aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories7
diff options
context:
space:
mode:
authorGravatar herbelin <herbelin@85f007b7-540e-0410-9357-904b9bb8a0f7>2004-01-27 14:37:30 +0000
committerGravatar herbelin <herbelin@85f007b7-540e-0410-9357-904b9bb8a0f7>2004-01-27 14:37:30 +0000
commit40f6703ca86c6737d9d992154a2c879d722bb72e (patch)
treeb6aef293df45aaaa1acdf8cc27e69937d34c72ca /theories7
parent20efeb644f65e3ddc866fd61979219b385aca0ab (diff)
MAJ simplification
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@5254 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'theories7')
-rwxr-xr-xtheories7/Logic/Eqdep.v42
1 files changed, 20 insertions, 22 deletions
diff --git a/theories7/Logic/Eqdep.v b/theories7/Logic/Eqdep.v
index 40a50837d..13a01dbbb 100755
--- a/theories7/Logic/Eqdep.v
+++ b/theories7/Logic/Eqdep.v
@@ -16,7 +16,8 @@
- Invariance by Substitution of Reflexive Equality Proofs.
- Injectivity of Dependent Equality
- Uniqueness of Identity Proofs
- - Uniqueness of Reflexive Identity Proofs (usu. called Streicher's Axiom K)
+ - Uniqueness of Reflexive Identity Proofs
+ - Streicher's Axiom K
These statements are independent of the calculus of constructions [2].
@@ -42,54 +43,53 @@ Hint constr_eq_dep : core v62 := Constructors eq_dep.
Lemma eq_dep_sym : (p,q:U)(x:(P p))(y:(P q))(eq_dep p x q y)->(eq_dep q y p x).
Proof.
-Induction 1; Auto.
+NewDestruct 1; Auto.
Qed.
Hints Immediate eq_dep_sym : core v62.
Lemma eq_dep_trans : (p,q,r:U)(x:(P p))(y:(P q))(z:(P r))
(eq_dep p x q y)->(eq_dep q y r z)->(eq_dep p x r z).
Proof.
-Induction 1; Auto.
+NewDestruct 1; Auto.
Qed.
Inductive eq_dep1 [p:U;x:(P p);q:U;y:(P q)] : Prop :=
eq_dep1_intro : (h:q=p)
(x=(eq_rect U q P y p h))->(eq_dep1 p x q y).
-(** Invariance by Substitution of Reflexive Equality Proofs *)
-
-Axiom eq_rect_eq : (p:U)(Q:U->Type)(x:(Q p))(h:p=p)
- x=(eq_rect U p Q x p h).
+Scheme eq_indd := Induction for eq Sort Prop.
Lemma eq_dep1_dep :
(p:U)(x:(P p))(q:U)(y:(P q))(eq_dep1 p x q y)->(eq_dep p x q y).
Proof.
-Induction 1; Intros eq_qp.
-Cut (h:q=p)(y0:(P q))
- (x=(eq_rect U q P y0 p h))->(eq_dep p x q y0).
-Intros; Apply H0 with eq_qp; Auto.
-Rewrite eq_qp; Intros h y0.
-Elim eq_rect_eq.
-Induction 1; Auto.
+NewDestruct 1 as [eq_qp H].
+NewDestruct eq_qp using eq_indd.
+Rewrite H.
+Apply eq_dep_intro.
Qed.
Lemma eq_dep_dep1 :
(p,q:U)(x:(P p))(y:(P q))(eq_dep p x q y)->(eq_dep1 p x q y).
Proof.
-Induction 1; Intros.
+NewDestruct 1.
Apply eq_dep1_intro with (refl_equal U p).
Simpl; Trivial.
Qed.
-Lemma eq_dep1_eq : (p:U)(x,y:(P p))(eq_dep1 p x p y)->x=y.
-Proof.
-Induction 1; Intro.
-Elim eq_rect_eq; Auto.
-Qed.
+(** Invariance by Substitution of Reflexive Equality Proofs *)
+
+Axiom eq_rect_eq : (p:U)(Q:U->Type)(x:(Q p))(h:p=p)
+ x=(eq_rect U p Q x p h).
(** Injectivity of Dependent Equality is a consequence of *)
(** Invariance by Substitution of Reflexive Equality Proof *)
+Lemma eq_dep1_eq : (p:U)(x,y:(P p))(eq_dep1 p x p y)->x=y.
+Proof.
+Destruct 1; Intro.
+Rewrite <- eq_rect_eq; Auto.
+Qed.
+
Lemma eq_dep_eq : (p:U)(x,y:(P p))(eq_dep p x p y)->x=y.
Proof.
Intros; Apply eq_dep1_eq; Apply eq_dep_dep1; Trivial.
@@ -100,8 +100,6 @@ End Dependent_Equality.
(** Uniqueness of Identity Proofs (UIP) is a consequence of *)
(** Injectivity of Dependent Equality *)
-Scheme eq_indd := Induction for eq Sort Prop.
-
Lemma UIP : (U:Type)(x,y:U)(p1,p2:x=y)p1=p2.
Proof.
Intros; Apply eq_dep_eq with P:=[y]x=y.