewrite 2 digits_dom_op, 2 Pshiftl_nat_Zpower, - Nat2Z.inj_succ, Z.pow_succ_r; auto with zarith. - ring. - Qed. - - Theorem spec_double_size: forall x, [double_size x] = [x]. - Proof. - intros x. rewrite double_size_fold. destr_t x as (n,x). - rewrite spec_mk_t_S. simpl. rewrite ZnZ.spec_0. auto with zarith. - Qed. - - Theorem spec_double_size_head0: - forall x, 2 * [head0 x] <= [head0 (double_size x)]. - Proof. - intros x. - assert (F1:= spec_pos (head0 x)). - assert (F2: 0 < Zpos (digits x)). - red; auto. - assert (HH := spec_pos x). Z.le_elim HH. - generalize HH; rewrite <- (spec_double_size x); intros HH1. - case (spec_head0 x HH); intros _ HH2. - case (spec_head0 _ HH1). - rewrite (spec_double_size x); rewrite (spec_double_size_digits x). - intros HH3 _. - case (Z.le_gt_cases ([head0 (double_size x)]) (2 * [head0 x])); auto; intros HH4. - absurd (2 ^ (2 * [head0 x] )* [x] < 2 ^ [head0 (double_size x)] * [x]); auto. - apply Z.le_ngt. - apply Z.mul_le_mono_nonneg_r; auto with zarith. - apply Z.pow_le_mono_r; auto; auto with zarith. - assert (HH5: 2 ^[head0 x] <= 2 ^(Zpos (digits x) - 1)). - { apply Z.le_succ_l in HH. change (1 <= [x]) in HH. - Z.le_elim HH. - - apply Z.mul_le_mono_pos_r with (2 ^ 1); auto with zarith. - rewrite <- (fun x y z => Z.pow_add_r x (y - z)); auto with zarith. - rewrite Z.sub_add. - apply Z.le_trans with (2 := Z.lt_le_incl _ _ HH2). - apply Z.mul_le_mono_nonneg_l; auto with zarith. - rewrite Z.pow_1_r; auto with zarith. - - apply Z.pow_le_mono_r; auto with zarith. - case (Z.le_gt_cases (Zpos (digits x)) [head0 x]); auto with zarith; intros HH6. - absurd (2 ^ Zpos (digits x) <= 2 ^ [head0 x] * [x]); auto with zarith. - rewrite <- HH; rewrite Z.mul_1_r. - apply Z.pow_le_mono_r; auto with zarith. } - rewrite (Z.mul_comm 2). - rewrite Z.pow_mul_r; auto with zarith. - rewrite Z.pow_2_r. - apply Z.lt_le_trans with (2 := HH3). - rewrite <- Z.mul_assoc. - replace (2 * Zpos (digits x) - 1) with - ((Zpos (digits x) - 1) + (Zpos (digits x))). - rewrite Zpower_exp; auto with zarith. - apply Zmult_lt_compat2; auto with zarith. - split; auto with zarith. - apply Z.mul_pos_pos; auto with zarith. - rewrite Pos2Z.inj_xO; ring. - apply Z.lt_le_incl; auto. - repeat rewrite spec_head00; auto. - rewrite spec_double_size_digits. - rewrite Pos2Z.inj_xO; auto with zarith. - rewrite spec_double_size; auto. - Qed. - - Theorem spec_double_size_head0_pos: - forall x, 0 < [head0 (double_size x)]. - Proof. - intros x. - assert (F := Pos2Z.is_pos (digits x)). - assert (F0 := spec_pos (head0 (double_size x))). - Z.le_elim F0; auto. - assert (F1 := spec_pos (head0 x)). - Z.le_elim F1. - apply Z.lt_le_trans with (2 := (spec_double_size_head0 x)); auto with zarith. - assert (F3 := spec_pos x). - Z.le_elim F3. - generalize F3; rewrite <- (spec_double_size x); intros F4. - absurd (2 ^ (Zpos (xO (digits x)) - 1) < 2 ^ (Zpos (digits x))). - { apply Z.le_ngt. - apply Z.pow_le_mono_r; auto with zarith. - rewrite Pos2Z.inj_xO; auto with zarith. } - case (spec_head0 x F3). - rewrite <- F1; rewrite Z.pow_0_r; rewrite Z.mul_1_l; intros _ HH. - apply Z.le_lt_trans with (2 := HH). - case (spec_head0 _ F4). - rewrite (spec_double_size x); rewrite (spec_double_size_digits x). - rewrite <- F0; rewrite Z.pow_0_r; rewrite Z.mul_1_l; auto. - generalize F1; rewrite (spec_head00 _ (eq_sym F3)); auto with zarith. - Qed. - - (** Finally we iterate [double_size] enough before [unsafe_shiftl] - in order to get a fully correct [shiftl]. *) - - Definition shiftl_aux_body cont x n := - match compare n (head0 x) with - Gt => cont (double_size x) n - | _ => unsafe_shiftl x n - end. - - Theorem spec_shiftl_aux_body: forall n x p cont, - 2^ Zpos p <= [head0 x] -> - (forall x, 2 ^ (Zpos p + 1) <= [head0 x]-> - [cont x n] = [x] * 2 ^ [n]) -> - [shiftl_aux_body cont x n] = [x] * 2 ^ [n]. - Proof. - intros n x p cont H1 H2; unfold shiftl_aux_body. - rewrite spec_compare; case Z.compare_spec; intros H. - apply spec_unsafe_shiftl; auto with zarith. - apply spec_unsafe_shiftl; auto with zarith. - rewrite H2. - rewrite spec_double_size; auto. - rewrite Z.add_comm; rewrite Zpower_exp; auto with zarith. - apply Z.le_trans with (2 := spec_double_size_head0 x). - rewrite Z.pow_1_r; apply Z.mul_le_mono_nonneg_l; auto with zarith. - Qed. - - Fixpoint shiftl_aux p cont x n := - shiftl_aux_body - (fun x n => match p with - | xH => cont x n - | xO p => shiftl_aux p (shiftl_aux p cont) x n - | xI p => shiftl_aux p (shiftl_aux p cont) x n - end) x n. - - Theorem spec_shiftl_aux: forall p q x n cont, - 2 ^ (Zpos q) <= [head0 x] -> - (forall x, 2 ^ (Zpos p + Zpos q) <= [head0 x] -> - [cont x n] = [x] * 2 ^ [n]) -> - [shiftl_aux p cont x n] = [x] * 2 ^ [n]. - Proof. - intros p; elim p; unfold shiftl_aux; fold shiftl_aux; clear p. - intros p Hrec q x n cont H1 H2. - apply spec_shiftl_aux_body with (q); auto. - intros x1 H3; apply Hrec with (q + 1)%positive; auto. - intros x2 H4; apply Hrec with (p + q + 1)%positive; auto. - rewrite <- Pos.add_assoc. - rewrite Pos2Z.inj_add; auto. - intros x3 H5; apply H2. - rewrite Pos2Z.inj_xI. - replace (2 * Zpos p + 1 + Zpos q) with (Zpos p + Zpos (p + q + 1)); - auto. - rewrite !Pos2Z.inj_add; ring. - intros p Hrec q n x cont H1 H2. - apply spec_shiftl_aux_body with (q); auto. - intros x1 H3; apply Hrec with (q); auto. - apply Z.le_trans with (2 := H3); auto with zarith. - apply Z.pow_le_mono_r; auto with zarith. - intros x2 H4; apply Hrec with (p + q)%positive; auto. - intros x3 H5; apply H2. - rewrite (Pos2Z.inj_xO p). - replace (2 * Zpos p + Zpos q) with (Zpos p + Zpos (p + q)); - auto. - rewrite Pos2Z.inj_add; ring. - intros q n x cont H1 H2. - apply spec_shiftl_aux_body with (q); auto. - rewrite Z.add_comm; auto. - Qed. - - Definition shiftl x n := - shiftl_aux_body - (shiftl_aux_body - (shiftl_aux (digits n) unsafe_shiftl)) x n. - - Theorem spec_shiftl_pow2 : forall x n, - [shiftl x n] = [x] * 2 ^ [n]. - Proof. - intros x n; unfold shiftl, shiftl_aux_body. - rewrite spec_compare; case Z.compare_spec; intros H. - apply spec_unsafe_shiftl; auto with zarith. - apply spec_unsafe_shiftl; auto with zarith. - rewrite <- (spec_double_size x). - rewrite spec_compare; case Z.compare_spec; intros H1. - apply spec_unsafe_shiftl; auto with zarith. - apply spec_unsafe_shiftl; auto with zarith. - rewrite <- (spec_double_size (double_size x)). - apply spec_shiftl_aux with 1%positive. - apply Z.le_trans with (2 := spec_double_size_head0 (double_size x)). - replace (2 ^ 1) with (2 * 1). - apply Z.mul_le_mono_nonneg_l; auto with zarith. - generalize (spec_double_size_head0_pos x); auto with zarith. - rewrite Z.pow_1_r; ring. - intros x1 H2; apply spec_unsafe_shiftl. - apply Z.le_trans with (2 := H2). - apply Z.le_trans with (2 ^ Zpos (digits n)); auto with zarith. - case (spec_digits n); auto with zarith. - apply Z.pow_le_mono_r; auto with zarith. - Qed. - - Lemma spec_shiftl: forall x p, [shiftl x p] = Z.shiftl [x] [p]. - Proof. - intros. - now rewrite spec_shiftl_pow2, Z.shiftl_mul_pow2 by apply spec_pos. - Qed. - - (** Other bitwise operations *) - - Definition testbit x n := odd (shiftr x n). - - Lemma spec_testbit: forall x p, testbit x p = Z.testbit [x] [p]. - Proof. - intros. unfold testbit. symmetry. - rewrite spec_odd, spec_shiftr. apply Z.testbit_odd. - Qed. - - Definition div2 x := shiftr x one. - - Lemma spec_div2: forall x, [div2 x] = Z.div2 [x]. - Proof. - intros. unfold div2. symmetry. - rewrite spec_shiftr, spec_1. apply Z.div2_spec. - Qed. - - Local Notation lorn := (fun n => - let op := dom_op n in - let lor := ZnZ.lor in - fun x y => reduce n (lor x y)). - - Definition lor : t -> t -> t := Eval red_t in same_level lorn. - - Lemma lor_fold : lor = same_level lorn. - Proof. red_t; reflexivity. Qed. - - Theorem spec_lor x y : [lor x y] = Z.lor [x] [y]. - Proof. - rewrite lor_fold. apply spec_same_level; clear x y. - intros n x y. simpl. rewrite spec_reduce. apply ZnZ.spec_lor. - Qed. - - Local Notation landn := (fun n => - let op := dom_op n in - let land := ZnZ.land in - fun x y => reduce n (land x y)). - - Definition land : t -> t -> t := Eval red_t in same_level landn. - - Lemma land_fold : land = same_level landn. - Proof. red_t; reflexivity. Qed. - - Theorem spec_land x y : [land x y] = Z.land [x] [y]. - Proof. - rewrite land_fold. apply spec_same_level; clear x y. - intros n x y. simpl. rewrite spec_reduce. apply ZnZ.spec_land. - Qed. - - Local Notation lxorn := (fun n => - let op := dom_op n in - let lxor := ZnZ.lxor in - fun x y => reduce n (lxor x y)). - - Definition lxor : t -> t -> t := Eval red_t in same_level lxorn. - - Lemma lxor_fold : lxor = same_level lxorn. - Proof. red_t; reflexivity. Qed. - - Theorem spec_lxor x y : [lxor x y] = Z.lxor [x] [y]. - Proof. - rewrite lxor_fold. apply spec_same_level; clear x y. - intros n x y. simpl. rewrite spec_reduce. apply ZnZ.spec_lxor. - Qed. - - Local Notation ldiffn := (fun n => - let op := dom_op n in - let lxor := ZnZ.lxor in - let land := ZnZ.land in - let m1 := ZnZ.minus_one in - fun x y => reduce n (land x (lxor y m1))). - - Definition ldiff : t -> t -> t := Eval red_t in same_level ldiffn. - - Lemma ldiff_fold : ldiff = same_level ldiffn. - Proof. red_t; reflexivity. Qed. - - Lemma ldiff_alt x y p : - 0 <= x < 2^p -> 0 <= y < 2^p -> - Z.ldiff x y = Z.land x (Z.lxor y (2^p - 1)). - Proof. - intros (Hx,Hx') (Hy,Hy'). - destruct p as [|p|p]. - - simpl in *; replace x with 0; replace y with 0; auto with zarith. - - rewrite <- Z.shiftl_1_l. change (_ - 1) with (Z.ones (Z.pos p)). - rewrite <- Z.ldiff_ones_l_low; trivial. - rewrite !Z.ldiff_land, Z.land_assoc. f_equal. - rewrite Z.land_ones; try easy. - symmetry. apply Z.mod_small; now split. - Z.le_elim Hy. - + now apply Z.log2_lt_pow2. - + now subst. - - simpl in *; omega. - Qed. - - Theorem spec_ldiff x y : [ldiff x y] = Z.ldiff [x] [y]. - Proof. - rewrite ldiff_fold. apply spec_same_level; clear x y. - intros n x y. simpl. rewrite spec_reduce. - rewrite ZnZ.spec_land, ZnZ.spec_lxor, ZnZ.spec_m1. - symmetry. apply ldiff_alt; apply ZnZ.spec_to_Z. - Qed. - -End Make. diff --git a/theories/Numbers/Natural/BigN/NMake_gen.ml b/theories/Numbers/Natural/BigN/NMake_gen.ml deleted file mode 100644 index 5177fae65..000000000 --- a/theories/Numbers/Natural/BigN/NMake_gen.ml +++ /dev/null @@ -1,1017 +0,0 @@ -(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016 *) -(* \VV/ **************************************************************) -(* // * This file is distributed under the terms of the *) -(* * GNU Lesser General Public License Version 2.1 *) -(************************************************************************) -(* Benjamin Gregoire, Laurent Thery, INRIA, 2007 *) -(************************************************************************) - -(*S NMake_gen.ml : this file generates NMake_gen.v *) - - -(*s The parameter that control the generation: *) - -let size = 6 (* how many times should we repeat the Z/nZ --> Z/2nZ - process before relying on a generic construct *) - -(*s Some utilities *) - -let rec iter_str n s = if n = 0 then "" else (iter_str (n-1) s) ^ s - -let rec iter_str_gen n f = if n < 0 then "" else (iter_str_gen (n-1) f) ^ (f n) - -let rec iter_name i j base sep = - if i >= j then base^(string_of_int i) - else (iter_name i (j-1) base sep)^sep^" "^base^(string_of_int j) - -let pr s = Printf.printf (s^^"\n") - -(*s The actual printing *) - -let _ = - -pr -"(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) -(* \\VV/ **************************************************************) -(* // * This file is distributed under the terms of the *) -(* * GNU Lesser General Public License Version 2.1 *) -(************************************************************************) -(* Benjamin Gregoire, Laurent Thery, INRIA, 2007 *) -(************************************************************************) - -(** * NMake_gen *) - -(** From a cyclic Z/nZ representation to arbitrary precision natural numbers.*) - -(** Remark: File automatically generated by NMake_gen.ml, DO NOT EDIT ! *) - -Require Import BigNumPrelude ZArith Ndigits CyclicAxioms - DoubleType DoubleMul DoubleDivn1 DoubleCyclic Nbasic - Wf_nat StreamMemo. - -Module Make (W0:CyclicType) <: NAbstract. - - (** * The word types *) -"; - -pr " Local Notation w0 := W0.t."; -for i = 1 to size do - pr " Definition w%i := zn2z w%i." i (i-1) -done; -pr ""; - -pr " (** * The operation type classes for the word types *) -"; - -pr " Local Notation w0_op := W0.ops."; -for i = 1 to min 3 size do - pr " Instance w%i_op : ZnZ.Ops w%i := mk_zn2z_ops w%i_op." i i (i-1) -done; -for i = 4 to size do - pr " Instance w%i_op : ZnZ.Ops w%i := mk_zn2z_ops_karatsuba w%i_op." i i (i-1) -done; -for i = size+1 to size+3 do - pr " Instance w%i_op : ZnZ.Ops (word w%i %i) := mk_zn2z_ops_karatsuba w%i_op." i size (i-size) (i-1) -done; -pr ""; - - pr " Section Make_op."; - pr " Variable mk : forall w', ZnZ.Ops w' -> ZnZ.Ops (zn2z w')."; - pr ""; - pr " Fixpoint make_op_aux (n:nat) : ZnZ.Ops (word w%i (S n)):=" size; - pr " match n return ZnZ.Ops (word w%i (S n)) with" size; - pr " | O => w%i_op" (size+1); - pr " | S n1 =>"; - pr " match n1 return ZnZ.Ops (word w%i (S (S n1))) with" size; - pr " | O => w%i_op" (size+2); - pr " | S n2 =>"; - pr " match n2 return ZnZ.Ops (word w%i (S (S (S n2)))) with" size; - pr " | O => w%i_op" (size+3); - pr " | S n3 => mk _ (mk _ (mk _ (make_op_aux n3)))"; - pr " end"; - pr " end"; - pr " end."; - pr ""; - pr " End Make_op."; - pr ""; - pr " Definition omake_op := make_op_aux mk_zn2z_ops_karatsuba."; - pr ""; - pr ""; - pr " Definition make_op_list := dmemo_list _ omake_op."; - pr ""; - pr " Instance make_op n : ZnZ.Ops (word w%i (S n))" size; - pr " := dmemo_get _ omake_op n make_op_list."; - pr ""; - -pr " Ltac unfold_ops := unfold omake_op, make_op_aux, w%i_op, w%i_op." (size+3) (size+2); - -pr -" - Lemma make_op_omake: forall n, make_op n = omake_op n. - Proof. - intros n; unfold make_op, make_op_list. - refine (dmemo_get_correct _ _ _). - Qed. - - Theorem make_op_S: forall n, - make_op (S n) = mk_zn2z_ops_karatsuba (make_op n). - Proof. - intros n. do 2 rewrite make_op_omake. - revert n. fix IHn 1. - do 3 (destruct n; [unfold_ops; reflexivity|]). - simpl mk_zn2z_ops_karatsuba. simpl word in *. - rewrite <- (IHn n). auto. - Qed. - - (** * The main type [t], isomorphic with [exists n, word w0 n] *) -"; - - pr " Inductive t' :="; - for i = 0 to size do - pr " | N%i : w%i -> t'" i i - done; - pr " | Nn : forall n, word w%i (S n) -> t'." size; - pr ""; - pr " Definition t := t'."; - pr ""; - - pr " (** * A generic toolbox for building and deconstructing [t] *)"; - pr ""; - - pr " Local Notation SizePlus n := %sn%s." - (iter_str size "(S ") (iter_str size ")"); - pr " Local Notation Size := (SizePlus O)."; - pr ""; - - pr " Tactic Notation (at level 3) \"do_size\" tactic3(t) := do %i t." (size+1); - pr ""; - - pr " Definition dom_t n := match n with"; - for i = 0 to size do - pr " | %i => w%i" i i; - done; - pr " | %sn => word w%i n" (if size=0 then "" else "SizePlus ") size; - pr " end."; - pr ""; - -pr -" Instance dom_op n : ZnZ.Ops (dom_t n) | 10. - Proof. - do_size (destruct n; [simpl;auto with *|]). - unfold dom_t. auto with *. - Defined. -"; - - pr " Definition iter_t {A:Type}(f : forall n, dom_t n -> A) : t -> A :="; - for i = 0 to size do - pr " let f%i := f %i in" i i; - done; - pr " let fn n := f (SizePlus (S n)) in"; - pr " fun x => match x with"; - for i = 0 to size do - pr " | N%i wx => f%i wx" i i; - done; - pr " | Nn n wx => fn n wx"; - pr " end."; - pr ""; - - pr " Definition mk_t (n:nat) : dom_t n -> t :="; - pr " match n as n' return dom_t n' -> t with"; - for i = 0 to size do - pr " | %i => N%i" i i; - done; - pr " | %s(S n) => Nn n" (if size=0 then "" else "SizePlus "); - pr " end."; - pr ""; - -pr -" Definition level := iter_t (fun n _ => n). - - Inductive View_t : t -> Prop := - Mk_t : forall n (x : dom_t n), View_t (mk_t n x). - - Lemma destr_t : forall x, View_t x. - Proof. - intros x. generalize (Mk_t (level x)). destruct x; simpl; auto. - Defined. - - Lemma iter_mk_t : forall A (f:forall n, dom_t n -> A), - forall n x, iter_t f (mk_t n x) = f n x. - Proof. - do_size (destruct n; try reflexivity). - Qed. - - (** * Projection to ZArith *) - - Definition to_Z : t -> Z := - Eval lazy beta iota delta [iter_t dom_t dom_op] in - iter_t (fun _ x => ZnZ.to_Z x). - - Notation \"[ x ]\" := (to_Z x). - - Theorem spec_mk_t : forall n (x:dom_t n), [mk_t n x] = ZnZ.to_Z x. - Proof. - intros. change to_Z with (iter_t (fun _ x => ZnZ.to_Z x)). - rewrite iter_mk_t; auto. - Qed. - - (** * Regular make op, without memoization or karatsuba - - This will normally never be used for actual computations, - but only for specification purpose when using - [word (dom_t n) m] intermediate values. *) - - Fixpoint nmake_op (ww:Type) (ww_op: ZnZ.Ops ww) (n: nat) : - ZnZ.Ops (word ww n) := - match n return ZnZ.Ops (word ww n) with - O => ww_op - | S n1 => mk_zn2z_ops (nmake_op ww ww_op n1) - end. - - Definition eval n m := ZnZ.to_Z (Ops:=nmake_op _ (dom_op n) m). - - Theorem nmake_op_S: forall ww (w_op: ZnZ.Ops ww) x, - nmake_op _ w_op (S x) = mk_zn2z_ops (nmake_op _ w_op x). - Proof. - auto. - Qed. - - Theorem digits_nmake_S :forall n ww (w_op: ZnZ.Ops ww), - ZnZ.digits (nmake_op _ w_op (S n)) = - xO (ZnZ.digits (nmake_op _ w_op n)). - Proof. - auto. - Qed. - - Theorem digits_nmake : forall n ww (w_op: ZnZ.Ops ww), - ZnZ.digits (nmake_op _ w_op n) = Pos.shiftl_nat (ZnZ.digits w_op) n. - Proof. - induction n. auto. - intros ww ww_op. rewrite Pshiftl_nat_S, <- IHn; auto. - Qed. - - Theorem nmake_double: forall n ww (w_op: ZnZ.Ops ww), - ZnZ.to_Z (Ops:=nmake_op _ w_op n) = - @DoubleBase.double_to_Z _ (ZnZ.digits w_op) (ZnZ.to_Z (Ops:=w_op)) n. - Proof. - intros n; elim n; auto; clear n. - intros n Hrec ww ww_op; simpl DoubleBase.double_to_Z; unfold zn2z_to_Z. - rewrite <- Hrec; auto. - unfold DoubleBase.double_wB; rewrite <- digits_nmake; auto. - Qed. - - Theorem nmake_WW: forall ww ww_op n xh xl, - (ZnZ.to_Z (Ops:=nmake_op ww ww_op (S n)) (WW xh xl) = - ZnZ.to_Z (Ops:=nmake_op ww ww_op n) xh * - base (ZnZ.digits (nmake_op ww ww_op n)) + - ZnZ.to_Z (Ops:=nmake_op ww ww_op n) xl)%%Z. - Proof. - auto. - Qed. - - (** * The specification proofs for the word operators *) -"; - - if size <> 0 then - pr " Typeclasses Opaque %s." (iter_name 1 size "w" ""); - pr ""; - - pr " Instance w0_spec: ZnZ.Specs w0_op := W0.specs."; - for i = 1 to min 3 size do - pr " Instance w%i_spec: ZnZ.Specs w%i_op := mk_zn2z_specs w%i_spec." i i (i-1) - done; - for i = 4 to size do - pr " Instance w%i_spec: ZnZ.Specs w%i_op := mk_zn2z_specs_karatsuba w%i_spec." i i (i-1) - done; - pr " Instance w%i_spec: ZnZ.Specs w%i_op := mk_zn2z_specs_karatsuba w%i_spec." (size+1) (size+1) size; - - -pr " - Instance wn_spec (n:nat) : ZnZ.Specs (make_op n). - Proof. - induction n. - rewrite make_op_omake; simpl; auto with *. - rewrite make_op_S. exact (mk_zn2z_specs_karatsuba IHn). - Qed. - - Instance dom_spec n : ZnZ.Specs (dom_op n) | 10. - Proof. - do_size (destruct n; auto with *). apply wn_spec. - Qed. - - Let make_op_WW : forall n x y, - (ZnZ.to_Z (Ops:=make_op (S n)) (WW x y) = - ZnZ.to_Z (Ops:=make_op n) x * base (ZnZ.digits (make_op n)) - + ZnZ.to_Z (Ops:=make_op n) y)%%Z. - Proof. - intros n x y; rewrite make_op_S; auto. - Qed. - - (** * Zero *) - - Definition zero0 : w0 := ZnZ.zero. - - Definition zeron n : dom_t n := - match n with - | O => zero0 - | SizePlus (S n) => W0 - | _ => W0 - end. - - Lemma spec_zeron : forall n, ZnZ.to_Z (zeron n) = 0%%Z. - Proof. - do_size (destruct n; - [match goal with - |- @eq Z (_ (zeron ?n)) _ => - apply (ZnZ.spec_0 (Specs:=dom_spec n)) - end|]). - destruct n; auto. simpl. rewrite make_op_S. fold word. - apply (ZnZ.spec_0 (Specs:=wn_spec (SizePlus 0))). - Qed. - - (** * Digits *) - - Lemma digits_make_op_0 : forall n, - ZnZ.digits (make_op n) = Pos.shiftl_nat (ZnZ.digits (dom_op Size)) (S n). - Proof. - induction n. - auto. - replace (ZnZ.digits (make_op (S n))) with (xO (ZnZ.digits (make_op n))). - rewrite IHn; auto. - rewrite make_op_S; auto. - Qed. - - Lemma digits_make_op : forall n, - ZnZ.digits (make_op n) = Pos.shiftl_nat (ZnZ.digits w0_op) (SizePlus (S n)). - Proof. - intros. rewrite digits_make_op_0. - replace (SizePlus (S n)) with (S n + Size) by (rewrite <- plus_comm; auto). - rewrite Pshiftl_nat_plus. auto. - Qed. - - Lemma digits_dom_op : forall n, - ZnZ.digits (dom_op n) = Pos.shiftl_nat (ZnZ.digits w0_op) n. - Proof. - do_size (destruct n; try reflexivity). - exact (digits_make_op n). - Qed. - - Lemma digits_dom_op_nmake : forall n m, - ZnZ.digits (dom_op (m+n)) = ZnZ.digits (nmake_op _ (dom_op n) m). - Proof. - intros. rewrite digits_nmake, 2 digits_dom_op. apply Pshiftl_nat_plus. - Qed. - - (** * Conversion between [zn2z (dom_t n)] and [dom_t (S n)]. - - These two types are provably equal, but not convertible, - hence we need some work. We now avoid using generic casts - (i.e. rewrite via proof of equalities in types), since - proving things with them is a mess. - *) - - Definition succ_t n : zn2z (dom_t n) -> dom_t (S n) := - match n with - | SizePlus (S _) => fun x => x - | _ => fun x => x - end. - - Lemma spec_succ_t : forall n x, - ZnZ.to_Z (succ_t n x) = - zn2z_to_Z (base (ZnZ.digits (dom_op n))) ZnZ.to_Z x. - Proof. - do_size (destruct n ; [reflexivity|]). - intros. simpl. rewrite make_op_S. simpl. auto. - Qed. - - Definition pred_t n : dom_t (S n) -> zn2z (dom_t n) := - match n with - | SizePlus (S _) => fun x => x - | _ => fun x => x - end. - - Lemma succ_pred_t : forall n x, succ_t n (pred_t n x) = x. - Proof. - do_size (destruct n ; [reflexivity|]). reflexivity. - Qed. - - (** We can hence project from [zn2z (dom_t n)] to [t] : *) - - Definition mk_t_S n (x : zn2z (dom_t n)) : t := - mk_t (S n) (succ_t n x). - - Lemma spec_mk_t_S : forall n x, - [mk_t_S n x] = zn2z_to_Z (base (ZnZ.digits (dom_op n))) ZnZ.to_Z x. - Proof. - intros. unfold mk_t_S. rewrite spec_mk_t. apply spec_succ_t. - Qed. - - Lemma mk_t_S_level : forall n x, level (mk_t_S n x) = S n. - Proof. - intros. unfold mk_t_S, level. rewrite iter_mk_t; auto. - Qed. - - (** * Conversion from [word (dom_t n) m] to [dom_t (m+n)]. - - Things are more complex here. We start with a naive version - that breaks zn2z-trees and reconstruct them. Doing this is - quite unfortunate, but I don't know how to fully avoid that. - (cast someday ?). Then we build an optimized version where - all basic cases (n<=6 or m<=7) are nicely handled. - *) - - Definition zn2z_map {A} {B} (f:A->B) (x:zn2z A) : zn2z B := - match x with - | W0 => W0 - | WW h l => WW (f h) (f l) - end. - - Lemma zn2z_map_id : forall A f (x:zn2z A), (forall u, f u = u) -> - zn2z_map f x = x. - Proof. - destruct x; auto; intros. - simpl; f_equal; auto. - Qed. - - (** The naive version *) - - Fixpoint plus_t n m : word (dom_t n) m -> dom_t (m+n) := - match m as m' return word (dom_t n) m' -> dom_t (m'+n) with - | O => fun x => x - | S m => fun x => succ_t _ (zn2z_map (plus_t n m) x) - end. - - Theorem spec_plus_t : forall n m (x:word (dom_t n) m), - ZnZ.to_Z (plus_t n m x) = eval n m x. - Proof. - unfold eval. - induction m. - simpl; auto. - intros. - simpl plus_t; simpl plus. rewrite spec_succ_t. - destruct x. - simpl; auto. - fold word in w, w0. - simpl. rewrite 2 IHm. f_equal. f_equal. f_equal. - apply digits_dom_op_nmake. - Qed. - - Definition mk_t_w n m (x:word (dom_t n) m) : t := - mk_t (m+n) (plus_t n m x). - - Theorem spec_mk_t_w : forall n m (x:word (dom_t n) m), - [mk_t_w n m x] = eval n m x. - Proof. - intros. unfold mk_t_w. rewrite spec_mk_t. apply spec_plus_t. - Qed. - - (** The optimized version. - - NB: the last particular case for m could depend on n, - but it's simplier to just expand everywhere up to m=7 - (cf [mk_t_w'] later). - *) - - Definition plus_t' n : forall m, word (dom_t n) m -> dom_t (m+n) := - match n return (forall m, word (dom_t n) m -> dom_t (m+n)) with - | SizePlus (S n') as n => plus_t n - | _ as n => - fun m => match m return (word (dom_t n) m -> dom_t (m+n)) with - | SizePlus (S (S m')) as m => plus_t n m - | _ => fun x => x - end - end. - - Lemma plus_t_equiv : forall n m x, - plus_t' n m x = plus_t n m x. - Proof. - (do_size try destruct n); try reflexivity; - (do_size try destruct m); try destruct m; try reflexivity; - simpl; symmetry; repeat (intros; apply zn2z_map_id; trivial). - Qed. - - Lemma spec_plus_t' : forall n m x, - ZnZ.to_Z (plus_t' n m x) = eval n m x. - Proof. - intros; rewrite plus_t_equiv. apply spec_plus_t. - Qed. - - (** Particular cases [Nk x] = eval i j x with specific k,i,j - can be solved by the following tactic *) - - Ltac solve_eval := - intros; rewrite <- spec_plus_t'; unfold to_Z; simpl dom_op; reflexivity. - - (** The last particular case that remains useful *) - - Lemma spec_eval_size : forall n x, [Nn n x] = eval Size (S n) x. - Proof. - induction n. - solve_eval. - destruct x as [ | xh xl ]. - simpl. unfold eval. rewrite make_op_S. rewrite nmake_op_S. auto. - simpl word in xh, xl |- *. - unfold to_Z in *. rewrite make_op_WW. - unfold eval in *. rewrite nmake_WW. - f_equal; auto. - f_equal; auto. - f_equal. - rewrite <- digits_dom_op_nmake. rewrite plus_comm; auto. - Qed. - - (** An optimized [mk_t_w]. - - We could say mk_t_w' := mk_t _ (plus_t' n m x) - (TODO: WHY NOT, BTW ??). - Instead we directly define functions for all intersting [n], - reverting to naive [mk_t_w] at places that should normally - never be used (see [mul] and [div_gt]). - *) -"; - -for i = 0 to size-1 do -let pattern = (iter_str (size+1-i) "(S ") ^ "_" ^ (iter_str (size+1-i) ")") in -pr -" Definition mk_t_%iw m := Eval cbv beta zeta iota delta [ mk_t plus ] in - match m return word w%i (S m) -> t with - | %s as p => mk_t_w %i (S p) - | p => mk_t (%i+p) - end. -" i i pattern i (i+1) -done; - -pr -" Definition mk_t_w' n : forall m, word (dom_t n) (S m) -> t := - match n return (forall m, word (dom_t n) (S m) -> t) with"; -for i = 0 to size-1 do pr " | %i => mk_t_%iw" i i done; -pr -" | Size => Nn - | _ as n' => fun m => mk_t_w n' (S m) - end. -"; - -pr -" Ltac solve_spec_mk_t_w' := - rewrite <- spec_plus_t'; - match goal with _ : word (dom_t ?n) ?m |- _ => apply (spec_mk_t (n+m)) end. - - Theorem spec_mk_t_w' : - forall n m x, [mk_t_w' n m x] = eval n (S m) x. - Proof. - intros. - repeat (apply spec_mk_t_w || (destruct n; - [repeat (apply spec_mk_t_w || (destruct m; [solve_spec_mk_t_w'|]))|])). - apply spec_eval_size. - Qed. - - (** * Extend : injecting [dom_t n] into [word (dom_t n) (S m)] *) - - Definition extend n m (x:dom_t n) : word (dom_t n) (S m) := - DoubleBase.extend_aux m (WW (zeron n) x). - - Lemma spec_extend : forall n m x, - [mk_t n x] = eval n (S m) (extend n m x). - Proof. - intros. unfold eval, extend. - rewrite spec_mk_t. - assert (H : forall (x:dom_t n), - (ZnZ.to_Z (zeron n) * base (ZnZ.digits (dom_op n)) + ZnZ.to_Z x = - ZnZ.to_Z x)%%Z). - clear; intros; rewrite spec_zeron; auto. - rewrite <- (@DoubleBase.spec_extend _ - (WW (zeron n)) (ZnZ.digits (dom_op n)) ZnZ.to_Z H m x). - simpl. rewrite digits_nmake, <- nmake_double. auto. - Qed. - - (** A particular case of extend, used in [same_level]: - [extend_size] is [extend Size] *) - - Definition extend_size := DoubleBase.extend (WW (W0:dom_t Size)). - - Lemma spec_extend_size : forall n x, [mk_t Size x] = [Nn n (extend_size n x)]. - Proof. - intros. rewrite spec_eval_size. apply (spec_extend Size n). - Qed. - - (** Misc results about extensions *) - - Let spec_extend_WW : forall n x, - [Nn (S n) (WW W0 x)] = [Nn n x]. - Proof. - intros n x. - set (N:=SizePlus (S n)). - change ([Nn (S n) (extend N 0 x)]=[mk_t N x]). - rewrite (spec_extend N 0). - solve_eval. - Qed. - - Let spec_extend_tr: forall m n w, - [Nn (m + n) (extend_tr w m)] = [Nn n w]. - Proof. - induction m; auto. - intros n x; simpl extend_tr. - simpl plus; rewrite spec_extend_WW; auto. - Qed. - - Let spec_cast_l: forall n m x1, - [Nn n x1] = - [Nn (Max.max n m) (castm (diff_r n m) (extend_tr x1 (snd (diff n m))))]. - Proof. - intros n m x1; case (diff_r n m); simpl castm. - rewrite spec_extend_tr; auto. - Qed. - - Let spec_cast_r: forall n m x1, - [Nn m x1] = - [Nn (Max.max n m) (castm (diff_l n m) (extend_tr x1 (fst (diff n m))))]. - Proof. - intros n m x1; case (diff_l n m); simpl castm. - rewrite spec_extend_tr; auto. - Qed. - - Ltac unfold_lets := - match goal with - | h : _ |- _ => unfold h; clear h; unfold_lets - | _ => idtac - end. - - (** * [same_level] - - Generic binary operator construction, by extending the smaller - argument to the level of the other. - *) - - Section SameLevel. - - Variable res: Type. - Variable P : Z -> Z -> res -> Prop. - Variable f : forall n, dom_t n -> dom_t n -> res. - Variable Pf : forall n x y, P (ZnZ.to_Z x) (ZnZ.to_Z y) (f n x y). -"; - -for i = 0 to size do -pr " Let f%i : w%i -> w%i -> res := f %i." i i i i -done; -pr -" Let fn n := f (SizePlus (S n)). - - Let Pf' : - forall n x y u v, u = [mk_t n x] -> v = [mk_t n y] -> P u v (f n x y). - Proof. - intros. subst. rewrite 2 spec_mk_t. apply Pf. - Qed. -"; - -let ext i j s = - if j <= i then s else Printf.sprintf "(extend %i %i %s)" i (j-i-1) s -in - -pr " Notation same_level_folded := (fun x y => match x, y with"; -for i = 0 to size do - for j = 0 to size do - pr " | N%i wx, N%i wy => f%i %s %s" i j (max i j) (ext i j "wx") (ext j i "wy") - done; - pr " | N%i wx, Nn m wy => fn m (extend_size m %s) wy" i (ext i size "wx") -done; -for i = 0 to size do - pr " | Nn n wx, N%i wy => fn n wx (extend_size n %s)" i (ext i size "wy") -done; -pr -" | Nn n wx, Nn m wy => - let mn := Max.max n m in - let d := diff n m in - fn mn - (castm (diff_r n m) (extend_tr wx (snd d))) - (castm (diff_l n m) (extend_tr wy (fst d))) - end). -"; - -pr -" Definition same_level := Eval lazy beta iota delta - [ DoubleBase.extend DoubleBase.extend_aux extend zeron ] - in same_level_folded. - - Lemma spec_same_level_0: forall x y, P [x] [y] (same_level x y). - Proof. - change same_level with same_level_folded. unfold_lets. - destruct x, y; apply Pf'; simpl mk_t; rewrite <- ?spec_extend_size; - match goal with - | |- context [ extend ?n ?m _ ] => apply (spec_extend n m) - | |- context [ castm _ _ ] => apply spec_cast_l || apply spec_cast_r - | _ => reflexivity - end. - Qed. - - End SameLevel. - - Arguments same_level [res] f x y. - - Theorem spec_same_level_dep : - forall res - (P : nat -> Z -> Z -> res -> Prop) - (Pantimon : forall n m z z' r, n <= m -> P m z z' r -> P n z z' r) - (f : forall n, dom_t n -> dom_t n -> res) - (Pf: forall n x y, P n (ZnZ.to_Z x) (ZnZ.to_Z y) (f n x y)), - forall x y, P (level x) [x] [y] (same_level f x y). - Proof. - intros res P Pantimon f Pf. - set (f' := fun n x y => (n, f n x y)). - set (P' := fun z z' r => P (fst r) z z' (snd r)). - assert (FST : forall x y, level x <= fst (same_level f' x y)) - by (destruct x, y; simpl; omega with * ). - assert (SND : forall x y, same_level f x y = snd (same_level f' x y)) - by (destruct x, y; reflexivity). - intros. eapply Pantimon; [eapply FST|]. - rewrite SND. eapply (@spec_same_level_0 _ P' f'); eauto. - Qed. - - (** * [iter] - - Generic binary operator construction, by splitting the larger - argument in blocks and applying the smaller argument to them. - *) - - Section Iter. - - Variable res: Type. - Variable P: Z -> Z -> res -> Prop. - - Variable f : forall n, dom_t n -> dom_t n -> res. - Variable Pf : forall n x y, P (ZnZ.to_Z x) (ZnZ.to_Z y) (f n x y). - - Variable fd : forall n m, dom_t n -> word (dom_t n) (S m) -> res. - Variable fg : forall n m, word (dom_t n) (S m) -> dom_t n -> res. - Variable Pfd : forall n m x y, P (ZnZ.to_Z x) (eval n (S m) y) (fd n m x y). - Variable Pfg : forall n m x y, P (eval n (S m) x) (ZnZ.to_Z y) (fg n m x y). - - Variable fnm: forall n m, word (dom_t Size) (S n) -> word (dom_t Size) (S m) -> res. - Variable Pfnm: forall n m x y, P [Nn n x] [Nn m y] (fnm n m x y). - - Let Pf' : - forall n x y u v, u = [mk_t n x] -> v = [mk_t n y] -> P u v (f n x y). - Proof. - intros. subst. rewrite 2 spec_mk_t. apply Pf. - Qed. - - Let Pfd' : forall n m x y u v, u = [mk_t n x] -> v = eval n (S m) y -> - P u v (fd n m x y). - Proof. - intros. subst. rewrite spec_mk_t. apply Pfd. - Qed. - - Let Pfg' : forall n m x y u v, u = eval n (S m) x -> v = [mk_t n y] -> - P u v (fg n m x y). - Proof. - intros. subst. rewrite spec_mk_t. apply Pfg. - Qed. -"; - -for i = 0 to size do -pr " Let f%i := f %i." i i -done; - -for i = 0 to size do -pr " Let f%in := fd %i." i i; -pr " Let fn%i := fg %i." i i; -done; - -pr " Notation iter_folded := (fun x y => match x, y with"; -for i = 0 to size do - for j = 0 to size do - pr " | N%i wx, N%i wy => f%s wx wy" i j - (if i = j then string_of_int i - else if i < j then string_of_int i ^ "n " ^ string_of_int (j-i-1) - else "n" ^ string_of_int j ^ " " ^ string_of_int (i-j-1)) - done; - pr " | N%i wx, Nn m wy => f%in m %s wy" i size (ext i size "wx") -done; -for i = 0 to size do - pr " | Nn n wx, N%i wy => fn%i n wx %s" i size (ext i size "wy") -done; -pr -" | Nn n wx, Nn m wy => fnm n m wx wy - end). -"; - -pr -" Definition iter := Eval lazy beta iota delta - [extend DoubleBase.extend DoubleBase.extend_aux zeron] - in iter_folded. - - Lemma spec_iter: forall x y, P [x] [y] (iter x y). - Proof. - change iter with iter_folded; unfold_lets. - destruct x; destruct y; apply Pf' || apply Pfd' || apply Pfg' || apply Pfnm; - simpl mk_t; - match goal with - | |- ?x = ?x => reflexivity - | |- [Nn _ _] = _ => apply spec_eval_size - | |- context [extend ?n ?m _] => apply (spec_extend n m) - | _ => idtac - end; - unfold to_Z; rewrite <- spec_plus_t'; simpl dom_op; reflexivity. - Qed. - - End Iter. -"; - -pr -" Definition switch - (P:nat->Type)%s - (fn:forall n, P n) n := - match n return P n with" - (iter_str_gen size (fun i -> Printf.sprintf "(f%i:P %i)" i i)); -for i = 0 to size do pr " | %i => f%i" i i done; -pr -" | n => fn n - end. -"; - -pr -" Lemma spec_switch : forall P (f:forall n, P n) n, - switch P %sf n = f n. - Proof. - repeat (destruct n; try reflexivity). - Qed. -" (iter_str_gen size (fun i -> Printf.sprintf "(f %i) " i)); - -pr -" (** * [iter_sym] - - A variant of [iter] for symmetric functions, or pseudo-symmetric - functions (when f y x can be deduced from f x y). - *) - - Section IterSym. - - Variable res: Type. - Variable P: Z -> Z -> res -> Prop. - - Variable f : forall n, dom_t n -> dom_t n -> res. - Variable Pf : forall n x y, P (ZnZ.to_Z x) (ZnZ.to_Z y) (f n x y). - - Variable fg : forall n m, word (dom_t n) (S m) -> dom_t n -> res. - Variable Pfg : forall n m x y, P (eval n (S m) x) (ZnZ.to_Z y) (fg n m x y). - - Variable fnm: forall n m, word (dom_t Size) (S n) -> word (dom_t Size) (S m) -> res. - Variable Pfnm: forall n m x y, P [Nn n x] [Nn m y] (fnm n m x y). - - Variable opp: res -> res. - Variable Popp : forall u v r, P u v r -> P v u (opp r). -"; - -for i = 0 to size do -pr " Let f%i := f %i." i i -done; - -for i = 0 to size do -pr " Let fn%i := fg %i." i i; -done; - -pr " Let f' := switch _ %s f." (iter_name 0 size "f" ""); -pr " Let fg' := switch _ %s fg." (iter_name 0 size "fn" ""); - -pr -" Local Notation iter_sym_folded := - (iter res f' (fun n m x y => opp (fg' n m y x)) fg' fnm). - - Definition iter_sym := - Eval lazy beta zeta iota delta [iter f' fg' switch] in iter_sym_folded. - - Lemma spec_iter_sym: forall x y, P [x] [y] (iter_sym x y). - Proof. - intros. change iter_sym with iter_sym_folded. apply spec_iter; clear x y. - unfold_lets. - intros. rewrite spec_switch. auto. - intros. apply Popp. unfold_lets. rewrite spec_switch; auto. - intros. unfold_lets. rewrite spec_switch; auto. - auto. - Qed. - - End IterSym. - - (** * Reduction - - [reduce] can be used instead of [mk_t], it will choose the - lowest possible level. NB: We only search and remove leftmost - W0's via ZnZ.eq0, any non-W0 block ends the process, even - if its value is 0. - *) - - (** First, a direct version ... *) - - Fixpoint red_t n : dom_t n -> t := - match n return dom_t n -> t with - | O => N0 - | S n => fun x => - let x' := pred_t n x in - reduce_n1 _ _ (N0 zero0) ZnZ.eq0 (red_t n) (mk_t_S n) x' - end. - - Lemma spec_red_t : forall n x, [red_t n x] = [mk_t n x]. - Proof. - induction n. - reflexivity. - intros. - simpl red_t. unfold reduce_n1. - rewrite <- (succ_pred_t n x) at 2. - remember (pred_t n x) as x'. - rewrite spec_mk_t, spec_succ_t. - destruct x' as [ | xh xl]. simpl. apply ZnZ.spec_0. - generalize (ZnZ.spec_eq0 xh); case ZnZ.eq0; intros H. - rewrite IHn, spec_mk_t. simpl. rewrite H; auto. - apply spec_mk_t_S. - Qed. - - (** ... then a specialized one *) -"; - -for i = 0 to size do -pr " Definition eq0%i := @ZnZ.eq0 _ w%i_op." i i; -done; - -pr " - Definition reduce_0 := N0."; -for i = 1 to size do - pr " Definition reduce_%i :=" i; - pr " Eval lazy beta iota delta [reduce_n1] in"; - pr " reduce_n1 _ _ (N0 zero0) eq0%i reduce_%i N%i." (i-1) (i-1) i -done; - - pr " Definition reduce_%i :=" (size+1); - pr " Eval lazy beta iota delta [reduce_n1] in"; - pr " reduce_n1 _ _ (N0 zero0) eq0%i reduce_%i (Nn 0)." size size; - - pr " Definition reduce_n n :="; - pr " Eval lazy beta iota delta [reduce_n] in"; - pr " reduce_n _ _ (N0 zero0) reduce_%i Nn n." (size + 1); - pr ""; - -pr " Definition reduce n : dom_t n -> t :="; -pr " match n with"; -for i = 0 to size do -pr " | %i => reduce_%i" i i; -done; -pr " | %s(S n) => reduce_n n" (if size=0 then "" else "SizePlus "); -pr " end."; -pr ""; - -pr " Ltac unfold_red := unfold reduce, %s." (iter_name 1 size "reduce_" ","); -pr ""; -for i = 0 to size do -pr " Declare Equivalent Keys reduce reduce_%i." i; -done; -pr " Declare Equivalent Keys reduce_n reduce_%i." (size + 1); - -pr " - Ltac solve_red := - let H := fresh in let G := fresh in - match goal with - | |- ?P (S ?n) => assert (H:P n) by solve_red - | _ => idtac - end; - intros n G x; destruct (le_lt_eq_dec _ _ G) as [LT|EQ]; - solve [ - apply (H _ (lt_n_Sm_le _ _ LT)) | - inversion LT | - subst; change (reduce 0 x = red_t 0 x); reflexivity | - specialize (H (pred n)); subst; destruct x; - [|unfold_red; rewrite H; auto]; reflexivity - ]. - - Lemma reduce_equiv : forall n x, n <= Size -> reduce n x = red_t n x. - Proof. - set (P N := forall n, n <= N -> forall x, reduce n x = red_t n x). - intros n x H. revert n H x. change (P Size). solve_red. - Qed. - - Lemma spec_reduce_n : forall n x, [reduce_n n x] = [Nn n x]. - Proof. - assert (H : forall x, reduce_%i x = red_t (SizePlus 1) x). - destruct x; [|unfold reduce_%i; rewrite (reduce_equiv Size)]; auto. - induction n. - intros. rewrite H. apply spec_red_t. - destruct x as [|xh xl]. - simpl. rewrite make_op_S. exact ZnZ.spec_0. - fold word in *. - destruct xh; auto. - simpl reduce_n. - rewrite IHn. - rewrite spec_extend_WW; auto. - Qed. -" (size+1) (size+1); - -pr -" Lemma spec_reduce : forall n x, [reduce n x] = ZnZ.to_Z x. - Proof. - do_size (destruct n; - [intros; rewrite reduce_equiv;[apply spec_red_t|auto with arith]|]). - apply spec_reduce_n. - Qed. - -End Make. -"; diff --git a/theories/Numbers/Natural/BigN/Nbasic.v b/theories/Numbers/Natural/BigN/Nbasic.v deleted file mode 100644 index 18d0262c9..000000000 --- a/theories/Numbers/Natural/BigN/Nbasic.v +++ /dev/null @@ -1,569 +0,0 @@ -(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016 *) -(* \VV/ **************************************************************) -(* // * This file is distributed under the terms of the *) -(* * GNU Lesser General Public License Version 2.1 *) -(************************************************************************) -(* Benjamin Gregoire, Laurent Thery, INRIA, 2007 *) -(************************************************************************) - -Require Import ZArith Ndigits. -Require Import BigNumPrelude. -Require Import Max. -Require Import DoubleType. -Require Import DoubleBase. -Require Import CyclicAxioms. -Require Import DoubleCyclic. - -Arguments mk_zn2z_ops [t] ops. -Arguments mk_zn2z_ops_karatsuba [t] ops. -Arguments mk_zn2z_specs [t ops] specs. -Arguments mk_zn2z_specs_karatsuba [t ops] specs. -Arguments ZnZ.digits [t] Ops. -Arguments ZnZ.zdigits [t] Ops. - -Lemma Pshiftl_nat_Zpower : forall n p, - Zpos (Pos.shiftl_nat p n) = Zpos p * 2 ^ Z.of_nat n. -Proof. - intros. - rewrite Z.mul_comm. - induction n. simpl; auto. - transitivity (2 * (2 ^ Z.of_nat n * Zpos p)). - rewrite <- IHn. auto. - rewrite Z.mul_assoc. - rewrite Nat2Z.inj_succ. - rewrite <- Z.pow_succ_r; auto with zarith. -Qed. - -(* To compute the necessary height *) - -Fixpoint plength (p: positive) : positive := - match p with - xH => xH - | xO p1 => Pos.succ (plength p1) - | xI p1 => Pos.succ (plength p1) - end. - -Theorem plength_correct: forall p, (Zpos p < 2 ^ Zpos (plength p))%Z. -assert (F: (forall p, 2 ^ (Zpos (Pos.succ p)) = 2 * 2 ^ Zpos p)%Z). -intros p; replace (Zpos (Pos.succ p)) with (1 + Zpos p)%Z. -rewrite Zpower_exp; auto with zarith. -rewrite Pos2Z.inj_succ; unfold Z.succ; auto with zarith. -intros p; elim p; simpl plength; auto. -intros p1 Hp1; rewrite F; repeat rewrite Pos2Z.inj_xI. -assert (tmp: (forall p, 2 * p = p + p)%Z); - try repeat rewrite tmp; auto with zarith. -intros p1 Hp1; rewrite F; rewrite (Pos2Z.inj_xO p1). -assert (tmp: (forall p, 2 * p = p + p)%Z); - try repeat rewrite tmp; auto with zarith. -rewrite Z.pow_1_r; auto with zarith. -Qed. - -Theorem plength_pred_correct: forall p, (Zpos p <= 2 ^ Zpos (plength (Pos.pred p)))%Z. -intros p; case (Pos.succ_pred_or p); intros H1. -subst; simpl plength. -rewrite Z.pow_1_r; auto with zarith. -pattern p at 1; rewrite <- H1. -rewrite Pos2Z.inj_succ; unfold Z.succ; auto with zarith. -generalize (plength_correct (Pos.pred p)); auto with zarith. -Qed. - -Definition Pdiv p q := - match Z.div (Zpos p) (Zpos q) with - Zpos q1 => match (Zpos p) - (Zpos q) * (Zpos q1) with - Z0 => q1 - | _ => (Pos.succ q1) - end - | _ => xH - end. - -Theorem Pdiv_le: forall p q, - Zpos p <= Zpos q * Zpos (Pdiv p q). -intros p q. -unfold Pdiv. -assert (H1: Zpos q > 0); auto with zarith. -assert (H1b: Zpos p >= 0); auto with zarith. -generalize (Z_div_ge0 (Zpos p) (Zpos q) H1 H1b). -generalize (Z_div_mod_eq (Zpos p) (Zpos q) H1); case Z.div. - intros HH _; rewrite HH; rewrite Z.mul_0_r; rewrite Z.mul_1_r; simpl. -case (Z_mod_lt (Zpos p) (Zpos q) H1); auto with zarith. -intros q1 H2. -replace (Zpos p - Zpos q * Zpos q1) with (Zpos p mod Zpos q). - 2: pattern (Zpos p) at 2; rewrite H2; auto with zarith. -generalize H2 (Z_mod_lt (Zpos p) (Zpos q) H1); clear H2; - case Z.modulo. - intros HH _; rewrite HH; auto with zarith. - intros r1 HH (_,HH1); rewrite HH; rewrite Pos2Z.inj_succ. - unfold Z.succ; rewrite Z.mul_add_distr_l; auto with zarith. - intros r1 _ (HH,_); case HH; auto. -intros q1 HH; rewrite HH. -unfold Z.ge; simpl Z.compare; intros HH1; case HH1; auto. -Qed. - -Definition is_one p := match p with xH => true | _ => false end. - -Theorem is_one_one: forall p, is_one p = true -> p = xH. -intros p; case p; auto; intros p1 H1; discriminate H1. -Qed. - -Definition get_height digits p := - let r := Pdiv p digits in - if is_one r then xH else Pos.succ (plength (Pos.pred r)). - -Theorem get_height_correct: - forall digits N, - Zpos N <= Zpos digits * (2 ^ (Zpos (get_height digits N) -1)). -intros digits N. -unfold get_height. -assert (H1 := Pdiv_le N digits). -case_eq (is_one (Pdiv N digits)); intros H2. -rewrite (is_one_one _ H2) in H1. -rewrite Z.mul_1_r in H1. -change (2^(1-1))%Z with 1; rewrite Z.mul_1_r; auto. -clear H2. -apply Z.le_trans with (1 := H1). -apply Z.mul_le_mono_nonneg_l; auto with zarith. -rewrite Pos2Z.inj_succ; unfold Z.succ. -rewrite Z.add_comm; rewrite Z.add_simpl_l. -apply plength_pred_correct. -Qed. - -Definition zn2z_word_comm : forall w n, zn2z (word w n) = word (zn2z w) n. - fix zn2z_word_comm 2. - intros w n; case n. - reflexivity. - intros n0;simpl. - case (zn2z_word_comm w n0). - reflexivity. -Defined. - -Fixpoint extend (n:nat) {struct n} : forall w:Type, zn2z w -> word w (S n) := - match n return forall w:Type, zn2z w -> word w (S n) with - | O => fun w x => x - | S m => - let aux := extend m in - fun w x => WW W0 (aux w x) - end. - -Section ExtendMax. - -Open Scope nat_scope. - -Fixpoint plusnS (n m: nat) {struct n} : (n + S m = S (n + m))%nat := - match n return (n + S m = S (n + m))%nat with - | 0 => eq_refl (S m) - | S n1 => - let v := S (S n1 + m) in - eq_ind_r (fun n => S n = v) (eq_refl v) (plusnS n1 m) - end. - -Fixpoint plusn0 n : n + 0 = n := - match n return (n + 0 = n) with - | 0 => eq_refl 0 - | S n1 => - let v := S n1 in - eq_ind_r (fun n : nat => S n = v) (eq_refl v) (plusn0 n1) - end. - - Fixpoint diff (m n: nat) {struct m}: nat * nat := - match m, n with - O, n => (O, n) - | m, O => (m, O) - | S m1, S n1 => diff m1 n1 - end. - -Fixpoint diff_l (m n : nat) {struct m} : fst (diff m n) + n = max m n := - match m return fst (diff m n) + n = max m n with - | 0 => - match n return (n = max 0 n) with - | 0 => eq_refl _ - | S n0 => eq_refl _ - end - | S m1 => - match n return (fst (diff (S m1) n) + n = max (S m1) n) - with - | 0 => plusn0 _ - | S n1 => - let v := fst (diff m1 n1) + n1 in - let v1 := fst (diff m1 n1) + S n1 in - eq_ind v (fun n => v1 = S n) - (eq_ind v1 (fun n => v1 = n) (eq_refl v1) (S v) (plusnS _ _)) - _ (diff_l _ _) - end - end. - -Fixpoint diff_r (m n: nat) {struct m}: snd (diff m n) + m = max m n := - match m return (snd (diff m n) + m = max m n) with - | 0 => - match n return (snd (diff 0 n) + 0 = max 0 n) with - | 0 => eq_refl _ - | S _ => plusn0 _ - end - | S m => - match n return (snd (diff (S m) n) + S m = max (S m) n) with - | 0 => eq_refl (snd (diff (S m) 0) + S m) - | S n1 => - let v := S (max m n1) in - eq_ind_r (fun n => n = v) - (eq_ind_r (fun n => S n = v) - (eq_refl v) (diff_r _ _)) (plusnS _ _) - end - end. - - Variable w: Type. - - Definition castm (m n: nat) (H: m = n) (x: word w (S m)): - (word w (S n)) := - match H in (_ = y) return (word w (S y)) with - | eq_refl => x - end. - -Variable m: nat. -Variable v: (word w (S m)). - -Fixpoint extend_tr (n : nat) {struct n}: (word w (S (n + m))) := - match n return (word w (S (n + m))) with - | O => v - | S n1 => WW W0 (extend_tr n1) - end. - -End ExtendMax. - -Arguments extend_tr [w m] v n. -Arguments castm [w m n] H x. - - - -Section Reduce. - - Variable w : Type. - Variable nT : Type. - Variable N0 : nT. - Variable eq0 : w -> bool. - Variable reduce_n : w -> nT. - Variable zn2z_to_Nt : zn2z w -> nT. - - Definition reduce_n1 (x:zn2z w) := - match x with - | W0 => N0 - | WW xh xl => - if eq0 xh then reduce_n xl - else zn2z_to_Nt x - end. - -End Reduce. - -Section ReduceRec. - - Variable w : Type. - Variable nT : Type. - Variable N0 : nT. - Variable reduce_1n : zn2z w -> nT. - Variable c : forall n, word w (S n) -> nT. - - Fixpoint reduce_n (n:nat) : word w (S n) -> nT := - match n return word w (S n) -> nT with - | O => reduce_1n - | S m => fun x => - match x with - | W0 => N0 - | WW xh xl => - match xh with - | W0 => @reduce_n m xl - | _ => @c (S m) x - end - end - end. - -End ReduceRec. - -Section CompareRec. - - Variable wm w : Type. - Variable w_0 : w. - Variable compare : w -> w -> comparison. - Variable compare0_m : wm -> comparison. - Variable compare_m : wm -> w -> comparison. - - Fixpoint compare0_mn (n:nat) : word wm n -> comparison := - match n return word wm n -> comparison with - | O => compare0_m - | S m => fun x => - match x with - | W0 => Eq - | WW xh xl => - match compare0_mn m xh with - | Eq => compare0_mn m xl - | r => Lt - end - end - end. - - Variable wm_base: positive. - Variable wm_to_Z: wm -> Z. - Variable w_to_Z: w -> Z. - Variable w_to_Z_0: w_to_Z w_0 = 0. - Variable spec_compare0_m: forall x, - compare0_m x = (w_to_Z w_0 ?= wm_to_Z x). - Variable wm_to_Z_pos: forall x, 0 <= wm_to_Z x < base wm_base. - - Let double_to_Z := double_to_Z wm_base wm_to_Z. - Let double_wB := double_wB wm_base. - - Lemma base_xO: forall n, base (xO n) = (base n)^2. - Proof. - intros n1; unfold base. - rewrite (Pos2Z.inj_xO n1); rewrite Z.mul_comm; rewrite Z.pow_mul_r; auto with zarith. - Qed. - - Let double_to_Z_pos: forall n x, 0 <= double_to_Z n x < double_wB n := - (spec_double_to_Z wm_base wm_to_Z wm_to_Z_pos). - - Declare Equivalent Keys compare0_mn compare0_m. - - Lemma spec_compare0_mn: forall n x, - compare0_mn n x = (0 ?= double_to_Z n x). - Proof. - intros n; elim n; clear n; auto. - intros x; rewrite spec_compare0_m; rewrite w_to_Z_0; auto. - intros n Hrec x; case x; unfold compare0_mn; fold compare0_mn; auto. - fold word in *. - intros xh xl. - rewrite 2 Hrec. - simpl double_to_Z. - set (wB := DoubleBase.double_wB wm_base n). - case Z.compare_spec; intros Cmp. - rewrite <- Cmp. reflexivity. - symmetry. apply Z.gt_lt, Z.lt_gt. (* ;-) *) - assert (0 < wB). - unfold wB, DoubleBase.double_wB, base; auto with zarith. - change 0 with (0 + 0); apply Z.add_lt_le_mono; auto with zarith. - apply Z.mul_pos_pos; auto with zarith. - case (double_to_Z_pos n xl); auto with zarith. - case (double_to_Z_pos n xh); intros; exfalso; omega. - Qed. - - Fixpoint compare_mn_1 (n:nat) : word wm n -> w -> comparison := - match n return word wm n -> w -> comparison with - | O => compare_m - | S m => fun x y => - match x with - | W0 => compare w_0 y - | WW xh xl => - match compare0_mn m xh with - | Eq => compare_mn_1 m xl y - | r => Gt - end - end - end. - - Variable spec_compare: forall x y, - compare x y = Z.compare (w_to_Z x) (w_to_Z y). - Variable spec_compare_m: forall x y, - compare_m x y = Z.compare (wm_to_Z x) (w_to_Z y). - Variable wm_base_lt: forall x, - 0 <= w_to_Z x < base (wm_base). - - Let double_wB_lt: forall n x, - 0 <= w_to_Z x < (double_wB n). - Proof. - intros n x; elim n; simpl; auto; clear n. - intros n (H0, H); split; auto. - apply Z.lt_le_trans with (1:= H). - unfold double_wB, DoubleBase.double_wB; simpl. - rewrite base_xO. - set (u := base (Pos.shiftl_nat wm_base n)). - assert (0 < u). - unfold u, base; auto with zarith. - replace (u^2) with (u * u); simpl; auto with zarith. - apply Z.le_trans with (1 * u); auto with zarith. - unfold Z.pow_pos; simpl; ring. - Qed. - - - Lemma spec_compare_mn_1: forall n x y, - compare_mn_1 n x y = Z.compare (double_to_Z n x) (w_to_Z y). - Proof. - intros n; elim n; simpl; auto; clear n. - intros n Hrec x; case x; clear x; auto. - intros y; rewrite spec_compare; rewrite w_to_Z_0. reflexivity. - intros xh xl y; simpl; - rewrite spec_compare0_mn, Hrec. case Z.compare_spec. - intros H1b. - rewrite <- H1b; rewrite Z.mul_0_l; rewrite Z.add_0_l; auto. - symmetry. apply Z.lt_gt. - case (double_wB_lt n y); intros _ H0. - apply Z.lt_le_trans with (1:= H0). - fold double_wB. - case (double_to_Z_pos n xl); intros H1 H2. - apply Z.le_trans with (double_to_Z n xh * double_wB n); auto with zarith. - apply Z.le_trans with (1 * double_wB n); auto with zarith. - case (double_to_Z_pos n xh); intros; exfalso; omega. - Qed. - -End CompareRec. - - -Section AddS. - - Variable w wm : Type. - Variable incr : wm -> carry wm. - Variable addr : w -> wm -> carry wm. - Variable injr : w -> zn2z wm. - - Variable w_0 u: w. - Fixpoint injs (n:nat): word w (S n) := - match n return (word w (S n)) with - O => WW w_0 u - | S n1 => (WW W0 (injs n1)) - end. - - Definition adds x y := - match y with - W0 => C0 (injr x) - | WW hy ly => match addr x ly with - C0 z => C0 (WW hy z) - | C1 z => match incr hy with - C0 z1 => C0 (WW z1 z) - | C1 z1 => C1 (WW z1 z) - end - end - end. - -End AddS. - - Fixpoint length_pos x := - match x with xH => O | xO x1 => S (length_pos x1) | xI x1 => S (length_pos x1) end. - - Theorem length_pos_lt: forall x y, - (length_pos x < length_pos y)%nat -> Zpos x < Zpos y. - Proof. - intros x; elim x; clear x; [intros x1 Hrec | intros x1 Hrec | idtac]; - intros y; case y; clear y; intros y1 H || intros H; simpl length_pos; - try (rewrite (Pos2Z.inj_xI x1) || rewrite (Pos2Z.inj_xO x1)); - try (rewrite (Pos2Z.inj_xI y1) || rewrite (Pos2Z.inj_xO y1)); - try (inversion H; fail); - try (assert (Zpos x1 < Zpos y1); [apply Hrec; apply lt_S_n | idtac]; auto with zarith); - assert (0 < Zpos y1); auto with zarith; red; auto. - Qed. - - Theorem cancel_app: forall A B (f g: A -> B) x, f = g -> f x = g x. - Proof. - intros A B f g x H; rewrite H; auto. - Qed. - - - Section SimplOp. - - Variable w: Type. - - Theorem digits_zop: forall t (ops : ZnZ.Ops t), - ZnZ.digits (mk_zn2z_ops ops) = xO (ZnZ.digits ops). - Proof. - intros ww x; auto. - Qed. - - Theorem digits_kzop: forall t (ops : ZnZ.Ops t), - ZnZ.digits (mk_zn2z_ops_karatsuba ops) = xO (ZnZ.digits ops). - Proof. - intros ww x; auto. - Qed. - - Theorem make_zop: forall t (ops : ZnZ.Ops t), - @ZnZ.to_Z _ (mk_zn2z_ops ops) = - fun z => match z with - | W0 => 0 - | WW xh xl => ZnZ.to_Z xh * base (ZnZ.digits ops) - + ZnZ.to_Z xl - end. - Proof. - intros ww x; auto. - Qed. - - Theorem make_kzop: forall t (ops: ZnZ.Ops t), - @ZnZ.to_Z _ (mk_zn2z_ops_karatsuba ops) = - fun z => match z with - | W0 => 0 - | WW xh xl => ZnZ.to_Z xh * base (ZnZ.digits ops) - + ZnZ.to_Z xl - end. - Proof. - intros ww x; auto. - Qed. - - End SimplOp. - -(** Abstract vision of a datatype of arbitrary-large numbers. - Concrete operations can be derived from these generic - fonctions, in particular from [iter_t] and [same_level]. -*) - -Module Type NAbstract. - -(** The domains: a sequence of [Z/nZ] structures *) - -Parameter dom_t : nat -> Type. -Declare Instance dom_op n : ZnZ.Ops (dom_t n). -Declare Instance dom_spec n : ZnZ.Specs (dom_op n). - -Axiom digits_dom_op : forall n, - ZnZ.digits (dom_op n) = Pos.shiftl_nat (ZnZ.digits (dom_op 0)) n. - -(** The type [t] of arbitrary-large numbers, with abstract constructor [mk_t] - and destructor [destr_t] and iterator [iter_t] *) - -Parameter t : Type. - -Parameter mk_t : forall (n:nat), dom_t n -> t. - -Inductive View_t : t -> Prop := - Mk_t : forall n (x : dom_t n), View_t (mk_t n x). - -Axiom destr_t : forall x, View_t x. (* i.e. every x is a (mk_t n xw) *) - -Parameter iter_t : forall {A:Type}(f : forall n, dom_t n -> A), t -> A. - -Axiom iter_mk_t : forall A (f:forall n, dom_t n -> A), - forall n x, iter_t f (mk_t n x) = f n x. - -(** Conversion to [ZArith] *) - -Parameter to_Z : t -> Z. -Local Notation "[ x ]" := (to_Z x). - -Axiom spec_mk_t : forall n x, [mk_t n x] = ZnZ.to_Z x. - -(** [reduce] is like [mk_t], but try to minimise the level of the number *) - -Parameter reduce : forall (n:nat), dom_t n -> t. -Axiom spec_reduce : forall n x, [reduce n x] = ZnZ.to_Z x. - -(** Number of level in the tree representation of a number. - NB: This function isn't a morphism for setoid [eq]. *) - -Definition level := iter_t (fun n _ => n). - -(** [same_level] and its rich specification, indexed by [level] *) - -Parameter same_level : forall {A:Type} - (f : forall n, dom_t n -> dom_t n -> A), t -> t -> A. - -Axiom spec_same_level_dep : - forall res - (P : nat -> Z -> Z -> res -> Prop) - (Pantimon : forall n m z z' r, (n <= m)%nat -> P m z z' r -> P n z z' r) - (f : forall n, dom_t n -> dom_t n -> res) - (Pf: forall n x y, P n (ZnZ.to_Z x) (ZnZ.to_Z y) (f n x y)), - forall x y, P (level x) [x] [y] (same_level f x y). - -(** [mk_t_S] : building a number of the next level *) - -Parameter mk_t_S : forall (n:nat), zn2z (dom_t n) -> t. - -Axiom spec_mk_t_S : forall n (x:zn2z (dom_t n)), - [mk_t_S n x] = zn2z_to_Z (base (ZnZ.digits (dom_op n))) ZnZ.to_Z x. - -Axiom mk_t_S_level : forall n x, level (mk_t_S n x) = S n. - -End NAbstract. diff --git a/theories/Numbers/Natural/SpecViaZ/NSig.v b/theories/Numbers/Natural/SpecViaZ/NSig.v deleted file mode 100644 index 258e03159..000000000 --- a/theories/Numbers/Natural/SpecViaZ/NSig.v +++ /dev/null @@ -1,124 +0,0 @@ -(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016 *) -(* \VV/ **************************************************************) -(* // * This file is distributed under the terms of the *) -(* * GNU Lesser General Public License Version 2.1 *) -(************************************************************************) -(* Benjamin Gregoire, Laurent Thery, INRIA, 2007 *) -(************************************************************************) - -Require Import BinInt. - -Open Scope Z_scope. - -(** * NSig *) - -(** Interface of a rich structure about natural numbers. - Specifications are written via translation to Z. -*) - -Module Type NType. - - Parameter t : Type. - - Parameter to_Z : t -> Z. - Local Notation "[ x ]" := (to_Z x). - Parameter spec_pos: forall x, 0 <= [x]. - - Parameter of_N : N -> t. - Parameter spec_of_N: forall x, to_Z (of_N x) = Z.of_N x. - Definition to_N n := Z.to_N (to_Z n). - - Definition eq n m := [n] = [m]. - Definition lt n m := [n] < [m]. - Definition le n m := [n] <= [m]. - - Parameter compare : t -> t -> comparison. - Parameter eqb : t -> t -> bool. - Parameter ltb : t -> t -> bool. - Parameter leb : t -> t -> bool. - Parameter max : t -> t -> t. - Parameter min : t -> t -> t. - Parameter zero : t. - Parameter one : t. - Parameter two : t. - Parameter succ : t -> t. - Parameter pred : t -> t. - Parameter add : t -> t -> t. - Parameter sub : t -> t -> t. - Parameter mul : t -> t -> t. - Parameter square : t -> t. - Parameter pow_pos : t -> positive -> t. - Parameter pow_N : t -> N -> t. - Parameter pow : t -> t -> t. - Parameter sqrt : t -> t. - Parameter log2 : t -> t. - Parameter div_eucl : t -> t -> t * t. - Parameter div : t -> t -> t. - Parameter modulo : t -> t -> t. - Parameter gcd : t -> t -> t. - Parameter even : t -> bool. - Parameter odd : t -> bool. - Parameter testbit : t -> t -> bool. - Parameter shiftr : t -> t -> t. - Parameter shiftl : t -> t -> t. - Parameter land : t -> t -> t. - Parameter lor : t -> t -> t. - Parameter ldiff : t -> t -> t. - Parameter lxor : t -> t -> t. - Parameter div2 : t -> t. - - Parameter spec_compare: forall x y, compare x y = ([x] ?= [y]). - Parameter spec_eqb : forall x y, eqb x y = ([x] =? [y]). - Parameter spec_ltb : forall x y, ltb x y = ([x] <? [y]). - Parameter spec_leb : forall x y, leb x y = ([x] <=? [y]). - Parameter spec_max : forall x y, [max x y] = Z.max [x] [y]. - Parameter spec_min : forall x y, [min x y] = Z.min [x] [y]. - Parameter spec_0: [zero] = 0. - Parameter spec_1: [one] = 1. - Parameter spec_2: [two] = 2. - Parameter spec_succ: forall n, [succ n] = [n] + 1. - Parameter spec_add: forall x y, [add x y] = [x] + [y]. - Parameter spec_pred: forall x, [pred x] = Z.max 0 ([x] - 1). - Parameter spec_sub: forall x y, [sub x y] = Z.max 0 ([x] - [y]). - Parameter spec_mul: forall x y, [mul x y] = [x] * [y]. - Parameter spec_square: forall x, [square x] = [x] * [x]. - Parameter spec_pow_pos: forall x n, [pow_pos x n] = [x] ^ Zpos n. - Parameter spec_pow_N: forall x n, [pow_N x n] = [x] ^ Z.of_N n. - Parameter spec_pow: forall x n, [pow x n] = [x] ^ [n]. - Parameter spec_sqrt: forall x, [sqrt x] = Z.sqrt [x]. - Parameter spec_log2: forall x, [log2 x] = Z.log2 [x]. - Parameter spec_div_eucl: forall x y, - let (q,r) := div_eucl x y in ([q], [r]) = Z.div_eucl [x] [y]. - Parameter spec_div: forall x y, [div x y] = [x] / [y]. - Parameter spec_modulo: forall x y, [modulo x y] = [x] mod [y]. - Parameter spec_gcd: forall a b, [gcd a b] = Z.gcd [a] [b]. - Parameter spec_even: forall x, even x = Z.even [x]. - Parameter spec_odd: forall x, odd x = Z.odd [x]. - Parameter spec_testbit: forall x p, testbit x p = Z.testbit [x] [p]. - Parameter spec_shiftr: forall x p, [shiftr x p] = Z.shiftr [x] [p]. - Parameter spec_shiftl: forall x p, [shiftl x p] = Z.shiftl [x] [p]. - Parameter spec_land: forall x y, [land x y] = Z.land [x] [y]. - Parameter spec_lor: forall x y, [lor x y] = Z.lor [x] [y]. - Parameter spec_ldiff: forall x y, [ldiff x y] = Z.ldiff [x] [y]. - Parameter spec_lxor: forall x y, [lxor x y] = Z.lxor [x] [y]. - Parameter spec_div2: forall x, [div2 x] = Z.div2 [x]. - -End NType. - -Module Type NType_Notation (Import N:NType). - Notation "[ x ]" := (to_Z x). - Infix "==" := eq (at level 70). - Notation "0" := zero. - Notation "1" := one. - Notation "2" := two. - Infix "+" := add. - Infix "-" := sub. - Infix "*" := mul. - Infix "^" := pow. - Infix "<=" := le. - Infix "<" := lt. -End NType_Notation. - -Module Type NType' := NType <+ NType_Notation. diff --git a/theories/Numbers/Natural/SpecViaZ/NSigNAxioms.v b/theories/Numbers/Natural/SpecViaZ/NSigNAxioms.v deleted file mode 100644 index 355da4cc6..000000000 --- a/theories/Numbers/Natural/SpecViaZ/NSigNAxioms.v +++ /dev/null @@ -1,487 +0,0 @@ -(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016 *) -(* \VV/ **************************************************************) -(* // * This file is distributed under the terms of the *) -(* * GNU Lesser General Public License Version 2.1 *) -(************************************************************************) - -Require Import ZArith OrdersFacts Nnat NAxioms NSig. - -(** * The interface [NSig.NType] implies the interface [NAxiomsSig] *) - -Module NTypeIsNAxioms (Import NN : NType'). - -Hint Rewrite - spec_0 spec_1 spec_2 spec_succ spec_add spec_mul spec_pred spec_sub - spec_div spec_modulo spec_gcd spec_compare spec_eqb spec_ltb spec_leb - spec_square spec_sqrt spec_log2 spec_max spec_min spec_pow_pos spec_pow_N - spec_pow spec_even spec_odd spec_testbit spec_shiftl spec_shiftr - spec_land spec_lor spec_ldiff spec_lxor spec_div2 spec_of_N - : nsimpl. -Ltac nsimpl := autorewrite with nsimpl. -Ltac ncongruence := unfold eq, to_N; repeat red; intros; nsimpl; congruence. -Ltac zify := unfold eq, lt, le, to_N in *; nsimpl. -Ltac omega_pos n := generalize (spec_pos n); omega with *. - -Local Obligation Tactic := ncongruence. - -Instance eq_equiv : Equivalence eq. -Proof. unfold eq. firstorder. Qed. - -Program Instance succ_wd : Proper (eq==>eq) succ. -Program Instance pred_wd : Proper (eq==>eq) pred. -Program Instance add_wd : Proper (eq==>eq==>eq) add. -Program Instance sub_wd : Proper (eq==>eq==>eq) sub. -Program Instance mul_wd : Proper (eq==>eq==>eq) mul. - -Theorem pred_succ : forall n, pred (succ n) == n. -Proof. -intros. zify. omega_pos n. -Qed. - -Theorem one_succ : 1 == succ 0. -Proof. -now zify. -Qed. - -Theorem two_succ : 2 == succ 1. -Proof. -now zify. -Qed. - -Definition N_of_Z z := of_N (Z.to_N z). - -Lemma spec_N_of_Z z : (0<=z)%Z -> [N_of_Z z] = z. -Proof. - unfold N_of_Z. zify. apply Z2N.id. -Qed. - -Section Induction. - -Variable A : NN.t -> Prop. -Hypothesis A_wd : Proper (eq==>iff) A. -Hypothesis A0 : A 0. -Hypothesis AS : forall n, A n <-> A (succ n). - -Let B (z : Z) := A (N_of_Z z). - -Lemma B0 : B 0. -Proof. -unfold B, N_of_Z; simpl. -rewrite <- (A_wd 0); auto. -red; rewrite spec_0, spec_of_N; auto. -Qed. - -Lemma BS : forall z : Z, (0 <= z)%Z -> B z -> B (z + 1). -Proof. -intros z H1 H2. -unfold B in *. apply -> AS in H2. -setoid_replace (N_of_Z (z + 1)) with (succ (N_of_Z z)); auto. -unfold eq. rewrite spec_succ, 2 spec_N_of_Z; auto with zarith. -Qed. - -Lemma B_holds : forall z : Z, (0 <= z)%Z -> B z. -Proof. -exact (natlike_ind B B0 BS). -Qed. - -Theorem bi_induction : forall n, A n. -Proof. -intro n. setoid_replace n with (N_of_Z (to_Z n)). -apply B_holds. apply spec_pos. -red. now rewrite spec_N_of_Z by apply spec_pos. -Qed. - -End Induction. - -Theorem add_0_l : forall n, 0 + n == n. -Proof. -intros. zify. auto with zarith. -Qed. - -Theorem add_succ_l : forall n m, (succ n) + m == succ (n + m). -Proof. -intros. zify. auto with zarith. -Qed. - -Theorem sub_0_r : forall n, n - 0 == n. -Proof. -intros. zify. omega_pos n. -Qed. - -Theorem sub_succ_r : forall n m, n - (succ m) == pred (n - m). -Proof. -intros. zify. omega with *. -Qed. - -Theorem mul_0_l : forall n, 0 * n == 0. -Proof. -intros. zify. auto with zarith. -Qed. - -Theorem mul_succ_l : forall n m, (succ n) * m == n * m + m. -Proof. -intros. zify. ring. -Qed. - -(** Order *) - -Lemma eqb_eq x y : eqb x y = true <-> x == y. -Proof. - zify. apply Z.eqb_eq. -Qed. - -Lemma leb_le x y : leb x y = true <-> x <= y. -Proof. - zify. apply Z.leb_le. -Qed. - -Lemma ltb_lt x y : ltb x y = true <-> x < y. -Proof. - zify. apply Z.ltb_lt. -Qed. - -Lemma compare_eq_iff n m : compare n m = Eq <-> n == m. -Proof. - intros. zify. apply Z.compare_eq_iff. -Qed. - -Lemma compare_lt_iff n m : compare n m = Lt <-> n < m. -Proof. - intros. zify. reflexivity. -Qed. - -Lemma compare_le_iff n m : compare n m <> Gt <-> n <= m. -Proof. - intros. zify. reflexivity. -Qed. - -Lemma compare_antisym n m : compare m n = CompOpp (compare n m). -Proof. - intros. zify. apply Z.compare_antisym. -Qed. - -Include BoolOrderFacts NN NN NN [no inline]. - -Instance compare_wd : Proper (eq ==> eq ==> Logic.eq) compare. -Proof. -intros x x' Hx y y' Hy. zify. now rewrite Hx, Hy. -Qed. - -Instance eqb_wd : Proper (eq ==> eq ==> Logic.eq) eqb. -Proof. -intros x x' Hx y y' Hy. zify. now rewrite Hx, Hy. -Qed. - -Instance ltb_wd : Proper (eq ==> eq ==> Logic.eq) ltb. -Proof. -intros x x' Hx y y' Hy. zify. now rewrite Hx, Hy. -Qed. - -Instance leb_wd : Proper (eq ==> eq ==> Logic.eq) leb. -Proof. -intros x x' Hx y y' Hy. zify. now rewrite Hx, Hy. -Qed. - -Instance lt_wd : Proper (eq ==> eq ==> iff) lt. -Proof. -intros x x' Hx y y' Hy; unfold lt; rewrite Hx, Hy; intuition. -Qed. - -Theorem lt_succ_r : forall n m, n < succ m <-> n <= m. -Proof. -intros. zify. omega. -Qed. - -Theorem min_l : forall n m, n <= m -> min n m == n. -Proof. -intros n m. zify. omega with *. -Qed. - -Theorem min_r : forall n m, m <= n -> min n m == m. -Proof. -intros n m. zify. omega with *. -Qed. - -Theorem max_l : forall n m, m <= n -> max n m == n. -Proof. -intros n m. zify. omega with *. -Qed. - -Theorem max_r : forall n m, n <= m -> max n m == m. -Proof. -intros n m. zify. omega with *. -Qed. - -(** Properties specific to natural numbers, not integers. *) - -Theorem pred_0 : pred 0 == 0. -Proof. -zify. auto. -Qed. - -(** Power *) - -Program Instance pow_wd : Proper (eq==>eq==>eq) pow. - -Lemma pow_0_r : forall a, a^0 == 1. -Proof. - intros. now zify. -Qed. - -Lemma pow_succ_r : forall a b, 0<=b -> a^(succ b) == a * a^b. -Proof. - intros a b. zify. intros. now Z.nzsimpl. -Qed. - -Lemma pow_neg_r : forall a b, b<0 -> a^b == 0. -Proof. - intros a b. zify. intro Hb. exfalso. omega_pos b. -Qed. - -Lemma pow_pow_N : forall a b, a^b == pow_N a (to_N b). -Proof. - intros. zify. f_equal. - now rewrite Z2N.id by apply spec_pos. -Qed. - -Lemma pow_N_pow : forall a b, pow_N a b == a^(of_N b). -Proof. - intros. now zify. -Qed. - -Lemma pow_pos_N : forall a p, pow_pos a p == pow_N a (Npos p). -Proof. - intros. now zify. -Qed. - -(** Square *) - -Lemma square_spec n : square n == n * n. -Proof. - now zify. -Qed. - -(** Sqrt *) - -Lemma sqrt_spec : forall n, 0<=n -> - (sqrt n)*(sqrt n) <= n /\ n < (succ (sqrt n))*(succ (sqrt n)). -Proof. - intros n. zify. apply Z.sqrt_spec. -Qed. - -Lemma sqrt_neg : forall n, n<0 -> sqrt n == 0. -Proof. - intros n. zify. intro H. exfalso. omega_pos n. -Qed. - -(** Log2 *) - -Lemma log2_spec : forall n, 0<n -> - 2^(log2 n) <= n /\ n < 2^(succ (log2 n)). -Proof. - intros n. zify. change (Z.log2 [n]+1)%Z with (Z.succ (Z.log2 [n])). - apply Z.log2_spec. -Qed. - -Lemma log2_nonpos : forall n, n<=0 -> log2 n == 0. -Proof. - intros n. zify. apply Z.log2_nonpos. -Qed. - -(** Even / Odd *) - -Definition Even n := exists m, n == 2*m. -Definition Odd n := exists m, n == 2*m+1. - -Lemma even_spec n : even n = true <-> Even n. -Proof. - unfold Even. zify. rewrite Z.even_spec. - split; intros (m,Hm). - - exists (N_of_Z m). zify. rewrite spec_N_of_Z; trivial. omega_pos n. - - exists [m]. revert Hm; now zify. -Qed. - -Lemma odd_spec n : odd n = true <-> Odd n. -Proof. - unfold Odd. zify. rewrite Z.odd_spec. - split; intros (m,Hm). - - exists (N_of_Z m). zify. rewrite spec_N_of_Z; trivial. omega_pos n. - - exists [m]. revert Hm; now zify. -Qed. - -(** Div / Mod *) - -Program Instance div_wd : Proper (eq==>eq==>eq) div. -Program Instance mod_wd : Proper (eq==>eq==>eq) modulo. - -Theorem div_mod : forall a b, ~b==0 -> a == b*(div a b) + (modulo a b). -Proof. -intros a b. zify. intros. apply Z.div_mod; auto. -Qed. - -Theorem mod_bound_pos : forall a b, 0<=a -> 0<b -> - 0 <= modulo a b /\ modulo a b < b. -Proof. -intros a b. zify. apply Z.mod_bound_pos. -Qed. - -(** Gcd *) - -Definition divide n m := exists p, m == p*n. -Local Notation "( x | y )" := (divide x y) (at level 0). - -Lemma spec_divide : forall n m, (n|m) <-> Z.divide [n] [m]. -Proof. - intros n m. split. - - intros (p,H). exists [p]. revert H; now zify. - - intros (z,H). exists (of_N (Z.abs_N z)). zify. - rewrite N2Z.inj_abs_N. - rewrite <- (Z.abs_eq [m]), <- (Z.abs_eq [n]) by apply spec_pos. - now rewrite H, Z.abs_mul. -Qed. - -Lemma gcd_divide_l : forall n m, (gcd n m | n). -Proof. - intros n m. apply spec_divide. zify. apply Z.gcd_divide_l. -Qed. - -Lemma gcd_divide_r : forall n m, (gcd n m | m). -Proof. - intros n m. apply spec_divide. zify. apply Z.gcd_divide_r. -Qed. - -Lemma gcd_greatest : forall n m p, (p|n) -> (p|m) -> (p|gcd n m). -Proof. - intros n m p. rewrite !spec_divide. zify. apply Z.gcd_greatest. -Qed. - -Lemma gcd_nonneg : forall n m, 0 <= gcd n m. -Proof. - intros. zify. apply Z.gcd_nonneg. -Qed. - -(** Bitwise operations *) - -Program Instance testbit_wd : Proper (eq==>eq==>Logic.eq) testbit. - -Lemma testbit_odd_0 : forall a, testbit (2*a+1) 0 = true. -Proof. - intros. zify. apply Z.testbit_odd_0. -Qed. - -Lemma testbit_even_0 : forall a, testbit (2*a) 0 = false. -Proof. - intros. zify. apply Z.testbit_even_0. -Qed. - -Lemma testbit_odd_succ : forall a n, 0<=n -> - testbit (2*a+1) (succ n) = testbit a n. -Proof. - intros a n. zify. apply Z.testbit_odd_succ. -Qed. - -Lemma testbit_even_succ : forall a n, 0<=n -> - testbit (2*a) (succ n) = testbit a n. -Proof. - intros a n. zify. apply Z.testbit_even_succ. -Qed. - -Lemma testbit_neg_r : forall a n, n<0 -> testbit a n = false. -Proof. - intros a n. zify. apply Z.testbit_neg_r. -Qed. - -Lemma shiftr_spec : forall a n m, 0<=m -> - testbit (shiftr a n) m = testbit a (m+n). -Proof. - intros a n m. zify. apply Z.shiftr_spec. -Qed. - -Lemma shiftl_spec_high : forall a n m, 0<=m -> n<=m -> - testbit (shiftl a n) m = testbit a (m-n). -Proof. - intros a n m. zify. intros Hn H. rewrite Z.max_r by auto with zarith. - now apply Z.shiftl_spec_high. -Qed. - -Lemma shiftl_spec_low : forall a n m, m<n -> - testbit (shiftl a n) m = false. -Proof. - intros a n m. zify. intros H. now apply Z.shiftl_spec_low. -Qed. - -Lemma land_spec : forall a b n, - testbit (land a b) n = testbit a n && testbit b n. -Proof. - intros a n m. zify. now apply Z.land_spec. -Qed. - -Lemma lor_spec : forall a b n, - testbit (lor a b) n = testbit a n || testbit b n. -Proof. - intros a n m. zify. now apply Z.lor_spec. -Qed. - -Lemma ldiff_spec : forall a b n, - testbit (ldiff a b) n = testbit a n && negb (testbit b n). -Proof. - intros a n m. zify. now apply Z.ldiff_spec. -Qed. - -Lemma lxor_spec : forall a b n, - testbit (lxor a b) n = xorb (testbit a n) (testbit b n). -Proof. - intros a n m. zify. now apply Z.lxor_spec. -Qed. - -Lemma div2_spec : forall a, div2 a == shiftr a 1. -Proof. - intros a. zify. now apply Z.div2_spec. -Qed. - -(** Recursion *) - -Definition recursion (A : Type) (a : A) (f : NN.t -> A -> A) (n : NN.t) := - N.peano_rect (fun _ => A) a (fun n a => f (NN.of_N n) a) (NN.to_N n). -Arguments recursion [A] a f n. - -Instance recursion_wd (A : Type) (Aeq : relation A) : - Proper (Aeq ==> (eq==>Aeq==>Aeq) ==> eq ==> Aeq) (@recursion A). -Proof. -unfold eq. -intros a a' Eaa' f f' Eff' x x' Exx'. -unfold recursion. -unfold NN.to_N. -rewrite <- Exx'; clear x' Exx'. -induction (Z.to_N [x]) using N.peano_ind. -simpl; auto. -rewrite 2 N.peano_rect_succ. now apply Eff'. -Qed. - -Theorem recursion_0 : - forall (A : Type) (a : A) (f : NN.t -> A -> A), recursion a f 0 = a. -Proof. -intros A a f; unfold recursion, NN.to_N; rewrite NN.spec_0; simpl; auto. -Qed. - -Theorem recursion_succ : - forall (A : Type) (Aeq : relation A) (a : A) (f : NN.t -> A -> A), - Aeq a a -> Proper (eq==>Aeq==>Aeq) f -> - forall n, Aeq (recursion a f (succ n)) (f n (recursion a f n)). -Proof. -unfold eq, recursion; intros A Aeq a f EAaa f_wd n. -replace (to_N (succ n)) with (N.succ (to_N n)) by - (zify; now rewrite <- Z2N.inj_succ by apply spec_pos). -rewrite N.peano_rect_succ. -apply f_wd; auto. -zify. now rewrite Z2N.id by apply spec_pos. -fold (recursion a f n). apply recursion_wd; auto. red; auto. -Qed. - -End NTypeIsNAxioms. - -Module NType_NAxioms (NN : NType) - <: NAxiomsSig <: OrderFunctions NN <: HasMinMax NN - := NN <+ NTypeIsNAxioms. diff --git a/theories/Numbers/Rational/BigQ/BigQ.v b/theories/Numbers/Rational/BigQ/BigQ.v deleted file mode 100644 index 850afe534..000000000 --- a/theories/Numbers/Rational/BigQ/BigQ.v +++ /dev/null @@ -1,162 +0,0 @@ -(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016 *) -(* \VV/ **************************************************************) -(* // * This file is distributed under the terms of the *) -(* * GNU Lesser General Public License Version 2.1 *) -(************************************************************************) - -(** * BigQ: an efficient implementation of rational numbers *) - -(** Initial authors: Benjamin Gregoire, Laurent Thery, INRIA, 2007 *) - -Require Export BigZ. -Require Import Field Qfield QSig QMake Orders GenericMinMax. - -(** We choose for BigQ an implemention with - multiple representation of 0: 0, 1/0, 2/0 etc. - See [QMake.v] *) - -(** First, we provide translations functions between [BigN] and [BigZ] *) - -Module BigN_BigZ <: NType_ZType BigN.BigN BigZ. - Definition Z_of_N := BigZ.Pos. - Lemma spec_Z_of_N : forall n, BigZ.to_Z (Z_of_N n) = BigN.to_Z n. - Proof. - reflexivity. - Qed. - Definition Zabs_N := BigZ.to_N. - Lemma spec_Zabs_N : forall z, BigN.to_Z (Zabs_N z) = Z.abs (BigZ.to_Z z). - Proof. - unfold Zabs_N; intros. - rewrite BigZ.spec_to_Z, Z.mul_comm; apply Z.sgn_abs. - Qed. -End BigN_BigZ. - -(** This allows building [BigQ] out of [BigN] and [BigQ] via [QMake] *) - -Delimit Scope bigQ_scope with bigQ. - -Module BigQ <: QType <: OrderedTypeFull <: TotalOrder. - Include QMake.Make BigN BigZ BigN_BigZ - <+ !QProperties <+ HasEqBool2Dec - <+ !MinMaxLogicalProperties <+ !MinMaxDecProperties. - Ltac order := Private_Tac.order. -End BigQ. - -(** Notations about [BigQ] *) - -Local Open Scope bigQ_scope. - -Notation bigQ := BigQ.t. -Bind Scope bigQ_scope with bigQ BigQ.t BigQ.t_. -(** As in QArith, we use [#] to denote fractions *) -Notation "p # q" := (BigQ.Qq p q) (at level 55, no associativity) : bigQ_scope. -Local Notation "0" := BigQ.zero : bigQ_scope. -Local Notation "1" := BigQ.one : bigQ_scope. -Infix "+" := BigQ.add : bigQ_scope. -Infix "-" := BigQ.sub : bigQ_scope. -Notation "- x" := (BigQ.opp x) : bigQ_scope. -Infix "*" := BigQ.mul : bigQ_scope. -Infix "/" := BigQ.div : bigQ_scope. -Infix "^" := BigQ.power : bigQ_scope. -Infix "?=" := BigQ.compare : bigQ_scope. -Infix "==" := BigQ.eq : bigQ_scope. -Notation "x != y" := (~x==y) (at level 70, no associativity) : bigQ_scope. -Infix "<" := BigQ.lt : bigQ_scope. -Infix "<=" := BigQ.le : bigQ_scope. -Notation "x > y" := (BigQ.lt y x) (only parsing) : bigQ_scope. -Notation "x >= y" := (BigQ.le y x) (only parsing) : bigQ_scope. -Notation "x < y < z" := (x<y /\ y<z) : bigQ_scope. -Notation "x < y <= z" := (x<y /\ y<=z) : bigQ_scope. -Notation "x <= y < z" := (x<=y /\ y<z) : bigQ_scope. -Notation "x <= y <= z" := (x<=y /\ y<=z) : bigQ_scope. -Notation "[ q ]" := (BigQ.to_Q q) : bigQ_scope. - -(** [BigQ] is a field *) - -Lemma BigQfieldth : - field_theory 0 1 BigQ.add BigQ.mul BigQ.sub BigQ.opp - BigQ.div BigQ.inv BigQ.eq. -Proof. -constructor. -constructor. -exact BigQ.add_0_l. exact BigQ.add_comm. exact BigQ.add_assoc. -exact BigQ.mul_1_l. exact BigQ.mul_comm. exact BigQ.mul_assoc. -exact BigQ.mul_add_distr_r. exact BigQ.sub_add_opp. -exact BigQ.add_opp_diag_r. exact BigQ.neq_1_0. -exact BigQ.div_mul_inv. exact BigQ.mul_inv_diag_l. -Qed. - -Declare Equivalent Keys pow_N pow_pos. - -Lemma BigQpowerth : - power_theory 1 BigQ.mul BigQ.eq Z.of_N BigQ.power. -Proof. -constructor. intros. BigQ.qify. -replace ([r] ^ Z.of_N n)%Q with (pow_N 1 Qmult [r] n)%Q by (now destruct n). -destruct n. reflexivity. -induction p; simpl; auto; rewrite ?BigQ.spec_mul, ?IHp; reflexivity. -Qed. - -Ltac isBigQcst t := - match t with - | BigQ.Qz ?t => isBigZcst t - | BigQ.Qq ?n ?d => match isBigZcst n with - | true => isBigNcst d - | false => constr:(false) - end - | BigQ.zero => constr:(true) - | BigQ.one => constr:(true) - | BigQ.minus_one => constr:(true) - | _ => constr:(false) - end. - -Ltac BigQcst t := - match isBigQcst t with - | true => constr:(t) - | false => constr:(NotConstant) - end. - -Add Field BigQfield : BigQfieldth - (decidable BigQ.eqb_correct, - completeness BigQ.eqb_complete, - constants [BigQcst], - power_tac BigQpowerth [Qpow_tac]). - -Section TestField. - -Let ex1 : forall x y z, (x+y)*z == (x*z)+(y*z). - intros. - ring. -Qed. - -Let ex8 : forall x, x ^ 2 == x*x. - intro. - ring. -Qed. - -Let ex10 : forall x y, y!=0 -> (x/y)*y == x. -intros. -field. -auto. -Qed. - -End TestField. - -(** [BigQ] can also benefit from an "order" tactic *) - -Ltac bigQ_order := BigQ.order. - -Section TestOrder. -Let test : forall x y : bigQ, x<=y -> y<=x -> x==y. -Proof. bigQ_order. Qed. -End TestOrder. - -(** We can also reason by switching to QArith thanks to tactic - BigQ.qify. *) - -Section TestQify. -Let test : forall x : bigQ, 0+x == 1*x. -Proof. intro x. BigQ.qify. ring. Qed. -End TestQify. diff --git a/theories/Numbers/Rational/BigQ/QMake.v b/theories/Numbers/Rational/BigQ/QMake.v deleted file mode 100644 index b9fed9d56..000000000 --- a/theories/Numbers/Rational/BigQ/QMake.v +++ /dev/null @@ -1,1283 +0,0 @@ -(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016 *) -(* \VV/ **************************************************************) -(* // * This file is distributed under the terms of the *) -(* * GNU Lesser General Public License Version 2.1 *) -(************************************************************************) - -(** * QMake : a generic efficient implementation of rational numbers *) - -(** Initial authors : Benjamin Gregoire, Laurent Thery, INRIA, 2007 *) - -Require Import BigNumPrelude ROmega. -Require Import QArith Qcanon Qpower Qminmax. -Require Import NSig ZSig QSig. - -(** We will build rationals out of an implementation of integers [ZType] - for numerators and an implementation of natural numbers [NType] for - denominators. But first we will need some glue between [NType] and - [ZType]. *) - -Module Type NType_ZType (NN:NType)(ZZ:ZType). - Parameter Z_of_N : NN.t -> ZZ.t. - Parameter spec_Z_of_N : forall n, ZZ.to_Z (Z_of_N n) = NN.to_Z n. - Parameter Zabs_N : ZZ.t -> NN.t. - Parameter spec_Zabs_N : forall z, NN.to_Z (Zabs_N z) = Z.abs (ZZ.to_Z z). -End NType_ZType. - -Module Make (NN:NType)(ZZ:ZType)(Import NZ:NType_ZType NN ZZ) <: QType. - - (** The notation of a rational number is either an integer x, - interpreted as itself or a pair (x,y) of an integer x and a natural - number y interpreted as x/y. The pairs (x,0) and (0,y) are all - interpreted as 0. *) - - Inductive t_ := - | Qz : ZZ.t -> t_ - | Qq : ZZ.t -> NN.t -> t_. - - Definition t := t_. - - (** Specification with respect to [QArith] *) - - Local Open Scope Q_scope. - - Definition of_Z x: t := Qz (ZZ.of_Z x). - - Definition of_Q (q:Q) : t := - let (x,y) := q in - match y with - | 1%positive => Qz (ZZ.of_Z x) - | _ => Qq (ZZ.of_Z x) (NN.of_N (Npos y)) - end. - - Definition to_Q (q: t) := - match q with - | Qz x => ZZ.to_Z x # 1 - | Qq x y => if NN.eqb y NN.zero then 0 - else ZZ.to_Z x # Z.to_pos (NN.to_Z y) - end. - - Notation "[ x ]" := (to_Q x). - - Lemma N_to_Z_pos : - forall x, (NN.to_Z x <> NN.to_Z NN.zero)%Z -> (0 < NN.to_Z x)%Z. - Proof. - intros x; rewrite NN.spec_0; generalize (NN.spec_pos x). romega. - Qed. - - Ltac destr_zcompare := case Z.compare_spec; intros ?H. - - Ltac destr_eqb := - match goal with - | |- context [ZZ.eqb ?x ?y] => - rewrite (ZZ.spec_eqb x y); - case (Z.eqb_spec (ZZ.to_Z x) (ZZ.to_Z y)); - destr_eqb - | |- context [NN.eqb ?x ?y] => - rewrite (NN.spec_eqb x y); - case (Z.eqb_spec (NN.to_Z x) (NN.to_Z y)); - [ | let H:=fresh "H" in - try (intro H;generalize (N_to_Z_pos _ H); clear H)]; - destr_eqb - | _ => idtac - end. - - Hint Rewrite - Z.add_0_r Z.add_0_l Z.mul_0_r Z.mul_0_l Z.mul_1_r Z.mul_1_l - ZZ.spec_0 NN.spec_0 ZZ.spec_1 NN.spec_1 ZZ.spec_m1 ZZ.spec_opp - ZZ.spec_compare NN.spec_compare - ZZ.spec_add NN.spec_add ZZ.spec_mul NN.spec_mul ZZ.spec_div NN.spec_div - ZZ.spec_gcd NN.spec_gcd Z.gcd_abs_l Z.gcd_1_r - spec_Z_of_N spec_Zabs_N - : nz. - - Ltac nzsimpl := autorewrite with nz in *. - - Ltac qsimpl := try red; unfold to_Q; simpl; intros; - destr_eqb; simpl; nzsimpl; intros; - rewrite ?Z2Pos.id by auto; - auto. - - Theorem strong_spec_of_Q: forall q: Q, [of_Q q] = q. - Proof. - intros(x,y); destruct y; simpl; rewrite ?ZZ.spec_of_Z; auto; - destr_eqb; now rewrite ?NN.spec_0, ?NN.spec_of_N. - Qed. - - Theorem spec_of_Q: forall q: Q, [of_Q q] == q. - Proof. - intros; rewrite strong_spec_of_Q; red; auto. - Qed. - - Definition eq x y := [x] == [y]. - - Definition zero: t := Qz ZZ.zero. - Definition one: t := Qz ZZ.one. - Definition minus_one: t := Qz ZZ.minus_one. - - Lemma spec_0: [zero] == 0. - Proof. - simpl. nzsimpl. reflexivity. - Qed. - - Lemma spec_1: [one] == 1. - Proof. - simpl. nzsimpl. reflexivity. - Qed. - - Lemma spec_m1: [minus_one] == -(1). - Proof. - simpl. nzsimpl. reflexivity. - Qed. - - Definition compare (x y: t) := - match x, y with - | Qz zx, Qz zy => ZZ.compare zx zy - | Qz zx, Qq ny dy => - if NN.eqb dy NN.zero then ZZ.compare zx ZZ.zero - else ZZ.compare (ZZ.mul zx (Z_of_N dy)) ny - | Qq nx dx, Qz zy => - if NN.eqb dx NN.zero then ZZ.compare ZZ.zero zy - else ZZ.compare nx (ZZ.mul zy (Z_of_N dx)) - | Qq nx dx, Qq ny dy => - match NN.eqb dx NN.zero, NN.eqb dy NN.zero with - | true, true => Eq - | true, false => ZZ.compare ZZ.zero ny - | false, true => ZZ.compare nx ZZ.zero - | false, false => ZZ.compare (ZZ.mul nx (Z_of_N dy)) - (ZZ.mul ny (Z_of_N dx)) - end - end. - - Theorem spec_compare: forall q1 q2, (compare q1 q2) = ([q1] ?= [q2]). - Proof. - intros [z1 | x1 y1] [z2 | x2 y2]; - unfold Qcompare, compare; qsimpl. - Qed. - - Definition lt n m := [n] < [m]. - Definition le n m := [n] <= [m]. - - Definition min n m := match compare n m with Gt => m | _ => n end. - Definition max n m := match compare n m with Lt => m | _ => n end. - - Lemma spec_min : forall n m, [min n m] == Qmin [n] [m]. - Proof. - unfold min, Qmin, GenericMinMax.gmin. intros. - rewrite spec_compare; destruct Qcompare; auto with qarith. - Qed. - - Lemma spec_max : forall n m, [max n m] == Qmax [n] [m]. - Proof. - unfold max, Qmax, GenericMinMax.gmax. intros. - rewrite spec_compare; destruct Qcompare; auto with qarith. - Qed. - - Definition eq_bool n m := - match compare n m with Eq => true | _ => false end. - - Theorem spec_eq_bool: forall x y, eq_bool x y = Qeq_bool [x] [y]. - Proof. - intros. unfold eq_bool. rewrite spec_compare. reflexivity. - Qed. - - (** [check_int] : is a reduced fraction [n/d] in fact a integer ? *) - - Definition check_int n d := - match NN.compare NN.one d with - | Lt => Qq n d - | Eq => Qz n - | Gt => zero (* n/0 encodes 0 *) - end. - - Theorem strong_spec_check_int : forall n d, [check_int n d] = [Qq n d]. - Proof. - intros; unfold check_int. - nzsimpl. - destr_zcompare. - simpl. rewrite <- H; qsimpl. congruence. - reflexivity. - qsimpl. exfalso; romega. - Qed. - - (** Normalisation function *) - - Definition norm n d : t := - let gcd := NN.gcd (Zabs_N n) d in - match NN.compare NN.one gcd with - | Lt => check_int (ZZ.div n (Z_of_N gcd)) (NN.div d gcd) - | Eq => check_int n d - | Gt => zero (* gcd = 0 => both numbers are 0 *) - end. - - Theorem spec_norm: forall n q, [norm n q] == [Qq n q]. - Proof. - intros p q; unfold norm. - assert (Hp := NN.spec_pos (Zabs_N p)). - assert (Hq := NN.spec_pos q). - nzsimpl. - destr_zcompare. - (* Eq *) - rewrite strong_spec_check_int; reflexivity. - (* Lt *) - rewrite strong_spec_check_int. - qsimpl. - generalize (Zgcd_div_pos (ZZ.to_Z p) (NN.to_Z q)). romega. - replace (NN.to_Z q) with 0%Z in * by assumption. - rewrite Zdiv_0_l in *; auto with zarith. - apply Zgcd_div_swap0; romega. - (* Gt *) - qsimpl. - assert (H' : Z.gcd (ZZ.to_Z p) (NN.to_Z q) = 0%Z). - generalize (Z.gcd_nonneg (ZZ.to_Z p) (NN.to_Z q)); romega. - symmetry; apply (Z.gcd_eq_0_l _ _ H'); auto. - Qed. - - Theorem strong_spec_norm : forall p q, [norm p q] = Qred [Qq p q]. - Proof. - intros. - replace (Qred [Qq p q]) with (Qred [norm p q]) by - (apply Qred_complete; apply spec_norm). - symmetry; apply Qred_identity. - unfold norm. - assert (Hp := NN.spec_pos (Zabs_N p)). - assert (Hq := NN.spec_pos q). - nzsimpl. - destr_zcompare; rewrite ?strong_spec_check_int. - (* Eq *) - qsimpl. - (* Lt *) - qsimpl. - rewrite Zgcd_1_rel_prime. - destruct (Z_lt_le_dec 0 (NN.to_Z q)). - apply Zis_gcd_rel_prime; auto with zarith. - apply Zgcd_is_gcd. - replace (NN.to_Z q) with 0%Z in * by romega. - rewrite Zdiv_0_l in *; romega. - (* Gt *) - simpl; auto with zarith. - Qed. - - (** Reduction function : producing irreducible fractions *) - - Definition red (x : t) : t := - match x with - | Qz z => x - | Qq n d => norm n d - end. - - Class Reduced x := is_reduced : [red x] = [x]. - - Theorem spec_red : forall x, [red x] == [x]. - Proof. - intros [ z | n d ]. - auto with qarith. - unfold red. - apply spec_norm. - Qed. - - Theorem strong_spec_red : forall x, [red x] = Qred [x]. - Proof. - intros [ z | n d ]. - unfold red. - symmetry; apply Qred_identity; simpl; auto with zarith. - unfold red; apply strong_spec_norm. - Qed. - - Definition add (x y: t): t := - match x with - | Qz zx => - match y with - | Qz zy => Qz (ZZ.add zx zy) - | Qq ny dy => - if NN.eqb dy NN.zero then x - else Qq (ZZ.add (ZZ.mul zx (Z_of_N dy)) ny) dy - end - | Qq nx dx => - if NN.eqb dx NN.zero then y - else match y with - | Qz zy => Qq (ZZ.add nx (ZZ.mul zy (Z_of_N dx))) dx - | Qq ny dy => - if NN.eqb dy NN.zero then x - else - let n := ZZ.add (ZZ.mul nx (Z_of_N dy)) (ZZ.mul ny (Z_of_N dx)) in - let d := NN.mul dx dy in - Qq n d - end - end. - - Theorem spec_add : forall x y, [add x y] == [x] + [y]. - Proof. - intros [x | nx dx] [y | ny dy]; unfold Qplus; qsimpl; - auto with zarith. - rewrite Pos.mul_1_r, Z2Pos.id; auto. - rewrite Pos.mul_1_r, Z2Pos.id; auto. - rewrite Z.mul_eq_0 in *; intuition. - rewrite Pos2Z.inj_mul, 2 Z2Pos.id; auto. - Qed. - - Definition add_norm (x y: t): t := - match x with - | Qz zx => - match y with - | Qz zy => Qz (ZZ.add zx zy) - | Qq ny dy => - if NN.eqb dy NN.zero then x - else norm (ZZ.add (ZZ.mul zx (Z_of_N dy)) ny) dy - end - | Qq nx dx => - if NN.eqb dx NN.zero then y - else match y with - | Qz zy => norm (ZZ.add nx (ZZ.mul zy (Z_of_N dx))) dx - | Qq ny dy => - if NN.eqb dy NN.zero then x - else - let n := ZZ.add (ZZ.mul nx (Z_of_N dy)) (ZZ.mul ny (Z_of_N dx)) in - let d := NN.mul dx dy in - norm n d - end - end. - - Theorem spec_add_norm : forall x y, [add_norm x y] == [x] + [y]. - Proof. - intros x y; rewrite <- spec_add. - destruct x; destruct y; unfold add_norm, add; - destr_eqb; auto using Qeq_refl, spec_norm. - Qed. - - Instance strong_spec_add_norm x y - `(Reduced x, Reduced y) : Reduced (add_norm x y). - Proof. - unfold Reduced; intros. - rewrite strong_spec_red. - rewrite <- (Qred_complete [add x y]); - [ | rewrite spec_add, spec_add_norm; apply Qeq_refl ]. - rewrite <- strong_spec_red. - destruct x as [zx|nx dx]; destruct y as [zy|ny dy]; - simpl; destr_eqb; nzsimpl; simpl; auto. - Qed. - - Definition opp (x: t): t := - match x with - | Qz zx => Qz (ZZ.opp zx) - | Qq nx dx => Qq (ZZ.opp nx) dx - end. - - Theorem strong_spec_opp: forall q, [opp q] = -[q]. - Proof. - intros [z | x y]; simpl. - rewrite ZZ.spec_opp; auto. - match goal with |- context[NN.eqb ?X ?Y] => - generalize (NN.spec_eqb X Y); case NN.eqb - end; auto; rewrite NN.spec_0. - rewrite ZZ.spec_opp; auto. - Qed. - - Theorem spec_opp : forall q, [opp q] == -[q]. - Proof. - intros; rewrite strong_spec_opp; red; auto. - Qed. - - Instance strong_spec_opp_norm q `(Reduced q) : Reduced (opp q). - Proof. - unfold Reduced; intros. - rewrite strong_spec_opp, <- H, !strong_spec_red, <- Qred_opp. - apply Qred_complete; apply spec_opp. - Qed. - - Definition sub x y := add x (opp y). - - Theorem spec_sub : forall x y, [sub x y] == [x] - [y]. - Proof. - intros x y; unfold sub; rewrite spec_add; auto. - rewrite spec_opp; ring. - Qed. - - Definition sub_norm x y := add_norm x (opp y). - - Theorem spec_sub_norm : forall x y, [sub_norm x y] == [x] - [y]. - Proof. - intros x y; unfold sub_norm; rewrite spec_add_norm; auto. - rewrite spec_opp; ring. - Qed. - - Instance strong_spec_sub_norm x y - `(Reduced x, Reduced y) : Reduced (sub_norm x y). - Proof. - intros. - unfold sub_norm. - apply strong_spec_add_norm; auto. - apply strong_spec_opp_norm; auto. - Qed. - - Definition mul (x y: t): t := - match x, y with - | Qz zx, Qz zy => Qz (ZZ.mul zx zy) - | Qz zx, Qq ny dy => Qq (ZZ.mul zx ny) dy - | Qq nx dx, Qz zy => Qq (ZZ.mul nx zy) dx - | Qq nx dx, Qq ny dy => Qq (ZZ.mul nx ny) (NN.mul dx dy) - end. - - Ltac nsubst := - match goal with E : NN.to_Z _ = _ |- _ => rewrite E in * end. - - Theorem spec_mul : forall x y, [mul x y] == [x] * [y]. - Proof. - intros [x | nx dx] [y | ny dy]; unfold Qmult; simpl; qsimpl. - rewrite Pos.mul_1_r, Z2Pos.id; auto. - rewrite Z.mul_eq_0 in *; intuition. - nsubst; auto with zarith. - nsubst; auto with zarith. - nsubst; nzsimpl; auto with zarith. - rewrite Pos2Z.inj_mul, 2 Z2Pos.id; auto. - Qed. - - Definition norm_denum n d := - if NN.eqb d NN.one then Qz n else Qq n d. - - Lemma spec_norm_denum : forall n d, - [norm_denum n d] == [Qq n d]. - Proof. - unfold norm_denum; intros; simpl; qsimpl. - congruence. - nsubst; auto with zarith. - Qed. - - Definition irred n d := - let gcd := NN.gcd (Zabs_N n) d in - match NN.compare gcd NN.one with - | Gt => (ZZ.div n (Z_of_N gcd), NN.div d gcd) - | _ => (n, d) - end. - - Lemma spec_irred : forall n d, exists g, - let (n',d') := irred n d in - (ZZ.to_Z n' * g = ZZ.to_Z n)%Z /\ (NN.to_Z d' * g = NN.to_Z d)%Z. - Proof. - intros. - unfold irred; nzsimpl; simpl. - destr_zcompare. - exists 1%Z; nzsimpl; auto. - exists 0%Z; nzsimpl. - assert (Z.gcd (ZZ.to_Z n) (NN.to_Z d) = 0%Z). - generalize (Z.gcd_nonneg (ZZ.to_Z n) (NN.to_Z d)); romega. - clear H. - split. - symmetry; apply (Z.gcd_eq_0_l _ _ H0). - symmetry; apply (Z.gcd_eq_0_r _ _ H0). - exists (Z.gcd (ZZ.to_Z n) (NN.to_Z d)). - simpl. - split. - nzsimpl. - destruct (Zgcd_is_gcd (ZZ.to_Z n) (NN.to_Z d)). - rewrite Z.mul_comm; symmetry; apply Zdivide_Zdiv_eq; auto with zarith. - nzsimpl. - destruct (Zgcd_is_gcd (ZZ.to_Z n) (NN.to_Z d)). - rewrite Z.mul_comm; symmetry; apply Zdivide_Zdiv_eq; auto with zarith. - Qed. - - Lemma spec_irred_zero : forall n d, - (NN.to_Z d = 0)%Z <-> (NN.to_Z (snd (irred n d)) = 0)%Z. - Proof. - intros. - unfold irred. - split. - nzsimpl; intros. - destr_zcompare; auto. - simpl. - nzsimpl. - rewrite H, Zdiv_0_l; auto. - nzsimpl; destr_zcompare; simpl; auto. - nzsimpl. - intros. - generalize (NN.spec_pos d); intros. - destruct (NN.to_Z d); auto. - assert (0 < 0)%Z. - rewrite <- H0 at 2. - apply Zgcd_div_pos; auto with zarith. - compute; auto. - discriminate. - compute in H1; elim H1; auto. - Qed. - - Lemma strong_spec_irred : forall n d, - (NN.to_Z d <> 0%Z) -> - let (n',d') := irred n d in Z.gcd (ZZ.to_Z n') (NN.to_Z d') = 1%Z. - Proof. - unfold irred; intros. - nzsimpl. - destr_zcompare; simpl; auto. - elim H. - apply (Z.gcd_eq_0_r (ZZ.to_Z n)). - generalize (Z.gcd_nonneg (ZZ.to_Z n) (NN.to_Z d)); romega. - - nzsimpl. - rewrite Zgcd_1_rel_prime. - apply Zis_gcd_rel_prime. - generalize (NN.spec_pos d); romega. - generalize (Z.gcd_nonneg (ZZ.to_Z n) (NN.to_Z d)); romega. - apply Zgcd_is_gcd; auto. - Qed. - - Definition mul_norm_Qz_Qq z n d := - if ZZ.eqb z ZZ.zero then zero - else - let gcd := NN.gcd (Zabs_N z) d in - match NN.compare gcd NN.one with - | Gt => - let z := ZZ.div z (Z_of_N gcd) in - let d := NN.div d gcd in - norm_denum (ZZ.mul z n) d - | _ => Qq (ZZ.mul z n) d - end. - - Definition mul_norm (x y: t): t := - match x, y with - | Qz zx, Qz zy => Qz (ZZ.mul zx zy) - | Qz zx, Qq ny dy => mul_norm_Qz_Qq zx ny dy - | Qq nx dx, Qz zy => mul_norm_Qz_Qq zy nx dx - | Qq nx dx, Qq ny dy => - let (nx, dy) := irred nx dy in - let (ny, dx) := irred ny dx in - norm_denum (ZZ.mul ny nx) (NN.mul dx dy) - end. - - Lemma spec_mul_norm_Qz_Qq : forall z n d, - [mul_norm_Qz_Qq z n d] == [Qq (ZZ.mul z n) d]. - Proof. - intros z n d; unfold mul_norm_Qz_Qq; nzsimpl; rewrite Zcompare_gt. - destr_eqb; nzsimpl; intros Hz. - qsimpl; rewrite Hz; auto. - destruct Z_le_gt_dec as [LE|GT]. - qsimpl. - rewrite spec_norm_denum. - qsimpl. - rewrite Zdiv_gcd_zero in GT; auto with zarith. - nsubst. rewrite Zdiv_0_l in *; discriminate. - rewrite <- Z.mul_assoc, (Z.mul_comm (ZZ.to_Z n)), Z.mul_assoc. - rewrite Zgcd_div_swap0; try romega. - ring. - Qed. - - Instance strong_spec_mul_norm_Qz_Qq z n d : - forall `(Reduced (Qq n d)), Reduced (mul_norm_Qz_Qq z n d). - Proof. - unfold Reduced. - rewrite 2 strong_spec_red, 2 Qred_iff. - simpl; nzsimpl. - destr_eqb; intros Hd H; simpl in *; nzsimpl. - - unfold mul_norm_Qz_Qq; nzsimpl; rewrite Zcompare_gt. - destr_eqb; intros Hz; simpl; nzsimpl; simpl; auto. - destruct Z_le_gt_dec. - simpl; nzsimpl. - destr_eqb; simpl; nzsimpl; auto with zarith. - unfold norm_denum. destr_eqb; simpl; nzsimpl. - rewrite Hd, Zdiv_0_l; discriminate. - intros _. - destr_eqb; simpl; nzsimpl; auto. - nzsimpl; rewrite Hd, Zdiv_0_l; auto with zarith. - - rewrite Z2Pos.id in H; auto. - unfold mul_norm_Qz_Qq; nzsimpl; rewrite Zcompare_gt. - destr_eqb; intros Hz; simpl; nzsimpl; simpl; auto. - destruct Z_le_gt_dec as [H'|H']. - simpl; nzsimpl. - destr_eqb; simpl; nzsimpl; auto. - intros. - rewrite Z2Pos.id; auto. - apply Zgcd_mult_rel_prime; auto. - generalize (Z.gcd_eq_0_l (ZZ.to_Z z) (NN.to_Z d)) - (Z.gcd_nonneg (ZZ.to_Z z) (NN.to_Z d)); romega. - destr_eqb; simpl; nzsimpl; auto. - unfold norm_denum. - destr_eqb; nzsimpl; simpl; destr_eqb; simpl; auto. - intros; nzsimpl. - rewrite Z2Pos.id; auto. - apply Zgcd_mult_rel_prime. - rewrite Zgcd_1_rel_prime. - apply Zis_gcd_rel_prime. - generalize (NN.spec_pos d); romega. - generalize (Z.gcd_nonneg (ZZ.to_Z z) (NN.to_Z d)); romega. - apply Zgcd_is_gcd. - destruct (Zgcd_is_gcd (ZZ.to_Z z) (NN.to_Z d)) as [ (z0,Hz0) (d0,Hd0) Hzd]. - replace (NN.to_Z d / Z.gcd (ZZ.to_Z z) (NN.to_Z d))%Z with d0. - rewrite Zgcd_1_rel_prime in *. - apply bezout_rel_prime. - destruct (rel_prime_bezout _ _ H) as [u v Huv]. - apply Bezout_intro with u (v*(Z.gcd (ZZ.to_Z z) (NN.to_Z d)))%Z. - rewrite <- Huv; rewrite Hd0 at 2; ring. - rewrite Hd0 at 1. - symmetry; apply Z_div_mult_full; auto with zarith. - Qed. - - Theorem spec_mul_norm : forall x y, [mul_norm x y] == [x] * [y]. - Proof. - intros x y; rewrite <- spec_mul; auto. - unfold mul_norm, mul; destruct x; destruct y. - apply Qeq_refl. - apply spec_mul_norm_Qz_Qq. - rewrite spec_mul_norm_Qz_Qq; qsimpl; ring. - - rename t0 into nx, t3 into dy, t2 into ny, t1 into dx. - destruct (spec_irred nx dy) as (g & Hg). - destruct (spec_irred ny dx) as (g' & Hg'). - assert (Hz := spec_irred_zero nx dy). - assert (Hz':= spec_irred_zero ny dx). - destruct irred as (n1,d1); destruct irred as (n2,d2). - simpl @snd in *; destruct Hg as [Hg1 Hg2]; destruct Hg' as [Hg1' Hg2']. - rewrite spec_norm_denum. - qsimpl. - - match goal with E : (_ * _ = 0)%Z |- _ => - rewrite Z.mul_eq_0 in E; destruct E as [Eq|Eq] end. - rewrite Eq in *; simpl in *. - rewrite <- Hg2' in *; auto with zarith. - rewrite Eq in *; simpl in *. - rewrite <- Hg2 in *; auto with zarith. - - match goal with E : (_ * _ = 0)%Z |- _ => - rewrite Z.mul_eq_0 in E; destruct E as [Eq|Eq] end. - rewrite Hz' in Eq; rewrite Eq in *; auto with zarith. - rewrite Hz in Eq; rewrite Eq in *; auto with zarith. - - rewrite <- Hg1, <- Hg2, <- Hg1', <- Hg2'; ring. - Qed. - - Instance strong_spec_mul_norm x y : - forall `(Reduced x, Reduced y), Reduced (mul_norm x y). - Proof. - unfold Reduced; intros. - rewrite strong_spec_red, Qred_iff. - destruct x as [zx|nx dx]; destruct y as [zy|ny dy]. - simpl in *; auto with zarith. - simpl. - rewrite <- Qred_iff, <- strong_spec_red, strong_spec_mul_norm_Qz_Qq; auto. - simpl. - rewrite <- Qred_iff, <- strong_spec_red, strong_spec_mul_norm_Qz_Qq; auto. - simpl. - destruct (spec_irred nx dy) as [g Hg]. - destruct (spec_irred ny dx) as [g' Hg']. - assert (Hz := spec_irred_zero nx dy). - assert (Hz':= spec_irred_zero ny dx). - assert (Hgc := strong_spec_irred nx dy). - assert (Hgc' := strong_spec_irred ny dx). - destruct irred as (n1,d1); destruct irred as (n2,d2). - simpl @snd in *; destruct Hg as [Hg1 Hg2]; destruct Hg' as [Hg1' Hg2']. - - unfold norm_denum; qsimpl. - - assert (NEQ : NN.to_Z dy <> 0%Z) by - (rewrite Hz; intros EQ; rewrite EQ in *; romega). - specialize (Hgc NEQ). - - assert (NEQ' : NN.to_Z dx <> 0%Z) by - (rewrite Hz'; intro EQ; rewrite EQ in *; romega). - specialize (Hgc' NEQ'). - - revert H H0. - rewrite 2 strong_spec_red, 2 Qred_iff; simpl. - destr_eqb; simpl; nzsimpl; try romega; intros. - rewrite Z2Pos.id in *; auto. - - apply Zgcd_mult_rel_prime; rewrite Z.gcd_comm; - apply Zgcd_mult_rel_prime; rewrite Z.gcd_comm; auto. - - rewrite Zgcd_1_rel_prime in *. - apply bezout_rel_prime. - destruct (rel_prime_bezout (ZZ.to_Z ny) (NN.to_Z dy)) as [u v Huv]; trivial. - apply Bezout_intro with (u*g')%Z (v*g)%Z. - rewrite <- Huv, <- Hg1', <- Hg2. ring. - - rewrite Zgcd_1_rel_prime in *. - apply bezout_rel_prime. - destruct (rel_prime_bezout (ZZ.to_Z nx) (NN.to_Z dx)) as [u v Huv]; trivial. - apply Bezout_intro with (u*g)%Z (v*g')%Z. - rewrite <- Huv, <- Hg2', <- Hg1. ring. - Qed. - - Definition inv (x: t): t := - match x with - | Qz z => - match ZZ.compare ZZ.zero z with - | Eq => zero - | Lt => Qq ZZ.one (Zabs_N z) - | Gt => Qq ZZ.minus_one (Zabs_N z) - end - | Qq n d => - match ZZ.compare ZZ.zero n with - | Eq => zero - | Lt => Qq (Z_of_N d) (Zabs_N n) - | Gt => Qq (ZZ.opp (Z_of_N d)) (Zabs_N n) - end - end. - - Theorem spec_inv : forall x, [inv x] == /[x]. - Proof. - destruct x as [ z | n d ]. - (* Qz z *) - simpl. - rewrite ZZ.spec_compare; destr_zcompare. - (* 0 = z *) - rewrite <- H. - simpl; nzsimpl; compute; auto. - (* 0 < z *) - simpl. - destr_eqb; nzsimpl; [ intros; rewrite Z.abs_eq in *; romega | intros _ ]. - set (z':=ZZ.to_Z z) in *; clearbody z'. - red; simpl. - rewrite Z.abs_eq by romega. - rewrite Z2Pos.id by auto. - unfold Qinv; simpl; destruct z'; simpl; auto; discriminate. - (* 0 > z *) - simpl. - destr_eqb; nzsimpl; [ intros; rewrite Z.abs_neq in *; romega | intros _ ]. - set (z':=ZZ.to_Z z) in *; clearbody z'. - red; simpl. - rewrite Z.abs_neq by romega. - rewrite Z2Pos.id by romega. - unfold Qinv; simpl; destruct z'; simpl; auto; discriminate. - (* Qq n d *) - simpl. - rewrite ZZ.spec_compare; destr_zcompare. - (* 0 = n *) - rewrite <- H. - simpl; nzsimpl. - destr_eqb; intros; compute; auto. - (* 0 < n *) - simpl. - destr_eqb; nzsimpl; intros. - intros; rewrite Z.abs_eq in *; romega. - intros; rewrite Z.abs_eq in *; romega. - nsubst; compute; auto. - set (n':=ZZ.to_Z n) in *; clearbody n'. - rewrite Z.abs_eq by romega. - red; simpl. - rewrite Z2Pos.id by auto. - unfold Qinv; simpl; destruct n'; simpl; auto; try discriminate. - rewrite Pos2Z.inj_mul, Z2Pos.id; auto. - (* 0 > n *) - simpl. - destr_eqb; nzsimpl; intros. - intros; rewrite Z.abs_neq in *; romega. - intros; rewrite Z.abs_neq in *; romega. - nsubst; compute; auto. - set (n':=ZZ.to_Z n) in *; clearbody n'. - red; simpl; nzsimpl. - rewrite Z.abs_neq by romega. - rewrite Z2Pos.id by romega. - unfold Qinv; simpl; destruct n'; simpl; auto; try discriminate. - assert (T : forall x, Zneg x = Z.opp (Zpos x)) by auto. - rewrite T, Pos2Z.inj_mul, Z2Pos.id; auto; ring. - Qed. - - Definition inv_norm (x: t): t := - match x with - | Qz z => - match ZZ.compare ZZ.zero z with - | Eq => zero - | Lt => Qq ZZ.one (Zabs_N z) - | Gt => Qq ZZ.minus_one (Zabs_N z) - end - | Qq n d => - if NN.eqb d NN.zero then zero else - match ZZ.compare ZZ.zero n with - | Eq => zero - | Lt => - match ZZ.compare n ZZ.one with - | Gt => Qq (Z_of_N d) (Zabs_N n) - | _ => Qz (Z_of_N d) - end - | Gt => - match ZZ.compare n ZZ.minus_one with - | Lt => Qq (ZZ.opp (Z_of_N d)) (Zabs_N n) - | _ => Qz (ZZ.opp (Z_of_N d)) - end - end - end. - - Theorem spec_inv_norm : forall x, [inv_norm x] == /[x]. - Proof. - intros. - rewrite <- spec_inv. - destruct x as [ z | n d ]. - (* Qz z *) - simpl. - rewrite ZZ.spec_compare; destr_zcompare; auto with qarith. - (* Qq n d *) - simpl; nzsimpl; destr_eqb. - destr_zcompare; simpl; auto with qarith. - destr_eqb; nzsimpl; auto with qarith. - intros _ Hd; rewrite Hd; auto with qarith. - destr_eqb; nzsimpl; auto with qarith. - intros _ Hd; rewrite Hd; auto with qarith. - (* 0 < n *) - destr_zcompare; auto with qarith. - destr_zcompare; nzsimpl; simpl; auto with qarith; intros. - destr_eqb; nzsimpl; [ intros; rewrite Z.abs_eq in *; romega | intros _ ]. - rewrite H0; auto with qarith. - romega. - (* 0 > n *) - destr_zcompare; nzsimpl; simpl; auto with qarith. - destr_eqb; nzsimpl; [ intros; rewrite Z.abs_neq in *; romega | intros _ ]. - rewrite H0; auto with qarith. - romega. - Qed. - - Instance strong_spec_inv_norm x : Reduced x -> Reduced (inv_norm x). - Proof. - unfold Reduced. - intros. - destruct x as [ z | n d ]. - (* Qz *) - simpl; nzsimpl. - rewrite strong_spec_red, Qred_iff. - destr_zcompare; simpl; nzsimpl; auto. - destr_eqb; nzsimpl; simpl; auto. - destr_eqb; nzsimpl; simpl; auto. - (* Qq n d *) - rewrite strong_spec_red, Qred_iff in H; revert H. - simpl; nzsimpl. - destr_eqb; nzsimpl; auto with qarith. - destr_zcompare; simpl; nzsimpl; auto; intros. - (* 0 < n *) - destr_zcompare; simpl; nzsimpl; auto. - destr_eqb; nzsimpl; simpl; auto. - rewrite Z.abs_eq; romega. - intros _. - rewrite strong_spec_norm; simpl; nzsimpl. - destr_eqb; nzsimpl. - rewrite Z.abs_eq; romega. - intros _. - rewrite Qred_iff. - simpl. - rewrite Z.abs_eq; auto with zarith. - rewrite Z2Pos.id in *; auto. - rewrite Z.gcd_comm; auto. - (* 0 > n *) - destr_eqb; nzsimpl; simpl; auto; intros. - destr_zcompare; simpl; nzsimpl; auto. - destr_eqb; nzsimpl. - rewrite Z.abs_neq; romega. - intros _. - rewrite strong_spec_norm; simpl; nzsimpl. - destr_eqb; nzsimpl. - rewrite Z.abs_neq; romega. - intros _. - rewrite Qred_iff. - simpl. - rewrite Z2Pos.id in *; auto. - intros. - rewrite Z.gcd_comm, Z.gcd_abs_l, Z.gcd_comm. - apply Zis_gcd_gcd; auto with zarith. - apply Zis_gcd_minus. - rewrite Z.opp_involutive, <- H1; apply Zgcd_is_gcd. - rewrite Z.abs_neq; romega. - Qed. - - Definition div x y := mul x (inv y). - - Theorem spec_div x y: [div x y] == [x] / [y]. - Proof. - unfold div; rewrite spec_mul; auto. - unfold Qdiv; apply Qmult_comp. - apply Qeq_refl. - apply spec_inv; auto. - Qed. - - Definition div_norm x y := mul_norm x (inv_norm y). - - Theorem spec_div_norm x y: [div_norm x y] == [x] / [y]. - Proof. - unfold div_norm; rewrite spec_mul_norm; auto. - unfold Qdiv; apply Qmult_comp. - apply Qeq_refl. - apply spec_inv_norm; auto. - Qed. - - Instance strong_spec_div_norm x y - `(Reduced x, Reduced y) : Reduced (div_norm x y). - Proof. - intros; unfold div_norm. - apply strong_spec_mul_norm; auto. - apply strong_spec_inv_norm; auto. - Qed. - - Definition square (x: t): t := - match x with - | Qz zx => Qz (ZZ.square zx) - | Qq nx dx => Qq (ZZ.square nx) (NN.square dx) - end. - - Theorem spec_square : forall x, [square x] == [x] ^ 2. - Proof. - destruct x as [ z | n d ]. - simpl; rewrite ZZ.spec_square; red; auto. - simpl. - destr_eqb; nzsimpl; intros. - apply Qeq_refl. - rewrite NN.spec_square in *; nzsimpl. - rewrite Z.mul_eq_0 in *; romega. - rewrite NN.spec_square in *; nzsimpl; nsubst; romega. - rewrite ZZ.spec_square, NN.spec_square. - red; simpl. - rewrite Pos2Z.inj_mul; rewrite !Z2Pos.id; auto. - apply Z.mul_pos_pos; auto. - Qed. - - Definition power_pos (x : t) p : t := - match x with - | Qz zx => Qz (ZZ.pow_pos zx p) - | Qq nx dx => Qq (ZZ.pow_pos nx p) (NN.pow_pos dx p) - end. - - Theorem spec_power_pos : forall x p, [power_pos x p] == [x] ^ Zpos p. - Proof. - intros [ z | n d ] p; unfold power_pos. - (* Qz *) - simpl. - rewrite ZZ.spec_pow_pos, Qpower_decomp. - red; simpl; f_equal. - now rewrite Pos2Z.inj_pow, Z.pow_1_l. - (* Qq *) - simpl. - rewrite ZZ.spec_pow_pos. - destr_eqb; nzsimpl; intros. - - apply Qeq_sym; apply Qpower_positive_0. - - rewrite NN.spec_pow_pos in *. - assert (0 < NN.to_Z d ^ ' p)%Z by - (apply Z.pow_pos_nonneg; auto with zarith). - romega. - - exfalso. - rewrite NN.spec_pow_pos in *. nsubst. - rewrite Z.pow_0_l' in *; [romega|discriminate]. - - rewrite Qpower_decomp. - red; simpl; do 3 f_equal. - apply Pos2Z.inj. rewrite Pos2Z.inj_pow. - rewrite 2 Z2Pos.id by (generalize (NN.spec_pos d); romega). - now rewrite NN.spec_pow_pos. - Qed. - - Instance strong_spec_power_pos x p `(Reduced x) : Reduced (power_pos x p). - Proof. - destruct x as [z | n d]; simpl; intros. - red; simpl; auto. - red; simpl; intros. - rewrite strong_spec_norm; simpl. - destr_eqb; nzsimpl; intros. - simpl; auto. - rewrite Qred_iff. - revert H. - unfold Reduced; rewrite strong_spec_red, Qred_iff; simpl. - destr_eqb; nzsimpl; simpl; intros. - exfalso. - rewrite NN.spec_pow_pos in *. nsubst. - rewrite Z.pow_0_l' in *; [romega|discriminate]. - rewrite Z2Pos.id in *; auto. - rewrite NN.spec_pow_pos, ZZ.spec_pow_pos; auto. - rewrite Zgcd_1_rel_prime in *. - apply rel_prime_Zpower; auto with zarith. - Qed. - - Definition power (x : t) (z : Z) : t := - match z with - | Z0 => one - | Zpos p => power_pos x p - | Zneg p => inv (power_pos x p) - end. - - Theorem spec_power : forall x z, [power x z] == [x]^z. - Proof. - destruct z. - simpl; nzsimpl; red; auto. - apply spec_power_pos. - simpl. - rewrite spec_inv, spec_power_pos; apply Qeq_refl. - Qed. - - Definition power_norm (x : t) (z : Z) : t := - match z with - | Z0 => one - | Zpos p => power_pos x p - | Zneg p => inv_norm (power_pos x p) - end. - - Theorem spec_power_norm : forall x z, [power_norm x z] == [x]^z. - Proof. - destruct z. - simpl; nzsimpl; red; auto. - apply spec_power_pos. - simpl. - rewrite spec_inv_norm, spec_power_pos; apply Qeq_refl. - Qed. - - Instance strong_spec_power_norm x z : - Reduced x -> Reduced (power_norm x z). - Proof. - destruct z; simpl. - intros _; unfold Reduced; rewrite strong_spec_red. - unfold one. - simpl to_Q; nzsimpl; auto. - intros; apply strong_spec_power_pos; auto. - intros; apply strong_spec_inv_norm; apply strong_spec_power_pos; auto. - Qed. - - - (** Interaction with [Qcanon.Qc] *) - - Open Scope Qc_scope. - - Definition of_Qc q := of_Q (this q). - - Definition to_Qc q := Q2Qc [q]. - - Notation "[[ x ]]" := (to_Qc x). - - Theorem strong_spec_of_Qc : forall q, [of_Qc q] = q. - Proof. - intros (q,Hq); intros. - unfold of_Qc; rewrite strong_spec_of_Q; auto. - Qed. - - Instance strong_spec_of_Qc_bis q : Reduced (of_Qc q). - Proof. - intros; red; rewrite strong_spec_red, strong_spec_of_Qc. - destruct q; simpl; auto. - Qed. - - Theorem spec_of_Qc: forall q, [[of_Qc q]] = q. - Proof. - intros; apply Qc_decomp; simpl; intros. - rewrite strong_spec_of_Qc. apply canon. - Qed. - - Theorem spec_oppc: forall q, [[opp q]] = -[[q]]. - Proof. - intros q; unfold Qcopp, to_Qc, Q2Qc. - apply Qc_decomp; unfold this. - apply Qred_complete. - rewrite spec_opp, <- Qred_opp, Qred_correct. - apply Qeq_refl. - Qed. - - Theorem spec_oppc_bis : forall q : Qc, [opp (of_Qc q)] = - q. - Proof. - intros. - rewrite <- strong_spec_opp_norm by apply strong_spec_of_Qc_bis. - rewrite strong_spec_red. - symmetry; apply (Qred_complete (-q)%Q). - rewrite spec_opp, strong_spec_of_Qc; auto with qarith. - Qed. - - Theorem spec_comparec: forall q1 q2, - compare q1 q2 = ([[q1]] ?= [[q2]]). - Proof. - unfold Qccompare, to_Qc. - intros q1 q2; rewrite spec_compare; simpl; auto. - apply Qcompare_comp; apply Qeq_sym; apply Qred_correct. - Qed. - - Theorem spec_addc x y: - [[add x y]] = [[x]] + [[y]]. - Proof. - unfold to_Qc. - transitivity (Q2Qc ([x] + [y])). - unfold Q2Qc. - apply Qc_decomp; unfold this. - apply Qred_complete; apply spec_add; auto. - unfold Qcplus, Q2Qc. - apply Qc_decomp; unfold this. - apply Qred_complete. - apply Qplus_comp; apply Qeq_sym; apply Qred_correct. - Qed. - - Theorem spec_add_normc x y: - [[add_norm x y]] = [[x]] + [[y]]. - Proof. - unfold to_Qc. - transitivity (Q2Qc ([x] + [y])). - unfold Q2Qc. - apply Qc_decomp; unfold this. - apply Qred_complete; apply spec_add_norm; auto. - unfold Qcplus, Q2Qc. - apply Qc_decomp; unfold this. - apply Qred_complete. - apply Qplus_comp; apply Qeq_sym; apply Qred_correct. - Qed. - - Theorem spec_add_normc_bis : forall x y : Qc, - [add_norm (of_Qc x) (of_Qc y)] = x+y. - Proof. - intros. - rewrite <- strong_spec_add_norm by apply strong_spec_of_Qc_bis. - rewrite strong_spec_red. - symmetry; apply (Qred_complete (x+y)%Q). - rewrite spec_add_norm, ! strong_spec_of_Qc; auto with qarith. - Qed. - - Theorem spec_subc x y: [[sub x y]] = [[x]] - [[y]]. - Proof. - unfold sub; rewrite spec_addc; auto. - rewrite spec_oppc; ring. - Qed. - - Theorem spec_sub_normc x y: - [[sub_norm x y]] = [[x]] - [[y]]. - Proof. - unfold sub_norm; rewrite spec_add_normc; auto. - rewrite spec_oppc; ring. - Qed. - - Theorem spec_sub_normc_bis : forall x y : Qc, - [sub_norm (of_Qc x) (of_Qc y)] = x-y. - Proof. - intros. - rewrite <- strong_spec_sub_norm by apply strong_spec_of_Qc_bis. - rewrite strong_spec_red. - symmetry; apply (Qred_complete (x+(-y)%Qc)%Q). - rewrite spec_sub_norm, ! strong_spec_of_Qc. - unfold Qcopp, Q2Qc, this. rewrite Qred_correct ; auto with qarith. - Qed. - - Theorem spec_mulc x y: - [[mul x y]] = [[x]] * [[y]]. - Proof. - unfold to_Qc. - transitivity (Q2Qc ([x] * [y])). - unfold Q2Qc. - apply Qc_decomp; unfold this. - apply Qred_complete; apply spec_mul; auto. - unfold Qcmult, Q2Qc. - apply Qc_decomp; unfold this. - apply Qred_complete. - apply Qmult_comp; apply Qeq_sym; apply Qred_correct. - Qed. - - Theorem spec_mul_normc x y: - [[mul_norm x y]] = [[x]] * [[y]]. - Proof. - unfold to_Qc. - transitivity (Q2Qc ([x] * [y])). - unfold Q2Qc. - apply Qc_decomp; unfold this. - apply Qred_complete; apply spec_mul_norm; auto. - unfold Qcmult, Q2Qc. - apply Qc_decomp; unfold this. - apply Qred_complete. - apply Qmult_comp; apply Qeq_sym; apply Qred_correct. - Qed. - - Theorem spec_mul_normc_bis : forall x y : Qc, - [mul_norm (of_Qc x) (of_Qc y)] = x*y. - Proof. - intros. - rewrite <- strong_spec_mul_norm by apply strong_spec_of_Qc_bis. - rewrite strong_spec_red. - symmetry; apply (Qred_complete (x*y)%Q). - rewrite spec_mul_norm, ! strong_spec_of_Qc; auto with qarith. - Qed. - - Theorem spec_invc x: - [[inv x]] = /[[x]]. - Proof. - unfold to_Qc. - transitivity (Q2Qc (/[x])). - unfold Q2Qc. - apply Qc_decomp; unfold this. - apply Qred_complete; apply spec_inv; auto. - unfold Qcinv, Q2Qc. - apply Qc_decomp; unfold this. - apply Qred_complete. - apply Qinv_comp; apply Qeq_sym; apply Qred_correct. - Qed. - - Theorem spec_inv_normc x: - [[inv_norm x]] = /[[x]]. - Proof. - unfold to_Qc. - transitivity (Q2Qc (/[x])). - unfold Q2Qc. - apply Qc_decomp; unfold this. - apply Qred_complete; apply spec_inv_norm; auto. - unfold Qcinv, Q2Qc. - apply Qc_decomp; unfold this. - apply Qred_complete. - apply Qinv_comp; apply Qeq_sym; apply Qred_correct. - Qed. - - Theorem spec_inv_normc_bis : forall x : Qc, - [inv_norm (of_Qc x)] = /x. - Proof. - intros. - rewrite <- strong_spec_inv_norm by apply strong_spec_of_Qc_bis. - rewrite strong_spec_red. - symmetry; apply (Qred_complete (/x)%Q). - rewrite spec_inv_norm, ! strong_spec_of_Qc; auto with qarith. - Qed. - - Theorem spec_divc x y: [[div x y]] = [[x]] / [[y]]. - Proof. - unfold div; rewrite spec_mulc; auto. - unfold Qcdiv; apply f_equal2 with (f := Qcmult); auto. - apply spec_invc; auto. - Qed. - - Theorem spec_div_normc x y: [[div_norm x y]] = [[x]] / [[y]]. - Proof. - unfold div_norm; rewrite spec_mul_normc; auto. - unfold Qcdiv; apply f_equal2 with (f := Qcmult); auto. - apply spec_inv_normc; auto. - Qed. - - Theorem spec_div_normc_bis : forall x y : Qc, - [div_norm (of_Qc x) (of_Qc y)] = x/y. - Proof. - intros. - rewrite <- strong_spec_div_norm by apply strong_spec_of_Qc_bis. - rewrite strong_spec_red. - symmetry; apply (Qred_complete (x*(/y)%Qc)%Q). - rewrite spec_div_norm, ! strong_spec_of_Qc. - unfold Qcinv, Q2Qc, this; rewrite Qred_correct; auto with qarith. - Qed. - - Theorem spec_squarec x: [[square x]] = [[x]]^2. - Proof. - unfold to_Qc. - transitivity (Q2Qc ([x]^2)). - unfold Q2Qc. - apply Qc_decomp; unfold this. - apply Qred_complete; apply spec_square; auto. - simpl Qcpower. - replace (Q2Qc [x] * 1) with (Q2Qc [x]); try ring. - simpl. - unfold Qcmult, Q2Qc. - apply Qc_decomp; unfold this. - apply Qred_complete. - apply Qmult_comp; apply Qeq_sym; apply Qred_correct. - Qed. - - Theorem spec_power_posc x p: - [[power_pos x p]] = [[x]] ^ Pos.to_nat p. - Proof. - unfold to_Qc. - transitivity (Q2Qc ([x]^Zpos p)). - unfold Q2Qc. - apply Qc_decomp; unfold this. - apply Qred_complete; apply spec_power_pos; auto. - induction p using Pos.peano_ind. - simpl; ring. - rewrite Pos2Nat.inj_succ; simpl Qcpower. - rewrite <- IHp; clear IHp. - unfold Qcmult, Q2Qc. - apply Qc_decomp; unfold this. - apply Qred_complete. - setoid_replace ([x] ^ ' Pos.succ p)%Q with ([x] * [x] ^ ' p)%Q. - apply Qmult_comp; apply Qeq_sym; apply Qred_correct. - simpl. - rewrite <- Pos.add_1_l. - rewrite Qpower_plus_positive; simpl; apply Qeq_refl. - Qed. - -End Make. diff --git a/theories/Numbers/Rational/SpecViaQ/QSig.v b/theories/Numbers/Rational/SpecViaQ/QSig.v deleted file mode 100644 index 8e20fd060..000000000 --- a/theories/Numbers/Rational/SpecViaQ/QSig.v +++ /dev/null @@ -1,229 +0,0 @@ -(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016 *) -(* \VV/ **************************************************************) -(* // * This file is distributed under the terms of the *) -(* * GNU Lesser General Public License Version 2.1 *) -(************************************************************************) - -Require Import QArith Qpower Qminmax Orders RelationPairs GenericMinMax. - -Open Scope Q_scope. - -(** * QSig *) - -(** Interface of a rich structure about rational numbers. - Specifications are written via translation to Q. -*) - -Module Type QType. - - Parameter t : Type. - - Parameter to_Q : t -> Q. - Local Notation "[ x ]" := (to_Q x). - - Definition eq x y := [x] == [y]. - Definition lt x y := [x] < [y]. - Definition le x y := [x] <= [y]. - - Parameter of_Q : Q -> t. - Parameter spec_of_Q: forall x, to_Q (of_Q x) == x. - - Parameter red : t -> t. - Parameter compare : t -> t -> comparison. - Parameter eq_bool : t -> t -> bool. - Parameter max : t -> t -> t. - Parameter min : t -> t -> t. - Parameter zero : t. - Parameter one : t. - Parameter minus_one : t. - Parameter add : t -> t -> t. - Parameter sub : t -> t -> t. - Parameter opp : t -> t. - Parameter mul : t -> t -> t. - Parameter square : t -> t. - Parameter inv : t -> t. - Parameter div : t -> t -> t. - Parameter power : t -> Z -> t. - - Parameter spec_red : forall x, [red x] == [x]. - Parameter strong_spec_red : forall x, [red x] = Qred [x]. - Parameter spec_compare : forall x y, compare x y = ([x] ?= [y]). - Parameter spec_eq_bool : forall x y, eq_bool x y = Qeq_bool [x] [y]. - Parameter spec_max : forall x y, [max x y] == Qmax [x] [y]. - Parameter spec_min : forall x y, [min x y] == Qmin [x] [y]. - Parameter spec_0: [zero] == 0. - Parameter spec_1: [one] == 1. - Parameter spec_m1: [minus_one] == -(1). - Parameter spec_add: forall x y, [add x y] == [x] + [y]. - Parameter spec_sub: forall x y, [sub x y] == [x] - [y]. - Parameter spec_opp: forall x, [opp x] == - [x]. - Parameter spec_mul: forall x y, [mul x y] == [x] * [y]. - Parameter spec_square: forall x, [square x] == [x] ^ 2. - Parameter spec_inv : forall x, [inv x] == / [x]. - Parameter spec_div: forall x y, [div x y] == [x] / [y]. - Parameter spec_power: forall x z, [power x z] == [x] ^ z. - -End QType. - -(** NB: several of the above functions come with [..._norm] variants - that expect reduced arguments and return reduced results. *) - -(** TODO : also speak of specifications via Qcanon ... *) - -Module Type QType_Notation (Import Q : QType). - Notation "[ x ]" := (to_Q x). - Infix "==" := eq (at level 70). - Notation "x != y" := (~x==y) (at level 70). - Infix "<=" := le. - Infix "<" := lt. - Notation "0" := zero. - Notation "1" := one. - Infix "+" := add. - Infix "-" := sub. - Infix "*" := mul. - Notation "- x" := (opp x). - Infix "/" := div. - Notation "/ x" := (inv x). - Infix "^" := power. -End QType_Notation. - -Module Type QType' := QType <+ QType_Notation. - - -Module QProperties (Import Q : QType'). - -(** Conversion to Q *) - -Hint Rewrite - spec_red spec_compare spec_eq_bool spec_min spec_max - spec_add spec_sub spec_opp spec_mul spec_square spec_inv spec_div - spec_power : qsimpl. -Ltac qify := unfold eq, lt, le in *; autorewrite with qsimpl; - try rewrite spec_0 in *; try rewrite spec_1 in *; try rewrite spec_m1 in *. - -(** NB: do not add [spec_0] in the autorewrite database. Otherwise, - after instantiation in BigQ, this lemma become convertible to 0=0, - and autorewrite loops. Idem for [spec_1] and [spec_m1] *) - -(** Morphisms *) - -Ltac solve_wd1 := intros x x' Hx; qify; now rewrite Hx. -Ltac solve_wd2 := intros x x' Hx y y' Hy; qify; now rewrite Hx, Hy. - -Local Obligation Tactic := solve_wd2 || solve_wd1. - -Instance : Measure to_Q. -Instance eq_equiv : Equivalence eq. -Proof. - change eq with (RelCompFun Qeq to_Q); apply _. -Defined. - -Program Instance lt_wd : Proper (eq==>eq==>iff) lt. -Program Instance le_wd : Proper (eq==>eq==>iff) le. -Program Instance red_wd : Proper (eq==>eq) red. -Program Instance compare_wd : Proper (eq==>eq==>Logic.eq) compare. -Program Instance eq_bool_wd : Proper (eq==>eq==>Logic.eq) eq_bool. -Program Instance min_wd : Proper (eq==>eq==>eq) min. -Program Instance max_wd : Proper (eq==>eq==>eq) max. -Program Instance add_wd : Proper (eq==>eq==>eq) add. -Program Instance sub_wd : Proper (eq==>eq==>eq) sub. -Program Instance opp_wd : Proper (eq==>eq) opp. -Program Instance mul_wd : Proper (eq==>eq==>eq) mul. -Program Instance square_wd : Proper (eq==>eq) square. -Program Instance inv_wd : Proper (eq==>eq) inv. -Program Instance div_wd : Proper (eq==>eq==>eq) div. -Program Instance power_wd : Proper (eq==>Logic.eq==>eq) power. - -(** Let's implement [HasCompare] *) - -Lemma compare_spec : forall x y, CompareSpec (x==y) (x<y) (y<x) (compare x y). -Proof. intros. qify. destruct (Qcompare_spec [x] [y]); auto. Qed. - -(** Let's implement [TotalOrder] *) - -Definition lt_compat := lt_wd. -Instance lt_strorder : StrictOrder lt. -Proof. - change lt with (RelCompFun Qlt to_Q); apply _. -Qed. - -Lemma le_lteq : forall x y, x<=y <-> x<y \/ x==y. -Proof. intros. qify. apply Qle_lteq. Qed. - -Lemma lt_total : forall x y, x<y \/ x==y \/ y<x. -Proof. intros. destruct (compare_spec x y); auto. Qed. - -(** Let's implement [HasEqBool] *) - -Definition eqb := eq_bool. - -Lemma eqb_eq : forall x y, eq_bool x y = true <-> x == y. -Proof. intros. qify. apply Qeq_bool_iff. Qed. - -Lemma eqb_correct : forall x y, eq_bool x y = true -> x == y. -Proof. now apply eqb_eq. Qed. - -Lemma eqb_complete : forall x y, x == y -> eq_bool x y = true. -Proof. now apply eqb_eq. Qed. - -(** Let's implement [HasMinMax] *) - -Lemma max_l : forall x y, y<=x -> max x y == x. -Proof. intros x y. qify. apply Qminmax.Q.max_l. Qed. - -Lemma max_r : forall x y, x<=y -> max x y == y. -Proof. intros x y. qify. apply Qminmax.Q.max_r. Qed. - -Lemma min_l : forall x y, x<=y -> min x y == x. -Proof. intros x y. qify. apply Qminmax.Q.min_l. Qed. - -Lemma min_r : forall x y, y<=x -> min x y == y. -Proof. intros x y. qify. apply Qminmax.Q.min_r. Qed. - -(** Q is a ring *) - -Lemma add_0_l : forall x, 0+x == x. -Proof. intros. qify. apply Qplus_0_l. Qed. - -Lemma add_comm : forall x y, x+y == y+x. -Proof. intros. qify. apply Qplus_comm. Qed. - -Lemma add_assoc : forall x y z, x+(y+z) == x+y+z. -Proof. intros. qify. apply Qplus_assoc. Qed. - -Lemma mul_1_l : forall x, 1*x == x. -Proof. intros. qify. apply Qmult_1_l. Qed. - -Lemma mul_comm : forall x y, x*y == y*x. -Proof. intros. qify. apply Qmult_comm. Qed. - -Lemma mul_assoc : forall x y z, x*(y*z) == x*y*z. -Proof. intros. qify. apply Qmult_assoc. Qed. - -Lemma mul_add_distr_r : forall x y z, (x+y)*z == x*z + y*z. -Proof. intros. qify. apply Qmult_plus_distr_l. Qed. - -Lemma sub_add_opp : forall x y, x-y == x+(-y). -Proof. intros. qify. now unfold Qminus. Qed. - -Lemma add_opp_diag_r : forall x, x+(-x) == 0. -Proof. intros. qify. apply Qplus_opp_r. Qed. - -(** Q is a field *) - -Lemma neq_1_0 : 1!=0. -Proof. intros. qify. apply Q_apart_0_1. Qed. - -Lemma div_mul_inv : forall x y, x/y == x*(/y). -Proof. intros. qify. now unfold Qdiv. Qed. - -Lemma mul_inv_diag_l : forall x, x!=0 -> /x * x == 1. -Proof. intros x. qify. rewrite Qmult_comm. apply Qmult_inv_r. Qed. - -End QProperties. - -Module QTypeExt (Q : QType) - <: QType <: TotalOrder <: HasCompare Q <: HasMinMax Q <: HasEqBool Q - := Q <+ QProperties. |