aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories
diff options
context:
space:
mode:
authorGravatar herbelin <herbelin@85f007b7-540e-0410-9357-904b9bb8a0f7>2003-11-21 21:30:11 +0000
committerGravatar herbelin <herbelin@85f007b7-540e-0410-9357-904b9bb8a0f7>2003-11-21 21:30:11 +0000
commit06eaa6883b276c3e14509ced57ef1e63f2ec21e4 (patch)
tree46ae3bccdd9cc3e07063f75f97ddd3f45afa16c2 /theories
parente5644fac0cce2040961a451eeeda14a88cf5405b (diff)
Extraction des lemmes sur convert/nat_of_P de BinPos vers Pnat; ajout Pcase et Pcompare_antisym
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@4962 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'theories')
-rw-r--r--theories/NArith/BinNat.v2
-rw-r--r--theories/NArith/BinPos.v915
-rw-r--r--theories/NArith/Pnat.v472
3 files changed, 709 insertions, 680 deletions
diff --git a/theories/NArith/BinNat.v b/theories/NArith/BinNat.v
index e11194a5d..53d78d3b7 100644
--- a/theories/NArith/BinNat.v
+++ b/theories/NArith/BinNat.v
@@ -196,6 +196,8 @@ Qed.
(** Properties of comparison *)
+Require Pcompare.
+
Theorem Ncompare_Eq_eq : (n,m:entier) (Ncompare n m) = EGAL -> n = m.
Proof.
NewDestruct n as [|n]; NewDestruct m as [|m]; Simpl; Intro H;
diff --git a/theories/NArith/BinPos.v b/theories/NArith/BinPos.v
index d22a5ca49..14aa0dec1 100644
--- a/theories/NArith/BinPos.v
+++ b/theories/NArith/BinPos.v
@@ -11,7 +11,7 @@
(**********************************************************************)
(** Binary positive numbers *)
-(** Original version by Pierre Crégut, CNET, Lannion, France *)
+(** Original development by Pierre Crégut, CNET, Lannion, France *)
Inductive positive : Set :=
xI : positive -> positive
@@ -205,83 +205,6 @@ Fixpoint compare [x,y:positive]: relation -> relation :=
V8Infix "?=" compare (at level 70, no associativity) : positive_scope.
(**********************************************************************)
-(** Properties of comparison on binary positive numbers *)
-
-Theorem compare_convert1 :
- (x,y:positive)
- ~(compare x y SUPERIEUR) = EGAL /\ ~(compare x y INFERIEUR) = EGAL.
-Proof.
-Intro x; NewInduction x as [p IHp|p IHp|]; Intro y; NewDestruct y as [q|q|];
- Split;Simpl;Auto;
- Discriminate Orelse (Elim (IHp q); Auto).
-Qed.
-
-Theorem compare_convert_EGAL : (x,y:positive) (compare x y EGAL) = EGAL -> x=y.
-Proof.
-Intro x; NewInduction x as [p IHp|p IHp|];
- Intro y; NewDestruct y as [q|q|];Simpl;Auto; Intro H; [
- Rewrite (IHp q); Trivial
-| Absurd (compare p q SUPERIEUR)=EGAL ;
- [ Elim (compare_convert1 p q);Auto | Assumption ]
-| Discriminate H
-| Absurd (compare p q INFERIEUR) = EGAL;
- [ Elim (compare_convert1 p q);Auto | Assumption ]
-| Rewrite (IHp q);Auto
-| Discriminate H
-| Discriminate H
-| Discriminate H ].
-Qed.
-
-Lemma ZLSI:
- (x,y:positive) (compare x y SUPERIEUR) = INFERIEUR ->
- (compare x y EGAL) = INFERIEUR.
-Proof.
-Intro x; Induction x;Intro y; Induction y;Simpl;Auto;
- Discriminate Orelse Intros H;Discriminate H.
-Qed.
-
-Lemma ZLIS:
- (x,y:positive) (compare x y INFERIEUR) = SUPERIEUR ->
- (compare x y EGAL) = SUPERIEUR.
-Proof.
-Intro x; Induction x;Intro y; Induction y;Simpl;Auto;
- Discriminate Orelse Intros H;Discriminate H.
-Qed.
-
-Lemma ZLII:
- (x,y:positive) (compare x y INFERIEUR) = INFERIEUR ->
- (compare x y EGAL) = INFERIEUR \/ x = y.
-Proof.
-(Intro x; NewInduction x as [p IHp|p IHp|];
- Intro y; NewDestruct y as [q|q|];Simpl;Auto;Try Discriminate);
- Intro H2; Elim (IHp q H2);Auto; Intros E;Rewrite E;
- Auto.
-Qed.
-
-Lemma ZLSS:
- (x,y:positive) (compare x y SUPERIEUR) = SUPERIEUR ->
- (compare x y EGAL) = SUPERIEUR \/ x = y.
-Proof.
-(Intro x; NewInduction x as [p IHp|p IHp|];
- Intro y; NewDestruct y as [q|q|];Simpl;Auto;Try Discriminate);
- Intro H2; Elim (IHp q H2);Auto; Intros E;Rewrite E;
- Auto.
-Qed.
-
-Lemma Dcompare : (r:relation) r=EGAL \/ r = INFERIEUR \/ r = SUPERIEUR.
-Proof.
-Induction r; Auto.
-Qed.
-
-Tactic Definition ElimPcompare c1 c2:=
- Elim (Dcompare (compare c1 c2 EGAL)); [ Idtac |
- Let x = FreshId "H" In Intro x; Case x; Clear x ].
-
-Theorem convert_compare_EGAL: (x:positive)(compare x x EGAL)=EGAL.
-Intro x; Induction x; Auto.
-Qed.
-
-(**********************************************************************)
(** Miscellaneous properties of binary positive numbers *)
Lemma ZL11: (x:positive) (x=xH) \/ ~(x=xH).
@@ -587,7 +510,13 @@ Definition Prec : (A:Set)A->(positive->A->A)->positive->A :=
| (xI p) => (f (plus_iter p p) (iterate_add [_]A f p p (Prec p)))
end}.
-(** Test *)
+(** Peano case analysis *)
+
+Theorem Pcase : (P:(positive->Prop))
+ (P xH) ->((n:positive)(P (add_un n))) ->(n:positive)(P n).
+Proof.
+Intros; Apply Pind; Auto.
+Qed.
Check
let fact = (Prec positive xH [p;r](times (add_un p) r)) in
@@ -596,6 +525,232 @@ Check
in ((refl_equal ? ?) :: (fact seven) = five_thousand_forty).
(**********************************************************************)
+(** Properties of multiplication on binary positive numbers *)
+
+(** One is right neutral for multiplication *)
+
+Lemma times_x_1 : (x:positive) (times x xH) = x.
+Proof.
+Intro x;NewInduction x; Simpl.
+ Rewrite IHx; Reflexivity.
+ Rewrite IHx; Reflexivity.
+ Reflexivity.
+Qed.
+
+(** Right reduction properties for multiplication *)
+
+Lemma times_x_double : (x,y:positive) (times x (xO y)) = (xO (times x y)).
+Proof.
+Intros x y; NewInduction x; Simpl.
+ Rewrite IHx; Reflexivity.
+ Rewrite IHx; Reflexivity.
+ Reflexivity.
+Qed.
+
+Lemma times_x_double_plus_one :
+ (x,y:positive) (times x (xI y)) = (add x (xO (times x y))).
+Proof.
+Intros x y; NewInduction x; Simpl.
+ Rewrite IHx; Do 2 Rewrite add_assoc; Rewrite add_sym with x:=y; Reflexivity.
+ Rewrite IHx; Reflexivity.
+ Reflexivity.
+Qed.
+
+(** Commutativity of multiplication *)
+
+Theorem times_sym : (x,y:positive) (times x y) = (times y x).
+Proof.
+Intros x y; NewInduction y; Simpl.
+ Rewrite <- IHy; Apply times_x_double_plus_one.
+ Rewrite <- IHy; Apply times_x_double.
+ Apply times_x_1.
+Qed.
+
+(** Distributivity of multiplication over addition *)
+
+Theorem times_add_distr:
+ (x,y,z:positive) (times x (add y z)) = (add (times x y) (times x z)).
+Proof.
+Intros x y z; NewInduction x; Simpl.
+ Rewrite IHx; Rewrite <- add_assoc with y := (xO (times x y));
+ Rewrite -> add_assoc with x := (xO (times x y));
+ Rewrite -> add_sym with x := (xO (times x y));
+ Rewrite <- add_assoc with y := (xO (times x y));
+ Rewrite -> add_assoc with y := z; Reflexivity.
+ Rewrite IHx; Reflexivity.
+ Reflexivity.
+Qed.
+
+Theorem times_add_distr_l:
+ (x,y,z:positive) (times (add x y) z) = (add (times x z) (times y z)).
+Proof.
+Intros x y z; Do 3 Rewrite times_sym with y:=z; Apply times_add_distr.
+Qed.
+
+(** Associativity of multiplication *)
+
+Theorem times_assoc :
+ ((x,y,z:positive) (times x (times y z))= (times (times x y) z)).
+Proof.
+Intro x;NewInduction x as [x|x|]; Simpl; Intros y z.
+ Rewrite IHx; Rewrite times_add_distr_l; Reflexivity.
+ Rewrite IHx; Reflexivity.
+ Reflexivity.
+Qed.
+
+(** Parity properties of multiplication *)
+
+Lemma times_discr_xO_xI :
+ (x,y,z:positive)(times (xI x) z)<>(times (xO y) z).
+Proof.
+Intros x y z; NewInduction z as [|z IHz|]; Try Discriminate.
+Intro H; Apply IHz; Clear IHz.
+Do 2 Rewrite times_x_double in H.
+Injection H; Clear H; Intro H; Exact H.
+Qed.
+
+Lemma times_discr_xO : (x,y:positive)(times (xO x) y)<>y.
+Proof.
+Intros x y; NewInduction y; Try Discriminate.
+Rewrite times_x_double; Injection; Assumption.
+Qed.
+
+(** Simplification properties of multiplication *)
+
+Theorem simpl_times_r : (x,y,z:positive) (times x z)=(times y z) -> x=y.
+Proof.
+Intro x;NewInduction x as [p IHp|p IHp|]; Intro y; NewDestruct y as [q|q|]; Intros z H;
+ Reflexivity Orelse Apply (f_equal positive) Orelse Apply False_ind.
+ Simpl in H; Apply IHp with (xO z); Simpl; Do 2 Rewrite times_x_double;
+ Apply simpl_add_l with 1 := H.
+ Apply times_discr_xO_xI with 1 := H.
+ Simpl in H; Rewrite add_sym in H; Apply add_no_neutral with 1 := H.
+ Symmetry in H; Apply times_discr_xO_xI with 1 := H.
+ Apply IHp with (xO z); Simpl; Do 2 Rewrite times_x_double; Assumption.
+ Apply times_discr_xO with 1:=H.
+ Simpl in H; Symmetry in H; Rewrite add_sym in H;
+ Apply add_no_neutral with 1 := H.
+ Symmetry in H; Apply times_discr_xO with 1:=H.
+Qed.
+
+Theorem simpl_times_l : (x,y,z:positive) (times z x)=(times z y) -> x=y.
+Proof.
+Intros x y z H; Apply simpl_times_r with z:=z.
+Rewrite times_sym with x:=x; Rewrite times_sym with x:=y; Assumption.
+Qed.
+
+(**********************************************************************)
+(** Properties of comparison on binary positive numbers *)
+
+Theorem compare_convert1 :
+ (x,y:positive)
+ ~(compare x y SUPERIEUR) = EGAL /\ ~(compare x y INFERIEUR) = EGAL.
+Proof.
+Intro x; NewInduction x as [p IHp|p IHp|]; Intro y; NewDestruct y as [q|q|];
+ Split;Simpl;Auto;
+ Discriminate Orelse (Elim (IHp q); Auto).
+Qed.
+
+Theorem compare_convert_EGAL : (x,y:positive) (compare x y EGAL) = EGAL -> x=y.
+Proof.
+Intro x; NewInduction x as [p IHp|p IHp|];
+ Intro y; NewDestruct y as [q|q|];Simpl;Auto; Intro H; [
+ Rewrite (IHp q); Trivial
+| Absurd (compare p q SUPERIEUR)=EGAL ;
+ [ Elim (compare_convert1 p q);Auto | Assumption ]
+| Discriminate H
+| Absurd (compare p q INFERIEUR) = EGAL;
+ [ Elim (compare_convert1 p q);Auto | Assumption ]
+| Rewrite (IHp q);Auto
+| Discriminate H
+| Discriminate H
+| Discriminate H ].
+Qed.
+
+Lemma ZLSI:
+ (x,y:positive) (compare x y SUPERIEUR) = INFERIEUR ->
+ (compare x y EGAL) = INFERIEUR.
+Proof.
+Intro x; Induction x;Intro y; Induction y;Simpl;Auto;
+ Discriminate Orelse Intros H;Discriminate H.
+Qed.
+
+Lemma ZLIS:
+ (x,y:positive) (compare x y INFERIEUR) = SUPERIEUR ->
+ (compare x y EGAL) = SUPERIEUR.
+Proof.
+Intro x; Induction x;Intro y; Induction y;Simpl;Auto;
+ Discriminate Orelse Intros H;Discriminate H.
+Qed.
+
+Lemma ZLII:
+ (x,y:positive) (compare x y INFERIEUR) = INFERIEUR ->
+ (compare x y EGAL) = INFERIEUR \/ x = y.
+Proof.
+(Intro x; NewInduction x as [p IHp|p IHp|];
+ Intro y; NewDestruct y as [q|q|];Simpl;Auto;Try Discriminate);
+ Intro H2; Elim (IHp q H2);Auto; Intros E;Rewrite E;
+ Auto.
+Qed.
+
+Lemma ZLSS:
+ (x,y:positive) (compare x y SUPERIEUR) = SUPERIEUR ->
+ (compare x y EGAL) = SUPERIEUR \/ x = y.
+Proof.
+(Intro x; NewInduction x as [p IHp|p IHp|];
+ Intro y; NewDestruct y as [q|q|];Simpl;Auto;Try Discriminate);
+ Intro H2; Elim (IHp q H2);Auto; Intros E;Rewrite E;
+ Auto.
+Qed.
+
+Lemma Dcompare : (r:relation) r=EGAL \/ r = INFERIEUR \/ r = SUPERIEUR.
+Proof.
+Induction r; Auto.
+Qed.
+
+Tactic Definition ElimPcompare c1 c2:=
+ Elim (Dcompare (compare c1 c2 EGAL)); [ Idtac |
+ Let x = FreshId "H" In Intro x; Case x; Clear x ].
+
+Theorem convert_compare_EGAL: (x:positive)(compare x x EGAL)=EGAL.
+Intro x; Induction x; Auto.
+Qed.
+
+Lemma Pcompare_antisym :
+ (x,y:positive)(r:relation) (Op (compare x y r)) = (compare y x (Op r)).
+Proof.
+Intro x; NewInduction x as [p IHp|p IHp|]; Intro y; NewDestruct y;
+Intro r; Reflexivity Orelse (Symmetry; Assumption) Orelse Discriminate H
+Orelse Simpl; Apply IHp Orelse Try Rewrite IHp; Try Reflexivity.
+Qed.
+
+Lemma ZC1:
+ (x,y:positive)(compare x y EGAL)=SUPERIEUR -> (compare y x EGAL)=INFERIEUR.
+Proof.
+Intros; Change EGAL with (Op EGAL).
+Rewrite <- Pcompare_antisym; Rewrite H; Reflexivity.
+Qed.
+
+Lemma ZC2:
+ (x,y:positive)(compare x y EGAL)=INFERIEUR -> (compare y x EGAL)=SUPERIEUR.
+Proof.
+Intros; Change EGAL with (Op EGAL).
+Rewrite <- Pcompare_antisym; Rewrite H; Reflexivity.
+Qed.
+
+Lemma ZC3: (x,y:positive)(compare x y EGAL)=EGAL -> (compare y x EGAL)=EGAL.
+Proof.
+Intros; Change EGAL with (Op EGAL).
+Rewrite <- Pcompare_antisym; Rewrite H; Reflexivity.
+Qed.
+
+Lemma ZC4: (x,y:positive) (compare x y EGAL) = (Op (compare y x EGAL)).
+Proof.
+Intros; Change 1 EGAL with (Op EGAL).
+Symmetry; Apply Pcompare_antisym.
+Qed.
+
+(**********************************************************************)
(** Properties of subtraction on binary positive numbers *)
Lemma ZS: (p:positive_mask) (Zero_suivi_de_mask p) = IsNul -> p = IsNul.
@@ -642,7 +797,7 @@ Intro x; NewInduction x as [p|p|]; Intro y; NewDestruct y as [q|q|]; Simpl;
| NewDestruct p; Simpl; [ Discriminate H | Discriminate H | Reflexivity ] ].
Qed.
-(** Properties valid only for x>y *)
+(** Properties of subtraction valid only for x>y *)
Lemma sub_pos_SUPERIEUR:
(x,y:positive)(compare x y EGAL)=SUPERIEUR ->
@@ -727,603 +882,3 @@ Intros z H1;Elim H1;Intros H2 H3; Elim H3;Intros H4 H5;
Unfold true_sub ;Rewrite H2; Exact H4.
Qed.
-(**********************************************************************)
-(** Properties of the injection from binary positive numbers to Peano
- natural numbers *)
-
-Require Le.
-Require Lt.
-Require Gt.
-Require Plus.
-Require Mult.
-Require Minus.
-
-(** [nat_of_P] is a morphism for addition *)
-
-Lemma convert_add_un :
- (x:positive)(m:nat)
- (positive_to_nat (add_un x) m) = (plus m (positive_to_nat x m)).
-Proof.
-Intro x; NewInduction x as [p IHp|p IHp|]; Simpl; Auto; Intro m; Rewrite IHp;
-Rewrite plus_assoc_l; Trivial.
-Qed.
-
-Lemma cvt_add_un :
- (p:positive) (convert (add_un p)) = (S (convert p)).
-Proof.
- Intro; Change (S (convert p)) with (plus (S O) (convert p));
- Unfold convert; Apply convert_add_un.
-Qed.
-
-Theorem convert_add_carry :
- (x,y:positive)(m:nat)
- (positive_to_nat (add_carry x y) m) =
- (plus m (positive_to_nat (add x y) m)).
-Proof.
-Intro x; NewInduction x as [p IHp|p IHp|];
- Intro y; NewDestruct y; Simpl; Auto with arith; Intro m; [
- Rewrite IHp; Rewrite plus_assoc_l; Trivial with arith
-| Rewrite IHp; Rewrite plus_assoc_l; Trivial with arith
-| Rewrite convert_add_un; Rewrite plus_assoc_l; Trivial with arith
-| Rewrite convert_add_un; Apply plus_assoc_r ].
-Qed.
-
-Theorem cvt_carry :
- (x,y:positive)(convert (add_carry x y)) = (S (convert (add x y))).
-Proof.
-Intros;Unfold convert; Rewrite convert_add_carry; Simpl; Trivial with arith.
-Qed.
-
-Theorem add_verif :
- (x,y:positive)(m:nat)
- (positive_to_nat (add x y) m) =
- (plus (positive_to_nat x m) (positive_to_nat y m)).
-Proof.
-Intro x; NewInduction x as [p IHp|p IHp|];
- Intro y; NewDestruct y;Simpl;Auto with arith; [
- Intros m;Rewrite convert_add_carry; Rewrite IHp;
- Rewrite plus_assoc_r; Rewrite plus_assoc_r;
- Rewrite (plus_permute m (positive_to_nat p (plus m m))); Trivial with arith
-| Intros m; Rewrite IHp; Apply plus_assoc_l
-| Intros m; Rewrite convert_add_un;
- Rewrite (plus_sym (plus m (positive_to_nat p (plus m m))));
- Apply plus_assoc_r
-| Intros m; Rewrite IHp; Apply plus_permute
-| Intros m; Rewrite convert_add_un; Apply plus_assoc_r ].
-Qed.
-
-Theorem convert_add:
- (x,y:positive) (convert (add x y)) = (plus (convert x) (convert y)).
-Proof.
-Intros x y; Exact (add_verif x y (S O)).
-Qed.
-
-(** [Pmult_nat] is a morphism for addition *)
-
-Lemma ZL2:
- (y:positive)(m:nat)
- (positive_to_nat y (plus m m)) =
- (plus (positive_to_nat y m) (positive_to_nat y m)).
-Proof.
-Intro y; NewInduction y as [p H|p H|]; Intro m; [
- Simpl; Rewrite H; Rewrite plus_assoc_r;
- Rewrite (plus_permute m (positive_to_nat p (plus m m)));
- Rewrite plus_assoc_r; Auto with arith
-| Simpl; Rewrite H; Auto with arith
-| Simpl; Trivial with arith ].
-Qed.
-
-Lemma ZL6:
- (p:positive) (positive_to_nat p (S (S O))) = (plus (convert p) (convert p)).
-Proof.
-Intro p;Change (2) with (plus (S O) (S O)); Rewrite ZL2; Trivial.
-Qed.
-
-(** [nat_of_P] is a morphism for multiplication *)
-
-Theorem times_convert :
- (x,y:positive) (convert (times x y)) = (mult (convert x) (convert y)).
-Proof.
-Intros x y; NewInduction x as [ x' H | x' H | ]; [
- Change (times (xI x') y) with (add y (xO (times x' y))); Rewrite convert_add;
- Unfold 2 3 convert; Simpl; Do 2 Rewrite ZL6; Rewrite H;
- Rewrite -> mult_plus_distr; Reflexivity
-| Unfold 1 2 convert; Simpl; Do 2 Rewrite ZL6;
- Rewrite H; Rewrite mult_plus_distr; Reflexivity
-| Simpl; Rewrite <- plus_n_O; Reflexivity ].
-Qed.
-V7only [
- Comments "Compatibility with the old version of times and times_convert".
- Syntactic Definition times1 :=
- [x:positive;_:positive->positive;y:positive](times x y).
- Syntactic Definition times1_convert :=
- [x,y:positive;_:positive->positive](times_convert x y).
-].
-
-(** [nat_of_P] is strictly positive *)
-
-Lemma compare_positive_to_nat_O :
- (p:positive)(m:nat)(le m (positive_to_nat p m)).
-NewInduction p; Simpl; Auto with arith.
-Intro m; Apply le_trans with (plus m m); Auto with arith.
-Qed.
-
-Lemma compare_convert_O : (p:positive)(lt O (convert p)).
-Intro; Unfold convert; Apply lt_le_trans with (S O); Auto with arith.
-Apply compare_positive_to_nat_O.
-Qed.
-
-(** Pmult_nat permutes with multiplication *)
-
-Lemma positive_to_nat_mult : (p:positive) (n,m:nat)
- (positive_to_nat p (mult m n))=(mult m (positive_to_nat p n)).
-Proof.
- Induction p. Intros. Simpl. Rewrite mult_plus_distr_r. Rewrite <- (mult_plus_distr_r m n n).
- Rewrite (H (plus n n) m). Reflexivity.
- Intros. Simpl. Rewrite <- (mult_plus_distr_r m n n). Apply H.
- Trivial.
-Qed.
-
-Lemma positive_to_nat_2 : (p:positive)
- (positive_to_nat p (2))=(mult (2) (positive_to_nat p (1))).
-Proof.
- Intros. Rewrite <- positive_to_nat_mult. Reflexivity.
-Qed.
-
-Lemma positive_to_nat_4 : (p:positive)
- (positive_to_nat p (4))=(mult (2) (positive_to_nat p (2))).
-Proof.
- Intros. Rewrite <- positive_to_nat_mult. Reflexivity.
-Qed.
-
-(** Mapping of xH, xO and xI through [nat_of_P] *)
-
-Lemma convert_xH : (convert xH)=(1).
-Proof.
- Reflexivity.
-Qed.
-
-Lemma convert_xO : (p:positive) (convert (xO p))=(mult (2) (convert p)).
-Proof.
- Induction p. Unfold convert. Simpl. Intros. Rewrite positive_to_nat_2.
- Rewrite positive_to_nat_4. Rewrite H. Simpl. Rewrite <- plus_Snm_nSm. Reflexivity.
- Unfold convert. Simpl. Intros. Rewrite positive_to_nat_2. Rewrite positive_to_nat_4.
- Rewrite H. Reflexivity.
- Reflexivity.
-Qed.
-
-Lemma convert_xI : (p:positive) (convert (xI p))=(S (mult (2) (convert p))).
-Proof.
- Induction p. Unfold convert. Simpl. Intro p0. Intro. Rewrite positive_to_nat_2.
- Rewrite positive_to_nat_4; Injection H; Intro H1; Rewrite H1; Rewrite <- plus_Snm_nSm; Reflexivity.
- Unfold convert. Simpl. Intros. Rewrite positive_to_nat_2. Rewrite positive_to_nat_4.
- Injection H; Intro H1; Rewrite H1; Reflexivity.
- Reflexivity.
-Qed.
-
-(**********************************************************************)
-(** Properties of the shifted injection from Peano natural numbers to
- binary positive numbers *)
-
-(** Composition of [P_of_succ_nat] and [nat_of_P] is successor on [nat] *)
-
-Theorem bij1 : (m:nat) (convert (anti_convert m)) = (S m).
-Proof.
-Intro m; NewInduction m as [|n H]; [
- Reflexivity
-| Simpl; Rewrite cvt_add_un; Rewrite H; Auto ].
-Qed.
-
-(** Miscellaneous lemmas on [P_of_succ_nat] *)
-
-Lemma ZL3: (x:nat) (add_un (anti_convert (plus x x))) = (xO (anti_convert x)).
-Proof.
-Intro x; NewInduction x as [|n H]; [
- Simpl; Auto with arith
-| Simpl; Rewrite plus_sym; Simpl; Rewrite H; Rewrite ZL1;Auto with arith].
-Qed.
-
-Lemma ZL4: (y:positive) (EX h:nat |(convert y)=(S h)).
-Proof.
-Intro y; NewInduction y as [p H|p H|]; [
- NewDestruct H as [x H1]; Exists (plus (S x) (S x));
- Unfold convert ;Simpl; Change (2) with (plus (1) (1)); Rewrite ZL2; Unfold convert in H1;
- Rewrite H1; Auto with arith
-| NewDestruct H as [x H2]; Exists (plus x (S x)); Unfold convert;
- Simpl; Change (2) with (plus (1) (1)); Rewrite ZL2;Unfold convert in H2; Rewrite H2; Auto with arith
-| Exists O ;Auto with arith ].
-Qed.
-
-Lemma ZL5: (x:nat) (anti_convert (plus (S x) (S x))) = (xI (anti_convert x)).
-Proof.
-Intro x; NewInduction x as [|n H];Simpl; [
- Auto with arith
-| Rewrite <- plus_n_Sm; Simpl; Simpl in H; Rewrite H; Auto with arith].
-Qed.
-
-(** Composition of [nat_of_P] and [P_of_succ_nat] is successor on [positive] *)
-
-Theorem bij2 : (x:positive) (anti_convert (convert x)) = (add_un x).
-Proof.
-Intro x; NewInduction x as [p H|p H|]; [
- Simpl; Rewrite <- H; Change (2) with (plus (1) (1));
- Rewrite ZL2; Elim (ZL4 p);
- Unfold convert; Intros n H1;Rewrite H1; Rewrite ZL3; Auto with arith
-| Unfold convert ;Simpl; Change (2) with (plus (1) (1));
- Rewrite ZL2;
- Rewrite <- (sub_add_one
- (anti_convert
- (plus (positive_to_nat p (S O)) (positive_to_nat p (S O)))));
- Rewrite <- (sub_add_one (xI p));
- Simpl;Rewrite <- H;Elim (ZL4 p); Unfold convert ;Intros n H1;Rewrite H1;
- Rewrite ZL5; Simpl; Trivial with arith
-| Unfold convert; Simpl; Auto with arith ].
-Qed.
-
-(** Composition of [nat_of_P], [P_of_succ_nat] and [Ppred] is identity
- on [positive] *)
-
-Theorem bij3: (x:positive)(sub_un (anti_convert (convert x))) = x.
-Proof.
-Intros x; Rewrite bij2; Rewrite sub_add_one; Trivial with arith.
-Qed.
-
-(** Extra lemmas on [lt] on Peano natural numbers *)
-
-Lemma ZL7:
- (m,n:nat) (lt m n) -> (lt (plus m m) (plus n n)).
-Proof.
-Intros m n H; Apply lt_trans with m:=(plus m n); [
- Apply lt_reg_l with 1:=H
-| Rewrite (plus_sym m n); Apply lt_reg_l with 1:=H ].
-Qed.
-
-Lemma ZL8:
- (m,n:nat) (lt m n) -> (lt (S (plus m m)) (plus n n)).
-Proof.
-Intros m n H; Apply le_lt_trans with m:=(plus m n); [
- Change (lt (plus m m) (plus m n)) ; Apply lt_reg_l with 1:=H
-| Rewrite (plus_sym m n); Apply lt_reg_l with 1:=H ].
-Qed.
-
-(** [nat_of_P] is a morphism from [positive] to [nat] for [lt] (expressed
- from [compare] on [positive])
-
- Part 1: [lt] on [positive] is finer than [lt] on [nat]
-*)
-
-Lemma compare_convert_INFERIEUR :
- (x,y:positive) (compare x y EGAL) = INFERIEUR ->
- (lt (convert x) (convert y)).
-Proof.
-Intro x; NewInduction x as [p H|p H|];Intro y; NewDestruct y as [q|q|];
- Intro H2; [
- Unfold convert ;Simpl; Apply lt_n_S;
- Do 2 Rewrite ZL6; Apply ZL7; Apply H; Simpl in H2; Assumption
-| Unfold convert ;Simpl; Do 2 Rewrite ZL6;
- Apply ZL8; Apply H;Simpl in H2; Apply ZLSI;Assumption
-| Simpl; Discriminate H2
-| Simpl; Unfold convert ;Simpl;Do 2 Rewrite ZL6;
- Elim (ZLII p q H2); [
- Intros H3;Apply lt_S;Apply ZL7; Apply H;Apply H3
- | Intros E;Rewrite E;Apply lt_n_Sn]
-| Simpl; Unfold convert ;Simpl;Do 2 Rewrite ZL6;
- Apply ZL7;Apply H;Assumption
-| Simpl; Discriminate H2
-| Unfold convert ;Simpl; Apply lt_n_S; Rewrite ZL6;
- Elim (ZL4 q);Intros h H3; Rewrite H3;Simpl; Apply lt_O_Sn
-| Unfold convert ;Simpl; Rewrite ZL6; Elim (ZL4 q);Intros h H3;
- Rewrite H3; Simpl; Rewrite <- plus_n_Sm; Apply lt_n_S; Apply lt_O_Sn
-| Simpl; Discriminate H2 ].
-Qed.
-
-(** [nat_of_P] is a morphism from [positive] to [nat] for [gt] (expressed
- from [compare] on [positive])
-
- Part 1: [gt] on [positive] is finer than [gt] on [nat]
-*)
-
-Lemma compare_convert_SUPERIEUR :
- (x,y:positive) (compare x y EGAL)=SUPERIEUR -> (gt (convert x) (convert y)).
-Proof.
-Unfold gt; Intro x; NewInduction x as [p H|p H|];
- Intro y; NewDestruct y as [q|q|]; Intro H2; [
- Simpl; Unfold convert ;Simpl;Do 2 Rewrite ZL6;
- Apply lt_n_S; Apply ZL7; Apply H;Assumption
-| Simpl; Unfold convert ;Simpl; Do 2 Rewrite ZL6;
- Elim (ZLSS p q H2); [
- Intros H3;Apply lt_S;Apply ZL7;Apply H;Assumption
- | Intros E;Rewrite E;Apply lt_n_Sn]
-| Unfold convert ;Simpl; Rewrite ZL6;Elim (ZL4 p);
- Intros h H3;Rewrite H3;Simpl; Apply lt_n_S; Apply lt_O_Sn
-| Simpl;Unfold convert ;Simpl;Do 2 Rewrite ZL6;
- Apply ZL8; Apply H; Apply ZLIS; Assumption
-| Simpl; Unfold convert ;Simpl;Do 2 Rewrite ZL6;
- Apply ZL7;Apply H;Assumption
-| Unfold convert ;Simpl; Rewrite ZL6; Elim (ZL4 p);
- Intros h H3;Rewrite H3;Simpl; Rewrite <- plus_n_Sm;Apply lt_n_S;
- Apply lt_O_Sn
-| Simpl; Discriminate H2
-| Simpl; Discriminate H2
-| Simpl; Discriminate H2 ].
-Qed.
-
-(** [nat_of_P] is a morphism from [positive] to [nat] for [lt] (expressed
- from [compare] on [positive])
-
- Part 2: [lt] on [nat] is finer than [lt] on [positive]
-*)
-
-Lemma convert_compare_INFERIEUR :
- (x,y:positive)(lt (convert x) (convert y)) -> (compare x y EGAL) = INFERIEUR.
-Proof.
-Intros x y; Unfold gt; Elim (Dcompare (compare x y EGAL)); [
- Intros E; Rewrite (compare_convert_EGAL x y E);
- Intros H;Absurd (lt (convert y) (convert y)); [ Apply lt_n_n | Assumption ]
-| Intros H;Elim H; [
- Auto
- | Intros H1 H2; Absurd (lt (convert x) (convert y)); [
- Apply lt_not_sym; Change (gt (convert x) (convert y));
- Apply compare_convert_SUPERIEUR; Assumption
- | Assumption ]]].
-Qed.
-
-(** [nat_of_P] is a morphism from [positive] to [nat] for [gt] (expressed
- from [compare] on [positive])
-
- Part 2: [gt] on [nat] is finer than [gt] on [positive]
-*)
-
-Lemma convert_compare_SUPERIEUR :
- (x,y:positive)(gt (convert x) (convert y)) -> (compare x y EGAL) = SUPERIEUR.
-Proof.
-Intros x y; Unfold gt; Elim (Dcompare (compare x y EGAL)); [
- Intros E; Rewrite (compare_convert_EGAL x y E);
- Intros H;Absurd (lt (convert y) (convert y)); [ Apply lt_n_n | Assumption ]
-| Intros H;Elim H; [
- Intros H1 H2; Absurd (lt (convert y) (convert x)); [
- Apply lt_not_sym; Apply compare_convert_INFERIEUR; Assumption
- | Assumption ]
- | Auto]].
-Qed.
-
-(**********************************************************************)
-(** Extra properties of the comparison on binary positive numbers *)
-
-Lemma ZC1:
- (x,y:positive)(compare x y EGAL)=SUPERIEUR -> (compare y x EGAL)=INFERIEUR.
-Proof.
-Intros x y H;Apply convert_compare_INFERIEUR;
-Change (gt (convert x) (convert y));Apply compare_convert_SUPERIEUR;
-Assumption.
-Qed.
-
-Lemma ZC2:
- (x,y:positive)(compare x y EGAL)=INFERIEUR -> (compare y x EGAL)=SUPERIEUR.
-Proof.
-Intros x y H;Apply convert_compare_SUPERIEUR;Unfold gt;
-Apply compare_convert_INFERIEUR;Assumption.
-Qed.
-
-Lemma ZC3: (x,y:positive)(compare x y EGAL)=EGAL -> (compare y x EGAL)=EGAL.
-Proof.
-Intros x y H; Rewrite (compare_convert_EGAL x y H);
-Apply convert_compare_EGAL.
-Qed.
-
-Lemma ZC4: (x,y:positive) (compare x y EGAL) = (Op (compare y x EGAL)).
-Proof.
-Intros x y;ElimPcompare y x;
-Intros E;Rewrite E;Simpl; [Apply ZC3 | Apply ZC2 | Apply ZC1 ]; Assumption.
-Qed.
-
-(**********************************************************************)
-(** Extra properties of the injection from binary positive numbers to Peano
- natural numbers *)
-
-(** [nat_of_P] is a morphism for subtraction on positive numbers *)
-
-Theorem true_sub_convert:
- (x,y:positive) (compare x y EGAL) = SUPERIEUR ->
- (convert (true_sub x y)) = (minus (convert x) (convert y)).
-Proof.
-Intros x y H; Apply plus_reg_l with (convert y);
-Rewrite le_plus_minus_r; [
- Rewrite <- convert_add; Rewrite sub_add; Auto with arith
-| Apply lt_le_weak; Exact (compare_convert_SUPERIEUR x y H)].
-Qed.
-
-(** [nat_of_P] is injective *)
-
-Lemma convert_intro : (x,y:positive)(convert x)=(convert y) -> x=y.
-Proof.
-Intros x y H;Rewrite <- (bij3 x);Rewrite <- (bij3 y); Rewrite H; Trivial with arith.
-Qed.
-
-Lemma ZL16: (p,q:positive)(lt (minus (convert p) (convert q)) (convert p)).
-Proof.
-Intros p q; Elim (ZL4 p);Elim (ZL4 q); Intros h H1 i H2;
-Rewrite H1;Rewrite H2; Simpl;Unfold lt; Apply le_n_S; Apply le_minus.
-Qed.
-
-Lemma ZL17: (p,q:positive)(lt (convert p) (convert (add p q))).
-Proof.
-Intros p q; Rewrite convert_add;Unfold lt;Elim (ZL4 q); Intros k H;Rewrite H;
-Rewrite plus_sym;Simpl; Apply le_n_S; Apply le_plus_r.
-Qed.
-
-(** Comparison and subtraction *)
-
-Lemma compare_true_sub_right :
- (p,q,z:positive)
- (compare q p EGAL)=INFERIEUR->
- (compare z p EGAL)=SUPERIEUR->
- (compare z q EGAL)=SUPERIEUR->
- (compare (true_sub z p) (true_sub z q) EGAL)=INFERIEUR.
-Proof.
-Intros; Apply convert_compare_INFERIEUR; Rewrite true_sub_convert; [
- Rewrite true_sub_convert; [
- Apply simpl_lt_plus_l with p:=(convert q); Rewrite le_plus_minus_r; [
- Rewrite plus_sym; Apply simpl_lt_plus_l with p:=(convert p);
- Rewrite plus_assoc_l; Rewrite le_plus_minus_r; [
- Rewrite (plus_sym (convert p)); Apply lt_reg_l;
- Apply compare_convert_INFERIEUR; Assumption
- | Apply lt_le_weak; Apply compare_convert_INFERIEUR;
- Apply ZC1; Assumption ]
- | Apply lt_le_weak;Apply compare_convert_INFERIEUR;
- Apply ZC1; Assumption ]
- | Assumption ]
- | Assumption ].
-Qed.
-
-Lemma compare_true_sub_left :
- (p,q,z:positive)
- (compare q p EGAL)=INFERIEUR->
- (compare p z EGAL)=SUPERIEUR->
- (compare q z EGAL)=SUPERIEUR->
- (compare (true_sub q z) (true_sub p z) EGAL)=INFERIEUR.
-Proof.
-Intros p q z; Intros;
- Apply convert_compare_INFERIEUR; Rewrite true_sub_convert; [
- Rewrite true_sub_convert; [
- Unfold gt; Apply simpl_lt_plus_l with p:=(convert z);
- Rewrite le_plus_minus_r; [
- Rewrite le_plus_minus_r; [
- Apply compare_convert_INFERIEUR;Assumption
- | Apply lt_le_weak; Apply compare_convert_INFERIEUR;Apply ZC1;Assumption]
- | Apply lt_le_weak; Apply compare_convert_INFERIEUR;Apply ZC1; Assumption]
- | Assumption]
-| Assumption].
-Qed.
-
-(**********************************************************************)
-(** Properties of multiplication on binary positive numbers *)
-
-(** One is right neutral for multiplication *)
-
-Lemma times_x_1 : (x:positive) (times x xH) = x.
-Proof.
-Intro x;NewInduction x; Simpl.
- Rewrite IHx; Reflexivity.
- Rewrite IHx; Reflexivity.
- Reflexivity.
-Qed.
-
-(** Right reduction properties for multiplication *)
-
-Lemma times_x_double : (x,y:positive) (times x (xO y)) = (xO (times x y)).
-Proof.
-Intros x y; NewInduction x; Simpl.
- Rewrite IHx; Reflexivity.
- Rewrite IHx; Reflexivity.
- Reflexivity.
-Qed.
-
-Lemma times_x_double_plus_one :
- (x,y:positive) (times x (xI y)) = (add x (xO (times x y))).
-Proof.
-Intros x y; NewInduction x; Simpl.
- Rewrite IHx; Do 2 Rewrite add_assoc; Rewrite add_sym with x:=y; Reflexivity.
- Rewrite IHx; Reflexivity.
- Reflexivity.
-Qed.
-
-(** Commutativity of multiplication *)
-
-Theorem times_sym : (x,y:positive) (times x y) = (times y x).
-Proof.
-Intros x y; NewInduction y; Simpl.
- Rewrite <- IHy; Apply times_x_double_plus_one.
- Rewrite <- IHy; Apply times_x_double.
- Apply times_x_1.
-Qed.
-
-(** Distributivity of multiplication over addition *)
-
-Theorem times_add_distr:
- (x,y,z:positive) (times x (add y z)) = (add (times x y) (times x z)).
-Proof.
-Intros x y z; NewInduction x; Simpl.
- Rewrite IHx; Rewrite <- add_assoc with y := (xO (times x y));
- Rewrite -> add_assoc with x := (xO (times x y));
- Rewrite -> add_sym with x := (xO (times x y));
- Rewrite <- add_assoc with y := (xO (times x y));
- Rewrite -> add_assoc with y := z; Reflexivity.
- Rewrite IHx; Reflexivity.
- Reflexivity.
-Qed.
-
-Theorem times_add_distr_l:
- (x,y,z:positive) (times (add x y) z) = (add (times x z) (times y z)).
-Proof.
-Intros x y z; Do 3 Rewrite times_sym with y:=z; Apply times_add_distr.
-Qed.
-
-(** Associativity of multiplication *)
-
-Theorem times_assoc :
- ((x,y,z:positive) (times x (times y z))= (times (times x y) z)).
-Proof.
-Intro x;NewInduction x as [x|x|]; Simpl; Intros y z.
- Rewrite IHx; Rewrite times_add_distr_l; Reflexivity.
- Rewrite IHx; Reflexivity.
- Reflexivity.
-Qed.
-
-(** Distributivity of multiplication over subtraction *)
-
-Theorem times_true_sub_distr:
- (x,y,z:positive) (compare y z EGAL) = SUPERIEUR ->
- (times x (true_sub y z)) = (true_sub (times x y) (times x z)).
-Proof.
-Intros x y z H; Apply convert_intro;
-Rewrite times_convert; Rewrite true_sub_convert; [
- Rewrite true_sub_convert; [
- Do 2 Rewrite times_convert;
- Do 3 Rewrite (mult_sym (convert x));Apply mult_minus_distr
- | Apply convert_compare_SUPERIEUR; Do 2 Rewrite times_convert;
- Unfold gt; Elim (ZL4 x);Intros h H1;Rewrite H1; Apply lt_mult_left;
- Exact (compare_convert_SUPERIEUR y z H) ]
-| Assumption ].
-Qed.
-
-(** Parity properties of multiplication *)
-
-Lemma times_discr_xO_xI :
- (x,y,z:positive)(times (xI x) z)<>(times (xO y) z).
-Proof.
-Intros x y z; NewInduction z as [|z IHz|]; Try Discriminate.
-Intro H; Apply IHz; Clear IHz.
-Do 2 Rewrite times_x_double in H.
-Injection H; Clear H; Intro H; Exact H.
-Qed.
-
-Lemma times_discr_xO : (x,y:positive)(times (xO x) y)<>y.
-Proof.
-Intros x y; NewInduction y; Try Discriminate.
-Rewrite times_x_double; Injection; Assumption.
-Qed.
-
-(** Simplification properties of multiplication *)
-
-Theorem simpl_times_r : (x,y,z:positive) (times x z)=(times y z) -> x=y.
-Proof.
-Intro x;NewInduction x as [p IHp|p IHp|]; Intro y; NewDestruct y as [q|q|]; Intros z H;
- Reflexivity Orelse Apply (f_equal positive) Orelse Apply False_ind.
- Simpl in H; Apply IHp with (xO z); Simpl; Do 2 Rewrite times_x_double;
- Apply simpl_add_l with 1 := H.
- Apply times_discr_xO_xI with 1 := H.
- Simpl in H; Rewrite add_sym in H; Apply add_no_neutral with 1 := H.
- Symmetry in H; Apply times_discr_xO_xI with 1 := H.
- Apply IHp with (xO z); Simpl; Do 2 Rewrite times_x_double; Assumption.
- Apply times_discr_xO with 1:=H.
- Simpl in H; Symmetry in H; Rewrite add_sym in H;
- Apply add_no_neutral with 1 := H.
- Symmetry in H; Apply times_discr_xO with 1:=H.
-Qed.
-
-Theorem simpl_times_l : (x,y,z:positive) (times z x)=(times z y) -> x=y.
-Proof.
-Intros x y z H; Apply simpl_times_r with z:=z.
-Rewrite times_sym with x:=x; Rewrite times_sym with x:=y; Assumption.
-Qed.
diff --git a/theories/NArith/Pnat.v b/theories/NArith/Pnat.v
new file mode 100644
index 000000000..22c6b5cb9
--- /dev/null
+++ b/theories/NArith/Pnat.v
@@ -0,0 +1,472 @@
+(***********************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
+(* \VV/ *************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(***********************************************************************)
+
+(*i $Id$ i*)
+
+Require BinPos.
+
+(**********************************************************************)
+(** Properties of the injection from binary positive numbers to Peano
+ natural numbers *)
+
+(** Original development by Pierre Crégut, CNET, Lannion, France *)
+
+Require Le.
+Require Lt.
+Require Gt.
+Require Plus.
+Require Mult.
+Require Minus.
+
+(** [nat_of_P] is a morphism for addition *)
+
+Lemma convert_add_un :
+ (x:positive)(m:nat)
+ (positive_to_nat (add_un x) m) = (plus m (positive_to_nat x m)).
+Proof.
+Intro x; NewInduction x as [p IHp|p IHp|]; Simpl; Auto; Intro m; Rewrite IHp;
+Rewrite plus_assoc_l; Trivial.
+Qed.
+
+Lemma cvt_add_un :
+ (p:positive) (convert (add_un p)) = (S (convert p)).
+Proof.
+ Intro; Change (S (convert p)) with (plus (S O) (convert p));
+ Unfold convert; Apply convert_add_un.
+Qed.
+
+Theorem convert_add_carry :
+ (x,y:positive)(m:nat)
+ (positive_to_nat (add_carry x y) m) =
+ (plus m (positive_to_nat (add x y) m)).
+Proof.
+Intro x; NewInduction x as [p IHp|p IHp|];
+ Intro y; NewDestruct y; Simpl; Auto with arith; Intro m; [
+ Rewrite IHp; Rewrite plus_assoc_l; Trivial with arith
+| Rewrite IHp; Rewrite plus_assoc_l; Trivial with arith
+| Rewrite convert_add_un; Rewrite plus_assoc_l; Trivial with arith
+| Rewrite convert_add_un; Apply plus_assoc_r ].
+Qed.
+
+Theorem cvt_carry :
+ (x,y:positive)(convert (add_carry x y)) = (S (convert (add x y))).
+Proof.
+Intros;Unfold convert; Rewrite convert_add_carry; Simpl; Trivial with arith.
+Qed.
+
+Theorem add_verif :
+ (x,y:positive)(m:nat)
+ (positive_to_nat (add x y) m) =
+ (plus (positive_to_nat x m) (positive_to_nat y m)).
+Proof.
+Intro x; NewInduction x as [p IHp|p IHp|];
+ Intro y; NewDestruct y;Simpl;Auto with arith; [
+ Intros m;Rewrite convert_add_carry; Rewrite IHp;
+ Rewrite plus_assoc_r; Rewrite plus_assoc_r;
+ Rewrite (plus_permute m (positive_to_nat p (plus m m))); Trivial with arith
+| Intros m; Rewrite IHp; Apply plus_assoc_l
+| Intros m; Rewrite convert_add_un;
+ Rewrite (plus_sym (plus m (positive_to_nat p (plus m m))));
+ Apply plus_assoc_r
+| Intros m; Rewrite IHp; Apply plus_permute
+| Intros m; Rewrite convert_add_un; Apply plus_assoc_r ].
+Qed.
+
+Theorem convert_add:
+ (x,y:positive) (convert (add x y)) = (plus (convert x) (convert y)).
+Proof.
+Intros x y; Exact (add_verif x y (S O)).
+Qed.
+
+(** [Pmult_nat] is a morphism for addition *)
+
+Lemma ZL2:
+ (y:positive)(m:nat)
+ (positive_to_nat y (plus m m)) =
+ (plus (positive_to_nat y m) (positive_to_nat y m)).
+Proof.
+Intro y; NewInduction y as [p H|p H|]; Intro m; [
+ Simpl; Rewrite H; Rewrite plus_assoc_r;
+ Rewrite (plus_permute m (positive_to_nat p (plus m m)));
+ Rewrite plus_assoc_r; Auto with arith
+| Simpl; Rewrite H; Auto with arith
+| Simpl; Trivial with arith ].
+Qed.
+
+Lemma ZL6:
+ (p:positive) (positive_to_nat p (S (S O))) = (plus (convert p) (convert p)).
+Proof.
+Intro p;Change (2) with (plus (S O) (S O)); Rewrite ZL2; Trivial.
+Qed.
+
+(** [nat_of_P] is a morphism for multiplication *)
+
+Theorem times_convert :
+ (x,y:positive) (convert (times x y)) = (mult (convert x) (convert y)).
+Proof.
+Intros x y; NewInduction x as [ x' H | x' H | ]; [
+ Change (times (xI x') y) with (add y (xO (times x' y))); Rewrite convert_add;
+ Unfold 2 3 convert; Simpl; Do 2 Rewrite ZL6; Rewrite H;
+ Rewrite -> mult_plus_distr; Reflexivity
+| Unfold 1 2 convert; Simpl; Do 2 Rewrite ZL6;
+ Rewrite H; Rewrite mult_plus_distr; Reflexivity
+| Simpl; Rewrite <- plus_n_O; Reflexivity ].
+Qed.
+V7only [
+ Comments "Compatibility with the old version of times and times_convert".
+ Syntactic Definition times1 :=
+ [x:positive;_:positive->positive;y:positive](times x y).
+ Syntactic Definition times1_convert :=
+ [x,y:positive;_:positive->positive](times_convert x y).
+].
+
+(** [nat_of_P] maps to the strictly positive subset of [nat] *)
+
+Lemma ZL4: (y:positive) (EX h:nat |(convert y)=(S h)).
+Proof.
+Intro y; NewInduction y as [p H|p H|]; [
+ NewDestruct H as [x H1]; Exists (plus (S x) (S x));
+ Unfold convert ;Simpl; Change (2) with (plus (1) (1)); Rewrite ZL2; Unfold convert in H1;
+ Rewrite H1; Auto with arith
+| NewDestruct H as [x H2]; Exists (plus x (S x)); Unfold convert;
+ Simpl; Change (2) with (plus (1) (1)); Rewrite ZL2;Unfold convert in H2; Rewrite H2; Auto with arith
+| Exists O ;Auto with arith ].
+Qed.
+
+(** Extra lemmas on [lt] on Peano natural numbers *)
+
+Lemma ZL7:
+ (m,n:nat) (lt m n) -> (lt (plus m m) (plus n n)).
+Proof.
+Intros m n H; Apply lt_trans with m:=(plus m n); [
+ Apply lt_reg_l with 1:=H
+| Rewrite (plus_sym m n); Apply lt_reg_l with 1:=H ].
+Qed.
+
+Lemma ZL8:
+ (m,n:nat) (lt m n) -> (lt (S (plus m m)) (plus n n)).
+Proof.
+Intros m n H; Apply le_lt_trans with m:=(plus m n); [
+ Change (lt (plus m m) (plus m n)) ; Apply lt_reg_l with 1:=H
+| Rewrite (plus_sym m n); Apply lt_reg_l with 1:=H ].
+Qed.
+
+(** [nat_of_P] is a morphism from [positive] to [nat] for [lt] (expressed
+ from [compare] on [positive])
+
+ Part 1: [lt] on [positive] is finer than [lt] on [nat]
+*)
+
+Lemma compare_convert_INFERIEUR :
+ (x,y:positive) (compare x y EGAL) = INFERIEUR ->
+ (lt (convert x) (convert y)).
+Proof.
+Intro x; NewInduction x as [p H|p H|];Intro y; NewDestruct y as [q|q|];
+ Intro H2; [
+ Unfold convert ;Simpl; Apply lt_n_S;
+ Do 2 Rewrite ZL6; Apply ZL7; Apply H; Simpl in H2; Assumption
+| Unfold convert ;Simpl; Do 2 Rewrite ZL6;
+ Apply ZL8; Apply H;Simpl in H2; Apply ZLSI;Assumption
+| Simpl; Discriminate H2
+| Simpl; Unfold convert ;Simpl;Do 2 Rewrite ZL6;
+ Elim (ZLII p q H2); [
+ Intros H3;Apply lt_S;Apply ZL7; Apply H;Apply H3
+ | Intros E;Rewrite E;Apply lt_n_Sn]
+| Simpl; Unfold convert ;Simpl;Do 2 Rewrite ZL6;
+ Apply ZL7;Apply H;Assumption
+| Simpl; Discriminate H2
+| Unfold convert ;Simpl; Apply lt_n_S; Rewrite ZL6;
+ Elim (ZL4 q);Intros h H3; Rewrite H3;Simpl; Apply lt_O_Sn
+| Unfold convert ;Simpl; Rewrite ZL6; Elim (ZL4 q);Intros h H3;
+ Rewrite H3; Simpl; Rewrite <- plus_n_Sm; Apply lt_n_S; Apply lt_O_Sn
+| Simpl; Discriminate H2 ].
+Qed.
+
+(** [nat_of_P] is a morphism from [positive] to [nat] for [gt] (expressed
+ from [compare] on [positive])
+
+ Part 1: [gt] on [positive] is finer than [gt] on [nat]
+*)
+
+Lemma compare_convert_SUPERIEUR :
+ (x,y:positive) (compare x y EGAL)=SUPERIEUR -> (gt (convert x) (convert y)).
+Proof.
+Unfold gt; Intro x; NewInduction x as [p H|p H|];
+ Intro y; NewDestruct y as [q|q|]; Intro H2; [
+ Simpl; Unfold convert ;Simpl;Do 2 Rewrite ZL6;
+ Apply lt_n_S; Apply ZL7; Apply H;Assumption
+| Simpl; Unfold convert ;Simpl; Do 2 Rewrite ZL6;
+ Elim (ZLSS p q H2); [
+ Intros H3;Apply lt_S;Apply ZL7;Apply H;Assumption
+ | Intros E;Rewrite E;Apply lt_n_Sn]
+| Unfold convert ;Simpl; Rewrite ZL6;Elim (ZL4 p);
+ Intros h H3;Rewrite H3;Simpl; Apply lt_n_S; Apply lt_O_Sn
+| Simpl;Unfold convert ;Simpl;Do 2 Rewrite ZL6;
+ Apply ZL8; Apply H; Apply ZLIS; Assumption
+| Simpl; Unfold convert ;Simpl;Do 2 Rewrite ZL6;
+ Apply ZL7;Apply H;Assumption
+| Unfold convert ;Simpl; Rewrite ZL6; Elim (ZL4 p);
+ Intros h H3;Rewrite H3;Simpl; Rewrite <- plus_n_Sm;Apply lt_n_S;
+ Apply lt_O_Sn
+| Simpl; Discriminate H2
+| Simpl; Discriminate H2
+| Simpl; Discriminate H2 ].
+Qed.
+
+(** [nat_of_P] is a morphism from [positive] to [nat] for [lt] (expressed
+ from [compare] on [positive])
+
+ Part 2: [lt] on [nat] is finer than [lt] on [positive]
+*)
+
+Lemma convert_compare_INFERIEUR :
+ (x,y:positive)(lt (convert x) (convert y)) -> (compare x y EGAL) = INFERIEUR.
+Proof.
+Intros x y; Unfold gt; Elim (Dcompare (compare x y EGAL)); [
+ Intros E; Rewrite (compare_convert_EGAL x y E);
+ Intros H;Absurd (lt (convert y) (convert y)); [ Apply lt_n_n | Assumption ]
+| Intros H;Elim H; [
+ Auto
+ | Intros H1 H2; Absurd (lt (convert x) (convert y)); [
+ Apply lt_not_sym; Change (gt (convert x) (convert y));
+ Apply compare_convert_SUPERIEUR; Assumption
+ | Assumption ]]].
+Qed.
+
+(** [nat_of_P] is a morphism from [positive] to [nat] for [gt] (expressed
+ from [compare] on [positive])
+
+ Part 2: [gt] on [nat] is finer than [gt] on [positive]
+*)
+
+Lemma convert_compare_SUPERIEUR :
+ (x,y:positive)(gt (convert x) (convert y)) -> (compare x y EGAL) = SUPERIEUR.
+Proof.
+Intros x y; Unfold gt; Elim (Dcompare (compare x y EGAL)); [
+ Intros E; Rewrite (compare_convert_EGAL x y E);
+ Intros H;Absurd (lt (convert y) (convert y)); [ Apply lt_n_n | Assumption ]
+| Intros H;Elim H; [
+ Intros H1 H2; Absurd (lt (convert y) (convert x)); [
+ Apply lt_not_sym; Apply compare_convert_INFERIEUR; Assumption
+ | Assumption ]
+ | Auto]].
+Qed.
+
+(** [nat_of_P] is strictly positive *)
+
+Lemma compare_positive_to_nat_O :
+ (p:positive)(m:nat)(le m (positive_to_nat p m)).
+NewInduction p; Simpl; Auto with arith.
+Intro m; Apply le_trans with (plus m m); Auto with arith.
+Qed.
+
+Lemma compare_convert_O : (p:positive)(lt O (convert p)).
+Intro; Unfold convert; Apply lt_le_trans with (S O); Auto with arith.
+Apply compare_positive_to_nat_O.
+Qed.
+
+(** Pmult_nat permutes with multiplication *)
+
+Lemma positive_to_nat_mult : (p:positive) (n,m:nat)
+ (positive_to_nat p (mult m n))=(mult m (positive_to_nat p n)).
+Proof.
+ Induction p. Intros. Simpl. Rewrite mult_plus_distr_r. Rewrite <- (mult_plus_distr_r m n n).
+ Rewrite (H (plus n n) m). Reflexivity.
+ Intros. Simpl. Rewrite <- (mult_plus_distr_r m n n). Apply H.
+ Trivial.
+Qed.
+
+Lemma positive_to_nat_2 : (p:positive)
+ (positive_to_nat p (2))=(mult (2) (positive_to_nat p (1))).
+Proof.
+ Intros. Rewrite <- positive_to_nat_mult. Reflexivity.
+Qed.
+
+Lemma positive_to_nat_4 : (p:positive)
+ (positive_to_nat p (4))=(mult (2) (positive_to_nat p (2))).
+Proof.
+ Intros. Rewrite <- positive_to_nat_mult. Reflexivity.
+Qed.
+
+(** Mapping of xH, xO and xI through [nat_of_P] *)
+
+Lemma convert_xH : (convert xH)=(1).
+Proof.
+ Reflexivity.
+Qed.
+
+Lemma convert_xO : (p:positive) (convert (xO p))=(mult (2) (convert p)).
+Proof.
+ Induction p. Unfold convert. Simpl. Intros. Rewrite positive_to_nat_2.
+ Rewrite positive_to_nat_4. Rewrite H. Simpl. Rewrite <- plus_Snm_nSm. Reflexivity.
+ Unfold convert. Simpl. Intros. Rewrite positive_to_nat_2. Rewrite positive_to_nat_4.
+ Rewrite H. Reflexivity.
+ Reflexivity.
+Qed.
+
+Lemma convert_xI : (p:positive) (convert (xI p))=(S (mult (2) (convert p))).
+Proof.
+ Induction p. Unfold convert. Simpl. Intro p0. Intro. Rewrite positive_to_nat_2.
+ Rewrite positive_to_nat_4; Injection H; Intro H1; Rewrite H1; Rewrite <- plus_Snm_nSm; Reflexivity.
+ Unfold convert. Simpl. Intros. Rewrite positive_to_nat_2. Rewrite positive_to_nat_4.
+ Injection H; Intro H1; Rewrite H1; Reflexivity.
+ Reflexivity.
+Qed.
+
+(**********************************************************************)
+(** Properties of the shifted injection from Peano natural numbers to
+ binary positive numbers *)
+
+(** Composition of [P_of_succ_nat] and [nat_of_P] is successor on [nat] *)
+
+Theorem bij1 : (m:nat) (convert (anti_convert m)) = (S m).
+Proof.
+Intro m; NewInduction m as [|n H]; [
+ Reflexivity
+| Simpl; Rewrite cvt_add_un; Rewrite H; Auto ].
+Qed.
+
+(** Miscellaneous lemmas on [P_of_succ_nat] *)
+
+Lemma ZL3: (x:nat) (add_un (anti_convert (plus x x))) = (xO (anti_convert x)).
+Proof.
+Intro x; NewInduction x as [|n H]; [
+ Simpl; Auto with arith
+| Simpl; Rewrite plus_sym; Simpl; Rewrite H; Rewrite ZL1;Auto with arith].
+Qed.
+
+Lemma ZL5: (x:nat) (anti_convert (plus (S x) (S x))) = (xI (anti_convert x)).
+Proof.
+Intro x; NewInduction x as [|n H];Simpl; [
+ Auto with arith
+| Rewrite <- plus_n_Sm; Simpl; Simpl in H; Rewrite H; Auto with arith].
+Qed.
+
+(** Composition of [nat_of_P] and [P_of_succ_nat] is successor on [positive] *)
+
+Theorem bij2 : (x:positive) (anti_convert (convert x)) = (add_un x).
+Proof.
+Intro x; NewInduction x as [p H|p H|]; [
+ Simpl; Rewrite <- H; Change (2) with (plus (1) (1));
+ Rewrite ZL2; Elim (ZL4 p);
+ Unfold convert; Intros n H1;Rewrite H1; Rewrite ZL3; Auto with arith
+| Unfold convert ;Simpl; Change (2) with (plus (1) (1));
+ Rewrite ZL2;
+ Rewrite <- (sub_add_one
+ (anti_convert
+ (plus (positive_to_nat p (S O)) (positive_to_nat p (S O)))));
+ Rewrite <- (sub_add_one (xI p));
+ Simpl;Rewrite <- H;Elim (ZL4 p); Unfold convert ;Intros n H1;Rewrite H1;
+ Rewrite ZL5; Simpl; Trivial with arith
+| Unfold convert; Simpl; Auto with arith ].
+Qed.
+
+(** Composition of [nat_of_P], [P_of_succ_nat] and [Ppred] is identity
+ on [positive] *)
+
+Theorem bij3: (x:positive)(sub_un (anti_convert (convert x))) = x.
+Proof.
+Intros x; Rewrite bij2; Rewrite sub_add_one; Trivial with arith.
+Qed.
+
+(**********************************************************************)
+(** Extra properties of the injection from binary positive numbers to Peano
+ natural numbers *)
+
+(** [nat_of_P] is a morphism for subtraction on positive numbers *)
+
+Theorem true_sub_convert:
+ (x,y:positive) (compare x y EGAL) = SUPERIEUR ->
+ (convert (true_sub x y)) = (minus (convert x) (convert y)).
+Proof.
+Intros x y H; Apply plus_reg_l with (convert y);
+Rewrite le_plus_minus_r; [
+ Rewrite <- convert_add; Rewrite sub_add; Auto with arith
+| Apply lt_le_weak; Exact (compare_convert_SUPERIEUR x y H)].
+Qed.
+
+(** [nat_of_P] is injective *)
+
+Lemma convert_intro : (x,y:positive)(convert x)=(convert y) -> x=y.
+Proof.
+Intros x y H;Rewrite <- (bij3 x);Rewrite <- (bij3 y); Rewrite H; Trivial with arith.
+Qed.
+
+Lemma ZL16: (p,q:positive)(lt (minus (convert p) (convert q)) (convert p)).
+Proof.
+Intros p q; Elim (ZL4 p);Elim (ZL4 q); Intros h H1 i H2;
+Rewrite H1;Rewrite H2; Simpl;Unfold lt; Apply le_n_S; Apply le_minus.
+Qed.
+
+Lemma ZL17: (p,q:positive)(lt (convert p) (convert (add p q))).
+Proof.
+Intros p q; Rewrite convert_add;Unfold lt;Elim (ZL4 q); Intros k H;Rewrite H;
+Rewrite plus_sym;Simpl; Apply le_n_S; Apply le_plus_r.
+Qed.
+
+(** Comparison and subtraction *)
+
+Lemma compare_true_sub_right :
+ (p,q,z:positive)
+ (compare q p EGAL)=INFERIEUR->
+ (compare z p EGAL)=SUPERIEUR->
+ (compare z q EGAL)=SUPERIEUR->
+ (compare (true_sub z p) (true_sub z q) EGAL)=INFERIEUR.
+Proof.
+Intros; Apply convert_compare_INFERIEUR; Rewrite true_sub_convert; [
+ Rewrite true_sub_convert; [
+ Apply simpl_lt_plus_l with p:=(convert q); Rewrite le_plus_minus_r; [
+ Rewrite plus_sym; Apply simpl_lt_plus_l with p:=(convert p);
+ Rewrite plus_assoc_l; Rewrite le_plus_minus_r; [
+ Rewrite (plus_sym (convert p)); Apply lt_reg_l;
+ Apply compare_convert_INFERIEUR; Assumption
+ | Apply lt_le_weak; Apply compare_convert_INFERIEUR;
+ Apply ZC1; Assumption ]
+ | Apply lt_le_weak;Apply compare_convert_INFERIEUR;
+ Apply ZC1; Assumption ]
+ | Assumption ]
+ | Assumption ].
+Qed.
+
+Lemma compare_true_sub_left :
+ (p,q,z:positive)
+ (compare q p EGAL)=INFERIEUR->
+ (compare p z EGAL)=SUPERIEUR->
+ (compare q z EGAL)=SUPERIEUR->
+ (compare (true_sub q z) (true_sub p z) EGAL)=INFERIEUR.
+Proof.
+Intros p q z; Intros;
+ Apply convert_compare_INFERIEUR; Rewrite true_sub_convert; [
+ Rewrite true_sub_convert; [
+ Unfold gt; Apply simpl_lt_plus_l with p:=(convert z);
+ Rewrite le_plus_minus_r; [
+ Rewrite le_plus_minus_r; [
+ Apply compare_convert_INFERIEUR;Assumption
+ | Apply lt_le_weak; Apply compare_convert_INFERIEUR;Apply ZC1;Assumption]
+ | Apply lt_le_weak; Apply compare_convert_INFERIEUR;Apply ZC1; Assumption]
+ | Assumption]
+| Assumption].
+Qed.
+
+(** Distributivity of multiplication over subtraction *)
+
+Theorem times_true_sub_distr:
+ (x,y,z:positive) (compare y z EGAL) = SUPERIEUR ->
+ (times x (true_sub y z)) = (true_sub (times x y) (times x z)).
+Proof.
+Intros x y z H; Apply convert_intro;
+Rewrite times_convert; Rewrite true_sub_convert; [
+ Rewrite true_sub_convert; [
+ Do 2 Rewrite times_convert;
+ Do 3 Rewrite (mult_sym (convert x));Apply mult_minus_distr
+ | Apply convert_compare_SUPERIEUR; Do 2 Rewrite times_convert;
+ Unfold gt; Elim (ZL4 x);Intros h H1;Rewrite H1; Apply lt_mult_left;
+ Exact (compare_convert_SUPERIEUR y z H) ]
+| Assumption ].
+Qed.
+