aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/ZArith
diff options
context:
space:
mode:
authorGravatar letouzey <letouzey@85f007b7-540e-0410-9357-904b9bb8a0f7>2011-06-23 16:35:26 +0000
committerGravatar letouzey <letouzey@85f007b7-540e-0410-9357-904b9bb8a0f7>2011-06-23 16:35:26 +0000
commitf3ddbcb8b977e9314ff5ef309bccfd17114f955c (patch)
tree0d29584d8c37c8f96ddabe2c940c6f6ff7a51ec6 /theories/ZArith
parent485151f9ee054b0a0f390d4eff6a2bb2958ed8c2 (diff)
cleanup of Zmin and Zmax
git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@14235 85f007b7-540e-0410-9357-904b9bb8a0f7
Diffstat (limited to 'theories/ZArith')
-rw-r--r--theories/ZArith/Zmax.v93
-rw-r--r--theories/ZArith/Zmin.v72
2 files changed, 82 insertions, 83 deletions
diff --git a/theories/ZArith/Zmax.v b/theories/ZArith/Zmax.v
index 87a14a136..999564f03 100644
--- a/theories/ZArith/Zmax.v
+++ b/theories/ZArith/Zmax.v
@@ -10,103 +10,102 @@
Require Export BinInt Zcompare Zorder.
-Open Local Scope Z_scope.
-
-(** Definition [Zmax] is now [BinInt.Zmax]. *)
+Local Open Scope Z_scope.
+(** Definition [Zmax] is now [BinInt.Z.max]. *)
(** * Characterization of maximum on binary integer numbers *)
Definition Zmax_case := Z.max_case.
Definition Zmax_case_strong := Z.max_case_strong.
-Lemma Zmax_spec : forall x y,
- x >= y /\ Zmax x y = x \/ x < y /\ Zmax x y = y.
+Lemma Zmax_spec x y :
+ x >= y /\ Z.max x y = x \/ x < y /\ Z.max x y = y.
Proof.
- intros x y. rewrite Zge_iff_le. destruct (Z.max_spec x y); auto.
+ Z.swap_greater. destruct (Z.max_spec x y); auto.
Qed.
-Lemma Zmax_left : forall n m, n>=m -> Zmax n m = n.
-Proof. intros x y. rewrite Zge_iff_le. apply Zmax_l. Qed.
+Lemma Zmax_left n m : n>=m -> Z.max n m = n.
+Proof. Z.swap_greater. apply Zmax_l. Qed.
-Definition Zmax_right : forall n m, n<=m -> Zmax n m = m := Zmax_r.
+Lemma Zmax_right : forall n m, n<=m -> Z.max n m = m. Proof Zmax_r.
(** * Least upper bound properties of max *)
-Definition Zle_max_l : forall n m, n <= Zmax n m := Z.le_max_l.
-Definition Zle_max_r : forall n m, m <= Zmax n m := Z.le_max_r.
+Lemma Zle_max_l : forall n m, n <= Z.max n m. Proof Z.le_max_l.
+Lemma Zle_max_r : forall n m, m <= Z.max n m. Proof Z.le_max_r.
-Definition Zmax_lub : forall n m p, n <= p -> m <= p -> Zmax n m <= p
- := Z.max_lub.
+Lemma Zmax_lub : forall n m p, n <= p -> m <= p -> Z.max n m <= p.
+Proof Z.max_lub.
-Definition Zmax_lub_lt : forall n m p:Z, n < p -> m < p -> Zmax n m < p
- := Z.max_lub_lt.
+Lemma Zmax_lub_lt : forall n m p:Z, n < p -> m < p -> Z.max n m < p.
+Proof Z.max_lub_lt.
(** * Compatibility with order *)
-Definition Zle_max_compat_r : forall n m p, n <= m -> Zmax n p <= Zmax m p
- := Z.max_le_compat_r.
+Lemma Zle_max_compat_r : forall n m p, n <= m -> Z.max n p <= Z.max m p.
+Proof Z.max_le_compat_r.
-Definition Zle_max_compat_l : forall n m p, n <= m -> Zmax p n <= Zmax p m
- := Z.max_le_compat_l.
+Lemma Zle_max_compat_l : forall n m p, n <= m -> Z.max p n <= Z.max p m.
+Proof Z.max_le_compat_l.
(** * Semi-lattice properties of max *)
-Definition Zmax_idempotent : forall n, Zmax n n = n := Z.max_id.
-Definition Zmax_comm : forall n m, Zmax n m = Zmax m n := Z.max_comm.
-Definition Zmax_assoc : forall n m p, Zmax n (Zmax m p) = Zmax (Zmax n m) p
- := Z.max_assoc.
+Lemma Zmax_idempotent : forall n, Z.max n n = n. Proof Z.max_id.
+Lemma Zmax_comm : forall n m, Z.max n m = Z.max m n. Proof Z.max_comm.
+Lemma Zmax_assoc : forall n m p, Z.max n (Z.max m p) = Z.max (Z.max n m) p.
+Proof Z.max_assoc.
(** * Additional properties of max *)
-Lemma Zmax_irreducible_dec : forall n m, {Zmax n m = n} + {Zmax n m = m}.
-Proof. exact Z.max_dec. Qed.
+Lemma Zmax_irreducible_dec : forall n m, {Z.max n m = n} + {Z.max n m = m}.
+Proof Z.max_dec.
-Definition Zmax_le_prime : forall n m p, p <= Zmax n m -> p <= n \/ p <= m
- := Z.max_le.
+Lemma Zmax_le_prime : forall n m p, p <= Z.max n m -> p <= n \/ p <= m.
+Proof Z.max_le.
(** * Operations preserving max *)
-Definition Zsucc_max_distr :
- forall n m:Z, Zsucc (Zmax n m) = Zmax (Zsucc n) (Zsucc m)
- := Z.succ_max_distr.
+Lemma Zsucc_max_distr :
+ forall n m, Z.succ (Z.max n m) = Z.max (Z.succ n) (Z.succ m).
+Proof Z.succ_max_distr.
-Definition Zplus_max_distr_l : forall n m p:Z, Zmax (p + n) (p + m) = p + Zmax n m
- := Z.add_max_distr_l.
+Lemma Zplus_max_distr_l : forall n m p, Z.max (p + n) (p + m) = p + Z.max n m.
+Proof Z.add_max_distr_l.
-Definition Zplus_max_distr_r : forall n m p:Z, Zmax (n + p) (m + p) = Zmax n m + p
- := Z.add_max_distr_r.
+Lemma Zplus_max_distr_r : forall n m p, Z.max (n + p) (m + p) = Z.max n m + p.
+Proof Z.add_max_distr_r.
(** * Maximum and Zpos *)
-Lemma Zpos_max : forall p q, Zpos (Pmax p q) = Zmax (Zpos p) (Zpos q).
+Lemma Zpos_max p q : Zpos (Pos.max p q) = Z.max (Zpos p) (Zpos q).
Proof.
- intros; unfold Zmax, Pmax. simpl.
+ unfold Zmax, Pmax. simpl.
case Pos.compare_spec; auto; congruence.
Qed.
-Lemma Zpos_max_1 : forall p, Zmax 1 (Zpos p) = Zpos p.
+Lemma Zpos_max_1 p : Z.max 1 (Zpos p) = Zpos p.
Proof.
- intros; unfold Zmax; simpl; destruct p; simpl; auto.
+ now destruct p.
Qed.
-(** * Characterization of Pminus in term of Zminus and Zmax *)
+(** * Characterization of Pos.sub in term of Z.sub and Z.max *)
-Lemma Zpos_minus : forall p q, Zpos (Pminus p q) = Zmax 1 (Zpos p - Zpos q).
+Lemma Zpos_minus p q : Zpos (p - q) = Z.max 1 (Zpos p - Zpos q).
Proof.
- intros; simpl. rewrite Z.pos_sub_spec. case Pos.compare_spec; intros H.
- now rewrite H, Pos.sub_diag.
- rewrite Pminus_Lt; auto.
+ simpl. rewrite Z.pos_sub_spec. case Pos.compare_spec; intros H.
+ subst; now rewrite Pos.sub_diag.
+ now rewrite Pos.sub_lt.
symmetry. apply Zpos_max_1.
Qed.
(* begin hide *)
(* Compatibility *)
-Notation Zmax1 := Zle_max_l (only parsing).
-Notation Zmax2 := Zle_max_r (only parsing).
-Notation Zmax_irreducible_inf := Zmax_irreducible_dec (only parsing).
-Notation Zmax_le_prime_inf := Zmax_le_prime (only parsing).
+Notation Zmax1 := Z.le_max_l (only parsing).
+Notation Zmax2 := Z.le_max_r (only parsing).
+Notation Zmax_irreducible_inf := Z.max_dec (only parsing).
+Notation Zmax_le_prime_inf := Z.max_le (only parsing).
(* end hide *)
diff --git a/theories/ZArith/Zmin.v b/theories/ZArith/Zmin.v
index 1f2de0c9f..2c5003a6d 100644
--- a/theories/ZArith/Zmin.v
+++ b/theories/ZArith/Zmin.v
@@ -10,83 +10,83 @@
Require Import BinInt Zcompare Zorder.
-Open Local Scope Z_scope.
+Local Open Scope Z_scope.
-(** Definition [Zmin] is now [BinInt.Zmin]. *)
+(** Definition [Zmin] is now [BinInt.Z.min]. *)
(** * Characterization of the minimum on binary integer numbers *)
Definition Zmin_case := Z.min_case.
Definition Zmin_case_strong := Z.min_case_strong.
-Lemma Zmin_spec : forall x y,
- x <= y /\ Zmin x y = x \/ x > y /\ Zmin x y = y.
+Lemma Zmin_spec x y :
+ x <= y /\ Z.min x y = x \/ x > y /\ Z.min x y = y.
Proof.
- intros x y. rewrite Zgt_iff_lt, Z.min_comm. destruct (Z.min_spec y x); auto.
+ Z.swap_greater. rewrite Z.min_comm. destruct (Z.min_spec y x); auto.
Qed.
(** * Greatest lower bound properties of min *)
-Definition Zle_min_l : forall n m, Zmin n m <= n := Z.le_min_l.
-Definition Zle_min_r : forall n m, Zmin n m <= m := Z.le_min_r.
+Lemma Zle_min_l : forall n m, Z.min n m <= n. Proof Z.le_min_l.
+Lemma Zle_min_r : forall n m, Z.min n m <= m. Proof Z.le_min_r.
-Definition Zmin_glb : forall n m p, p <= n -> p <= m -> p <= Zmin n m
- := Z.min_glb.
-Definition Zmin_glb_lt : forall n m p, p < n -> p < m -> p < Zmin n m
- := Z.min_glb_lt.
+Lemma Zmin_glb : forall n m p, p <= n -> p <= m -> p <= Z.min n m.
+Proof Z.min_glb.
+Lemma Zmin_glb_lt : forall n m p, p < n -> p < m -> p < Z.min n m.
+Proof Z.min_glb_lt.
(** * Compatibility with order *)
-Definition Zle_min_compat_r : forall n m p, n <= m -> Zmin n p <= Zmin m p
- := Z.min_le_compat_r.
-Definition Zle_min_compat_l : forall n m p, n <= m -> Zmin p n <= Zmin p m
- := Z.min_le_compat_l.
+Lemma Zle_min_compat_r : forall n m p, n <= m -> Z.min n p <= Z.min m p.
+Proof Z.min_le_compat_r.
+Lemma Zle_min_compat_l : forall n m p, n <= m -> Z.min p n <= Z.min p m.
+Proof Z.min_le_compat_l.
(** * Semi-lattice properties of min *)
-Definition Zmin_idempotent : forall n, Zmin n n = n := Z.min_id.
-Notation Zmin_n_n := Zmin_idempotent (only parsing).
-Definition Zmin_comm : forall n m, Zmin n m = Zmin m n := Z.min_comm.
-Definition Zmin_assoc : forall n m p, Zmin n (Zmin m p) = Zmin (Zmin n m) p
- := Z.min_assoc.
+Lemma Zmin_idempotent : forall n, Z.min n n = n. Proof Z.min_id.
+Notation Zmin_n_n := Z.min_id (only parsing).
+Lemma Zmin_comm : forall n m, Z.min n m = Z.min m n. Proof Z.min_comm.
+Lemma Zmin_assoc : forall n m p, Z.min n (Z.min m p) = Z.min (Z.min n m) p.
+Proof Z.min_assoc.
(** * Additional properties of min *)
-Lemma Zmin_irreducible_inf : forall n m, {Zmin n m = n} + {Zmin n m = m}.
-Proof. exact Z.min_dec. Qed.
+Lemma Zmin_irreducible_inf : forall n m, {Z.min n m = n} + {Z.min n m = m}.
+Proof Z.min_dec.
-Lemma Zmin_irreducible : forall n m, Zmin n m = n \/ Zmin n m = m.
-Proof. intros; destruct (Z.min_dec n m); auto. Qed.
+Lemma Zmin_irreducible n m : Z.min n m = n \/ Z.min n m = m.
+Proof. destruct (Z.min_dec n m); auto. Qed.
Notation Zmin_or := Zmin_irreducible (only parsing).
-Lemma Zmin_le_prime_inf : forall n m p, Zmin n m <= p -> {n <= p} + {m <= p}.
-Proof. intros n m p; apply Zmin_case; auto. Qed.
+Lemma Zmin_le_prime_inf n m p : Z.min n m <= p -> {n <= p} + {m <= p}.
+Proof. apply Zmin_case; auto. Qed.
(** * Operations preserving min *)
-Definition Zsucc_min_distr :
- forall n m, Zsucc (Zmin n m) = Zmin (Zsucc n) (Zsucc m)
- := Z.succ_min_distr.
+Lemma Zsucc_min_distr :
+ forall n m, Z.succ (Z.min n m) = Z.min (Z.succ n) (Z.succ m).
+Proof Z.succ_min_distr.
Notation Zmin_SS := Z.succ_min_distr (only parsing).
-Definition Zplus_min_distr_r :
- forall n m p, Zmin (n + p) (m + p) = Zmin n m + p
- := Z.add_min_distr_r.
+Lemma Zplus_min_distr_r :
+ forall n m p, Z.min (n + p) (m + p) = Z.min n m + p.
+Proof Z.add_min_distr_r.
Notation Zmin_plus := Z.add_min_distr_r (only parsing).
(** * Minimum and Zpos *)
-Lemma Zpos_min : forall p q, Zpos (Pmin p q) = Zmin (Zpos p) (Zpos q).
+Lemma Zpos_min p q : Zpos (Pos.min p q) = Z.min (Zpos p) (Zpos q).
Proof.
- intros; unfold Zmin, Pmin; simpl. destruct Pos.compare; auto.
+ unfold Z.min, Pos.min; simpl. destruct Pos.compare; auto.
Qed.
-Lemma Zpos_min_1 : forall p, Zmin 1 (Zpos p) = 1.
+Lemma Zpos_min_1 p : Z.min 1 (Zpos p) = 1.
Proof.
- intros; unfold Zmax; simpl; destruct p; simpl; auto.
+ now destruct p.
Qed.