diff options
author | herbelin <herbelin@85f007b7-540e-0410-9357-904b9bb8a0f7> | 2005-12-26 13:59:13 +0000 |
---|---|---|
committer | herbelin <herbelin@85f007b7-540e-0410-9357-904b9bb8a0f7> | 2005-12-26 13:59:13 +0000 |
commit | f6e1acbbe00aeb479fde229c3941e3a6a2d53068 (patch) | |
tree | ce3a6476de30cbf68c7668f5ecba92f457a721e8 /theories7/Reals/Alembert.v | |
parent | e0f9487be5ce770117a9c9c815af8c7010ff357b (diff) |
Suppression des fichiers .v en ancienne syntaxe
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@7733 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'theories7/Reals/Alembert.v')
-rw-r--r-- | theories7/Reals/Alembert.v | 549 |
1 files changed, 0 insertions, 549 deletions
diff --git a/theories7/Reals/Alembert.v b/theories7/Reals/Alembert.v deleted file mode 100644 index 6bb311dc9..000000000 --- a/theories7/Reals/Alembert.v +++ /dev/null @@ -1,549 +0,0 @@ -(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) -(* \VV/ **************************************************************) -(* // * This file is distributed under the terms of the *) -(* * GNU Lesser General Public License Version 2.1 *) -(************************************************************************) - -(*i $Id$ i*) - -Require Rbase. -Require Rfunctions. -Require Rseries. -Require SeqProp. -Require PartSum. -Require Max. - -Open Local Scope R_scope. - -(***************************************************) -(* Various versions of the criterion of D'Alembert *) -(***************************************************) - -Lemma Alembert_C1 : (An:nat->R) ((n:nat)``0<(An n)``) -> (Un_cv [n:nat](Rabsolu ``(An (S n))/(An n)``) R0) -> (SigT R [l:R](Un_cv [N:nat](sum_f_R0 An N) l)). -Intros An H H0. -Cut (sigTT R [l:R](is_lub (EUn [N:nat](sum_f_R0 An N)) l)) -> (SigT R [l:R](Un_cv [N:nat](sum_f_R0 An N) l)). -Intro; Apply X. -Apply complet. -Unfold Un_cv in H0; Unfold bound; Cut ``0</2``; [Intro | Apply Rlt_Rinv; Sup0]. -Elim (H0 ``/2`` H1); Intros. -Exists ``(sum_f_R0 An x)+2*(An (S x))``. -Unfold is_upper_bound; Intros; Unfold EUn in H3; Elim H3; Intros. -Rewrite H4; Assert H5 := (lt_eq_lt_dec x1 x). -Elim H5; Intros. -Elim a; Intro. -Replace (sum_f_R0 An x) with (Rplus (sum_f_R0 An x1) (sum_f_R0 [i:nat](An (plus (S x1) i)) (minus x (S x1)))). -Pattern 1 (sum_f_R0 An x1); Rewrite <- Rplus_Or; Rewrite Rplus_assoc; Apply Rle_compatibility. -Left; Apply gt0_plus_gt0_is_gt0. -Apply tech1; Intros; Apply H. -Apply Rmult_lt_pos; [Sup0 | Apply H]. -Symmetry; Apply tech2; Assumption. -Rewrite b; Pattern 1 (sum_f_R0 An x); Rewrite <- Rplus_Or; Apply Rle_compatibility. -Left; Apply Rmult_lt_pos; [Sup0 | Apply H]. -Replace (sum_f_R0 An x1) with (Rplus (sum_f_R0 An x) (sum_f_R0 [i:nat](An (plus (S x) i)) (minus x1 (S x)))). -Apply Rle_compatibility. -Cut (Rle (sum_f_R0 [i:nat](An (plus (S x) i)) (minus x1 (S x))) (Rmult (An (S x)) (sum_f_R0 [i:nat](pow ``/2`` i) (minus x1 (S x))))). -Intro; Apply Rle_trans with (Rmult (An (S x)) (sum_f_R0 [i:nat](pow ``/2`` i) (minus x1 (S x)))). -Assumption. -Rewrite <- (Rmult_sym (An (S x))); Apply Rle_monotony. -Left; Apply H. -Rewrite tech3. -Replace ``1-/2`` with ``/2``. -Unfold Rdiv; Rewrite Rinv_Rinv. -Pattern 3 ``2``; Rewrite <- Rmult_1r; Rewrite <- (Rmult_sym ``2``); Apply Rle_monotony. -Left; Sup0. -Left; Apply Rlt_anti_compatibility with ``(pow (/2) (S (minus x1 (S x))))``. -Replace ``(pow (/2) (S (minus x1 (S x))))+(1-(pow (/2) (S (minus x1 (S x)))))`` with R1; [Idtac | Ring]. -Rewrite <- (Rplus_sym ``1``); Pattern 1 R1; Rewrite <- Rplus_Or; Apply Rlt_compatibility. -Apply pow_lt; Apply Rlt_Rinv; Sup0. -DiscrR. -Apply r_Rmult_mult with ``2``. -Rewrite Rminus_distr; Rewrite <- Rinv_r_sym. -Ring. -DiscrR. -DiscrR. -Pattern 3 R1; Replace R1 with ``/1``; [Apply tech7; DiscrR | Apply Rinv_R1]. -Replace (An (S x)) with (An (plus (S x) O)). -Apply (tech6 [i:nat](An (plus (S x) i)) ``/2``). -Left; Apply Rlt_Rinv; Sup0. -Intro; Cut (n:nat)(ge n x)->``(An (S n))</2*(An n)``. -Intro; Replace (plus (S x) (S i)) with (S (plus (S x) i)). -Apply H6; Unfold ge; Apply tech8. -Apply INR_eq; Rewrite S_INR; Do 2 Rewrite plus_INR; Do 2 Rewrite S_INR; Ring. -Intros; Unfold R_dist in H2; Apply Rlt_monotony_contra with ``/(An n)``. -Apply Rlt_Rinv; Apply H. -Do 2 Rewrite (Rmult_sym ``/(An n)``); Rewrite Rmult_assoc; Rewrite <- Rinv_r_sym. -Rewrite Rmult_1r; Replace ``(An (S n))*/(An n)`` with ``(Rabsolu ((Rabsolu ((An (S n))/(An n)))-0))``. -Apply H2; Assumption. -Unfold Rminus; Rewrite Ropp_O; Rewrite Rplus_Or; Rewrite Rabsolu_Rabsolu; Rewrite Rabsolu_right. -Unfold Rdiv; Reflexivity. -Left; Unfold Rdiv; Change ``0<(An (S n))*/(An n)``; Apply Rmult_lt_pos; [Apply H | Apply Rlt_Rinv; Apply H]. -Red; Intro; Assert H8 := (H n); Rewrite H7 in H8; Elim (Rlt_antirefl ? H8). -Replace (plus (S x) O) with (S x); [Reflexivity | Ring]. -Symmetry; Apply tech2; Assumption. -Exists (sum_f_R0 An O); Unfold EUn; Exists O; Reflexivity. -Intro; Elim X; Intros. -Apply Specif.existT with x; Apply tech10; [Unfold Un_growing; Intro; Rewrite tech5; Pattern 1 (sum_f_R0 An n); Rewrite <- Rplus_Or; Apply Rle_compatibility; Left; Apply H | Apply p]. -Qed. - -Lemma Alembert_C2 : (An:nat->R) ((n:nat)``(An n)<>0``) -> (Un_cv [n:nat](Rabsolu ``(An (S n))/(An n)``) R0) -> (SigT R [l:R](Un_cv [N:nat](sum_f_R0 An N) l)). -Intros. -Pose Vn := [i:nat]``(2*(Rabsolu (An i))+(An i))/2``. -Pose Wn := [i:nat]``(2*(Rabsolu (An i))-(An i))/2``. -Cut (n:nat)``0<(Vn n)``. -Intro; Cut (n:nat)``0<(Wn n)``. -Intro; Cut (Un_cv [n:nat](Rabsolu ``(Vn (S n))/(Vn n)``) ``0``). -Intro; Cut (Un_cv [n:nat](Rabsolu ``(Wn (S n))/(Wn n)``) ``0``). -Intro; Assert H5 := (Alembert_C1 Vn H1 H3). -Assert H6 := (Alembert_C1 Wn H2 H4). -Elim H5; Intros. -Elim H6; Intros. -Apply Specif.existT with ``x-x0``; Unfold Un_cv; Unfold Un_cv in p; Unfold Un_cv in p0; Intros; Cut ``0<eps/2``. -Intro; Elim (p ``eps/2`` H8); Clear p; Intros. -Elim (p0 ``eps/2`` H8); Clear p0; Intros. -Pose N := (max x1 x2). -Exists N; Intros; Replace (sum_f_R0 An n) with (Rminus (sum_f_R0 Vn n) (sum_f_R0 Wn n)). -Unfold R_dist; Replace (Rminus (Rminus (sum_f_R0 Vn n) (sum_f_R0 Wn n)) (Rminus x x0)) with (Rplus (Rminus (sum_f_R0 Vn n) x) (Ropp (Rminus (sum_f_R0 Wn n) x0))); [Idtac | Ring]; Apply Rle_lt_trans with (Rplus (Rabsolu (Rminus (sum_f_R0 Vn n) x)) (Rabsolu (Ropp (Rminus (sum_f_R0 Wn n) x0)))). -Apply Rabsolu_triang. -Rewrite Rabsolu_Ropp; Apply Rlt_le_trans with ``eps/2+eps/2``. -Apply Rplus_lt. -Unfold R_dist in H9; Apply H9; Unfold ge; Apply le_trans with N; [Unfold N; Apply le_max_l | Assumption]. -Unfold R_dist in H10; Apply H10; Unfold ge; Apply le_trans with N; [Unfold N; Apply le_max_r | Assumption]. -Right; Symmetry; Apply double_var. -Symmetry; Apply tech11; Intro; Unfold Vn Wn; Unfold Rdiv; Do 2 Rewrite <- (Rmult_sym ``/2``); Apply r_Rmult_mult with ``2``. -Rewrite Rminus_distr; Repeat Rewrite <- Rmult_assoc; Rewrite <- Rinv_r_sym. -Ring. -DiscrR. -DiscrR. -Unfold Rdiv; Apply Rmult_lt_pos; [Assumption | Apply Rlt_Rinv; Sup0]. -Cut (n:nat)``/2*(Rabsolu (An n))<=(Wn n)<=(3*/2)*(Rabsolu (An n))``. -Intro; Cut (n:nat)``/(Wn n)<=2*/(Rabsolu (An n))``. -Intro; Cut (n:nat)``(Wn (S n))/(Wn n)<=3*(Rabsolu (An (S n))/(An n))``. -Intro; Unfold Un_cv; Intros; Unfold Un_cv in H0; Cut ``0<eps/3``. -Intro; Elim (H0 ``eps/3`` H8); Intros. -Exists x; Intros. -Assert H11 := (H9 n H10). -Unfold R_dist; Unfold Rminus; Rewrite Ropp_O; Rewrite Rplus_Or; Rewrite Rabsolu_Rabsolu; Unfold R_dist in H11; Unfold Rminus in H11; Rewrite Ropp_O in H11; Rewrite Rplus_Or in H11; Rewrite Rabsolu_Rabsolu in H11; Rewrite Rabsolu_right. -Apply Rle_lt_trans with ``3*(Rabsolu ((An (S n))/(An n)))``. -Apply H6. -Apply Rlt_monotony_contra with ``/3``. -Apply Rlt_Rinv; Sup0. -Rewrite <- Rmult_assoc; Rewrite <- Rinv_l_sym; [Idtac | DiscrR]; Rewrite Rmult_1l; Rewrite <- (Rmult_sym eps); Unfold Rdiv in H11; Exact H11. -Left; Change ``0<(Wn (S n))/(Wn n)``; Unfold Rdiv; Apply Rmult_lt_pos. -Apply H2. -Apply Rlt_Rinv; Apply H2. -Unfold Rdiv; Apply Rmult_lt_pos; [Assumption | Apply Rlt_Rinv; Sup0]. -Intro; Unfold Rdiv; Rewrite Rabsolu_mult; Rewrite <- Rmult_assoc; Replace ``3`` with ``2*(3*/2)``; [Idtac | Rewrite <- Rmult_assoc; Apply Rinv_r_simpl_m; DiscrR]; Apply Rle_trans with ``(Wn (S n))*2*/(Rabsolu (An n))``. -Rewrite Rmult_assoc; Apply Rle_monotony. -Left; Apply H2. -Apply H5. -Rewrite Rabsolu_Rinv. -Replace ``(Wn (S n))*2*/(Rabsolu (An n))`` with ``(2*/(Rabsolu (An n)))*(Wn (S n))``; [Idtac | Ring]; Replace ``2*(3*/2)*(Rabsolu (An (S n)))*/(Rabsolu (An n))`` with ``(2*/(Rabsolu (An n)))*((3*/2)*(Rabsolu (An (S n))))``; [Idtac | Ring]; Apply Rle_monotony. -Left; Apply Rmult_lt_pos. -Sup0. -Apply Rlt_Rinv; Apply Rabsolu_pos_lt; Apply H. -Elim (H4 (S n)); Intros; Assumption. -Apply H. -Intro; Apply Rle_monotony_contra with (Wn n). -Apply H2. -Rewrite <- Rinv_r_sym. -Apply Rle_monotony_contra with (Rabsolu (An n)). -Apply Rabsolu_pos_lt; Apply H. -Rewrite Rmult_1r; Replace ``(Rabsolu (An n))*((Wn n)*(2*/(Rabsolu (An n))))`` with ``2*(Wn n)*((Rabsolu (An n))*/(Rabsolu (An n)))``; [Idtac | Ring]; Rewrite <- Rinv_r_sym. -Rewrite Rmult_1r; Apply Rle_monotony_contra with ``/2``. -Apply Rlt_Rinv; Sup0. -Rewrite <- Rmult_assoc; Rewrite <- Rinv_l_sym. -Rewrite Rmult_1l; Elim (H4 n); Intros; Assumption. -DiscrR. -Apply Rabsolu_no_R0; Apply H. -Red; Intro; Assert H6 := (H2 n); Rewrite H5 in H6; Elim (Rlt_antirefl ? H6). -Intro; Split. -Unfold Wn; Unfold Rdiv; Rewrite <- (Rmult_sym ``/2``); Apply Rle_monotony. -Left; Apply Rlt_Rinv; Sup0. -Pattern 1 (Rabsolu (An n)); Rewrite <- Rplus_Or; Rewrite double; Unfold Rminus; Rewrite Rplus_assoc; Apply Rle_compatibility. -Apply Rle_anti_compatibility with (An n). -Rewrite Rplus_Or; Rewrite (Rplus_sym (An n)); Rewrite Rplus_assoc; Rewrite Rplus_Ropp_l; Rewrite Rplus_Or; Apply Rle_Rabsolu. -Unfold Wn; Unfold Rdiv; Repeat Rewrite <- (Rmult_sym ``/2``); Repeat Rewrite Rmult_assoc; Apply Rle_monotony. -Left; Apply Rlt_Rinv; Sup0. -Unfold Rminus; Rewrite double; Replace ``3*(Rabsolu (An n))`` with ``(Rabsolu (An n))+(Rabsolu (An n))+(Rabsolu (An n))``; [Idtac | Ring]; Repeat Rewrite Rplus_assoc; Repeat Apply Rle_compatibility. -Rewrite <- Rabsolu_Ropp; Apply Rle_Rabsolu. -Cut (n:nat)``/2*(Rabsolu (An n))<=(Vn n)<=(3*/2)*(Rabsolu (An n))``. -Intro; Cut (n:nat)``/(Vn n)<=2*/(Rabsolu (An n))``. -Intro; Cut (n:nat)``(Vn (S n))/(Vn n)<=3*(Rabsolu (An (S n))/(An n))``. -Intro; Unfold Un_cv; Intros; Unfold Un_cv in H1; Cut ``0<eps/3``. -Intro; Elim (H0 ``eps/3`` H7); Intros. -Exists x; Intros. -Assert H10 := (H8 n H9). -Unfold R_dist; Unfold Rminus; Rewrite Ropp_O; Rewrite Rplus_Or; Rewrite Rabsolu_Rabsolu; Unfold R_dist in H10; Unfold Rminus in H10; Rewrite Ropp_O in H10; Rewrite Rplus_Or in H10; Rewrite Rabsolu_Rabsolu in H10; Rewrite Rabsolu_right. -Apply Rle_lt_trans with ``3*(Rabsolu ((An (S n))/(An n)))``. -Apply H5. -Apply Rlt_monotony_contra with ``/3``. -Apply Rlt_Rinv; Sup0. -Rewrite <- Rmult_assoc; Rewrite <- Rinv_l_sym; [Idtac | DiscrR]; Rewrite Rmult_1l; Rewrite <- (Rmult_sym eps); Unfold Rdiv in H10; Exact H10. -Left; Change ``0<(Vn (S n))/(Vn n)``; Unfold Rdiv; Apply Rmult_lt_pos. -Apply H1. -Apply Rlt_Rinv; Apply H1. -Unfold Rdiv; Apply Rmult_lt_pos; [Assumption | Apply Rlt_Rinv; Sup0]. -Intro; Unfold Rdiv; Rewrite Rabsolu_mult; Rewrite <- Rmult_assoc; Replace ``3`` with ``2*(3*/2)``; [Idtac | Rewrite <- Rmult_assoc; Apply Rinv_r_simpl_m; DiscrR]; Apply Rle_trans with ``(Vn (S n))*2*/(Rabsolu (An n))``. -Rewrite Rmult_assoc; Apply Rle_monotony. -Left; Apply H1. -Apply H4. -Rewrite Rabsolu_Rinv. -Replace ``(Vn (S n))*2*/(Rabsolu (An n))`` with ``(2*/(Rabsolu (An n)))*(Vn (S n))``; [Idtac | Ring]; Replace ``2*(3*/2)*(Rabsolu (An (S n)))*/(Rabsolu (An n))`` with ``(2*/(Rabsolu (An n)))*((3*/2)*(Rabsolu (An (S n))))``; [Idtac | Ring]; Apply Rle_monotony. -Left; Apply Rmult_lt_pos. -Sup0. -Apply Rlt_Rinv; Apply Rabsolu_pos_lt; Apply H. -Elim (H3 (S n)); Intros; Assumption. -Apply H. -Intro; Apply Rle_monotony_contra with (Vn n). -Apply H1. -Rewrite <- Rinv_r_sym. -Apply Rle_monotony_contra with (Rabsolu (An n)). -Apply Rabsolu_pos_lt; Apply H. -Rewrite Rmult_1r; Replace ``(Rabsolu (An n))*((Vn n)*(2*/(Rabsolu (An n))))`` with ``2*(Vn n)*((Rabsolu (An n))*/(Rabsolu (An n)))``; [Idtac | Ring]; Rewrite <- Rinv_r_sym. -Rewrite Rmult_1r; Apply Rle_monotony_contra with ``/2``. -Apply Rlt_Rinv; Sup0. -Rewrite <- Rmult_assoc; Rewrite <- Rinv_l_sym. -Rewrite Rmult_1l; Elim (H3 n); Intros; Assumption. -DiscrR. -Apply Rabsolu_no_R0; Apply H. -Red; Intro; Assert H5 := (H1 n); Rewrite H4 in H5; Elim (Rlt_antirefl ? H5). -Intro; Split. -Unfold Vn; Unfold Rdiv; Rewrite <- (Rmult_sym ``/2``); Apply Rle_monotony. -Left; Apply Rlt_Rinv; Sup0. -Pattern 1 (Rabsolu (An n)); Rewrite <- Rplus_Or; Rewrite double; Rewrite Rplus_assoc; Apply Rle_compatibility. -Apply Rle_anti_compatibility with ``-(An n)``; Rewrite Rplus_Or; Rewrite <- (Rplus_sym (An n)); Rewrite <- Rplus_assoc; Rewrite Rplus_Ropp_l; Rewrite Rplus_Ol; Rewrite <- Rabsolu_Ropp; Apply Rle_Rabsolu. -Unfold Vn; Unfold Rdiv; Repeat Rewrite <- (Rmult_sym ``/2``); Repeat Rewrite Rmult_assoc; Apply Rle_monotony. -Left; Apply Rlt_Rinv; Sup0. -Unfold Rminus; Rewrite double; Replace ``3*(Rabsolu (An n))`` with ``(Rabsolu (An n))+(Rabsolu (An n))+(Rabsolu (An n))``; [Idtac | Ring]; Repeat Rewrite Rplus_assoc; Repeat Apply Rle_compatibility; Apply Rle_Rabsolu. -Intro; Unfold Wn; Unfold Rdiv; Rewrite <- (Rmult_Or ``/2``); Rewrite <- (Rmult_sym ``/2``); Apply Rlt_monotony. -Apply Rlt_Rinv; Sup0. -Apply Rlt_anti_compatibility with (An n); Rewrite Rplus_Or; Unfold Rminus; Rewrite (Rplus_sym (An n)); Rewrite Rplus_assoc; Rewrite Rplus_Ropp_l; Rewrite Rplus_Or; Apply Rle_lt_trans with (Rabsolu (An n)). -Apply Rle_Rabsolu. -Rewrite double; Pattern 1 (Rabsolu (An n)); Rewrite <- Rplus_Or; Apply Rlt_compatibility; Apply Rabsolu_pos_lt; Apply H. -Intro; Unfold Vn; Unfold Rdiv; Rewrite <- (Rmult_Or ``/2``); Rewrite <- (Rmult_sym ``/2``); Apply Rlt_monotony. -Apply Rlt_Rinv; Sup0. -Apply Rlt_anti_compatibility with ``-(An n)``; Rewrite Rplus_Or; Unfold Rminus; Rewrite (Rplus_sym ``-(An n)``); Rewrite Rplus_assoc; Rewrite Rplus_Ropp_r; Rewrite Rplus_Or; Apply Rle_lt_trans with (Rabsolu (An n)). -Rewrite <- Rabsolu_Ropp; Apply Rle_Rabsolu. -Rewrite double; Pattern 1 (Rabsolu (An n)); Rewrite <- Rplus_Or; Apply Rlt_compatibility; Apply Rabsolu_pos_lt; Apply H. -Qed. - -Lemma AlembertC3_step1 : (An:nat->R;x:R) ``x<>0`` -> ((n:nat)``(An n)<>0``) -> (Un_cv [n:nat](Rabsolu ``(An (S n))/(An n)``) ``0``) -> (SigT R [l:R](Pser An x l)). -Intros; Pose Bn := [i:nat]``(An i)*(pow x i)``. -Cut (n:nat)``(Bn n)<>0``. -Intro; Cut (Un_cv [n:nat](Rabsolu ``(Bn (S n))/(Bn n)``) ``0``). -Intro; Assert H4 := (Alembert_C2 Bn H2 H3). -Elim H4; Intros. -Apply Specif.existT with x0; Unfold Bn in p; Apply tech12; Assumption. -Unfold Un_cv; Intros; Unfold Un_cv in H1; Cut ``0<eps/(Rabsolu x)``. -Intro; Elim (H1 ``eps/(Rabsolu x)`` H4); Intros. -Exists x0; Intros; Unfold R_dist; Unfold Rminus; Rewrite Ropp_O; Rewrite Rplus_Or; Rewrite Rabsolu_Rabsolu; Unfold Bn; Replace ``((An (S n))*(pow x (S n)))/((An n)*(pow x n))`` with ``(An (S n))/(An n)*x``. -Rewrite Rabsolu_mult; Apply Rlt_monotony_contra with ``/(Rabsolu x)``. -Apply Rlt_Rinv; Apply Rabsolu_pos_lt; Assumption. -Rewrite <- (Rmult_sym (Rabsolu x)); Rewrite <- Rmult_assoc; Rewrite <- Rinv_l_sym. -Rewrite Rmult_1l; Rewrite <- (Rmult_sym eps); Unfold Rdiv in H5; Replace ``(Rabsolu ((An (S n))/(An n)))`` with ``(R_dist (Rabsolu ((An (S n))*/(An n))) 0)``. -Apply H5; Assumption. -Unfold R_dist; Unfold Rminus; Rewrite Ropp_O; Rewrite Rplus_Or; Rewrite Rabsolu_Rabsolu; Unfold Rdiv; Reflexivity. -Apply Rabsolu_no_R0; Assumption. -Replace (S n) with (plus n (1)); [Idtac | Ring]; Rewrite pow_add; Unfold Rdiv; Rewrite Rinv_Rmult. -Replace ``(An (plus n (S O)))*((pow x n)*(pow x (S O)))*(/(An n)*/(pow x n))`` with ``(An (plus n (S O)))*(pow x (S O))*/(An n)*((pow x n)*/(pow x n))``; [Idtac | Ring]; Rewrite <- Rinv_r_sym. -Simpl; Ring. -Apply pow_nonzero; Assumption. -Apply H0. -Apply pow_nonzero; Assumption. -Unfold Rdiv; Apply Rmult_lt_pos; [Assumption | Apply Rlt_Rinv; Apply Rabsolu_pos_lt; Assumption]. -Intro; Unfold Bn; Apply prod_neq_R0; [Apply H0 | Apply pow_nonzero; Assumption]. -Qed. - -Lemma AlembertC3_step2 : (An:nat->R;x:R) ``x==0`` -> (SigT R [l:R](Pser An x l)). -Intros; Apply Specif.existT with (An O). -Unfold Pser; Unfold infinit_sum; Intros; Exists O; Intros; Replace (sum_f_R0 [n0:nat]``(An n0)*(pow x n0)`` n) with (An O). -Unfold R_dist; Unfold Rminus; Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0; Assumption. -Induction n. -Simpl; Ring. -Rewrite tech5; Rewrite Hrecn; [Rewrite H; Simpl; Ring | Unfold ge; Apply le_O_n]. -Qed. - -(* An useful criterion of convergence for power series *) -Theorem Alembert_C3 : (An:nat->R;x:R) ((n:nat)``(An n)<>0``) -> (Un_cv [n:nat](Rabsolu ``(An (S n))/(An n)``) ``0``) -> (SigT R [l:R](Pser An x l)). -Intros; Case (total_order_T x R0); Intro. -Elim s; Intro. -Cut ``x<>0``. -Intro; Apply AlembertC3_step1; Assumption. -Red; Intro; Rewrite H1 in a; Elim (Rlt_antirefl ? a). -Apply AlembertC3_step2; Assumption. -Cut ``x<>0``. -Intro; Apply AlembertC3_step1; Assumption. -Red; Intro; Rewrite H1 in r; Elim (Rlt_antirefl ? r). -Qed. - -Lemma Alembert_C4 : (An:nat->R;k:R) ``0<=k<1`` -> ((n:nat)``0<(An n)``) -> (Un_cv [n:nat](Rabsolu ``(An (S n))/(An n)``) k) -> (SigT R [l:R](Un_cv [N:nat](sum_f_R0 An N) l)). -Intros An k Hyp H H0. -Cut (sigTT R [l:R](is_lub (EUn [N:nat](sum_f_R0 An N)) l)) -> (SigT R [l:R](Un_cv [N:nat](sum_f_R0 An N) l)). -Intro; Apply X. -Apply complet. -Assert H1 := (tech13 ? ? Hyp H0). -Elim H1; Intros. -Elim H2; Intros. -Elim H4; Intros. -Unfold bound; Exists ``(sum_f_R0 An x0)+/(1-x)*(An (S x0))``. -Unfold is_upper_bound; Intros; Unfold EUn in H6. -Elim H6; Intros. -Rewrite H7. -Assert H8 := (lt_eq_lt_dec x2 x0). -Elim H8; Intros. -Elim a; Intro. -Replace (sum_f_R0 An x0) with (Rplus (sum_f_R0 An x2) (sum_f_R0 [i:nat](An (plus (S x2) i)) (minus x0 (S x2)))). -Pattern 1 (sum_f_R0 An x2); Rewrite <- Rplus_Or. -Rewrite Rplus_assoc; Apply Rle_compatibility. -Left; Apply gt0_plus_gt0_is_gt0. -Apply tech1. -Intros; Apply H. -Apply Rmult_lt_pos. -Apply Rlt_Rinv; Apply Rlt_anti_compatibility with x; Rewrite Rplus_Or; Replace ``x+(1-x)`` with R1; [Elim H3; Intros; Assumption | Ring]. -Apply H. -Symmetry; Apply tech2; Assumption. -Rewrite b; Pattern 1 (sum_f_R0 An x0); Rewrite <- Rplus_Or; Apply Rle_compatibility. -Left; Apply Rmult_lt_pos. -Apply Rlt_Rinv; Apply Rlt_anti_compatibility with x; Rewrite Rplus_Or; Replace ``x+(1-x)`` with R1; [Elim H3; Intros; Assumption | Ring]. -Apply H. -Replace (sum_f_R0 An x2) with (Rplus (sum_f_R0 An x0) (sum_f_R0 [i:nat](An (plus (S x0) i)) (minus x2 (S x0)))). -Apply Rle_compatibility. -Cut (Rle (sum_f_R0 [i:nat](An (plus (S x0) i)) (minus x2 (S x0))) (Rmult (An (S x0)) (sum_f_R0 [i:nat](pow x i) (minus x2 (S x0))))). -Intro; Apply Rle_trans with (Rmult (An (S x0)) (sum_f_R0 [i:nat](pow x i) (minus x2 (S x0)))). -Assumption. -Rewrite <- (Rmult_sym (An (S x0))); Apply Rle_monotony. -Left; Apply H. -Rewrite tech3. -Unfold Rdiv; Apply Rle_monotony_contra with ``1-x``. -Apply Rlt_anti_compatibility with x; Rewrite Rplus_Or. -Replace ``x+(1-x)`` with R1; [Elim H3; Intros; Assumption | Ring]. -Do 2 Rewrite (Rmult_sym ``1-x``). -Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym. -Rewrite Rmult_1r; Apply Rle_anti_compatibility with ``(pow x (S (minus x2 (S x0))))``. -Replace ``(pow x (S (minus x2 (S x0))))+(1-(pow x (S (minus x2 (S x0)))))`` with R1; [Idtac | Ring]. -Rewrite <- (Rplus_sym R1); Pattern 1 R1; Rewrite <- Rplus_Or; Apply Rle_compatibility. -Left; Apply pow_lt. -Apply Rle_lt_trans with k. -Elim Hyp; Intros; Assumption. -Elim H3; Intros; Assumption. -Apply Rminus_eq_contra. -Red; Intro. -Elim H3; Intros. -Rewrite H10 in H12; Elim (Rlt_antirefl ? H12). -Red; Intro. -Elim H3; Intros. -Rewrite H10 in H12; Elim (Rlt_antirefl ? H12). -Replace (An (S x0)) with (An (plus (S x0) O)). -Apply (tech6 [i:nat](An (plus (S x0) i)) x). -Left; Apply Rle_lt_trans with k. -Elim Hyp; Intros; Assumption. -Elim H3; Intros; Assumption. -Intro. -Cut (n:nat)(ge n x0)->``(An (S n))<x*(An n)``. -Intro. -Replace (plus (S x0) (S i)) with (S (plus (S x0) i)). -Apply H9. -Unfold ge. -Apply tech8. - Apply INR_eq; Rewrite S_INR; Do 2 Rewrite plus_INR; Do 2 Rewrite S_INR; Ring. -Intros. -Apply Rlt_monotony_contra with ``/(An n)``. -Apply Rlt_Rinv; Apply H. -Do 2 Rewrite (Rmult_sym ``/(An n)``). -Rewrite Rmult_assoc. -Rewrite <- Rinv_r_sym. -Rewrite Rmult_1r. -Replace ``(An (S n))*/(An n)`` with ``(Rabsolu ((An (S n))/(An n)))``. -Apply H5; Assumption. -Rewrite Rabsolu_right. -Unfold Rdiv; Reflexivity. -Left; Unfold Rdiv; Change ``0<(An (S n))*/(An n)``; Apply Rmult_lt_pos. -Apply H. -Apply Rlt_Rinv; Apply H. -Red; Intro. -Assert H11 := (H n). -Rewrite H10 in H11; Elim (Rlt_antirefl ? H11). -Replace (plus (S x0) O) with (S x0); [Reflexivity | Ring]. -Symmetry; Apply tech2; Assumption. -Exists (sum_f_R0 An O); Unfold EUn; Exists O; Reflexivity. -Intro; Elim X; Intros. -Apply Specif.existT with x; Apply tech10; [Unfold Un_growing; Intro; Rewrite tech5; Pattern 1 (sum_f_R0 An n); Rewrite <- Rplus_Or; Apply Rle_compatibility; Left; Apply H | Apply p]. -Qed. - -Lemma Alembert_C5 : (An:nat->R;k:R) ``0<=k<1`` -> ((n:nat)``(An n)<>0``) -> (Un_cv [n:nat](Rabsolu ``(An (S n))/(An n)``) k) -> (SigT R [l:R](Un_cv [N:nat](sum_f_R0 An N) l)). -Intros. -Cut (sigTT R [l:R](Un_cv [N:nat](sum_f_R0 An N) l)) -> (SigT R [l:R](Un_cv [N:nat](sum_f_R0 An N) l)). -Intro Hyp0; Apply Hyp0. -Apply cv_cauchy_2. -Apply cauchy_abs. -Apply cv_cauchy_1. -Cut (SigT R [l:R](Un_cv [N:nat](sum_f_R0 [i:nat](Rabsolu (An i)) N) l)) -> (sigTT R [l:R](Un_cv [N:nat](sum_f_R0 [i:nat](Rabsolu (An i)) N) l)). -Intro Hyp; Apply Hyp. -Apply (Alembert_C4 [i:nat](Rabsolu (An i)) k). -Assumption. -Intro; Apply Rabsolu_pos_lt; Apply H0. -Unfold Un_cv. -Unfold Un_cv in H1. -Unfold Rdiv. -Intros. -Elim (H1 eps H2); Intros. -Exists x; Intros. -Rewrite <- Rabsolu_Rinv. -Rewrite <- Rabsolu_mult. -Rewrite Rabsolu_Rabsolu. -Unfold Rdiv in H3; Apply H3; Assumption. -Apply H0. -Intro. -Elim X; Intros. -Apply existTT with x. -Assumption. -Intro. -Elim X; Intros. -Apply Specif.existT with x. -Assumption. -Qed. - -(* Convergence of power series in D(O,1/k) *) -(* k=0 is described in Alembert_C3 *) -Lemma Alembert_C6 : (An:nat->R;x,k:R) ``0<k`` -> ((n:nat)``(An n)<>0``) -> (Un_cv [n:nat](Rabsolu ``(An (S n))/(An n)``) k) -> ``(Rabsolu x)</k`` -> (SigT R [l:R](Pser An x l)). -Intros. -Cut (SigT R [l:R](Un_cv [N:nat](sum_f_R0 [i:nat]``(An i)*(pow x i)`` N) l)). -Intro. -Elim X; Intros. -Apply Specif.existT with x0. -Apply tech12; Assumption. -Case (total_order_T x R0); Intro. -Elim s; Intro. -EApply Alembert_C5 with ``k*(Rabsolu x)``. -Split. -Unfold Rdiv; Apply Rmult_le_pos. -Left; Assumption. -Left; Apply Rabsolu_pos_lt. -Red; Intro; Rewrite H3 in a; Elim (Rlt_antirefl ? a). -Apply Rlt_monotony_contra with ``/k``. -Apply Rlt_Rinv; Assumption. -Rewrite <- Rmult_assoc. -Rewrite <- Rinv_l_sym. -Rewrite Rmult_1l. -Rewrite Rmult_1r; Assumption. -Red; Intro; Rewrite H3 in H; Elim (Rlt_antirefl ? H). -Intro; Apply prod_neq_R0. -Apply H0. -Apply pow_nonzero. -Red; Intro; Rewrite H3 in a; Elim (Rlt_antirefl ? a). -Unfold Un_cv; Unfold Un_cv in H1. -Intros. -Cut ``0<eps/(Rabsolu x)``. -Intro. -Elim (H1 ``eps/(Rabsolu x)`` H4); Intros. -Exists x0. -Intros. -Replace ``((An (S n))*(pow x (S n)))/((An n)*(pow x n))`` with ``(An (S n))/(An n)*x``. -Unfold R_dist. -Rewrite Rabsolu_mult. -Replace ``(Rabsolu ((An (S n))/(An n)))*(Rabsolu x)-k*(Rabsolu x)`` with ``(Rabsolu x)*((Rabsolu ((An (S n))/(An n)))-k)``; [Idtac | Ring]. -Rewrite Rabsolu_mult. -Rewrite Rabsolu_Rabsolu. -Apply Rlt_monotony_contra with ``/(Rabsolu x)``. -Apply Rlt_Rinv; Apply Rabsolu_pos_lt. -Red; Intro; Rewrite H7 in a; Elim (Rlt_antirefl ? a). -Rewrite <- Rmult_assoc. -Rewrite <- Rinv_l_sym. -Rewrite Rmult_1l. -Rewrite <- (Rmult_sym eps). -Unfold R_dist in H5. -Unfold Rdiv; Unfold Rdiv in H5; Apply H5; Assumption. -Apply Rabsolu_no_R0. -Red; Intro; Rewrite H7 in a; Elim (Rlt_antirefl ? a). -Unfold Rdiv; Replace (S n) with (plus n (1)); [Idtac | Ring]. -Rewrite pow_add. -Simpl. -Rewrite Rmult_1r. -Rewrite Rinv_Rmult. -Replace ``(An (plus n (S O)))*((pow x n)*x)*(/(An n)*/(pow x n))`` with ``(An (plus n (S O)))*/(An n)*x*((pow x n)*/(pow x n))``; [Idtac | Ring]. -Rewrite <- Rinv_r_sym. -Rewrite Rmult_1r; Reflexivity. -Apply pow_nonzero. -Red; Intro; Rewrite H7 in a; Elim (Rlt_antirefl ? a). -Apply H0. -Apply pow_nonzero. -Red; Intro; Rewrite H7 in a; Elim (Rlt_antirefl ? a). -Unfold Rdiv; Apply Rmult_lt_pos. -Assumption. -Apply Rlt_Rinv; Apply Rabsolu_pos_lt. -Red; Intro H7; Rewrite H7 in a; Elim (Rlt_antirefl ? a). -Apply Specif.existT with (An O). -Unfold Un_cv. -Intros. -Exists O. -Intros. -Unfold R_dist. -Replace (sum_f_R0 [i:nat]``(An i)*(pow x i)`` n) with (An O). -Unfold Rminus; Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0; Assumption. -Induction n. -Simpl; Ring. -Rewrite tech5. -Rewrite <- Hrecn. -Rewrite b; Simpl; Ring. -Unfold ge; Apply le_O_n. -EApply Alembert_C5 with ``k*(Rabsolu x)``. -Split. -Unfold Rdiv; Apply Rmult_le_pos. -Left; Assumption. -Left; Apply Rabsolu_pos_lt. -Red; Intro; Rewrite H3 in r; Elim (Rlt_antirefl ? r). -Apply Rlt_monotony_contra with ``/k``. -Apply Rlt_Rinv; Assumption. -Rewrite <- Rmult_assoc. -Rewrite <- Rinv_l_sym. -Rewrite Rmult_1l. -Rewrite Rmult_1r; Assumption. -Red; Intro; Rewrite H3 in H; Elim (Rlt_antirefl ? H). -Intro; Apply prod_neq_R0. -Apply H0. -Apply pow_nonzero. -Red; Intro; Rewrite H3 in r; Elim (Rlt_antirefl ? r). -Unfold Un_cv; Unfold Un_cv in H1. -Intros. -Cut ``0<eps/(Rabsolu x)``. -Intro. -Elim (H1 ``eps/(Rabsolu x)`` H4); Intros. -Exists x0. -Intros. -Replace ``((An (S n))*(pow x (S n)))/((An n)*(pow x n))`` with ``(An (S n))/(An n)*x``. -Unfold R_dist. -Rewrite Rabsolu_mult. -Replace ``(Rabsolu ((An (S n))/(An n)))*(Rabsolu x)-k*(Rabsolu x)`` with ``(Rabsolu x)*((Rabsolu ((An (S n))/(An n)))-k)``; [Idtac | Ring]. -Rewrite Rabsolu_mult. -Rewrite Rabsolu_Rabsolu. -Apply Rlt_monotony_contra with ``/(Rabsolu x)``. -Apply Rlt_Rinv; Apply Rabsolu_pos_lt. -Red; Intro; Rewrite H7 in r; Elim (Rlt_antirefl ? r). -Rewrite <- Rmult_assoc. -Rewrite <- Rinv_l_sym. -Rewrite Rmult_1l. -Rewrite <- (Rmult_sym eps). -Unfold R_dist in H5. -Unfold Rdiv; Unfold Rdiv in H5; Apply H5; Assumption. -Apply Rabsolu_no_R0. -Red; Intro; Rewrite H7 in r; Elim (Rlt_antirefl ? r). -Unfold Rdiv; Replace (S n) with (plus n (1)); [Idtac | Ring]. -Rewrite pow_add. -Simpl. -Rewrite Rmult_1r. -Rewrite Rinv_Rmult. -Replace ``(An (plus n (S O)))*((pow x n)*x)*(/(An n)*/(pow x n))`` with ``(An (plus n (S O)))*/(An n)*x*((pow x n)*/(pow x n))``; [Idtac | Ring]. -Rewrite <- Rinv_r_sym. -Rewrite Rmult_1r; Reflexivity. -Apply pow_nonzero. -Red; Intro; Rewrite H7 in r; Elim (Rlt_antirefl ? r). -Apply H0. -Apply pow_nonzero. -Red; Intro; Rewrite H7 in r; Elim (Rlt_antirefl ? r). -Unfold Rdiv; Apply Rmult_lt_pos. -Assumption. -Apply Rlt_Rinv; Apply Rabsolu_pos_lt. -Red; Intro H7; Rewrite H7 in r; Elim (Rlt_antirefl ? r). -Qed. |