aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories
diff options
context:
space:
mode:
authorGravatar Pierre-Marie Pédrot <pierre-marie.pedrot@inria.fr>2016-10-08 17:41:15 +0200
committerGravatar Pierre-Marie Pédrot <pierre-marie.pedrot@inria.fr>2016-10-08 17:41:15 +0200
commit1a9fe0dfe837ccbee25e9ecf19a7b2e7768a7958 (patch)
treed0539f4fe40c2a3077858c6c69440d98de053964 /theories
parent2dcd8f2e82366bb3b0f51a42426ccdfbb00281dc (diff)
parent82eb6cbfa3db53756ea40fb4795836d6f8c55bbe (diff)
Merge branch 'v8.6'
Diffstat (limited to 'theories')
-rw-r--r--theories/Logic/PropExtensionalityFacts.v88
1 files changed, 0 insertions, 88 deletions
diff --git a/theories/Logic/PropExtensionalityFacts.v b/theories/Logic/PropExtensionalityFacts.v
deleted file mode 100644
index 6438fcd40..000000000
--- a/theories/Logic/PropExtensionalityFacts.v
+++ /dev/null
@@ -1,88 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016 *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-(** Some facts and definitions about propositional and predicate extensionality
-
-We investigate the relations between the following extensionality principles
-
-- Provable-proposition extensionality
-- Predicate extensionality
-- Propositional functional extensionality
-
-Table of contents
-
-1. Definitions
-
-2.1 Predicate extensionality <-> Proposition extensionality + Propositional functional extensionality
-
-2.2 Propositional extensionality -> Provable propositional extensionality
-*)
-
-Set Implicit Arguments.
-
-(**********************************************************************)
-(** * Definitions *)
-
-(** Propositional extensionality *)
-
-Local Notation PropositionalExtensionality :=
- (forall A B : Prop, (A <-> B) -> A = B).
-
-(** Provable-proposition extensionality *)
-
-Local Notation ProvablePropositionExtensionality :=
- (forall A:Prop, A -> A = True).
-
-(** Predicate extensionality *)
-
-Local Notation PredicateExtensionality :=
- (forall (A:Type) (P Q : A -> Prop), (forall x, P x <-> Q x) -> P = Q).
-
-(** Propositional functional extensionality *)
-
-Local Notation PropositionalFunctionalExtensionality :=
- (forall (A:Type) (P Q : A -> Prop), (forall x, P x = Q x) -> P = Q).
-
-(**********************************************************************)
-(** * Propositional and predicate extensionality *)
-
-(**********************************************************************)
-(** ** Predicate extensionality <-> Propositional extensionality + Propositional functional extensionality *)
-
-Lemma PredExt_imp_PropExt : PredicateExtensionality -> PropositionalExtensionality.
-Proof.
- intros Ext A B Equiv.
- change A with ((fun _ => A) I).
- now rewrite Ext with (P := fun _ : True =>A) (Q := fun _ => B).
-Qed.
-
-Lemma PredExt_imp_PropFunExt : PredicateExtensionality -> PropositionalFunctionalExtensionality.
-Proof.
- intros Ext A P Q Eq. apply Ext. intros x. now rewrite (Eq x).
-Qed.
-
-Lemma PropExt_and_PropFunExt_imp_PredExt :
- PropositionalExtensionality -> PropositionalFunctionalExtensionality -> PredicateExtensionality.
-Proof.
- intros Ext FunExt A P Q Equiv.
- apply FunExt. intros x. now apply Ext.
-Qed.
-
-Theorem PropExt_and_PropFunExt_iff_PredExt :
- PropositionalExtensionality /\ PropositionalFunctionalExtensionality <-> PredicateExtensionality.
-Proof.
- firstorder using PredExt_imp_PropExt, PredExt_imp_PropFunExt, PropExt_and_PropFunExt_imp_PredExt.
-Qed.
-
-(**********************************************************************)
-(** ** Propositional extensionality + Provable proposition extensionality *)
-
-Lemma PropExt_imp_ProvPropExt : PropositionalExtensionality -> ProvablePropositionExtensionality.
-Proof.
- intros Ext A Ha; apply Ext; split; trivial.
-Qed.